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Introduction

Random combinatorial problems and diluted spin systems

During the last two decades, in spite of many pioneering fundamental contributions ([1] and
references therein), the main stream of analytical results in the field of statistical mechanics of
spin-glasses and disordered systems focused mainly on mean-field models of large degree!([2, 3,
4, 5, 6] and references therein).

In the more recent years, a major effort has been devoted to the study of models that could
retain, at least in a statistical way, some features of finite dimensionality, like finite degrees and
presence of geometrical constraints influencing both the static and the dynamical properties
of the systems. Spin glass models over diluted random graphs constitute by now the natural
framework for the most advanced analytical studies concerning the glass transition in disordered
systems.

The interest in diluted spin system is by far not limited to physics. As we shall discuss
in great detail in this thesis, there exists a huge class of open root problems in theoretical
computer science and in discrete mathematics which have a simple representation as diluted
spin system.

From the point of view of pure physics, the study of diluted systems represents only a first
step towards the treatment of finite dimensionality or geometrically structured models, and
one could think for instance to even more complex or “semi-random” structures where some
regularity reminiscent of a real lattice geometry is progressively introduced into the random
adjacency matrix. But even if one limits the investigation to purely random diluted graphs and
to classical spin models defined on them, the questions that arise are still of a deep kind both
from a fundamental and from an application oriented point of view.

Why are this models interesting? The main reasons can be summarized in the following:

e From a fundamental point of view: they are still essentially mean field, however they retain
finite interaction degrees that is reminiscent of finite dimensional cases. The presence of
large scale structures like large loops has to be taken into consideration as a first step
in the understanding the role of topology and geometry for the collective behavior of
complex systems.

e Moreover, they are widely accepted as prototype models in the study of fundamental
phenomena in the theory of Computational Complexity.

e From an applicative (but not less important) point of view: they have a natural wide
range of applications to a class of systems that span over the following fields

'In the following we will call degree what usually physicists call connectivity, i.e. the number of neighbors
of a vertex of the lattice or graph the model is defined on. We chose The first term in order to be consistent
with mathematical and graph theory literature.
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— Statistical analysis of the behavior of realistic neural networks ([2, 6, 27, 28] and
references therein)

— Combinatorial optimization problems ([27, 29, 30, 31, 32, 34, 35, 36, 37, 117] and
references therein)

— Error correcting codes and cryptography (27, 38, 39] and references therein)

— Models of statistical information processing and image restoration ([27] and refer-
ences therein)

— Statistical models of collective phenomena in biology (for instance. gene and protein
regulatory networks, networks of cellular signalling pathways etc.) ([40, 41] and
references therein)

— Statistical analysis and optimal design in complex artificial networks such as the
Internet or the World Wide Web ([43, 44, 45, 46] and references therein)

In what follows we are going to deal both with basic theoretical aspects and with some spe-
cific applications belonging to computer science (combinatorial optimization, error correcting
codes and cryptography). We are going to study the low temperature equilibrium and out-of-
equilibrium phases of diluted spin-glasses with the aim of elucidating the geometrical structure
of ground states underlying static and dynamic transitions. The computational counterpart
of such a study arises from the elementary observation that (hard) combinatorial optimiza-
tion problems can be easily reformulated as problems of finding ground states in spin-glass-like
Hamiltonians. In this sense the idea of studying their topological structure is quite a natural
one [2]. The recent efforts in developing a mathematical and physical understanding of such
systems over diluted structures have opened new perspectives and new roads to solutions to
those problems, tackling them in their natural milieu. The models reviewed and studied in
this thesis are all of random nature. While this is usually the most natural thing to do in
physics, the study of random combinatorial problems has been revealing itself useful also in
computer science where it allows to broaden to the typical-case the classical worst-case notions
of computational complexity [34].

This thesis is devoted to the analytical study of the dynamic and static transitions numer-
ically observed in this whole class of models, with specific focus on combinatorial optimization
problems and error correcting codes, once mapped on specific diluted spin systems. Stress is
posed on the connection between the slowing down processes in algorithms behavior and sta-
tistical phase transitions due to some intrinsic property on the spin model, that can usually be
tracked down to the emergence of non trivial frustrated topological structures in the underly-
ing graph. The recent achievements [29, 30, 56] of a promising new class of algorithms that
seems to outperform the other state-of-the-art search procedures for typically hard combina-
torial problems are based on theoretical understanding rooted in the concepts reviewed in this
work. This result, among others, seems to show how statistical physics of disordered systems
has still a lot to teach us when applied to the field of computational complexity.

The thesis will be organized in the following way: in the first chapter some general guid-
ing concepts of random graphs and modern statistical physics of disordered systems will be
presented, and the connection with relevant problems in theoretical computer science will be
stressed. In chapter two we will introduce in detail the mathematical techniques used to deal
with the analytic computation of relevant physical quantities for a wide class of spin models
defined over diluted random structures, such as random graphs or random graphs with arbi-
trary degree distribution (results for Erdés-Renyi graphs will follow as a special case). The
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complete calculations will be shown in the case of a generalization of the p-spin model over
such structures. Their validity can be seen to hold for a much wider family of random com-
binatorial optimization problem belonging to the NP class in the worst case, such as K-SAT,
()-coloring[57, 58] and many others. Some applications to specific prototype examples will be
shown in the third chapter, while chapter four will deal with specific examples of two com-
binatorial optimization problems, namely the 3-SAT and the bicoloring problem of graphs of
uniform rank 3%2. Chapter five will be devoted to two relevant examples of the relation be-
tween the algorithmic computational complexity of a problem and the presence (and nature)
of dynamic and static phase transitions in the associated spin model. In the first example
the mapping will essentially be between the search for solutions of large random sparse lin-
ear system over finite fields® and the search of the zero temperature ground states of some
ad hoc defined multiple rank interaction diluted ferromagnet. In the second part essentially
the same mapping will be used to study the dynamic slowing down of parity check algorithms
for error correcting codes - with the consequent onset of computational complexity - and the
correspondent dynamic phase transition in spin glasses.

The mathematical language used throughout this work will be that of replica theory: we
are well aware that this is a very controversial field, due to the lankness of clear and rigorous
foundations that makes its mathematical interpretation obscure and its results “unreasonably
successful”[42]. And this even after more than 20 years after the original formulation of the
theory [59]. In the necessary attempt to overcome this problem a calculation in chapter six is
presented with the aim of showing how replica theory can be at least interpreted as a systematic
variational method also in the case on diluted models. The treatment will be a generalization of
the method recently proposed by Guerra [60] for fully connected models. Moreover, very recent
work [23, 24, 30] has clarified the equivalence between the cavity method and the replica results
also in the diluted systems case. Since the first one deals with usual probabilistic objects, it
has a clearer and more direct interpretation that could lend itself to further rigorous studies.
Some directions for future work are summarized in the conclusions.

The calculations and the results presented in this thesis are the output of a three years collabo-
ration with the I.C.T.P. condensed matter and statistical physics group in the names of Riccardo
Zecchina, Silvio Franz, Alfredo Braunstein and Federico Ricci-Tersenghi (now in Rome). Great
part of the work was also the output of a collaboration with Andrea Montanari (Ecole Normale,
Paris). This work would not have been possible without them, and I wish to thank them deeply.

2the definition of graph and of rank will be given at the beginning of chapter 1.
3See the definition in the chapter.
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Chapter 1

General techniques for diluted random
models

1.1 Graphs and Hyper-graphs: preliminary definitions

During the whole length of this thesis we are going to deal with spin models defined on diluted
random structures such as simple random graphs or hyper-graphs [61, 62, 63]. A graph G is
commonly defined as a non-empty finite set V(G) of elementary units called vertices or nodes
or sites in our common notation, and a finite set E(G) of distinct unordered pairs of distinct
nodes called edges or links . We call V(G) the vertex set and E(G) the edge set of G. In our
notation the i site will be denoted by its Latin index ¢ and an edge between sites 7 and j will
be denoted as the couple ij. We will work with undirected edges (graphs). We will define the
size or order of the graph as the cardinality of the vertex set or the number N of sites, we will
call M the the cardinality of the edge set. A complete graph is a graph whose edge set is made
of all possible links between nodes. In that case one has M = N(N —1)/2 ~ O(N?). Many
interesting models can be defined on a generalization of graph structures that go under the
name of hyper-graphs. Let X = {zy,....,xy} be a finite set., and let £ = {E;|i € I} be a family
of subsets of X. £ is said to be a hyper-graph on X if E; #0 Vi € I and U;c; E; = X. The
structure H = (X, ) is called hyper-graph. Again, |X| = N is the order of the hyper-graph.
It is easy ro see how a graph is simply a particular case of hyper-graph with & restricted to
subsets of exactly two elements. £ will be the generalized edge set (or hyper-edge set) of H. Is
it possible to draw a hyper-graph in many equivalent ways. One possibility is shown in figure
(1.1), where edges are shown as multiple vertices plaquettes. This may not be the orthodox way
to represent a general hyper-graph, but is reminiscent of the usual way to represent multi-spin
or plaquette interaction in lattice field theory or statistical mechanics, so we will adopt it in the
following. In the future chapters we will occasionally need the concept of incidence matriz as
the matrix A = ((a])) with M rows that represent the edges of % and N columns representing
its vertices, such that:

a 1 if x; €F;

a

ST, ST,

In a hyper-graph #, the rank r(S) of a set S C X is defined as
r(S) = max;|S N E| (1.1)

11
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A 4 - 5, £

Figure 1.1: Trivial examples of a simple graph, two hyper-graphs of fixed rank 3 and an hyper-
graph of rank 4 and minimal rank 2. also rank 2 edges are expressed in hyper-graph notation.
All these example have N very small compared with the structures we will be interested in, so
they are only to be intended, along with others in the text, as a pictorial guide.

The rank of the hype-graph is therefore
r(X) = maz;| X N E;| (1.2)

If r(X) = E; V i, then the hyper-graph is said to be of uniform rank. A simple graph will then
be a hype-graph of uniform rank 2.

To each hyper-graph H = (X, E1, ..., Ey) there corresponds a dual hyper-graph H* = (E, X, ..., Xy)
whose vertices are points ey, ..., ey; representing Fjy, ..., )y and whose edges are sets Xy, ..., Xy
representing i, ..., xry where V7,

Xj = {€z|7' S M , El =) .’Ej} (13)

When dealing with the graphical interpretation of error correcting codes, we will switch to a
representation of hyper-graphs in terms of factor graphs [64, 65, 66] (see also the appendix for
a graphical example), more familiar to computer scientists, and where duality is made evident
and explicitly exploited. Any hyper-graph can be read as a bipartite graph where one subset is
X and the other E, and where there is a edge pointing from z; to ¢; if the correspondent element
of the incidence matrix of the original hyper-graph is non-zero. Such particular bipartite graph
is called factor graph. Given a hyper-graph #, a chain of length q is defined [63] as a sequence
(.Z'l, El, T2, EQ, ey Eq, .Z'q+1) s.t.

® Iy,...., 7, are distinct vertices
o Iy, ..., B, are distinct edges
® Tk, Tyl € By Vk=1,..q

In the physics jargon, chains are nothing but connected components of the hyper-graph .
If ¢ > 1 and 441 = 21, then the chain is called a cycle of length q. A cycle in a graph of uniform
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rank 2 is nothing but a loop. In the physics of disordered and frustrated systems a particular
role turn out to play those cycles where every vertex belongs to an even number of edges.
We will call those cycles “compact cycles” , “hyper-cycles” or “hyper-loops”, for the similarity
with the graphs case where loops always have this property. Two examples of very particular
cycles (the first is also a compact cycle) are shown in fig. (1.1) for the case of a hyper-graph of
uniform rank 3 (see also [19] for the first application to hyper-loops concepts to spin glasses, to
my knowledge). A hyper-graph is the said to be random [62, 69, 68] whenever the presence or
absence of each of its edges is given with a defined arbitrary probability. Traditionally, random
graphs were introduced as those where the probability of having an edge between two given
vertices is a constant r':

Vi,j Prob(ij € E(G))=r (1.4)

If 7 oc O(1) then the graph is said to be dense as well as its incidence matrix. If r oc O(1/N)
then the graph will be thin or diluted and its incidence matrix will be a sparse one. In this
last case M o< N. This will be the case we’ll considered it the rest of the thesis. Complete
hyper-graphs of finite rank [ have C¥ oc N'=! edges 2. Therefore, in order to have a number
of edges proportional to N every plaquette containing [, vertices must have a probability to
be present proportional to 1/N¢=Y_ If each edge is present with the same fixed probability,
properly rescaled with N, the hyper-graph will be diluted and each vertex ¢ will have a finite
degree k; drawn from a poissonian probability degree distribution

_
i

where 7y is a free parameter determining mean value and variance of the distribution. A partic-
ular “self similar” form is peculiar of the poissonian distribution: In this case the probability
¢ of finding a vertex of degree k is equal to the probability ¢ of finding a nearest neighbor
vertex with degree k + 1, as can be seen applying eq. (1.5) to the definition [69]

(1.5)

Ck

(k + ]')Ck+1 _ (k + 1)Ck+1 (1 6)
S ke <k> '

qk

This note is very important in practical calculations and is the origin of major simplifications
in the replica and the cavity equations [23, 24] we will see later on. This is reflected by the fact

LA very rich phenomenology of structures appearing in the graph as a function of the degree and a complete
study of graphs behavior as r increases with N has been performed on a rigorous mathematica basis staring
from the seminal paper of Erdos and Rényi [61]. For a systematic introduction see for instance [62] and [67]
and references therein. To my knowledge no comparable systematic study has been undertaken in the case of
rank > 2 hyper-graphs yet. For a clear introduction to hyper-graphs see [68].

20N = N!/((N = D! in the following.
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that in the poissonian case the mean value uniquely determines the variance and vice-versa.
As a consequence, a lot of simplifications and particular behaviors of poissonian hyper-graphs
cannot be applied in wider families of random structures. However, it is possible to constrain
the probability of the value of the number of edges incident on a fixed vertex in order to
draw diluted hyper-graphs from ensembles with arbitrary degree distributions (arbitrary c).
The constraints will be of global nature and will not introduce vertex-vertex correlations, as
it will be seen in the following. Since the replica as well as the cavity equation for spin
models defined over diluted hyper-graphs will be concerned in the computation of the local
effective fields acting on each spin variable in absence of a particular edge incident to the
vertex under consideration, The natural ensemble we are going to work with will indeed be
that of the ¢, and not that of the ¢;. We stress again that this change is immaterial in the
poissonian case, where one falls back into the same ensemble, but not in the general one.
Moreover, one could of course think to more complex or “semi-random” structures where some
regularity reminiscent of a real lattice geometry is progressively introduced into the random
matrix through the presence of correlations of various kind (see [41] for one among possible
examples) or through the presence of regular sub-hyper-graphs merged in the whole one in a
random way. But even if one limits the investigation to purely random diluted hyper-graphs
and to simple classical spin models defined on them, the questions that arise are still of a deep
kind both from a fundamental and from an application oriented point of view. Nevertheless,
the immediate future directions for investigations will necessarily have to deal with the presence
of such correlations [72, 46, 70, 71, 73], as well as with models where the interaction constraints
are non local in nature [74] or non purely classical.

1.2 Spin models on diluted structures

In all cases, we are going to work with models that can be described, under appropriate map-
ping, via some spin Hamiltonian H(J,s), where {J} represents an ensemble of disordered
interaction energy variables taking non zero values on the edges of the hyper-graph or defined
as combinations of more elementary interaction terms as in the case of the K-SAT. s) are N £1
spin variables (0 or 1 Boolean variables in the usual combinatorial problems encoding) living on
the vertices of the hyper-graph. We will deal in the following with cases where the Hamiltonian
can be written as a sum of local energetic contributions €, as

H(J,s) =3 eu({Tu}, {s"}) (1.7)

s

where 1 indicates each subset (usually an edge of the underlying hyper-graph or a clause in SAT
-like formulation) that contains a small number of both constraints and spin variables, relative
to the total number N of variables® . As a title of example, the simplest possible Hamiltonian
is the Viana-Bray (see the original article by Viana and Bray in [1]):

H(J,S) = _ZJijSiSj . (18)

1<J

The diluted hyper-graphs that define the underlying topological structure will be drawn from
the appropriate chosen statistical ensemble, fully determining the probability distribution P (k)

311 is usually calle “clause index” in SAT-like formulations, but it can be extended in general to other spin
systems.



1.2. SPIN MODELS ON DILUTED STRUCTURES 15

of edge degrees and the probability distribution () of ranks. The rank on each single hyper-
graph edge is equal in the cases under consideration to the number of spin variables in the local
energetic term €,. Therefore the distribution Q(!) is going to be strictly related to the fraction
of l-variables interaction terms Hamiltonians summing up to the total H(J,s)".

1.2.1 Disorder

Once the set {J} of non zero couplings (equivalent to the set of present edges) is set, its
elements can take values according to an a priori arbitrary distribution p(J). For disordered
pure ferromagnetic-type models p(J) will read

w(I)=06(J-1). (1.9)
For disordered pure anti-ferromagnets
w(I)=6F+1). (1.10)

Finally, for the pure generalized 1 spin-glass case®:
1 N .
pd) =3 (63 - 1)+ +1)) (1.11)

More in general, the same models can be studied for other forms of the coupling distribution
p(J): continuous, mixtures of a continuous and a delta peaked part, mixtures of pure ferromag-
netic and spin-glass terms, and so on. In chapter 5 we will work with models that are originally
defined as a mixture of the previous ferromagnetic and spin-glass one

(3) = % (93— 1)+ (1 -p)3( + 1)) (1.12)

where p is a parameter tuning the amount of “average frustration” or “average glassiness”
present into the system. Finally, the rigorous results presented in chapter 6 will be derived for
general forms of symmetric p(J).

1.2.2 Frustration

It was observed right at the beginning of spin-glass theory by Toulouse [2, 75] that a mixture
of ferromagnetic and anti-ferromagnetic couplings can give rise to conflicting constraints, such
that it is in general impossible to minimize locally all the energy terms ¢,. This property
is widely known as frustration. In spin glass-models on diluted structures (Viana-Bray), this
typically happens when the density of the graph allows particular compact structures such as
loops to percolate in the system. In the case of higher rank hyper-graphs, loops percolation
turns out not to be a sufficient condition for the existence of an extensive fraction of frustrated
constraints, essentially because the extra degrees of freedom due to the possibility of adjusting
the spin variables belonging to the edges but not to the loop. In fact, even more compact
structures such as hyper-loops must percolate in the underlying matrix. The phenomenon is
exemplified in fig. (1.2). The common presence of disorder and frustration allows for a phase

4In fact the two fractions will coincide in the generalized p-spin model.

SHistorically the spin-glass models have been defined only in the case of two body interactions, as a physically
sensible model for real magnetic materials. However, a generalized multi-spin interaction family of spin-glass
type models can be justified not only for their use in random combinatorial optimization, but as an effective
model for many bodies systems of local (often conflicting) constraints, where collective phenomena naturally
emerge.



16 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELS

to satisfy the constraint
i one can always choose

-

S D,
i frustrated

i (unsatisfied)
i constraint

Figure 1.2: Frustration in graphs and hyper-graphs. This Picture is very similar to the one we
will draw in chapter 2 for the core resolution under the action of the Leaf Removal algorithm
(see section 2.7 for details). It is important to keep in mind this similarity, because it will be
the main cause of the effectiveness of the algorithm in locating the spin-glass transition in the
p-spin model.
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| U

0 0.2 0.4 0.6 0.8 1

Figure 1.3: Pictorial one dimensional projection of rough energy landscape.

space structure with a large - typically exponential - number of degenerate global ground states
as well as definite energy metastable states. Pictorially, one could think that these systems
show an energy landscape of the kind exemplified in fig. (1.3). This picture is however often
very misleading because the z-axis in the picture is in fact a projection of the high dimensional
phase space, where all the topological structure is hidden. The degree and nature of the
inner structure of the phase space can vary in principle from problem to problem. A better
understanding of this topology in the case of some models interesting in random combinatorial
optimization, coding theory and more in general disordered systems physics, is the main aim
of the present work.

We would like to mention that the families of models studied in the following chapters is
by no means exhaustive. For instance, a natural generalization of the techniques explained is
currently been applied to Potts-like models [76] and could be adapted in principle to Classical
Heisenberg models and so on. However, in these last cases, the technical calculations are
more involved [57, 58] because, as it turns out, one is forced to work with functional order
parameters which can be written as distributions of effective local fields of vectorial instead
of scalar nature, as it is the case of the examples treated in the present work. This leads
to self consistent equations for the order parameters that are inter-wined in the various field
components [58]%. The body of the chapter will deal with the analytical replica techniques
devised to compute thermodynamical quantities of physical systems on diluted hyper-graphs in
absence of correlations and in presence of quenched disorder. Let us now explicit the connection
between this class of models and combinatorial optimization theory.

6The coloring degree static threshold obviously depend on the number of colors available for the coloring,
at fixed graph. The currently best rigorous upper bound for the 3-COL/UNCOL transition (three colors) in
poissonian degree distributed random graphs is 5.06[77]. It was obtained using a refined first moment method,
equivalent to an improved annealed approximation in statistical physics. The RS 5.1 threshold obtained in
[57] exceeds the rigorous bound, while at the 1RSB level the authors of [58] were able to find a dynamical
threshold for an average degree equal to 4.42, followed by the 3-COL/UNCOL transition at 4.69. The values
are conjectured to be exact by the authors, and are indeed in very good agreement with numerical simulations
[78]. The general discussion on the meaning of the dynamical threshold is done in chapter 2. Notice also that
the calculations of chapter 6 will be in principle extendible to the coloring problem, so we could claim 4.69 to
be at least the best upper bound to date.
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1.2.3 Combinatorial optimization problems as spin models

Classical complexity theory [34], as arising from Cook’s theorem of 1971 [47], deals with the issue
of classifying combinatorial optimization problems according to the computational cost required
for their solution. The hard problems are grouped in a class named NP, where NP stands for
‘non-deterministic polynomial time’. These problems are such that a potential solution can
be checked rapidly whereas finding one solution may require an exponential time in the worst
case. In turn, the hardest problems in NP belong to a sub-class called NP-complete which is
at the root of computational complexity. The completeness property refers to the fact that if
an efficient algorithm for solving just one of these problems could be found, then one would
have an efficient algorithm for solving all problems in NP. By now, a huge number of NP-
complete problems have been identified [34], and the lack of an efficient algorithm corroborates
the widespread conjecture that NP=£P, i.e. that no such algorithm exists.

Complexity theory is based on a worst-case analysis and therefore does not depend on
the properties of the particular instances of the problems under consideration. In practice
algorithms display a huge variability of running times, ranging from linear to exponential, and
therefore a theory for their most probable behavior represents the natural complement to the
worst-case scenario.

The most common problems encountered in computer science and issue of theoretical anal-
ysis studies within computational complexity theory are of a type. A decision-making problem
is often formulated as that of the maximization or minimization of a multi-variable function, an
optimization problem”. The function to be minimized (maximized) is called objective function
or cost function, and basically counts the number of violated constraints , given a particular
configurational assignments to the variables on the problem. An example of combinatorial op-
timization problem familiar to physicists is that of finding the ground state of an Ising model.
More in general, any search of ground states in any spin model on a given geometrical or topo-
logical structure can be seen as particular optimization problem. On the other hand, a large
class of purely combinatorial optimization problems in principle not related to physics can be
seen equivalent to the search for zero temperature ground states of ad hoc constructed spin
models (often spin-glasses) on particular topological structures. Among others we can count
the number partitioning problem, the graph partitioning, the graph and hyper-graph color-
ing, the knapsack problem, the scheduling problem and the satisfiability (SAT) one. A clear
overview of some of these examples can be seen in [27] and an introduction to the study statis-
tical mechanics study of random combinatorial optimization problems seen as spin systems can
be found in [35]. In particular, SAT has been extensively studied due to its NP-completeness
and general nature. Its mapping on a particular spin-glass model has been elucidated in [9].
As well as in many of its variations, the SAT cost function can be read as the collection of
M logical constraints that have to be satisfied by N boolean variables. It turns out [9] that
any SAT formula cost function can be written as the Hamiltonian of a spin model where 0 — 1
variables are replaced by £1 spins, and the constraints are well determined collections of edges
or plaquettes of various rank of a given hyper-graph that completely characterizes the formula
under study. If M ~ O(N), which is the case the most interesting formulas belongs to - i.e.
those close to the satisfiability threshold - then the underlying hyper-graph is a diluted one. In
order to study the SAT problem in its spin-glass formulation it is therefore necessary to develop
a general formalism to be able to deal with topological structures such as diluted hyper-graphs.

"We will not here review in detail the complexity theory of optimization problems, that can be found for
example in [34], together with the definition of P and NP complexity classes as well as more general ones
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In the following this will be explicitly done for the case of the general diluted p-spin like mod-
els, but it will be then further generalized in order to tackle problems like the K-SAT one.
Whenever the constraints forming the formula to be satisfied are drawn randomly from a pre-
viously defined ensemble, then the optimization problem will have a random nature. Instead of
working on a particular hyper-graph, this will amount to averaging over the chosen ensemble
of “quenched” structures. It will be then interesting to discern which properties (one for all the
inner complexity of the problem) survive in shifting the search for solution from a particular
to a random case. The following chapters will almost all be devoted to the application of the
general analytical techniques developed here to various optimization problems, some of them
used as toy models, as in chapter 3, some others of more complex analysis, as in the remaining
chapters.

1.2.4 Quenched disorder averages and general computational strate-
gies

Evaluation of a physical quantity using a spin Hamiltonian of the type (1.8) or any more
complicated case considered in this work starts from the trace over the spin variables for a
given fixed (quenched) set of couplings. For us, this corresponds to randomly choosing a diluted
hyper-graph from a desired ensemble and a fixed form of the (J). The free-energy of the system

FlI] = —% log T, (e=#3)) (1.13)

can be harmlessly averaged over the quenched disorder in the thermodynamic limit, if the self-
averaging condition over extensive thermodynamical quantities (like indeed the free-energy) is
satisfied as we assume to be true throughout the whose treatment. This averaging procedure
goes under the name of configurational average :

(F) = / Du(J)F[J] (1.14)

However, the dependence of the partition function on J is in general very complicated and it is
not easy to calculate expression (1.14) directly. Moreover, in the case of real world optimization
problems, the thermodynamic limit condition does not always hold, and more subtle single
sample analysis also in the typical case have to be taken into consideration [30].

1.2.5 Replicas

The calculations are carried out via a “subtle trick”: it much easier to compute

" —1
(log Z) = lim

n—0 n

(1.15)

The last equation is an identity for continuous n, but the trick consists in calculating first
Z" for integer n, taking the 0 limit is a second time. The replicated partition function, after
averaging over the same disorder realization becomes a partition function of n systems, without
disorder, but with an effective attractive interaction between the various replicas. The reason
for this attraction is intuitively quite simple [79]: because they share the same Hamiltonian
and the same disorder, the various replicas will be attracted towards the same favorable regions
of the phase space and repelled from the unfavorable ones. If one has a simple phase space,
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with basically a single large deepest valley, then the replicas will all fall in that, and the order
parameter will be a number ¢ which will measure the average distance between replicas within
this single valley. But in a systems with several metastable states, the situation can be more
complicated, with some replicas trapped in a valley and some in another. This effect is called
replica symmetry breaking (RSB). Technically it appears as a standard spontaneous breaking
of a symmetry, the permutation symmetry S, of the n replicas. The problem is that this
symmetry is broken only when one considers some number of replicas which is non-integer
and in fact smaller than one. Even though this point has been elegantly solved by Parisi [2],
the validity of taking the n — 0 limit still lacks a general rigorous justification ([60], [59] and
references therein). The last chapter will try to deal with this problem in an indirect way.
We will not show (unfortunately) that the physical quantities defined on the n — 0 vector
spaces are well defined mathematical objects, but at least that, on the class of systems we are
interested in, the effective replica Hamiltonian can lead to rigorous variational results. In the
case of fully connected models, the replica mean field theory can be stated in terms of a single
scalar n X n matrix, whose elements are the overlaps chosen via a determinate scheme and that
play the role of order parameters. In the case of diluted systems, however, it emerges the need
for the determination of a full distribution of multi-spin overlaps [1, 9] that can be completely
characterized via the introduction of a class of functional order parameters [8, 9, 12]

p(o)

that essentially enumerate the fraction of replicated spins in a particular replica state, as it
will become clear in the course of the calculations®. These functional order parameters have
still a mean field nature and will be expressed in terms of series of multi-spin overlap functions
averaged over the mean local fields distributions seen by an average vertex in a particular state.

The free-energy of the system can be written as a function of p(&), and will therefore be a
functional of the local fields probability distributions, averaged over all possible states of the
system. In the N — oo limit?, the dominant contribution to the partition function is found
extremizing the free energy with respect to the functional order parameter

One is left with a set of self consistent integral equations for the effective fields probability
distributions, that can be solved analytically or numerically (depending on the cases). In some
special cases, namely on the 7" = 0 line for some classes of models, these equations further
simplify due to the collapsing of the functional form of the probability distributions into series
of weighted delta functions. When this happens, one is left with a set of algebraic equations in
the weights that often admit analytic solutions in a closed form. This is particularly interesting
in the field of combinatorial optimization, thanks to the existing general mapping procedure
between the solutions of the random combinatorial problem and the zero temperature ground
states of the associated spin model. Moreover, the assignments of the problem variables with
a given (typically low) number of violated constraints correspond to metastable local ground
states with positive energy. The logarithm of the number N (e) of such metastable states is
a function of the their energy density e = E/N and is known as Configurational Entropy or
Complexity[7] X:

S(e) = %log[/\/'(e)] (1.16)

8There are at least two ways to define the order parameter, depending on whether one focuses on the whole
graphs or on some part of it. See appendices C, C.1 and C.2 for some details.
9N is the number of variables in the system.
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Therefore, the measure of the extensivity of the Complexity will be an important indirect way
to study the hardness of the random combinatorial problem depending on the position in the
phase space of the associated pin model, and will stress the deep connection between the theory
of the glassy transitions in disordered systems and the concepts of computational complexity
in theoretical computer science.

As we just said, the ingredients of frustration and/or disorder typically induce the onset of
transitions from a uniform paramagnetic to one or more kind of glassy phases in the control
parameters'? space of the model.

1.2.6 Cavity

The same solutions and the same physical insights can be reached via the cavity method. Cavity
was invented in 1986 for the solution of the SK model [2], but was recently reformulated in the
diluted systems framework [23] and related to an algorithmic understanding of the process in
the case of its direct zero temperature formulation in [24, 30, 29]. The basic idea of the method
applied to spin models on diluted hyper-graphs is the following:

e Assume that, like in the replica method, due to the local tree-like structure of the hyper-
graph and the mean field nature of the model, spin variables become uncorrelated at large
distances if the system is in a single state. The influence of the graph on a single spin
can be therefore easily written in terms of uncorrelated local effective fields acting on it.

e Starting with a system of N variables, add now a variable Sy of degree k (on average one
will add a fraction of spins ¢;) and connect it to the rest of the hyper-graph in order to
complete k clauses of function nodes of the N vertices graphs with variables {S}, ..., S¥} .
where a is the rank index, i.e. it indexes all the variables other than Sy belonging to a
given clause (or energy constraint, as equivalently indicated throughout this thesis).

e Assume that {S}, ..., S¥}, where previously disconnected with probability one in the ther-
modynamic limit (no short loops) and therefore uncorrelated:

(LS, Sta) 2= PV (S ) P ({56} ) lea Pl (S (117)

Then it is possible to compute the new PN+ (Sy; {S¢, ..., S¢},) via Bayes theorem as:

k
P(N+1)(50; {SL,...S H {S“} 2 (S0.{St}a) ~ H H i (So.{Sk }a)

p=1 a
(1.18)
where €?) (S, {Sk},) is the local energy constraint €, of eq. (1.7) where the dependence
on the ,u th clause spin variables has been made explicit, as well as the reference spin
index 0. Integrating over the variables {S}, ..., S¥}, one finally obtains:

PITI(S HH Z P, (SH)eBe (SodSiYe) (1.19)

p=1l a gk=

10We recall that the relevant control parameters are in these models the temperature T, the graph dilution
v or « (depending on the notation in the literature) and in some cases some form of external magnetic field, as
it will be the case in the section dedicated to error correcting codes.
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This last equation defines an iterative method to calculate P "(S,) from {PI(SE)} e

Thanks to the first assumption, the equations for P]-(N)(Sj) and PVHD(S)) can be easily written
as

P.(N) (Sj) - ePhiSi
I 2 cosh(Bh;)
BhoSo
PNy L 1.2
0 (S0) 2 cosh(hy) (1.20)

Writing self consistent equations for the cavity fields is then possible inserting (1.20) in (1.19)
and iterating. In the typical case, one can then average over all spins, getting an expression
for the distribution P(h) weighted over the degree and rank distribution of the typical hyper-
graphs.

In fact, this assumption is globally valid only if the system is in a single pure state. In
many states a = 1, ..., Nyaes are present, the previous equations are valid within a given state
a, i.e. a cluster of solution separated by other clusters. Equations (1.20) will then be state
dependent and the self consistent condition (1.19) will have to be averaged both over the sites i
and over the states «.. This picture corresponds to the one step replica symmetry breaking one
and is frequent in disordered spin systems. The cavity method formulated in this way works
essentially by induction and assumes no non trivial correlations within clusters or inside the
same cluster that could origin from the geometry of the graph, even though trivial correlations of
a hierarchical nature can be taken into account!!. The disregarding of correlations is common
with the replica approach, as it should be if we claim the two to be equivalent, and it is a
limitation of the theory that will have to be overcome in the near future if one wants to be able
to systematically attack problems with more complex geometrical structure.

During the cavity iteration process, one is bound to make a small error of order 1/N, since
the ensemble of random graphs one is working with changes slightly under the N — N + 1
cavity iterations. This error can be healed via a clever balancing of vertices and edges additions
and erasures. More in detail:

e A hyper-graph Hy s with N vertices and M edges is drawn from the desired ensemble.

e A cavity is carved in it, where ¢ vertices are left with degree equal to minus one their
initial one, through a proper erasure of surrounding vertices and edges. ¢ is chosen as a
function of the degree of the erased vertices and the rank of the erased edges'?.

e Local cavity magnetic fields A acting on the cavity spins S; are supposed to follow an
initially unknown probability distribution P;(h$), in principle different from site to site
and with field values dependent on the state « of the system.

e Under the addition of a new cavity spin S; of degree k; connected with some of the previous
cavity sites through given number of hyper-edges of suitably chosen ranks, the probability
distributions of the new cavity fields are calculated in a self consistent iterative way. The

HUTrivial correlations are taken in principle into account via further clusterization steps the same “clusters
within clusters” hierarchy implied by the RSB Parisi’s construction.

2For example for a hyper-graph of fixed rank [ and fixed degree k, ¢ will have value (I — 1)k or integer
multiples.
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iteration is built in order to self consistently stabilize the cavity fields distributions once
the original hyper-graph is retrieved!3.

e The procedure is repeated adding and deleting edges and vertices in a balanced way, in
order to retrieve the hyper-graph belonging to the desired starting ensemble.

e Energy shifts are calculated under the iteration, allowing to calculate the free energy,
the energy density and other physical quantities (for example the complexity) in the
thermodynamic limit.

e Averages over the hyper-graphs ensemble and the model couplings are performed.

If applied to single spins, the cavity method is mean field in nature. In order to possibly
effectively extend it to finite dimensional models or with lattices with some non trivial geometry
one would need to consider the influence on the iteration of more complex groups of variables.
This has been partially done with the cluster variation method (CVM) for ferromagnetic models,
but the extension in presence of frustration is still an open issue.

1.2.7 Phase space structure

two possible scenarios have been encountered in the models studied:

e A Replica Symmetric phase (RS): generically, the distance on the lattice between two
spins is large, at least of the order of random loops forming in the topology, i.e. of the
order O(log N). It is therefore reasonable to assume that the spins remain uncorrelated.
In the cavity language this means that the Global Ground State (GGS) energy of a graph
with a reference cavity of ¢ spins carved in it can be written as an additive function of
the values of the cavity spins S;—; 4, weighted by the local fields h;—; _, acting on them.
When considering the ensemble of random cavity graphs, the local fields turn out to be
i.i.d. random variables, and their distribution is denoted with P(h). The local field will
therefore not fluctuate from state to state because of the presence on only one GGS a,
and the distribution P(h) will be an average over all sites. In the replica formalism, the
same P(h) will be the one determining the multi-spin overlaps contained in the functional
order parameter p(d).

e A One Step Replica Symmetry Broken phase (1RSB): The phase space splits in
an exponential number of metastable Local Ground States (LGS), defined as states in
which the energy cannot be lowered by flipping a finite number of spins. In presence of
several ground states, the assumption is that there is a one-to-one correspondence among
the LGS before and after the addition of spins or edges (at least for the LGS with low
energies). Equivalently we assume that the perturbation due to the change of the value
of a cavity spin propagates (in the limit N going to infinity) only to an infinitesimal
fraction of the lattice. Therefore it is possible to write an iteration procedure for the
whole population of LGS with given energy. However it may well be that the order of the
LGS energies change during the graph operations, and the GGS after iteration is not the
same LGS as the one before. The problem is to take into account these level crossings,
which is not done in the RS solution and turns out to be automatically done in the RSB

13Notice that an essentially equivalent procedure will be followed in chapter 5 to prove the variational nature
of the replica method.
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Figure 1.4: Pictorial view of the energy landscape in the phase space of a system in the 1RSB
phase. The energy is on the vertical axis. cutting the picture at definite values of the energy
one finds clusters of solutions increasing in number and dimension.

€c

Y < Vg Y<Y e=0 Y>Y

d*O(N) g o(N
= U o(N)
Figure 1.5: 1RSB clustering in phase space.

solutions via the replica formalism. One is then forced to follow a large population of
the LGS of lowest energy, large enough so that one can be sure to obtain the GGS when
iterating.

In fig. (1.4) we show a pictorial view of the energy clusters in the 1RSB phase. Typical fixed
energy slices of this picture show how, increasing the energy, different clusters are selected. This
is shown is fig. (1.5). This qualitative picture as been extensively studied for p > 2-spin and
K > 2-SAT models in recent years [11, 21, 53], mainly with variational techniques. This is the
intuitive idea we’ll have in mind in the rest of this work. In some lucky cases - and indeed the
p-spin model will be one of them - this picture will turn out to have an exact interpretation.
In some others, as for instance the random 3-SAT, no rigorous proof is present. However
this picture is highly probable to be correct and what is more important it turned out to be
extremely useful in the development of a new class of algorithm of potential vast use. Indeed
very recently [30, 29] exact solutions of the p-spin model and the K-SAT at zero temperature
in a certain range of the phase space parameters have been achieved under this assumption on
the form of the energy levels distribution.

There are of course models for which this picture is not complete: non trivial correlations
arise among LGS, leading to further steps of replica symmetry breaking. This is for example
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the case of the Viana-Bray model on diluted graphs [23, 24]. In this models typically slow
decaying long range correlations are present. However, from a computational point of view the
Viana-Bray models turns out to be easy in the phase space regions of interest. Indeed, it is
also due to the presence of this long range correlations that Viana-Bray like models turn out
to be computationally simple, because the solution space will in general be connected by paths
allowing the reaching of any phase space point with a clever but sub-extensive sequence of local
adjustments.

The main calculation steps reviewed in the last paragraphs are then the ones indicated in
schema (1.6), where the connection to the field of combinatorial optimization is made evident.

Finally, some differences between the replica and the cavity methods are listed in the fol-
lowing;:

e While replicas force the introduction of an order parameter that has already undergone
average over the quenched disorder, the cavity equations can also be written on a single
sample (hyper-graph). This makes the cavity approach more apt to be applied to specific
real world problems.

e The cavity approach deals with well defined mathematical quantities and is manifestly
variational, while the well definiteness of the replica method (namely in the RSB case) is
still unclear.

e On the other hand, the replica method is much more elegant and compact (especially at
finite temperature), it does not require further postulates and assumptions on the energy
level distribution, that in principle depend on the model considered, and its equations
can be handled in full generality.

We will develop the replica method, occasionally taking advantage of physical insights com-
ing from the cavity picture. A throughout treatment on the state of the art of the cavity ap-
proach to diluted models and combinatorial optimization problems can be found in [23, 24, 30].
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Chapter 2

The generalized diluted p-spin model

We are now going to develop in details the analytical replica techniques previously described. In
doing so we will choose a specific class of models of general importance, namely a generalization
of the p-spin model on uncorrelated random hyper-graphs with arbitrary degree and rank
distribution.

If we define ¢, as the fraction of spin variables with degree k£ and v; the fraction of interactions
of rank [, the resulting mixed hyper-graph structure will be characterized by the following
distributions:

Q) = Yudi-1) (2.1)

P(k) = S ad(k —k) (2.2)

k

<l> = Yy (2.3)
l

<k> = chk (24)
l

We notice that we could introduce two generating functions
o(z) = Y wval (2.5)
!

c(r) = Zk:ckxk (2.6)
(2.7)

where (2.6) is the same of [69], but the (2.5) generalizes it to more complex structures such
as the mixed rank hyper-graphs we work with. The generating function formalism is not
strictly necessary, but can be very helpful when one is interested in computing more complex
topological properties of the hyper-graph and indeed will be explicitly used in some cases. In
the generalized p-spin model the Hamiltonian therefore reads

H = M-) H, (2.8)
!
Hl = Z Jil,...,ilsiu ey Sy (29)
i1<...<il
with "
M=y (2.10)
<l>

27
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and
Iy, I,
P({Jil,...,il}l) - H H Nl ll 6(Ji1,~~~,il)+NT,l16(Ji1,m,il - 1)) (2'11)
I <...<y
l'%
P({Ji..s}) = II 1II ¢ )6 ( Ty ) T (2.12)
I <...<y
Iy

SN (6(Jiyyiy — 1) +0(Jiy .y + 1))

respectively for the ferromagnetic and for the frustrated case, and v, = (< k > / <1 >)y,

2.1 Combinatorial optimization interpretation of p-spin
models: the XOR-SAT

We notice that these Hamiltonians can be also seen as the cost function of a class a combinatorial
optimization problems known under the name of XOR-SAT ([19, 21, 82], also extended in [25]).
The XOR-SAT problem is not NP, but it is nevertheless a very useful prototype treatable
optimization problem in order to test the power of statistical physics tools. Beside this, its
diluted p-spin version bears many interesting properties from the point of view of structural
glasses and granular physics [79, 20, 15, 80, 81], so its study is interesting for a transversal
number of disciplines. We show the case of the K-XOR-SAT model with K variables per
constraint, which can be viewed as a perfectly balanced version of the random K-SAT problem!.
Given a set of N Boolean variables {x; = 0,1}, n, we construct an instance of K-XOR-SAT
as follows: given original K-SAT clauses (z;, V @;, V Z;,) or (x;, V x;, V x;, ), every sub-clause
contained in one of them must appear directed and negated in the corresponding K-XOR-SAT
constraint an even number of times. In the K = 2 case we’ll therefore define the following
elementary constraints (2-clauses sets with 50% satisfying assignments)

C(jl+1) = (x;VE) AT Vay)

In the K = 3 case we’ll have constraints (4-clauses sets with 50% satisfying assignments)

Cligk|+1) = (z;Va;Vap) ANz VI VI
N (z;Va;Vag) ANz VI Vo)
Cligk| =1) = (@ Vz; Vg N(T;Va; V)
N (&, VT Vap) ANz Va; VT, (2.14)

in the K = 4 case we'll have 8-clauses of type

Cligkll+1) = (mVz; Vg Va) AT VIV V)
N (T Ve VT VT) N (T Va; Vg Vo)
N (& Vo Vo Va) A Ve Vg V)
N (&, VZVapVa) NT; Ve Vo Vo)

!The case K = 2 (Viana-Bray model) does not present any interesting computational features as far as
hardness is concerned because it can be solved efficiently both by local and global methods.
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C(ijkl] —1) = (x;Va;VarVa) AT, VI;VIVa)
N (Z;VZ Vg Vo) NT; Ve VI Vo)
N (&, Va;VIgVa) AV Vo Vi)
N (&, VI VTV a) N(T Vo Vaog V) (2.15)

and so on. Here A and V stand for the logical AND and OR operations respectively and
the over-bar is the logical negation. Let’s concentrate on the K = 3 case, that contains all
general elements. In the next chapter we will study a mixed version of this model in the case
of a mixture of 2 and 4 clauses, which we will call 24+p-XOR-SAT as it shares many common
features to the 2+p-SAT model studied in [11]. By randomly choosing? a set E of M triples
{i,j,k} among the N possible indices and M associated unbiased and independent random
variables J;;; = +1, we construct a Boolean expression in Conjunctive Normal Form (CNF) as

F= N\ C(ijk|Ji) - (2.16)

{i.g kel

A logical assignment of the {z;}’s satisfying all clauses, that is evaluating F' to true, is called a
solution of the XOR-SAT problem. If no such assignment exists, F is said to be unsatisfiable.
A slightly different choice of .J;;;, allows to construct XOR-SAT formulse which are random but
guaranteed to be satisfiable. This will lead to the ferromagnetic spin case: to every Boolean
variable we associate independently drawn random variables ; = £1, and define Jyj, = c;eep
for all {4, j, k} € E. For this choice, CNF formula in eq.(2.16) is satisfied by {z; | z; = +1 if ¢ =
+1, z; = 0if e = —1}. As we shall discuss in great detail, these formula provide a uniform
ensemble of hard satisfiable instances for local search methods. We refer to this version of the
model as the satisfiable hSAT. Indeed, the random signs of J;j, can be removed in this satisfiable
case by negating all Boolean variables x; associated to negative ;. The resulting model has
Jijr = +1 for all {i,j,k} € E, and the forced satisfying solution is z; = 1, Vi = 1,...,N.
The use of the {¢;} is a way of hiding the latter solution by a random gauge transformation
without changing the properties of the model. The impossibility of inverting efficiently the
gauge transformation by local methods is a consequence of the branching process arising form
the presence of K = 3 variables in each constraint. For any K > 3 the same result would hold
whereas for K = 2 the problem trivializes. The XOR-SAT model can be easily described as a
minimization problem of a cost-energy function over a random hyper-graph. Given a random
hyper-graph Gy v = (V, E), where V' is the set of N vertices and E is the set of M hyper-edges
joining triples of vertices, the energy function to be minimized reads

{i.gk}el

where each vertex ¢ bears a binary “spin” variable S; = £1, and the weights J;; associated to
the random bonds can be either £1 at random, in the so called frustrated case, or simply equal
to 1 in the unfrustrated model. We see that this is indeed the particular case of the 3-spin of
eq.(2.9). Once the mapping S; = 1 if ; = 1 and S; = —1 if x; = 0 is established, one can easily
notice that the energy function in eq.(2.17) simply counts the number of violated clauses in the
previously defined CNF formulse with the same set of J’s. The frustrated and the unfrustrated
cases correspond to the XOR-SAT and to the satisfiable XOR-SAT formula respectively.

2In the original random XOR-SAT version, v(z) will therefore be the generating function of a Poissonian
distribution.
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2.2 From the partition function to the average free-energy

The constraints on the degree distribution will have to be introduced along the computation of
the logarithm of the partition function.

Z = e PN P2 (2.18)

Following the approach of ref. [19], we compute the free energy of the model with the replica
method, exploiting the identity log < Z" >=1+n < log Z > +0O(n?). The n'® moment of the
partition function is obtained by replicating n times the sum over the spin configurations and
then averaging over the quenched disorder The averaged n-th moment of the partition function
takes therefore the following form, a part from a normalization factor:

< 7" >—¢ nﬂMZ < eﬁza 121 Zzl ..... i Ty, URTRT > (219)

1,

where the average value of an observable is given by:

<> PE] [ T PO OIS S Jsign(,.i)l = k) - (220)

11 <...<14g =1 I i1<...<q
[To(Mu — > |sign(Jiy,.i)D) (2.21)
l 11<...<4]

&[P(k)] is a normalization factor necessary to rescale to one the sum over the constrained
probability distribution of the couplings:

N=[ I PUw.) IIE X Isign(i.)l—k) [[8(Mu— 3 Isign(J....)l)

11 <...<14; =1 I 11<...<q l 11 <...<17;
(2.22)

The two inserted delta functions are there to ensure the constraints on degree and interaction
terms distribution. In fact, the constraint over the fraction of fixed rank plaquettes is already
taken into account in the particular form of the distribution, therefore the normalization can
be limited to the term

1= [ T PO DTS S lsign(i, )l = k) (2.23)

11 <...<4; =1 I o11<..<y

Its value is calculated in the appendix in this case. The final value in the large N limit is:

_ _ o log [ <E>F
E[P(K)] ~ e Nk D on(557)) (2.24)
Even more in generality, H; could be in the form
H, = Z Jiro. ilG(l)[ﬂ (2.25)
11 <...<14g

where the functions G depend on the particular model under consideration. In this work, for
instance, we consider other relevant examples such as the Bicoloring problem of a random rank 3
hyper-graph, where only G®) = —(s;, 54, + i, 5i, + 54,5i, +2) is present, and the random 3-SAT
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model, where G = []?_, §(s;;; —1) and the coupling variables follow a different probability
distribution too. Going back to our generalized p-spin model we can write the delta functions
in their integral form

Hé(Mcl_ Z Jil:---yil):
[

11 <...<i4g

/H(C%l)eXP(_iMZ@“l)eXP(iZ@ > sign(Jiy,.i)l) (2.26)

11 <...<17;

Lo > Isign(Jiy,.a)l — ki) =

7 I <i2,..,01>;

/H d1/)z ) exp —7,2:1/)Z exp(i Z Zz/)l |sign(Ji,....i,)]) (2.27)

11<...<9; j=1

In fact, as we said, the choice we have made on the probability distribution of the couplings (and
the consequent value of the quantities ;) already implies the first constraint to be satisfied in
the large N limit. Indeed, if we explicitly insert the first delta function (also the normalization
factor will accordingly change), we are left with one supplementary series of saddle point equa-
tions in the variables ¢;. Inserting the solutions for the latter variables into the common saddle
point equations, we retrieve equivalent expressions. The averaged n-th power of the partition
function becomes, in the case of the diluted ferromagnet,

. N
<Z"> ~ exp(—ﬂnM)Z/H(C;ﬁZ)exp <—ZZZM€1>
exp (—< k >N + Z

!

<[>

- exp (ﬁ > st Sz,+lz¢z])) (2.28)

U1yl @

We could now go on in the calculation treading a path similar to the one followed for the
fully connected models, tracing out the replicated spin variables through the introduction of
a whole series of overlap and multi-overlap quantities. Due to the distribution of ranks and
degrees, however, the number of overlap function that we would need to take into consideration
is infinite, and we are better off if we exploit a more compact mathematical notation via a
generating function formalism of the overlap series . The correct generating function for this
kind of problems turns out to be writable as a functional order parameter in the form [19, 9, 12]

25 (G — 5)e™i . (2.29)

In the case of Poissonian hyper-graphs, due to the self similarity property of eq. (1.5) that
substituted int eq. (1.6) leads to ¢?”** = £**** the fields 1; are redundant and re-absorbed in
the degree distribution (Poissonian degree hyper-graphs are the ones obtained in the thermo-
dynamic limit when using the “free”couplings probability distributions (2.11) and (2.12)). In
this case the quantity (2.29) directly represents the fraction of replicated spins s? in the replica
state 0% in the whole graph as well as in the cavity one. However, in the general case it is
necessary to add a field v; that can be physically interpreted in the following way: e’ is an

3However, a full series expansion in terms of multi-overlaps will be treated formally in the discussion of
chapter 6
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operator that acts “erasing” from the spin fraction the contribution of the neighboring variables
disconnected from the i-th one, during the removal of the coupling .J;, ;. This means that the
replica automatically takes into account the fact that we are working on the cavity graph. This
sets the connection between the replica and the cavity method, where in the course of the self
consistent computation edges and vertices of the hyper-graph are opportunely erased [24]. This
forces us to work with the cavity hyper-graph, shifting the degree probability ensemble and
asking for a rescaling of the value of the order parameter, that might not be normalized any
more. In particular the condition

> ple) =1 (2.30)

g

is not automatically verified anymore and we will have to pay attention to this fact in the
following calculations. One can see that p(&) indeed is a multi-overlap generating functional
observing that

-5 [ )-

N
nl Z [ +Zsa a it —i—Zs“sbaaabe“/” + Z sfsfsfa“abacew‘ 4 -|
nN =1 [ a<b a<b<lc
1
2_ {p + Qcava + Z cavaaab + Z ggqc}o.ao.bo.c + . -| (231)
a<b a<b<lc

where the scalar p = 1/N YN, e is defined in the appendix and will cancel out with the
normalization factor in the final expression for the free energy, and the overlaps Q.. are the
usual multi-replica overlaps

1 -
ggf} = N Z s?s;’sf...ewl (2.32)

computed in the cavity hyper-graph. This has an intuitive interpretation if we realize that
these quantities correctly describe the mean field nature of the models only when the direct
connection between two vertices is zero with probability 1 in the large N limit. This observation
will be of crucial importance in the determination of rigorous bounds in the last chapter. We
can introduce the functional order parameter via the delta function

dp(3)dp(T)

“ﬂz — “ﬂz
(2.33)

where p(&) is a conjugated functional that we’ll see to own an important physical meaning.

Plugging (2.33) into (2.28) via integrals over the replica spin values we obtain
. <k> di; g <k>
<Z"> ~ exp (—BnN< l >> ;/1;[(27T)exp (—z;wll@) exp <_N<l>> .
Ndp(3)dp(d e
J XD o (-5 it

exp <N< e Z > p(d). (5l)eXP(5za:0f---Uza)) '

<
Glyeey0)
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I PWLILERY 2.39)
Where

Z p(&1)...p(0 exp(ﬁZal Ul>:

TLyeens0

Nl Z Z H (5 u:Ul zual) wil"'ewil exp (520—(11"'%“) =

..... ll 0’1,...,0’1 a=1

% > exp (2 (i, + ... +1y,)) exp (ﬁz 8?1...8?l> (2.35)

(]

Tracing over the replicated spins and later integrating out the ¢); variables one obtains, for the
last term,

JTL(52) e (<13 vk) o (o St -ape) = 230

/\ — k
((3))"
o (Tee(P0) e
Averaging over the P(k) this last term becomes

oo (vt (5 224 s

-
g

For normalization convenience we can rescale the conjugate order parameter p(6) —< k >

p(#). Adding then in the exponential in N the contribution due to the quenched disorder
probability distribution normalization factor (see appendix), the potential eventually reads:

“WBFp@), ) = — < k> T pl0) )+<k>—<’§> >

I Aoy (9ot ot)
Ekj cx log (; ﬁ(&)’“) (2.39)

The dominant contribution F[pseadie(7), Psadaie ()] to the potential in the thermodynamic limit
is evaluated via the following functional saddle point equations in the order parameters:

SFlp( ),)ﬁ( 7) f o L5 gy ) .10

(53 :0<:>p(0—) <k>kkcm

=0<= p(d le > p(32)...p(d) exp BZJ Lof) o (2.41)

G25004,071

0F[p(7), p(9)]
0p(7)

The ground state solution gives, in the ferromagnetic case, the value of the entropy of the

model both into the paramagnetic and into the magnetized states. For the case of spin-glasses,
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typically there will exist a range of < k > / < [ >* where the ground state energy vanishes
approaching to zero temperature and again the free energy will coincide with the full entropy of
the spin-glass states. Increasing the average degree distribution leads to a critical point beyond
which the ground states energy becomes higher than zero also at zero temperature. In this
case the main contribution to the potential gives us the internal energy of the model, while
the entropy is sub-leading in temperature and has to be computed from eq.(2.39) via the usual
relation

_ p0F
S =5 35 (2.42)

Before taking the § — oo limit. The thermodynamic transition turns out to be of second order
in the Viana-Bray case®, as we will see in the next chapter. In other and more interesting cases,
as well as in many relevant combinatorial optimization problems like K-SAT, the transition
between the paramagnetic to the spin-glass (or magnetized in the case of the ferromagnet) state
is first order and preceded (in the SG case) by a dynamic transition where the total entropy
can be split in two contribution: A complezity term [7, 19, 22, 26, 24] due to the exponential
multiplicity of the metastable states, and a residual entropy contribution (see last section for
details). In the pure p > 2 spin glass model [19, 26] the two terms are completely separated
due to a property of orthogonality for the stable states.

Paramagnetic and S = 0 cases

Equations (2.40) and (2.41) admit the completely paramagnetic solution p(&) = p(&) = 1/2".
Inserting it in (2.39) and retaining order O(n) terms, one easily obtains:

<k> < k>
—nBFpra = —<k>+n<k>log2+<k>—<l>—n6<l>
<k> <k>
1 h —1)nlog?2 2.4
=7s n<l>0g(cos (B)) + (< k> —1)nlog (2.43)
<k> <k>
= 1-— log2 + ——— (log(2 cosh — 2.44
o (1= 52 ) osz+ S5 tontzeomn() - (244
YV (3, so that
<k>
Sorar—o = |1— log 2 2.45
( <l>)og (2.15)
Sg—o = log2. (2.46)

2.2.1 Some considerations on normalization

The omission of the explicit delta function on the hyper-graph rank distribution constraint
leads to apparently slightly different expressions for the free energy and for the saddle point
equation. Normally the equations would have been

< k>
<[>

—nfF = —<k>> p([@)p[G)+ <k>-np

4in the case of Poissonian graphs, for example, < k > / < | >= v is a continuous parameter that can be
freely adjusted

Sand, more generally, whenever the fraction v of 2-spins interactions is hight enough compared to the rest,
as will be shown in chapter four
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(GEE!p(al)... exp( o al>>

2}; cx, log (; p(&)’“) (2.47)

and
§6) = — Y ke 2OV (2.15)
<k>% > #(p(d))*
L 1 s P(O2)...p(0)) exp(B X, 0%05...01)
= { ekl 2.49
PO) = s L e p(G) exp (B 5, ot o) (2.49)

respectively. It is easy to see, however, that the expressions are numerically equivalent both
into the RS and the 1RSB cases. One can easily check this equivalence exploiting the fact that
given a term A that in the second case appears inside the new logarithm, the quantity is always
in the form A", so we can exploit the “replica trick” in the n — 0 limit to show the equivalence
of the two expressions®. Moreover, in the saddle point equations, we have introduced no La-
grangian parameter ensuring the normalization of the order parameters. Indeed, the two order
parameters written in the form of (2.29) and its conjugate are not in principle properly normal-
ized. There is an equivalent but somehow more cumbersome way of introducing a normalized
order parameter via the use of a Lagrange multiplier, as we will show for completeness in the
particular case of the 3-spin in a next paragraph, but it is easy to show that, in the present
case, the normalization lets the equations unchanged, leaving us with the possibility of working
on p(&) and p(&) as if they were the normalized ones p, (&) and p, (). Indeed, we can define

)

1

) p(

pn(6) = 5 (2.50)
@) = 22 2.51)
(2.52)

with
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N

Moreover, as can be easily seen from (2.40)-(2.41)or (2.49),
S p(#)0(F) — 1 (2.55)

and
PP An(a)k !
E —Z ( ) . (2.56)

k

>/>

6In fact we must compute that limit in order to retrieve the physical expressions
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As we will see in the following section, a general term Y ; g, (d)" and p, (&) can be written
respectively as A} ~ 1+ nlog Ay and B} ~ 1+ nlog B; where A; and B, do not depend on n
any more. Consequently eq.(2.56) becomes

1 " ke (1+nlogAk_1)
<k>*% "(1+nlog Az)

n Ak—l)
14+ ——) kel 2.57
+<k>zk: ckog(Ak (2:57)

This result tells us that the functional order parameter are already normalized in the n — 0
limit. Moreover, the term Yz p,(7)p,(F) can be written as 1 + n{2 where again €2 does not de-
pend of n. If we plug eq.(2.57) and this last expression into eq.(2.47), calling % >k ke log (Afl—;l) =
C we get ‘

k
nBF[p(3),4(3)] = — <k>(1+nQ)(1+n0)+ <k > —nﬂi z i
< k > - - a Qa
~7= > v log ( > pa(01)...pn(d7) exp (Z 01----‘%))
l 015,07 a

+ <k >log(l14nC)+ > cilog (Zﬁ(&)k>
- _nﬁF[pn(éz)JpAn(éz)] (258)

As we will see later, this is not true anymore in the 1RSB case, where the normalization factors
will be proportional to a power of the replica parameter m which in general does not tend
to zero. Nevertheless, in that case the normalization parameters explicitly disappear from
the expression of the RSB potential for any value of m, leaving it formally unchanged. We
drop the subindex "n = norm” in the following. In the frustrated spin glass version of the
model, all previous calculations are still valid, provided one uses (2.12) instead of (2.11). As a
consequence, all previous equations are left unchanged but for the substitution of the following
internal factors:

exp(8> of..of) = cosh(B)_ of..of)

exp(8> o%05...0f) = cosh(B8)_ c%0%5..07) (2.59)

For a more general choice of p(J), we will have to change:
exp (52011...0,?) = /du(J) exp (ﬂJZaf...a,‘j)
exp ([3 > a“aé‘...a,‘i) — /du(J) exp (ﬂJZa“oS...o,‘j) (2.60)

The expression in presence of a magnetic field will be shown when treating error correcting
codes. If pJ is symmetric in any component of J the system will be a pure spin-glass. The
resulting effect is that the potential will be explicitly symmetric under the exchange of the
positive and the negative support values of the functional order parameters. However, the
value of the pure ferromagnetic and pure J = 41 spin-glass potentials will coincide at the
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saddle point since the particular choice of symmetric order parameters is supported also in the
ferromagnetic case. While in the spin glass the symmetric p(o) will describe also the minimal
energy states, the ferromagnetic ground state will be asymmetric. and will be described by
an order parameter with no negative support in the zero temperature limit’. Therefore, if we
force to write a solution to the ferromagnetic saddle point equations that is to be symmetric
under the spin inversion, we’ll find positive energy saddle point metastable states that coincide
in energy with the glassy ground states due to the coincidence of the potential at the saddle
point. No other metastable solutions are found other than the symmetric ones in the pure
spin-glass. We must keep this in mind when we’ll write apparently different expressions for the
two models, nevertheless using some saddle point results of the ferromagnetic case into the spin
glass one.

2.3 The Replica Symmetric Results

In the replica symmetric (RS) case we can unravel the structure of the order parameter in
terms of the effective fields acting onto the o spins. Indeed, if we assume p(&)® to be symmetric
under the permutation S, of the replica variables o, ...,0,, we can write it in terms of the
distribution function of the local magnetization P(m):

P(m) = N ZH(S (s —m) (2.61)

such that

(
o (L) (25
[ dmP(m) (1 _47”2) . (% taal~! ) - aa> (2.62)

If we then define an effective field h at any temperature as

h = %tanh_l(m) (2.63)

we can eventually write an expression of the functional order parameters in terms of the fields
acting on the direct as well as the dual hyper-graph:

p(5) = / dhP(h et 2o e (2.64)
2cosh(ﬂh))

) = [ duQu -

2 Cosh(ﬂu)) (265)

Tfor cases of hyper-graphs of only even rank there will be of course the usual twofold degeneracy
8and consequently its conjugated parameter
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Since the replica saddle point equations in the n — 0 are equivalent to the cavity iteration
equations, the effective field h turns out to be the local cavity field acting on a vertex of given
degree. The index on the vertex has been dropped in the RS case where only one state is present
and therefore the field distribution does not depend on the particular spin one is working with,
but only on the average degree distribution. Substituting definitions (2.64) and (2.65) into
the saddle point equations, and noticing that we can fully characterize the distributions in the
n — 0 limit, the saddel point equations read

[ anpP(nye - l - Yk / H g Q (1) P! T
= /dheﬁhf/ H duyQ(ug)o (h — Zut> (2.66)
t

/duQ(u)eﬂuf — > l N Z ke / H dh, P ftanh (tanh(B) [ ], tanh(Bh¢))

= z - Zm/dueﬂuf/ﬂdht (h)d (u — u(B, {hi}s))  (2.67)
with f =31, 0, and
u(B, {h}:) = %tanh_l (tanh(ﬂ) Htanh(ﬁh,t)> (2.68)
t

We thus obtain self consistent equations for the fields probability distributions in a form ready
for further analytical manipulation or for numerical solution:

P(h) =

/ H du,Q(uy) <h Zut> (2.69)

Qu) = / t:Hl dhyP(h;) (u - %tanh_l (tanh(ﬂ) ft[tanh(ﬁht)» (2.70)

for the diluted ferromagnet, and

P(h) = / I:Hll duyQ () (h - zt:ut> (2.71)
Qu) = / iHi dh,P(hy) l& <u — %tanh_l (tanh(ﬁ) I:Itanh(ﬂht)>> +

6 <u + %tanh_l (tanh(ﬁ) ]:[tanh(ﬂht)»] (2.72)

for the spin glass.

Notice that these equations could have also been easily obtained via the cavity method under
the hypothesis of only one state and substituting the local energetic terms of the generalized
p-spin Hamiltonian into (1.20), and following the cavity procedure introduced in chapter 1.

The number of multiple integrals involved and the structure of the equation is not well suited
for a direct numerical integration, but an iterative method like an ad hoc devised population
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dynamics [23] works very well this case. Substituting into the expression for the potential one
derives:

_BF :-—<k>//mmm3men%uﬁwmmwmmmmmm+
i?j}:wfﬂﬁm ml%<r+mm_ Hmthn> i?ja%@%mm)—m
+ > / H duQ(uy) log (H(l + tanh(Suy)) ﬁ 1 — tanh( ﬁut))> (2.73)
k t=1 t=1 t=1
for the ferromagnet, and
_BF :-—<k>//mmm9meM%uﬁwmmwmmmwm»+§§§a%@%mmy—m
il;i Zvl / H dhyP(hy) llog (1 + tanh( H tanh(Sh;) )
log (1 — tanh(p) H tanh(ﬁht)ﬂ
t=1
k k k
+3 o / I dwQ(u;) log (H(l + tanh(SBuy)) H (1 — tanh( 5ut))> (2.74)
k t=1 t= t=1

for the spin glass. The calculations are the same as the manipulations of the saddle point
equations. The only difference lying in the fact that one is led to retain O(n) terms. The
average values < [ > and < k > can be varied smoothly and they play the role of tuning
parameters within a fixed choice of probability distribution types. This has been in particular
investigated in spin models on Poissonian distributed graphs, but can be extended to any other
geometrical structure. varying < [ > and < k£ > at T' = 0 one typically enters two different
regimes. A paramagnetic phase of vanishing fields (at low values of <[ > / < k > and a phase
of frozen fields which dominate and collapse at zero temperature to integer values.

2.3.1 Vanishing fields

In this phase, where present, the equations take the same form as before, but for a rescaling
fu — u and Sh — h.

P(h) — ) t_ﬁl duQ(uy) (h Zut> (2.75)
1 1 »
Qu) = 1 ( - Btanh (tanh(ﬂ)l?[tanh(hﬂ)) ,  (2.76)
with
—ﬁF::—<k>//%@PhQ@bMLMmMMmMWD+
il;i Zvl/Hdht (he) log (1 + tanh( tl_[ltanh ht)> = k> (log(cosh(B)) — B)

+zk:Ck /tl_[ldth(ut) log (H(l + tanh (u;)) ﬁ 1 — tanh(u) ) (2.77)

t=1 t=1
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for the ferromagnet, and

< k>
<[>

k>, / tf[l dh,P(hy) [log (1 + tanh(g) f[ tanh(ht)> +

<i>% i=1

—BF = —<k> //dhduP(h)Q(u) log (1 + tanh(h) tanh(u)) + (log(cosh(5)) — )

log (1 ~ tanh(5) t:ﬁl tanh(ﬁht)ﬂ

+ Zk:Ck /t:l_[ldth(ut) log (H(l + tanh(u,)) + [J(1 - tanh(ut))> (2.78)

for the spin glass. However, it is easy to see that the trivial solution P(h) = 0(h) is the only one
in the 7" = 0 limit. This result is confirmed in numerical evaluation of (2.76) and in numerical
simulations. This is NOT the case of other models like for instance random K-SAT, where a
non trivial structure of the P(h) appears as soon as the degree v, which plays the same role as
< k >/ <1 >, departs from the zero value, as it was seen in [9, 83| via a Taylor functional
expansion of the P(h) in series of Dirac delta function around < k£ >= 0. The role of the
vanishing field is not completely clear yet. In particular, their influence could extend down
to T = 0 in the RSB phase, where their value is technically zero, but their presence could
contribute in inducing non trivial correlations between local ground states. As we will say
in chapter 3, this seems not to be the case for K-SAT in the satisfiable region, even though
evidence of co-RSB is retrieved for very high values of .

2.3.2 Analytical Ansatz for 1" = 0 solutions with non vanishing fields

Solutions of the saddle point equations and the free energy, as well as other thermodynamic
quantities that can be similarly defined and computed, can be found via an iterative population
dynamics procedure described in [23]. However, we are here mainly interested in the behavior
of diluted systems at zero temperature, keeping in mind the connection between the search for
T = 0 ground states of the Hamiltonians and that for the solutions of corresponding random
combinatorial optimization models [9, 19, 35]. This connections will be further exploited in the
following chapters. If we look for 7" = 0 solutions with non vanishing fields, we can hope to
find analytical results using an Ansatz that supports fields only on integer values. Indeed, the
saddle point equation at zero temperature read, after properly taking the f — oo limit,

P() = - ]16 S / t_f[l Q) (h - Xt:ut> (2.79)
Qu) = < } > Zl:lvl /Hldhtp(ht)5 (U —min(L, |hy], ..., |Pi-1]) HSign(ht)> (2.80)

and it is evident the self consistency of an integer field Ansatz. Moreover, it is clear from
the parallel cavity approach[26, 29, 30] that the fields u (also called “cavity biases”), are the
information felt by a spin upon the magnetization bias coming from a definite hyper-edge the
considered spin belongs to. This bias can be 0 or £1 at zero temperature. The cavity fields h
are then the sum of all biases acting on the spin, after deleting (cavity) one hyper-edge incident
on the considered vertex. The situation is exemplified in fig. (2.3.2), a pictorial view of the
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effective fields acting on a given hyper-edge a and on a given spin S in a hyper-graph of uniform
rank 3: hy and h, are the sums of the cavity “biases” {u;}; and {uj}; coming from the blue
hyper-edges, and in turn generate a new bias u, attached to the red hyper-edge. The bias
u, merges following the cavity/replica iterative prescription (also called sum/product rule in
computer science) with bias u, coming from hyper-edge b. Together they form field A acting
on spin S. The fields are then further propagated in the rest of the hyper-graph (white in the
picture) and updated through eqs. (2.79) and (2.80). The general rank case is analogous. The
integer fields Ansitze read

P(h) = Jio:o ped(h —t) (2.81)
Qu) = ¢ o(u—1)+q 0(u+1)+qoo(u) (2.82)

with Y2, pr = 1, Y0Pt = P+, 2ot = p— and g4 + g— + gy = 1. The functional saddle point
equations turn into a set of self consistency equations for the distribution weights:

P = < k> chk Z ﬁq_ﬁ'Q— q305n++n,+n07k_15n+_n7,t (283)
k ny,n_,ng>0 Ho—2180-
1 (k B 1)' ny n
- k U 1o | - 77 n06n n T, — 2-84
P+ <k > zk: o n+7n,noz>:0;n+>n n+!n7!n0!Q+ q— gy ++n_+ng,k—1 ( )
1 (k - 1)' ne n_
== %> Zk:kc" gﬂ N mq++q_ 40" On+n_no k-1 (2.85)
niy,n_,ng>0n_>n4
1 —_ —
& = 57> Yo lwl(ps +p) 4 (o —p)' ) (2.86)
[
1 - —
- = gz 2l +p)7 = o =) (2.87)

!
In the spin glass case the last two equations are explicitly symmetric in the exchange p, < p_:

1

¢+ =0-=5_72 S lv(pr +p)t (2.88)
z

2.3.3 The ferromagnetic solution

The saddle point equations of the ferromagnetic case admit a zero energy solution with p_ =

q— = 0 other than the trivial paramagnetic one:
1 1
= kep(l — —— S Ty (1 —po)t HF !
bo <k>zk: <l <l>zl: (1 =po))

1
= 1— _—_E:z 1 —py) !
q+ qo <> l Ul( po)

pr = 1l—pg (2.89)

The energy of the ferromagnetic solution is always equal to zero, so the value of the potential
returns the zero temperature entropy of the ground states (GS). With a little algebra we get:

< k>
Zvl(l—po)—i-

S, = log(2)|— < k 1-— 1-—
GS 0g(2)[— < k> (1 —po)( q°)+<l>l
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Hyper—graph representation

S

F

Figure 2.1: Pictorial view of the effective fields acting on a given hyper-edge a and on a given
spin S in a hyper-graph of uniform rank 3. The rank 3 was taken as the simplest example of a
general-like case.
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‘ Vd ‘ Ve ‘
1/2 1/2
0.818469 | 0.917935
0.772278 | 0.976770
0.701780 | 0.992438
6 | 0.637080 | 0.997380

O | W |3

Table 2.1: Static and Dynamic Thresholds for the p-spin on Poissonian distributed hyper-
graphs.

< k>
<[>

]

<k>(1—QO)+ZCkQ§—
k

N _iﬁik%%1+gﬁﬂﬂ—pﬁ—(LﬁMKJG—pW1»+
log 2 Zk: cr (1 — % Zl: loy(1 = po)—1)* 20

The appearance of a solution of (2.89) as a function of a particular values of < k > / <1 >= 1,
signals the birth of a metastable ferromagnetic state, that becomes thermodynamically favored
when Sp4q = Sgs. Typically, the two entropy lines will cross at a critical value of < k > / <
[ >= .. After that value the GS entropy will gradually tend to zero. In the dense hyper-graph
limit one retrieves the usual infinite dimensional mean field ferromagnet with zero ferromagnetic
GS entropy and a finite number (2) of ground states. An example of this curves can be seen
in fig.(2.21) for the Poissonian 3-spin case. In the pure 2-spin case the transition if always of
second order, regardless of the graph degree distribution:

Yo=Y =1/2, (2.91)

which is the percolation point. Indeed, the system progressively magnetizes as soon as it
percolates, i.e. as soon as a magnetic perturbation can propagate along a finite fraction of the
graph.

A special case: Poissonian random hyper-graphs of average degree < k >=<1[ > v

This simpler special case can be retrieved putting

em<Pr(< > )P

Ck = o (2.92)

and consequently obtaining
po = e 2tz (2.93)
Sas = log2[py(1 — log(py)) — 72%(1 — (1 =pp)")] (2.94)

l

In the table 2.1 the values of gamma at the appearance of the ferromagnetic solution and at
the ferromagnetic transition are shown for some models of increasing fixed rank /.
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We called the ferromagnetic thresholds with the same name of the spin-glass ones, because we
will see further in the text how the values coincide in the two classes of models. The 3-spin
(3-XOR-SAT) [19] and the 2+p-spin [21] special cases are contained in these equations. No
sign of replica symmetry breaking is present in the pure ferromagnetic models. As we will see
in the next section, the physical interpretation of the RSB phenomenon can be explained in the
generalized p-spin case (but also in a more general framework, for instance in the K-SAT case)
as a clustezization process in the space of solutions (ground states) of the model. The number
of such clusters is in general exponential in N as well as the number of solution within each
cluster. Solutions in different clusters are separated by O(N) spin flips. In the ferromagnetic
case, however, there are only ferromagnetic solutions, forming a single clusters. After the
transition from the paramagnetic to the ferromagnetic state, there cannot be a further phase
transition. We will also see that in the 2-spin-glass case also the SG transition is second order
in nature. Clusterization is therefore not possible because the whole system progressively falls
in the same GS attraction basin. If the hyergraph is made of a fraction of rank 2 and another
of higher rank, the two phenomena can be seen to compete as it is shown in an applied example
in chapter 5.

2.3.4 The spin-glass states and the RS energy lines

The glass saddle point equations can be further simplified explicitly exploiting the symmetry
of the effective fields and biases distributions P(h) and of the Q)(u). Everything can be written
as a function of the single parameter pg, that counts the fraction of free spins:

B
1—— lu (1 —p lu(1—p k=1=2n (9,
g 2.l 2<Z>sz B (2.95)
G = 1B _ lel—po -1 (2.96)
2 2<l>
1 —p
by = pP-= 9 - (2.97)

For Poissonian hyper-graphs the general replica symmetric result will read, after some algebraic
manipulation of the series defining py and the general p,°,

o= exp (—v;mu - PO)H> I (v;mu —p0>l—1) (2.95)
e = b= exp (—v;mu —p0>l—1) I (v;m(l —Po)l_1> (299

(2.100)
The GS energy of the glassy states will be:
(1—po)(L—q)  <k> z
Ey = —<k> 1-—
0 5 + ~1> Zl:vl( po) +
2> o > i (1 — qo)”++”*q”°mzn(n+ VOnsan_anok (2.101)
ny,n_,np>0 n-l-!n—!nﬂ! 2 " e

9Notice that the next expressions are normalized thanks to the property 2,-°° _ I;(z) = €.
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This expression further simplifies in the case of fixed rank models. In particular for the 3-spin
the GS energy reads':

1—po)®  3v(1— pp)?
5, - ! 2p°) _ 3 2p°) . (2.102)

However, the above equation leads to wrong predictions: a solution different from the trivial
paramagnetic one, );(u) = §(u) V spins j, appears at vf® = 1.16682 with a negative energy.
At /5 = 1.29531 the energy becomes positive, giving a lower bound for the true energy of
the system. The backbone (1 — py, fraction of fixed spins) values are respectively 1 — py) =
0.52042 and 1 — p. = 0.656153. The values of 7 and /** can be variationally refined via the
introduction of a fractional valued fields Ansatz as in [9], that can be seen to close on the saddle
point equations. In particular, the best “RS” static threshold was ground down to 1.216. This
Ansatz has however no physical meaning.

On the other hand, the numerical zero temperature Monte-Carlo simulations indicate that
there exits a non-trivial solution from the point v ~ 0.82. A careful look at the numerics of
the population dynamics solution of the more general 1RSB equations we’ll write in the next
section shows that the probability distributions of cavity fields u on a given site ¢ indeed take
the form

1 —n;

Qi(u) =n; §(u) + O(uw—1)4+d(u+1)] (2.103)

with fields distribution scalar weights labeled by the site indices and fluctuating from site to site,
and with a fraction ¢ always being trivial, i.e. n; = 1 and Q;(u) = 6(u). This is the signature of
replica symmetry breaking. The positive energy GS corresponds, in the optimization problem
interpretation, to the fact that increasing the number of constraints over that of variables there
is usually a thershold beyond which some constraints are violated even by the globally best
variable assignments. The RS T = 0 energy curve for the poissonian 3-spin is shown in fig. (2.2),
while in fig. (2.3) the function G(py,7) = po — e 3712 [(37(1 — po)?) in the paramagnetic
phase and at v/ and /% is shown as a title of example.

2.4 The 1RSB calculations

In this section we will focus on the 1RSB solution. When working at 7" = 0 we will disregard the
contribution of vanishing fields. As we anticipated in the previous section, the replica symmetric
results are correct for the ferromagnetic disordered models, but give wrong quantitative results
for the transition thresholds and for the energy in the spin-glass case. To go one further step
towards the exact solution of this class of models, we observed good numerical evidence that
the replica symmetry does in fact spontaneously break down in a region sufficiently close to the
satisfiability threshold. Therefore, the quantitatively wrong results of the RS picture underlie
a very different qualitative structure of the phase space.

The 1RSB hypotesis assumes that on a given site ¢, the local cavity fields in the various
states, h?, are i.i.d. variables taken from the same distribution P;(h) ([14, 12] and De Dominicis-
P. Mottishaw and Wong-Sherrington in [1]). However, the distribution P;(h) fluctuates from
site to site, so that the correct order parameter is a functional P[P(h)] giving the probability,
when one picks up a site at random to find on this site a cavity field distribution P;(h) = P(h).
Moreover the cavity fields and the LGS energies are not correlated (There will however be
correlation between the local fields and the energy shifts computed in the cavity approach).

®Notice that it will be possible to reproduce the RS results as a limiting case of the 1RSB calculation.
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Figure 2.2: Integer fields RS spin-glass energy in the Poissonian 3-spin case. [t is negative
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Figure 2.3: RS Self consistent function G(pg,y) for the fraction py of free spins.
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The same hypothesis must hold in for the u-fields acting on the nodes of the dual hyper-
graph (check nodes in the factor graph notation, see appendix). Averaging over the sites and
assuming the validity of the Parisi breaking scheme [2], the functional orders paramenets can
now be written as

~ n/m , , n/m eghgzzlzlgg
pG) = [arp P]/ [T vy (1) H1 (QCOSMW))M) (2.104)
n/m n/m ﬂu Za L o8
p&) = /dQQ Q]/ H du?Qy(u?) H1 ((2 Cosh(ﬂug))m) (2.105)

where the n replicas have been each divided into n/m groups of m replicated spins, and oy
represents the a-th replica spin belonging to group ¢g. P, and ), are local fields probabilities
distributions within group g. In the RS case there is only one state a.. The effective fields cannot
therefore fluctuate from LGS to LGS and the unique global ground state can be obtained in
this framework by fixing the local distribution to be P;(h) = 6(h — h;), so that all the LGS are
automatically equal. On a given site 7, this distribution is fixed by the single number h;. The
various h;’s are i.i.d., taken from a distribution PRS(h) such that

Prs|P /dh,PRS R (P() —6(() — h)) (2.106)

Substituted into (2.104) gives back definition (2.64) with

and therefore satisfies exactly the RS recursion relation. The same considerations as usual
apply to the u-fields.

Finding a close analytical solution to the self consistent equations (2.40) and (2.41) in the
1RSB case is in general not easy. In order to proceed we first propose a simpler variational
approximation of the free-energy (2.39) and of the functional order parameters space. In the
general case this Ansatz is NOT exact because neglects correlations between LGS induced by
different degree fluctuations from site to site and assumes an extra symmetry that is usually not
contained in the model. Nevertheless, it is pointed out in [22] and we will see later in the chapter
that it gives very good variational estimates on the transition thresholds and correctly predicts
for the models studied the presence of a dynamical region characterized by a non zero value
of the complexity. Moreover, for the p-spin there exists a class hyper-graphs (namely the fixed
degree ones) where the Ansatz self consistently closes under the original complete form (2.39)
of the potential, and it gives nearly exact results in the low temperature region in remarkable
agreement with the numerics. Overall this simpler variational calculation is important because
it introduces some key features of the full solution:

2.4.1 The variational factorized Ansatz

In the following propose the use of a simple Ansatz which was first studied in (Wong and
Sherrington in [1]), and developed for the Bethe lattice spin glass by Goldschmidt and Lai (in
[1]), is named the Factorized Ansatz. The underlying idea is to assume that the distributions
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P;(h) are i independent, i.e. that the P[P] is a functional § function

PP = 6(P,—P) (2.107)

QQy = 0(Qy—Q) (2.108)
The assumption is simple because the order parameter is a single function P(h) and the RS
equation are only slightly modified. However one should note that, in general, one may expect a
P;(h) which fluctuates: as anticipated,this is obviously the case whenever the degree fluctuates,
but also in the case of the fixed degree, the factorized Ansatz is not necessarily exact. Some
special models where the factorized Ansatz gives an exact solution have been studied recently

in the context of error correcting codes [154]. Using (2.107) and (2.107) into (2.104) and (2.105)
one immediately finds:

n/m

p(@) = 1:[1”-"@)

P! 20196

pld) = [am P o (2.109)
n/m
i@ = 1)
du? el 2.110
/ uQlu 2cosh(ﬁu9)) (2.110)

Notice that egs. (2.109) and (2.110) give back the RS solution for m =n — 0.
In the replica n — 0 limit we can write:

n/m

> p(@)0(8) = I p(0)0(0) ~ 1+ —10g(E py(03), ()

g=1 oy og

> aclog(L((@)") = ﬁzck Log(3(ps(5;))") (2111)
> p(G1)-..p(d1) exp 5201 o)) = > ) Pg(051)--pg(0g1) exp(B Y 0g1"...041")

n

L= m .
where the new o, vectors are m-dimensional quantities (the replica index runs now from 1 to
m) inside each single cluster. Due to cluster equivalence the index g will be dropped in the
following. We are left with the following expression for the potential:

—BmF[3,m] = —<k> 10g(§; p(3)p(d)) — B

< k>
<1

<k>
<[>

Zwlog Z p(31)...p(G)) exp(B > ot...0)) +

zk: 1og2 &))k) (2.112)

at the saddle point, the previous quantity will represent the free energy of a single generic
cluster. The stationary condition on (2.112) leads to saddle point equations:

BNV (@)
S A0) s e E(()) (2.113)

<k>
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S Y BV i Y

. = 2.114
<I1>4" s 5 p@1)p(@) exp(BY, of..0f) (2.114)

pG) = > p(d)p(5)
Equations (2.112), (2.113) and (2.114) are homogeneous in the order parameters p(&) and
p(&) that can be considered as automatically normalized. We recall that now P(h) and Q(u)
are single inner cluster distributions. Substituting into the saddle point equations, after a
calculation analogous to the RS case we obtain!!:

(2 cosh(Bh))™ (2cosh(B(u"+R")))™ > ,

pP(h) = <k> <(2 cosh(h')2 cosh(Bu’))™

S >= I
(Hf:_IIQCOSh(BUt))m {ue}

zk:kck < (2cosh(z§=1ut))m> (2.115)
(Hf:12cosh(6ut))m {ue}
o (2 cosh(B(u' + h')))™
Qu) = <[> \(2cosh(Bh')2 cosh(pu'))™ u’,h"
6(u — Ltanh ! (tanh(3) TT.ZL tanh(Bh,
O ) = o ) PR
1

<(1 + tanh(B) [T, tanh(ﬂht))m>{ht}

for the diluted ferromagnet. The spin glass solutions coincide with the previous ones at the

symmetric saddle point in the same way as in the RS case. As a function of the effective fields,
the potential now reads

—-mpPF = — <k>log(A(f, h,u)m>h’u + ch log (B(, u1, ..., ug)™) 1 w T
k

.....

<k> m m
e Xl:vl log <(cosh6) (CH(B, e ™), hl) — Bm =1 (2.117)

.....

for the ferromagnet and

—mBEF = — <k >log(A(B,h,u)™),,)+ > crlog (BB, ur, ooy ur)™) w t
k
<k> m
TS Zl:vl log ((coshﬁ) <C’+(5,h1, ) >h1 7777 h1> +
k
log ((cosh B <C’_(5, hi, 7h;)m>h 7777 h1>] _B i l i (2.118)
for the spin glass, with:
AB hou) = 1+ tanh(ﬁg) tanh(fu)
2 cosh(BYF_, uy)
B, w, -y ue) [1F_, 2 cosh(Bu,)
!
C*(B, hi,....y) = 1% tanh(B) [] tanh(Sh,)
t=1
(2.119)

"From now on we will often use the notation [ dzP(z)(-) = ((*))s-
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Ferromagnetic metastable states and spin-glass LGS symmetry

It could seem useless to write the 1RSB expressions also for the ferromagnetic model, since
we know that in this case the RS solution is correct for the GS. Forcing the 1RSB factorized
Ansatz on the ferromagnet physically means that we look at the structure of the positive energy
metastable states. We did it to stress the fact that the saddle point equations of the two models
admit a common symmetric solution also in the non paramagnetic phase. The expression for
the free-energy of the two models coincide at this saddle point. However, the symmetric one
is NOT the lowest energy GS solution of the ferromagnetic model, which always have zero
reference energy, but it describes positive energy metastable states. On the other hand, these
metastable states coincide with the LGS of the spin-glass in the disordered phase. This property
is a peculiar symmetry of the p-spin model and will give us an alternative way to compute the
exact complexity without resorting to the complete 1RSB solution.

The zero temperature phase

If we adopt zero temperature Ansitze (2.81), (2.82) and keep
mpB =y (2.120)

finite, we get the following saddle point equations:

1 1
o = 1-— loy—(1 —py)tt 2.121
0 meégjl%( 0) ( )
2 Ek kck%k Zn+>n_,n020 %qgﬂ}ﬁ* Q6l06_2yn7 5n++n_+n0,kfl (2 122)
bPo = - —1) o ] .
E:kkckéz§:n+m—nmzo7LS;}QMQE*QE L

1 —
pr = 2p° (2.123)

1 —
o = — D (2.124)

2

with
e —1 .
Ql = 1+ T(l - po) (2125)
k!

= _ N4 N— ng  —2ymin(ny,n_

—k — E : ﬁqu q- qooe Y (e )6n++n_+n0,k (2126)
nyn_no.

TL+,TZ_,TL020 +

and the expression for the potential can be written in terms of y as:

e~ —1 <k>

F(y)zi <k >log(L+ ——(1 - q0) (1~ ) - ==

Z Uy IOg Ql — Z Ck IOg(Ek)
[ k

(2.127)

The choice (2.120) is necessary to find a solution that is self consistent and in best possible

agreement with numerical simulations. In fact, the scaling parameter y has a much deeper
physical meaning that will be elucidated in the following.

The stationary conditions also admit a completely paramagnetic pg = 1, g9 = 1, FF = 0

solution that puts us back into the paramagnetic phase. In the limit y — 02 one retrieves

12This limit can indeed be read as m — n.
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the RS results. In order to find the physical value of the free-energy, expression (2.127) for
the potential has to be further maximized with respect to the parameter y. The study of the
potential F'(y) allows us to reach a qualitative understanding of the typical phase diagrams, even
though the exact nature of the symmetry phenomena is not properly caught by the factorized
Ansatz. The following picture will therefore retain its validity in the complete 1RSB solution.

2.4.2 The construction of the phase diagram

In order to build the zero temperature phase diagram of this class of models we have to make
case by case a sensible choice of the control parameters'®. A priori the control parameters space
is very large, including the values of all the fractions {¢;} and {v;}. However, typically only
a small number of this quantities plays a relevant role: the dilution parameter v =< k > / <
[ > the fraction of 2-edges v, the quotient vy/v3'® and few other collective combinations on
the rank and degree distributions weights.

If the fraction v, is bigger than a certain critical value depending on the remaining order
parameters, the model is found to be Viana-Bray like. In the ferromagnetic case, the transition
is a continuous one from the trivial paramagnetic to the magnetized phase. In the spin-glass, the
glassy phase most probably is reached through a continuous co-RSB cascade. The onset of the
continuous transition is set by the 2-loops percolation condition of the fraction of rank 2 graph
merged in the whole topological structure. There are no precursor phenomena in neither of
the transitions, which means no formation of finite energy metastable states in the ferromagnet
and no LGS complexity in the spin-glass. From the physical point of view, the 1RSB picture -
even in the general treatment - is therefore only an approximation of the Viana-Bray spin-glass
behavior. From the computational complexity side, however, the GS search is simpler because
of the absence of metastable states of Hamming distance O(N). The zero temperature related
2-XOR-SAT like problems are Polynomial also in the UNSAT phase and they present no hard
region before the SAT/UNSAT transition.

Whenever a tricritical point [11, 21] condition can be met'®, the models undergo a crossover
into a phase diagram where the transition are discontinuous: paramagnetic/1RSB or para-
magnetic/first order ferromagnetic respectively. In these cases overwhelming evidence for a
precursors/dynamical region has been observed. From the computational complexity point of
view, the presence of a dynamical region coincides with typical (exponential or polynomial,
depending on the problem class) slowing down in the solution times of the search algorithms.
From the physics point of view, precursors are LGS that appear with a higher energy but expo-
nential in number, so that the system freezes without reaching the still present £ = 0 true GS
essentially for entropic reasons. In the optimization problem these states correspond to quasi
optimal solutions with deep enough basins of attraction to trap the searching procedure. For
some particular choices of the rank and degree distributions the condition for the existence of
the tricritical point cannot be fulfilled. In those cases intermediate models can be explored,
that show both a dynamical region and a continuous phase transition, followed by a further dis-
continuous jump. Examples of these somehow pathological cases are shown in the first section
of chapter 5. The dynamical region is denoted by the hyper-graph diluteness interval [v4, Vc).

13This is true in general and has to be done also in the RS and in the complete 1RS case.
Moften denoted with « in the literature, for instance in the K-SAT case.

15The importance of this quotient will be stressed in two examples in chapter 3 and 5.

16We anticipate the condition to be va = 3vs = 1/(2Vtricriticar) in the generalized p-spin case.
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The complexity

The complexity X(e,v) was defined as the logarithm of the number of the LGS of a given
energy density e at a value of the diluteness v, divided by the number of the variables N. It
is a crucial thermodynamical quantity'!” whose presence tell us we are in a symmetry broken
phase. The explicit computation of ¥(e,v) at T" = 0 has been carried out in [24, 30] for the
Viana-Bray and the 3-SAT model. The case of the generalized p-spin is completely analogous
and we refer to those papers for details. It turns out that the zero temperature complexity can
be calculated as the Legendre transform of the potential F'(y). Indeed, the 7" — 0 limit of the
discussion in [7] gives

e VW) = /de./\/’(e,y)eye , (2.128)

where we have already defined the number of metastable states at a given energy density e and
tuning parameter v in terms of the complexity (e, v) via

Ne,vy) = e N2 (2.129)

therefore we obtain, retaining only dominant contributions at the saddle point in y in the large
N limit,

S(e,y) = ye — yF(y) (2.130)
_ OyF(y)

== (2.131)

y = w (2.132)

at fixed v. From the previous equations we can also write

S(y,7) = AN (2.133)

dy

that is the 7" = 0 correct limit of the construction of [7]. We see eventually the physical meaning
of the scaling parameter y as the derivative of the complexity with respect to a variation of the
energy of the local ground states. This quantity therefore regulates the quantity of metastable
states one is bound to meet varying the energy. The distribution density of these states turn out
to determine a level crossing phenomenon under the 1RSB cavity equations iteration. Indeed,
one of the postulates [24] of the cavity method that was not clearly yet stated is that the energies
E§ of the a-LGS of low energy (near to that of the GGS) are assumed to be i.i.d. variables
with a distribution given by a Poisson process of density

p(Eo) = exp(y(Eo — Erey)) (2.134)

where E,.; is a reference energy, which is near to the GGS energy, and y must be equal to our
replica scaling parameter in order for the two methods to give the same results in the 1RSB
case. During the iteration of the cavity equations, the local energy shifts can therefore induce
a level crossing, and the fields distributions have to be re-weighted accordingly. Since the level
crossing dynamics will be driven by the geometry of the phase space which in turn is determined
by (2.134), we see how the scaling parameter y is so important. Its role is automatically taken

17of not trivial definition, since the notion of LGS in disordered systems is still not completely clear.
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in the correct account by Parisi’s RSB prescription in replica method, where the parameter
m adds an extra variational dimension in the variational space and maximizing the potential
with respect to m essentially corresponds to choosing the best replica symmetry broken states
distribution picture. Lowering the temperature the replica states landscape changes and m
must follow accordingly. Since the equations for the potential can be written in terms of m/j3
in the low temperature limit, is is natural to explore the possibility of m scaling as 1/5. In
the cavity picture there is no initial notion of RSB, that has to be introduced via an ad hoc
postulate. However, as we have seen, this allows to clarify the physical meaning of this 1/
scaling.

How can one practically draw the phase diagram from the knowledge of the potential
(2.127)7

e In general, for regions of high hyper-graph diluteness (very low v), F'(y) is equal to zero:
the system is paramagnetic and the only possible non trivial contribution to the entropy
are given by the presence of vanishing fields. As it was already mentioned in the RS
section, this is however not the case of the p-spin model, where it is possible to prove
that the paramagnetic phase is always trivial. This result is in perfect agreement with
numerics.

e Entering the dynamical region, F(y) is negative for any value of y and monotonically
increasing, with typical shape shown in fig. (2.4). Its maximum tends back to zero in
the limit y — oo. In this limit, eqs. (2.121)-(2.124) reduce to a non trivial symmetric
glassy solution with py, go > 0 that we will explicitly write for the case of the Poissonian
3-spin in the following. This solution is in fact not exact, because it disregards site to site
fluctuations that lead to a non zero fraction of spins 7 with free fields (i.e. with p} = ¢} =
1) that are numerically observed solving the full equations via a population dynamics
introduced in [23, 24]. Indeed, numerically is well observed an adiabatic like separation
in the degrees of freedom of some spins compared to others, as it was documented in [18].
This is reflected in the fact that not all spins have the same fields distributions, but the
same distribution of fields distributions. This concept is at the basis of the complete 1RSB
picture and will be made clear in the next section. Nevertheless, we can here compute a
variational bound complexity at energy density e = 0, even if its nature is not completely
clear in the variational Ansatz context.

— Y(e = 0) is found to be non zero in [y4, 7], monotonically decreasing with . How-
ever, the spin-glass has already an exponential number of LGS, even if in this phase
e = 0 and therefore they are also GGS.

— At v = 74 the complexity is non zero only for e = 0, which means that LGS appear
initially as GGS, and the search algorithms, even if trapped in one of them, still can
solve the problem.

— If 74 < 7 < 7., a non zero energy density complexity interval forms, s.t. 3(e) > 0
for e € [0, e4]. The dynamical region is therefore not only characterized by a sudden
clustering of ground states: at the same point an exponential number of metastable
states appear. Such states are expected to act as a trap around e; > 0 sub-optimal
solutions for local search algorithms, causing an exponential slowing down of the

18Calculations have been done but are not shown in this thesis.
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search process. This picture applies for instance to simulated annealing or greedy
procedures based on local information.

e At v =, the zero energy density complexity goes to zero. This means that the number
of GGS is not exponential any more and the associated combinatorial problem has no
zero cost solutions in the typical case. There could be of course rare satisfiable instances
events, such that the probability of finding non zero energy goes exponentially to zero
with NV, but is strictly zero only in the thermodynamic limit. These rare events can play
a relevant role in practical design of search solution procedures in [85, 86, 87, 88], but
they will not be studied here. The v = v, point corresponds to the ferromagnetic first
order transition in the unfrustrated model the crossing points of the Sy, and the Sp4.,
analytical lines of fig (2.21).

e For 7 > 7. the maximum of F(y) is positive and it is reached for a finite value y* of
the scaling parameter. This corresponds to a positive value of the lowest energy: it is no
longer possible to satisfy simultaneously all the hyper-edges constraints.

As will have said, it is possible to calculate the complexity ¥(e) of states with e > 0 by the
Legendre transform of the potential F'(y). X(e) is found to be typically non negative inside an
energy density interval [e., e4]'?. This corresponds to the dashed regions of the curves for the
potential F(y) in fig. (2.4)-A, where dF(y)/dy < 0. An energy therefore gap opens up, s.t.
e. > 0 and increases with 7.

Explanation of fig. (2.4):

fig.A: Qualitative typical scheme of the potential F(y) and behavior. The picture reproduces
the RS limit along the line y = 0. The 1RSB potential curves tend to the RS result in this
limit, and correspond to the maximum of the potential only on the lower dimensional y = 0 line.
Enlarging the variational space introducing y, and therefore taking into account the complexity,
gives the blue point better results. We will argue in the next section that in the complete 1RSB
picture this variational space is indeed large enough to find the exact solution for the p-spin
model. Recently it has been shown [30] that this could be the case also for more complicated
models. In order to obtain the results for non negative complexity one only needs the function
F(y) in the left region where dF(y)/dy > 0. fig.B: X(e) at increasing values of 7. The meaning
of eq, e. and 7 is explained in the text. Regions of negative complexity are not shown. The
complexity shows a somewhat unusual two branched form: the lower branch is concave and
goes from e = e, the ground state (GGS) energy where the complexity vanishes, to e = e4, the
maximal energy beyond which one does not find any local ground state, which corresponds to
a value y = y™. It corresponds to the black continuous regions of the F'(y) curves in A The
upper branch is convex, and interpolates between the RS solution (obtained at y = 0) and the
maximal complexity point (obtained at y = y,,). This second branch does not seem to have a
direct physical interpretation and in this context can be simply ignored. On the other hand,
it must be present insofar as the y — 0 limit of our RSB solution gives back the RS solution
(the green arrow in A represent the branch of the potential curves that tend to the red RS sub-
space, where each point is picked by a particular value of 7). Clearly a better understanding
of this second branch would be welcome. fig.C-D: eq4, e.,%(eq), X(e.) as a function of . This

9in the interval [0, e.) X(e) < 0. This means that the probability of finding a state of energy density within
that interval is exponentially small in N. ¥(e.) = 0.
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is the typical picture given by the factorized Ansatz in the fixed degree p-spin. In the case
of fluctuating degree, ¥(e,4) is found to increase with 7 also for p > 2, as in the case of the
fixed degree Viana-Bray model. It has not been checked yet whether this is an artifact of the
factorized approximation. Let’s compare the two models at the same fixed [ and such that
the average degree [y of the Poissonian case is equal to k of the fixed degree one: for low v
the high fraction of “free” spins in the fluctuating degree case has a large weight and therefore
contributes a lot to lowering the configurational entropy. This effect is more pronounced for
large [. Increasing -, the fluctuating model tends to the fixed degree one, and both of them to
the fully connected [-spin in the v — oo limit. Therefore, the lowering effect on the complexity
of the free spins diminishes and the total value of the threshold energy complexity increases to
saturate the fixed degree upper bound. The picture is qualitatively shown in fig .(2.6).

It is important to notice that in the dynamical region the y — oo limit means that the
energy /complexity curves have infinite derivative in e = 0. This means not only that the
number of metastable states is exponential, but that its relative variation with energy is infinite
when they appear. This property follows directly from the definition of complexity and from the
constraint of having a finite value of it already at zero energy density. This enormous explosion
of states is however surprising. It indicates a critical transition in complexity characterized by
an infinite “suscettivity” of the number of GS to an infinitesimal change in energy. Therefore
e = 0 is an critical instability point of the system. In the dynamical region, this instability point
is not separated from the higher energy metastable states. The number of GGS is large, but
nevertheless the number of LGS at energy density just above zero is exponentially larger. This
pictures recalls qualitatively the formation of scale-free domains at any size at the critical point
in continuous phase transitions. Above 7., on the other hand, even if the fluctuations in the
relative number of metastable states are large, they loosely speaking ezplore an almost empty
space because the total number of states is o(1). Because of this disconnectedness property of
the configurational space at energy below e., In the thermodynamic limit (and for all practical
purposes for very large single instances in combinatorial optimization problems), the system
does not feel the presence of the instability because it is in a region that can be explored only
by means of rare events. At ., the typical number of GGS is O(1), so it is clear that the jump
must be infinite at e = 0, since we have

. 1 dN(e)

Y (ve) ~ O de 1 (2.135)
and the variation of states must be exponential in order to have finite complexity at e > 0. The
situation is shown in the blow up in fig. (2.5)and in figs. (2.8) and (2.9), where the exponential
explosion in the number of metastable states is underlined. In those “pathological” cases where
a continuous transition appears inside the dynamical region, the zero energy complexity drops
suddenly to zero as shown in fig (5.9). Some examples of energy/complexity curves have been
computed in fig. (2.7) for particular values of v in the Poissonian 3-spin. Analogous curves in
the context or error correcting codes are shown in chapter 5. In regions of very high ~, it might
occur that e, — e; — 0 and the number of LGS might cease to be exponential for all energies.
Clusters of sub-optimal solutions could be no more separated by a Hamming distance of order
N In fact, in that region the validity of the 1RSB picture for v >> ~, is still uncertain. This in
particularly could be true in more complicated models as the K-SAT, as it has been noted in
(89, 90]. The 1RSB picture, however, gives a bound on the asymptotic values of the complexity,
in case no further symmetry breaking was present increasing graph density.
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Figure 2.5: X(e) close to e, = 0 in the dynamical region.
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Figure 2.6: X(e4) as a function of «y for the Poissonian fluctuating and the fixed degree at equal

[ > 2 in the factorized Ansatz picture.
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3-spin with Poissonian degree distribution

In the case of Poissonian degree distributions, the summations into the saddle point equations
and the free energy can be explicitly done, leading to more compact expressions. This can
be done in general for any degree k, but we will here only give the expressions for the 3-spin
(< k >= 37v), without loosing generality. After some algebra one finds

Io(21)
B 2.136
PO 10(z) + 2k I (21 )b F (2.136)
Il(zl)ey'l
- = 2.137
g P o) + 25 g Le(21)ev (2.137)
3
4 = GU-py (2.138)
Q = e¥— (1—pg)’sinh(y) (2.139)

for the saddle point equations and

1
F(y) = —;(7 log Q2 — log A — 2, cosh(y) — 2y sinh(y)po) + 7 (2.140)

1
A = 2.141
In(z1) + 2 ka0 Le(21)ev” ( )
for the potential. I;(x) is the modified Bessel function of [-th order. Following the previous
prescription on the potential, in the y* = co limit eq. (2.136) reduces to

1

37(1-p)? 4
2e2-(1-r0)°

Po = , (2.142)

with lim, o F(y) = 0. Besides the trivial paramagnetic one, equation (2.142) admits a sym-
metric zero energy non trivial solution in the dynamical region [y4,7.] = [0.851428,0.939083].
One can explicitly check that no other non trivial y* < oo solutions are stable in this region.
At v4 = 0.851428, the transition is discontinuous and a finite back-bone suddenly appears with
weight 1 — py = 0.798335. At ~., the predicted value for the backbone is 1 — py = 0.9309.
This means that in the factorized Ansatz approximation more than 93% of the spins are fixed
with probability 1 at the transition, for the 3-spin model. These values are upper bounds for
the true values, that will be retrieved via the complete 1RSB calculation. In picture (2.7) the
behavior of the X(e,v) and F(y) for some examples around the static transition is shown. One
could argue that the natural scaling to correctly focus on the critical behavior of the potential
curve around the transition is given by the change of variable t = e~¥. The plot of F'(¢) is also
shown as a title of example. From that plot the singularity in the y — 0o <=t — 0 is made
evident. In the plots of the potential, the occurrence of the static transition point is better
seen rescaling the y axis as t = e ¥ € (0,1). Notice how for values of y too small the solution
is unstable with respect to the paramagnetic one. In particular this implies the instability of
the RS solution (y — 0).

2.4.3 On the physical ir-relevance of fractional fields

The zero temperature saddle point equations for the potential admit a closed solution also if the
effective fields h have rational support. This solutions can be seen as an improvable RS scheme
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Figure 2.7: X(e, ), F(y) and F(t) for the 3-spin model around the variational static threshold.

and can be proved to give variational results with the technique of chapter 6. Solutions of such
a kind have been explored in the past for the random 3-SAT model [9], and very recently in
a RS approach?” to the graph coloring problem in [57]. However, it is clear from the physical
nature of the v and h fields that their non vanishing part should be integer at zero temperature.
Nevertheless, since we are working in a variational context, the attempt to refine the threshold
values via rational fields is legitimate. Let us again specialize to the Poissonian 3-spin case. If
we introduce a fractional field Ansatz as in [9, 11]

Py(h) = io pid (h . l> = Py(—h) (2.143)

l=—00 r

bypassing the introduction of local u-fields saddle point equations read

P, = Ze®Wp (2.144)
= _ (2.145)
Mo+ 22050
2 df " i (y)cos(0j
mo= o[ W cos(1)e2i= 40D (2.146)
0 27
3
wly) = GU-0-p)?) (2.147)

20At the beginning of this thesis the RS analysis with fractional fields has been extensively carried out with
pedagogical purpose also for the 3-spin and the 3-hyper-graph bicoloring problem, with results analogous to the
ones in [9] and that are not reported here.
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l

12 _ul
graly) = %(P%Jrl—Po—?Zpu)m@ g (2.148)
r=1 "
129 1—po =, _
aly) = L2 - p)e (2.149)
Q 2 =1
1 —p 3 1 T -1 l oy
0 = 10 S (-2 T - (- = 2 p))e ¥ 2150)
=1 Jj=1 j=1

where r is a filter parameter that can be arbitrarily increased to thicken the fields sieve. As it
turns out in the calculation (analogously to the RS case), only the first r weights are needed
to write the potential

Fly) = —%(fylog(Q) 3y 4+E) 41 (2.151)

Analogous equations can be written in the general [-spin case, the bicoloring and the random 3-
SAT models and - in a much less compact form - for generic choices of the generating functions
(2.5) and (2.6). However, we won’t further write down the equations because fractional fields
do not show to improve the optimal saddle point value of (2.127). Numerically, no solutions
seem to be stable at zero temperature other than the integer fields one. This is also the case
for the other studied models: Bicoloring over 3-hyper-graphs and random 3-SAT. This result is
different from the RS case, where in fact the fractional Ansatz gave better empirical threshold
values. This is a hint for the fractional Ansatz to be a sign of RSB phenomena. Since we are
already working here in a RSB framework, it is therefore plausible for this spurious solution
not to be stable any more.

2.4.4 A particular exact case: hyper-graphs with fixed degree dis-
tribution

The case of fixed rank and degree hyper-graphs?! is a peculiar one, because all spins are topo-
logically equivalent on the hyper-graph, leading to a factorized closed form of the complete
saddle point equations. This is not peculiar of p-spin like models, but can be extended, as we
will see for the bicolorig problem, to other systems of spins on a random graph with fixed rank
and degree. Notice that strictly speaking the solution is still non exact, because it neglects
site to site fluctuations that may depend on the state of the system and not on its topological
properties. However, it gives results [22] in very good agreement with numerics. In this case
the exact equations (2.40) and (2.41) can be written in a factorized and normalized closed form
as

W0) = S (2.152)
) = X A3 i) ep(5 Y ottty 1) (2.153)

2Lor the slightly more general version of a degree distribution with constant sub-degrees, taking advantage of
the alternative formalism of appendices C.
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where p(&) has to be normalized: p(G) — (2cosh(B) ™ prorm(0) and pporm(3) — p(F). After
some algebra one obtains:

—mpF(B,m)=(1— k(1 l— 1))log(Z p(3)") + k(1 l— 1) 1Og(Z 5(3)F ) (2.154)
with:
(2cosh(m))n {2 Tzt
P(h) _ <Ht1 (2 cosh(But)) >{ut} (2‘155)

< (2cosh(8 Y2, ue))™ >
Hle(Z cosh(Bu))™ {ut}

Qu) = <5 <u — %tanh (tanh(3 Htanh Bhy) )>>{ht} (2.156)

For the [-spin with even degree the Ansatz closes on qo = 0 = py and consequently pL =
g+ = 1/2, because on every spin the effective cavity field is given by the contribution of k — 1
odd =+ local fields. using this result a very simple expression in the scaling regime m/f = y is
obtained??:

evlk=2ily 4 (2.157)

P = (0= T S o
k(l—1) I G VL R
l 10g2k1§ CEEETE e ))

k— i) 'z'

For odd degrees eq. (2.158) is more involved and has the form

1 k(l—1 k(l—1
r) = (0= 2 gt + g - 1) (2.159)
k! 1— :
g(k,y) = €y~k (@)no(7(]0)71++n_ef2ymm(n+,n—)5k;n0+n++ni(2‘159)

>0 nyln_Ing! " 2 2

In table 2.4.4 the optimal value y* of the scaling parameter and the GS energy densities ey, =
Oy—y-(yF(y)) = F(y*) are shown in the 3-spin for various values of the graph degree k. We also
report numerical estimations of the GS energy (e ”“m) obtained by extrapolating the results of
exhaustive enumerations (sizes up to N = 60 averaged over 1000 — —10000 samples). Moreover
in [22] the y* value for the 3-spin model with [ = 4 has been estimated to be 1.41(1), perfectly
compatible with our analytic value. In figs (2.8)-(2.11), some examples of the behavior of ¥(e),
F(y), e(y) and X(y) for fixed degree and rank hyper-graphs are shown. Notice the different
behavior of [ = 2 cases, corresponding to the Viana-Bray models. The meaning of the different
curves branches has been previously explained and is the same as in fig (2.4). In fig (2.12) the
dependence of X(eq4) on k at fixed rank [. In fig (2.13) the dependence of the X(e) curve on [
for a fixed degree (k = 10 in the example) is shown.

22With the alternative formalism of appendix C.1 we can write an exact factorized Ansatz for structure with
arbitrary degree distribution and fixed sub-degrees (one for each k-sub-hyper-graph). The final formulas are
reported in appendix C.2.



62

CHAPTER 2. THE GENERALIZED DILUTED P-SPIN MODEL

Lk [ e | e v
13| -(k)/3 ~
4 [-1.21771 | -1.218(6) | 1.41155
5 | -1.39492 | -1.395(7) | 1.09572
6 | -1.54414 | -1.544(9) | 0.90163

Table 2.2: Optimal value y* of the scaling parameter and the GS energy densities for the 3-spin
and for various values of the graph degree k.
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2.5 The general 1RSB equations

The picture that came out from the use of the facorized Ansatz was a big improvement compared
to the RS approximation and it will qualitatively hold in many aspects in the following, but
we pointed out some not satisfactory features of it, in particular the fact thet we are still
essentially neglecting site dependence of the local fields distributions. If we stick to the more
general (within Parisi’s scheme) forms (2.104) and (2.104) of the functional order parameters
and we plug it into the exact expression for the potential (2.39) we can write, after a calculation
that is longer and a bit more involved but essentially equivalent to the RS case:

k k
mBFigsp(m, ) = 5i l i - il j (log(cosh(ﬂJ) S+ (2.160)

<k>{(l kel m
AN cosh(ﬂh )2 COSh el PQ
2cosh(BTE u) > >
| _
Zk: Ck < 0og < (Hfl 2 cosh(ﬂut) fue}! (@}

- =S <10g < (1 o3[ tanh(ﬁht)>m>{ht}>

t=1

{Pt}7‘]

One has to keep in mind that there are now two levels of distributions, and the cavity fields on
one site are not fixed in one state anymore, but are only “biased” toward one set of values by
a given site dependent distribution. In this sense the u-fields (that are the polarizations felt by
one spin coming from neighboring variables) have been called cavity biases. In the same sense,
an algorithm that exploits the RSB biases structure to propagate information along the vertices
of the hyper-graph will have to work pass information on the whole probability distributions
- the survey - of biases instead of a simple belief of the scalar value of the field. This is the
reason why the new algorithm class presented in [29, 30] has been called Survey Propagation.
The survey passing procedure acting on a single spin Sy is shown in fig 2.14). The complete
saddle point conditions are this time translated into integral equations on P[P] and Q[Q]*

P(P) = [ TLPQQ@IPO) ~ PUIQu ) (216]
Q@) = TIDRP(R) (@)~ QUPL . P D)), (2162

-1
Q(U,|P1, ceey -Pl—la J) = Ilgil[Pl, ceey -Pl—la J] / H dhtPt(ht)B.l]il(hl, ceey hl_l)mé (U, - UJ(hl, vy h'l—l))
t=1

(2.163)
- Qu(u ) :
P(h|Q1, ... Qr—1) = NG~ [Q1, ..., Q1] (2 cosh(Bh)) /Hdut Feosh(Fu) S5(h — Zul
~(2.164)

where Ng_l[Ql, iy Qp—1, J] and N5 [Py, ..., P_,] insure normalization and By (hy, ..., hy_y) is
a rescaling term that can be re-absorbed in the normalization in the case of the p-spin model?*.

23For the reader interested in reproducing this results we remind that in the following expression the limit for
the number of replica groups = n/m — 0 has been taken. In (2.160) the terms of order O(n/m) are retained.
241n that case it does not depend on the fields.
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Eqs (2.161)- (2.164) are very general and valid for models other that the p-spin. From model
to model the nature of the functions uy and By change. J represent the set of all couplings
contained in an elementary energetic constraint, and it is a simple scalar for the p-spin. m is a
number in the interval (0, 1], which selects families of solutions at different free-energy levels.
The physical free-energy is estimated maximizing over m. For the p-spin u; has the usual form

wy(hyy ey hy ) = %tanh1 (tanh(ﬁJ) lﬁtanh(ﬁht)> , (2.165)
t=1

where J is a scalar because only one coupling enters the local energetic term. Another example
is the K-SAT case, where with calculations very similar to the p-spin model one finds

¢ rp—1 [ 1+J¢ tanh(Bhy)
J | SIE (S
ug(hyy .oy hyp1) = uy({Ji}, {hs}) = = tanh o () ] (2.166)

3 [1 N g Hf:_f (1+Jt ta;h(ﬂht))J

B P (1 + J, tanh(Shy)
By(hy,...;hy) = BT, {}) = 1+ 5 t};[l ( 5 ) .

(2.167)

It is evident the re-weighting of the inner distributions with m that becomes responsible for the
y-regulated T = 0 level crossing®® Depending on the choice of the quenched disorder distribution
p(J), we can specialize (2.160) the the ferromagnetic as well as the spin-glass cases. The
expression for the free-energy for models other than the p-spin can be calculated along the
same lines. For instance, the general 1RSB energy for the K-SAT model is given in chapter 6.

2.5.1 General Solution at 7'=0

The previous equations can be iteratively solved via a population dynamics algorithm pre-
sented in [23] and valid in principle at all temperatures. The algorithm explicitly makes use
of the re-weighting terms in (2.161)-(2.164). The zero temperature limit of (2.161)-(2.164) and
(2.160) can be directly computed, or from the replica equations or exploiting the straightfor-
ward generalization of the 7" = 0 replica/cavity self consistent equations written in [24] for the
Vian-Bray model. Equivalently, their limit can be directly calculated from the replica results
(2.161)-(2.164), substituting (in the scaling regime y = m/3)

2eosh(Bh) \" (S e[S v
(2(:osh([3ut)> e

) (2.168)

in the general case,

-1
wy(hyy ooy hyo1) = min(|J], |h1l, ...y |hi1]) - sign (JH ht> (2.169)
t=1
for the p-spin,

J K-1
wy({Je} {e}) — D) H O(Jihy) (2.170)

t=1
B({Ji}, {h})" — 1 (2.171)

25The re-weighting is obviously present also at finite temperature, as well as the level crossing, and is even
more complicated due to thermal effects. We focused on zero temperature because of the direct connection with
optimization theory.
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for the K-SAT?® and rescaling the normalization factors accordingly. If the quenched disorder
distribution p(J) has support only on £1 values, eq. (2.169) reduces to the usual

-1
wy(hyy ooy by—y) = J - min(1, |hy|, ..., |hi—1]) - sign (H ht> (2.172)
=1

already seen in the p-spin spin-glass in the RS and factorized cases. We would like to stress
here that all calculations could be redone for a more general choice of ;(J). The exponential
term, when calculated directly via the cavity method, reads

NA+1 N N+1 N
eiy(ew(nin >787('n121) = e (Ev('nzn ) Ew(nw)’b) (2173)

and plays the role of a re-weighting of states due to a population shifts in the number (complex-
ity) of states (clusters) under the cavity equation iteration from an N to an N + 1 hyper-graph.
This terms essentially favors terms with low minimal (min in the equation) energy or complex-
ity, helping the equations to converge towards the correct GS. Notice that inside the dynamical
region the GS is found for y — oo.

In this case the re-weighting factor (2.173) will become in general an Indicator function
X(A({P(h)})) (or x(A({Q(u)})), depending on which fields we decide to work with) over the
set A of effective fields distributions that do not lead to local constraints contradiction and
therefore do not increase the value of the energy from the e = 0 GS one. Beyond 7. this
in in the typical case no longer possible, because no all local contradictions can be satisfied
due to frustration percolation. However, solutions with a minimal number of violated energy
constraints will be favored.

Similarly to the RS or the factorized case, one can on physical grounds require the form of
a given site field distribution function to close on an integer support®’. Given k; the degree of
spin ¢ belonging to an edge of rank [; we can write

P(hlk; — 1)(pk) = Z pyRo(h —r) (2.174)
r=—k;+1

P(ull; — 1) (gH-7) Z "0 (2.175)
r=—1

It is parametrized by a vector of weights, pi = (P", - P},)*® which can fluctuate from one site
i to the next. Since at 7" = 0 the fields take integer values, the probability depends on a finite
number (2k) of parameters for all fractions of vertices of degree k, and the full order parameter
is not a functional, but a function R(p) of the vector of weights which is given in the limit of
large N by:

Ru(p) = Z[ I o(i- pr)]=<,1€

i r=—k;+1

[kﬁl (5(p,’f—pr)] : (2.176)

r=—ki

261n [30], where for the 3-SAT case all details of the calculation via the cavity method are shown, the function
uy appears rescaled by a factor 2 necessary to work with integer fields. Indeed, the factor can be simply re-
absorbed from the beginning defining the K-SAT Hamiltonian has twice the value of the cost function of the
combinatorial problem. The same holds for other models such has the hyper-graphs Bicoloring of chapter 4.

2"In some cases, as for instance the K-SAT, this hypothesis is the only one possible.

28we have dropped the apex k;.
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Figure 2.15: Probability distribution of the py weights in the Viana-Bray model, obtained after
evolving a population of N = 10° sites. Plotted are the cases y = 0.4 (black), y = 0.8 (red)
and y = 1.2 (green). Notice the big effect of non-factorization. The best factorized solution,
with y = 0.4174, would give a § peak at py = .3353. The RS solution would give a § peak at

where pF is the weight of a filed 7 of a spin of degree k and the second equation holds on the
typical sample, once averaged over the hyper-graph ensemble. Analogously for the u-biases:

1

Ru@zﬁz[ﬁa(qz—qr)]:

<}> ;lvl [H 5 (g, —qr)] , (2.177)

r=—I

Therefore, two Ansétze have to be checked in order to find an analytical solution: the one on
the weights of a single site distribution , attached to P(h) or Q(u), and the fractions of sites
given a certain distribution of fields, attached to Rj,(p) and R, (). Differently from the RS and
the factorized Ansatz approach, the qualitative consequences of the general RSB equations are
clearly visible on the fact that the probability distribution of cavity fields is site dependent, and
this picture survive at zero temperature, as it is shown for instance for the case of the Viana-
Bray model in fig. (2.15). There the probability distributions P(py) = (1/N) 3,6 (py — po) for
the zero cavity fields weights py (¢ in the figure) are shown for different values of the scaling
parameter y. The distributions are broad due different site-to-site. Both the RS and the
factorized solution give a single J peak in the same situation. taken from [24]. Moreover, the
individual cavity field distributions P;(p) are not symmetric under field reversal (i.e. Pi(p,) #
P;(p_.)), while only the full order parameter is statistically symmetric (i.e. the site to site
fluctuations of p, are identical to those of p_,).

If as a title of example one specializes to the Poissonian p-spin case, whose specific results
have been already given in the last sections, equations (2.169) and (2.171) reduce to a single
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closed form that can be written only in terms of the u-biases distributions:

p—1 Kt kL Ep—1
Qo(u) = CO/H Hdtht uy') (U_UJ(X%UQZH'ZEUZ_I))
p= p=

t=1 p=1
k! kp—t
cexp |—ywy | Youl, D upy : (2.178)
p=1 pn=1
where Cj is a normalization factor, u is the “clause” index,

(2.179)

kt
D ui

t=1 |p=1

kL kp—1 1
(z S 1)—1—2
p=1

is the re-weighting factor and numbers {k'}} " are i.i.d. random numbers taken from a Poisson
distribution of mean vp*. Since the cavity biases, as said, take values {0,41}, symmetric
solutions of the form

Qi) = s () + 2 (1) + 8+ 1) (2.180)

can be sought in general®. Indeed, form (2.180) is very well observed numerically, with a
fraction r of trivial distributions with n; = 1. Moreover, the weights 7, can be computed
analytically [26, 30]. As in the factorized Ansatz case, various phases are found, their stability
depending on 7.

The histogram picture for the site fields distributions @;(u;) is pictorially shown in fig. (2.16)
From eq. (2.178), in the limit y — 0, the site fields distributions concentrate on one single delta
function for each site 7. There is no re-weighting factor and the average

Q(Q

1 N
NZ: i(u;) (2.181)

can be seen as an average over the values of the single scalar fields u;, giving back the average
RS solution (calculations can be directly done via inspection).

In the factorized Ansatz case, due to the re-weighting, a normalization C;(y) is present (Cy
for the reference spin Sy in (2.178)). However in this case C;(y) = C(y) Vi € {1, ..., N}, because
all sites share the same state to state fluctuations (see again fig. (2.16).

In the general 1RSB case, the normalization (and the re-weighting) factors are site depen-
dent, all site distributions (or their numerical coefficients at 7' = 0) fluctuate from site to site
and eq. (2.181) gives the general 1RSB replica solutions®!

Looking at the iteration equation for general values of y (2.178), the only way one can obtain
a trivial distribution Qo(u) = 6(u) on the Lh.s. is when 3 ¢ such that all the &’ distributions
are trivial Therefore, for one given iteration with given {k'}, the probability that Qo(u) = d(u)

29Notice that the sums here go up to k instead of the k — 1 of the cavity original formulation. This is a
peculiarity of the Poissonian degree distribution “self similarity” as it has been already seen in the previous
sections.

30, = ¢ of eq.(2.177).

31 Again calculations can be checked directly. In order to prove equivalence the reitroduction of h fields
distributions is then not necessary, but it simplifies a bit the notation.
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Figure 2.16: Pictorial description of the histograms of the distributions @;(u;) in the general
1RSB, RS and factorized cases.
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is 1 — [T?- (1 — r*"). The average over iterations and over the random connectivities {k'}lead
to a simple equation for the fraction of trivial distributions:

kt p—1

r—em Y1 (p/Zt)! (L-TI-r))=1-(1-emt)"" © (2182)

kL. kp—1=0 t=1 t=1

For v < =, the only solution is r = 1, while above 7,4 a non-trivial solution appears. Notice
that equation (2.182) is identical to the magnetization condition of the ferromagnetic model,
confirming our previous observations of thresholds coincidence.

For large y, numerical results show that the cavity biases spontaneously divide in two
categories: cavity biases of type “a” with @Q;(u) = d(u) and those of type “b” with Q;(u) =
$[6(u — 1) 4 6(u + 1)] that are responsible for the propagation of the interactions. In fact, the
following distribution of cavity biases

B d(u) with prob. r o (‘type o)
@ilu) = { s0(u—1)+6(u+1)] with prob. 1—r (‘type V) (2.183)
is a fixed point under the iteration process (2.178) for y = oo, provided the fraction of trivial
knowledges t satisfies (2.182). Using the extension to the hyper-graphs case of the expressions
in [24], one finds the complete 1RSB expression for the potential F(y — oo) = 0, which is
indeed the expected result.

Beyond v,: the location of the static phase transition

In order to study the complexity and the phase transition point one needs to take care of the
leading corrections in the limit y > 1. For finite y, the distribution (2.183) is no longer stable;
we need to study a more general distribution of biases which takes care of the appearance of a
non-trivial contribution to the peak in v = 0, arising from frustrated interactions:

B d(u) with prob. r (‘type o)
Qi(u) = { %(1 —n)[0(u—=1)4+0(u+1)]+n0(u) with prob. 1—r (‘type V') (2.184)
where the fraction r of trivial biases is always fixed by (2.182). For large y, substituting this
distribution into the self-consistency equation (2.178) shows that the weight can be computed
as a series expansion in powers of e™¥, rapidly decreasing for large y. If one proceeds in doing
so the expression for the potential F'(y) can be calculated around the static transition and a
value of v, again coinciding with the ferromagnetic one in found.

Thanks to the Legendre transform already used in the factorized Ansatz approximation the
complexity cam be calculated, leading to important corrections to the factorized results.

We would like to stress in conclusion that this is only an introductory review of the steps of
complete 1RSB solution, that can be found in details in [26, 30|, and that the 1RSB equations
can be reformulated also in the single sample cavity analysis presented in [29, 30] for the 3-
SAT model, where the re-weighting factor (2.173) lies at the hearth of the effectiveness of the
proposed Survey Propagation algorithm. There, the indicator function y(A) plays the role of a
filter on the messages surveys that would lead to conflicting information coming from a function
node (clause) to the variable to be fixed.
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2.6 ”Ferromagnetic complexity”

From the usual definition of the free energy SF = [SE — S and from the fact that we are
working with a clusterized system of m replicas, we can split the total entropy of our system in
an mS part counting the contribution within clusters and a complexity 3 counting the clusters
multiplicity. We can therefore write —mpF(m, ) = (5, m) + mS(8) — mpU(S, m), where
U is the total internal energy. The complexity of the original, m = 1 system will be therefore
given by the stationary point condition [7]

; 2 0BF (m, B)
¥(B)=m o s (2.185)
at finite temperature. However, if we want to compute ¥*(00) we must solve the saddle point
equations for m = 1, and then take the zero temperature limit, which is a case not contained
in the y — oo limit of the previous section. This limit in principle underestimates the number
of LGS at f = oo, and does not allow to compute the complexity at finite energy above the
static transition, because in that case the states at y = 0 (and m = 1 counts part of them)
turn out not to be locally stable, as we have seen on the general discussion on the complexity.
In the general case therefore

X" (00) # X(y") (2.186)

and it is not correct. We will call ¥*(oo) maybe with abuse of language the zero temperature
ferromagnetic complexity of the diluted p-spin model for the following reasons: eq. (2.185) does
compute the configurational entropy of the metastable states of the ferromagnetic p-spin diluted
model, and indeed, explicitly solving the 7" = 0 1RSB saddle point equations for m = 1 with a
calculation similar to the RS case3? one finds:

X (7) = Spara(f)/) - Sﬁﬁro(’y) (2187)

where Sy, simply is the zero temperature entropy of the RS ferromagnetic solution and we
have made explicit the dependence on . This result is valid for all degrees distributions in the
ferromagnet3?.

The existence of a metastable states complexity for disordered ferromagnets is not in con-
trast with the fact that the GS is replica symmetric. After the magnetization transition, a
ferromagnetic solution is always present in the model, but is the center of a single cluster.
There cannot be more than one magnetized cluster, because the fixed spins are the ones be-
longing to a core subgraph that is univocally defined and shared by all other solutions, at
Hamming distance O(1) and found by spin flipping in the paramagnetic fraction of variables.
This properties will be discussed in the last section for the spin-glass case, but is valid also
for the single ferromagnetic cluster. However, also in this cases a dynamical transition in the
metastable states is present. Between v, and 7. an exponential number of states appear be-
tween e = 0 and e = e4. Even though all clusters at e = 0 are identically magnetized, the

32The reader interested in reproducing this calculation should nevertheless be careful to the fact that while
in the RS limit the analytic continuation of z = )_"_ ¢ € J is taken, in this case obviously z = " | 0% =
sigma' = £1.

33Notice that when more that one possible value for S ?gm(y) is present one has to take the largest one which
is the thermodynamically favored entropy within the non paramagnetic choices. This means in case the system
undergoes a continuous transition before the discontinuous one (see chapter 5 for examples), ¥*(y) drops to
zero at the transition point v = 1/(2v9).
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Figure 2.17: complexity versus energy density of metastable states above the ferromagnetic
transition for models with dynamical 1RSB phase. The lower left dot at e = 0 is the ferromag-
netic solution.

Figure 2.18: Energy landscape above the ferromagnetic transition. The narrow central dip
represents the zero energy ferromagnetic solution.

presence of non zero energy metastable states is responsible for a slowing down of the dynamics
analogous to the glassy case. A finite complexity therefore arises and indeed can be calculated
via a 1RSB steps. The glassy behavior of p > 2-spin ferromagnets has been studied in [20]
also at finite temperature as a model for structural glass transition or blocked configurations
complexity in granular systems [80]. Also the models studied in chapter 5 in the error correct-
ing codes application are ferromagnetic in nature. It is important to notice that also in this
cases a dynamical transition in the metastable states only is present. After 7. an energetic gap
in complexity opens up. However, differently from the spin-glass case, a single ferromagnetic
cluster at zero energy is always present. This situation in pictorially shown in figs.(2.17) and
(2.18), and is also the case of some ad hoc built ferromagnetic-like hard-satisfiable versions of
the satisfiability model we studied in [55] and exploited to build a generator of very hard but
satisfiable clauses. For this class of models we expect local search algorithms of any presently
available kind not to be able to overcome the energy gap and find the global ferromagnetic
solution for large system sizes. This was successfully verified with SAT solvers like walk-sat in
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Figure 2.19: Scheme of solution clustering in ferromagnetic models with dynamical 1RSB phase.

[55] and for decoding sum-product algorithms in e.c.c. in chapter 5, as well as for simulating
annealing. Moreover, this should be the case also for algorithms that are much less affected
from the dynamical transition and perform very well throughout the [v4, 7] region, like Survey
Propagation [29, 30].

The cluster picture in energy and 7 is modified consequently in the way show in fig. (2.19)
Some real complexity plots for the case of error correcting codes will be shown in Chapter 5.
For Poissonian degrees distribution the ferromagnetic complexity reads

S*(7) = log 2 (1 ol = logpy) =7 Y ul - po>l) (2.188)

and
3 (y) = log2 (1 —po(1 —logpy) — (1 — po)g) (2.189)

for the 3-spin. Remarkably enough, ¥*(7) is in perfect agreement with numerical simulations [19,
22] of the true (e = 0;y) and with the general 1RSB analytical results of the previous section,
with the Poissonian case and can in principle be seen for any [ and any degree distribution.
In fig. (2.22) The analytic expression for ¥3P"Poss(e = ();+) calculated via eq. (2.185) is
compared with numerical simulations. The results of numerical clustering with an overlap cut-
off of 0.7 (averaged over 1000, 1000, 500 and 50 samples) converge to the analytical prediction.
Extensive numerical experiments on both versions (ferromagnetic and spin-glass) of 7' = 0 3-
spin (3-XOR-SAT) were performed in [19] in order to confirm analytical predictions. We remind
that in a region where an extensive number of GGS is present, the combinatorial problem is
Polynomial in the worst case as will be extensively review (and exploited) in chapter 3 and
5. We used a global polynomial method that reduces the problem of the GGS search to that
of solving a large sparse linear system in Galois Field 2 (GF[2])3*. The simulations whose
output is shown in figs. (2.20),(2.21) and (2.22) used the polynomial procedure as well as local
algorithms, namely the Davis-Putnam (DP) complete backtrack search [91] and the incomplete
walk-SAT randomized heuristic search [92] , to check the hardness of the problem for local
search®. The existence of at least one solution in the satisfiable 3-XOR-SAT allowed us to run

34This method will be reviewed in chapters 3 and 5 for the interested reader.
35mixed randomized and backtracking procedures have been also recently investigated. See for example [88],
based on a systematic study reported in [93].
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Figure 2.20: The probability that a formula is SAT as a function of the coupling density. Inset:

The energy reached by a deterministic rule becomes different from zero at the dynamical critical

point.
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Figure 2.21: The lowest lines are the analytical expressions for the entropy of the ferromagnetic
model. The numerical estimation (not reported) perfectly coincide. Dashed parts correspond
to metastable states. The rest of the data (entropy in the main body and energy and backbone
size in the inset) come from exhaustive enumeration of the ground states in the spin-glass model
and of first excited states in the ferromagnetic one (only N = 40, 60) and they coincide.

walk-SAT in the whole range of 7, the halting criterion always being finding a SAT assignment.
These results are quite surprising because tells us that the dynamic and static p-spin spin-glass
thresholds coincide with the values of appearance of a metastable ferromagnetic solution and
with the thermodynamic ferromagnetic transition (some values where given in the Poissonian
and [ fixed case in table 2.4.4). We will see in the next section why it is so.

2.6.1 Hiding solutions in random satisfiability problems

We would like to make here a very brief digression to say, as we pointed out a few lines above,
that the peculiar low and zero temperature solutions space structure of the ferromagnetic-like
models described in this chapter is not restricted to the generalized p-spin model, but the same
qualitative picture of figs. (2.17), (2.18) and (2.19) also applies to ad hoc constructed ferro-
magnetic versions of combinatorial optimization problems such as Hyper-graphs Bicoloring®®

36See later chapter 3 for details.
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Figure 2.22: Ground states configurational entropy versus mean connectivity for the Poissonian
3-spin. With the analytic result we mean in this case ¥*(7), which is also in perfect agreement
with the complete 1RSB curve.

and random K-SAT. In this context, the extreme hardness of finding the narrow basin fer-
romagnetic solution hidden among a much larger exponential number of metastable states at
higher energies, for v >> ~,, has revealed itself very useful in the design of hard and solvable
combinatorial instances. Indeed, this is a very welcome in computer science, since a major
problem in evaluating stochastic local search algorithms for NP-complete problems is the need
for a systematic generation of hard test instances having previously known properties of the
optimal solutions. On the basis of statistical mechanics results, we therefore proposed a class
of random generators of hard and satisfiable instances for the 3-satisfiability problem based of
a well suited ferromagnetic version of it. The design of the hardest problem instances is based
on the existence of a first order ferromagnetic phase transition and the glassy nature of excited
states. This subject would surely deserve a chapter on its own, but we decided not to include
it here in order not to overload the thesis. However, at the end of this chapter we included the
published article [55] - presenting our results - in its entireness. We would also like to men-
tion that the generator described in the article was effectively implemented and submitted in
the SAT2002 Cincinnati Sat-Solvers competition, where it performed excellently. We believe
these results to be e very clear example of the utility of statistical physics insight in the field
of combinatorial optimization

Notice, on the opposite side, we will see in details in chapter 5 how error correcting codes
algorithms explicitly try to avoid entering the dynamical region (and therefore to work in
a regime of an effective v < 74) in order to work efficiently, since a larger basin of for the
ferromagnetic solution® is needed for the algorithms to rapidly converge.

3TThe ferromagnetic solution can be gauged to correspond to the complete retrieved original (before corrup-
tion) message parity check error correcting codes. See chapter 5 for details.
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2.7 An exact alternative solution of the p-spin model at
T=0

We would like here to review a rigorous alternative solution for both the dynamical and static
thresholds of the generalized p-spin. We stress that the following solution is exact. No need
for either replica or cavity calculations is encountered. This does not invalidate the relevance
of previous sections, because this last method is limited to the p-spin at zero temperature (p-
XOR-SAT), whose configurational space symmetries do not in general occur in other models.
Moreover, this derivation is a strong psychological argument in favor of the exactness of 1RSB
calculations in more complicated cases. The method was presented in [26] for the special case
of the 3-spin Poissonian hyper-graphs (as the prototype model of this whole line of research)
and, with an almost equivalent formulation, in [94]. In this section we’ll strictly follow [26],
where all the results have been already established. Extending the calculations to arbitrary
rank and degree distribution hyper-graphs was straightforward, so that this section will not
contain any original result. It was only written for completeness, to show a clear example of
the growing interplay between statistical physics methods and algorithms analysis. Indeed, a
large amount of work is currently being performed in this direction with benefits for both fields.
See [95, 93] and references for some examples. We will exploit concepts from graph theory and
all the calculations will be simple annealed averages, which are rigorous. All the formulas will
be written for the generic p-spin, and the particular case p = 3 on Poissonian hyper-graphs will
be considered in order to make connection with the explicit results of the previous sections.

The physical idea behind the graph theoretical derivation is the following. In a random
hyper-graphs there are many variables with connectivities 0 and 1, whose cavity /effective fields
at zero temperature are null. A small fluctuation in the number of these variables, induce very
large fluctuations in physical observables, as for example in the entropy. Thus, the idea is to
remove all these “floppy” spins and to study the properties of the residual hyper-graph, the
“core”, where conflicting constraints, if present, must lie. We find that, on the core, sample-
to-sample fluctuations are negligible and this allows us to study its properties by mean of very
simple annealed averages.

2.7.1 The onset of frustration: hyper-loops in the graph

Analogously to what happens with loops in usual graphs (p = 2), in a disordered model defined
on a hyper-graph (p > 2) frustration is induced by the presence of hyper-loops [19, 21], which
are also called hyper-cycles in the literature [68, 63] and where already introduced in chapter
1 and fig. (1.1). We recall here that a hyper-loop is a sub-hyper-graph C C H, such that
every vertex in C has even degree in C. In terms of the incidence matrix fl, the hyper-loop
corresponds to a set of rows R such that, for every column, the sum modulo 2 of the elements
is zero, i.e. Y ;cr al mod[2] = 0 Vj. The presence of hyper-loops is directly related to the
presence of frustration in the system: If the product of the signs of hyperloop interactions is
negative, [[,,cc Jm = —1, then not all such interactions can be satisfied at the same time. The
critical point ., where hyperloops percolate, is a 7' = 0 phase boundary for the p-spin glass
models defined by Hamiltonian (2.9): For 7 < ~. all the interactions can be satisfied and the
GS energy is zero, while for v > 7. the system is in a frustrated spin glass phase and GGS of
zero energy no longer exist. The critical point 7. corresponds to the SAT/UNSAT threshold
for the random p-XORSAT problem. In terms of the random linear system Az = i mod|2], as
long as v < 7., solutions to the system will exist with probability 1 in the large N limit for any
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TWO STEPS IN THE LEAF REMOVAL ALGORITHM
FOR A MIXED 2-3 RANK HYPER-GRAPH

Figure 2.23: Two generic steps of the leaf removal algorithm on a portion of 2 + 3-hyper-graph.

y. We would like to recall again the existence of somehow anomalous models. If the fraction v
of rank 2 edges is larger than a certain critical threshold, a giant component made of a purely
2-sub-hyper-graph (plus fractions of other edges of order [O(1)), forms. Within this extensive
connected sub-graph, 2-loops percolate at v = 1/2 and give rise to frustration. More general
hyper-loops, formed by a finite fraction of all ranks edges, percolate at the static threshold
(2.187), giving rise to a discontinuous ferromagnetic transition in ferromagnetic models®® | or
spin-glass in the frustrated cases. But at that point the continuous transition at v = 1/2 has
already taken place. In fact, these models do not radically differ from the other cases, because
the topological emergent structures that lead to propagation of frustration in the hyper-graph
are the same. The only difference being a “time”3? scale separation in the fixed rank hyper-
graphs An axample of general phase diagram that include these cases will be drawn in the first
section of chapter 5.

2.7.2 Leaf removal algorithm

Given a hypergraph the leaf removal algorithm proceeds as follows [96]: As long as there is
a vertex of degree 1 remove its unique hyper-edge. Two subsequent steps of the algorithm
are illustrated in fig. 2.23 for a 2 + 3-hyper-graph. Very similar algorithms have been recently
studied in [97, 95]. During the whole process the remaining hyper-graph is still a random one,
since no correlation can arise among the hyper-edges if it was not present at the beginning.
When there are no more vertices of degree 1 in the hypergraph the process stops and we call
core the resulting hypergraph, cleared of all isolated vertices. However, while in poissonian
cases we can infer the degree distribution of k£ > 2 vertices to remain poissonian during the
whole precess [95, 26], when working in a more general case the leaf removal in principle allows
for a trajectory in the random graphs ensemble space. The evolution equations at each step
can still be written, but one is not guaranteed eny more that the solutions will refer to the
starting graph of to some different structure. Since the equations we will retrieve coincide to
the ones givin the ferromagnetic thresholds also in the general case, we believe the method to

38Rigorously speaking, hyper-loops are not responsible for the ferromagnetic transition, but only for the
spi-glass one. The extensive ferromagnetic cluster appears when similar structures that have been called hyper-
constraints percolate. A pictorial example of such a structure, which is strictly speaking also a cycle, is given
in the right drawing of fig. (1.1). However, in the random hyper-graph these structures are both of typical size
O(log N) and they differ one from the other by a small stattistical variation of the graph. We therefore infer
that tey appear at the same time. This is the physical reason for the coincidence of critical lines at 7' = 0 in
the ferromagnetic and in the spin-glass model.

391.e. the growing hyper-graph mean density v, if we imagine to randomly grow the hyper-graph from an
initial set of disconnected vertices.
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work also away from the poissonian case.

The leaf removal algorithm is not able to break up any hyper-loop, since each vertex in the
hyperloop has at least degree 2. The 7 value where the core size becomes different from zero,
let us call it 74, is therefore certainly smaller than the percolation point of hyperloops . (for
p = 2 these two values coincide).

The evolution of a hypergraph in extensive time 7" € [0, M| under the application of the
leaf removal algorithm can be described in terms of the probability, ¢ (), of finding a vertex
of degree k after having removed 1" = t N hyperedges where the rescaled ‘time’ ¢ ranges from 0
to 7. let us call Ni(T') the number of surviving vertices of degree k at extensive time 7', and
M;(T) the number of [-edges at time 7. At time 7'+ 1 (one leaf removal iteration) we randomly
choose vertex of degree one and remove the edge among the vertex belongs to. Therefore the
number of zero degree vertices will increase by one, plus the probability Ny(T")/sumy k' Ny (T)
that the other [ — 1 vertices of the erased edge have degree one (in that case also those vertices
will have degree zero after the iteration), weighted over the probability (M;(T)/ > ' My (T) of
having found a rank [ edge. Putting all together one can write:

Ny(T) 351 = 1)IM,(T)

No(T'+1) = Ny(T')+1 2.1
o(T'+1) oT) + 1+ Swr k' Ny (T) S ' My (T) (2.190)
In the same way we can write the evolution equations for Ng(T') as:
(2Ns(T) = Ni(T)) Yol = DIM(T)
Ni(T+1) = N(T)—-1 2.191
(T+1) o(T) =1+ Swr k' Ny (T) S ' My (T) (2.191)
((k + 1) N1 (T) = kNK(T)) 34 (1 = 1)IM(T)
Nisi(T'+1) = N(T) -1 . (2.192
k>1( + ) k( ) + Zkl k,Nk/(T) Z[l l,Ml/(T) ( 9 )
Defining a rescaled time ¢t = T'/N € [0,7] and
Ni(T)  Ni(tN
e (t) () _ Neltl) (2.193)

N N

(¢ (t) and v;(t) are well behaved quantities in the N large limit, with of course ¢;(0) = ¢, and
v;(0) = v; of the initial hyper-graph), to the leading order in N we can write the evolution
equations (see Ref. [95] for a detailed derivation of similar equations) for the fractions ¢ (t) as

Jco(t) Sl = Du(t)er (t)

ot <l ><k>; 1
der(t) LU= Du()(2e2(t) —ar(t)

ot <I>< k> L (2.194)
Ock(t) X011 = D)v(t)((k 4 1)egi(t) — ke(t) VE > 2

ot <l >< k>, -0

where < k >= Y, keg(t) =< k > (7 — t), since the mean degree linearly decreases with
time (we remove one interaction per step) and vanishes at ¢ = 7; while < I >,= ¥, lv(1).
These equations are the generalization of eqs.(22) in [26], since one has to take into account
the probability oc lv; that the edge removed has rank [. It is more convenient in the general
case to resort to the generating functional formalism of eqs. (2.5) and (2.6): summing up all
power-weighted terms of (2.194) one obtains the general evolution equation

v"(1,t) ¢ (x,t)

o) = (=) |1+ ey T D)

(2.195)
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where f(z,t) = 0f(x,t)/0t and f'(x,t) = df (z,t)/dx. On the other hand, we must follow in
parallel the evolution equation for the rank fraction v;(¢): we can write

IM(T)
M(T +1) = M(T) S M (T) (2.196)
Rescaling as the time as before in t — ¢V as in the degrees equation and noticing that M;(tN) =
Nuy(t), we are left with:
(1) = — [U(x £ — ”l(x’t)] (2.197)
’ v—t ’ v'(1,t)

The particular boundary conditions under which we are interested in solving eqs. (2.195) and
(2.197) are

v(zx,0) (x)
c(xz,0) = c(z)
v'(1,0) = (1) =~ (1) =~(1,0) .

Eqs (2.195) and (2.197) are standard partial linear differential equations. Exploiting (2.198),
after some analytics we can write:

v(x,t) = : i %v <xv—1 (1 - %)) (2.198)
c(v,t) = ¢ (1 L (1= 3)) (- 1)) +

(1)

(1 — ) <1 —ct <1 — %)) d <c—1 <1 - %)) (2.199)

It is convenient to work in the variable z = v—!(1 —#/7), s.t. the fraction of degree 1 variables
can be written as

<

o

&(0,1) = ¢ (1 + Zg;) ZE;; (1= 2)0'(2) . (2.200)

A part from the always present ¢(0, ) = 0 solution, more non trivial solutions z* of the equation
v (2%)
¢ (1+ )
(1)
can be found in certain regions of values of v. This equation turns out to be equivalent to the

self-consistent condition for the magnetization in the unfrustrated model, found via the replica
or the cavity calculation, through the mapping

1—z2* = (2.201)

11—z = po,
(2.202)
where we recall py to be the fraction of vertices whose spins feel effective field equal to zero.

Writing (2.201) in terms of the link probability distributions (1.6), we can rescale the generating
functions as
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so that to obtain: . )
1 — o = Clmk |:1 o ,Ulmk(z*)] . (2203)

Armed with the results of the previous sections, we’ll call 74 the graph density at the particular
z4 the point where (2.201) is satisfied together with its z-derivative

Hclink [1 B Uzmk(z)}
0z

+1=0 (2.204)

|z*

This corresponds to the first time a non trivial solution appear. Beyond that point, form
the leaf removal process point of view, we are prescribed to take as the valid z* the largest
solution of (2.201), as the point where the algorithm halts. to z* will correspond a halting time
t* = v(1 — ¢(2*)). In the particular case of Poissonian p-spin, the solutions of (2.201) can be
recast in the particular form

At) = ph(v—t)’“]%’ , (2.205)
alt) = A1) [e—w 14 (%) _] , (2.206)
co(t) = 1—]§ck(t) : (2.207)

where \(t) =< k >; —ci(t) + A(t)e ®) is the mean degree of all the vertices of k£ > 2 at time
t. As in the general case, the leaf removal algorithm stops when there are no more vertices of
degree 1, so one can predict the resulting core by fixing A(¢) = A*, where A\* is the largest zero
of the equation ¢ (t*) = 0 or equivalently

. )\* pil
e —1+ (—) =0 . (2.208)
Py

As before, notice that once we define z* = [A\*/(py)]"/?®=1 eq. (2.208) can be rewritten as

1—2"=exp (—p'y(z*)p_l) , (2.209)

eq. (2.203) (or its particular case (2.209)) coincides with (2.89) and (2.182), the equation for the
backbone size in any 1RSB cluster, the fraction of variables (2*)? = (1 — ¢) with a non trivial
distribution of cavity u or h-fields. Incidentally, we observe here that eq. (2.203) is the same
equation appearing in parity check diluted error correcting codes theory as the convergence
threshold for sum-product or belief propagation (BP) algorithms in the corrupted message
reconstruction process. This coincidence is not surprising from a statistical physics point of
view: indeed, we will see in chapter 5 how the mapping between spin systems on diluted hyper-
graphs and and such kind of codes interprets the low performance of BP-like algorithms in
terms of a dynamical phase transition. At t*, z* gives us the size of the core. In the [ = 2 case
the leaf removal algorithm is able to delete all the edges only for tree-like graphs. As soon as
there are loops in the graph, a core containing these loops arises (see fig. 2.26). In a random
graph the leaf removal transition coincides with the percolation one at e = 1/2. The shape
of the function ¢; () is shown in fig. 2.24 for Poissonian graphs and is similar in the general case:
For v < 9pere, there is only one zero in \* = z* = 0; While, for v > vp¢re, A* > 0, 2* > 0 and
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Figure 2.25: The function ¢;(A)/A for [ = 3. Inset: function A\*(vy) for [ = 3.

a core arises, whose size grows as (7 — Yperc)? near the critical point. For [ > 2 the percolation
transition, taking place for example at vpe,e = ﬁ for fixed rank, does not affect at all the
leaf removal algorithm which is able to delete aﬁl the hyper-edges, even those forming loops
(but not hyper-loops), far beyond 7. (see fig. 2.27). The shape of the function ¢;(A) for [ =3
and Poissonian graphs is shown in fig. 2.25. It is clear (see inset of fig.( 2.25)) that when A\*(7)
becomes different from zero it directly jumps to a finite value: \*(v;) = 1.25643 for [ = 3. The

core transition is therefore discontinuous unless it is driven by simple 2-loops percolation.

2.7.3 The core and the calculation of the 7. threshold

In the core, the number of vertices N. and the number of hyper-edges M, can be expressed as
a function of the distributions v and ¢, v and z* as

M, = N(y—1t") = Nyv(z")
N, = N(1-c(0,2)) (2.210)

!/ *
c(0,2") = ¢ (1 — 1;/(;1))> + (1 = 2*)0'(2%)
The first equation states that the number of hyper-edges left is the initial one minus the
number of step the leaf removal algorithm has been run (during each step only one hyper-edge
is deleted). The lower curves in fig. 2.28 show the normalized number of vertices N./N and
number of interactions M./N in the core as a function of 7, for [ = 3 and Poissonian degrees.
It is natural now to study the residual problem on the core, A, #. = 7, mod[2], where A, is the
M, x N, sparse random matrix obtained from A deleting all the rows corresponding to removed
interactions and all empty columns. In the rest of the subsection we will derive a general result




84 CHAPTER 2. THE GENERALIZED DILUTED P-SPIN MODEL
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Figure 2.26: Core on [ = 2 graphs.
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Figure 2.27: Core on hyper-graphs.

that, when applied to the problem on the core, gives a necessary and sufficient condition for
the existence of solutions to the core linear system. Then we will show that, from a solution in
the core, a solution for the original system can always be constructed.

Let us call Ny nm the number of GS for a given disorder realization J (i.e. a given hyper-
graph and couplings realization consistent with distribution p(J)):

M
Navor = 11 6(oip . oip = Ju) - (2.211)
¢ m=1
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Figure 2.28: From bottom to top (on the left): For [ = 3, normalized number of hyper-edges
and vertices in the core, and fraction of frozen sites, i.e. magnetization (or backbone) in a state.

In [26] the authors show that, in the large N limit, if the hyper-graph does not contain any
vertex of degree less than 2, Njnwm is a self averaging quantity, that is it does not fluctuate
changing J. In order to show self-averageness they proved that, on hyper-graphs (p > 2) with
minimum degree at least 2, the following equalities hold

— 2
_ i — (M
Nonpr =2YY ) Jim =27 ( R ) =0, (2.212)

2
N—00 ( ETJ,N,M )

where the over-line stands for the average over the disorder ensemble, that is over the ways of
choosing M hyper-edges among (]Z) and the ways of giving them a sign J,,, = £1. The above
equalities state that the probability distribution of Ny N m over the disorder ensemble is a delta
function, and thus the quenched average equals the annealed one

log N3 nm = log Ny N = log(2) (N — M) . (2.213)

For the interested reader that survived the calculations of the previous sections, calculating the
momenta of Ny nm following [26] should be simple. We only state the results in the general
distributed hyper-graphs case: The second moment is given by

M
NJQ,N,M = 2N_MZ H 6(7-1;" .. .Ti;n = ].) — 2N_M€7Nzk Ck log(:z;’i«k:z;’i) , (2214)
7 m=1

7

in the thermodynamic limit, where x,,z_ solve the following equations

1 ke, k=t 4 k=170
. = — [ L 2.21
Tyt o <l>2l:w[2k:(k> zk + ok 7 (2:215)
1 ke af—t — k170!
-—r. = — l ML 2.216
e <l>zl:w[zk:(k> ak + 2k ( )

This is simply the output of the annealed calculation of the p-spin model, where the functional
order parameter are replaced by scalars x.. The annealed calculations do not make use of
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replicas and are therefore rigorous. The value of x, (resp. x_) is proportional to the fraction
of variables taking values 1 (resp. -1) in the set of configurations which maximize the last
sum in eq. (2.214). Then the typical magnetization of this model is given by m = ii;i:
Solutions to eqs.(2.215,2.216) can be classified depending on the value of magnetization m. In
full generality there are 3 solutions: a first symmetric one (x, = z_) with m = 0, a second one
with large magnetization and a third one with an intermediate value of m. For some choices
of P(k) (e.g. a Poissonian) solutions with m > 0 may exist only for & large enough. The
solution with intermediate magnetization always corresponds to a minimum of Fy j; and can
be in general neglected. The symmetric solution z, = 2. = 27! always exists and gives
Fy = log(2) (1 — 35). For [ > 2 and P(0) = P(1) = 0, i.e. for hyper-graphs with minimum
degree 2, the solution with large magnetization also exist for any 7 value and has z, = 1,
x_ = 0 and Fyy = 0. As expected, the intermediate solution, when it exists, has negative
entropy and therefore is not the physical one. Then, for [ > 2 and P(0) = P(1) = 0, we can
conclude that 3", ¢ log (xﬁ + x’i) = 0, equalities in eq. (2.212) hold, and the number of GS is
a self-averaging quantity. Since the core generated by the leaf removal algorithm has minimum
degree 2, we may apply the above result, and find that the SAT/UNSAT threshold is given by
the condition

Ne(ve) = Me(ve) - (2.217)

For the Poissonian 3-spin this last condition gives precisely the ferromagnetic and the 1RSB
spin-glass threshold v, = 0.917935.

For more complicated rank distributions, however, another (z1 # 27'/") solution can appear

and give a value for the entropy higher than zero. When it is the case, this solution is always the

one corresponding to the continuous phase transition of the rank 2 sub-graph. The condition

for the existence of a tricritical crossover point is given by the simultaneous satisfaction of
(2.203), (2.204), (2.217) and vy = 1/27, that reduce to:

- <k >? - 3<k(k—1)>2
Terteritical =5 < k(k— 1) > <k >< k(k — 1)(k - 2) >

In the Poissonian degrees case this reduces to vo = 3vz = 1/279yeriticar- The presence of this
continuous transition was related in previous work - in models as the 2+ p-SAT - to a crossover
between problems with typical®® P to typical NP complexity [11]. A simpler model that can be
studied in full detail and shows this kind of crossover behavior is the @ + p-XOR-SAT. Results
are reported in the next chapter. It will be interesting to see (chapter 5) that a large fauna of
models exists, due to the freedom in degree and rank distributions choices in the generalized p-
spin model (and in principle for a wider class of Hamiltonians treatable with similar means). In
some cases it is easy to see that no crossover tricritical point exists, but a general core develops
at 74, followed by 2-loops percolation in the subgraphs before condition (2.217) is fulfilled on
the embedding hyper-graph.

(2.218)

2.7.4 Ground States Clustering

Before the SAT/UNSAT threshold (7 < «.) the system is not frustrated and then a gauge
transformation setting all coupling signs to 1 can always be found: Given an unfrustrated GS

40Notice that the notion of typical computational complexity is however not well defined and some very recent
results [30, 58] seem to show no concept of NP complexity in the typical case, even though the role and nature
of the phase transitions encountered are still crucial in the heuristic understanding of the hardness onset and
on the clever algorithm design.



2.7. AN EXACT ALTERNATIVE SOLUTION OF THE P-SPIN MODEL ATT =0 87

0

ir -0 = 1. It is then possible

to consider only the ferromagnetic system (.J,, = 1 Vm), which correspzz)nds to the linear system
AZ = 0 mod[2]. This is also what it will be done in a more complete study of the computational
cost and memory transition of sparse systems solving algorithms in chapter 5. The solutions
to the linear system we are studying form a group: The sum of 2 solutions is still a solution
and the null element is the solution # = 0. Therefore, if one looks at the configurational space
sitting on a reference GS, the set of GS will look the same, whatever the reference GS is. An
immediate consequence of this symmetry is that, if GS form clusters, these clusters must be all
of the same size.

For v < 7., hyper-loops are absent and the total number of GS (or solutions) is always
given by 2V"M i e. their entropy is S(7) = log(2) (1 — 7). From the previous calculations it is
possible to divide the /N variables in 2 sets: . represents the N, variables in the core, and 7,
the N — N, variables in the non-core part of the hyper-graph, that is variables corresponding
to vertices remained isolated at the end of the leaf removal process. Thus also the entropy can
be divided in 2 parts. One part is given by the solutions in the core, that is by the possible
assignments of T,

7 a possible gauge transformation is 0! = 0,0 and J/, = J,,0

S.(7) = log(Q)Ncw) ]_\,MC(V) ,

which is non-negative for 74 < v < 7.. The other part is given by the possible multiple
assignments of ¥, during the reconstruction process

(2.219)

Sne(7) = S(7) = Se(v) - (2.220)

fig. (2.29) is a pictorial representation of the N-dimensional hypercube (represented as a spher-
ical surface for convenience) of variables assignments binary vectors & = (z1,....,23). The
conjecture, supported by numerics, is that solutions are concentrated in clusters, each one of
them around a reference one which is one of the solutions of the core-reduced system. By def-

Q phase space hyper—cube

#clusters=dVZ =g o = pNe~Me
o = core solution
core solutionN —vector

N-N; Nc

non core variables give the
intra cluster entropy

Snc:S_SC:S_Z

Figure 2.29: Pictorial representation of clustering of solutions in the dynamical region [v4, 7c).

inition, a cluster is a set of solutions with finite Hamming distance d such that d/N — 0 as
N — oo. In virtue of the group symmetry property property, all the clusters have the same
size. We call their number is eV*() where Y(v) is indeed the complexity Of the system. If the
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conjecture represented in fig. (2.29) is true, the number of clusters must equal the number of
solutions in the core, that is

X(v) = Se(v) - (2.221)

The intra-cluster entropy, i.e. the normalized logarithm of the cluster size, is then given by
the non-core entropy S,.(7) = S(v) — Se(y) = S(7) — (7). In order to prove the validity of
(2.221) the authors of [26] were able to show that:

e all the solution assignments of the core variables 7. are “well separated”, that is the
distance among any pair of them is extensive. This is what gives rise to the clustering,
with a number of clusters which is at least as large as the number of core solutions
(X > Se).

e then, for any fixed 7., all possible assignments of non-core variables Z,. belong to the
same cluster, and so ¥ = S..

The first step is accomplished by calculating the probability distribution of the distance among
any two solutions in the core. Thanks to the group property, one can restrict the calculation
fixing one solution to the null vector 0, working again with the ferromagnetic model. For
simplicity the authors have performed an annealed average, but this does not invalidate the
exactness of the results because in can be proved via the Jensen inequality that the annealed
average gives a lower bound on the core solutions distances, which is enough for the validity
of the proof. These last two steps of the calculations are identical in the general and in the
Poissonian 3-spin case, so we refer back to the original paper [26] where they are explained in
details. As far as the complexity remains positive, the core system has an exponential number of
solutions and it is therefore solvable (SAT). It is then always possible to assign values to the non
core variables so that the original system is also always solvable. Since the complexity goes to
zero at 7., beyond that threshold the core linear system only have exponentially rare solutions in
N. We are therefore in the USAT region. Changing the values of the non core variables does not
allow to find a core solution different form the starting one (absent in this case), so we cannot
solve the original system if we cannot start from a core solution as a starting point: the larger
system is not solvable if a core subsystem of it leads to contradiction. Having proved identity
(2.221), eq. (2.217) therefore provides the exact threshold for random XOR-SAT satisfiability.
We stress once more that these results coincide with the general 1RSB/cavity solution and with
the heuristic derivation of the complexity curve via the study of the metastable states of the
ferromagnetic model via the factorized Ansatz.



Chapter 3

Some particular cases of interest

3.1 The 24p-XOR-SAT model: role of phase coexis-
tence and finite-size scaling

The statistical mechanics study of random K-SAT have provided some geometrical understand-
ing of the onset of complexity at the phase transition through the introduction of a functional
order parameter which describes the geometrical structure of the space of solutions. The na-
ture of the SAT/UNSAT transition for the different values of K appears to be a particularly
relevant prediction [31]. The SAT/UNSAT transition is accompanied by a smooth (respectively
abrupt) change in the structure of the solutions of the 2-SAT (resp. 3-SAT) problem. More
specifically, at the phase boundary a finite fraction of the variables become fully constrained
while the entropy density remains finite. Such a fraction of frozen variables (i.e. those variables
which take the same value in all solutions) may undergo a continuous (2-SAT) or discontinu-
ous (3-SAT) growth at the critical point. This discrepancy is responsible for the difference of
typical complexities of both models recently observed in numerical studies. The typical solv-
ing time of search algorithms displays an easy-hard pattern as a function of v with a peak of
complexity close to the threshold. The peak in search cost seems to scale polynomially with
N for the 2-SAT problem and exponentially with N in the 3-SAT case. From an intuitive
point of view, the search for solutions ought to be more time-consuming in presence of a fi-
nite fraction of fully quenched variables since the exact determination of the latter requires an
almost exhaustive enumeration of their configurations. To test this conjecture, a mixed 2 + p-
model has been proposed, including a fraction p (resp. 1 — p) of clauses of length two (resp.
three) and thus interpolating between the 2-SAT (p = 0) and 3-SAT (p = 1) problems. The
statistical mechanics analysis predicts that the SAT/UNSAT transition becomes abrupt when
p > po ~ 0.4 [31, 13, 11, 14]. Precise numerical simulations support the conjecture that the
polynomial/exponential crossover occurs at the same critical py. Though the problem is both
critical (7. = 1/(1 — p) for p < pg) and NP-complete for any p > 0, it is only when the phase
transition becomes of the same type of the 3-SAT case that hardness shows up. An additional
argument in favor of this conclusion is given by the analysis of the finite-size effects on Py (v, K)
and the emergence of some universality for p < py. A detailed account of these findings may
be found in [31, 13, 11, 14, 9]. For p < py the exponent v, which describes the shrinking of the
critical window where the transition takes place, is observed to remain constant and close to
the value expected for 2-SAT. The critical behavior is the same of the percolation transition in
random graphs (see also ref. [53]). For p > py the size of the window shrinks following some
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p-dependent exponents toward its statistical lower bound [119] but numerical data did not allow
for any precise estimate. In this section, we study an exactly solvable version of the random
24p SAT model which displays new features and allows us to settle the issue of universality of
the critical exponents. The threshold of the model can be computed exactly as a function of
the mixing parameter p in the whole range p € [0,1]. Rare events are found to be dominant
also in the low 7 phase, where a coexistence of satisfiable and unsatisfiable instances is found.
A detailed analysis for the p = 1 case can be found in ref. [19]. The existence of a global
— polynomial time — algorithm for determining satisfiability allows us to perform a finite size
scaling analysis around the exactly known critical points over huge samples and to show that
indeed the exponent controlling the size of the critical window ceases to maintain its constant
value ¥ = 3 and becomes dependent on p as soon as the phase transition becomes discontin-
uous, i.e. for p > py = .25. Above pg and below p; ~ 0.5, the exponent v takes intermediate
values between 3 and 2. Finally, above p; the critical window is determined by the statistical
fluctuations of the quenched disorder [119] and so v = 2.

3.1.1 Model definition and outline of some results

The model we study can be viewed as the mixed 2 + p extension of the 3-XOR-SAT (or hSAT)
model discussed in [19], as much as the 2 + p-SAT [31] is an extension of the usual K-SAT
model. In computer science literature and its critical behavior was still recently considered an
open issue [82]. We can write an instance of our model as a mixture of 2 and 4-clauses sets
defined in chapter 1 (with 50% satisfying assignments). A compact definition can be achieved
by the use of the exclusive OR operator @, e.g. C'(ijk|+ 1) = z; ® x; ® xj. Then, we randomly
choose two independent sets E3 and Es of pM triples {i,j,k} and (1 — p)M couples {i,j}
among the N possible variable indices (see section 2.1 for definitions) and respectively pM and
(1 — p)M associated unbiased and independent random variables T;; = 1 and J;; = 1, and
we construct a Boolean expression in Conjunctive Normal Form (CNF) as

F= N\ CjklTiy) N CilJy) - (3.1)

{iajyk}EE3 {lyj}EEZ

As in [19], we can build a satisfiable version of the model choosing clauses only of the C'(ij|+1)
and C(ijk| + 1) type. For p < py the problem is easily solved by local and global algorithms,
whereas interesting behaviors are found for p > py, where the local algorithms fail. The
above combinatorial definition can be recast in a simpler form as a minimization problem of a
cost-energy function on a topological structure which is a mixture of a random graph (2-spin
edges) and hyper-graph (3-spin hyper-edges). We end up with a diluted spin model where the
Hamiltonian reads

HJ[S] =M — Z Ejk SiSjSk — Z Jz'j SlS] , (32)
{irjak}EES {i,j}EEz

where the S; are binary spin variables and the the random couplings can be either £1 at
random. The satisfiable version is nothing but the ferromagnetic model: T, = 1 and J;; = 1
for any edge. As the average connectivity v of the underlying mixed graph grows beyond a
critical value v.(p), the frustrated model undergoes a phase transition from a mixed phase in
which satisfiable instances and unsatisfiable ones coexist to a phase in which all instances are
unsatisfiable. At the same 7.(p) the associated spin glass system, undergoes a zero temperature
glass transition where frustration becomes effective and the ground state energy is no longer
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the lowest one (i.e. that with all the interactions satisfied). At the same critical point the
unfrustrated, i.e. ferromagnetic, version undergoes a para—ferro transition, because the same
topological constraints that drive the glass (mixed SAT/UNSAT to UNSAT) transition in
the frustrated model are shown to be the ones responsible for the appearance of a nonzero
value of the magnetization in the unfrustrated one [19]. We shall take advantage of such
coincidence of critical lines by making the analytical calculation for the simpler ferromagnetic
model. Moreover, the nature of the phase transition changes from second to random first order,
when p crosses the critical value py = 1/4. For p > p, the critical point v.(p) is preceded by a
dynamical glass transition at v4(p) where ergodicity breaks down and local algorithms get stuck
(local algorithms are procedures which update the system configuration only by changing a finite
number of variable at the same time, e.g. all single or multi spin flip dynamics, together with
usual computer scientists heuristic algorithms). The dynamical glass transition exist for both
versions of the model [20] and corresponds to the formation of a locally stable ferromagnetic
solution in the unfrustrated model [22] (the local stability is intimately related to the ergodicity
breaking). Specializing to the present case the general results of the first chapter, we can look
for a self consistent Ansatz for the zero temperature effective fields distribution P(h) in the
satisfiable case., which turns out to have the following simple form

P(h)y =Y rd(h—1) , (3.3)

1>0

with a self-consistency equation for ry:

X = 3py)$ (2(1 — S
ro = 6—317’7(1—7“0)2_2(1—17)7(1—7"0) — Z Z 6—31776—2(1—12)7( fj)l( ( 62!19)7)2 (1—(1—7"0)2)61 (TO)C2 )

c1=0co=0
(3.4)
The equations for the frequency weights r; with [ > 0 follow from the one for ry and read

[Bpy(1 —70)* +2(1 — p)y(1 = 70)]'

The previous self consistency equations for ry (or for the magnetization m = 1 — rg) can easily
be derived by the same probabilistic argument used in [19], due to the fact that the clause
independence allows to treat the graph and the hyper-graph part separately. Note that in the
simple limit p = 0 we retrieve the equation for the percolation threshold in a random graph of
connectivity v [61, 62, 67]. The ground state entropy can be written in the SAT phase as:

S(7) = log(2)[ro(1 — log(ro)) = ¥(L = p)(1 = (L =79)*) —yp(L = (L —19)")]  (3.6)

To find the value of the paramagnetic entropy we put ourself in the phase where all sets of 4-
and 2-clauses act independently, each therefore dividing the number of allowed variables choice
by two: the number of ground states will be Ny, = 2N-P/N=(1=p)yN' = 9N(1=7) " The resulting
value of Sy4ra = (1 — ) log(2) coincides with the one found setting o = 1 in eq.(3.6). Solving
the saddle point equation for ry, we find that a paramagnetic solution with ry = 1 always exists,
while at a value of v = v4(p) there appears a ferromagnetic solution in the satisfiable model.
For p = 0, the critical value coincides as expected with the percolation threshold 4(0) = 1/2.
As long as the model remains like 2-SAT, up to p < py = 0.25, the threshold is the point
where the ferromagnetic solution appears and also where its entropy exceeds the paramagnetic
one. The critical magnetization is zero and the transition is continuous. For larger values
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Figure 3.1: Critical lines (the upper is the static and lower the dynamic) in the (v, p) plane.
Tricritical point point (0.25,0.667) separates continuous transitions from discontinuous ones
(where 74 < 7).

Figure 3.2: Critical magnetizations at v4(p) and 7.(p) versus p.

of the control parameter p the transition becomes discontinuous. There appears a dynamical
transition at v = 4(p) where locally stable solutions appear. At v = v.(p) > v4(p), the non
trivial 7y # 1 solution acquires an entropy larger than the paramagnetic one and becomes
globally stable. The shape of v = 74(p) and v = 7.(p) as functions of p are shown in fig. 3.1.
The inset picture shows the magnetization of the model at the points where the dynamical and
the static transitions take place.

3.1.2 Numerical simulations

The model can be efficiently solved by a polynomial algorithm based on a representation modulo
two (i.e. in Galois field GF[2]). The same techniques will be exploited in chapter four, where we
will stress the physical implication of such a mapping for the memory and CPU cost transitions
met by algorithms trying to solve linear systems modulo two built in order to correspond to
the spin model in the dynamical region. If a formula can be satisfied, then a solution to the
following set of M equations in N variables exists

SiSj = Ji V{Z,]} € b,

Through the mapping S; = (—1)%, Ji; = (—1)" and Ty, = (—1)%*, with o, mijk, Gjr € {0, 1},
eq.(3.7) can be rewritten as a set of binary linear equations

{ (0i +0j+0r) mod 2 = (i v{i,j,k} € Es (3.8)

(O'i + O'j) mod 2 = 1 V{Z,]} - E2

For any given set of couplings {n;;, (;jx}, the solutions to these equations can be easily found
in polynomial time by e.g. Gaussian substitution. The solution to the M linear equations in N
variables can be summarized as follows: a number Ng., of variables is completely determined
by the values of the coupling {7;;, (ijx} and by the values of the Ny .. = N — Ny, independent
variables. The number of solutions is 2/ and the entropy S(7) = 10g(2) Nree/N = log(2)(1—
Niep(7)/N). As long as Nge, = M we have the paramagnetic entropy Spere = log(2)(1 — 7).
However Ny, may be less than M when the interactions are such that one can generate linear
combinations of equations where no o’s appear, like 0 = f({n;;, Gijx}). This kind of equations
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Figure 3.3: SAT probabilities Psay (7, p) for p = 0 and p = 0.5. Data has been averaged over
10* different random hyper-graphs. Vertical straight lines are analytical predictions for critical
points: v.(p = 0) = 0.5 and ~.(p = 0.5) = 0.810343. Bold curves for v < ~. are analytical
predictions for the SAT probability in the large N limit.

correspond to the presence of loops (resp. hyper-loops [19]) in the underlying graph (resp.
hyper-graph). A hyper-loops (generalization of a loop on a hyper-graph) is defined as a set S
of hyper-edges such that every spin (i.e. node) is “touched” by an even number of hyper-edges
belonging to S (see fig. 3.4). Here we are interested in the fraction of satisfiable instances
Psar(7,p), averaged over the random couplings distribution. One can show that, for any
random hyper-graph, Psar is given by 27V#  where N, is the number of independent hyper-
loops [19]. In fig. 3.3 we show the fraction of satisfiable instances as a function of v for
p =0 and p = 0.5. The vertical lines report the analytical predictions for the critical points,
Ye(p = 0) = 0.5 and y(p = 0.5) = 0.810343. In the limit of large N and for p = 0.5 the
fraction of SAT instances sharply vanishes at the critical point in a discontinuous way, that is
lim - Pss7(7y) > 0 while lim__, + Pgsr(y) = 0. This is the usual behavior already measured
in 3-SAT [31, 13] and 3-hyper-SAT [19], with the SAT probabilities measured on finite systems
crossing at 7. and becoming sharper and sharper as /N increases. On the contrary for p = 0
and large N the probability of being SAT becomes zero at 7, in a continuous way. The main
consequence is that finite size corrections make Pg4r(7) larger than its thermodynamical limit
both before and after the critical point and thus the data crossing is completely missing. Note
also that for p < 1 the fraction of SAT instances for v < 7.(p) is finite and less than 1 even
in the thermodynamical limit, implying a mized phase of SAT and UNSAT instances. This is
due to the presence in the random hyper-graph of loops made only by 2-spin edges (indeed the
mixed phase is absent for p = 1 when only 3-spin interactions are allowed [19]). The expression
for the SAT probability in the thermodynamical limit (bold curves in fig. 3.3, the lower most
for p = 0 and the uppermost for p = 0.5) can be calculated analytically and the final result has
been obtained in [21] and reads

Psar(y,p) = e PP [ — 001 —p)]/* for v < (p) (3.9)

We have numerically calculated the SAT probabilities for many p and N values, finding a
transition from a mixed to a completely UNSAT phase at the 7.(p) analytically calculated in
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loop hyper-loop
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Figure 3.4: Typical loop and hyper-loop. Lines are 2-spin edges, while triangles are 3-spin
edges. Note that every vertex has an even degree.
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Figure 3.5: Scaling of the critical window width. Errors are smaller than symbols. Lines are
fits to the data.

Figure 3.6: Critical v exponents obtained from the fits shown in fig. 3.5. For p = 0.75 and
p = 1 filled squares show the sub-leading term power exponent, the leading term one being
fixed to —1/2 (filled circles).

the previous section. We also find, in agreement with analytical results, that the transition
is continuous as long as p < 1/4 and then it becomes discontinuous in the SAT probability.
Let us now concentrate on the scaling with N of the critical region. We have considered
several alternative definitions for the critical region. The one we present here seems to be the
simplest and also the most robust, in the sense it can be safely used when the transition is both
continuous (p < 0.25) and discontinuous (p > 0.25). We assume that the size of the critical
region is inversely proportional to the derivative of the SAT probability at the critical point

w(N,p)~t = ap%v(%p) . (3.10)
Y=Y

For any value of p the width w(N) goes to zero for large N and the scaling exponent v(p) is
defined through
w(N,p) o N~ V/® (3.11)

In fig. 3.5 we show, in a log-log scale, w(N, p) as a function of N for many p values, together
with the fits to the data. The uppermost and lower-most lines have slopes —1/3 and —1/2
respectively. Data for p < 0.5 can be perfectly fitted by simple power laws (straight lines in
fig. 3.5) and the resulting v(p) exponents have been reported in fig. 3.6. We note that as long
as p < 0.25 the v exponent turns out to be highly compatible with 3, which is known to be the
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right value for p = 0. Thus we conclude that for p < 1/4 the exponents are those of the p =0
fixed point. For 0.25 < p < 0.5 we find that the v exponent takes non-trivial values between
2 and 3. Then one of the following two conclusions may hold. Either the transition for p > p,
is driven by the p = 1 fixed point and the v exponent is not universal, or more probably any
different p value defines a new universality class. This result is very surprising and interesting
for the possibility that different universality classes are simply the consequence of the random
hyper-graph topology. More complicated is the fitting procedure for p > 0.5. In a recent
paper [119] Wilson has shown that in SAT problems there are intrinsic statistical fluctuations
due to the way one construct the formula. This white noise induces fluctuations of order N—1/2
in the SAT probability. If critical fluctuations decay faster than statistical ones (i.e. v < 2),
in the limit of large N the latter will dominate and the resulting exponent saturates to v = 2.
Data for p = 0.75 and p = 1 shown in fig. 3.5 have a clear upwards bending, which we interpret
as a crossover from critical (with v < 2) to statistical (v = 2) fluctuations. Then we have fitted
these two data sets with a sum of two power laws, w(N) = AN~'/* 4+ BN~Y/2. The goodness of
the fits (shown with lines in fig. 3.5) confirm the dominance of statistical fluctuations for large
N. Moreover we have been able to extract also a very rough estimate of the critical exponent
v from the subleading term. In fig. 3.6 we show with filled squares these values, which turn out
to be more or less in agreement with a simple extrapolation from p < 0.5 results.

3.1.3 Conclusions

The exact analysis of a solvable model for the generation of random combinatorial problems has
allowed us to show that combinatorial phase diagrams can be affected by rare events leading to
a mixed SAT/UNSAT phase. The energy difference between such SAT and UNSAT instances is
non extensive and therefore non detectable by the usual 5 — oo statistical mechanics studies.
However, a simple probabilistic argument is sufficient to recover the correct proportion of
instances. Moreover, through the exact location of phase boundaries together with the use of
a polynomial global algorithm for determining the existence of solutions we have been able to
give a precise characterization of the critical exponents v depending on the mixing parameter
p. The p-dependent behavior conjectured in ref. [31] for the random 2+ p SAT case finds here a
quantitative confirmation. The mixing parameter dependency also shows that the value of the
scaling exponents is not completely determined by the nature of the phase transition and that
the universality class the transtion belongs to is very probably determined by the topology of
the random hyper-graph. The model we study has also a physical interpretation as a diluted
spin glass system. It would be interesting to know whether the parameter-dependent behavior
of critical exponent plays any role in some physically accessible systems. A generalization of
the present model to a mixture of different rank hyper-graphs will be presented in chapter four
in a computer science context . In the general case we will see that, depending on the fractions
of hyper-graphs involved, phase diagrams still more complex with, for example, a continuos
phase transition preceded by a dynamical one.
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3.2 Ferromagnetic ordering on random graphs

The results of this section are the output of a joint work with Alexei Vazquez, Riccardo Zecchina
and Alessandro Vespignani [98].

3.2.1 Introduction

The increasing evidence that many physical, biological and social networks exhibit a high degree
of wiring entanglement has led to the investigation of graph models with complex topological
properties[99]. In particular, the possibility that some special nodes of the cluster (hubs) posses
a larger probability to develop connections pointing to other nodes has been recently identified in
scale-free networks [100, 101]. These networks exhibit a power law degree distribution py, ~ k=7,
where the exponent 7 is usually larger than 2. This kind of degree distribution implies that
each node has a statistically significant probability of having a large number of connections
compared to the average degree of the network. Examples of such properties can be found
in communication and social webs, along with many biological networks, and have led to the
developing of several dynamical models aimed to the description and characterization of scale-
free networks[100, 101, 102].

Power law degree distributions are the signature of degree fluctuations that may alter the
phase diagram of physical processes as in the case of random percolation [105, 106] and spreading
processes [107] that do not exhibit a phase transition if the degree exponent is v < 3. In this
perspective, it is interesting to study the ordering dynamics of the Ising model in scale-free
networks. The Ising model is, indeed, the prototypical model for the study of phase transitions
and complex phenomena and it is often the starting point for the developing of models aimed at
the characterization of ordering phenomena. For this reason, the Ising model and its variations
are used to mimic a wide range of phenomena not pertaining to physics, such as the forming and
spreading of opinions in societies and companies or the evolution and competition of species.
Since social and biological networks are often characterized by scale-free properties, the study
of the ferromagnetic phase transition in graphs with arbitrary degree distribution can find
useful application in the study of several complex interacting systems and it has been recently
pursued in Ref. [108]. The numerical simulations reported in Ref [108] show that in the case of a
degree distribution with v = 3 the Ising model has a critical temperature 7, characterizing the
transition to an ordered phase, which scales logarithmically with the network size. Therefore,
there is no ferromagnetic transition in the thermodynamic limit.

In this section we present a detailed analytical study of the Ising model in graphs with
arbitrary degree distribution that heavily relies on the general results of the first chapter. By
relaxing the degree homogeneity in the usual mean field (MF) approach to the Ising model, it is
possible to show that the existence of a disordered phase is related to the ratio of the first two
moments of the degree distribution. Motivated by this finding, we apply the replica calculation
method in order to find an exact characterization of the transition to the ordered state and
its associated critical behavior. We find that a disordered phase is allowed only if the second
moment of the degree distribution is finite. In the opposite case, the strong degree of the hubs
present in the network prevails on the thermal fluctuations, imposing a long-range magnetic
order for any finite value of the temperature. Corrections to this picture are found when the
minimal allowed degree is m = 1. The value of the critical temperature and exponents is found
for any degree exponent v > 3 and a transition to the usual infinite dimensional MF behavior is
recovered at v = 5. Moreover, in the range 3 < v < 5 non trivial scaling exponents are obtained.
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During the completion of the present work we become aware that Dorogovtsev, Goltsev and
Mendes [109] have obtained with a different approach results which partially overlap with those
reported in this section.

Let us consider a network with arbitrary degree distribution c¢;. Then consider the Ising
model with a ferromagnetic coupling constant on top of this network. The Hamiltonian of this
system is given by

H=M— Z Jijsis; + Hy Z CiSi, (3.12)
i>j=1

where M = (k) N/2, J;; = 1(0) if there is (there is not) a edge connecting node i and j, s; = £1
are the spin variables, and N is the network size. Hy(; is a general external random field with
(; following the a priori general probability distribution A((;). As one can easily see, this is
a particularly simple case of the models introduced in the first chapter. A simple mean field
approach is already able to predict the conditions for the existence of a transition temperature
as a function of the characteristic moments of the degree distribution and to give a rather good
estimate of its numerical value as:

|

—

—~
T

T,=p" = L) (3.13)

Hence, when (k?)/ (k) is finite there is a finite critical temperature as an evidence of the
transition from the para-magnetic to a ferro-magnetic state. However, if (k%) is not finite
the system is always in the ferromagnetic state. Nevertheless, the following result is only
approximate, it does not take into account the full probability distribution of the effective
fields in the system but it relies only on the value of the mean magnetization, which we will
see not to be enough to properly describe the critical behavior of the model.

3.2.2 The replica approach on general random graphs

In the present section we will refine the mean field picture via a the replica calculation We
will show how this method allows to calculate values of and conditions for the existence of a
critical temperature of the model that we believe to be exact. Moreover, these results contain
the classical mean field theory prediction in the limits where the latter is applicable. Being
the system a diluted ferromagnet with only a limited number of ground states and absence of
frustration we believe the replica symmetric Ansatz to be sufficient to find the correct solution
of the problem. The details of the calculation of the replica free energy can be followed from
the formulas of the first chapter keeping ¢ general and V (I) = 6(I — 2). We only rewrite below
the saddle point equations and the corresponding free energy expression for this particular case,
in order to make the section more readable:

P(h) = Z i / Hdth ) (h Zut H0> (3.14)

<k>

Qu) = / dhP(h [u—gtanh (tanh(ﬂ)tanh(ﬂh))] (3.15)

where P(h) is the average probability distribution of effective (or cavity) fields acting on the
sites and (QQ(u) is that of the cavity fields due to the contribution of a single neighbor. We would
like to stress the importance of the fact that the strong inhomogeneities present in the graph
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Figure 3.7: pictorial representation of the effective fields acting on site S; once its connection
Jio with Sy (and therefore with the left part of the graph with probability 1 in the N — oo
limit) has been removed.

are correctly taken into account and handled via the computation of the whole probability
distributions. In the Ising case we can easily work only with the u-fields, whose self consistent
equation for the Q(u) reads:

_ k—
Z kpy. / kl_[l duyQ(ug)o lu — %tanh_1 [tanh(ﬁ) tanh (ﬁ 2:1 uy + BH())H
k t=1 t

(3.16)
This is an integral equation that can be solved at every value of 5 using a population dynamics
algorithm such as the RS simple version of that proposed in [23]. We chose to work in terms
of the u-fields because they are connected to the local magnetization, whose mean value is the
main quantity we are interested in studying around criticality. The equation for the physical
magnetization probability distribution will indeed be:

I1(s) = ; i / t:ﬁl duyQ () ls ~ tanh (5 gtj s+ 51{0)] (3.17)

The equations for < u > and < s > follow:

1
<k>

Qu) =

1
< k>

<u>= /uQ(u)du = Zk: kpk/tl_[jdth(ut)%tanh_l [tanh(ﬁ) tanh <Bkzt:1ut + BH())]
(3.18)
< s >= /sH(s)ds = Xk:pk /f[ldth(ut) tanh (BXI::ut + BH()) (3.19)

The free energy reads

BF = <k>( / / dhduP(h)Q(u) log(1 + tanh(Ah) tanh(Bu)) —
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% / f[ dhyP(h;)log(1 + tanh(p) f[tanh(ﬂht)))

_Zpk/ﬁ du,Q(ur) log (2 cosh(B X1, uy +[3H0)> B
k

Pt [1¥_, 2 cosh(Bu,)
1
<k> (log(2) + 5(5 — log(cosh(ﬂ)))) (3.20)
At the saddle point the expression further simplifies. The internal energy and the specific heat

at the saddle point can be calculated from eq.(3.20) through relations < E >= ﬁaﬂF and
C =d < E > /dT and further exploiting (3.14) and (3.15):

<k> <k> tanh(f3) + tanh(Bhy) tanh(Bhs)
sbe=mm e /dh’ldh’?P(hl)P(h?) (1 + tanh(B) tanh(ﬁhl)tanh(ﬁh2)> (3:21)
PP <k> 1 + (tanh(Bhy) tanh(SBhsy))?
¢= 2(cosh(f /dh dhy P(In) P (h) ((1 + tanh(3) tanh(ﬁhl)tanh(ﬂhQ)F) (322)

The term < kf > /2 gauges the value of the energy to zero at 7' = 0 and no external field.

3.2.3 Ferromagnetic phase transition

At T'=0 and in the limit of non vanishing fields (v and h ~ O(1)) it is straightforward to see
that the cavity fields can take only 0 or 1 values. The equation (3.16) can be solved exactly
with the Ansatz Q(u) = qod(u)+ (1 —qp)0(u —1). Plugging this Ansatz into egs. (3.16), (3.18),
and (3.19) one obtains:

(u)y =1 — qq, (3.23)
(s) =1—=Gol), (3.24)
9 = G1(qo) , (3.25)

where

Z pe L (3.26)

x):kakxk, Gl
k <k>

are the generating functions of the degree distributions of a vertex chosen at random and a
vertex arrived following an edge chosen at random [69], respectively. We point out that these
equations correctly coincides with that obtained in the problem of percolation in a random
graph with an arbitrary degree distribution [112, 69], where the average magnetization (s) is
just the size of the giant component. Moreover, these expressions can be easily generalized to
higher order hyper-graphs as it has been done in [19, 21]. From eq. (3.24) it follows that there
is a finite magnetization whenever the solution ¢y of eq. (3.25) is less than 1. This happens

whenever ,
(k%)

> 2, (3.27)
(k)

that is just the condition for percolation in a random graph [112, 69]. On the contrary, for

(k*) / (k) < 2 the magnetization (the size of giant component) is 0, i.e. the system is in a
paramagnetic state.
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For random graphs satisfying the percolation condition in eq. (3.27) we are now interested
in finding the value of . for the ferromagnetic transition. There are few equivalent ways to do
so. In the general case we can derive both sides of eq.(3.18) in u = 0 self consistently, obtaining

— 8, = _% log (1 - 2%) . (3.28)

In the limit (k%) > 2 (k) we can expand the logarithm getting the first order condition 7, =
(k?) / (k) which is the value found in the naive mean field approximation (3.13). Hence, the
MF approach in developed in the previous section is valid for (k?) > 2 (k) and, in this case, it
gives the same results as those obtained using the replica approach.

1
T.

3.2.4 Critical behavior around £,

The critical behavior of the thermodynamical quantities < s >, x, 6C, and < s >y, ~ 3/6

close to (3. can be calculated without having to explicitly solve the self consistent equations for
the whole probability distributions Q(u) and II(s). Sufficiently close to the critical point we
can assume @Q(u) ~ 6(u— < u >) being < u > infinitesimal. In fact this Ansatz is incorrect if
B > fB., because it correctly takes into account the degree distribution but disregards the non
trivial structure of the Q(u) , which does not merely translate from the critical form 6 (u) at 3.,
but immediately develops a continuum structure. In the zero temperature limit the continuum
shape will again collapse in a distribution of delta peaks discussed above. Nevertheless, suffi-
ciently close to the transition we can expect only the first momenta of the Q(u) to be relevant.
For distributions with < k* > finite one is left with a closed system of equations for the first
three momenta all contributing to the same leading order. Defining i, =< k(k—1)...(k —n) >

and A = ((tanh(f))’p2)/(8* < k > —(tanh(5))1)

tanh () e ~ B*tanh(B)[1 — (tanh(8)]*

<u>
" tanh(5.) 3<k>
[ < u® > 43py <u><u? > ps < u >
<u?> = A<u>? (3.29)

3 _ (tanh(B3))* Apa + 3 3
-7 (53 <k > —(tanh(8))® < m) s

The explicit calculations are show in appendix D as a title of example. Exactly analogous
calculations can be done for the the free energy, the energy and the specific heat Proportionality
is found also for < k* >= oo, where the calculation is a bit more involved because the leading
momenta are to be found via an analytic continuation in the values of their order. Correctly
taking into consideration the values of the leading momenta is important in case one is interested
not only on calculating critical exponents, but also the amplitudes, because in general more
terms at the same leading order are present, as we see in eq.(3.29). However, the exponents are
determined by the lowest non trivial last analytic value of the momenta of the distribution py,
and do not change in the general case because all relevant momenta of the Q(u) give the same
divergence in the momenta of the py. One example again is given in eq.(3.29). Since we are
not interested in the calculation of amplitudes we can therefore resort to the variational Ansatz
Q(u) ~ d(u— < u >) in the proximity of the transition. However we would like to stress that
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calculations can be done also in the general case. eqs.(3.18), (3.19) then become

<us o~ = ]16 ) kpk%tanhl(tanh(ﬂ) tanh(B(k — 1) < u> +8Hy))  (3.30)
<s> ~ > pptanh(Bk < u > +SH) (3.31)

k

The corresponding expressions for the free energy, the energy and the specific heat can be
retrieved in the same way and will not be written here for the sake of space. If < k% > is finite
the first non trivial term of the power series expansion of eq.(3.30) that still gives an analytic
contribution is simply < u >2. One finds

(M

3< k> 2
Sus <5§(tanh ) < k(k — 1) >> ! (3:32)

<s> ~ <u>, x~T L <s>~HY? (3.33)

where 7 =1 —T/T, as usually defined. All exponents are the usual mean field ones. However,
one finds a finite jump in the specific heat. The transition is therefore first order in the
traditional sense. If we keep all the relevant momenta in our calculation, we find the expected
correction to the amplitudes. For example we find

< u >~ V3((Botanh(B,) < k >) (11 + 3pa) A+ iz >)) 277, (3.34)

This equation reduces to (3.32) if we disregard higher momenta.

3.2.5 Power law distributed graphs

In the following we are mostly interested in the case of a power law distribution of the type
pe=ck™, m<k<oo, (3.35)

where ¢ is a normalization constant and m is the lowest degree. Note that in the case of a
power law distribution

kmaz kmaz
<k>=cd 7 >em ) KT =m<k>. (3.36)

k=m k=m

Hence, we have that for m > 2 the graph is always percolating for all v independently on the
cutoff k4. Then for m > 2 the critical temperature is always given by eq. (3.28). In particular
for m > 2 and v > 1 the critical temperature approaches the limit 7! = —2/log(1 — 2/m)
while for m = 2 the critical temperature tends to zero in the large v limit. However, for m =1
there is a critical value v* beyond which the graph is no longer percolating [111]. v* is the value
of v at which (k%) = 2 (k), resulting ggzzjg = 2 that have the solution v* = 3.47875.... If y > +*
the system is always paramagnetic while for v < ~* there is a transition to a ferromagnetic
state at a temperature given by eq. (3.28). In fig. 3.8 we show the phase diagram together with

the critical lines for m =1, 2 and 3.
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15

Paramagnetic

10

Ferromagnetic

Figure 3.8: The phase diagram of the Ising model on scale-free graphs with a power law degree
distribution p, = ck™, m < k < oo. The ferromagnetic transition lines depends on the value
of m, with m =1 circles, 2 squares, and 3 diamonds.

3.26 2<~<3

For 2 < v < 3 the second moment of the degree distribution diverges and, therefore, as discussed
in previous sections, the system is always in a ferromagnetic state. In this case it is important
to investigate the behavior of (u) and (s) when g — 0. This computation can be done using
either the mean-field or the replica approach obtaining the same results. In fact, in this case
we have limg_, Q(u) = 6(u) and putting this limit distribution into the self consistent equation
for < u > and < s > we recover the mean field asymptotic behavior. For 2 < v < 3 the sums
in eq.(3.30) are dominated by the large &k region. In this case these sums can be approximated
by integrals resulting

(u) = (v — 2)(mp (u))"~? /OO dzz'~" tanh z, (3.37)

mf(u)
while the magnetization, (s) = >, py tanh (Sk (u)), is simply given by

—1
(s) ~ bmﬁ () . (3.38)
The above integral cannot be analytically calculated but its asymptotic behaviors for 5 — 0
can be obtained. For v = 3 the integral in the rhs of eq. (3.37) is dominated by the small x

behavior. Thus, approximating the tanh z by x and computing (u) we obtain
exp(—1/mp)
mp3

On the other hand, for v < 3 the integral in the rhs of eq. (3.37) is finite for any value of
mf3 (u) and, therefore, for mf (u) < 1 it follows that

(u) ~ , v=3. (3.39)

(u) m [(y — I (mB)F=, <3, (3.40)

where I = [;° dzz'™7 tanh z. Finally, substituting egs. (3.39) and (3.40) on eq. (3.38) we get

<8> ~ exp(—l/mﬁ), v =3, (3'41)
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(s) ~ (mB)77, 2< <3 (3.42)

With the same technique one can study the behavior of the other physically relevant quantities.
Extracting the leading asymptotic terms from the expressions for the energy and the specific
heat T" = 0o, we find an infinite order phase transition with

672/mﬁ
50 ~ 77 Y= 37
6C ~ BUTNBT 9 <y < 3. (3.43)

Extracting from eq.(3.18) the leading behavior of x, =0 < u > /0H, at Hy = 0 and plugging
the result together with eqs.(3.39), (3.40), (3.41) and (3.42) into x = 0 < m > /0H, one

obtains:
1

m?

The limiting case v = 3 corresponds with the Barabasi-Albert model studied in [108] by
means of numerical simulations. The magnetization exhibits an exponential decay in agreement
with our calculation in eq. (3.41). Moreover, the critical temperature was observed to increase
logarithmically with the network size N. Computing 7, in eq. (3.13) for v = 3 we obtain
T. ~ (m/2)In N, which is in very good agreement with their numerical results. It is worth
remarking that similar exponential and logarithmic dependencies have been observed for the
order and control parameter in some non-equilibrium transitions [107, 110].

X ~ (3.44)

3.27 3<~y<5

In this case (k?) is finite and, therefore, there is a ferromagnetic transition temperature given by
eq. (3.28). However, (k*) is not finite and the derivation of the MF critical exponents performed
in Sec. 3.2.4 is not valid. In order to find the critical exponents we can write the functions
inside the degrees sums as power series in < u >. The coefficients of the two series will however
depend on the higher momenta of the degrees distribution and will be infinite beyond a certain
power of < u >. This is direct consequence of the fact that the power expansion of the tanh(y)
around 0 is convergent as long as the y < 7/2, while for any < u > in our cases there will exist
an k* such that < u > lays outside the convergence radius. Nevertheless, the function is well
approximated by the expansion when one truncates it up to the maximum analytical value of
the exponent such that all momenta of the power law distribution taken into consideration are
finite.

For 3 < v < 5 the highest analytical exponent of the expansion of eq.(3.30) in powers of
< U > 18 Nypae = 77 — 2, where the integer value has been analytically continued and so should
be done with the corresponding series coefficient. In this range of values of s 7,,4, is lower than
3 so is to be taken as the correct value instead of n = 3 that leads to non analicities. With
analogous calculations we are able to find all other critical exponents:

<u> ~ < 8>~ Tﬁ
5C ~ 7O=M/(r=3)

X o~ Tl < s s HE/OH) L gl/0) (3.45)

As an example of this kind of calculation, the critical exponent governing the behavior of
< u > can be found in the appendix D, where a value for the non universal amplitude in the
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Q(u) ~ 0(u— < u >) is also computed. On the other hand, for v = 5 one can find a logarithmic
correction to the previous values expanding the inverse hyperbolic tangent in eq.(3.30) to the
third order in the tails of the degrees distribution. The results are:

<u> ~ <s5>~72/(—log(r))"?
6C ~ 1/(—log(7))
X ~ 178 <s>~H?/(=log(Ho))"/? (3.46)

The specific heat is continuous at (. for v € (3, 5], indicating a phase transition of order > 1.
A part from the logarithmic corrections in the v = 5 case, the universality relations between
the exponents are satisfied.

This treatment parallels the 77 = 0 calculations done in [113] for the case of percolation
critical exponents in a power law graph in presence of further dilution. If we introduce a cutoff
into the degrees distribution the critical exponent very close to the transition point is always
the mean field one, due to the fact that the sum over the degrees is always finite and there
is no non analyticity in < v >= 0 for any . However the influence of non trivial terms is
very strong (decreasing if we increase 7). eq.(3.32) is always valid but only in a very narrow
region around (.. The numerical values of 7. and of the amplitudes in the critical behavior
of the magnetization are also strongly affected being a function of the moments of the degrees
distribution. In the infinite cutoff limit the mean field window shrinks to zero and one recovers
the non trivial behavior. Indeed, if we work with large enough a cutoff at v € (3,5) and
calculate the average magnetization in regions where 3(k — 1) < u > () ~ 7/2, limit of the
radius of convergence of the series expansions of tanh™" (tanh () tanh(8(k — 1) < u >)), we see
a contribution in the magnetization curves that goes as (3 — 3.)"/(0=. This region becomes
dominant for large values of the cutoff. In summary, we have obtained the phase diagram of the
Ising model on a random graph with an arbitrary degree distribution. Three different regimes
are observed depending on the moments (k?) and (k*) of the distribution. For (k*) finite the
critical exponents of the ferromagnetic phase transition coincides with those obtained from the
simple MF theory. On the contrary, for (k*) not finite but (k?) finite we found non-trivial
exponents that depend on the power law exponent of the degree distribution . On the other
hand, for (k?) not finite the system is always in a ferromagnetic state. Moreover, at T = 0 we
recover the results obtained by the generating function formalism for the percolation problem
on random graphs with an arbitrary degree distribution.



Chapter 4

Two examples of NP optimization
problems

4.1 The Hyper-Graph Bicoloring Problem

The Bicoloring problem of a uniform rank 3 hyper-graph is defined as follows: you want to color
(with 2 colors, say red and blue) the hyper-graph vertices in such a way that no hyper-edge
has got all vertices of the same color an example for a small fraction of a sample hyper-graph
is shown in fig. (4.1). Again, the problem could be immediately generalized to hyper-graphs of
generic degree and distribution, along the same lines of the p-spin. In the following, however,
we will show only the calculation in the Poissonian random graph case and fixed rank 3. The
first choice is justified by the search of the behavior of the problem in the average case (it
is proved to be NP in the worst one), and the will of testing the accuracy of the variational
1RSB factorized Ansatz for a problem in the same hardness class of the K-SAT. Indeed we
found out that the behaviors of both models seem very similar, with some significant difference
from the generalized p-spin. As in the K-SAT, the present model will undergo a sat/unsat
phase transition at 77 = 0 as a function of mean degree. The second (fixed degree) choice was
performed to show another case admitting an exactly factorized 1RSB solution and how this
solution seems however to be here less relevant for the understanding of the general behavior.

The model Hamiltonian is nothing but the cost function of the associated combinatoric
problem and reads

H - Z lezzm 81582 51,53 - Z Jlllgz;g 1 + 8182 + 8283 + 8183) (41)

11 <t2<13 21 <ig<i3

The resulting model is an anti-ferromagnet with a peculiar type of three body interaction term,
with spins connected via the following distribution of couplings

H P(Jilizis) = H ((1 - ?\;—Z)(s(‘]ﬁllzls) + ?\;—Z(S(Jlllzls - 1)> (4'2)

11 <12<13 11<12<13

Frustration is given by the anti-ferromagnetic couplings. Exploiting the usual replica trick one

gets
-4 EZAUH& Sip ToiySig toiy i)

< 7" >y 3 e NN iicincin © (4.3)

5@
i
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and, with the usual multilevel gas picture (p(G) = + XN, §(F; 5))

<Z" >~ /Hdp e "BNFElp(7)] (4.4)
nBFp 7+Zp Vog(p(@)) —v 3 p(61)p(G2)p(Gs)e T Lam(Liotostosogiotos) (4 5
0'1,02,03

In the large N limit we are left with the contribution at the saddle point

B n a_a,_a_a, _a_a
Pt Y oe (tofos+ofot+ofad)

p(a_') _ 6*3’74‘37 251,52 p(G1)p(d2) (46)

4.1.1 The RS results

Plugging the RS Ansatz into (4.6) one gets after some manipulation. A small technical difference
from the p-spin is that here, as it will be in the K-SAT case, fields are originally at half integer
values. They can be rescaled on integers thanks to a rescaling of § — 273, that does not
influence the zero temperature properties. The final result reads:

/ TPyt = 31 T [T e P P(o)er ) (4.7)
with
1
u(hy, he) = 3 log(a /ay) (4.8)
ar = 2cosh(B(hy — hy)) + 2 cosh(B(hy + hy))e™? (4.9)
or

P(h) = 6—37;(3t—7!)t/°:0 /O:or[ldhidhgp(hi)zﬂ(hg)a(h— > u(hi,hy)  (4.10)



4.1. THE HYPER-GRAPH BICOLORING PROBLEM 107

where © = ¥, 0,. The function u(h,g) takes the values of the cavity biases introduced in
chapter 2. An analogous equation for the free energy can be found generalizing the p-spin
model approach from the usual Hamiltonian term 3, (of...0f — 1) to any Jg(o{, ..., 0f) In the
Bicoloring case Js (0¥, ...,08) = Jg(of,09,0%) = —F/4> (005 + 00§ + ooy + 1). However,
we are here interested in the combinatorial problem itself, and therefore in taking the zero
temperature limit.

The trivial paramagnetic solution P(h) = §(h) and Spere = log(2) — vlog(4/3) is always
present in the SAT zero energy phase. This is in contrast with the 3-SAT case and similar
to the paramagnetic phase of the p-spin. Moreover in the RS framework, the only saddle
point solution in the zero energy SAT phase is the previous one. The absence of local fields,
as in the p-spin models, drives out the appearance of a non trivial form for the P(h) at low
but non zero values of ~, differently to what happens in the 3-SAT case. Indeed, in the US
case we can distinguish two different regimes of effective fields scaling as O(T') or tending to a
fixed value in the zero temperature limit. In the first regime one can write integro-differential
equations for the probability distribution of magnetizations and the ground state entropy (in
the sat phase), as in 3-SAT or in the p-spin models. One can then solve them perturbatively,
writing a series expansion in the average degree (or in ) along the same lines of [9]. It is found
that the total paramagnetic solution is stable for all v and the expansion collapses back to the
annealed expression to all orders. However it is to be noted that this does not rule out the
possibility of an intermediate cross-over region of mixed scaling of the order parameter, where
replica symmetry would have to be broken in a non trivial manner. Indeed, the behavior of the
Bicoloring model in degree seems to share intermediate properties between the p-spin models
and the 3-SAT.

In the second regime the saddle point equations (4.7) reduce to

+00 3 +oo  p+o0 .
/ dhP(R)e™™ = exp (—37 + 3y / / dhdho P (hy) P(hy)e®®min(hihe)
0 0

— 00

0 0 .
s [ [ dhlthP(hl)P(hﬁe‘wmm(l"hl’h2)> (4.11)

Looking again for a symmetric integer fields solution of the type we get

8y o2 3
Dy = e 2w 10(37(1_1)0)2) (4.12)
3v.q 3
Dk>0 = Drk<o=¢€ 2 (1 pO)ZIk(%(l —po)z) (4'13)

In the RS framework , the only saddle point solution in the zero energy SAT phase is the
perfect paramagnetic one P(h) = &(h). The absence of local fields, as in the p-spin models,
drives out the appearance of a non trivial form for the paramagnetic P(h) at low values of
7, differently to what happens in the 3-SAT case. No other stable integer fields solution is
found to exist. A py # 0 spin glass metastable solution appears for v = 2.3335, that however
initially corresponds to a non physical negative energy value. As in [9], the RS estimate for -,
is therefore given by the point where the energy

=20 = o) (4.14)

1 —P0>3 3y
4

Egs = 27(
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turns positive!. This gives a rough upper bound of 2.45, that can be tracked down to
2.35 by the introduction of rational fields, following again the prescription of [9]. After a long
manipulation one finds the following saddle point equations, closed in the first r weights:

_37(1;p0)2 2m (f Z L o cos(j0)

— 4.1
Po € o 27r ( 5)
1-p0)> (27 df . ;
D = o T / — cos(kf)e 2= @ cos(50) (4.16)
0o 27
with
J
Qjor = 67pj(1—22pl+pj) (4.17)
1=0
3,)/ r—1
o = 223y (419)
2y [ 1—poy ', 1 5
Bes = L= -
as . (( 5 )+j:1( 5 )

(i3t En) B e o

T]l j=1 =

One would however like to go beyond scheme which is RS and furthermore does not reflect
the physical phenomena taking place in the model. Indeed, There are no reasons for local fields
at 7" = 0 not to have support on integer values. Even though the last solution is a legitimate
variational one?, it is believed [24, 30, 29] that in fact signals the presence of non trivial RSB
phenomena.

4.1.2 The RSB Calculations

In order to improve the previous results we used the same RSB factorized Ansatz that was quite
successful in the p-spin and that seems to provide a nearly exact solution for any model defined
on fixed degree graphs, independently of the specific form of the Hamiltonian. We won’t show
all the calculations, exhaustively done for the p-spin case and essentially identical in this case.
Let us specialize initially to fixed degree k-hyper-graphs The final self consistent equation reads

2cosh6h, "L DhyDg; W(hi, gi)™
Ph) = /H (4 cosh(Bh;) cosh(Bg;))™ (h Z hugz> ; (4.20)

! Notice the close similarity with the RS expressions for the 3-spin written in chapter 3 and the ones for the
3-SAT in [9] and easily retrievable form the 1RSB equations of the next section. In fact, the only difference
seen by the RS treatment seems to be a rescaling of the hyper-graph diluteness parameter y3_gpin, = YBic/2 —
v3—sar/4, that reflects the size of the elementary clause in the combinatorial problem (3-spin interactions
correspond to 4 3-SAT like clauses, for instance). It is clear that from the RS point of view all these models
are equivalent and their difference, which is well seen theoretically experimentally, needs a broader picture,
that could explain for instance why in the dynamical region 3-XOR-SAT is still Polynomial thanks to a global
solution procedure, while 3-SAT in NP-complete.

2This can be rigorously proven as an additional special case of the general calculations of chapter 6.
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(A1 ] e [ v ]
1-6 0 00

7 0.003711 1.96611
8 0.027383 1.17118
9 0.058131 0.92887
10 0.093181 0.78746
11 0.131392 | 0.69315
12 0.172118 | 0.55338

Table 4.1: Energy densities at the optimal value y* of the scaling parameter for the Bicoloring
model on fixed degree K 3-hyper-graphs.

where W (h,g) = \/a_a; is the re-weighting function that in the exact 1RSB has been con-
nected to LGS level crossing [23, 24]. The RS (resp. paramagnetic) equation is recovered for
m=mn — 0 (resp. P(h)=0(h)). A1 is a normalization factor. At 7' = 0:

1 [ke=1)/2] (k —1)! Ak—1—2tB[y]2t

- 4.21
PTGy & G-i-wie 27 42
| 2% 2%
Fo= -t (0 3D montath) + 3 ostotr - 1) (1.22)
with:
_ 2
2
1—pg)? _
B = S
[(k—=1)/2] (k—1)! Ak—l—QtB[y]Zt
k =
9(k.y) ; G—1—2)2n 22
[(k—1)/2] k'AkfertB r+2t
2 Z eyr Z ' - [y] T
= = (k—r—=20)1(r+1)120r 4+ 2¢)

Table 4.1 shows the GS energy densities ey, at the optimal y* for some choices of [.

The same Ansatz plugged into the variational free energy for poissonian degree distribution
gives, after calculations similar to the p-spin,

Py = eosh 50" 5 G0 (T amareyeot et (S 00000))

(4.23)
and, in the 7" = 0 limit,
I
po = o(#1) - (4.24)
Io(21) +2 X0 Le(21)e
yl
Ii(z1)ez
po= = p= =) . (4.25)
To(21) + 2 Y=o Ie(21)e
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3
2 = %(1 —pp)le " (4.26)
N3
O = 1+ W(M ~1) (4.27)

for the saddle point equations and

1
F(y) = —;('y log © — log A — 2y cosh(y) — 2y sinh(y)po) (4.28)
1
A = mn (4.29)
Io(21) +2 Xpso Ik(21)e

for the potential. Again, as we expected, no found RSB solution has support on non integer
fields. Optimizing over y, we find an upper bound for the critical value of v, of 2.145, very
close to the numerical exact estimate [117]. This value is found maximizing the free-energy and
tuning v and y to the point where this maximum crosses to positive values for the first time,
indicating the onset of positive energy density global ground states.

Complexity results of the Bicoloring model

Using eq. (2.133) it is also possible to write a variational expression for the complexity. Obvi-
ously, the number of LGS will be overestimated because correlations between LGS, that here
are neglected, can and indeed do reduce the number of states at Hamming distance of order
N. The notion of LGS is however a subtle one, and currently under debate. For some late
insights see for example [24]. The dynamical threshold for the Bicoloring model is then defined
as the point where the complexity attains for the first time a non zero value. This corresponds
to the point where LGS with highest energy density first appear. The factorized Ansatz gives
the estimate v; ~ 1.881. The point where the number of LGS ceases to be extensive in exp”
coincides with the previously calculated one at v, ~ 2.145.

We also tried to obtain an exact value for the true zero temperature complexity, as done in
the p-spin case thanks to the accidental equivalence with the its ferromagnetic version before the
static transition. The reason for that possibility lied in the fact that in that particular case the
LGS turned out to be orthogonal and uncorrelated, so that one could look at the configurational
space sitting on a reference GS chosen at will. In the dynamical region clusters of solutions all
of the same size and equivalent to the ferromagnetic cluster formed. Indeed, the complexity
calculated as in eq. (2.187) was seen to be identical to that of the number of metastable states
into the ferromagnetic model. Can this be done in the Bicoloring case too? No apparent gauge
cluster symmetry of this kind seem to be present in this case (as well as in the K-SAT, graph-
coloring or other models), so we expect the answer to be negative. Nevertheless, we tried to
retrieve the solution of the factorized symmetric saddle point equations in the m = 1 case.
This can be done along the same lines of the p-spin, leading however to the negative expected
result: the m = 1 saddle point equations

py = e VP (4.30)
[ 2l
poy(l—p
mo= p_zzé’iv( 0 ) (4.31)

give no non trivial solution before v* = 2.454, which is well above the transition point of
the model. Therefore at the beginning of this work the exact value for the complexity was
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erroneously thought to be zero anywhere before the static transition. Incidentally, (4.30) and
(4.31) turn out to be the symmetrized version of the solutions of a ferromagnetic spin version
of the Bicoloring model, built with the hamiltonian

1
H =~ Z Ji1i2i3(1 + Si1Sin = SinSiz — Siy Sig) (432)

11<12<13

Contrary to the p-spin model, there is no correspondence between the saddle point equations in
the frustrated and the ferromagnetic models, because the two are not related by any symmetry
transformation. Consequently, counting the metastable states in the ferromagnetic model does
not correspond to counting the Bicoloring LGS. Moreover, the ferromagnetic model shows
an intermediate continuously magnetized phase between the paramagnetic and the backbone
ferromagnetic ones. Models showing this behavior are interesting for their own sake and have
been investigated in [55]. We argue that this intermediate transition reflects in the spin-glass
as an indicator that also Bicolorig, as 3-SAT (see also [30]), admits a crossover region where a
simple 1RSB factorized Ansatz is not sufficient. In fact, due the absence of cluster symmetry
the LGS cannot be gauged to the same ferromagnetic one. A non trivial 1RSB solution can
be found with the general technique recently put forward in [29, 30, 24]. In working with the
factorized Ansatz approximation, an upper bound for the complexity is calculated, where the
number of LGS is overestimated because correlations that can decrease the number of actually
disconnected® clusters are not taken into account. The general solution can be explicitly found
with the same techniques reviewed in chapter 2, even though the saddle point equations are
slightly more complicated [114]. This solutions shows a narrower but still non zero dynamical
region of positive complexity. Thresholds calculable in this way are conjectured to be exact
for the Bicoloring problem. A similar picture applies to the K-SAT case. Moreover in the
Bicoloring 7" = 0 saddle point equations, the absence of non trivial vanishing fields (as it be
seen via series expansion around the perfect paramagnetic solution as well as via numerical
experiments) lead us to believe the last solution to be exact for any value of  in the phase
diagram of the model, even when models as K-SAT seem to show an co-RSB transition. This
property can be traced back, in our opinion, to the absence in the model Hamiltonian to single
spin-flip asymmetric terms, present for instance in the SAT models. This terms can give rise to
local fluctuations that vanish only at zero temperature but can give rise to further symmetry
breaking in the phase space. The same is not true in the K-SAT case [30, 89, 90], as will
be discussed in the following section. In this sense the Bicoloring model lies in a somehow
intermediate position between the p-spin and the random K-SAT model. Eventually, we would
like to notice that, contrary to the K-SAT case we will mention in the following section, the
factorized Ansatz gives upper bounds whose value nearly overlaps the latest estimated numerical
thresholds [117].

4.2 Results of the variational RSB calculations for the
random 3-SAT

K-SAT is a central problem in theoretical computer science [34]. A throughout study of random
version model has been carried out by the physics community in [9, 14, 30, 12] and references

3Separated by a Hamming distance of order N.
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therein , where the reader is referred to for the definition of the problem, the mapping on spin-
glass like model and for various analytical and numerical approaches to its solution. Rigorous
approaches can be read for example in [177, 115].

In this short section we simply want to state the results for the RSB variational calculations
exploiting the factorized Ansatz, and discussing some more recent results announced in [29] and
obtained in [30]. We worked directly at zero temperature. Through a computation analogous
to the ones for the p-spin and the Bicoloring model we found, for the special 3-SAT case,

[0(31)

Io(21) + 2 S0 Le(21)e®

Ii(z)e%
po= =p- e (4.34)

In(z1) + 23 a0 LIe(21)e™
3
5 = %(1 —po)2et (4.35)
1 — 3
QO = 1+ %(M —1) (4.36)
for the saddle point equations and
1
F(y) = —;(7 log Q2 — log A — 2, cosh(y) — z; sinh(y)po) (4.37)
1

A = _ (4.38)

In(z1) + 2 4s0 Ii(z1)e®

for the potential. Notice that for y = 0, re-summing the Bessel functions one immediately
retrieves the RS integer fields solution of [9]:

> 3
Ty 59

Again, closed fractional fields equations can be written as in the RS and in the p-spin and
Bicoloring cases, but no solutions have support on non integer values. The variational expression
for the complexity (2.133) leads to the presence of a dynamical region in the range of values
Y € [Ya, 7] = [3.94,4.39]. However, as in the Bicoloring model, LGS are not uncorrelated as
explicitly stated in the factorized Ansatz picture. A more general solution found in [30] with
the 7' = 0 cavity method [24] with a dynamical region [y4, 7.] = [3.921, 4.256].

The difference between the previous variational results and the zero temperature general
1RSB cavity result is both quantitative and qualitative: in ref. [14] the predicted nature of the
intermediate phase is different with respect to the one predicted by the non-vanishing fields
complete 1RSB solution, while in ref. [22] the structure of the order parameter is oversimplified.
(as well as in [22]) the authors work directly at zero temperature (77 = 0), which has the
advantage that they do not need to study the subtle question of the limit 7" — 0. The reason
why this limit is subtle is due to the fact that some of the local fields, at low temperatures, vanish
linearly in 7', and thus contribute to the local magnetization m = tanh(SH) (the vanishing
fields!). The local magnetization at 7' = 0 is zero for a zero field, it is equal to 1 for a finite field,
and it takes an intermediate value m €| — 1,1[ for a vanishing field. The variational approach
of [14] focuses onto vanishing fields, and finds a continuous phase transition at v, ~ 3.96 where
the vanishing fields in different states start to cluster. However as these are all vanishing fields,



4.2. RESULTS OF THE VARIATIONAL RSB CALCULATIONS FOR THE RANDOM 3-SAT113

this means that the corresponding local magnetizations, in a given state, are not frozen to +1
but take some intermediate value, even in the 7" — 0 limit. In the 7" = 0 cavity approach
(as well as in [22]), the HSP corresponds to a discontinuous transition at zero temperature,
involving fields which are not vanishing, but are of order one. This means that, in a given
state, a finite number of local fields are non-zero integers, giving rise to magnetizations £1, as
one could expect at zero temperature. This phenomenology cannot be found by considering
vanishing fields. Its study with replicas would require using a more complicated Ansatz.

Note that this approach working directly at 7" = 0 also has its limitations, for instance
we are unable to determine precisely the self overlap (or the typical radius) of a state, or its
internal entropy, precisely because we do not control the vanishing fields.

Moreover the 1RSB picture does not take into account the possible arising of non trivial
correlations among LGS at higher values of . This could lead to higher RSB phenomena, as
evidence is taken in [89, 90]. However, this seems not to be the case in the dynamical region
and immediately beyond the static transition, where the only known phenomenon that could
give rise to such further symmetry breaking is indeed the presence of vanishing fields at finite
temperature. A population dynamics study of this region with the 1RSB finite temperature
Ansatz of [23] shows that the distribution of local fields tend to peak on integers when the
temperature goes to zero in the dynamical phase, and this is a strong argument in favor of
the exactness of the 1RSB solution. Very recently [58] a solution of the long standing graph-
coloring problem on random graphs has been proposed which does not suffer from the need of
introducing pathological fractional fields and works at the complete 1RSB level. Similarly to
the p-spin, Hyper-graphs Bicoloring and the K-SAT case, the presence of a dynamical region of
metastable states is found and the authors claim the obtained dynamical and static thresholds
to be exact. Notice that the calculations of chapter 6 could be in principle extended to the
graph-coloring, proving results in [58] to be rigorous upper bounds.
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Chapter 5

Phase and computational complexity
transitions

5.1 Global algorithms transitions in linear systems over
finite fields

5.1.1 Introduction

The methods and concepts of statistical physics of disordered systems constitute a very useful
tool for the understanding of the onset of computational complexity in randomly generated
hard combinatorial problems. Once the optimization problems are translated into zero tem-
perature spin glass problems, one may study the geometrical changes in the space of solutions
as symmetry breaking phenomena. In this context one may view the exponential regimes of
randomized search algorithms as out-of-equilibrium phases of stochastic processes. However,
combinatorial problems are not always exponentially hard: Problems that can be solved in
polynomial time, even in their worst-case realizations compose the so called Polynomial (P)
class [34]. Such problems are often of great practical relevance and are tackled using large scale
computations. Examples can be found in all disciplines: In physics, just to make one exam-
ple, one may study ground states of 2D spin glass like Hamiltonians resorting to a polynomial
max-cut algorithm [121]. The major application are obviously found in engineering: Examples
are design problems (finite elements methods), control theory (convex optimization), coding
theory (parity check equations) and cryptography (integer factorization). Due to the practical
relevance of the problems and to the typically large number of variables used for their encoding,
that is the size of the problems, it is of basic interest to look at the fine structure of the class P
in order to concretely optimize the computational strategies. For instance, in error correcting
codes it is crucial to have algorithms that converge in linear time with respect to the number
of encoded bits, any power larger than one being considered of no practical interest. Quite in
general, the trade-off between time and memory resources is the guiding criterion which selects
the algorithms used in real-world applications. Roughly speaking polynomial algorithms can
be divided in different groups depending on the solving strategy they implement. The main
groups are local algorithms (e.g. greedy/gradient methods), global algorithms (e.g. Gaussian
elimination or Fourier transforms methods), iterative algorithms (e.g. Lanczos method) and
parallel algorithms. See Ref. [122] for a basic introduction to the subject. In what follows we
shall study a prototype problem of the P class, that is the problem of solving large and random
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sparse systems in some Galois field GF(g). Working in GF(q) is completely equivalent to per-
form any operation modulo ¢. Firstly, we give a precise analysis of the computational features
for non-trivial ensembles of random instances. By a statistical mechanics study, we look into
the — symmetry breaking — geometrical structure of the space of solution thereby providing
an explanation for the changes in the power law behavior observed in different algorithms.
Moreover, we are able to predict and explain in terms of clustering of solutions, the memory
catastrophe found in global algorithms such as Gaussian elimination. Such an effect seriously
hampers application of this sort of global algorithms in many circumstances, one example being
symbolic manipulations. This memory catastrophe induce in turn an even more dramatic in-
crease in CPU time, which make large problems unaffordable above the dynamical threshold v,
(see below for its definition). Secondly, we consider a specific “real-world” application, namely
the Integer Factorization problem used in RSA public key cryptography [123]. By a non-trivial
mapping of the factoring problem on a sparse linear system modulo 2, endowed with a quite
peculiar statistical distribution of matrix elements, we analyze which are the characteristic ge-
ometrical properties of solutions that are responsible for the usage of specific algorithms and
constitute the possible bottleneck for the near future. Interestingly enough, the changes in both
time or memory requirements during the solution process of sparse systems can be interpreted
in physical terms as a dynamical transition at which the phase space of the associated physical
systems becomes split into an exponential number of ergodic components. While it is to be
expected that local algorithms get stuck by local minima at such phase boundary, it is less
obvious to predict which is the counterpart of the dynamical transition in global algorithms,
for which polynomial time convergence is guaranteed even for the hardest instances. Indeed the
dynamical transition manifests itself as a phase transition in the computational requirements
which in turn leads to a slowing down phenomenon that saturates the upper bound for the
convergence time. Such a change of scale in memory requirements constitute a serious problem
for hardware implementations of large scale simulations.

5.1.2 Random Linear systems in GF(2): rigorous results and statis-
tical mechanics analysis

As is well known in the context of error correcting codes [124], solving a sparse linear system
modulo 2 is equivalent to finding the zero temperature ground states of a class of multiple
degree interactions p-spin models on diluted random graphs. Let us consider a random linear
system in GF(2) in the form AZ = § mod[2], where A is a 0-1 matrix of dimension M x N. For
each of its specific choices A can be interpreted as the contact matrix of a particular random
hyper-graph belonging to a specific ensemble. The class of random matrices we shall deal with
are defined by the fraction of rows v; with [ non zero elements. The latter are placed uniformly
at random within each row. The notation has been chosen to be consistent with the one of
the previous chapters. We focus on matrices that lead to graphs with an average rank value
(I) = > lv; finite and much less than both M and N. We are interested to the limit of very
large matrices, where we can assume N, M — oo with a finite ratio v = M/N. This is the
regime in which a study of the computational cost is important in that it applies directly to
large scale computations. In the limit N, M — oo average quantities characterizing the system
(e.g. the average fraction of violated equations) are known to be equal to the most probable
values (i.e. their probability distribution is strongly peaked [125]) and therefore single random
large systems behave as the average over the ensemble. We will always assume v; = 0 at the
beginning, since rows with a single one corresponds to trivial equations which can be removed
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a priori from the set. The equivalence between linear systems and spin models is a quite
straightforward generalization of the mapping used in the 24+-p-XORSAT model (which by the
way can in turn be seen as a particular case of the present model, where only two and three
variables equations are present.). We start from a set of linear equations in GF(2), AZ = §, and
we build up a spin Hamiltonian whose ground state energy E, counts the minimal number of
unsatisfied equations. In the case where Ey; = 0, ground state configurations will correspond
to solutions of the original set of linear equations and the zero-temperature entropy will count
the number of such solutions. The construction is done as follows: For every equation, labelled
by i € [1...M], let us define the set of variables & entering equation i as

vi)={jel...N]: A; =1} . (5.1)

With the transformation s; = (—1)% and J; = (—1)¥%, we have that every equation can be
converted in a term of the Hamiltonian through

N
Y Ajri=yie Y w=ye I =0, (5.2)
7j=1

=0 i€

where the multi-spin interaction contain at least 2 spins since we set v; = 0. Then the Hamil-
tonian

PP 1
==

fits the above requirements and can be used in the analytical treatment. A better form for the

above Hamiltonian can be obtained grouping together [-spin terms with the same [, that is

1
H= 5 M — Z Z Ji1i2...ik8i1 - Sy, s (54)

k 11<ia<... <l

where s; = %1 are Ising spins and the couplings J;,;,..;, are i.i.d. quenched random variables
taking values in {0, £1}. The total number of interactions, that is of terms with J # 0, is
M, and the energy is zero if and only if all the interactions are satisfied. For each unsatisfied
interaction the energy increases by 1. The fraction of interactions of [-spin kind is v; and thus
the probability of having J;,;, ;, # 0 equals a;M/ (]7) ~ ~yyl!/N'"1, while the sign of J;;,
depends on the probability distribution of the components of ¥,

yul! yul!
P(Jlllzlz) - [1 - Nllll 6(‘]212221) + Nlil [p 6(‘]“22%1 - 1) + (1 - p) 6(lelzlz + 1)] ) (55)

where p € [0, 1] controls the fraction of zeros in . As long as the system admits at least one
solution, it can always be brought by a gauge transformation in the form with p =1 < ¢ = 0.
This corresponds to have positive or null couplings only, like in a diluted ferromagnetic model.
The liceity of the gauge transformation is a peculiarity of generalized p-spin models of this kind,
as stated in the first chapter. In order to make a connection between the behavior of solving
algorithms and the structure of the matrix A, we study the geometrical properties of the space
of solution, i.e. ground states of (5.4), as a function of 7 for non-trivial choices of {v;}. We may
have access to the structure of such a space by just performing the 7" = 0 statistical mechanics
analysis of the spin glass model, with control parameter . For v large enough, at say 7.,
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the system of equations becomes over-determined and some of the equations can no longer be
satisfied. This fact is reflected in the ground state energy of the associated spin glass model
becoming positive. The interesting aspect of the problem is that, under proper conditions,
there appears a clustering phenomenon with macroscopic algorithmic consequences at some
intermediate value 0 < v = 74 < v.. We will focus our attention on the latter transition, thus
assuming a priori that at least one solution always exist. This allow us to fix 7 = 0 hereafter.
The complete picture of the typical structure of the solution space can be obtained through the
RS replica calculations of chapter 1 specialized to the case of Poissonian degree hyper-graph
with a priori general choice of v(x). Due to the zero energy condition (Eys = 0 for v < 7,), the
dominance of thermodynamical states is purely to be determined in entropic terms. Defining
So(7) as the logarithm of the number of solutions to A% = 0 divided by N, we have that

So(7) = S(m,7) =1log(2) |(1 —m)[1 —log(l —m)] =73 u(l—mi)| (5.6)

1>2

where m solves .

Gm)=1-m—e¢e " Dizslum™h g (5.7)
When more than one solution to eq.(5.7) exist, the one maximizing S(m,y) must be chosen.
At fixed {v;}, one can study the phase diagram as a function of . At low enough v, eq. (5.7)
has only the trivial solution m = 0 and the system is paramagnetic with entropy S(0,v) =
log(2) (1—1y). As long as vy > 0, the condition for the continuous phase transition of two-loops
percolation in the rank 2 sub-graph is given by the instability condition:

JG(m)
oy -0
om =0
Gim=0)=0, (5.8)
that reduces to' .
= (5.9)

Typically a non trivial magnetized solution for the order parameter, m* > 0, appears at a value
vq such that

JG(m)
G(m*) =0 and =0 . 5.10
) =0and 5 (5.10)
This condition gives a threshold for the onset of the dynamical region at
1

Ya = (1 —m*) s l(l — 1), (m*) -2 (5.11)

and contains the condition for 4 as a particular case. This last solution becomes entropically
favored at a value 7. found solving

S(0,7.) = S(m*,v.) . (5.12)

As in the case of the 2+p-XOR-SAT model of chapter 2, we can look for the presence of a
tricritical point where ¥ = v; = 7.. This is given by the instability condition

Gm*=0)=0 G'(m*=0)=0 and G"(m* =0) =0 (5.13)

Ly =1/2 for vy = 1.
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that reduces to
1

" 3U3 27tricritical . (514)
Notice that the value of the tricritical point, if it exists, does not depend on other than the
fraction of two variables over three variables equations. There are obviously cases ? where a
tricritical point does not exist. In those situation the shift from a continuous to a discontinuous
transition is sharp. A part of these last examples, the 2-+p model retains a great deal of
generality, and indeed this particular case treated in chapter 2 and in [21] retains many of
the qualitative features of this more general analysis. 3. The crucial observation is now the
following. At 7,4, together with the magnetized solution, there appear other spin glass solutions
to the saddle-point equation. In particular, it can be shown [26] that the difference between
the paramagnetic and the ferromagnetic entropies,

X(v) =8(0,7) = S(m*,7) (5.15)
gives the configurational entropy of the problem, that is the number of clusters of solutions *.
There exist exp[X(7)N] well separated clusters [Hamming distances ~ O(N)], each one con-
taining a number exp[S(m*,v)N]| of closed solutions [Hamming distances ~ O(oo)]. This
clusterizations has two main consequences. Local algorithms for finding solutions running in
linear time in N stop converging [19]: this is the typical situation for greedy algorithm which
get stuck in one of the most numerous local minima at a positive energy. Global algorithms,
which are guaranteed to converge in polynomial time, need to keep track along computation
of this complex structure of solutions and a memory linear in N turns out to be insufficient,
as we will show below. For a general choice of {v;}, the configurational entropy reads, from

eq. (2.185),

S(y) =1og(2) |1 — (1 —m)[1—log(l —m)] +~v> vm'| (5.16)

where m is the largest solution to eq. (5.7). As discussed in Ref. [21, 26], the values of v, and
7. are found as the points where () first appears with a non zero value and where it reaches
zero again. We remind the reader that the correct expression for the complexity can be found
via eq. (2.185) only due to the particular symmetry of this family of models. Moreover, even
in this simple case we will see at the end of this section that there are choices of the generating
function v(x) for which this complexity picture is not physical, being ruled out by a previously
occurring continuous transition. The algorithmic consequences of having ¥(y) > 0 have been
already exposed in Refs. [19, 22]: For v > v, a glassy state with positive energy arises, which
traps any local dynamics, preventing it to converge towards the ground state of zero energy.
We conjecture the counterpart on global algorithms, such as Gaussian elimination, to be that
the resolution time increases with /N faster than linear. In the next section we will check the
above conjecture with two different Gaussian elimination algorithms, none of which is able to
solve the system in linear time for v > 4.

2think for example to a 2+4 model where only v, and vy are different from 0.

3We will see in the following that there are however cases where no tricritical point is present, because
condition (5.14) cannot be fulfilled by the parameters of the hyper-graph degree distribution.

“Two solutions belong to the same cluster (resp. to different clusters) if their Hamming distance is O(00)

[resp. O(N)].
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t=0.0 t=0.3 t=0.7

Figure 5.2: The evolution of the A, matrix for a specific 1024 x 1024 random system. Every
dot corresponds to a 1 entry.

5.1.3 Algorithms behavior

In this section we analyze the performances of a couple of different ‘Gaussian elimination’
algorithms, their difference being in the order equations are solved. We will measure the
number of operations and the size of the memory required for the solution of a set of linear
equations, that is the complexity for finding all solutions to A = §. We will see that, for a
generic ensemble of random problems, any algorithm undergoes an easy/hard transition at a
certain v value, which can not be pushed beyond the dynamical transition threshold 4. In
this context we call easy such problems which are solvable with a CPU-time and memory of
order N, and hard those requiring resources scaling with N%, where a > 1. Given a set of M
linear equations in N variables, Gaussian elimination proceeds as follows [for concreteness we
will always work in GF(2)]: At each step, it takes an equation, e.g. 1 + x5 + 23 = y1, solves it
with respect to a variable, e.g. ©1 = w9 + x3 + y1, and then it substitutes variable z; with the
expression xs + 3+ y; in all the equations still unsolved. This procedure gives all the solutions
to any set of linear equations in, at most, O(N?) steps and using O(N €) memory. Nevertheless
this bounds only holds in the worst case, namely when the matrix A is dense. Very often, in
actual applications, the matrix is sparse and the algorithm is faster. We define sparse a matrix
with O(N) ones and dense that with O(N€) ones. In order to analyze the computational
complexity of this problem, and its connections to phase transitions, we focus on a specific
ensemble of random problems, generalizations to other ensembles being straightforward. We
choose sets of M = yN linear equations, each one containing exactly £ = 3 of the N variables,
taking values in GF(2). Thus the degree of a variable, defined as the number of equations this
variable enters in, takes values from a Poissonian distribution of mean 3. For very large N,
that is in the thermodynamical limit, we are interested in how the complexity changes with ~.
Moreover, for a fixed 7 such that the problem is hard, we would like to know when (in terms of
the running-time ¢) and why the algorithm becomes slower and slower. The running-time ¢ is
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measured as the number of equations already solved, normalized by N, and thus takes values
in [0,7]. A, is the matrix representing the set of equations after ¢tV steps, and it has the form
shown in fig. 5.1. See fig. 5.2 for the actual shape of A, in a specific case with 1024 equations
in 1024 variables. For ease of simplicity, we have reordered the variables and the equations of
the system, such that, at the i-th step, we solve the i-th equation with respect to x;. With this
choice the left part of the matrix A, has ones on the diagonal and zeros below. The right part
can be naturally divided in an upper part U and a lower one L. The density of ones in the L
matrix — let us call it p(¢;y) — is uniform and depends on the initial 7, the time ¢ and the
algorithm used for solving the linear system. The density of ones in the U part is not uniform
and varies from row to row, as shown in fig. 5.1 with gray tones. For continuity reasons the
density at the m-th row of U is exactly p(m/N;v). Then U is sparse or dense depending on
whether L is. Defining I(t;v) = p(t;7)N(1 — t) the average number of ones per row in L, we
have that a sparse (resp. dense) matrix corresponds to having a finite [ (resp. p). At each time
step, the number of operations required are directly related to the density of the matrix A, and
thus to that of L. More specifically, solving with respect to the variable in the upper left corner
of L, the number of operations is proportional to the number of ones in the first row of L, i.e.
k(t; ), times the number of rows of L having a one in the first column, i.e. p(t;y)N(y —t), and

thus equals

(t)pt;)N(y —t) = lQY—:: =N P (v=t)(1—1) . (5.17)

Then, if the matrix L is sparse a finite number of operations per step is enough, while O(N€)
operations are required when L is dense. Integrating over time ¢ € [0, ], we have that the total
complexity is given by

N/ —12 Y)dt = N3/07(7—t)(1—t)p2(t;7)dt . (5.18)

Since the function p(t;7) is continuous in ¢, we conclude that

p(t;y) < 1/N B CPU time x N
k(t;~) finite vEel0alr & pmal(y) =0 Memory o« N (5.19)
p(t;7) fzmte CPU time o N3
k(ty) o N 3t e€[0,7]p € pma(y) >0& Memory x N (5.20)
where
Pmaz(7) = lim max p(t; ) (5.21)

N—o00te[0,79]

is the order parameter signaling the onset of the hard regime. Having found the relation between
the density of ones in L and the computational complexity we are interested in, we can now
run the algorithms and measure the density p(¢;y). The easy/hard transition should manifest
itself with p,,q. () becoming different from zero.

Simplest Gaussian elimination

Let us start with the simplest algorithm, which solves the equations in the same (random) order
they appear in the set and with respect to a randomly chosen variable. In this very simple
case, one can easily show that the complexity for solving a set of linear equations with initial
parameter v = 7, is exactly the same as for solving a larger system with v > v up to time
t = 7. For this reason, in this case the function p(¢;7) does not depend on v and can be
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Figure 5.3: Density of ones in the L matrix during the solving process with the simplest
Gaussian elimination algorithm. The vertical bar marks the analytical critical point . = 0.918.

calculated once for all the relevant v values. Moreover, it is known [19] that this algorithm,
in the limit of very large N, keeps the matrix sparse for all v < 2/3. In fig. 5.3 we show the
function p(t) for many large N values. The dotted-dashed line is a guide to the eyes and it
should not be too much different from the thermodynamical limit: It goes through the two
points (y = 2/3 and v = 0.918) where p(¢) must vanish and coincide with numerical data in
the region, where data for different sizes seem to be quite close to the asymptotic shape. In
the thermodynamical limit, the algorithm keeps the matrix sparse for times ¢t < 2/3 and so
it undergoes an easy/hard transition at v = 2/3: As long as v < 2/3, pnae(y) = 0, while
Pmaz(7) > 0 for v > 2/3. As we will see below the location of the transition depends on
the algorithm used and, in this case, does not correspond to any underlying thermodynamical
transition. We note en passant that the v value where the L matrix becomes sparse again
seems to correspond to the critical point 7. = 0.918 [19, 26, 94] (marked with a vertical line
in fig. 5.3). An explanation to this observation will be given in a forthcoming publication. It
implies that the value of the critical point 7., which is relevant e.g. in the XOR-SAT model
[82] in theoretical computer science, could be obtained also by solving differential equations for

p(t)-

Smart Gaussian elimination

Now we turn to a more clever Gaussian elimination algorithm, which works as follows: At each
time step, it chooses the variable x having the smallest degree in L, i.e. that corresponding to
the less dense column of L, and solves with respect to x any of the equations where x enters
in. Clearly, in this case, the dynamics and thus the density of ones in L depend on the initial
~v value: A smaller v implies that for a longer time we can choose variables of degree 1, which
do not increase the average number of ones per row in L. It can be rigorously shown [26]
using, the leaf removal procedure described in the first chapter, that this procedure keeps the
density of the L matrix constant, p(t;y) = p(0;7), for times smaller than t* = v(1 — m?3),
where m is the largest solution to 1 — m = exp(—3ym?). The last equation is exactly eq. (5.7)
with {vs = 1, vp23 = 0}. Running the algorithm for different v values we obtain the densities
reported in the main panel of fig. 5.4. For v < v, = 0.818 the density remains O(co/N) all
along the run, while for v > 7, there is a time when the density becomes finite and the problem
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Figure 5.4: Density of ones in the L matrix during the solving process with a smart Gaussian
elimination algorithm (N = 8192). Inset: Zoom on the low-density part (with a different
normalization).

hard to handle. In order to better show what happens around t*, we have plotted in the inset of
fig. 5.4 the mean number of ones per row, k(t). It is clear that for v < -, this number remains
constant, since one can solve the system choosing only variables of degree 1, not altering the L
matrix. On the contrary, for v > -, there is a time ¢*(y) when variables of degree 1 terminate,
and the algorithm has to start making substitutions in L, thus increasing the density of ones.
Then 7, marks the onset of computational hardness, both in memory and CPU time. One may
object that also this value for the easy/hard transition may depend on the particular algorithm.
Note, however, that a completely different linear algorithm described in Ref. [19] (which firstly
works with high-degree variables) seems to work up to 74. Moreover, as seen in the previous
section, we have analytically found that at v, a transition takes place, which drastically changes
the structure of the solutions space, and so we argue that any algorithm running in linear time
can converge only up to 4. Indeed is shown in [26] that solutions spontaneously form clusters
for v > 74 and this particular structure requires a larger memory to be stored.

5.1.4 The RSA cryptosystem and factorization

In this section we shall validate the above scenario on a concrete application, namely integer
factorization problems arising in the RSA cryptosystem. Such problems allow for a non-trivial
mapping onto huge linear systems in GF(2) with a rather peculiar structure of the underlying
contact matrix. In order to be as self-contained as possible, we firstly give a short review of the
problem and the methodology (a detailed description of the RSA cryptosystem can be found in
[123]). The only known method for breaking RSA implies factorization of the private key, which
consists in a natural number which is the product of two big prime numbers, n = p - ¢, with p
and ¢ approximately of the same size ~ /n. Keys currently used in applications are numbers n
ranging from 1024 bits (309 decimal digits) to 2048 bits (617 digits) length. The first attempt at
a massive parallel factorization was the RSA129 (129 digits, 428 bits) challenge, solved in 1994
with the quadratic sieve (QS) algorithm. More recently, in August, 1999 the RSA155 challenged
was solved using the general number field sieve (GNFS) algorithm. This has forced to abandon
the 512-bit (155 digits) length for sensitive information security. There are now several sub-
exponential algorithms for solving the factorization problem, the faster of which is GNFS. QS
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and GNFS share the same structure, consisting of two phases: a first one in which a big (the
size depending mostly on the size of n) linear system in GF(2) is produced, and a second one in
which this system is solved. Although the first phase is definitely more costly, the solving phase
(which affect this section) takes a respectable part of the total time and memory requirement.
Especially as numbers get bigger this becomes a limitation, because the fastest solving methods
used employ a sole workstation, with the consequent memory restriction. Moreover, in recent
factorizations a new filtering phase has been placed between the previous two, in which pieces
of the system (specifically columns of the {0, 1} —matrix) get discarded in order to simplify the
solving phase, effectively transferring part of the total time from the second phase to the first
one.

The QS algorithm

For a nice description of the QS algorithm see [126]. Synthetically, QS works at follows. It
builds a list of integer numbers {y; };c; such that:

e y; = z? mod|n] for some z; and y; # x;;

e y; is completely factorizable in a given (relatively small) subset of B primes called the
factor-base.

This is called the sieving phase. The algorithm then searches a subset J C I of elements of
the list such that [[;c;y; = 2* is a square (solving phase). Once found, 2? = 2? mod|[n] (here
x = [lies ;) and this implies that n divides (z + 2z)(x — z) and then ged(x — z,n) will likely
(further trials will increase the probability) be a non-trivial factor of n. In order to find element
pairs z;,y; such that y; = z7 mod[n| we can use the polynomial y = f(z) = 2? — n and evaluate
it at different values of x, keeping only values of y which completely factorize between the first
B primes (the factor-base). The sieving will allow us to do this efficiently. The idea is that,
given p, it is easy to find which are the values of f(x) which are divisible by p, because p divides
f(z) if and only if f(z) = 2% —n = 0 mod[n| and this is a quadratic equation in GF(p), having
at most 2 solutions. These solutions are nothing but the square roots of n modulo p (if they
exist). This has a first consequence, i.e. that a prime p will not divide f(x) if n is not a square
mod[p] independently of the value of z. So if we can detect these primes, we can eliminate them
directly from our set of primes. Detecting them is very easy: Using Fermat’s little theorem, we
know that

n?~t = 1 mod[p] , (5.22)

assuming that p do not divide n (which is trivially a reasonable assumption, anyway, because
we are searching a divisor of n). If p is an odd prime, i.e. not 2 (all n are a squares mod|2]),
then calling m = n"= we have that m? = 1 mod[p], so m = +1 mod[p]. This m will prove
to be handy. If n = s? mod[p] then m = sP~! = 1 mod[p]. Conversely, if m = 1 then n is
a square modulo p (not proven here). The number m is called the Lagrange symbol and can
be computed efficiently in one of the firsts stages of the algorithm. Useful primes (those with
m = 1) are roughly a random half of all the first B primes. So now we will keep only this half
and redefine “the first B primes” as “the first B primes with m = 17. Computing the square

root modulo p is a bit more difficult than knowing that it exists, but can also be done efficiently.
p+1 pt1 pt1

2
For instance, the easiest case is when 5= is an integer, then (nT) =n"z =mnmod[p|. As

m =1 (or else there is no solution) then +n T mod|[p] are the required square roots. Once we
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have computed the two solutions f(x,?) = 0 mod|p|, then adding p, 2p,3p, ... to them we will
obtain all x such that f(x) is divisible by p. The sieve idea is to initialize an array with values
of f(x) for consecutive = € [[/n],[v/n] + M] indexed by z, and then for each p in our factor
base to divide the corresponding arithmetic progression of {f(x}? + kp),k = 1,...} by p. At
the end those values which are completely factored between the primes in the factor base will
become 1 (Well, not exactly. Some of them can have multiple times the same prime factor.
But we can set up a threshold instead of 1 below which we consider the number completely
factored. We can recheck afterwards). We take those values and put their factorization in an

array

flry) o flom)

Y41 Qj SRS
: : . : mod|2]
PB ag) cee agn)

The solving phase is conceptually simple: A solution of the homogeneous linear system Av=0
is a {0, 1}vector v which represent correctly the subset .J, in the sense that v; = 1if and only if
1€ J.

The matrix ensemble

Correlations

We have implemented the simplest QS described in [126] in order to analyze the output
matrix ensemble. We attempted to look for correlations in the presence/absence of different
primes in the set of divisors of the variables y;. Specifically we checked that there is virtually no
correlation between rows of the matrix: We have taken one such output matrix (resulting from
the factorization of a product of two 20 digits primes) and computed the covariance between the
corresponding spin variables s;, sy of two rows ry, ry, the averages being taken along different

columns,
(s182) — (51)(52)

Once repeated for all r; < 79, we found that all pairs have correlations in the interval 0 4 0.06,
a proportion of 0.9999 pairs having correlations in 0 4 0.02.

Dependence on “factorization hardness”

We then examined dependence of the resulting distributions of ones per row on the “factor-
ization hardness” of the number n. Typically (depending on the algorithm) the complexity of
factorization depends on the size of the smallest prime divisor of n ®: For instance, trial division
ends in exactly this amount of steps. It was conjectured that this would be reflected in the
structure of the output matrix. We have constructed 25 numbers n with different factor sizes
(from now on, factor type 10410410 will mean a 30 digit number constructed as a product of
tree 10-digit primes) organized as follows:

e 5 of type 20+20

e 5 of type 10+30

>This is why in RSA we choose n = p - ¢ with p,q ~ \/n.
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Figure 5.5: Probability distribution of the number of ones per row in 5 different matrices of
size around 1300. The line is the best power law fit on X > 3 data, giving an exponent ~ —2.2.

e 5 of type 13+13+13
e 5 of type 10+10+10+410
e 5 of type 5+5+54+5+5+5+5+5

All 25 numbers differed between them in less than a 0.01%. We then made QS compute the
factorization matrices, with a factor base of size 1500. This value for the size of the factor base
has been chosen experimentally in order to minimize the sieving phase duration. The resulting
matrices were of size 1500 x 1510 and were then post-processed in order to remove rows and
columns with a single 1. The final size is thus reduced of about 200 columns and rows. The
resulting distributions of ones per row are plotted in fig. 5.5, showing very little variations.
They can be very well described by a unique distribution, which is substantially a power law
with some little deviations in the range of type-2 and type-3 rows. The best fit in the region
X > 3 gives an exponent ~ —2.2. Our conclusion is that statistical properties of the resulting
matrix do not depend on the factorization hardness. The bottleneck for factorizing a large
hard number is mainly determined by the time required by QS to generate the matrix, which
indeed strongly depends on the size of the smallest factor. In the rest of the section we will
analyze the solving phase, assuming the factorization matrix to have uncorrelated rows and the
number of ones per row to be a random variable extracted from distribution in fig. 5.5. These
two assumptions have been experimentally verified.

Linear solving methods

Plain standard Gaussian elimination execution time is cubic in the size of the matrix (our
matrices are almost square). Fortunately, we can pack 32 matrix entries in a single 4-byte word,
and then the sum operation is implemented as the low-cost bit-wise logical XOR operation,
saving a factor 32 in time. As also the matrix is very sparse, instead of keeping in memory
all of it, we can memorize only the position of 1’s. This forbid us to use the factor-32 trick,
but allows us to do the first steps very quickly. At some time in the Gaussian elimination
process (typically more than half of the process), the remaining (non eliminated) part will be
very dense, and then it will be convenient to switch to the standard method above. This is
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Figure 5.6: Phase diagram (a, 7) for a typical choice of s = 2.2 and [,,4, = 200. The bold line
1/(2a) represents the continuous transition, while v4(a) and v.(a) corresponds respectively to
the spinodal and the critical lines of a first order transition. The dot marks the origin of these
lines.

what was done in the solving phase of RSA129. Another option is to use in one of the stages
an iterative algorithms, like the discrete Lanczos. The Lanczos method has the advantage of
having a stable O(N€) total time for a sparse matrix, but finds only one solution (or a prefixed
quantity in the block-Lanczos variant) instead of all of them. For factorization this is not a
problem, because we need only a few solutions to have a reasonable chance. This is the method
that was used in the solving phase of RSA155.

Power law distributed {v;}: Phase diagram and comparison with real application
data

The previous analysis leads to the construction of matrices whose density of non zero entries
follows quite well a power law distribution with light deviations due to rows with a small number
of ones and a cutoff, /,,4, of some hundreds. Then we use the following distribution in the
analytical treatment:

ve = a (5.23)
v = €17 for 3<I<lnew , (5.24)

where ¢ is a normalizing factor equal to (1 —a)/ ¥m5* [=°. The factorized integers considered
in the previous section lead to an exponent s ~ 2.2 and to a non zero support up to [,,q, ~ 200.
The choice of keeping vs, and only v5, as an independent parameter is dictated by the very
difference in the physical behavior of 2-spin terms and [-spin terms with [ > 2. The study of the
phase diagram in the control parameter v for choices of a, s and [,,,,, retrieved from real data
reveals a non trivial behavior. In fig. 5.6 we show the phase diagram for s = 2.2 and [,,,,, = 200.
Only part of the entire phase diagram (a € [0,1], v € [0,1]) is shown for clarity. The lines
further go on smoothly outside the drawn portion. If a is high enough, we are in the rightmost
region I of the phase diagram, where algorithms smoothly find solutions to the system and do
not undergo any critical slowing down. Indeed, crossing the bold hyperbole v = 1/(2a) given by
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Figure 5.7: Dependence on s and [,,,, of the origin of first order critical lines. The bold curve is
the continuous phase transition v = 1/(2a). Each solid bell-shaped curve in the left plot is the
ensemble of such origins, defined as the point where, decreasing a, another non trivial solution
to the saddle point equations appears. Each curve from right to left is indexed by a different
value of [,,,. = 10, 30,100,200, 1000, 2000, 10000. Each point on the curve corresponds to a
particular value of s (the dot is for s = 2.2 and [,,,, = 200 as in fig. 5.6). Along the curve
s increases for decreasing 7 (see right plot). From each point of the curve originate the two
first order critical lines shown for s = 2.2 and [,,,, = 200 in fig. 5.6, and pictorially drawn
for different s values in the right plot. When the origin joins the second order hyperbole the
system is at a tricritical point. Sy.icriticar SCales very rapidly with [,,4, converging to ~ 2.73—2.74
already for [,,,,, ~ 100.
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the condition 0G(m)/0m|, _, = 0, the system undergoes a continuous transition in the order
parameter m, representing the fraction of variables taking the same value in all the solutions.
The problem of finding solutions is always easy, as for the case {a = 1; vy22 = 0}. Decreasing a
we meet a first intermediate region II, where the birth of a meta-stable non-trivial saddle-point
solution at v = vy4(a) is given by the solution of eq. (5.10). However, algorithms should not be
much affected by this meta-stable state, because the system starts magnetizing continuously
before, crossing the bold line. Increasing v up to the critical value 7.(a) one meets a first order
transition, where the magnetization, that was already non-zero, undergoes a further jump. The
second central region IIT shows an inversion between ~,4(a) and the bold line 1/(2a). These two
intermediate regions have not been exhaustively studied yet, because real data all fall in the
leftmost one. The shape of the central part of the phase diagram is very sensitive to the choice
of the control parameters s and k4, as shown in fig. (5.7). The v.(a) curve in the second and
third regions is found solving

S(m*,7e) = S(ma, ve) (5.25)

where m, is the smallest positive solution to G(m) = 0, which corresponds to the magnetization
of the ferromagnetic state arisen from the second order transition (bold line). The points of
crossing showing the onset of different regions, from right to left, are found respectively as:
%f;n) =0 & S(m*,v) = S(m., ), 8657(?) =0&y=5 and S(m*,7) =S5(0,7) &~ = 5.
The leftmost part IV shows the typical behavior described in [19]. Increasing 7 the system
never reaches the continuous transition on the bold line, but it undergoes a first dynamical
transition at v4(a) and second thermodynamical one at 7.(a), found via eq. (5.25) with m, =0
since we are still below the second order transition line. Configurational entropy is non-zero
between ~4(a) and v.(a), and solving algorithms are affected by it. There are typically other
spinodal lines in the phase diagram, but they always correspond to sub-optimal solutions, and
were, therefore, not shown in the picture. The corresponding behavior of the magnetization in
regions I, IT, ITT and IV as well as at the boundaries are shown in fig.( 5.8). There, the lower
curve represents the continuous phase transitions typical of loops percolation in rank 2 graphs.
Indeed, if the fraction v, is high enough, all the previous cluster separation and orthogonality
arguments do not hold, because in region II, prior to clustering, the rank 2 sub-graph one
big enough to form an extensive connected component where usual percolation is attained.
In region III clustering appears before, but that the rank 2 subgraph percolates for a value
of v where the complexity of metastable states is still extensive. Therefore, In region II the
dynamical phese transition is shielded by the continuos one, while in III a first dynamical
transition is present, but the static one is again due to simple 2 loops percolation phenomenon.
In real data the fraction of 2-variables equations is typically of the order of 0.2 and v ~ 1. So we
always work deep into phase IV where, during the solving procedure, the system undergoes a
first dynamical transition, that corresponds to a slowing down of the solving algorithms, before
finding solutions. Notice that whenever the first physical static transition is the continuous one,
the value of the complexity drops to zero. The typical curves for the complexity of the highest
energy density metastable states as a function of y is exemplified if fig. (5.9) for regions IIT and
IV. For the particular form of the v(z) studied in this section and for the limit [,,,, — oo, it
is easy to see that condition (2.218) reads:

3175
C(s) =25 —1+3

The full phase diagram of the model studied in this section can be also retrieved in two different
ways: The first one [26] uses the leaf removal equation for the general p-spin model introduced

(5.26)

Vg =
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the continuous transition due to two loops percolation in the rank 2 sub-graph.
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Figure 5.9: Complexity of GGS in regions III and IV.
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in the first chapter. Specializing the form of the generating function v(z) to the present case
we immediately find the equivalence between eq.(2.203) and the self consistent condition (5.7)
for the magnetization of the ferromagnetic model, as it was already noted in chapter 1. The
instability condition for  analogously follows from eq.(2.204). Moreover, it can be shown
that condition (2.217) is equivalent to the vanishing ferromagnetic complexity threshold used
in this section. The same is obviously true for the continuous threshold 4 and for Vy.icritical,
when present. The second alternative way to solve this model with statistical physics tools
is the general 1RSB-like solution via the cavity method at 7" = 0. Its general strategy was
presented in [23] and [24], applied to the particular case of the p-spin model on uniform rank
Poissonian degree hyper-graphs in [26] and straightforwardly extended in the multiple rank case
in chapter 1. The method has been shown to be equivalent to the replica method on average
samples. Although it is not proven to be exact yet, it can be proven along the same lines of the
calculations presented in chapter 5 to give rigorous upper bounds to the thresholds. Since these
values coincide with the exact ones found via the generalized leaf-removal method, and since
the clustering property of the p-spin in the dynamical region implies the physical exactness of
a 1RSB picture without further symmetry breaking phenomena, we are very confident in the
results.

Overall, we have analyzed the behavior of different type of polynomial algorithms in the
solutions of large-scale linear systems over finite fields. The connection between memory re-
quirements and clustering phase transitions as been made clear on both artificially generated
problem as well as on a “real-world” applications. While the role of the dynamical glass tran-
sition in local search algorithm was already well known (trapping in local minima), we have
provided a clear example of the role of such type of glass transition in global dynamical pro-
cesses which are guaranteed to converge to the global optimum in some polynomial time. The
memory catastrophe found is such cases constitutes a concrete limitation for the performance
of single-machine programs.
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5.2 The dynamic phase transition for decoding algorithms

The content of this section is the output of a collaboration with Andrea Montanari, Silvio Franz
and Federico Ricci-Tersenghi [127].

5.2.1 Introduction

Recently there has been some interest in studying “complexity phase transitions”, i.e. abrupt
changes in the computational complexity of hard combinatorial problems as some control pa-
rameter is varied [128]. These phenomena are thought to be somehow related to the physics
of glassy systems, where the physical dynamics experiences a dramatic slowing down as the
temperature is lowered [129].

Complexity is a central issue also in coding theory [130, 131]. Coding theory [132, 134, 133]
deals with the problem of communicating information reliably through an unreliable channel
of communication. This task is accomplished by making use of error correcting codes. In 1948
Shannon [135] proved that almost any error correcting code allows to communicate without
errors, as long as the rate of transmitted information is kept below the capacity of the channel.
However decoding is an intractable problem for almost any code. Coding theory is therefore a
rich source of interesting computational problems.

On the other hand it is known that error correcting codes can be mapped onto disordered
spin models [38, 136, 137, 138, 139]. Remarkably there has recently been a revolution in
coding theory which has brought to the invention of new and very powerful codes based on
random constructions: turbo codes [140], low density parity check codes (LDPCC) [141, 142],
repetition accumulated codes [143], etc. As a matter of fact the equivalent spin models have
been intensively studied in the last few years. These are diluted spin glasses, i.e. spin glasses
on random hyper-graphs [12, 23, 22, 20].

The new codes are decoded by using approximate iterative algorithms, which are closely
related to the TAP-cavity approach to mean field spin glasses [144, 145]. We think therefore
that a close investigation of these systems from a statistical physics point of view, having in
mind complexity (i.e. dynamical) issues, can be of great theoretical interestS.

Let us briefly recall the general setting of coding theory [132] in order to fix a few notations
(cf. fig. 5.10 for a pictorial description). A source of information produces a stream of symbols.

6The reader is invited to consult Refs. [146, 147, 148, 149, 150, 151, 152, 153, 154, 155] for a statistical
mechanics analysis of the optimal decoding (i.e. of static issues).
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Figure 5.10: A schematic description of how error correcting codes work.
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Let us assume, for instance, that the source produces unbiased random bits. The stream is
partitioned into blocks of length Nypoa. BEach of the possible 2ok blocks is mapped to a
codeword (i.e. a sequence of bits) of length N > Nyjoek by the encoder and transmitted through
the channel. An error correcting code is therefore defined either as a mapping {0, 1}"blocx —
{0,1}", or as a list of 2Vbleex codewords. The rate of the code is defined as R = Nyjoec/N.

Let us denote” the transmitted codeword by x™ = [xI*, ..., xi%]". Due to the noise, a different
sequence of symbols x°% = [x%* ... x%%*|T is received. The decoding problem is to infer x™*

given x°" the definition of the code, and the properties of the noisy channel.

It is useful to summarize the general picture which emerges from our work. We shall focus
on Gallager codes (both regular and irregular). The optimal decoding strategy (maximum-
likelihood decoding) is able to recover the transmitted message below some noise threshold:
p < pe. lterative, linear time, algorithms get stuck (in general) at a lower noise level, and
are successful only for p < py(alg.), with py(alg.) < p.. In general the “dynamical” threshold
pq(alg.) depends upon the details of the algorithm. However, it seems to be always smaller
than some universal (although code-dependent) value p;. Moreover, some “optimal” linear-time
algorithms are successful up to py (i.e. pg(alg.) = pg). The universal threshold p; coincides
with the dynamical transition [129] of the corresponding spin model.

The plan of the section is the following. In Subsection 5.2.2 we introduce low density parity
check codes (LDPCC), focusing on Gallager’s ensembles, and we describe message passing
decoding algorithms. We briefly recall the connection between this algorithms and the TAP-
cavity equations for mean-field spin glasses. In Subsec. 5.2.3 we define a spin model which
describes the decoding problem, and introduce the replica formalism. In Subsec. 5.2.4 we
analyze this model for a particular choice of the noisy channel (the binary erasure channel).
In this case calculations can be fully explicit and the results are particularly clear. Then, in
Subsec. 5.2.5, we address the general case. The Appendices of [127] collect some details of our
computations that we have not included here not to overload this thesis®.

5.2.2 Error correcting codes, decoding algorithms and the cavity
equations

This Subsection introduces the reader to some basic terminology in coding theory. In the first
part we define some ensembles of codes, namely regular and irregular LDPCC. In the second
one we describe a class of iterative decoding algorithms. These algorithms have a very clear
physical interpretation, which we briefly recall. Finally we explain how these algorithms are
analyzed in the coding theory community. This Section does not contain any original result.
The interested reader may consult Refs. [156, 141, 134, 145] for further details.

"We shall denote transmitted and received symbols by typographic characters, with the exception of sym-
bols in {+1,—1}. In this case use the physicists notation and denote such symbols by . When considering
binary symbols we will often pass from the x notation to the o notation, the correspondence o = (—1)* being
understood. Finally vectors of length NV will be always denoted by underlined characters: e.g. x or g.

8The reader should notice that in [127] the notations for the hyper-graph rank and degree probability
distribution and generating funtions are reversed.
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Figure 5.11: The Tanner graph for the #,(3) Hamming code.
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Low density parity check codes are defined by assigning a binary N x M matrix H = {H;;},
with H;; € {0,1}. All the codewords are required to satisfy the constraint

A~

Hx=0 (mod 2). (5.27)

The matrix H is called the parity check matriz and the M equations summarized in eq. (5.27)
are the parity check equations (or, for short, parity checks). If the matrix H has rank M (this
is usually the case), the rate is R =1 — M/N.

There exists a nice graphic representation of eq. (5.27) which is often used in the coding
theory community: the Tanner graph representation [64, 65]. One constructs a bipartite graph
by associating a left-hand node to each one of the /N variables, and a right-hand node to each
one of the M parity checks. An edge is drawn between the variable node i and the parity check
node « if and only if the variable x; appears with a non-zero coefficient in the parity check
equation a.

Let us for instance consider the celebrated Hq(3) Hamming code (one of the first examples
in any book on coding theory). In this case we have N =7, M = 3 and

A~

1001101
H=|0101011]. (5.28)
0010111

This code has 2* = 16 codewords x(®) = [xﬁ"’, . .,xga)]T, with o € {1,...,16}. They are the
solutions of the three parity check equations: x; + x4 + x5 + x7 = 0; %9 + x4 + X6 + x7 = 0;
X3 + X5 + X¢ + x7 = 0 (mod2). The corresponding Tanner graph is drawn in fig. 5.11.

In general one considers ensembles of codes, by defining a random construction of the parity
check matrix. One of the simplest ensembles is given by regular (k,1) Gallager codes. In this
case one chooses the matrix H randomly among all the N x M matrices having k non-zero
entries per row, and [ per column. The Tanner graph is therefore a random bipartite graph
with fixed degrees k and [ respectively for the parity check nodes and for the variable nodes.
Of course this is possible only if M/N =1/k.

Amazingly good codes [158, 159, 157] where obtained by slightly more sophisticated irreqular
constructions. In this case one assigns the distributions of the degrees of parity check nodes
and variable nodes in the Tanner graph. Accordingly to the notations introduced in the first
chapter, We shall denote by {v;} the degree distribution of the check nodes and {¢;} the degree
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Figure 5.12: The information coming from the channel must be used for decoding the #;(3)
Hamming code: a pictorial view.

distribution of the variable nodes. This means that there are N¢y bits of the codeword belonging
to k parity checks and Nwv; parity checks involving [ bits for each k£ and [. In this case, we shall
always assume v; = 0 for [ < 3 and ¢, = 0 for k£ < 2 It is useful to redefine here the generating
polynomials

c(x) = gé ) v(r) = gélel : (5.29)

which satisfy the normalization condition ¢(1) = v(1) = 1. Moreover we define the average
check and variable degrees < [ >=1=1'(1) and < k >= k = ¢/(1). Particular examples of this
formalism are the regular codes, whose generating polynomials are ¢(z) = z*, v(z) = 2.

... and decoding

The codewords are transmitted trough a noisy channel. We assume antipodal signalling: one
sends o' € {+1, —1} signals instead of x™ € {0,1} through the channel (the correspondence
being given by o = (—1)*). At the end of the channel, a corrupted version of this signals is
received. This means that if o' € {+1, —1} is transmitted, the value x°"* is received with prob-

ability density Q(x°"*|o™®). The information conveyed by the received signal x°%! is conveniently
described by the log-likelihood?:

1 QE™+1)
h(x°") = Zlog == ' 7
G = 5 108 Qi — 1)
We can represent this information by wavy lines in the Tanner graph, cf. fig. 5.12.

The decoding problem is to compute the probability for each transmitted bit oi* to take
the value o;, given the structure of the code and the received message x out T,

(5.30)

out _
=[x .. x%

This is in general an intractable problem [130, 131]. Recently there has been a great interest
in dealing with this problem using approximate message passing algorithms.

Message passing algorithms are iterative: at each step t one keeps track of Mk messages
from the variable nodes to the check nodes {y&tLl} and vice-versa {xga} Messages can be

9Notice the unconventional normalization: the factor 1/2 is inserted to make contact with the statistical
mechanics formulation.
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Figure 5.13: A graphic representation of the operations executed in a message passing algorithm.

At the variable node ¢ (on the left): xgt_fll) = F(yé’il,yétlm hi). At the check node « (on the

right): gty = G, 250, 7).

thought to travel along the edges and computations to be executed at the nodes. A node
computes the message to be sent along each one of the edges, using the messages received
from the other (!) edges at the previous iteration (the variable nodes make also use of the
log-likelihoods h(x¢"')), cf. fig. 5.13. At some point the iteration is stopped (there exists no
general stopping criterion), and a choice for the bit o; is taken using all the incoming messages
(plus the log-likelihood A(x$"")).

The functions which define the “new” messages in terms of the “old” ones, can be chosen
to optimize the decoder performances. A particularly interesting family is the following:

nd) = h+ Yl (5.31)
a' i Za
1
D = Earctanh[ I1 tanhgagg'ia], (5.32)
jEQ: j#£L

where we used the notation : € o whenever the bit ¢ belongs to the parity check a. The messages
{xg_),a} and {y&)_n} can be rescaled in such a way to eliminate the parameter ¢ everywhere except
in front of h;. Therefore ¢ allows to tune the importance given to the information contained in
the received message.

After the convergence of the above iteration one computes the a posteriori log-likelihoods
as follows:

Hi=hi+> ) (5.33)
a>t
The meaning of the {H;} is analogous to the one of the {h;} (but for the fact that the H;
incorporate the information coming from the structure of the code): the best guess for the bit
1 is 0; = +1 or 0; = —1 depending whether H; > 0 or H; < 0.

The most popular choice for the free parameter ¢ is ¢ = 1: this algorithm has been invented
separately by R. G. Gallager [141] in the coding theory context (and named the sum-product
algorithm) and by D. Pearl [160] in the artificial intelligence context (and named the belief
propagation algorithm). Also ( = oo is sometimes used (the maz-product algorithm).

The alerted reader will notice that the eqs. (5.31)-(5.32) are nothing but the cavity equations
at inverse temperature ¢ for a properly constructed spin model. This remark is the object of
Refs. [161, 144].

In the analysis of the above algorithm it is convenient to assume that o = +1 for i =
1,..., N. This assumption can be made without loss of generality if the channel is symmetric
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(i.e. if Q(x]+1) = Q(—x| — 1)). With this assumption the h; are i.i.d. random variables with
density

p(h) = Qx(h)|+ D)X (h)], (5.34)

where x(h) is the function which inverts eq. (5.30). In the following we shall consider two
particular examples of noisy channels, the generalization being straightforward:

e The binary erasure channel (BEC). In this case a bit can either be received correctly
or erased'®. There are therefore three possible outputs: {+1,—1,0}. The transition
probability is:

(1—p) ifzx =41, 0 if x°"" = +1,
QE|+1) = p ifx" =0, Qx| —1) = p ifx =0,
0 if x = 1, (1—p) ifx™ = 1.
(5.35)

We get therefore the following distribution for the log-likelihoods: p(h) = (1 — p) doo(h) +
po(h) (where d4 is a Dirac delta function centered at +00). Let us recall that the capacity
of the BEC is given by Cggc = 1 — p: this means that a rate-R code cannot assure error
correction if p > 1 — R.

e The binary symmetric channel (BSC). The channel flips each bit independently with
probability p. Namely

out _ (1 - p) if x° = +1, out| _ p if X = +1,
Q(X |+1) - { P ifxout =1 Q(X | 1)_ (1_p) ifxout = 1.
(5.36)
The corresponding log-likelihood distribution is p(h) = (1 — p) d6(h — hg) + pd(h + hyg),
=1

with hy = arctanh(1 — 2p). The capacity of the BSC is'! Cysc h(p): a rate-R code
cannot correct errors if p > 0gy (R).

?

It is quite easy [162, 156] to write a recursive equations for the probability distributions of
the messages m;(z) and 7,(y):

k-1
Z crk /H dy; T (y;) /dhp (aj —h=> yz> , (5.37)
P i=1
Foaly) = 7 — l/H dx; my(x;) (y — %arctanh lll—[l tanh (3:4) ) (5.38)

=1

T (T) =

= wll

These equations (usually called the density evolution equations) are correct for times ¢t < log N
due to the fact that the Tanner graph is locally tree-like. They allow therefore to predict
whether, for a given ensemble of codes and noise level (recall that the noise level is hidden in
p(h)) the algorithm is able to recover the transmitted codeword (for large V). If this is the case,
the distributions 7m;(z) and 7;(y) will concentrate on z = y = 400 as t — oo. In the opposite
case the above iteration will converge to some distribution supported on finite values of x and
y. In Tab. 5.1 we report the threshold noise levels for several regular codes, obtained using the

10This is what happens, for instance, to packets in the Internet traffic.
1'We denote by h(p) the binary entropy function h(p) = —plog, p— (1 —p) log, (1 —p). It is useful to define its
inverse: we denote by dgv (R) (the so-called Gilbert-Varshamov distance) the smallest solution of h(§) = 1 — R.
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BEC BSC
(I, k) De Pd pe | pa(C=1) | pa(( =2) | pa(¢ = 0)
(6,3) | 0.4882|0.4294 | 0.100 | 0.084 0.078 0.072
(10,5) | 0.4995 | 0.3416 | 0.109 | 0.070 0.056 0.046
(14,7) | 0.5000 | 0.2798 [ 0.109 | 0.056 0.039 0.029
(6,5) | 0.8333]0.5510 | 0.264 | 0.139 0.102 0.078

Table 5.1: The static and dynamical points for several regular codes and decoding algorithms,
cf. egs. (5.31), (5.32).

density evolution method, together with the thresholds for the optimal decoding strategy, see
Ref. [154].

Finally let us notice that the fixed point of the iteration (5.37)-(5.38) is the replica symmetric
order parameter for the equivalent spin model.

5.2.3 Statistical mechanics formulation and the replica approach

We want to define a statistical mechanics model which describes the decoding problem. The

probability distribution for the input codeword to be ¢ = (o1,...,0x) conditional to the
received message, takes the form
1 N
P(o) = E(SH[Q] exp {Z} hiai} : (5.39)

where 0;[0] = 1 if ¢ satisfies the parity checks encoded by the matrix H, cf. eq. (5.27), and
dz(a] = 0 otherwise. Since we assume the input codeword to be o™ = (+1,+1,...,+1), the h;
are i.i.d. with distribution p(h).

We modify the probability distribution (5.39) in two ways:

1. We multiply the fields h; by a weight QA' This allows us to tune the importance of the
received message, analogously to eqs. (5.31) and (5.32). This modification was already
considered in Ref. [154]. Particularly important cases are ( = 1 and ¢ = 0.

2. We relax the constraints implied by the characteristic function 0;[c]. More precisely,
let us denote each parity check by the un-ordered set of bits positions (i, ..., i) which
appears in it. For instance the three parity checks in the Hamming code H5(3), cf. eq.
(5.28), are (1,4,5,7), (2,4,6,7), (3,5,6,7). Moreover let ) be the set of all parity checks
involving k bits (in the irregular ensemble the size of € is N¢i). We can write explicitly
the characteristic function d;[c] as follows:

5;}[@]210_01 II doi---0u,+1), (5.40)

1=3 (i1...5;) €y
where §(-, ) is the Kronecker delta function. Now it is very simple to relax the constraints
by making the substitution §(o;, - - - 0y,, +1) = exp{f[oy, - - -0, — 1]}.

Summarizing the above considerations, we shall consider the statistical mechanics model defined
by the Hamiltonian

H(U):—i Z (03 -0, — 1) —

1=3 (i1...5)€Qy

N
Y hios, (5.41)
=1

@™ |y
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at inverse temperature [3.
We address this problem by the replica approach [163] The replicated partition function
reads

(Z") ~ / [ d\(&)dA(G) e VS (5.42)
with the action
- _ o kB E . L .
SIMA] = kY AG)A() — 7 > v Js(01, ..., F)A(G) - A(F)) — (5.43)
7 =3 1.
o0 Lk . _ E
=Y erlog |DoAG)HG)| —k+ ik
k=2 7
where
Js(31, ... 3) = P Laloro=l) - q(3) = (M Xae), (5.44)

(- being the average over p(h). The order parameters () and \(G) are closely related, at
least in the replica symmetric approximation, to the distribution of messages in the decoding
algorithm [154], cf. eqs. (5.37), (5.38).

In the case of the BEC an irrelevant infinite constant must be subtracted from the action
(5.43) in order to get finite results. This corresponds to taking

Hepc(d) =p+ (1 —p)iss, (5.45)

where &y = (+1,...,+1).

5.2.4 Binary erasure channel: analytical and numerical results

The binary erasure channel is simpler than the general case. Intuitively this happens because
one cannot receive misleading indications concerning a bit. Nonetheless it is an important case
both from the practical [164] and from the theoretical point of view [165, 156, 158].

The decoding algorithm

[terative decoding algorithms for irregular codes were first introduced and analyzed within
this context [158]. Belief propagation becomes particularly simple. Since the knowledge about
a received bit is completely sure, the log-likelihoods {h;}, cf. eq. (5.30), take the values
h; = +o0o (when the bit has been received'?) or h; = 0 (when it has been erased). Analogously
the messages {xga} and {y,&il} must assume the same two values. The rules (5.31), (5.32)
become

(t+1) +oo if either h; = +o00 or y(t,)ﬁ~ = 400 for some o' 3 i (with o/ # «),
Tiva = . ol (5.46)
0 otherwise,
(t+1) +oo if xg'ia = +oo for all the j € a (with j # 1), (5.47)
a—t - : .
0 otherwise.

12Recall that we are assuming the channel input to be ¢i® = +1 fori = 1,...,N.
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There exists an alternative formulation [158] of the same algorithm. Consider the system
of M linear equations (5.27) and eliminate from each equation the received variables (which
are known for sure to be 0). You will obtain a new linear system. In some cases you may
have eliminated all the variables of one equation, the equation is satisfied and can therefore
be eliminated. For some of the other equations you may have eliminated all the variables but
one. The remaining variable can be unambiguously fixed using this equation (since the received
message is not misleading, this choice is surely correct). This allows to eliminate the variable
from the entire linear system. This simple procedure is repeated until either all the variables
have been fixed, or one gets stuck on a linear system such that all the remaining equations

involve at least two variables (this is called a stopping set [165]).

Let us for instance consider the linear system defined by the parity check matrix (5.28).
Suppose, in a first case, that the received message was (0, , 0, %, 0, x,0) (meaning that the bits
of positions 2, 4, 6 were erased). The decoding algorithm proceeds as follows:

X1 +X4+x5+x7 = 0 X4 = 0 0 = 0
Xo+x4+x5+%x7 = 0 =< X9+x4+%x = 0 =< x = 0 . (5.48)
x3+x5+%x+x7r = O X6 = 0 0 = 0

In this case the algorithm succeeded in solving the decoding problem. Let us now see what
happens if the received message is (x, 0, %, 0, , 0, *):

X1 +x4+x5+x = 0 x1+x5+x7 = 0 x1+x = 0
Xo+ x4 +x6+xr = 0 =< x7 = 0 =< 0 = 0 . (5.49)
X3+ X5 +x6+x7 = 0 X3+ X5 +x7 = O X3+x5 = 0

The algorithm found a stopping set. Notice that the resulting linear system may well have a
unique solution (although this is not the case in our example), which can be found by means of
simple polynomial algorithms [166]. Simply the iterative algorithm is unable to further reduce
it.

The analysis of this algorithm [156] uses the density evolution equations (5.37), (5.38) and
is greatly simplified because the messages {xﬁia} and {ys)_n} take only two values. Their
distributions have the form:

mi(2) = pr0(x) + (1 = pr) oo () Tu(2) = pe0(y) + (1 = pr) 9o (y) , (5.50)

where 04 (+) is a delta function centered at +oo. The parameters p and p give the fraction of
zero messages, respectively from variables to checks and from checks to variables. Using eqs.
(5.37) and (5.38), we get:

' (pr) X v'(1 = py)
Pri1 =P J(1) Py =1— o) (5.51)

The initial condition py = py = 1 converges to the perfect recovery fixed point p = p = 0 if
p < pg. This corresponds to perfect decoding. For p > p, the algorithm gets stuck on a non-
trivial linear system: p; — py, Py — Py, With 0 < p,, p, < 1. The two regimes are illustrated in
fig. 5.14.

Static transition

In the spin model corresponding to the situation described above, we have two types of spins:
the ones corresponding to correctly received bits, which are fixed by an infinite magnetic field
h; = 400; and the ones corresponding to erased bits, on which no magnetic field acts: h; = 0.
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Figure 5.14: The evolution of the iterative decoding algorithm on the BEC, cf. egs. (5.51).
Here we consider the (6,5) code: p; 1 = p[l — (1 — p;)°]*. On the left p = 0.5 < py, on the right
p=0.6 > pg.

We can therefore consider an effective model for the erased bits once the received ones are fixed
to +1. This correspond somehow to what is done by the decoding algorithm: the received bits
are set to their values in the very first step of the algorithm and remain unchanged thereafter.

Let us consider the zero temperature limit. If the system is in equilibrium, its probability
distribution will concentrate on zero energy configurations: the codewords. We will have typ-
ically Nyoras(p) ~ 2V swords(P) codewords compatible with the received message. Their entropy
Swords(P) can be computed within the replica formalism as it was explicitly done in [127]. The
result is

. — ~k .
Swords (P, P3p) = kp(1 — p) + 7 c(l—p)+pv(p)— =, (5.52)

i =

which has to be maximized with respect to the order parameters p and p. The saddle point
equations have exactly the same form as the fixed point equations corresponding to the dy-
namics (5.51), namely p = pc(p)/d(1) and p=1—v'(1 — p)/v'(1)

The saddle point equations have two stable solutions, i.e. local maxima of the entropy
(5.52): (i) a completely ordered solution p = p = 0, with entropy Syoras(0, 0) = 0 (in some cases
this solution becomes locally unstable above some noise p.); (ii) (for sufficiently high noise
level) a paramagnetic solution p,, p, > 0. The paramagnetic solution appears at the same value
pq of the noise above which the decoding algorithm gets stuck.

The fixed point to which the dynamics (5.51) converges coincides with the statistical me-
chanics result for p,, p.. However the entropy of the paramagnetic solution Syoras(ps«, fx) is
negative at pg and becomes positive only above a certain critical noise p.. This means that the
linear system produced by the algorithm continues to have a unique solution below p., although
our linear time algorithm is unable find such a solution.

The “dynamical” critical noise p, is the solution of the following equation

¢ (p)" (1 - p.)
PTrme)

=1, (5.53)

where p, and p, solve the saddle point equations. The static noise can be obtained setting
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p(a)

0.3

a

Figure 5.15: The phase diagram of the family of codes with generating polynomials v(z) =
art + (1 — )b, ¢(zr) = az? + (1 — «)2®. The dashed line gives the local stability threshold
for the completely ordered ferromagnetic phase. The continuous and dot-dashed lines refer
(respectively) to the static and dynamic critical points p.(«) and py(«).

Swords(P«; Px) = 0. Finally the completely ordered solution becomes locally unstable for

¢(1)v'(1)

Pioc = W . (5.54)

As an example let us consider the one-parameter family of R = 1/2 codes specified by the
following generating polynomials: v(z) = az* + (1 — a)z° c¢(z) = az? + (1 — @)2®. This is
an irregular code which smoothly interpolates between the regular (6,3) and (4,2) codes. The
local stability threshold is given by

(38— )

= Gl 3a]" (5.55)

ploc(a)

The dynamical and critical curves pg(a) and p.(«) are reported in fig. 5.15. Notice that the
« value where py(a) reaches its maximum, corresponding to the best code in this family, is
neither 0 nor 1. This is a simple example showing that irregular codes (0 < a < 1) are
generally superior to regular ones (¢ = 0 or @ = 1 in this example). Notice also that above
the tricritical point oy ~ 0.79301412, p; ~ 0.39057724 the three curves pyo.(a), p.(a) and pg(cv)
coincide. In the following we shall study in some detail the o = 0 case, which corresponds to a

regular (6, 3) code, the corresponding critical and dynamical points p. and py are given in Tab.
5.1.

Dynamical transition

The dynamical transition is not properly described within the replica symmetric treatment
given above. Indeed, the paramagnetic solution cannot be considered, between py and p.,
as a metastable state because it has negative entropy. One cannot therefore give a sensible
interpretation of the coincidence between the critical noise for the decoding algorithm, and the
appearance of the paramagnetic solution.
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Before embarking in the one step replica symmetry-breaking (1RSB) calculation, let us
review some important concepts on configurational complexuty [7, 167] already introduced and
exploited in the second chapter. Let us call m¢(3, m) the free energy of m weakly coupled
“real” replicas times beta. This quantity can be computed in 1RSB calculation. In the limit
f — oo, with mf = y fixed, we have m¢(3,m) — pu¢(y). The number of metastable states
with a given energy density € is

Nirs(€) ~ eNEE (5.56)
where the complexity ¥(¢) is the Legendre transform of the m replicas free energy:
X(e) = pe — pd(Y)|—opyer) - (5.57)

The (zero temperature) dynamic energy €4 and the static energy €, are!®, respectively, the
maximum and the minimum energy such that 3(e) > 0.
The static energy is obtained by solving the following equations:

€s = ¢(y) )
{ D6(y) = 0, (5.58)

which corresponds to the usual prescription of maximizing the free energy over the replica
symmetry breaking parameter m [163]. The dynamic energy is given by

€q = 8[y¢(y)] )
{ Plyé(y)) = 0. (5:59)

Finally, if €, = 0 the complexity of the ground state is ¥(0) = — lim,_,o, y¢(y).

At the time the calculation were done we weren’t able to exactly compute the 1RSB free
energy ¢(y). After results of [24, 30, 26], exact 1RSB calculations could be redone. However
excellent results can be obtained within an “almost factorized” variational Ansatz, cf. [127].
The picture which emerges is essentially not changed by the exact 1RSB solution , as we have
checked numerically, and is the following:

e In the low noise region (p < pg), no metastable states exist. Local search algorithms
should therefore be able to recover the erased bits.

e In the intermediate noise region (py < p < p.) an exponentially large number of metastable
states appears. They have energy densities € in the range ¢, < € < ¢4, with ¢; > 0.
Therefore the transmitted codeword is still the only one compatible with the received
message. Nonetheless a large number of extremely stable pseudo-codewords stop local
algorithms. The number of violated parity checks in these codewords cannot be reduced
by means of local moves.

e Above p. we have e, = 0: a fraction of the metastable states is made of codewords. More-
over ¥(0) (which gives the number of such codewords) coincides with the paramagnetic
entropy Sywords(P«, Px) computed in the previous Section.

As an illustration, let us consider the (6, 3) regular code. In fig. 5.16 we plot the resulting
complexity curves 3(e) for three different values of the erasure probability p. In fig. 5.17, left

I3Notice that one can give (at least) three possible definitions of the dynamic energy: (i) from the solution

of the non-equilibrium dynamics: e&d); (17) imposing the replicon eigenvalue to vanish: efir); (7i7) using, as in
the text, the complexity X(e): efic). The three results coincide in the p-spin spherical fully connected model,

however their equality in the present case is, at most, a conjecture.
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Figure 5.18: Energy relaxation for the Hamiltonian of the (6,3) regular code during the simu-
lated annealing with 7 MCS per temperature and 1000 equidistant temperatures in [0, 1]

frame, we report the static and dynamic energies ¢, and ¢, as functions of p. In the right frame
we present the total complexity Y, = max, X(€) = X(eg4), and the zero energy complexity
¥(0).

Numerical results

In order to check analytical predictions and to better illustrate the role of metastable states,
we have run a set of Monte Carlo simulations, with Metropolis dynamics, on the Hamiltonian
(5.41) of the (6,3) regular code for the BEC. Notice that local search algorithms for the decoding
problem have been already considered by the coding theory community [168].

We studied quite large codes (N = 10* bits), and tried to decode it (i.e. to find a ground
state of the corresponding spin model) with the help of simulated annealing techniques [169].
For each value of p, we start the simulation fixing a fraction (1 — p) of spins to o; = +1 (this
part will be kept fixed all along the run). The remaining p/N spins are the dynamical variables
we change during the annealing in order to try to satisfy all the parity checks. The energy of
the system counts the number of unsatisfied parity checks.

The cooling schedule has been chosen in the following way: 7 Monte Carlo sweeps (MCS) 4
at each of the 1000 equidistant temperatures between 7' = 1 and 7" = 0. The highest tem-
perature is such that the system very rapidly equilibrates on the paramagnetic energy ep(T).
Typical values for 7 are from 1 to 103.

Notice that, for any fixed cooling schedule, the computational complexity of the simulated
annealing method is linear in N. Then we expect it to be affected by metastable states of energy
€4, which are present for p > py: the energy relaxation should be strongly reduced around ¢,
and eventually be completely blocked.

In order to illustrate how the system relaxes during the simulated annealing we show in
fig. 5.18 the energy density as a function of the temperature for p = 0.4 (left) and p = 0.6
(right) and various cooling rates, 7 = 10,10% 10® (each data set is the average over many
different samples).

MEach Monte Carlo sweep consists in N proposed spin flips. Each proposed spin flip is accepted or not
accordingly to a standard Metropolis test.
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Figure 5.19: Lowest energies reached by the simulated annealing. Errors are sample to sample
fluctuations.

For p = 0.4 < p, the final energy strongly depends on the cooling rate and the slowest
cooling procedure is always able to bring the system on the ground state, corresponding to the
transmitted codeword. Decoding by simulated annealing is therefore successful.

For p = 0.6 > py the situation drastically changes. Below a temperature 7, (marked by
an arrow in fig. 5.18, right frame) there is an almost complete stop of the energy relaxation.
T, marks the dynamical transition and the corresponding energy €;(7y) = €p(1y) is called the
threshold energy. The energy of threshold states still varies a little bit with temperature, €4(7),
and the final value reached by the simulated annealing algorithm is its zero-temperature limit
€4(0) = €. Remember that, by construction, ground states of zero energy are present for any
p value, but they become unreachable for p > py, because they become shielded by metastable
states of higher energy.

We show in fig. 5.19 the lowest energy reached by the simulated annealing procedure for
different p and 7 values. While for p < p, all parity checks can be satisfied and the energy
relaxes to zero in the limit of a very slow cooling, for p > p,; the simulation get stuck in a
metastable state of finite energy, that is with a number of unsatisfied parity checks of order N.
The agreement with the analytic prediction (dotted line) is quite good everywhere, but very
close to pgy.

Discrepancies between analytical predictions and numerical results may be very well due
to finite-size effects in the latter. One possible explanation for large finite-size effects near the
dynamic critical point p, is the following. Metastable states of energy €, are stable under any
local dynamic, which may flip simultaneously only a finite number of spins, and under global
dynamics flipping no more than wN spins simultaneously. Physical intuition (threshold states
become more robust increasing p) imply that the function w(p) must monotonously increase
for p € [pa, 1]. Moreover, continuity reasons tell us that w(py) = 0. The fact that w(p) is
very small close to pg, together with the fact that in numerical simulations we are restricted to
finite values of N, allow the local Monte Carlo dynamic to relax below the analytical predicted
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threshold energy. A more detailed characterization of this effect is presently under study and
will be presented in a forthcoming publication.

5.2.5 The general channel: analytical and numerical results

We considered the case of a general noisy channel using two different approaches: a finite-
temperature and a zero-temperature approach. While the first one offers a clear connection
with the dynamics of decoding-by-annealing algorithm, the second one gives a nice geometrical
picture of the situation.

Finite temperature

Suppose you received some message encoded using a Gallager code and you want to decode it,
but no one explained to you the belief propagation algorithm, cf. eqs. (5.31), (5.32).

A physicist idea would be the following. Write the corresponding Hamiltonian H(g), see
eq. (5.41), and run a Monte Carlo algorithm at inverse temperature . If you wait enough
time, you will be able to sample the configuration ¢ according to the Boltzmann distribution
Ps(o) e=P1@_  Then cool down the system adiabatically: i.e. change the temperature
according to some schedule {51, B, ..., } with fj 1 oo, waiting enough time at each temperature
for the system to equilibrate.

As 8 — oo the Boltzmann measure of the Hamiltonian (5.40) concentrates on the codewords
(for which the exchange term in eq. (5.40) is equal to zero). Moreover each codeword is given
a weight which depends on its likelihood. In formulae:

lim Py(c) = 1 P(a|x*")¢, (5.60)

B—o0 Z&

where P(g|x°")

received message x

is the probability for ¢ to be the transmitted codeword, conditional to the
out and Z ¢ is a normalization constant. Therefore when 5> 1, our algorithm

will sample a codeword with probability proportional to P(g|§°“t)é. For good codes below the

critical noise threshold p,, the likelihood P(g|x°") is strongly concentrated'® on the correct
input codeword. Therefore the system will spend most of its time on the correct codeword as
soon as A>>1and ( > 1 (for ¢ < 1, p. has a non-trivial dependence on , cf. Ref. [154]).
This algorithm will succeed as long as we are able to keep the system in equilibrium at all
temperatures down to zero. If some form of ergodicity breaking is present this may take an
exponentially (in the size N) long time. Let us suppose to spend an O(N) computational time
at each temperature f; of the annealing schedule (this is what happens in Nature). We expect

to be able to equilibrate the system only at low enough noise (let us say for p < pg(()), when
the magnetic field in eq. (5.41) is strong enough for single out a unique ergodic component.

The random linear code limit

Some intuition on the static phase diagram can be gained by looking at the k, — oo limit
with rate R = 1 — k/I fixed, cf [127]. Unhappily, in this limit the dynamic phase transition
disappears: the decoding algorithm is always unsuccessful, as can be understood by looking
at eqs. (5.31)-(5.32). This phenomenon is analogous to what happens in the random energy

5Namely we have P(g'®|x°") = 1 — O(e~*"). This happens because there is a minimum O(N) Hamming
distance between distinct codewords [141].
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0.4

Figure 5.20: The phase diagram for the model (5.40) in the limit k,! — oo with R =1 — k/I
fixed. Here we consider R = 1/6 and ¢ =1 (on the left) and 1.5 (on the right). The rightmost
(i.e. noisier) point for which the ferromagnetic phase is globally stable is always at § = oo,
p =0cv(R) ~ 0.264. Along the dashed line the entropy of the paramagnetic phase vanishes.

model (REM) [170]: the dynamic transition is usually said to occur at infinite temperature.
We refer to Sec. 5.2.5 for further clarifications of this point.

There exist a paramagnetic and a ferromagnetic phases, with free energy densities

fr = =5 og(2cosh Ch))y + = log(1 + tanh 3), (5.61)
fr = —%<h>h- (5.62)

One must be careful in computing the entropy because of the explicit dependence of the Hamil-
tonian (5.40) upon the temperature. The result is that the ferromagnetic phase has zero entropy
sp = 0, while the entropy of the paramagnetic phase is

sp = (log(2coshCh)), — (Chtanh Ch), — (5.63)
—(1 — R)log(l + tanh f) + (1 — R)f(1 — tanh f8) .

In the low-temperature, low-noise region the paramagnetic entropy sp becomes negative. This
signals a REM-like glassy transition [170]. The spin glass free energy is obtained by maximizing
over the RSB parameter m (with 0 < m < 1) the following expression

(1-R

fsq(m) = — B ) log(1 + e~20™) — —(log(2 cosh mCh))y . (5.64)

1
m

The generic phase diagram is reported in fig. 5.20. At high temperature, as the noise level
is lowered the system undergoes a paramagnetic-ferromagnetic transition and concentrates on

the correct codeword. At low temperature an intermediate glassy phase may be present (for
¢ > 1): the system concentrates on a few incorrect configurations.
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Figure 5.21: The dynamical phase transition for a regular (6,5) code (cf. eq. (5.40) with k =6
and [ = 5) with ( = 1.

Theoretical dynamical line

The existence of metastable states can be detected within the replica formalism by the so-
called marginal stability condition. One considers the saddle point equations for the 1RSB
order parameter, fixing the RSB parameter m = 1, ¢f. [127]. The dynamical temperature Ty(p)
is the highest temperature for which a “non-trivial” solution of the equation exists. At this
temperature ergodicity of the physical dynamics breaks down (at least this is what happens
in infinite connectivity mean field models) and we are no longer able to equilibrate the system
within an O(1) physical time (i.e. an O(N) computational time).

We looked for a solution of eqs. (B-3-B-3) in [127] using the population dynamics algorithm
of Ref. [23]. We checked the “non-triviality” of the solution found by considering the variance of
the distributions p(x), p(y) (more precisely of the populations which represent such distributions
in the algorithm).

We consider the (6,5) regular code because it has well separated static and dynamical
thresholds p. and pg, c¢f. Tab. 5.1. The resulting dynamical line for the Hamiltonian (5.40)
with ¢ = 1, is reported in fig. 5.21. The dynamic temperature Tu(p) drops discontinuously
below a noise pd(é): for p < pd(é) the dynamical transition disappears and the system can
be equilibrated in linear computational time down to zero temperature. We get py(1) =~ 0.14,
which is in good agreement with the coding theory results, cf. Tab. 5.1

Numerical experiments

We have repeated for the BSC the same kind of simulations already presented at the end of
Sec. 5.2.4 for the BEC.

We have run a set of simulated annealings for the Hamiltonian 5.41 of the (6,5) regular
code. System size is N = 12000 and the cooling rates are the same as for the BEC, the only
difference being the starting and the ending temperatures, which are now 7" =1.2 and 7" = 0.2
(plus a quench from 7" = 0.2 to 7" = 0 at the end of each cooling). This should not have any
relevant effect because 0.2 < T, =~ 0.6.

The important difference with respect to the BEC case is that now we have no fixed
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Figure 5.22: Energy relaxation for the Hamiltonian of the (6,5) regular code during the simu-
lated annealing with 7 MCS per temperature and 1000 equidistant temperatures in [0.2,1.2].
Notice that, in both cases p > p;. The dot-dashed line is the theoretical prediction for the
paramagnetic exchange energy.

spins, all N spins are dynamical variables subject to a random external field of intensity
h = (1/f5)arctanh(l — 2p), cf. eq. (5.41).

Also here, as in the case of the BEC, the energy relaxation for p > py undergoes a drastic
arrest when the temperature is reduced below the dynamical transition at Ty, see fig. 5.22.

Unfortunately, in this case, we are not able to calculate analytically the threshold energy
€4(0), but only the dynamical critical temperature T, and then the threshold energy at the
transition €4(7y) which is higher than €4(0). The difference Ae = €4(7) — €4(0) is usually not
very large (see e.g. the BEC case), but it becomes apparent when p is decreased towards pg.
Indeed for p = 0.25 (fig. 5.22 left) the Metropolis dynamics is still able to relax the system for
temperatures below T and then it reaches an energy well below €4(7;). On the other hand for
p = 0.5 (fig. 5.22 right), where Ae is small the relaxation below T} is almost absent and the
analytic prediction is much more accurate. Notice that for this case we have run a still longer
annealing with 7 = 10%: the asymptotic energy is very close to that for 7 = 10® and hardly
distinguishable from the analytical prediction.

In fig. 5.23 we report the lowest energy reached by the simulated annealing for many values
of p and 7 = 10,10%,103, together with the analytic calculation for the threshold energy at
Ty. This analytical value is an upper bound for the true threshold energy €,4(0) where linear
algorithms should get stuck, but it gives very accurate predictions for large p values where Ae
is very small. In the region of small p a more complete calculation is needed.

Zero temperature

This approach follows from a physical intuition that is slightly different from the one explained
in the previous paragraphs. Once again we will formulate it algorithmically. For sake of
simplicity we shall refer, in this Section, to the BSC. We refer to the Appendices of [127] for
more general formulae.
The overlap between the transmitted codeword and the received message
1 N

qin,out _ N Z Uénalg)ut , (565)

1=1
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Figure 5.23: Lowest energies reached by the simulated annealings. Errors are sample to sample
fluctuations. The theoretical prediction €4(7y) is computed using the results in fig. 5.21 for

Tu(p).

is, typically, ¢™°" = 1 — 2p. Given the received message, one can work in the subspace of

all the possible configurations which have the prescribed overlap with it'®, i.e. all the o such
that (1/N) XY, 0,09 ~ (1 — 2p). Once this constraint has been imposed (for instance in
a Kawasaki-like Monte Carlo algorithm) one can restrict himself to the exchange part of the
Hamiltonian (5.40) Hexen(a) = — 32 32 and apply the cooling strategy already
described in the previous Section.

Below the static transition p. there exists a unique codeword having overlap (1 — 2p) with
the received signal. This is exactly the transmitted one ¢'™. This means that ¢ is the unique
ground state of Hec, (o) in the subspace we are considering. If we are able to keep our system
in equilibrium down to 17" = 0, the cooling procedure will finally yield the correct answer to
the decoding problem. Of course, if metastable states are encountered in this process, the time
required for keeping the system in equilibrium diverges exponentially in the size.

We expect the number of such states to be exponentially large!:

il...il) Uil e O—il

Nurs(e, glp) ~ erle0) (5.66)

where € is the exchange energy density Hexen(c)/N. Notice that we emphasized the dependence
of these quantities upon the noise level p. In fact the noise level determines the statistics of the
received message o°'*. The static threshold is the noise level at which an exponential number
of codewords with the same overlap as the correct one (¢ = 1 — 2p) appears: £,(0,1—2p) > 0.
The dynamic transition occurs where metastable states with the same overlap begin to exist:
¥,(e,1 —2p) > 0 for some € > 0.

160f course this is true up to O(N~1/2) corrections. For instance one can work in the space of configurations
o such that (1 —2p—0)N < Zf;l 009" < (1 —2p+ §)N, for some small number §.
"For a related calculation in a fully connected model see Ref. [171].
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The random linear code limit

It is quite easy to compute the complexity X, (¢, ¢) in the limit k,1 — oo with rate R =1 —k/I
fixed. In particular, the zeroth order term in a large £, [ expansion can be derived by elementary
methods.

In this limit we expect the regular (I, k) ensemble to become identical to the random linear
code (RLC) ensemble. The RLC ensemble is defined by taking each element of the parity check
matrix H , cf. eq. (5.27) to be 0 or 1 with equal probability. Distinct elements are considered
to be statistically independent.

Let us compute the number of configurations ¢ having a given energy and overlap with the
received message g°"*. Given a bit sequence x # 0, the probability that L out of M equations
I—AIK = 0 are violated is

Pr,= ( ]‘LI ) 2~ M. (5.67)

Therefore the expected number of configurations x which violate L checks and have Hamming
distance W from the received message x°"* is

Nw.r = 5W,Wzout5L,0[1 —27M 4 ( I]/IV/ ) ( ]\g ) =M (5.68)

where Wyoue is the weight of x°™, i.e. its Hamming distance from 0. Notice that, up to

exponentially small corrections, the above expression does not depend on x°"t.
Introducing the overlap ¢ =1 — 2W/N and the exchange energy density ¢ = 2L/N, we get
J\_/WJ, ~ 2NE(e,q) with

Y(6,q) =h[(1 —¢)/2]+ (1 - R)h[e/2(1 - R)] - (1 - R). (5.69)

The typical number N’%FL of such configurations can be obtained through the usual REM
construction: N5 ~ 2V¥(D when $(e, ¢) > 0 and N5 = 0 otherwise.

Now we are interested in picking, among all the configurations having a given energy density
e and overlap ¢, the metastable states. In analogy with the REM, this can be done by elimi-
nating all the configurations such that 8, X(e, ¢) < 0. In other words, the number of metastable
states is Nysg(e, q) ~ 2V29) with X(e, ¢) = S(e, ¢) when (e, q), 02 (e,q) > 0, X(e, q) = —o0
otherwise.

In fig. 5.24 we plot the region of the (e, ¢) plane for which X(e,¢) > 0, for R = 1/2 codes.
Notice that, in this limit 3(e, ¢) does not depend on the received message ¢®** (and, therefore,
is independent of p). As expected we get p. = dgv(R) and pg = 0.

In order to get the first non-trivial estimate for the dynamical point py, we must consider
the next term in the above expansion. This correction can be obtained within the replica
formalism, see [127]. In fig. 5.25 we reproduce contour of the region {(e,¢) : X,(¢,q) > 0} for
a few regular codes of rate R = 1/2: (I,k) = (6,3),(10,5),(14, 7). The main difference between
these curves and the exact results, cf. Sec. 5.2.5, is the convexity of the upper boundary of the
¥,(e,q) > 0 region (dashed lines in figs. 5.24 and 5.25).

The corresponding estimates for p. and p, are reported in Tab. 5.2.
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Figure 5.25: Metastable states for regular ([, k) codes in a large-k,l expansion, at fixed rate
R =1/2. We consider (from bottom to top) (I, k) = (6, 3), (10,5), (14,7). On the left we show
the region where ¥,_¢(¢,¢) > 0. On the right we consider instead 3, (¢, 1 — 2p).

| (LE) | pe | pa(1) |
(6,3) | 0.097 | 0.071
(10,5) | 0.108 | 0.060

5)
(14,7) | 0.109 | 0.049
(6,5) | 0.264 | 0.108

Table 5.2: Dynamical and static thresholds at the first nontrivial order in a large k,l expansion,
cf. Tab. 5.1.
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Figure 5.26: The configurational entropy versus the energy for the (6,5) regular code. Symbols
refer to various noise levels. From top to bottom p = 0.5,0.4,0.35,0.3,0.25, 0.2,0.18,0.155.
Continuous lines give the result of a variational computation, cf. App. E.

The complete calculation

The full 1RSB solution for can be obtained through the population dynamics method [23].
Here, as in Sec. 5.2.5, we focus on the example of the (6,5) code. In fig. 5.26 we plot the
configurational entropy as a function of the energy of the states along the lines of constant g,
together with the corresponding results obtained within a simple variational approach, briefly
introduced in the Appendix. The approximate treatment is in quantitative agreement with the
complete calculation for e < €4, but predicts a value for the threshold energy which is larger
than the correct one: €;*" > €4. Here €;*" ~ 0.127 and almost p-independent.

Unhappily the estimate of the dynamic energy obtained from this curves is not very precise.
Moreover, at least two more considerations prevent us from comparing these results with the
ones of simulated annealing simulations, cf. Sec. 5.2.5: (i) In our annealing experiments the
overlap with the received message o is free to fluctuate; (i¢) We cannot exclude the 1RSB
solution to become unstable at low temperature.

However the population dynamics solution give the estimate py; < 0.155. This allows us to
confirm that the point p; = 0.139 where the decoding algorithm fails to decode, cf. Tab. 5.1,
coincides with the point where the metastable states appear.

5.2.6 Conclusions

We studied the dynamical phase transition for a large class of diluted spin models in a random
field, the main motivation being their correspondence with very powerful error correcting codes.

In a particular case, we were able to show that the dynamic critical point coincides exactly
with the critical noise level for an important class of decoding algorithms, cf. Sec. 5.2.4. For a
general model of the noisy channel, we couldn’t present a completely explicit proof of the same
statement. However, within numerical precision, we obtain identical values for the algorithmic
and the statistical mechanics thresholds.

It may be worth listing a few interesting problems which emerge from our work:

e Show explicitly that the identity between statistical mechanics and algorithmic thresholds
holds in general. From a technical point of view, this is a surprising fact because the two
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thresholds are obtained, respectively, within a replica symmetric, cfr. egs. (5.37), (5.38),
and a one-step replica symmetry breaking calculations.

e We considered message-passing and simulated annealing algorithms. Extend the above
analysis to other classes of algorithm (and, eventually, to any linear time algorithm).

e Message passing decoding algorithms get stuck because they are unable to decode some
fraction of the received message, the “hard” bits, while they have been able to decode the
other ones, the “easy” bits. A closer look at this heterogeneous behavior would be very
fruitful.
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Chapter 6

Determining bounds

6.1 Variational bounds for optimization problems and
spin systems

In this final chapter we generalize to the case of diluted spin models and random combinatorial
optimization problems a technique recently introduced by Guerra (cond-mat/0205123) to prove
that the replica method generates variational bounds for disordered systems. We analyze
a family of models that includes the Viana-Bray model, the diluted p-spin model or random
XOR-SAT problem, and the random K-SAT problem, showing that the replica method provides
an improvable scheme to obtain lower bounds of the free-energy at all temperatures and of
the ground state energy. In the case of K-SAT the replica method thus gives upper bounds
of the satisfiability threshold. The replica method [176, 2|, originally devised as a trick to
compute thermodynamical quantities of physical systems in presence of quenched disorder, has
found applications in the analysis of systems of very different nature, as Neural Networks,
Combinatorial optimization problems [2, 35, 27|, Error Correction Codes [27] etc. Although
many physicists believe that the method, within the Replica Symmetry Breaking scheme of
Parisi [2], is able to potentially give the exact solution of any problem treatable as a mean field
theory, the necessary mathematical foundation of the theory is still lacking, after more then 20
years from its introduction in theoretical physics. The last times have seen a growing interest
of the mathematical community in the method, leading to important but still partial results,
confirming in certain cases the replica analysis, with more conventional and well established
techniques [177]. Apart the remarkable exception of the analysis of the fully connected p-spin
model in ref. [178] and the rigorous analysis of Random Energy Models [179], the analysis of
the mathematicians has been, as far as we know, restricted to the high temperature regions
and/or to problem of replica symmetric nature. Very welcomed have been the techniques
recently introduced by Guerra and Toninelli [60] which allow rigorous analysis not relying
on the assumption of high temperature, and valid even in problems with replica symmetry
breaking. Along these lines, an important step towards the rigorous comprehension of the
replica method, has been undertaken in [60], where it has been shown how in the case of the
Sherrington-Kirkpatrick model, and its p-spin generalizations, the replica free-energies with
arbitrary number of replica symmetry breaking steps constitute variational lower bounds to
the true free-energy of the model. As stated in that paper, the analysis is restricted to fully-
connected models, whose replica mean field theory can be formulated in terms of a single
n X n matrix. However, in recent times, many of the more interesting problems analyzed with
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replica theory pertain to the so called “diluted models” where each degree of freedom interacts
with a finite number of neighbors. The introduction of a “population dynamics algorithm”
[23] has allowed to treat in full generality -within statistical precision- complicated sets of
probabilistic functional equations appearing in the one step symmetry broken framework of
diluted models. The same algorithm has been used as a starting point of a generalized “belief
propagation” algorithm for optimization problems [145, 30]. Furthermore, at the analytic level,
simplifications due to graph homogeneities in some cases [22], and to the vanishing temperature
limit in some other cases [9] have led to supposedly exact solutions of the ground state properties
of diluted models, culminated in the resolution of the random XOR-SAT on uniform graphs
in [22] and the random K-SAT problem in [30] within the framework of “one-step replica
symmetry breaking” (1RSB). The aim of this chapter, is to show that the replica analysis of
diluted models provides lower bounds for the exact free-energy density, and ground state energy
density. We analyze in detail the cases of the diluted p-spin model on the Poissonian degree
hyper-graphs also known as random XOR-SAT problem and the random K-SAT problems. We
expect that along similar lines free-energy lower bounds can be found for many other diluted
cases. The Guerra method we use sheds some light on the meaning of the replica mean field
theory. The physical idea behind the method is that within mean field theory one can modify
the original Hamiltonian weakening the strength of the interaction couplings or removing them
partially or totally, and compensate this removal by some auxiliary external fields. In disordered
systems these fields should be random fields, taken from appropriate probability distributions
and possibly correlated with the original values of the quenched variables eliminated from the
systems. One is then led to consider Hamiltonians interpolating between the original model
and a pure paramagnet in a random field, and by means of these models achieving free-energy
lower bounds. We will see that the RS case corresponds to assuming independence between the
random fields and the quenched disorder. The Parisi RSB scheme, assumes at each breaking
level a peculiar kind of correlations, and gives free-energy bounds improving the RS one. The
chapter is organized in this way: in section 6.1.1 we introduce some notations that will be
extensively used in the following sections. In section 6.1.2 we introduce the general strategy
to get the replica bounds We then specialize to the replica symmetric and the one step replica
symmetry broken bounds, giving the results in the p-spin and the K-SAT cases. Conclusions
are drawn in section 6.1.5. In the appendices some details of the calculations in both the p-spin
and the K-SAT cases are shown. Our results will be issue of explicit calculations. Although at
the end we will get bounds, formalizable as mathematical theorems, the style and most of the
notations of the chapter will be the ones of theoretical physics.

6.1.1 Notations

Since the aim of this chapter is to obtain rigorous results, it is necessary to review and extend
here some notations already introduced at beginning. The spin models we will consider in this
work are defined by a collection of N Ising +1 spins S = {Si,..., Sy}, interacting through
Hamiltonians of the kind

M
H(a)(sa‘]) = ZHJ(#)(Si/iLJ"‘JSiZ) (61)
pn=1

where the indices i} are i.i.d. quenched random variables chosen uniformly in {1,..., N}. We
will call each term H ., a clause. The subscript J® in the clauses indicates the dependence
on a single or a set of quenched random variables, as it will be soon clear. The number of
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clauses M will be taken to be proportional to N. For convenience we will choose it to be for
each sample a Poissonian number with distribution (M, aN) = e=*N % The fluctuations
of M will not affect the free-energy in the thermodynamic limit, and this choice, which slightly
simplify the analysis, will be equivalent to choosing a fixed value of M equal to aN. The clauses

themselves will be random. The p-spin model[19] has clauses of the form

This form reduces to HJ(#)(SZ-T, Sig) = J!SpuSie in the case of the Viana-Bray spin glass p = 2.
In both cases the J# will be taken as i.i.d. random variable with regular symmetric distribution
p(J) = p(—J). Notice that for pu(J) = 1/2[0(J+1)+0(J —1)] the model reduces to the random
XOR-SAT problem [82] of computer science. The random K-SAT clauses have the form [9]

P .
H o (Sgy ooy Si) = [ —5—, (6.3)

P

where the Ji, = £1 are i.i.d. with symmetric probability. (The number p of spin appearing in
4

a clause is usually called K in the K-SAT problem, for uniformity of notation we will deviate
from this convention). Notice that in all cases, on average each spin participate to o = %
clauses, and that the set of spins and interactions defines a random diluted hyper-graph of
uniform rank p and random local degree with Poissonian statistics in the thermodynamic limit.
At high enough temperature, the existence of the free-energy in the thermodynamic limit for
models of this kind has been proved in by Talagrand in [180], together with the validity of the
RS solution. A proof valid at all temperature based on the ideas presented in this chapter, can
be obtained for even p in analogy of the analysis in [60] for long range models. We sketch it in
appendix C in the case of the p-spin model.
In establishing the free-energy bounds we will need several kind of averages:

e The Boltzmann-Gibbs average for fixed quenched disorder: given an observable A(S)

_ s A(S) exp(-BH(S, J))

w(A) 7

(6.4)

where Z = Y gexp(—fH(S,J)) and f is the inverse temperature. Obviously, w(A), as
well as Z will be functions of the quenched variables, the size of the system and the
temperature. This dependence will be made explicit only when needed.

e The disorder average: given an observable quantity B dependent on the quenched vari-
ables appearing in the Hamiltonian, we will denote as F/(B) its average. This will include
the average with respect to the .J variables and the choice of the random indices in the
clauses as well as with respect to other quenched variables to be introduced later.

e We will need in several occasion the “replica measure”
QA ..., An) = E(w(4)..w(Ay)) (6.5)
and some generalizations that we will specify later.

e We will occasionally use other kinds of averages, as well as other notations, for which
we will use an angular bracket notation, with a subscript indicating the variable(s) over
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which the average is performed. e.g. an average over a random variable u with probability
distribution Q(u) will be denoted equivalently as [ duQ(u)(-) = [dQ(u)(-) = (-),. Anal-
ogously, averages over distribution families of Q(u) will be denoted as [dQQ(Q)() =
IDA(Q)(-) = (-)g. Subscripts will be omitted whenever confusion is not possible.

e Another notation we will have the occasion to use in the one for the overlaps among [
spin configurations {S{", ..., S{*}, out of a population of n {S}, ..., S"}:

1N
g(ema) = ~ SoSM. LSt (1<a,<n V), (6.6)
i=1
and in particular
1 1 J 1
i=1

This notation will be extended to multi-overlaps in the 1RSB case, as we will specify in
section 6.1.4.

In the following we will need to consider averages where some of the variables are excluded,
e.g. the averages when a variable u?' is erased. These average will be denoted with a subscript
—uf e.g. if an w average is concerned the notation will be w(-) k- Other notations will be
defined later in the text whenever needed. l

Our interest will be confined to bounds to the free-energy density Fy = —ﬂLNElogZ and
the ground state energy density Ugs = limy_, 1/NE [min (Uy)] valid in the thermodynamic

limit, so that O(1/N) will be often implicitly neglected in our calculations.

6.1.2 The general strategy

The strategy to get the replica bound is a generalization of the one introduced by Guerra in
the case of fully connected models [60]. We will consider models which will interpolate between
the original ones we want to analyze and pure paramagnet in random fields with suitably
chosen distribution. The underlying idea is that, given the mean field nature of the models
involved, if one was able to reconstruct the real local fields acting on a given spin variable via
a given hyper-edge, and to introduce auxiliary fields acting on that variable in such a way to
energetically balance the deletion of the hyper-edge, then it would be possible to have an exact
expression for the free-energy in terms of such auxiliary fields even when the whole edge set was
emptied. A single step in the iteration procedure is exemplified in fig (6.1), where the deletion
of a clause parallels the insertion of a spin variable in the original formulation of the cavity
method. Indeed, the two procedures can be seen to be equivalent on average on poissonian
hyper-graphs, as the results of this chapter will confirm. However, if the replacement is done
with some approximate form of the auxiliary fields distribution function, the real free-energy
will be the one calculated using the approximate fields plus an excess term at every step of
the graph deletion process. The proof of the definite sign of this excess term gives a way to
determine bounds for the thermodynamic quantities. We will prove the existence of replica
lower bounds to the free-energy density of the p-spin model and the random K-SAT problem.
In this last case our result proves that the recent replica solution of [30] gives a lower bound
to the ground state energy and therefore an upper bound for the satisfiability threshold. The
proofs will strictly hold in the N — oo limit, due to the presence of corrections of order 1/N
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Figure 6.1: Erasure of a clause and corresponding injection of balancing fields for the particular
case of function nodes of degree three.

in the calculated expressions for any finite size graph. Moreover, our proofs will be restricted
to the p-spin model the the K-SAT with even p. In the cases of odd p the same bound would
hold if one could rely on some physically reasonable assumptions on the overlap distribution
(see below). Our analysis will start from the TAP (Cavity) equations for the models [181, 23],
and their probabilistic solutions implied by the cavity, or equivalently the replica method at
various degrees of approximation. We will consider in particular the replica symmetric (RS)
and one step replica symmetry broken solutions, but it should be clear from our analysis how
to generalize to more steps of replica symmetry breaking. In the TAP/cavity equations one
singles out the contribution of the clauses and the sites to the free-energy and defines cavity
fields hg“ ) and uff) respectively as the local field acting on the spin 7 in absence of the clause
and the local field acting on i due to the presence of the clause p only. If we define Zy[S;] as the
partition function of a given sample with /V spins where all but the spin ¢ are integrated, Fn _;
the free-energy of the corresponding systems where the spin S; and all the clauses it belongs to
are removed, we can write,

B 4 —BH () (Site Sy s Sy )+ 3 W B S
ZICTEE R | D D

peT; Si,u,...,Siu
2 P
_ . ; (1) g.
= e PPN H Bﬁ(f)eﬁ““ Si (6.8)
neET;

. . . : (i)
where 7T; is the set of clauses containing the spin ¢, and the constant Bl(j) = e PAF7 can be

interpreted as suitable shifts in the free-energy due to the contribution of the clause y for fixed
value of the spin 7. We notice that denoting J* as .J, and renaming the fields in (6.8) into
hi,...,hy_1, eq. (6.8) defines functions

U,](hl,...,hpfl) and BJ(hl,...,hpfl) . (69)
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Figure 6.2: Diagrammatic representation of the relations for g, v and h fields acting on spin S.
The cavity solution closes under the condition g — h. The hyper-edge interaction is drawn in
the factor-graph notation.

The equation are closed by the self-consistent condition:

P =3 (6.10)

v
ve{T;—pu}

These equations are at the basis of iterative algorithms such as the “belief propagation” or “sum-
product” know for a long time in statistical inference [160] and coding theory [141] and the more
recently proposed algorithm of “survey propagation”[30]. Conditions (6.8) and (6.10) can be
diagrammatically represented as in fig.(6.2). The cavity fields solutions of (6.8,6.10) are random
variables which fluctuate for two reasons [2, 23, 24]. First, they differ from sample to sample.
Second, within the same sample the equations can have several solutions which can level-cross.
The cavity/replica method provides under certain assumption probabilistic solutions. In the
RS approximation, one just supposes a single solution to give the relevant contribution in a
given sample. The sample to sample fluctuation induce probability distributions P(h) and Q(u)
whose relations implied by (6.8,6.10) are:

P(h) = ;wp% /du1 Q(ur)...dug Q(ug)d(h — ;uk) (6.11)
Q(U) = /dh1 P(hl)...dhp_l P(hp_l)(é(u - Uj(hl, ceey hp_l))>J (612)

where (), denotes the average over the random variables appearing in a clause. In addition
to sample to sample fluctuations, the 1RSB solution assumes fluctuations of the fields from
solution to solution of the equations, so that the functions P(h) and @Q(u) will be themselves
randomly distributed according to some functional probability distributions P(P) and Q(Q)
related by the self-consistency equations [12]

Q(Q) = [ DPP(P)..DF, PP, )(Q() = QUIP1 - By D))y (6.13)
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Pp) = 3 8L [1[D0QQIPH ~ PG Q) (6.14)

where:

Q(U,|P1, ...,Pp_l,H) == NP[Pl, ceey Pp—l] /dhl Pl(hl)...dhp_l Pl(hp_l)BJ(hl, ceey hp_l)m .

d(u —ug(hy,y ..., hy—1)) (6.15)
PUHQu Q1) = NoalQ1veen Q] (2eosh(31)" [ [T il

o(h =" w) (6.16)

where N x[Q1, ..., Qk] and N¢[Gh, ..., G, 1] insure normalization and Bj(gi, ..., gp—1) is a rescal-
ing term of the form (6.9) that can be re-absorbed in the normalization in the case of the p-spin
model. Its form for the K-SAT case is given in the appendix. m is a number in the interval
(0, 1], which within the formalism selects families of solutions at different free-energy levels.
The physical free-energy is estimated maximizing over m.

The interpretation of these equations has been discussed many times in the literature [2,
23, 24]. We will show here, that such choices in the field distributions result in lower bounds
for the free-energy analogous to the ones first proved by Guerra in fully connected models. In
order to prove these bounds, we will have to consider auxiliary models where the number of
clauses alN will be reduced to atN (0 < ¢t < 1), while this reduction will be compensated in
average by some external field terms of the kind:

ki
HY, =33l (6.17)

i ;=1

where the numbers k; will be i.i.d. Poissonian variables with average ap(l —t). The diagram-
matic picture is similar to the cavity one, as seen in

As the notation suggests, the fields u! will play the role of the cavity fields u/(f) of the TAP
approach, and they will be i.i.d. random variables with suitable distribution. Indeed, for each
field u we will chose in an independent way p — 1 primary fields g/ (n=1,..,p—1) and
clause variables le” such that the relation

Ui’ = ujfi,n(géi’l...géi’p_l) (618)

is verified. Notice that the compound Hamiltonian
HiglS] = HO[S] + H[S) (6.19)

will constitute a sample with the original distribution for ¢ = 1, while it will consist in a system
of non interacting spins for £ = 0. The key step of the procedure, consists in the choice of the
distribution of the primary fields gf We will also find useful to define fields h; verifying

ki

h; = Zuﬁ (6.20)

=1

The field u are related to the g¢’s by a relation similar to (6.8), while the h’s are related to
the u’s by a relation similar to (6.10). Of course, the statistics of the fields h and the g¢’s
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do coincide in the TAP approach. It is interesting to note that the bounds we will get, are
optimized precisely when their statistical ensemble coincide. As we mentioned, various Replica
bounds are obtained assuming for the fields gf the type of statistics implied by the different
replica solution. So, the Replica Symmetric bound is got just supposing the field as quenched
variables completely independent of the quenched disorder and with distribution G(g). For the
one-step RSB bound on the other hand the distribution G will itself be considered as random,
subject to a functional probability distribution G[G]. More complicated RSB estimates, not
considered in this chapter, can be obtained along the same lines. The case of the fully connected
models considered by Guerra can be formalized in this way where the various field distributions
involved are Gaussian.

6.1.3 The RS bound

We consider in this case i.i.d. fields v and h distributed according probabilities Q(u) and P(h)
verifying the following relation with the distribution Q)(g) of the primary fields.

Q) = / gy G (1) gy 1 Ggy-1) (0 — s (g1, gp-1)))s (6:21)
P(h) = P(hlk)n (k- ap(l — 1)) (6.22)
P(hlk) = /du1 Q). Qur)3(h = 3 ) (6.23)

The distribution G(g) will be chosen to be symmetric under change of sign of g, and regular
enough for all the expression below to make sense. The RS bound can now be obtained following
a procedure to the one of Guerra for the SK model, and considering the ¢ dependent free-energy;
with obvious notation:

F(t) = lim Fy(t) = lim —BLNElogZN() (6.24)

N —o0 N—00

where E represents the average over all the quenched variables, the one defining the clauses
and the external fields. We then consider the ¢ derivative of Fiy

d 1 d
—Fy(t) = ———E(logZ 6.25
As in [60] we will then write
Lo d
0) +/ dt S F(t) (6.26)
0 dt

and show, by an explicit computation, that, up to O(1/N) terms that will be systematically
neglected, the expression coincides with the variational RS free-energy plus a remainder. In
fortunate cases this term will have negative sign and neglecting it will immediately result in
a lower bound for the free-energy. This happens in the Viana-Bray model, the p-spin and the
K-SAT for even p. In the cases of odd p we were not able to prove the sign definiteness of the
remainder, although as we will discuss we believe this to be the case on a physical basis.

The time derivative of F' take contributions from the derivative of the distribution of the
number of clauses M

dr(M,atN)

p” = —Na(r(M,atN) —n(M — 1, atN)) (6.27)
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and the distribution of the number of u fields on each site
dr (ki ap(l —t))
dt

= ap(m(ks, ap(l — 1)) — m(k; — 1, ap(l —1))) (6.28)
so that:

%ElogZ(t): ~No S(r(M, 01N — (0 ~ 1,01N)) ' o5 Z(1)

+ap22 (ki,ap(1 —t)) — 7w(k; — 1,ap(1 —t)))E!' log Z(t) (6.29)

where we have denoted as E’ the average with respect to all the quenched variables except M
and with E!' the average with respect to all the quenched variables except k;, and simply Z(t)
the partition function of the N spin system Zy(t).

In the first term of (6.29) we can single out the M-th clause, and write

M) ar s (6.30)

where by Z_,;(t) we denote the partition function of the system in absence of the M-th clause,
and w(-)_ s is the canonical average in absence of the M-th clause. In the following terms

we single out the ki-th field u term, Z(t) = Z_ &, (t)w(eﬂ“fisi)i ki, where Z_ 1 (t) is the par-

ki uli
tition function in absence of the field —u!* and analogously for the average w(-) i

Z(t)=Z y(t)w(e

;. Finally,
rearranging all terms we find
d - "
S Blog Z(t) = NaZ(w(M _ 1, atN))E' loglw(e o0 GatSiy )
—pazz — 1, ap(1 — ) E} loglw (™' %) _ 1], (6.31)

where we have used Y- m(M — 1,atN)E'log Z = Y, (ki — 1, ap(l — t))E} log Z k=
FElog Z. We notice at this point that the statistical ensemble defined by 7(M —1,atN))E’ can
be substituted with the original one E and the average of the variables appearing in the clause we
have singled out. To be more precise, we remark that the average w(-) depends on the quenched
variables D = {J,u} appearing in the Hamiltonian. Writing explicitly this dependence as
w(+|D), and denoting as D_,; all the quenched variables except the ones appearing in the M-th
clause, our statement is that thanks to the Poissonian distribution of M and the uniform choice

of the indices of each clause,

> (m(M —1,atN))E loglw(e

M

’ <NL ¥ <1og[w<e-ﬂfﬁ<s~7---7%»|D>1>J) -

where by (-); we denote the average with respect to the random variables appearing in the
clause. This is a crucial step in our analysis, in fact, similar considerations apply to the term
in the second line of (6.31), which can be written as

S (ki — Lap(l — 1) E loglw(€™)_ ] = E(logw (7)) . (6.33)
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The same kind of averages F and w appear in the two terms which can be therefore directly
compared as we will do in the next section. This property, linked to the Poissonian character
of the graph defined by the model would not hold for other ensembles of random graphs and
the analysis would be technically more involved. Substituting in (6.31) we find:

1d
——FlogZ(t) = aF

N o 5 Qloglue PHE S}y — B 5 ogues )| (63

NP N =

11,e.0lp 7

Rearranging terms and using (6.26) we finally find that the free-energy Fiy can be written as
1
Fi = FunlG) + [ dt Ras[G, 1] + O(1/N) (6.35)
0

where F,,.[G] coincides the expression of the variational free-energy in the replica treatment
under condition G[h] = P[h] ¥V h at t = 0 and [, dt Rgs[G,1] is a remainder term. Instead
of writing the formulae for general clauses, in order to keep the notations within reasonable
simplicity, we specialize now to the specific cases of the p-spin model and the K-SAT. Notice

that in all models .

Floj =3

(log(2 cosh(Bh)))nli=o (6.36)
p-spin

In the case of the p-spin H;(S;,, ..., Si,) = J S, -...-S;,. Substituting in eq.(6.34) and rearranging
terms one immediately finds:

Fz™(6] = 5o p (og(cosh 5u), — (log(cosh 3)),) = (log(2cosh ), +
alp—1) <log <1 + tanh(5.J) ﬁ tanh(ﬂgt)>> ] (6.37)
t=1 {g¢},7
while the remainder is the ¢ integral of
. 1
RV VMG, 1] = —% [M Z E (log(1 + tanh(8J)w (S, .5;,))) | —
pE (log(1 + tanh(Su)w(S;))), +
(p—1)E <10g(1 + tanh(S.J) ﬁ tanh(ﬁgp))> ] : (6.38)
t=1 {g¢},7

The expression for FP_*P™[G] coincides with the RS free energy once extremized over the
variational space of probability distributions, as proven in the appendix. Terms have been
properly added and subtracted in order to get a remainder which equal to zero if maximization
over GG is taken, and the temperature is high enough for replica symmetry to be exact [180]. As
we will see, the remainder turns out to be positive. FP—#""[(7] is therefore, for all G for which

its expression makes sense, a lower bound to the free-energy. At saturation the condition
G[h] = P[h]|s—0 ¥ h (6.39)

should hold, which is simply the self-consistency RS equation.
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By using equation

E (log(1 + tanh(fu)w(S;))), = E <log(1 + tanh(S3.J) pl:[ tanh(ﬁgr)w(Si))> (6.40)
{9:},J

t=1

we can establish that the remainder is positive for even p. We expand the logarithm of the
three terms in (absolutely converging) series of tanh(3.J), and notice that thanks to the parity
of the J and the g distributions, they will just involve negative terms. We can then take the
expected value of each terms and write

o0

—spin 1 n 1 n n n — n
Rigs™"(Go1] = 5 3 (tanh® 5.1) 2 [(g) = pa® (tanh® 3g)7 -+ (p = 1) (tank™ g}

n=0
(6.41)
where we have introduced the overlap ¢ and the replica measure Q defined in section 2. The
series in (6.41) is an average of positive terms in the case of the Viana-Bray model p = 2,
where we get perfect squares, and more in general for all even p, as we can easily, starting from
the observation that in this case 27 — pzy?~' + (p — 1)y? is positive or zero for all z = ¢™
¥ = (tanh®" £.J); real.

In the case of p odd, the same term is positive only if x is itself positive or zero. The
bound of the free-energy would therefore be established if we were able to prove that the
probability distributions of the ¢*® has support on the positives.! This property, which tells
that anti-correlated states are not possible, is physically very sound whenever the Hamiltonian
is not symmetric under change of sign of all spins. In fact, one expects the probability of
negative values of the overlaps to be exponentially small in the size of the system for large V.
Unfortunately however we have not been able to prove this property in full generality. Notice
that upon maximization on G, the results of [180] imply that the remainder is exactly equal to
zero if the temperature is high enough for replica symmetry to hold.

K-SAT

In the case of the K-SAT, using def.(6.3) for the clause H, we find relation:
J

L[S (o)
ug(hs o hp—1) = us({Je}, {e}) = 3 tanh Ll e, (1+Jttanh([3ht))J ’
2 = 2

(6.42)

where £ = e™# — 1 < 0. Via direct inspection, the variational free-energy coincides with the RS
expression [9]

R = 1 {O‘(p “ofes(ieer oI () -
(log

(2 cosh(Bh)))n + ap(log(2 cosh(Bu))), —

oo 1+ 2 (1 ) o

=1 {ge} (e}

'A different sufficient condition for the series to have positive terms is that |¢(>™)| > (tanh(Bg)>"),, but it is
not clear its physical meaning.
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while the remainder is the ¢ integral of

B 1 _ o1+ JS“
REIG = 58| X (o1 et eI ) -
11 5eeeylp t=1 {J¢}

op—l
£Z<log (1+§w (1+J5’ZH1+Jttanh(ﬁgt))>> N
N = 2 2
{gt},J,{J¢}

(%

7 t=1

(p—1) <10g (1 te H 1+, t;nh(ﬂgt)> >{gt} {Jt}] . (6.44)

Considerations analogous to the case of the p-spin, have led us to add and subtract terms
from eq.(6.34) to single out the proper remainder term. Expanding in series the logarithms,
exploiting the symmetry of the probabilities distribution functions and taking the expectation
of each term of the absolutely convergent series we finally obtain:

R (G = 5 3 e 7@, ) (6.45)

with
R(Qu,p) = (1+Qu)" — p(1+ Q) (1 + J tanh(Bg))™)5," + (p— 1)((1 + J tanh(Bg))"),, (6.46)

where we have defined £* = £/(2P) < 0 and Q,, = X7, (JY); Za1< <aq 4. Detailed calcula-
tions are given in the appendix. As in the p-spin case, the previous sum is obviously positive for
p even. For p odd we should again rely on the physical wisdom that all ¢{**»%) have positive
support and so have the functions 14+ @),, > 0. Again, the variational free-energy coincides with
the RS expression once extremized over G at the condition P = G at t = 0.

6.1.4 The 1RSB Bound

We establish here a more complex estimate, in a larger variational space of functional probability
distributions. The general strategy will be here to consider the same form for the auxiliary
Hamiltonian, but now with a more involved choice for the fields distribution. The fields on
different sites or different index [; will be still independent, but each site field distribution
Gl (gf) will be itself random i.i.d., chosen with a probability density functional G[G], with
support on symmetric distributions G(—g) = G(g). It will be assumed that G is such that all
the expressions below make sense. In this case, the variational approximation for the free-energy
will be obtained from an estimate of

_BFy[m, ] = m—1NE1 log E»(Z™ (1)) (6.47)

where we have denoted with:

e [y the average w.r.t. gf” for fixed distributions Gi" according to the measure

p—1 B n(g g; pfl) "

N k;
CIITI IT dg;"™" G (g;"") -
i=1l;=1n

ot 92 COSh(BU,Jili,n ( lz,l gf’p_l))

(6.48)

where C' ensures the normalization.
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e [/ the average with respect to the quenched clause variable, distributions the Gﬁ“s and
the Poissonian variables k;’s, which will be i.i.d. with probabilities u(J), G(G¥) and
7(k;, (1 — t)a) respectively.

The number m is real in the interval (0,1]. The statistical ensemble of the auxiliary fields u
and h will be now related to the one of the g by:

- /DGIQ(GI)...DGp_lg(Gp_I)(5(@(-) —QC|G1, s Gy, )Yy (6.49)

=5 OO T [D00(QUPL) - PUIQL-- Q) (650

where:
Q(U|G17 T Gp—b J) = NG[GI; teey Gp—l] /dgl Gl(gl)"'dgp—l Gl (gp—l)BJ(gla (XY gp—l)m
S(u—us(g1,--s Gp—1)) (6.51)
_ m [T Qu(w)
G(9|Q1, s Qr) = NowlQu, ... Qr] (2cosh(Bg)) /ll_lldul BBl
k
(g — > w) (6.52)

where Ng r[Q1, ..., Qk], Ng[G1, ..., Gp—1] and By (g1, ..., gp—1) have been previously defined. With
notations similar to the ones of the RS case, we can write

d

1
dt( BFEN[m,t]) = —az (M,atN) — (M — l,atN))EimlogEgZ(t)m—i— (6.53)

N 2 St op(—1) - w(ki — L ap(1 — 1)) Bl log By Z()"

which, extracting exphmtly the contribution from the AM-th close in the first term and the k;-th
field u in the second, following considerations similar to the RS case we find:

~BH () (S;7 -5 01)
d 1 EyZmw(e 70 ym
—(—BF = M —1,atN))—E!1 M My
Loy B2 uv (@5“ o )—u,i
ZZ —1,ap(l — t))EEu log BZ il (6.54)
ks

Again it can be recognized that the primed averages coincide with the averages over the original
ensembles plus the averages on the variables appearing in the terms we extracted. Finally we
get:

d (6] IV]_ E2me(€7ﬂH.](Sll 7777 Szp))m
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Rearranging all terms one finds the estimate:

Fy = FulG] + /01 dt Rigss|G, 1]+ O(1/N) (6.56)

where this time F,,[G] coincides with Fizsp[G], the expression of the variational free-energy in
the 1RSB treatment at the saddle point G = P at t = 0, and [ dt Ryrsp[G, t] is the remainder.
Notice that the derivation immediately suggests how to generalize the analysis to more steps
of replica symmetry breaking. Let us now specialize the formulae for the p-spin model and the
K-SAT. Again, in this case we will need the expression for F[0]:

e ) IR

lt=0

p-spin

In this case, plugging def.(6.2) in eq.(6.55) rearranging, adding and subtracting terms one finds:

6l = (oo (i) 1,1,

am (log(2 cosh(8J))) , ap <log < (W>M>U>Q + (6.58)

a(p — 1) (log (1 + tanh(4.]) tanh(Bgy) . tanh(Bg,) ™), ) Gﬂ]
while the remainder is the ¢ integral of
p—spin . a [L EyZ™(1 4 w(S;, ...5;,) tanh(B.J))™ B
RIRSB [g7 t] - /BmEl [Np ilgip <]'Og < E2Zm ;
P EyZ™ (14 w(S;) tanh(fu))™),
N EZ: <log ( B, . + (6.59)

(p—1) <10g ((1 + tanh(3J) tanh(Sgy)... tanh(ﬁgp))m>gl,m,gp>leGp;J

The expression for FP,_*P"[G] coincides with the 1RSB free-energy, as proven in the appendix.
once maximized over the variational space of probability distribution functionals ¢. The max-
imization condition reads:

G[P] =P[P] iV P, (6.60)

which is simply the self consistency 1RSB condition. For even p (and in particular for p = 2
that corresponds to the Viana-Bray case), one can check that the remainder is positive just
expanding the logarithm in series and exploiting the parity of the J and the g distributions.
As this is considerably more involved then in the RS case, we relegate this check to appendix

A.

K-SAT

In the K-SAT case the expression for function By (h, ..., h,_1) reads:

_ ¢PL 1+ J, tanh(Bh,)
By(hu . hp—1) = B({ e}, {hu}) = 14 5 IT < 5 ) :

t=1

(6.61)
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while the corresponding one for ug(hy, ..., h,—1) is the same as in the RS case. The corresponding
replica free-energy and remainder read

FE=SATIg] — Lﬁ a(p—1) <log < (1 +£ H (1 +J; tanh(ﬁgt)>>m>{gt}> _

m
{Ge}{Je}

ap <log < (2 Cos}jlg((ﬂ{uf(}if}ta}igt})) ) m>{gt}>{Gt}y{‘]t}7‘] :

(oo (s ), 6

The remainder is the ¢ integral of

K. SAT _ o1 | Egzm(ugw( P g))m
Finss (61 = pmt an:p v EyZm {J}_

......

P 2

— l

N zz: < Og Eyz™ > ’
{Ge}{Je},J

(p—1) <10g < (1 +¢ H (1 Rl tanh(ﬂgt)>>m>{gt}> (6.63)

{Ge} T}

YA <(1 + §1+J‘;(5i) Hf;ll 1+J: tanh(ﬁgt)>m>{gt}

The expression for FX~-54T[G] coincides with the 1RSB free energy once extremized under

condition (6.60), with the corresponding K-SAT probability distribution functionals. Notice
that The proof of the positivity of (6.63) for even p is again dove via series expansion, all the
detail are explained in Appendix B.

At this point we can take the zero temperature limit, finding that the resulting expression
gives us a lower bound for the ground-state energy of the system, i.e. the minimal number of
unsatisfied clauses. Notice that the 7" — 0 limit of the replica free-energy is not trivial. The
necessary assumptions on the field distributions to get it correct are well known in the physical
literature, and have been recently reviewed in [24]. Recently Mézard, Parisi and Zecchina [30]
have worked out the K-SAT 1RSB solution for p = 3 predicting a non zero ground-state energy
for values of o above a satisfiability threshold of a. = 4.256, very well in agreement with the
numerical simulations. Our results, together with the additional hypothesis of positivity of the
support of the overlap functions imply that this value is an upper bound to the true threshold.

6.1.5 Summary and conclusions

In this chapter we have established that the free-energy of some families of diluted random
spin models can be written as the sum of a term identical to the ones got in the cavity/replica
plus an error term. Both the replica term and the remainder are different in different replica
scheme, corresponding to the choice of statistical ensemble of the cavity fields. We believe that
the sign of the remainder is in general negative in the model we have considered, although we
have been able to prove that only in the case of even p. For odd p our belief is supported by
the physical wisdom that the overlap distributions are supported on the positives in the large
N limit.
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We have considered the cases of replica symmetry and one step of replica symmetry breaking.
It is clear that the analysis could be extended to further levels of replica symmetry breaking,
although the complexity of the analysis would greatly increase. The 1RSB level is thought to
give the exact scheme to treat the p spin model and the K-SAT problem for p > 3. For the
Viana-Bray model on the other hand it is believed that no finite RSB scheme furnish the exact
solution, and one needs to consider the limit of infinite number of replica symmetry breaking.
It is not clear to us how to generalize the analysis to this case.

Our analysis of the diluted models underlines a strong link between the Guerra method and
the cavity method which remained rather hidden in the fully connected case. In the cavity
approach one considers incomplete graphs in which either sites or clauses are removed from the
complete graph. Then, with the aid of precise physical hypothesis, consistency equations are
written that allow to compute the free-energy from the comparison between the site and clause
contributions. In the approach presented in this chapter the removal of clauses is compensated
in average by the addition of some external fields which have precisely the statistics which
is assumed with cavity. The novelty of the approach is that it gives some control on the
approximation involved, and proves the variational nature of the replica free-energies. Of course
a complete control on the remainder in various situations would result in rigorous solutions.
Although we have mainly worked at finite temperature, the zero temperature limit can be
considered without harm. This is particularly relevant in random satisfiability problem, where
it is typically found a SAT-UNSAT transition where the ground state energy passes from zero
to non zero values.



Conclusions and perspectives

In this thesis a quite extensive exploration of replica methods for the study of statistical prop-
erties of spin systems on diluted random hyper-graphs was performed. We hope to have been
able to show a relevant number of examples, that have been under our direct investigation,
where this method turns out to be very powerful.

The starting body of the calculations was shown quite in details at least for some particular
classes of models, so that the interested reader should be able to retrieve the expressions shown
in the text quite easily, at least for the replica symmetric and the 1RSB variational factorized
case.

We also hope to have given at least a flavour of the equivalence between the cavity and the
replica techniques, even though the cavity formulation was only sketched.

It was stressed along the whole thesis that the replica/cavity method main assumption is
that of absence of non trivial correlations between the spin variables, once the system is studied
in a particular thermodynamic state. This property applies to mean field-like systems as the
one studied, where the method is in still in principle non exact, but can be shown to lead at
least to a rigorous variational approach. Moreover, this variational approach is systematic and
can be applied to a wide class of problems of interest not only in modern statistical physics, but
also in combinatorial optimization theory, information theory and theoretical computer science.
A proof of the well founded variational nature of the cavity/replica method was achieved in the
last part of this work, even though more work is needed to formulate it in full generality.

For disordered systems rigorous calculations that do not make use of the cavity/replica
method are usually very hard. In the lucky simple cases where rigorous treatment is possi-
ble, as for example the XOR-SAT case, the equivalence between the rigorous results and the
replica/cavity ones was stressed, as well as the physical interpretation of the such results in
terms of geometrical changes in the space of solutions of the models studied.

The deeper understanding of the replica/cavity method has led to the possibility of extend-
ing in algorithmic terms to single problem instances. This opens the road to applications to
real natural systems, as for instances a novel interpretation of message flow and organization
in realistic diluted neural networks. One of our future aims is to work in that direction.

Very recently, a full study of the 1RSB solution of the random 3-SAT, p-XOR-SAT and
graph ¢-coloring problems have been achieved. This results are very promising, and one further
step that is currently under study is to investigate the possibility of extending it to systems in
presence of more complex geometrical structure and non trivial correlations between the hyper-
graph vertices. Indeed, the replica/cavity method corresponds to the Bethe approximation in
the case of disordered systems. Since this Ansatz can be seen as a first order expansion of a
more systematic variational approach to the study of non pure mean field statistical systems
that goes under the name of Cluster Variation Method (CVM), a formulation of the CVM for
disordered systems seems to be necessary.
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We would like to conclude this thesis with a consideration: recent numerical results on the
performance of the Survey Propagation algorithm deep in the random 3-SAT dynamical region,
the so called hard/sat phase, seem to confirm? that the complexity of the algorithm scales as
O(Nlog N) all the way up to the SAT/UNSAT threshold. The early study of the arising of
complexity in the typical case were motivated in the past by the conviction of the existence of
a deep link between the onset of phase transitions in the random version of computationally
hard problems and the NP complexity in the worst case. If confirmed, this last results seem
to open a path in a different direction, and typical case complexity may turn out to have little
to say in the long standing P versus NP debate. Worst case instances of an NP complete
problem could eventually form an elusive set of highly non-typical cases, most probably very
dependent on the particular ad hoc algorithm built for their solution. Nevertheless, for a wide
class of computational problems spontaneously emerging in Nature, the study of typical case
complexity will probably still be a very relevant issue.

2 Alfredo Braunstein and Riccardo Zecchina, private communication.



Appendix A

Factor graphs

The duality property in hyper-graphs is made evident when working in the factor-graph
formalism (see for instance [65, 66, 64]), where each hyper-edge is substituted by a function
node (otherwised called check node or clause node, depending on the context), whose incidence
edges connect it to the variable nodes that belong to the original hyper-edge, as in fig. (A.1).
This formalism is particularly handy when one is interested in message passing procedures
on the hyper-graphs, and more in general whenever one is interested in computing physical
quantities referring to the hyper-edges as a whole and not to single vertices. This formalism
is explicitly used in chapters 5 and 6 and is implicit throughout the whole work. Notice that
the rank distribution of the direct hyper-graph is the function node degree distribution of the
factor graph.

O Variable node @ Function node
Figure A.1: From the hyper-graph to the factor graph picture.
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Appendix B

Normalization factor £[P(k)]

The calculation is equivalent to that of the numerator in the calculation of the averages. We

can rewrite eq. (2.23) in the form

d i) Al
qarw] = TG e vk [T1 11 [(1— N{”l)auil ..... D+ (B
I 1<...<1p
/! !
Nﬂ_ﬁu(|signui1,...,@-,>|>] xpli Y Y (3 ) o)
I i1<...<yy j=1
| | !
= TG e Sk /1 [1—§7l i (i 3 ]
I oi1<..<gg j=1
~N oo /H(%)exp(—izwki) exp —NZ% (1 S Z eVirt +¢zz)]
dip; : | k> :
= /1;[( ;l) )exp(—zzi:z/)iki) exp —Ni S —i—NXl:’yl <N;ewz> ]
plus terms of order O(1/N). Defining
p=—= Ze% (B.2)

and again expressing the constraint on p in integral form we get

dpdf)/ dip; iy ik <k>  <k> P i
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27rNeXp[ P <> <l>zwer ch Og(k')] (B:3)
we can evaluate this expression at the saddle point, getting
pp = <k> (B.4)
>l
= B.5
<Il> (B:5)
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For the case of hyper-graphs of uniform rank [, eq.(B.5) implies that we must have p = 1. This
is not automatically true for multiple rank hyper-graphs. However, the assumption p = 1 is
self consistent also in the general case, leading to the final expression

[P (k)] ~ e—N(<k>—Ek c,cZOg(«;.jk)) (B6)

In assuming p = 1 we make the same normalization error we make in the computation of the
numerator, assuming the functional order parameter p(&) to be normalized to one. As we see
in the text, this error is at most )(1) in the free energy potential in the physically relevant limit
n — 0. If we redo the previous calculation taking into explicit account the constraints over the
rank distribution, expression (B.3) becomes:

dpdp . <k> <k> o ik
—Npp— N N log | = N log|— ]| ~ B.
27rNeXp[ Pp <l>Jr <Z>Zl:szg<l! * Zk:ckog k! (B.7)
<k> <k>
exp |—N | <k >+——+ <k >log(< k>)+—> wvlog(ll) + > crlog(k!)
<Il> <l>95 -

where p and p cancel out automatically. The same holds for the numerator, where the functional
order parameters can be taken as normalized due to the homogeneity of the free energy.



Appendix C

On the choice of the functional order
parameter

In choosing the functional order parameter we can adopt two variations on the same analytical
formalism. Either one can be used, depending on the way we choose to look at the hyper-graph.
A first way is that of treating every fixed degree sub-hyper-graph independently, assigning to
each of them its own degree distribution. Let’s call this choice (o). Under («), all sub-
structures will be merged assigning to each of them a given fraction of all interactions. Sub-
hyper-graphs are independent, and any one is allowed a generic degree distribution. The overall
degree distribution is the convolution of all distributions of sub-graphs. An alternative way of
proceeding ((f)) considers the hyper-graph as a whole and works directly with the overall
degree distribution. The two routes are equivalent, but they can lead to easier or more difficult
relative notations depending on the kind of graph we work with. In particular, («) leads (see
for instance appendices C.1 and C.2) to the introduction of a whole set of order parameters, one
for each degree, and allows to easily write a special exact one replica symmetry broken solution
in the case of uniform rank and constant degree, as well as in mixtures of single degree and
rank sub-graphs, as the one shown in figure (C.1). In the case of hyper-graphs of the type of
fig. (C.1), factorization is still possible because all sites keep being equivalent, even though the
elementary “plaquette” can now be seen as a more complex entity made of regular groups of
hyper-edges of different ranks. Moreover, given a certain hyper-graph structure, we recall that
it is possible to build its dual counterpart in the following way: to every interaction plaquette
there corresponds a site on the dual hyper-graph. Every two new sites are connected if their
corresponding plaquettes of the direct hyper-graph have a common spin. The dual of a given
hyper-graph is therefore a structure where the rank and the degree interaction distributions are
exchanged. This leads to the possibility of finding a factorized exact solution also for fixed rank
hyper-graphs with a non trivial albeit very peculiar degree distribution. The dual of fig. (C.1),
for instance is a uniform rank 3 hyper-graph with bimodal 2 and 3 degrees, but structured
in such a way that again it can be seen as a more complex structure where the fundamental
building blocs are triplets of triplets, as shown in fig. (C.2).

A spin model on this graph could be solved through duality. Moreover, duality can be
helpful any time calculating some properties of the studied model is hard in terms of degree
distribution, but easy in terms of the rank distribution of the dual (The two interchange through
duality). An example could be the calculation of metastable states complexity in the spin
models associated to Binary Channel in Error Correcting Codes, even though that quantity
has been found by different means in chapter 5. On the other hand, if one is interested only in
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/N

Figure C.1: mixed 2 and 3-hyper-graph with constant 2 and 1 sub-degrees.

Figure C.2: Superimposed dual of the previous hyper-graph. Note that it can be seen as a
decorated hype-graph of fixed degree, where decorated plaquettes are the circled ones.
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fixing the overall ranks and degrees, formalism (f) is more compact and appropriate. In fixed
rank and degree random graphs («) and (/) are equivalent. However, we will work with the
formalism (), unless otherwise stated.

C.1 The degree sub-distributions: an alternative calcu-
lation

The constraint on the whole hyper-graph degree distribution is now substituted with a con-
straint on the degrees of each single rank [ sub-hyper-graph we can divide the structure into:

Hl;[fS( > _Jiiz...ik—lf) (C.1)

8D gyl >

All coupling constants probabilities are still treated as independent. This will lead to the
introduction of a set of auxiliary variables ¢* and eventually to a whole set of functional order
parameters in {p;(d) = + ¥, 6(F — 5)e™! | pr(@) }w. Caculations are then formally equivalent
to those in the text.

C.1.1 RS results

The resulting set of replica symmetric saddle point equations reads

@) = <I> lal Z(;le(gl) p1(G1oy)€? a7 (C.4)
P(k) = Pk, ... k,,.) (C.5)

and the free energy
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<l> l 01,...,0]
<h> = [diP(k (c.7)

C.1.2 Factorized 1RSB results: 1

The similar calculations in the 1RSB case factorized Ansatz lead to

A (2\kr 5 (2\kei—1
pl(a_,) _ LZP(E)lel,#l Pl’(a) pl(o—) (08)
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No= 2 () (C.9)
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where the functional parameter is taken within a replica group, and
—mBF(m Z<kl>log2pl )—mz<kl>ZP(E)logZH
! 3 g 1
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From this point on, one could proceed again with the formalism in the main text, keeping
in mind that the overall graph will be the interconnections of the [-substructures, and the
overall degree distribution the convolution of the partial ones. This will reflect also on different
distributions on the magnetic fields acting on spins.

C.2 Factorized 1RSB results:

The factorized Ansatz formulas are valid in the slightly more general case of a mixture of
hyper-graphs of fixed sub-degree, as for instance the example of In that case, with the same
formalism of appendix C.1 we obtain self consistent replica equations:

B N3) iy z',(U)

p(d) = — o (C.13)
> B HE) v w B (3)

Bi(6) = > p(61)..p(G11)e’ a0 (C.14)
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recast in a familiar form:
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If k; = k VI, we obtain
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a

kZ@lo Bf Y Zl;[ (C.17)

l

that reduce to the equations in the text (with B(&) = p(&)).



Appendix D

Critical exponents and non universal
amplitudes

D.1 Case < k* > finite

In this appendix we show the explicit calculations leading to eq. (3.34) in the text. Using eq.
(3.19) for the case Hy = 0 and assuming all u’s to fluctuate around the zero value we can write:

<u>

! bee [T1d h~" ( tanh WA
o ko [ T dnGuo tant (tanh() (53~ ) )

- ]1 = ke / 1:[ duQ(ur) [tanh (Z ut>

—%2 tanh(3)(1 — tanh®(3 (Z ut>3 + O(< u >")
- /1 > S ke tauh(3)k — 1) < >

- b (5) (1~ ant(3) [ TL () (3 ) ]
- Ilﬁ S S ke tanh(8)(k ~ 1) <>

—%2 tanh(3)(1 — tanh?(3))(k — 1) < u® > +3(k — 1)(k — 2) < u®* >< u >

+(k = 1)(k = 2)(k — 3) < u >?|
tanh(3) s _ B* tanh(B)(1 — tanh®(5))

(< k(k—1) ><v® >

tanh(5.) 3 <k>
+3<k(k—1)(k—2) ><u><u®>
+ < k(k = 1)(k = 2)(k - 3) >< u >?| (D.1)

where we have exploited the second of the identities:

2

/]hlldth(Ut) (ICZ;Ut) = (k-1)< u? > +(k=1)(k-2) <u 52 (D.2)
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k-1 k—1 3
/ I du.Q(u) <Zut> = (k-1 <u*>+3k-1)(k-2)<u’><u>
t=1 t=1
+(k—1)(k—=2)(k—3) <u>3 (D.3)
We assume now that
<ut> ~ <u>?
<ut> ~ <u>? (D.4)

We will see this Ansatz to be self consistent in the following. Indeed, the second and third
momenta can be written as

k— k—
<ur> = ﬁ zk: kcy, / 1:1;[11 duQ(uy) (tanhl(tanh(ﬁ) tanh(f iuﬂ))
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where we have made use of Ansatz (D.4) and identities (D.3) and rearranged the terms. Putting
all together we find eq.(3.34). As one can see, the critical exponent is the usual mean field
one (1/3) and its value does not depend on taking into consideration higher momenta of the
distribution Q(u).

D.2 Scale free networks: case 3 < v <5

We show here the explicit calculations leading to the non trivial mean field critical exponent
f = 1/(y — 3) in absence of a cutoff on high degrees of the distribution, together with an
approximate expression for the non universal amplitude. Under the approximation Q(u) =
d(u— < u >) we can still expand

Fy(<u>)=—" S k' tanh™" (tanh(8) tanh(B(k — 1) < u >)) (D.6)

B<k>*%

where c is the probability degree distribution normalization constant, but since the convergence
radius of the hyperbolic tangent is 7/2 the series will converge as long as f(k—1) < u >< 7/2
only. For any value of the temperature and the cavity magnetization it is then possible to find
a k such that the argument of the tangent lies outside of the convergence radius. Nevertheless,
the function Fjs(< u >) is still asymptotic approximable by a polynomial whose maximum
degree will be a function of the exponent . If we call Sé")(k, < u >) the n'* degree truncation
of the series expansion of the k" term of Fy(< u >), we can write

TS <Ck = Zkl‘VSéﬁ)(k, <u>)|~
k

‘F5(< u>) — Pg”(< u >)‘ ~ O(< u >F3) (D.7)

F5(< Uu >) —
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where 7 is the maximum degree s.t. the coefficients of Péﬁ) (< u >) are finite and the polynomial
has degree 2n+1 due to the antisymmetry of the hyperbolic tangent. The convergence condition
summing over k for the polynomial coefficient of maximum degree translates in the one for the
convergence of the new power series:

l—9y)+2n+1< -1 (D.8)
so that one finds
n<—— (D.9)

For v > 5 the first non trivial term of the series expansion of < w > is therefore simply
n = 1, and one retrieves the simple mean field result. But for the range of the exponent we are
interested in in this appendix the first non trivial term will indeed be the analytical continuation
(D.9). It is immediate to see how the desired exponent value is retrieved. The calculation of
the amplitude proceeds in a similar way. We can write again from the power expansion of the
self-consistent expression for < u > up to the highest converging term

<u>~C(B,7) <u>"?=C(B,7) <u > (D.10)

where C(3, ) is the analytic continuation of
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(D.11)
The series in k£ has, as a dominant term:
( 1)2n+1
Zk @+ (3 — ) (D.12)

as one can easily see from the series expansion of the integral representation of the Gamma
function. Putting all together one finds

C(8,7) ctanh(ﬂc)(;QIf)E_?’F(B —7) iﬂ 1 — tanhQ( ¢ i C2H(t — )3
t=
1 — tanh?(8.) = 1
<>~ (i) % (1

In fact, in order to find the exact value of the non universal amplitudes we would need to extend
the calculation of the previous paragraph. The mean value of the cavity magnetization can be
written as

1 k—1 n
<u> = m Z kck/ H duyQ(uy) Zan tanh" () (tanh(ﬁ?uﬂ)
— <k>52kck/ndth Uy Zantanhn

Z (Z > H bi, 0 (m; Z;h)) g (; U't>m (D.14)

m ll: 7lnt 1
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where a,, and b;, are numerical coefficients of the Taylor expansions of the inverse hyperbolic
tangent and the hyperbolic tangent respectively and

k—1 m ni+...4+ng_1=m m!
<<Z Ut) > = > ——— <uM>..<u™t > (D.15)
t=1 .

N1y, —1

The process is now a little more involved since it is necessary to find a close form for the analytic
continuation of the momenta of the distribution Q(u), where m takes real values m(y). Using
Newton’s expansion for real exponents eq.(D.15) becomes:

<<§ ut>m> B i "1+ﬁ’k2 Lt)'kff <u >< U2 > (D.16)

|
N1y N —2=0 t=1 ni-.... Ng—2: s=1

Consequently, it can still be immediately seen that for any value of m the proportionality

relation . .
<<Z ut> > x<u>" (D.17)
t=1

still holds under the assumption < u” >x< u >" V r € R, and one is left this time with an
infinite system of equations for the non integer moments that can be iteratively solved and
give the desired correction to expression for the non universal amplitude. Moreover, the value
of critical exponent is not changed. Similar expansions can be done for all other physical
quantities.



Appendix E

E.C.Codes: BSC, A T=0 variational
calculation

The zero temperature equations simplify in the limit y — o0, corresponding to vanishing
exchange energy. In that case, a finite value of ¢ is obtained if the magnetic field hgy is kept
finite, and it can be proved that the relation ¢ = tanh(hg) holds. In this limit, a direct inspection
of the saddle point equations reveals that only the values (I — 1) are possible for the cavity
fields z, and the values £1 for the y’s. More explicitly, the order parameters @)[p] and Q[ﬁ] are
supported on distributions of the form

plx) =pd(x—1l+1)+po(x+1—-1), plz)=p0(z—1)4+p_6(z—1). (E.1)

The functional order parameter Q[ﬁ], reduces to the probability distributions of a single number
P4 representing the probability of z = +1.

A simple approximation is obtained by using (E.1) and neglecting the fluctuations of py, in
the spirit of the factorized Ansatz. This is exact ! for hy = 0, where our model reduces to the
one analyzed in [22]. It can be proved that, for y = oo and hy # 0, this approximation gives
the same result as the k,1 — oo limit, cf. Sec. 5.2.5. For instance in the case of (k,l) = (6,5)

we get pr® = 0.264 which coincides with the exact result.

!This assertion is true only for even values of I, but actually it is a very good approximation for any value
of [.

0.2

0 0.1 0.2 0.3 0.4 0.5

p

Figure E.1: The region of metastability as predicted by the approximated Ansatz (E.1) for the
(6,5) code.
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The same form for the functional order parameter can also be used as a variational approx-
imation for y finite, although in this case it is not justified to assume z = +1. In Fig. E.1, we
indicate the region of the (p,€) plane such that ¥,(e,1 — 2p) > 0, as obtained from this simple

approach.



Appendix F

Details of the calculations of Chapter 6

F.1 p-spin

F.1.1 Check of the positive sign of RIfRi%n

In this appendix we will explicitly show that expression (6.59) has positive definite sign. The
notations will be those of the general p-spin case. Specific results in the Viana-Bray case
are immediately retrieved if one assigns p = 2. We proceed expanding in series each of the
three sub-terms and showing that every element of the sum of the resulting series is positive
semidefinite.

The first term writes:

El <log EQZW(1+ta,nhE(?ﬂlZ]2:](Sil "'Sip))m >J

l+1 ku

lel Zkl, Sk Hlu=1 ( - Hf;‘—1(7“1 )) <(tanh(5J)le=1ks>J.

<H e ’k's’> (F.1)

where the term Fi(-) in the last line of eq.(F.1) can be written as

1 l m m ) ’ ’ ’ ) ’ ’ ’
. B EL 25 2wy (S5 SE L SE TSI Ly (LSS LS
1 (B> ) .
where each w(,) (s =1, ...,1) is a product of k; Gibbs measure with independent fields (variables

appearing in the Eés) averages), and same fields distributions and quenched disorder (variables
appearing in 7). The quantities g%k have been defined as:

qkl’ Lk _ ZSII E ngl;l..” . S@Ll . Slkl’l (FS)

and in this case the averages are performed using a a generalized replica measure, defined as:

i I, B Zm iy (Siy .. i, ) e
QO[(g*r)"] = By ((E)QZm)l 1 (F.4)
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for any integer n. The average over .J selects the terms with even Y.!_| &, in (F.1) so that we
finally find

_Z_ Z H ( fﬁ_ll( m)> <(tanh(ﬂj))zi=1ks> Q0 [(q(kl ..... kl))p] (F.5)

>1
E l kseven
s=1

notice that (rs —m) > 0 V integer 75 > 0 only in the current hypothesis that m € [0, 1].
Analogously, the term

El <10g E2Zm <(1 + tg:;gﬂﬁu)w(sz))m>u >Q (FG)

writes

>1 k1,..,kg s=1 s=1
Ei:l kseven
or, making use of the definition of G(g),
1,00 Hks 1 ) I p—1
1 3 n(E) (M eaenr),) - @
I>1° kpe k! s=1 e
E -1 kseven

<(tanh(BJ))Zilks>J Q0 [(q(/ﬂ,...,kl))]

Eventually, following analogous manipulations, the last term

<log < (1 + tanh(8J) ﬁ tanh(ﬂgt)> m>{gt}> (F.9)

=1 J:{Gt}

can be written as

st S () (T o), ) (=)

I>1 0 ke s=1 e
Ei:l kseven
(F.10)
Invoking (6.49) and collecting all
1,00 ks—1
—S Z’I’L H : ! s
Rigsp (9,1 = — Z N Z H ( ( )> <(taﬂh(ﬂj))zszlk >J '
l>1 ..... s
Zi:l Icseven
Q® [(q(kl,...,kl))p — pA(kr, oo k)P (g F Y 4 (p— 1) Ak .oy kl)l”] (F.11)

where we have defined:
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Each inner term of the series (F.11)
QO [(qr-k0)P — pA(ky, ooy k)P (g® M) + (p = 1) Ak, ..o, k)" (F.13)

is always positive semidefinite for p even while we need the condition conditions ¢(*¥1*) > 0
for p odd. For p = 2 one retrieves the Viana-Bray result where (F.13) is a perfect square. As
in the RS case, one can now integrate eq.(F.11) and recognize that once more the total true
free-energy can be written as variational term plus a positive extra one. The variational term
coincides with the 1RSB free-energy at stationarity and under condition

G(P) = P(P)l=o V P. (F.14)

F.1.2 Check of F/-sn[P] = FP-s2n [ p]

var

In this appendix we want to show explicitly that

Frovmipl = (log(cosh(8J))+) Bim [ap <10g<< 2 cosh(3 (h+U))u)>m>u,h>Q B

2 cosh(8h)2 cosh(f

o [ din() <10g<(1 + tanh(5.J) ﬁtanh(ﬁht))m>hh ) > -

t=1 PrysPy
Cop (ap)k 2cosh(BXF  w)\"™
o ol seming) )

coincides with the variational expression

Frowing] = 6Lm[<1og<<m)m>h>P_am (log(2 cosh(8))) , —

ap <1og < (ﬁ)mw@ " (F.16)

a(p — 1) (log (1 + tanh(8.J) tanh(Bg, )... tanh(8g,))™),, gp>G1,...,Gp;J}

found in section 6.1.4, once this last expression is extremized with respect to G. For a derivation
of (F.15) in the replica formalism see the first chapter. Substituting in (F.17) the 1RSB self
consistent conditions for u,(hy, ..., hy—1) and G[P] = P[P] VP, we can write:

<10g < (2 cigﬁ?g%@if()gu) ) m>u7h>Q’P - (F.17)

—aplog2 + ap <10g<<1 + tanh(S3.J) ﬁtanh(ﬁht)>m> >
{he}

=1 {Pt}r‘]

To condense the expressions we can define

~ap(0D)"

. (F.18)

Pr=¢€
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Using the trivial identity

o)), - oo ).,

and the relation

(i (sestm) ), = oo (pmizhany”y

Lyeees

Zk:pk <log < (Hfl 5 cish(ﬁut) ) m>{Ut}>{Qt} (F.20)

given by eqgs. (6.50) and (6.52) and putting all pieces together we finally find

FIPP] = Fldi"(P) (F.21)

var

at the 1RSB saddle point. The equivalence of the corresponding RS expressions is even simpler
at it is done along the same lines of calculation, exploiting the RS self consistency condition
G(h) = P(h) Vh.

F.2 K-SAT

F.2.1 Check of the positive sign of RE5T ...

The aim of this appendix is to show that the expression for the remainder Rys[G,t] in (6.35)
for the K-SAT model case as positive sign. For the K-SAT Rps[G, t] specializes to:!

Ry *MG, 1] = _%E [<10g (s (exp T2 55))) ) -

p (log (1 + w(S) tanh(Su))), —

p<1og (ngl_[1 <1+Jtt3nh(5gt)>)> +

=1 {ge} {72}

(v—1) <log (1 . 5tﬁl 1+ J, tznh(ﬂ%)) >{gt},{JtJ (F22)

which thanks to the relation between QQ(u) and G(g), rewrites as
RESAT[G) = —SF

E <log (1 (e = el 1 +2Jt5t)> >{m )

1 plq tanh
P <log (1 + éw ( +2JS 1T Rl Zn (5915))) > +
{9t} Tt}

1) <log ( g t:ﬁl 147, t;mh(ﬂfh)) >{gt},{h}} (F.23)

!The sum of the site indices has been eliminated by symmetry.

i~
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The last term has been added and subtracted from eq.(6.35) in order to extract a remainder
that would vanish if replica symmetry holds, and maximization is performed on G(g). As in
the p-spin case, we will proceed in a Taylor expansion of expression (F.23) in powers of &, and
rely on absolute convergence to average each term of the series.

Expanding the first term in (F.23) we can write

<10g (1 + é;“w(t:ﬁl 1 +2Jt5t)> >{Jt}] )
ey [ o)), |-

Z(_li)nﬂ(f*)”Q ﬁl<1+i<J§>J f sgl...sgl)} -

E

(&)"E

n>1 n = ¢ a1<...<ay
-1 n+1 [ P n 1,n
Z ( T)L (5*)719 (1 + Z <Jtl>Jt Z qa1...al>} =
n>1 [ t=1 =1 a1<...<ay
(_1 n+1
> (€)1 + Q)] (F.24)
n>1

where we have defined £* = (e7% —1)/(2?) and Y1, <Jl>J ST e 0" = Qn. Notice that

due to the negative sign of £*, the coefficients (—1)"*(£*)" are all negative.
The analogous expansion of the second term is:

14 JSP2 1 + J, tanh(
E|(log [ 14w | — i tan (B9,
2 t=1
{Jt},J.{gt}

> e (1 FS, S g ) <H [T 1+ Jtanb( ) ] -
n>1 =1 a1<...<ap t=11=1 {Je},{9¢}
5 U @104 Qu) (1 + 7 tan(39))")%, (F-25)

Finally, the third terms in eq.(F.23) immediately reads

<1og <1+5H1””a“h(59t))>{ - > SV @01+ T tanh(50))Y,,  (F.26)

2 n>1

The sum of the three pieces in eq.(F.23) gives:

RE1G. = § X SR ere [RQup) (F.27)

with
R(Qn.p) = (1+ Q)" —p(1+Qu){(1+ J tanh(8g))™5 ' + (p— 1){(1+ J tanh(8g))")}, (F.28)

The previous sum is always positive semidefinite for p even while we need 1+@Q),, > 0 for p odd.
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F.2.2 ..and of RE; T

We proceed in the same way as in the p-spin case. The algebra is elementary but more tedious
and involved, therefore we will only list the final results of the calculation. Starting from
eq.(6.63), we again expand in series the first term, getting, with a treatment similar to the RS
case:

R 16,1 = X z ot I (B ) 00 10+ Q. P

1>1 ik s=1

where we have defined:

ki, ks

Qki, k) = > Z <J(“+'"+”)>JH > gl (F.30)

s 3 e ()

lZl K1yeeny kl s=1
! p—1
QO [1 4+ Q(ky, ... <H < (1+ Jtanh(ﬁg))kl>g> (F.31)
s=1 G,J
and for the third term
! ko—1 ! P
[ (r—m
0 3 et () (11 o+ ram),) e
>1 Y ki, s=1 s s=1 I G

where in the last two terms we can further expand

(0 + ey ) = (55 10 (%) (v (11 (anhisor, )
< )= (s B () e, )

s=1 ri,...,rp=1s5=1 s=1

with n equal to p — 1 and p respectively. Since £* < 0 it is easy to see how only positive terms
of the series survive.
Collecting all, we eventually find the complete power expansion for R{%fg%AT'

X 3 ean (B v

l>1 s=1

0l [( +Q(k1,..., k) = p(1+ QUk, ooy k) A Ky, o k)™ + (p = DA (R, ... 1))
where we have defined
A(ky, ... k) = <1:[ <(1 + Jtanh(ﬂg))kl>g> (F.34)

Again, every term of the expansion is positive for even p and for p odd under condition 1 +
Q(kla S kl) > 0.
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F.2.3 Check of FE-SAT[p] = pE SATP]

var

FK SAT

As in the case of the p-spin, we can show the equivalence of F\5,s%"" [P] and FE~5AT[P] at the

1RSB saddle point. We recall that K — p and £ = e™® —1 < 0 in our notation. In the K-SAT
case we obtain the specific relations:

Br(hy, s hy1) = BULY, {h)) = H (H‘Jttanhwh”) (F.35)
J » £ H 1+ ta;h(ﬂht)
(hla"' - ) ({Jt} {ht}) = gtanh EHtZE (1+Jtta.;1h(,8h)t))] (F36)

to plug in in eq.(6.52) Along the same line of the general 1RSB computation of chapter 1 we
can write the 1RSB free energy as

it = g} )

PiyPy
ap <log ((1 + tanh(Bh) tanh(ﬁu))m>u,h>Q7P -

on({(en) ) ), ) e

.....

where py, is defined by eq.(F.18), and we already performed the average over the quenched
disorder J exploiting the symmetry of the probability distributions. On the other hand

FiCsATg) — nﬂiﬁ{( Y <l°g<<”5ﬂ(1+Jttanh(ﬂgt)>>m>{gt}>{at},m_
(18 (et o) >{gt}>{Gt},{m,J i

(e (zmam) ), s

Under the symmetric 1RSB saddle point conditions we can average out the quenched disorder,
as before. Thanks to eqs.(6.52), (F.36) and the condition G = P we observe that

<10g << B(g1, s gyp-1) ))>m>{gt}> = (log (1 + tanh(Bh) tanh(Bu))"),.,)  , +

2 cosh(Bu(gy, ..., gp—1 (G}
<log (B(h, ..., h’p_l)m>{ht}>{Pt} (£.39)

Moreover, we can exploit the relations (valid at the saddle point)

(oo i) ), = (oG im) Do,

(log (B(h1, ... hy—t)™) {ht}>{Pt} (F.40)
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(s () ) ), = o (s (Bamomgen)”)

Lyeers

(i) ), =)

The proper rescaling with m of the probability distributions (6.52) is crucial in the calculation.
Using the last expressions and rearranging terms we eventually find

and

Froy " [Pl = Fiis" [P) (F.42)

at the 1RSB saddle point. Again, the corresponding RS check is even simpler and can be
performed along the same lines.

F.2.4 Existence of the free-energy of the p-spin model

Let us briefly sketch the proof of the existence of the thermodynamic limit of free-energy of the
p-spin model for p even. Let us define a model which interpolates between two non interacting
systems with Ny and N, spins respectively, and a system of N = N; + N, spins. Each clause
i =1,..., M will belong to the total system with probability ¢, to the first subsystem with
probability N;/N(1 —t) and to the second subsystem with probability N,/N(1 —t). We chose
the indices i/, ..., ity in the following way: for each clause the indices will be i.i.d. with probability
t, the indices will be chosen uniformly in the set {1,..., N}, with probability (1 — ¢)N;/N the
indices will be chosen in {1, ..., Ny} and With probability (1 —%)Ny/N in the set {N;+1,..., N}.
Let us consider the free-energy Fy(t) = log Z(t). A direct calculation of its ¢-derivative

r ([T W N 1,N; N | MitLN
dFy(t) 1 {_ L -2 } E(log(1 + tanh(B.J)w(S;,...Si,))) -

dt G [NP Zl N N{’E; ‘N NY ilz

(F.43)
Expanding the logarithm in series, observing that thanks to the symmetry of the J distribution
the odd term vanish, introducing the replica measure and using the convexity of the function
2P for even p one proves that dFN( ) < 0 which implies sub-additivity Fjy < &t ~Fn, + %FM; this
is in turn is a sufficient condltlon to the existence of the free-energy den51ty. The same prove
applies to the even p random K-SAT model. For odd p we face a difficulty similar to the one
in the replica bounds. We can not prove sub-additivity due to the need to consider negative

values of the overlaps, and non convexity of x? for negative .
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