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Introdu
tion
Random 
ombinatorial problems and diluted spin systemsDuring the last two de
ades, in spite of many pioneering fundamental 
ontributions ([1℄ andreferen
es therein), the main stream of analyti
al results in the �eld of statisti
al me
hani
s ofspin-glasses and disordered systems fo
used mainly on mean-�eld models of large degree1([2, 3,4, 5, 6℄ and referen
es therein).In the more re
ent years, a major e�ort has been devoted to the study of models that 
ouldretain, at least in a statisti
al way, some features of �nite dimensionality, like �nite degrees andpresen
e of geometri
al 
onstraints in
uen
ing both the stati
 and the dynami
al propertiesof the systems. Spin glass models over diluted random graphs 
onstitute by now the naturalframework for the most advan
ed analyti
al studies 
on
erning the glass transition in disorderedsystems.The interest in diluted spin system is by far not limited to physi
s. As we shall dis
ussin great detail in this thesis, there exists a huge 
lass of open root problems in theoreti
al
omputer s
ien
e and in dis
rete mathemati
s whi
h have a simple representation as dilutedspin system.From the point of view of pure physi
s, the study of diluted systems represents only a �rststep towards the treatment of �nite dimensionality or geometri
ally stru
tured models, andone 
ould think for instan
e to even more 
omplex or \semi-random" stru
tures where someregularity reminis
ent of a real latti
e geometry is progressively introdu
ed into the randomadja
en
y matrix. But even if one limits the investigation to purely random diluted graphs andto 
lassi
al spin models de�ned on them, the questions that arise are still of a deep kind bothfrom a fundamental and from an appli
ation oriented point of view.Why are this models interesting? The main reasons 
an be summarized in the following:� From a fundamental point of view: they are still essentially mean �eld, however they retain�nite intera
tion degrees that is reminis
ent of �nite dimensional 
ases. The presen
e oflarge s
ale stru
tures like large loops has to be taken into 
onsideration as a �rst stepin the understanding the role of topology and geometry for the 
olle
tive behavior of
omplex systems.� Moreover, they are widely a

epted as prototype models in the study of fundamentalphenomena in the theory of Computational Complexity.� From an appli
ative (but not less important) point of view: they have a natural widerange of appli
ations to a 
lass of systems that span over the following �elds1In the following we will 
all degree what usually physi
ists 
all 
onne
tivity, i.e. the number of neighborsof a vertex of the latti
e or graph the model is de�ned on. We 
hose The �rst term in order to be 
onsistentwith mathemati
al and graph theory literature. 7



8 CONTENTS{ Statisti
al analysis of the behavior of realisti
 neural networks ([2, 6, 27, 28℄ andreferen
es therein){ Combinatorial optimization problems ([27, 29, 30, 31, 32, 34, 35, 36, 37, 117℄ andreferen
es therein){ Error 
orre
ting 
odes and 
ryptography ([27, 38, 39℄ and referen
es therein){ Models of statisti
al information pro
essing and image restoration ([27℄ and refer-en
es therein){ Statisti
al models of 
olle
tive phenomena in biology (for instan
e. gene and proteinregulatory networks, networks of 
ellular signalling pathways et
.) ([40, 41℄ andreferen
es therein){ Statisti
al analysis and optimal design in 
omplex arti�
ial networks su
h as theInternet or the World Wide Web ([43, 44, 45, 46℄ and referen
es therein)In what follows we are going to deal both with basi
 theoreti
al aspe
ts and with some spe-
i�
 appli
ations belonging to 
omputer s
ien
e (
ombinatorial optimization, error 
orre
ting
odes and 
ryptography). We are going to study the low temperature equilibrium and out-of-equilibrium phases of diluted spin-glasses with the aim of elu
idating the geometri
al stru
tureof ground states underlying stati
 and dynami
 transitions. The 
omputational 
ounterpartof su
h a study arises from the elementary observation that (hard) 
ombinatorial optimiza-tion problems 
an be easily reformulated as problems of �nding ground states in spin-glass-likeHamiltonians. In this sense the idea of studying their topologi
al stru
ture is quite a naturalone [2℄. The re
ent e�orts in developing a mathemati
al and physi
al understanding of su
hsystems over diluted stru
tures have opened new perspe
tives and new roads to solutions tothose problems, ta
kling them in their natural milieu. The models reviewed and studied inthis thesis are all of random nature. While this is usually the most natural thing to do inphysi
s, the study of random 
ombinatorial problems has been revealing itself useful also in
omputer s
ien
e where it allows to broaden to the typi
al-
ase the 
lassi
al worst-
ase notionsof 
omputational 
omplexity [34℄.This thesis is devoted to the analyti
al study of the dynami
 and stati
 transitions numer-i
ally observed in this whole 
lass of models, with spe
i�
 fo
us on 
ombinatorial optimizationproblems and error 
orre
ting 
odes, on
e mapped on spe
i�
 diluted spin systems. Stress isposed on the 
onne
tion between the slowing down pro
esses in algorithms behavior and sta-tisti
al phase transitions due to some intrinsi
 property on the spin model, that 
an usually betra
ked down to the emergen
e of non trivial frustrated topologi
al stru
tures in the underly-ing graph. The re
ent a
hievements [29, 30, 56℄ of a promising new 
lass of algorithms thatseems to outperform the other state-of-the-art sear
h pro
edures for typi
ally hard 
ombina-torial problems are based on theoreti
al understanding rooted in the 
on
epts reviewed in thiswork. This result, among others, seems to show how statisti
al physi
s of disordered systemshas still a lot to tea
h us when applied to the �eld of 
omputational 
omplexity.The thesis will be organized in the following way: in the �rst 
hapter some general guid-ing 
on
epts of random graphs and modern statisti
al physi
s of disordered systems will bepresented, and the 
onne
tion with relevant problems in theoreti
al 
omputer s
ien
e will bestressed. In 
hapter two we will introdu
e in detail the mathemati
al te
hniques used to dealwith the analyti
 
omputation of relevant physi
al quantities for a wide 
lass of spin modelsde�ned over diluted random stru
tures, su
h as random graphs or random graphs with arbi-trary degree distribution (results for Erd�os-Renyi graphs will follow as a spe
ial 
ase). The



CONTENTS 9
omplete 
al
ulations will be shown in the 
ase of a generalization of the p-spin model oversu
h stru
tures. Their validity 
an be seen to hold for a mu
h wider family of random 
om-binatorial optimization problem belonging to the NP 
lass in the worst 
ase, su
h as K-SAT,Q-
oloring[57, 58℄ and many others. Some appli
ations to spe
i�
 prototype examples will beshown in the third 
hapter, while 
hapter four will deal with spe
i�
 examples of two 
om-binatorial optimization problems, namely the 3-SAT and the bi
oloring problem of graphs ofuniform rank 32. Chapter �ve will be devoted to two relevant examples of the relation be-tween the algorithmi
 
omputational 
omplexity of a problem and the presen
e (and nature)of dynami
 and stati
 phase transitions in the asso
iated spin model. In the �rst examplethe mapping will essentially be between the sear
h for solutions of large random sparse lin-ear system over �nite �elds3 and the sear
h of the zero temperature ground states of somead ho
 de�ned multiple rank intera
tion diluted ferromagnet. In the se
ond part essentiallythe same mapping will be used to study the dynami
 slowing down of parity 
he
k algorithmsfor error 
orre
ting 
odes - with the 
onsequent onset of 
omputational 
omplexity - and the
orrespondent dynami
 phase transition in spin glasses.The mathemati
al language used throughout this work will be that of repli
a theory: weare well aware that this is a very 
ontroversial �eld, due to the lankness of 
lear and rigorousfoundations that makes its mathemati
al interpretation obs
ure and its results \unreasonablysu

essful"[42℄. And this even after more than 20 years after the original formulation of thetheory [59℄. In the ne
essary attempt to over
ome this problem a 
al
ulation in 
hapter six ispresented with the aim of showing how repli
a theory 
an be at least interpreted as a systemati
variational method also in the 
ase on diluted models. The treatment will be a generalization ofthe method re
ently proposed by Guerra [60℄ for fully 
onne
ted models. Moreover, very re
entwork [23, 24, 30℄ has 
lari�ed the equivalen
e between the 
avity method and the repli
a resultsalso in the diluted systems 
ase. Sin
e the �rst one deals with usual probabilisti
 obje
ts, ithas a 
learer and more dire
t interpretation that 
ould lend itself to further rigorous studies.Some dire
tions for future work are summarized in the 
on
lusions.The 
al
ulations and the results presented in this thesis are the output of a three years 
ollabo-ration with the I.C.T.P. 
ondensed matter and statisti
al physi
s group in the names of Ri

ardoZe

hina, Silvio Franz, Alfredo Braunstein and Federi
o Ri

i-Tersenghi (now in Rome). Greatpart of the work was also the output of a 
ollaboration with Andrea Montanari (�E
ole Normale,Paris). This work would not have been possible without them, and I wish to thank them deeply.

2the de�nition of graph and of rank will be given at the beginning of 
hapter 1.3See the de�nition in the 
hapter.
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Chapter 1General te
hniques for diluted randommodels
1.1 Graphs and Hyper-graphs: preliminary de�nitionsDuring the whole length of this thesis we are going to deal with spin models de�ned on dilutedrandom stru
tures su
h as simple random graphs or hyper-graphs [61, 62, 63℄. A graph G is
ommonly de�ned as a non-empty �nite set V (G) of elementary units 
alled verti
es or nodesor sites in our 
ommon notation, and a �nite set E(G) of distin
t unordered pairs of distin
tnodes 
alled edges or links . We 
all V (G) the vertex set and E(G) the edge set of G. In ournotation the ith site will be denoted by its Latin index i and an edge between sites i and j willbe denoted as the 
ouple ij. We will work with undire
ted edges (graphs). We will de�ne thesize or order of the graph as the 
ardinality of the vertex set or the number N of sites, we will
allM the the 
ardinality of the edge set. A 
omplete graph is a graph whose edge set is madeof all possible links between nodes. In that 
ase one has M = N(N � 1)=2 � O(N2). Manyinteresting models 
an be de�ned on a generalization of graph stru
tures that go under thename of hyper-graphs. Let X = fx1; ::::; xNg be a �nite set., and let E = fEiji 2 Ig be a familyof subsets of X. E is said to be a hyper-graph on X if Ei 6= ; 8 i 2 I and Si2I Ei = X. Thestru
ture H = (X; E) is 
alled hyper-graph. Again, jXj = N is the order of the hyper-graph.It is easy ro see how a graph is simply a parti
ular 
ase of hyper-graph with E restri
ted tosubsets of exa
tly two elements. E will be the generalized edge set (or hyper-edge set) of H. Isit possible to draw a hyper-graph in many equivalent ways. One possibility is shown in �gure(1.1), where edges are shown as multiple verti
es plaquettes. This may not be the orthodox wayto represent a general hyper-graph, but is reminis
ent of the usual way to represent multi-spinor plaquette intera
tion in latti
e �eld theory or statisti
al me
hani
s, so we will adopt it in thefollowing. In the future 
hapters we will o

asionally need the 
on
ept of in
iden
e matrix asthe matrix Â = ((aji )) with M rows that represent the edges of H and N 
olumns representingits verti
es, su
h that: aji = 1 if xj 2 Eiaji = 0 if xj =2 EiIn a hyper-graph H, the rank r(S) of a set S � X is de�ned asr(S) = maxijS \ Eij (1.1)11
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Figure 1.1: Trivial examples of a simple graph, two hyper-graphs of �xed rank 3 and an hyper-graph of rank 4 and minimal rank 2. also rank 2 edges are expressed in hyper-graph notation.All these example have N very small 
ompared with the stru
tures we will be interested in, sothey are only to be intended, along with others in the text, as a pi
torial guide.The rank of the hype-graph is thereforer(X) = maxijX \ Eij (1.2)If r(X) = Ei 8 i, then the hyper-graph is said to be of uniform rank. A simple graph will thenbe a hype-graph of uniform rank 2.To ea
h hyper-graphH = (X;E1; :::; EM) there 
orresponds a dual hyper-graphH� = (E;X1; :::; XN)whose verti
es are points e1; :::; eM representing E1; :::; EM and whose edges are sets X1; :::; XNrepresenting x1; :::; xN where 8j, Xj = feiji �M ; Ei 3 xjg (1.3)When dealing with the graphi
al interpretation of error 
orre
ting 
odes, we will swit
h to arepresentation of hyper-graphs in terms of fa
tor graphs [64, 65, 66℄ (see also the appendix fora graphi
al example), more familiar to 
omputer s
ientists, and where duality is made evidentand expli
itly exploited. Any hyper-graph 
an be read as a bipartite graph where one subset isX and the other E, and where there is a edge pointing from xi to el if the 
orrespondent elementof the in
iden
e matrix of the original hyper-graph is non-zero. Su
h parti
ular bipartite graphis 
alled fa
tor graph. Given a hyper-graph H, a 
hain of length q is de�ned [63℄ as a sequen
e(x1; E1; x2; E2; ::::; Eq; xq+1) s.t. � x1; ::::; xq are distin
t verti
es� E1; ::::; Eq are distin
t edges� xk; xk+1 2 Ek 8 k = 1; :::; qIn the physi
s jargon, 
hains are nothing but 
onne
ted 
omponents of the hyper-graph H.If q > 1 and xq+1 = x1, then the 
hain is 
alled a 
y
le of length q. A 
y
le in a graph of uniform
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rank 2 is nothing but a loop. In the physi
s of disordered and frustrated systems a parti
ularrole turn out to play those 
y
les where every vertex belongs to an even number of edges.We will 
all those 
y
les \
ompa
t 
y
les" , \hyper-
y
les" or \hyper-loops", for the similaritywith the graphs 
ase where loops always have this property. Two examples of very parti
ular
y
les (the �rst is also a 
ompa
t 
y
le) are shown in �g. (1.1) for the 
ase of a hyper-graph ofuniform rank 3 (see also [19℄ for the �rst appli
ation to hyper-loops 
on
epts to spin glasses, tomy knowledge). A hyper-graph is the said to be random [62, 69, 68℄ whenever the presen
e orabsen
e of ea
h of its edges is given with a de�ned arbitrary probability. Traditionally, randomgraphs were introdu
ed as those where the probability of having an edge between two givenverti
es is a 
onstant r1: 8 i; j P rob(ij 2 E(G)) = r (1.4)If r / O(1) then the graph is said to be dense as well as its in
iden
e matrix. If r / O(1=N)then the graph will be thin or diluted and its in
iden
e matrix will be a sparse one. In thislast 
ase M / N . This will be the 
ase we'll 
onsidered it the rest of the thesis. Completehyper-graphs of �nite rank l have CNl / N l�1 edges 2. Therefore, in order to have a numberof edges proportional to N every plaquette 
ontaining l, verti
es must have a probability tobe present proportional to 1=N (l�1). If ea
h edge is present with the same �xed probability,properly res
aled with N , the hyper-graph will be diluted and ea
h vertex i will have a �nitedegree ki drawn from a poissonian probability degree distribution
k = e�
 
kk! (1.5)where 
 is a free parameter determining mean value and varian
e of the distribution. A parti
-ular \self similar" form is pe
uliar of the poissonian distribution: In this 
ase the probability
k of �nding a vertex of degree k is equal to the probability qk of �nding a nearest neighborvertex with degree k + 1, as 
an be seen applying eq. (1.5) to the de�nition [69℄qk � (k + 1)
k+1Pk k
k = (k + 1)
k+1< k > : (1.6)This note is very important in pra
ti
al 
al
ulations and is the origin of major simpli�
ationsin the repli
a and the 
avity equations [23, 24℄ we will see later on. This is re
e
ted by the fa
t1A very ri
h phenomenology of stru
tures appearing in the graph as a fun
tion of the degree and a 
ompletestudy of graphs behavior as r in
reases with N has been performed on a rigorous mathemati
a basis staringfrom the seminal paper of �Erdos and R�enyi [61℄. For a systemati
 introdu
tion see for instan
e [62℄ and [67℄and referen
es therein. To my knowledge no 
omparable systemati
 study has been undertaken in the 
ase ofrank > 2 hyper-graphs yet. For a 
lear introdu
tion to hyper-graphs see [68℄.2CNl � N !=((N � l)!l!) in the following.



14 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELSthat in the poissonian 
ase the mean value uniquely determines the varian
e and vi
e-versa.As a 
onsequen
e, a lot of simpli�
ations and parti
ular behaviors of poissonian hyper-graphs
annot be applied in wider families of random stru
tures. However, it is possible to 
onstrainthe probability of the value of the number of edges in
ident on a �xed vertex in order todraw diluted hyper-graphs from ensembles with arbitrary degree distributions (arbitrary 
k).The 
onstraints will be of global nature and will not introdu
e vertex-vertex 
orrelations, asit will be seen in the following. Sin
e the repli
a as well as the 
avity equation for spinmodels de�ned over diluted hyper-graphs will be 
on
erned in the 
omputation of the lo
ale�e
tive �elds a
ting on ea
h spin variable in absen
e of a parti
ular edge in
ident to thevertex under 
onsideration, The natural ensemble we are going to work with will indeed bethat of the qk and not that of the 
k. We stress again that this 
hange is immaterial in thepoissonian 
ase, where one falls ba
k into the same ensemble, but not in the general one.Moreover, one 
ould of 
ourse think to more 
omplex or \semi-random" stru
tures where someregularity reminis
ent of a real latti
e geometry is progressively introdu
ed into the randommatrix through the presen
e of 
orrelations of various kind (see [41℄ for one among possibleexamples) or through the presen
e of regular sub-hyper-graphs merged in the whole one in arandom way. But even if one limits the investigation to purely random diluted hyper-graphsand to simple 
lassi
al spin models de�ned on them, the questions that arise are still of a deepkind both from a fundamental and from an appli
ation oriented point of view. Nevertheless,the immediate future dire
tions for investigations will ne
essarily have to deal with the presen
eof su
h 
orrelations [72, 46, 70, 71, 73℄, as well as with models where the intera
tion 
onstraintsare non lo
al in nature [74℄ or non purely 
lassi
al.1.2 Spin models on diluted stru
turesIn all 
ases, we are going to work with models that 
an be des
ribed, under appropriate map-ping, via some spin Hamiltonian H(J; s), where fJg represents an ensemble of disorderedintera
tion energy variables taking non zero values on the edges of the hyper-graph or de�nedas 
ombinations of more elementary intera
tion terms as in the 
ase of the K-SAT. s) are N �1spin variables (0 or 1 Boolean variables in the usual 
ombinatorial problems en
oding) living onthe verti
es of the hyper-graph. We will deal in the following with 
ases where the Hamiltonian
an be written as a sum of lo
al energeti
 
ontributions �� asH(J; s) =X� ��(fJ�g; fs�g) ; (1.7)where � indi
ates ea
h subset (usually an edge of the underlying hyper-graph or a 
lause in SAT-like formulation) that 
ontains a small number of both 
onstraints and spin variables, relativeto the total number N of variables3 . As a title of example, the simplest possible Hamiltonianis the Viana-Bray (see the original arti
le by Viana and Bray in [1℄):H(J; s) = �Xi<j Jijsisj : (1.8)The diluted hyper-graphs that de�ne the underlying topologi
al stru
ture will be drawn fromthe appropriate 
hosen statisti
al ensemble, fully determining the probability distribution P (k)3� is usually 
alle \
lause index" in SAT-like formulations, but it 
an be extended in general to other spinsystems.



1.2. SPIN MODELS ON DILUTED STRUCTURES 15of edge degrees and the probability distribution Q(l) of ranks. The rank on ea
h single hyper-graph edge is equal in the 
ases under 
onsideration to the number of spin variables in the lo
alenergeti
 term ��. Therefore the distribution Q(l) is going to be stri
tly related to the fra
tionof l-variables intera
tion terms Hamiltonians summing up to the total H(J; s)4.1.2.1 DisorderOn
e the set fJg of non zero 
ouplings (equivalent to the set of present edges) is set, itselements 
an take values a

ording to an a priori arbitrary distribution �(J). For disorderedpure ferromagneti
-type models �(J) will read�(J) = Æ(J� 1̂) : (1.9)For disordered pure anti-ferromagnets �(J) = Æ(J+ 1̂) : (1.10)Finally, for the pure generalized �1 spin-glass 
ase5:�(J) = 12 �Æ(J� 1̂) + Æ(J+ 1̂)� (1.11)More in general, the same models 
an be studied for other forms of the 
oupling distribution�(J): 
ontinuous, mixtures of a 
ontinuous and a delta peaked part, mixtures of pure ferromag-neti
 and spin-glass terms, and so on. In 
hapter 5 we will work with models that are originallyde�ned as a mixture of the previous ferromagneti
 and spin-glass one�(J) = 12 �pÆ(J� 1̂) + (1� p)Æ(J+ 1̂)� (1.12)where p is a parameter tuning the amount of \average frustration" or \average glassiness"present into the system. Finally, the rigorous results presented in 
hapter 6 will be derived forgeneral forms of symmetri
 �(J).1.2.2 FrustrationIt was observed right at the beginning of spin-glass theory by Toulouse [2, 75℄ that a mixtureof ferromagneti
 and anti-ferromagneti
 
ouplings 
an give rise to 
on
i
ting 
onstraints, su
hthat it is in general impossible to minimize lo
ally all the energy terms ��. This propertyis widely known as frustration. In spin glass-models on diluted stru
tures (Viana-Bray), thistypi
ally happens when the density of the graph allows parti
ular 
ompa
t stru
tures su
h asloops to per
olate in the system. In the 
ase of higher rank hyper-graphs, loops per
olationturns out not to be a suÆ
ient 
ondition for the existen
e of an extensive fra
tion of frustrated
onstraints, essentially be
ause the extra degrees of freedom due to the possibility of adjustingthe spin variables belonging to the edges but not to the loop. In fa
t, even more 
ompa
tstru
tures su
h as hyper-loops must per
olate in the underlying matrix. The phenomenon isexempli�ed in �g. (1.2). The 
ommon presen
e of disorder and frustration allows for a phase4In fa
t the two fra
tions will 
oin
ide in the generalized p-spin model.5Histori
ally the spin-glass models have been de�ned only in the 
ase of two body intera
tions, as a physi
allysensible model for real magneti
 materials. However, a generalized multi-spin intera
tion family of spin-glasstype models 
an be justi�ed not only for their use in random 
ombinatorial optimization, but as an e�e
tivemodel for many bodies systems of lo
al (often 
on
i
ting) 
onstraints, where 
olle
tive phenomena naturallyemerge.
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Figure 1.2: Frustration in graphs and hyper-graphs. This Pi
ture is very similar to the one wewill draw in 
hapter 2 for the 
ore resolution under the a
tion of the Leaf Removal algorithm(see se
tion 2.7 for details). It is important to keep in mind this similarity, be
ause it will bethe main 
ause of the e�e
tiveness of the algorithm in lo
ating the spin-glass transition in thep-spin model.
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Figure 1.3: Pi
torial one dimensional proje
tion of rough energy lands
ape.spa
e stru
ture with a large - typi
ally exponential - number of degenerate global ground statesas well as de�nite energy metastable states. Pi
torially, one 
ould think that these systemsshow an energy lands
ape of the kind exempli�ed in �g. (1.3). This pi
ture is however oftenvery misleading be
ause the x-axis in the pi
ture is in fa
t a proje
tion of the high dimensionalphase spa
e, where all the topologi
al stru
ture is hidden. The degree and nature of theinner stru
ture of the phase spa
e 
an vary in prin
iple from problem to problem. A betterunderstanding of this topology in the 
ase of some models interesting in random 
ombinatorialoptimization, 
oding theory and more in general disordered systems physi
s, is the main aimof the present work.We would like to mention that the families of models studied in the following 
hapters isby no means exhaustive. For instan
e, a natural generalization of the te
hniques explained is
urrently been applied to Potts-like models [76℄ and 
ould be adapted in prin
iple to Classi
alHeisenberg models and so on. However, in these last 
ases, the te
hni
al 
al
ulations aremore involved [57, 58℄ be
ause, as it turns out, one is for
ed to work with fun
tional orderparameters whi
h 
an be written as distributions of e�e
tive lo
al �elds of ve
torial insteadof s
alar nature, as it is the 
ase of the examples treated in the present work. This leadsto self 
onsistent equations for the order parameters that are inter-wined in the various �eld
omponents [58℄6. The body of the 
hapter will deal with the analyti
al repli
a te
hniquesdevised to 
ompute thermodynami
al quantities of physi
al systems on diluted hyper-graphs inabsen
e of 
orrelations and in presen
e of quen
hed disorder. Let us now expli
it the 
onne
tionbetween this 
lass of models and 
ombinatorial optimization theory.6The 
oloring degree stati
 threshold obviously depend on the number of 
olors available for the 
oloring,at �xed graph. The 
urrently best rigorous upper bound for the 3-COL/UNCOL transition (three 
olors) inpoissonian degree distributed random graphs is 5:06[77℄. It was obtained using a re�ned �rst moment method,equivalent to an improved annealed approximation in statisti
al physi
s. The RS 5:1 threshold obtained in[57℄ ex
eeds the rigorous bound, while at the 1RSB level the authors of [58℄ were able to �nd a dynami
althreshold for an average degree equal to 4:42, followed by the 3-COL/UNCOL transition at 4:69. The valuesare 
onje
tured to be exa
t by the authors, and are indeed in very good agreement with numeri
al simulations[78℄. The general dis
ussion on the meaning of the dynami
al threshold is done in 
hapter 2. Noti
e also thatthe 
al
ulations of 
hapter 6 will be in prin
iple extendible to the 
oloring problem, so we 
ould 
laim 4:69 tobe at least the best upper bound to date.



18 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELS1.2.3 Combinatorial optimization problems as spin modelsClassi
al 
omplexity theory [34℄, as arising from Cook's theorem of 1971 [47℄, deals with the issueof 
lassifying 
ombinatorial optimization problems a

ording to the 
omputational 
ost requiredfor their solution. The hard problems are grouped in a 
lass named NP, where NP stands for`non-deterministi
 polynomial time'. These problems are su
h that a potential solution 
anbe 
he
ked rapidly whereas �nding one solution may require an exponential time in the worst
ase. In turn, the hardest problems in NP belong to a sub-
lass 
alled NP-
omplete whi
h isat the root of 
omputational 
omplexity. The 
ompleteness property refers to the fa
t that ifan eÆ
ient algorithm for solving just one of these problems 
ould be found, then one wouldhave an eÆ
ient algorithm for solving all problems in NP. By now, a huge number of NP-
omplete problems have been identi�ed [34℄, and the la
k of an eÆ
ient algorithm 
orroboratesthe widespread 
onje
ture that NP 6=P, i.e. that no su
h algorithm exists.Complexity theory is based on a worst-
ase analysis and therefore does not depend onthe properties of the parti
ular instan
es of the problems under 
onsideration. In pra
ti
ealgorithms display a huge variability of running times, ranging from linear to exponential, andtherefore a theory for their most probable behavior represents the natural 
omplement to theworst-
ase s
enario.The most 
ommon problems en
ountered in 
omputer s
ien
e and issue of theoreti
al anal-ysis studies within 
omputational 
omplexity theory are of a type. A de
ision-making problemis often formulated as that of the maximization or minimization of a multi-variable fun
tion, anoptimization problem7. The fun
tion to be minimized (maximized) is 
alled obje
tive fun
tionor 
ost fun
tion, and basi
ally 
ounts the number of violated 
onstraints , given a parti
ular
on�gurational assignments to the variables on the problem. An example of 
ombinatorial op-timization problem familiar to physi
ists is that of �nding the ground state of an Ising model.More in general, any sear
h of ground states in any spin model on a given geometri
al or topo-logi
al stru
ture 
an be seen as parti
ular optimization problem. On the other hand, a large
lass of purely 
ombinatorial optimization problems in prin
iple not related to physi
s 
an beseen equivalent to the sear
h for zero temperature ground states of ad ho
 
onstru
ted spinmodels (often spin-glasses) on parti
ular topologi
al stru
tures. Among others we 
an 
ountthe number partitioning problem, the graph partitioning, the graph and hyper-graph 
olor-ing, the knapsa
k problem, the s
heduling problem and the satis�ability (SAT) one. A 
learoverview of some of these examples 
an be seen in [27℄ and an introdu
tion to the study statis-ti
al me
hani
s study of random 
ombinatorial optimization problems seen as spin systems 
anbe found in [35℄. In parti
ular, SAT has been extensively studied due to its NP-
ompletenessand general nature. Its mapping on a parti
ular spin-glass model has been elu
idated in [9℄.As well as in many of its variations, the SAT 
ost fun
tion 
an be read as the 
olle
tion ofM logi
al 
onstraints that have to be satis�ed by N boolean variables. It turns out [9℄ thatany SAT formula 
ost fun
tion 
an be written as the Hamiltonian of a spin model where 0� 1variables are repla
ed by �1 spins, and the 
onstraints are well determined 
olle
tions of edgesor plaquettes of various rank of a given hyper-graph that 
ompletely 
hara
terizes the formulaunder study. If M � O(N), whi
h is the 
ase the most interesting formulas belongs to - i.e.those 
lose to the satis�ability threshold - then the underlying hyper-graph is a diluted one. Inorder to study the SAT problem in its spin-glass formulation it is therefore ne
essary to developa general formalism to be able to deal with topologi
al stru
tures su
h as diluted hyper-graphs.7We will not here review in detail the 
omplexity theory of optimization problems, that 
an be found forexample in [34℄, together with the de�nition of P and NP 
omplexity 
lasses as well as more general ones



1.2. SPIN MODELS ON DILUTED STRUCTURES 19In the following this will be expli
itly done for the 
ase of the general diluted p-spin like mod-els, but it will be then further generalized in order to ta
kle problems like the K-SAT one.Whenever the 
onstraints forming the formula to be satis�ed are drawn randomly from a pre-viously de�ned ensemble, then the optimization problem will have a random nature. Instead ofworking on a parti
ular hyper-graph, this will amount to averaging over the 
hosen ensembleof \quen
hed" stru
tures. It will be then interesting to dis
ern whi
h properties (one for all theinner 
omplexity of the problem) survive in shifting the sear
h for solution from a parti
ularto a random 
ase. The following 
hapters will almost all be devoted to the appli
ation of thegeneral analyti
al te
hniques developed here to various optimization problems, some of themused as toy models, as in 
hapter 3, some others of more 
omplex analysis, as in the remaining
hapters.1.2.4 Quen
hed disorder averages and general 
omputational strate-giesEvaluation of a physi
al quantity using a spin Hamiltonian of the type (1.8) or any more
ompli
ated 
ase 
onsidered in this work starts from the tra
e over the spin variables for agiven �xed (quen
hed) set of 
ouplings. For us, this 
orresponds to randomly 
hoosing a dilutedhyper-graph from a desired ensemble and a �xed form of the �(J). The free-energy of the systemF [J℄ = � 1� logTrs �e��H(J;s)� (1.13)
an be harmlessly averaged over the quen
hed disorder in the thermodynami
 limit, if the self-averaging 
ondition over extensive thermodynami
al quantities (like indeed the free-energy) issatis�ed as we assume to be true throughout the whose treatment. This averaging pro
eduregoes under the name of 
on�gurational average :hF i � Z D�(J)F [J℄ (1.14)However, the dependen
e of the partition fun
tion on J is in general very 
ompli
ated and it isnot easy to 
al
ulate expression (1.14) dire
tly. Moreover, in the 
ase of real world optimizationproblems, the thermodynami
 limit 
ondition does not always hold, and more subtle singlesample analysis also in the typi
al 
ase have to be taken into 
onsideration [30℄.1.2.5 Repli
asThe 
al
ulations are 
arried out via a \subtle tri
k": it mu
h easier to 
omputehlogZi = limn!0 Zn � 1n (1.15)The last equation is an identity for 
ontinuous n, but the tri
k 
onsists in 
al
ulating �rstZn for integer n, taking the 0 limit is a se
ond time. The repli
ated partition fun
tion, afteraveraging over the same disorder realization be
omes a partition fun
tion of n systems, withoutdisorder, but with an e�e
tive attra
tive intera
tion between the various repli
as. The reasonfor this attra
tion is intuitively quite simple [79℄: be
ause they share the same Hamiltonianand the same disorder, the various repli
as will be attra
ted towards the same favorable regionsof the phase spa
e and repelled from the unfavorable ones. If one has a simple phase spa
e,



20 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELSwith basi
ally a single large deepest valley, then the repli
as will all fall in that, and the orderparameter will be a number q whi
h will measure the average distan
e between repli
as withinthis single valley. But in a systems with several metastable states, the situation 
an be more
ompli
ated, with some repli
as trapped in a valley and some in another. This e�e
t is 
alledrepli
a symmetry breaking (RSB). Te
hni
ally it appears as a standard spontaneous breakingof a symmetry, the permutation symmetry Sn of the n repli
as. The problem is that thissymmetry is broken only when one 
onsiders some number of repli
as whi
h is non-integerand in fa
t smaller than one. Even though this point has been elegantly solved by Parisi [2℄,the validity of taking the n ! 0 limit still la
ks a general rigorous justi�
ation ([60℄, [59℄ andreferen
es therein). The last 
hapter will try to deal with this problem in an indire
t way.We will not show (unfortunately) that the physi
al quantities de�ned on the n ! 0 ve
torspa
es are well de�ned mathemati
al obje
ts, but at least that, on the 
lass of systems we areinterested in, the e�e
tive repli
a Hamiltonian 
an lead to rigorous variational results. In the
ase of fully 
onne
ted models, the repli
a mean �eld theory 
an be stated in terms of a singles
alar n�n matrix, whose elements are the overlaps 
hosen via a determinate s
heme and thatplay the role of order parameters. In the 
ase of diluted systems, however, it emerges the needfor the determination of a full distribution of multi-spin overlaps [1, 9℄ that 
an be 
ompletely
hara
terized via the introdu
tion of a 
lass of fun
tional order parameters [8, 9, 12℄�(~�)that essentially enumerate the fra
tion of repli
ated spins in a parti
ular repli
a state, as itwill be
ome 
lear in the 
ourse of the 
al
ulations8. These fun
tional order parameters havestill a mean �eld nature and will be expressed in terms of series of multi-spin overlap fun
tionsaveraged over the mean lo
al �elds distributions seen by an average vertex in a parti
ular state.The free-energy of the system 
an be written as a fun
tion of �(~�), and will therefore be afun
tional of the lo
al �elds probability distributions, averaged over all possible states of thesystem. In the N ! 1 limit9, the dominant 
ontribution to the partition fun
tion is foundextremizing the free energy with respe
t to the fun
tional order parameterOne is left with a set of self 
onsistent integral equations for the e�e
tive �elds probabilitydistributions, that 
an be solved analyti
ally or numeri
ally (depending on the 
ases). In somespe
ial 
ases, namely on the T = 0 line for some 
lasses of models, these equations furthersimplify due to the 
ollapsing of the fun
tional form of the probability distributions into seriesof weighted delta fun
tions. When this happens, one is left with a set of algebrai
 equations inthe weights that often admit analyti
 solutions in a 
losed form. This is parti
ularly interestingin the �eld of 
ombinatorial optimization, thanks to the existing general mapping pro
edurebetween the solutions of the random 
ombinatorial problem and the zero temperature groundstates of the asso
iated spin model. Moreover, the assignments of the problem variables witha given (typi
ally low) number of violated 
onstraints 
orrespond to metastable lo
al groundstates with positive energy. The logarithm of the number N (e) of su
h metastable states isa fun
tion of the their energy density e = E=N and is known as Con�gurational Entropy orComplexity[7℄ �: �(e) = 1N log[N (e)℄ (1.16)8There are at least two ways to de�ne the order parameter, depending on whether one fo
uses on the wholegraphs or on some part of it. See appendi
es C, C.1 and C.2 for some details.9N is the number of variables in the system.



1.2. SPIN MODELS ON DILUTED STRUCTURES 21Therefore, the measure of the extensivity of the Complexity will be an important indire
t wayto study the hardness of the random 
ombinatorial problem depending on the position in thephase spa
e of the asso
iated pin model, and will stress the deep 
onne
tion between the theoryof the glassy transitions in disordered systems and the 
on
epts of 
omputational 
omplexityin theoreti
al 
omputer s
ien
e.As we just said, the ingredients of frustration and/or disorder typi
ally indu
e the onset oftransitions from a uniform paramagneti
 to one or more kind of glassy phases in the 
ontrolparameters10 spa
e of the model.1.2.6 CavityThe same solutions and the same physi
al insights 
an be rea
hed via the 
avity method. Cavitywas invented in 1986 for the solution of the SK model [2℄, but was re
ently reformulated in thediluted systems framework [23℄ and related to an algorithmi
 understanding of the pro
ess inthe 
ase of its dire
t zero temperature formulation in [24, 30, 29℄. The basi
 idea of the methodapplied to spin models on diluted hyper-graphs is the following:� Assume that, like in the repli
a method, due to the lo
al tree-like stru
ture of the hyper-graph and the mean �eld nature of the model, spin variables be
ome un
orrelated at largedistan
es if the system is in a single state. The in
uen
e of the graph on a single spin
an be therefore easily written in terms of un
orrelated lo
al e�e
tive �elds a
ting on it.� Starting with a system of N variables, add now a variable S0 of degree k (on average onewill add a fra
tion of spins 
k) and 
onne
t it to the rest of the hyper-graph in order to
omplete k 
lauses of fun
tion nodes of the N verti
es graphs with variables fS1a; :::; Skaga,where a is the rank index, i.e. it indexes all the variables other than S0 belonging to agiven 
lause (or energy 
onstraint, as equivalently indi
ated throughout this thesis).� Assume that fS1a; :::; Skaga where previously dis
onne
ted with probability one in the ther-modynami
 limit (no short loops) and therefore un
orrelated:P (N)(fS1a; :::; Skaga) ' P (N)1 (fS1aga):::P (N)k (fSkaga) 'Ya P (N)1;a (S1a):::P (N)k;a (Ska) (1.17)Then it is possible to 
ompute the new P (N+1)(S0; fSa1 ; :::; Sakga) via Bayes theorem as:P (N+1)(S0; fS1a; :::; Skaga) ' kY�=1P (N)� (fS�a ga)e���(0)� (S0;fS�a ga) ' kY�=1Ya P (N)�;a (S�a )e���(0)� (S0;fS�a ga)(1.18)where �(0)� (S0; fS�a ga) is the lo
al energy 
onstraint �� of eq. (1.7) where the dependen
eon the �-th 
lause spin variables has been made expli
it, as well as the referen
e spinindex 0. Integrating over the variables fS1a ; :::; Skaga one �nally obtains:P (N+1)(S0) ' kY�=1Ya XS�a=�1P (N)�;a (S�a )e���(0)� (S0;fS�a ga) : (1.19)10We re
all that the relevant 
ontrol parameters are in these models the temperature T , the graph dilution
 or � (depending on the notation in the literature) and in some 
ases some form of external magneti
 �eld, asit will be the 
ase in the se
tion dedi
ated to error 
orre
ting 
odes.



22 CHAPTER 1. GENERAL TECHNIQUES FOR DILUTED RANDOM MODELSThis last equation de�nes an iterative method to 
al
ulate P (N+1)0 (S0) from fP (N)�;a (S�a )g�;a.Thanks to the �rst assumption, the equations for P (N)j (Sj) and P (N+1)(S0) 
an be easily writtenas P (N)j (Sj) = e�hjSj2 
osh(�hj)P (N+1)0 (S0) = e�h0S02 
osh(�h0) (1.20)Writing self 
onsistent equations for the 
avity �elds is then possible inserting (1.20) in (1.19)and iterating. In the typi
al 
ase, one 
an then average over all spins, getting an expressionfor the distribution P (h) weighted over the degree and rank distribution of the typi
al hyper-graphs.In fa
t, this assumption is globally valid only if the system is in a single pure state. Inmany states � = 1; :::;Nstates are present, the previous equations are valid within a given state�, i.e. a 
luster of solution separated by other 
lusters. Equations (1.20) will then be statedependent and the self 
onsistent 
ondition (1.19) will have to be averaged both over the sites iand over the states �. This pi
ture 
orresponds to the one step repli
a symmetry breaking oneand is frequent in disordered spin systems. The 
avity method formulated in this way worksessentially by indu
tion and assumes no non trivial 
orrelations within 
lusters or inside thesame 
luster that 
ould origin from the geometry of the graph, even though trivial 
orrelations ofa hierar
hi
al nature 
an be taken into a

ount11. The disregarding of 
orrelations is 
ommonwith the repli
a approa
h, as it should be if we 
laim the two to be equivalent, and it is alimitation of the theory that will have to be over
ome in the near future if one wants to be ableto systemati
ally atta
k problems with more 
omplex geometri
al stru
ture.During the 
avity iteration pro
ess, one is bound to make a small error of order 1=N , sin
ethe ensemble of random graphs one is working with 
hanges slightly under the N ! N + 1
avity iterations. This error 
an be healed via a 
lever balan
ing of verti
es and edges additionsand erasures. More in detail:� A hyper-graph HN;M with N verti
es and M edges is drawn from the desired ensemble.� A 
avity is 
arved in it, where q verti
es are left with degree equal to minus one theirinitial one, through a proper erasure of surrounding verti
es and edges. q is 
hosen as afun
tion of the degree of the erased verti
es and the rank of the erased edges12.� Lo
al 
avity magneti
 �elds h�i a
ting on the 
avity spins Si are supposed to follow aninitially unknown probability distribution Pi(h�i ), in prin
iple di�erent from site to siteand with �eld values dependent on the state � of the system.� Under the addition of a new 
avity spin Sj of degree kj 
onne
ted with some of the previous
avity sites through given number of hyper-edges of suitably 
hosen ranks, the probabilitydistributions of the new 
avity �elds are 
al
ulated in a self 
onsistent iterative way. The11Trivial 
orrelations are taken in prin
iple into a

ount via further 
lusterization steps the same \
lusterswithin 
lusters" hierar
hy implied by the RSB Parisi's 
onstru
tion.12For example for a hyper-graph of �xed rank l and �xed degree k, q will have value l(l � 1)k or integermultiples.



1.2. SPIN MODELS ON DILUTED STRUCTURES 23iteration is built in order to self 
onsistently stabilize the 
avity �elds distributions on
ethe original hyper-graph is retrieved13.� The pro
edure is repeated adding and deleting edges and verti
es in a balan
ed way, inorder to retrieve the hyper-graph belonging to the desired starting ensemble.� Energy shifts are 
al
ulated under the iteration, allowing to 
al
ulate the free energy,the energy density and other physi
al quantities (for example the 
omplexity) in thethermodynami
 limit.� Averages over the hyper-graphs ensemble and the model 
ouplings are performed.If applied to single spins, the 
avity method is mean �eld in nature. In order to possiblye�e
tively extend it to �nite dimensional models or with latti
es with some non trivial geometryone would need to 
onsider the in
uen
e on the iteration of more 
omplex groups of variables.This has been partially done with the 
luster variationmethod (CVM) for ferromagneti
 models,but the extension in presen
e of frustration is still an open issue.1.2.7 Phase spa
e stru
turetwo possible s
enarios have been en
ountered in the models studied:� A Repli
a Symmetri
 phase (RS): generi
ally, the distan
e on the latti
e between twospins is large, at least of the order of random loops forming in the topology, i.e. of theorder O(logN). It is therefore reasonable to assume that the spins remain un
orrelated.In the 
avity language this means that the Global Ground State (GGS) energy of a graphwith a referen
e 
avity of q spins 
arved in it 
an be written as an additive fun
tion ofthe values of the 
avity spins Si=1;:::;q, weighted by the lo
al �elds hi=1;:::;q a
ting on them.When 
onsidering the ensemble of random 
avity graphs, the lo
al �elds turn out to bei.i.d. random variables, and their distribution is denoted with P (h). The lo
al �eld willtherefore not 
u
tuate from state to state be
ause of the presen
e on only one GGS a,and the distribution P (h) will be an average over all sites. In the repli
a formalism, thesame P (h) will be the one determining the multi-spin overlaps 
ontained in the fun
tionalorder parameter �(~�).� A One Step Repli
a Symmetry Broken phase (1RSB): The phase spa
e splits inan exponential number of metastable Lo
al Ground States (LGS), de�ned as states inwhi
h the energy 
annot be lowered by 
ipping a �nite number of spins. In presen
e ofseveral ground states, the assumption is that there is a one-to-one 
orresponden
e amongthe LGS before and after the addition of spins or edges (at least for the LGS with lowenergies). Equivalently we assume that the perturbation due to the 
hange of the valueof a 
avity spin propagates (in the limit N going to in�nity) only to an in�nitesimalfra
tion of the latti
e. Therefore it is possible to write an iteration pro
edure for thewhole population of LGS with given energy. However it may well be that the order of theLGS energies 
hange during the graph operations, and the GGS after iteration is not thesame LGS as the one before. The problem is to take into a

ount these level 
rossings,whi
h is not done in the RS solution and turns out to be automati
ally done in the RSB13Noti
e that an essentially equivalent pro
edure will be followed in 
hapter 5 to prove the variational natureof the repli
a method.
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Figure 1.4: Pi
torial view of the energy lands
ape in the phase spa
e of a system in the 1RSBphase. The energy is on the verti
al axis. 
utting the pi
ture at de�nite values of the energyone �nds 
lusters of solutions in
reasing in number and dimension.
e

ed

ec

e = 0γγ < d
γγ < c
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e
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out

in Figure 1.5: 1RSB 
lustering in phase spa
e.solutions via the repli
a formalism. One is then for
ed to follow a large population ofthe LGS of lowest energy, large enough so that one 
an be sure to obtain the GGS wheniterating.In �g. (1.4) we show a pi
torial view of the energy 
lusters in the 1RSB phase. Typi
al �xedenergy sli
es of this pi
ture show how, in
reasing the energy, di�erent 
lusters are sele
ted. Thisis shown is �g. (1.5). This qualitative pi
ture as been extensively studied for p > 2-spin andK > 2-SAT models in re
ent years [11, 21, 53℄, mainly with variational te
hniques. This is theintuitive idea we'll have in mind in the rest of this work. In some lu
ky 
ases - and indeed thep-spin model will be one of them - this pi
ture will turn out to have an exa
t interpretation.In some others, as for instan
e the random 3-SAT, no rigorous proof is present. Howeverthis pi
ture is highly probable to be 
orre
t and what is more important it turned out to beextremely useful in the development of a new 
lass of algorithm of potential vast use. Indeedvery re
ently [30, 29℄ exa
t solutions of the p-spin model and the K-SAT at zero temperaturein a 
ertain range of the phase spa
e parameters have been a
hieved under this assumption onthe form of the energy levels distribution.There are of 
ourse models for whi
h this pi
ture is not 
omplete: non trivial 
orrelationsarise among LGS, leading to further steps of repli
a symmetry breaking. This is for example
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ase of the Viana-Bray model on diluted graphs [23, 24℄. In this models typi
ally slowde
aying long range 
orrelations are present. However, from a 
omputational point of view theViana-Bray models turns out to be easy in the phase spa
e regions of interest. Indeed, it isalso due to the presen
e of this long range 
orrelations that Viana-Bray like models turn outto be 
omputationally simple, be
ause the solution spa
e will in general be 
onne
ted by pathsallowing the rea
hing of any phase spa
e point with a 
lever but sub-extensive sequen
e of lo
aladjustments.The main 
al
ulation steps reviewed in the last paragraphs are then the ones indi
ated ins
hema (1.6), where the 
onne
tion to the �eld of 
ombinatorial optimization is made evident.Finally, some di�eren
es between the repli
a and the 
avity methods are listed in the fol-lowing:� While repli
as for
e the introdu
tion of an order parameter that has already undergoneaverage over the quen
hed disorder, the 
avity equations 
an also be written on a singlesample (hyper-graph). This makes the 
avity approa
h more apt to be applied to spe
i�
real world problems.� The 
avity approa
h deals with well de�ned mathemati
al quantities and is manifestlyvariational, while the well de�niteness of the repli
a method (namely in the RSB 
ase) isstill un
lear.� On the other hand, the repli
a method is mu
h more elegant and 
ompa
t (espe
ially at�nite temperature), it does not require further postulates and assumptions on the energylevel distribution, that in prin
iple depend on the model 
onsidered, and its equations
an be handled in full generality.We will develop the repli
a method, o

asionally taking advantage of physi
al insights 
om-ing from the 
avity pi
ture. A throughout treatment on the state of the art of the 
avity ap-proa
h to diluted models and 
ombinatorial optimization problems 
an be found in [23, 24, 30℄.
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Chapter 2The generalized diluted p-spin modelWe are now going to develop in details the analyti
al repli
a te
hniques previously des
ribed. Indoing so we will 
hoose a spe
i�
 
lass of models of general importan
e, namely a generalizationof the p-spin model on un
orrelated random hyper-graphs with arbitrary degree and rankdistribution.If we de�ne 
k as the fra
tion of spin variables with degree k and vl the fra
tion of intera
tionsof rank l, the resulting mixed hyper-graph stru
ture will be 
hara
terized by the followingdistributions: Q(l̂) = Xl vlÆ(l̂ � l) (2.1)P (k̂) = Xk 
kÆ(k̂ � k) (2.2)< l > = Xl lvl (2.3)< k > = Xl k
k (2.4)We noti
e that we 
ould introdu
e two generating fun
tionsv(x) = Xl vlxl (2.5)
(x) = Xk 
kxk (2.6)(2.7)where (2.6) is the same of [69℄, but the (2.5) generalizes it to more 
omplex stru
tures su
has the mixed rank hyper-graphs we work with. The generating fun
tion formalism is notstri
tly ne
essary, but 
an be very helpful when one is interested in 
omputing more 
omplextopologi
al properties of the hyper-graph and indeed will be expli
itly used in some 
ases. Inthe generalized p-spin model the Hamiltonian therefore readsH = M �Xl Hl (2.8)Hl = Xi1<:::<il Ji1;:::;ilsi1 ; :::; sil (2.9)with M = < k >< l >N (2.10)27



28 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELand P (fJi1;:::;ilgl) = Yl Yi1<:::<il((1� l!
lN l�1 )Æ(Ji1;:::;il) + l!
lN l�1 Æ(Ji1;:::;il � 1)) (2.11)P (fJi1;:::;ilgl) = Yl Yi1<:::<il((1� l!
lN l�1 )Æ(Ji1;:::;il) + (2.12)l!
l2N l�1 (Æ(Ji1;:::;il � 1) + Æ(Ji1;:::;il + 1))respe
tively for the ferromagneti
 and for the frustrated 
ase, and 
l = (< k > = < l >)vl.2.1 Combinatorial optimization interpretation of p-spinmodels: the XOR-SATWe noti
e that these Hamiltonians 
an be also seen as the 
ost fun
tion of a 
lass a 
ombinatorialoptimization problems known under the name of XOR-SAT ([19, 21, 82℄, also extended in [25℄).The XOR-SAT problem is not NP , but it is nevertheless a very useful prototype treatableoptimization problem in order to test the power of statisti
al physi
s tools. Beside this, itsdiluted p-spin version bears many interesting properties from the point of view of stru
turalglasses and granular physi
s [79, 20, 15, 80, 81℄, so its study is interesting for a transversalnumber of dis
iplines. We show the 
ase of the K-XOR-SAT model with K variables per
onstraint, whi
h 
an be viewed as a perfe
tly balan
ed version of the randomK-SAT problem1.Given a set of N Boolean variables fxi = 0; 1gi=1;:::;N , we 
onstru
t an instan
e of K-XOR-SATas follows: given original K-SAT 
lauses (�xi1 _ �xi2 _ �xik) or (xi1 _ xi2 _ xik), every sub-
lause
ontained in one of them must appear dire
ted and negated in the 
orresponding K-XOR-SAT
onstraint an even number of times. In the K = 2 
ase we'll therefore de�ne the followingelementary 
onstraints (2-
lauses sets with 50% satisfying assignments)C(ijj+ 1) = (xi _ �xj) ^ (�xi _ xj)C(ijj � 1) = (xi _ xj) ^ (�xi _ �xj) ; (2.13)In the K = 3 
ase we'll have 
onstraints (4-
lauses sets with 50% satisfying assignments)C(ijkj+ 1) = (xi _ xj _ xk) ^ (xi _ �xj _ �xk)^ (�xi _ xj _ �xk) ^ (�xi _ �xj _ xk)C(ijkj � 1) = (�xi _ �xj _ �xk) ^ (�xi _ xj _ xk)^ (xi _ �xj _ xk) ^ (xi _ xj _ �xk) ; (2.14)in the K = 4 
ase we'll have 8-
lauses of typeC(ijklj + 1) = (�xi _ �xj _ �xk _ xl) ^ (�xi _ �xj _ xk _ �xl)^ (�xi _ xj _ �xk _ �xl) ^ (�xi _ xj _ xk _ xl)^ (xi _ xj _ xk _ �xl) ^ (xi _ xj _ �xk _ xl)^ (xi _ �xj _ xk _ xl) ^ (�xi _ xj _ xk _ xl)1The 
ase K = 2 (Viana-Bray model) does not present any interesting 
omputational features as far ashardness is 
on
erned be
ause it 
an be solved eÆ
iently both by lo
al and global methods.



2.1. COMBINATORIAL OPTIMIZATION INTERPRETATION OF P -SPINMODELS: THE XOR-SAT29C(ijklj � 1) = (xi _ xj _ xk _ xl) ^ (�xi _ �xj _ �xk _ �xl)^ (�xi _ �xj _ xk _ xl) ^ (�xi _ xj _ �xk _ xl)^ (xi _ xj _ �xk _ �xl) ^ (xi _ �xj _ xk _ �xl)^ (xi _ �xj _ �xk _ xl) ^ (�xi _ xj _ xk _ �xl) (2.15)and so on. Here ^ and _ stand for the logi
al AND and OR operations respe
tively andthe over-bar is the logi
al negation. Let's 
on
entrate on the K = 3 
ase, that 
ontains allgeneral elements. In the next 
hapter we will study a mixed version of this model in the 
aseof a mixture of 2 and 4 
lauses, whi
h we will 
all 2+p-XOR-SAT as it shares many 
ommonfeatures to the 2+p-SAT model studied in [11℄. By randomly 
hoosing2 a set E of M triplesfi; j; kg among the N possible indi
es and M asso
iated unbiased and independent randomvariables Jijk = �1, we 
onstru
t a Boolean expression in Conjun
tive Normal Form (CNF) asF = ^fi;j;kg2EC(ijkjJijk) : (2.16)A logi
al assignment of the fxig's satisfying all 
lauses, that is evaluating F to true, is 
alled asolution of the XOR-SAT problem. If no su
h assignment exists, F is said to be unsatis�able.A slightly di�erent 
hoi
e of Jijk allows to 
onstru
t XOR-SAT formul� whi
h are random butguaranteed to be satis�able. This will lead to the ferromagneti
 spin 
ase: to every Booleanvariable we asso
iate independently drawn random variables "i = �1, and de�ne Jijk = "i"j"kfor all fi; j; kg 2 E. For this 
hoi
e, CNF formula in eq.(2.16) is satis�ed by fxi j xi = +1 if " =+1; xi = 0 if " = �1g. As we shall dis
uss in great detail, these formul� provide a uniformensemble of hard satis�able instan
es for lo
al sear
h methods. We refer to this version of themodel as the satis�able hSAT. Indeed, the random signs of Jijk 
an be removed in this satis�able
ase by negating all Boolean variables xi asso
iated to negative "i. The resulting model hasJijk = +1 for all fi; j; kg 2 E, and the for
ed satisfying solution is xi = 1; 8i = 1; :::; N .The use of the f"ig is a way of hiding the latter solution by a random gauge transformationwithout 
hanging the properties of the model. The impossibility of inverting eÆ
iently thegauge transformation by lo
al methods is a 
onsequen
e of the bran
hing pro
ess arising formthe presen
e of K = 3 variables in ea
h 
onstraint. For any K > 3 the same result would holdwhereas for K = 2 the problem trivializes. The XOR-SAT model 
an be easily des
ribed as aminimization problem of a 
ost-energy fun
tion over a random hyper-graph. Given a randomhyper-graph GN;M = (V;E), where V is the set of N verti
es and E is the set ofM hyper-edgesjoining triples of verti
es, the energy fun
tion to be minimized readsHJ [S℄ =M � Xfi;j;kg2E Jijk SiSjSk ; (2.17)where ea
h vertex i bears a binary \spin" variable Si = �1, and the weights Jijk asso
iated tothe random bonds 
an be either �1 at random, in the so 
alled frustrated 
ase, or simply equalto 1 in the unfrustrated model. We see that this is indeed the parti
ular 
ase of the 3-spin ofeq.(2.9). On
e the mapping Si = 1 if xi = 1 and Si = �1 if xi = 0 is established, one 
an easilynoti
e that the energy fun
tion in eq.(2.17) simply 
ounts the number of violated 
lauses in thepreviously de�ned CNF formul� with the same set of J 's. The frustrated and the unfrustrated
ases 
orrespond to the XOR-SAT and to the satis�able XOR-SAT formul� respe
tively.2In the original random XOR-SAT version, v(x) will therefore be the generating fun
tion of a Poissoniandistribution.



30 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODEL2.2 From the partition fun
tion to the average free-energyThe 
onstraints on the degree distribution will have to be introdu
ed along the 
omputation ofthe logarithm of the partition fun
tion.Z = e��MXsi e�PkHk (2.18)Following the approa
h of ref. [19℄, we 
ompute the free energy of the model with the repli
amethod, exploiting the identity log < Zn >= 1+ n < logZ > +O(n2). The nth moment of thepartition fun
tion is obtained by repli
ating n times the sum over the spin 
on�gurations andthen averaging over the quen
hed disorder The averaged n-th moment of the partition fun
tiontakes therefore the following form, a part from a normalization fa
tor:< Zn >= e�n�M X~si < e�Pna=1PlPi1;:::;il Ji1;:::;ilsai1 :::sail > (2.19)where the average value of an observable is given by:< � > = �[P (k)℄ Z Yi1<:::<il P (Ji1;:::;il)(�) NYi=1 Æ(Xl Xi1<:::<il jsign(Ji1;:::;il)j � ki) � (2.20)Yl Æ(Mvl � Xi1<:::<il jsign(Ji1;:::;il)j) (2.21)�[P (k)℄ is a normalization fa
tor ne
essary to res
ale to one the sum over the 
onstrainedprobability distribution of the 
ouplings:�[P (k)℄ � Z Yi1<:::<il P (Ji1;:::;il) NYi=1 Æ(Xl Xi1<:::<il jsign(Ji1;:::;il)j�ki)Yl Æ(Mvl� Xi1<:::<il jsign(Ji1;:::;il)j)(2.22)The two inserted delta fun
tions are there to ensure the 
onstraints on degree and intera
tionterms distribution. In fa
t, the 
onstraint over the fra
tion of �xed rank plaquettes is alreadytaken into a

ount in the parti
ular form of the distribution, therefore the normalization 
anbe limited to the term�[P (k)℄ � Z Yi1<:::<il P (Ji1;:::;il) NYi=1 Æ(Xl Xi1<:::<il jsign(Ji1;:::;il)j � ki) (2.23)Its value is 
al
ulated in the appendix in this 
ase. The �nal value in the large N limit is:�[P (k)℄ � e�N�<k>�Pk 
k log�<k>kk! �� (2.24)Even more in generality, Hl 
ould be in the formHl = Xi1<:::<il Ji1;:::;ilG(l)[~s℄ (2.25)where the fun
tions G(l) depend on the parti
ular model under 
onsideration. In this work, forinstan
e, we 
onsider other relevant examples su
h as the Bi
oloring problem of a random rank 3hyper-graph, where only G(3) = �(si1si2 + si1si3 + si2si3 +2) is present, and the random 3-SAT
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oupling variables follow a di�erent probabilitydistribution too. Going ba
k to our generalized p-spin model we 
an write the delta fun
tionsin their integral formYl Æ(M
l � Xi1<:::<il Ji1;:::;il) =Z Yl (d�l2� ) exp(�iMXl �lvl) exp(iXl �l Xi1<:::<il jsign(Ji1;:::;il)j) (2.26)Yi Æ(Xl X<i2;:::;il>i jsign(Ji1;:::;il)j � ki) =Z Yi (d i2� ) exp(�iXi  iki) exp(i Xi1<:::<il( kXj=1 ij )jsign(Ji1;:::;il)j) (2.27)In fa
t, as we said, the 
hoi
e we have made on the probability distribution of the 
ouplings (andthe 
onsequent value of the quantities 
k) already implies the �rst 
onstraint to be satis�ed inthe large N limit. Indeed, if we expli
itly insert the �rst delta fun
tion (also the normalizationfa
tor will a

ordingly 
hange), we are left with one supplementary series of saddle point equa-tions in the variables �l. Inserting the solutions for the latter variables into the 
ommon saddlepoint equations, we retrieve equivalent expressions. The averaged n-th power of the partitionfun
tion be
omes, in the 
ase of the diluted ferromagnet,< Zn > � exp(��nM)X~si Z Yi (d i2� ) exp �i NXi=1  iki!exp0��< k >< l >N +Xl vlN l�1 exp0�� Xi1;:::;ilXa sai1 :::sail + i lXj=1 ij1A1A (2.28)We 
ould now go on in the 
al
ulation treading a path similar to the one followed for thefully 
onne
ted models, tra
ing out the repli
ated spin variables through the introdu
tion ofa whole series of overlap and multi-overlap quantities. Due to the distribution of ranks anddegrees, however, the number of overlap fun
tion that we would need to take into 
onsiderationis in�nite, and we are better o� if we exploit a more 
ompa
t mathemati
al notation via agenerating fun
tion formalism of the overlap series 3. The 
orre
t generating fun
tion for thiskind of problems turns out to be writable as a fun
tional order parameter in the form [19, 9, 12℄�(~�) = 1N Xi Æ(~� � ~si)ei i : (2.29)In the 
ase of Poissonian hyper-graphs, due to the self similarity property of eq. (1.5) thatsubstituted int eq. (1.6) leads to qpoissk = 
poissk , the �elds  i are redundant and re-absorbed inthe degree distribution (Poissonian degree hyper-graphs are the ones obtained in the thermo-dynami
 limit when using the \free"
ouplings probability distributions (2.11) and (2.12)). Inthis 
ase the quantity (2.29) dire
tly represents the fra
tion of repli
ated spins sai in the repli
astate �a in the whole graph as well as in the 
avity one. However, in the general 
ase it isne
essary to add a �eld  i that 
an be physi
ally interpreted in the following way: ei i is an3However, a full series expansion in terms of multi-overlaps will be treated formally in the dis
ussion of
hapter 6
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ts \erasing" from the spin fra
tion the 
ontribution of the neighboring variablesdis
onne
ted from the i-th one, during the removal of the 
oupling Ji1:::il. This means that therepli
a automati
ally takes into a

ount the fa
t that we are working on the 
avity graph. Thissets the 
onne
tion between the repli
a and the 
avity method, where in the 
ourse of the self
onsistent 
omputation edges and verti
es of the hyper-graph are opportunely erased [24℄. Thisfor
es us to work with the 
avity hyper-graph, shifting the degree probability ensemble andasking for a res
aling of the value of the order parameter, that might not be normalized anymore. In parti
ular the 
ondition X~� �(~�) = 1 (2.30)is not automati
ally veri�ed anymore and we will have to pay attention to this fa
t in thefollowing 
al
ulations. One 
an see that �(~�) indeed is a multi-overlap generating fun
tionalobserving that�(~�) = 1N NXi=1 " nYa=1�1 + sai �a2 � ei i# =12nN NXi=1 24ei i +Xa sai �aei i +Xa<b sai sbi�a�bei i + Xa<b<
 sai sbis
i�a�b�
ei i + :::3512n 24� +Qa
av�a +Xa<bQab
av�a�b + Xa<b<
Qab

av�a�b�
 + :::35 (2.31)where the s
alar � � 1=NPNi=1 ei i is de�ned in the appendix and will 
an
el out with thenormalization fa
tor in the �nal expression for the free energy, and the overlaps Q
av are theusual multi-repli
a overlaps Qab
:::
av � 1N NXi=1 sai sbis
i :::ei i (2.32)
omputed in the 
avity hyper-graph. This has an intuitive interpretation if we realize thatthese quantities 
orre
tly des
ribe the mean �eld nature of the models only when the dire
t
onne
tion between two verti
es is zero with probability 1 in the large N limit. This observationwill be of 
ru
ial importan
e in the determination of rigorous bounds in the last 
hapter. We
an introdu
e the fun
tional order parameter via the delta fun
tionÆ  �(~�)� 1N Xi Æ(~� � ~si)ei i! = Z d�(~�)d�̂(~�)2�N�1 exp �NX~� �(~�)�̂(~�) + �̂(~�)Xi Æ(~� � ~si)ei i!(2.33)where �̂(~�) is a 
onjugated fun
tional that we'll see to own an important physi
al meaning.Plugging (2.33) into (2.28) via integrals over the repli
a spin values we obtain< Zn > � exp ��nN< k >< l > !X~Si Z Yi (d i2� ) exp �i NXi=1  iki! exp �N< k >< l > ! �Z Y~� Nd�(~�)d�̂(~�)2� exp �NX~� �(~�) ^�(~�)! �exp0�N< k >< l > Xl vl X~�1;:::;~�l �(~�1):::�(~�l) exp(�Xa �a1 :::�al )1A �



2.2. FROM THE PARTITION FUNCTION TO THE AVERAGE FREE-ENERGY 33X~si exp X~� �̂(~�)Xi Æ(~� � ~si)ei i! (2.34)Where X~�1;:::;~�l �(~�1):::�(~�l) exp �Xa �a1 :::�al ! =1N l Xi1;:::;il X~�1;:::;~�l nYa=1 Æ(sai1 ; �a1):::Æ(sail; �al )ei i1 :::ei il exp �Xa �a1 :::�al ! =1N l Xi1;:::;il exp (i ( i1 + :::+  il)) exp �Xa sai1 :::sail! (2.35)Tra
ing over the repli
ated spins and later integrating out the  i variables one obtains, for thelast term, Z Yi  d i2� ! exp �i NXi=1  iki!X~si exp iX~� �̂(~�)Xi Æ(~� � ~si)ei i! = (2.36)exp Xi log X~� (�̂(~�))ki(ki)! !! (2.37)Averaging over the P (k̂) this last term be
omesexp Xk 
k log X~� (�̂(~�))kk! !! (2.38)For normalization 
onvenien
e we 
an res
ale the 
onjugate order parameter ^�(~�) �!< k >^�(~�). Adding then in the exponential in N the 
ontribution due to the quen
hed disorderprobability distribution normalization fa
tor (see appendix), the potential eventually reads:�n�F [�(~�); �̂(~�)℄ = � < k >X~� �(~�)�̂(~�)+ < k > �< k >< l > � n�< k >< l > +< k >< l > Xl vl X~�1;:::;~�l �(~�1):::�(~�l) exp �Xa �a1 :::�al !+Xk 
k log X~� �̂(~�)k! (2.39)The dominant 
ontribution F [�saddle(~�); �̂saddle(~�)℄ to the potential in the thermodynami
 limitis evaluated via the following fun
tional saddle point equations in the order parameters:ÆF [�(~�); �̂(~�)℄Æ�(~�) = 0() �(~�) = 1< k >Xk k
k (�̂(~�))k�1P~�(�̂(~�))k (2.40)ÆF [�(~�); �̂(~�)℄Æ�̂(~�) = 0() �̂(~�) = 1< l >Xl lvl X~�2;:::;~�l �(~�2):::�(~�l) exp(�Xa �a�a2 :::�al ) (2.41)The ground state solution gives, in the ferromagneti
 
ase, the value of the entropy of themodel both into the paramagneti
 and into the magnetized states. For the 
ase of spin-glasses,
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ally there will exist a range of < k > = < l >4 where the ground state energy vanishesapproa
hing to zero temperature and again the free energy will 
oin
ide with the full entropy ofthe spin-glass states. In
reasing the average degree distribution leads to a 
riti
al point beyondwhi
h the ground states energy be
omes higher than zero also at zero temperature. In this
ase the main 
ontribution to the potential gives us the internal energy of the model, whilethe entropy is sub-leading in temperature and has to be 
omputed from eq.(2.39) via the usualrelation S = �2�F�� (2.42)Before taking the � !1 limit. The thermodynami
 transition turns out to be of se
ond orderin the Viana-Bray 
ase5, as we will see in the next 
hapter. In other and more interesting 
ases,as well as in many relevant 
ombinatorial optimization problems like K-SAT, the transitionbetween the paramagneti
 to the spin-glass (or magnetized in the 
ase of the ferromagnet) stateis �rst order and pre
eded (in the SG 
ase) by a dynami
 transition where the total entropy
an be split in two 
ontribution: A 
omplexity term [7, 19, 22, 26, 24℄ due to the exponentialmultipli
ity of the metastable states, and a residual entropy 
ontribution (see last se
tion fordetails). In the pure p > 2 spin glass model [19, 26℄ the two terms are 
ompletely separateddue to a property of orthogonality for the stable states.Paramagneti
 and � = 0 
asesEquations (2.40) and (2.41) admit the 
ompletely paramagneti
 solution �(~�) = ^�(~�) = 1=2n.Inserting it in (2.39) and retaining order O(n) terms, one easily obtains:�n�Fpara = � < k > +n < k > log 2+ < k > �< k >< l > � n�< k >< l > +< k >< l > + n< k >< l > log (
osh(�)) + (< k > �1)n log 2 (2.43)= n " 1� < k >< l > ! log 2 + < k >< l > (log(2 
osh(�))� �)# (2.44)8 �, so that Spara;T=0 =  1� < k >< l > ! log 2 (2.45)S�=0 = log 2 : (2.46)2.2.1 Some 
onsiderations on normalizationThe omission of the expli
it delta fun
tion on the hyper-graph rank distribution 
onstraintleads to apparently slightly di�erent expressions for the free energy and for the saddle pointequation. Normally the equations would have been�n�F = � < k >X~� �(~�)�̂(~�)+ < k > �n�< k >< l > +4in the 
ase of Poissonian graphs, for example, < k > = < l >= 
 is a 
ontinuous parameter that 
an befreely adjusted5and, more generally, whenever the fra
tion v2 of 2-spins intera
tions is hight enough 
ompared to the rest,as will be shown in 
hapter four



2.2. FROM THE PARTITION FUNCTION TO THE AVERAGE FREE-ENERGY 35< k >< l > Xl vl log0� X~�1;:::;~�l �(~�1):::�(~�l) exp �Xa �a1 :::�al !1A+Xk 
k log X~� �̂(~�)k! (2.47)and �(~�) = 1< k >Xk k
k (�̂(~�))k�1P~�(�̂(~�))k (2.48)�̂(~�) = 1< l >Xl lvlP~�2;:::;~�l �(~�2):::�(~�l) exp(�Pa �a�a2 :::�al )P~�1;:::;~�l �(~�1):::�(~�l) exp(�Pa �a1 :::�al ) (2.49)respe
tively. It is easy to see, however, that the expressions are numeri
ally equivalent bothinto the RS and the 1RSB 
ases. One 
an easily 
he
k this equivalen
e exploiting the fa
t thatgiven a term A that in the se
ond 
ase appears inside the new logarithm, the quantity is alwaysin the form An, so we 
an exploit the \repli
a tri
k" in the n! 0 limit to show the equivalen
eof the two expressions6. Moreover, in the saddle point equations, we have introdu
ed no La-grangian parameter ensuring the normalization of the order parameters. Indeed, the two orderparameters written in the form of (2.29) and its 
onjugate are not in prin
iple properly normal-ized. There is an equivalent but somehow more 
umbersome way of introdu
ing a normalizedorder parameter via the use of a Lagrange multiplier, as we will show for 
ompleteness in theparti
ular 
ase of the 3-spin in a next paragraph, but it is easy to show that, in the present
ase, the normalization lets the equations un
hanged, leaving us with the possibility of workingon �(~�) and �̂(~�) as if they were the normalized ones �n(~�) and �̂n(~�). Indeed, we 
an de�ne�n(~�) = �(~�)� (2.50)�̂n(~�) = �̂(~�)�̂ (2.51)(2.52)with � = X~� �(~�) (2.53)�̂ = X~� �̂(~�) (2.54)Moreover, as 
an be easily seen from (2.40)-(2.41)or (2.49),X~� �(~�)�̂(~�) = 1 (2.55)and ��̂ = 1< k >Xk k
kP~� �̂n(~�)k�1P~�(�̂n~�)k : (2.56)6In fa
t we must 
ompute that limit in order to retrieve the physi
al expressions
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tion, a general term P~� �̂n(~�)t and �n(~�)t 
an be writtenrespe
tively as Ant � 1 + n logAt and Bnt � 1 + n logBt where At and Bt do not depend on nany more. Consequently eq.(2.56) be
omes��̂ � 1< k >Xk k
k (1 + n logAk�1)(1 + n logAk) �1 + n< k >Xk k
k log�Ak�1Ak � (2.57)This result tells us that the fun
tional order parameter are already normalized in the n ! 0limit. Moreover, the term P~� �n(~�)�̂n(~�) 
an be written as 1 + n
 where again 
 does not de-pend of n. If we plug eq.(2.57) and this last expression into eq.(2.47), 
alling 1<k>Pk k
k log �Ak�1Ak � �C we get�n�F [�(~�); �̂(~�)℄ = � < k > (1 + n
)(1 + nC)+ < k > �n�< k >< l > +< k >< l > Xl vl log0� X~�1;:::; ~�l �n( ~�1):::�n(~�l) exp Xa �a1 ::::�al !1A+ < k > log(1 + nC) +Xk 
k log X~� �̂(~�)k!= �n�F [�n(~�); �̂n(~�)℄ (2.58)As we will see later, this is not true anymore in the 1RSB 
ase, where the normalization fa
torswill be proportional to a power of the repli
a parameter m whi
h in general does not tendto zero. Nevertheless, in that 
ase the normalization parameters expli
itly disappear fromthe expression of the RSB potential for any value of m, leaving it formally un
hanged. Wedrop the subindex "n = norm" in the following. In the frustrated spin glass version of themodel, all previous 
al
ulations are still valid, provided one uses (2.12) instead of (2.11). As a
onsequen
e, all previous equations are left un
hanged but for the substitution of the followinginternal fa
tors: exp(�Xa �a1 :::�ak) =) 
osh(�Xa �a1 :::�ak)exp(�Xa �a�a2 :::�ak) =) 
osh(�Xa �a�a2 :::�ak) (2.59)For a more general 
hoi
e of �(J), we will have to 
hange:exp �Xa �a1 :::�ak! =) Z d�(J) exp �JXa �a1 :::�ak!exp �Xa �a�a2 :::�ak! =) Z d�(J) exp �JXa �a�a2 :::�ak! (2.60)The expression in presen
e of a magneti
 �eld will be shown when treating error 
orre
ting
odes. If �J is symmetri
 in any 
omponent of J the system will be a pure spin-glass. Theresulting e�e
t is that the potential will be expli
itly symmetri
 under the ex
hange of thepositive and the negative support values of the fun
tional order parameters. However, thevalue of the pure ferromagneti
 and pure J = �1 spin-glass potentials will 
oin
ide at the
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e the parti
ular 
hoi
e of symmetri
 order parameters is supported also in theferromagneti
 
ase. While in the spin glass the symmetri
 �(�) will des
ribe also the minimalenergy states, the ferromagneti
 ground state will be asymmetri
. and will be des
ribed byan order parameter with no negative support in the zero temperature limit7. Therefore, if wefor
e to write a solution to the ferromagneti
 saddle point equations that is to be symmetri
under the spin inversion, we'll �nd positive energy saddle point metastable states that 
oin
idein energy with the glassy ground states due to the 
oin
iden
e of the potential at the saddlepoint. No other metastable solutions are found other than the symmetri
 ones in the purespin-glass. We must keep this in mind when we'll write apparently di�erent expressions for thetwo models, nevertheless using some saddle point results of the ferromagneti
 
ase into the spinglass one.2.3 The Repli
a Symmetri
 ResultsIn the repli
a symmetri
 (RS) 
ase we 
an unravel the stru
ture of the order parameter interms of the e�e
tive �elds a
ting onto the � spins. Indeed, if we assume �(~�)8 to be symmetri
under the permutation Sn of the repli
a variables �1; :::; �n, we 
an write it in terms of thedistribution fun
tion of the lo
al magnetization P (m):P (m) � 1N Xi Ya Æ (sai �m) (2.61)su
h that �(~�) � Z dmP (m)Ya 1 +m�a2 =Z dmP (m)�1 +m2 �n+ �1�m2 �n�Z dmP (m) 1�m24 !n2 �1 +m1�m� 12Pa �a =Z dmP (m) 1�m24 !n2 exp 12 tanh�1(m)Xa �a! (2.62)If we then de�ne an e�e
tive �eld h at any temperature ash = 1� tanh�1(m) (2.63)we 
an eventually write an expression of the fun
tional order parameters in terms of the �eldsa
ting on the dire
t as well as the dual hyper-graph:�(~�) = Z dhP (h) e�hPna=1 �a(2 
osh(�h))n (2.64)�̂(~�) = Z duQ(u) e�uPna=1 �a(2 
osh(�u))n (2.65)7for 
ases of hyper-graphs of only even rank there will be of 
ourse the usual twofold degenera
y8and 
onsequently its 
onjugated parameter
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e the repli
a saddle point equations in the n ! 0 are equivalent to the 
avity iterationequations, the e�e
tive �eld h turns out to be the lo
al 
avity �eld a
ting on a vertex of givendegree. The index on the vertex has been dropped in the RS 
ase where only one state is presentand therefore the �eld distribution does not depend on the parti
ular spin one is working with,but only on the average degree distribution. Substituting de�nitions (2.64) and (2.65) intothe saddle point equations, and noti
ing that we 
an fully 
hara
terize the distributions in then! 0 limit, the saddel point equations readZ dhP (h)e�hf = 1< l >Xk k
k Z k�1Yt=k dutQ(ut)e�fPt ut= 1< k >Xk k
k Z dhe�hf Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.66)Z duQ(u)e�uf = 1< l >Xk k
k Z l�1Yt=1 dhtP (ht)eftanh�1(tanh(�)Qt tanh(�ht))= 1< l >Xl lvl Z due�uf Z l�1Yt=1 dhtP (ht)Æ (u� u(�; fhtgt)) (2.67)with f � Pna=1 �a and u(�; fhtgt) � 1� tanh�1  tanh(�)Yt tanh(�ht)! (2.68)We thus obtain self 
onsistent equations for the �elds probability distributions in a form readyfor further analyti
al manipulation or for numeri
al solution:P (h) = 1< k >Xk k
k Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.69)Q(u) = 1< l >Xl lvl Z l�1Yt=1 dhtP (ht)Æ  u� 1� tanh�1  tanh(�)Yt tanh(�ht)!! (2.70)for the diluted ferromagnet, andP (h) = 1< k >Xk k
k Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.71)Q(u) = 1< l >Xl lvl Z l�1Yt=1 dhtP (ht) "Æ  u� 1� tanh�1  tanh(�)Yt tanh(�ht)!! +Æ  u+ 1� tanh�1  tanh(�)Yt tanh(�ht)!!# (2.72)for the spin glass.Noti
e that these equations 
ould have also been easily obtained via the 
avity method underthe hypothesis of only one state and substituting the lo
al energeti
 terms of the generalizedp-spin Hamiltonian into (1.20), and following the 
avity pro
edure introdu
ed in 
hapter 1.The number of multiple integrals involved and the stru
ture of the equation is not well suitedfor a dire
t numeri
al integration, but an iterative method like an ad ho
 devised population
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s [23℄ works very well this 
ase. Substituting into the expression for the potential onederives:��F = � < k > Z Z dhduP (h)Q(u) log (1 + tanh(�h) tanh(�u)) +< k >< l > Xl vl Z lYt=1 dhtP (ht) log 1 + tanh(�) lYt=1 tanh(�ht)!+ < k >< l > (log(
osh(�))� �)+Xk 
k Z kYt=1 dutQ(ut) log kYt=1(1 + tanh(�ut)) + kYt=1(1� tanh(�ut))! (2.73)for the ferromagnet, and��F = � < k > Z Z dhduP (h)Q(u) log (1 + tanh(�h) tanh(�u)) + < k >< l > (log(
osh(�))� �)< k >< l > Xl vl Z lYt=1 dhtP (ht) "log 1 + tanh(�) lYt=1 tanh(�ht)!+log 1� tanh(�) lYt=1 tanh(�ht)!#+Xk 
k Z kYt=1 dutQ(ut) log kYt=1(1 + tanh(�ut)) + kYt=1(1� tanh(�ut))! (2.74)for the spin glass. The 
al
ulations are the same as the manipulations of the saddle pointequations. The only di�eren
e lying in the fa
t that one is led to retain O(n) terms. Theaverage values < l > and < k > 
an be varied smoothly and they play the role of tuningparameters within a �xed 
hoi
e of probability distribution types. This has been in parti
ularinvestigated in spin models on Poissonian distributed graphs, but 
an be extended to any othergeometri
al stru
ture. varying < l > and < k > at T = 0 one typi
ally enters two di�erentregimes. A paramagneti
 phase of vanishing �elds (at low values of < l > = < k > and a phaseof frozen �elds whi
h dominate and 
ollapse at zero temperature to integer values.2.3.1 Vanishing �eldsIn this phase, where present, the equations take the same form as before, but for a res
aling�u �! u and �h �! h.P (h) = 1< k >Xk k
k Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.75)Q(u) = 1< l >Xl lvl Z l�1Yt=1 dhtP (ht)Æ  u� 1� tanh�1(tanh(�)Yt tanh(ht))! ; (2.76)with��F = � < k > Z Z dhduP (h)Q(u) log (1 + tanh(h) tanh(u)) +< k >< l > Xl vl Z lYt=1 dhtP (ht) log 1 + tanh(�) lYt=1 tanh(ht)!+ < k >< l > (log(
osh(�))� �)+Xk 
k Z kYt=1 dutQ(ut) log kYt=1(1 + tanh(ut)) + kYt=1(1� tanh(ut))! (2.77)



40 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELfor the ferromagnet, and��F = � < k > Z Z dhduP (h)Q(u) log (1 + tanh(h) tanh(u)) + < k >< l > (log(
osh(�))� �)< k >< l > Xl vl Z lYt=1 dhtP (ht) "log 1 + tanh(�) lYt=1 tanh(ht)!+log 1� tanh(�) lYt=1 tanh(�ht)!#+Xk 
k Z kYt=1 dutQ(ut) log kYt=1(1 + tanh(ut)) + kYt=1(1� tanh(ut))! (2.78)for the spin glass. However, it is easy to see that the trivial solution P (h) = Æ(h) is the only onein the T = 0 limit. This result is 
on�rmed in numeri
al evaluation of (2.76) and in numeri
alsimulations. This is NOT the 
ase of other models like for instan
e random K-SAT, where anon trivial stru
ture of the P (h) appears as soon as the degree 
, whi
h plays the same role as< k > = < l >, departs from the zero value, as it was seen in [9, 83℄ via a Taylor fun
tionalexpansion of the P (h) in series of Dira
 delta fun
tion around < k >= 0. The role of thevanishing �eld is not 
ompletely 
lear yet. In parti
ular, their in
uen
e 
ould extend downto T = 0 in the RSB phase, where their value is te
hni
ally zero, but their presen
e 
ould
ontribute in indu
ing non trivial 
orrelations between lo
al ground states. As we will sayin 
hapter 3, this seems not to be the 
ase for K-SAT in the satis�able region, even thougheviden
e of 1-RSB is retrieved for very high values of 
.2.3.2 Analyti
al Ansatz for T = 0 solutions with non vanishing �eldsSolutions of the saddle point equations and the free energy, as well as other thermodynami
quantities that 
an be similarly de�ned and 
omputed, 
an be found via an iterative populationdynami
s pro
edure des
ribed in [23℄. However, we are here mainly interested in the behaviorof diluted systems at zero temperature, keeping in mind the 
onne
tion between the sear
h forT = 0 ground states of the Hamiltonians and that for the solutions of 
orresponding random
ombinatorial optimization models [9, 19, 35℄. This 
onne
tions will be further exploited in thefollowing 
hapters. If we look for T = 0 solutions with non vanishing �elds, we 
an hope to�nd analyti
al results using an Ansatz that supports �elds only on integer values. Indeed, thesaddle point equation at zero temperature read, after properly taking the � !1 limit,P (h) = 1< k >Xk k
k Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut! (2.79)Q(u) = 1< l >Xl lvl Z l�1Yt=1 dhtP (ht)Æ  u�min(1; jh1j; :::; jhl�1j)Yt sign(ht)! (2.80)and it is evident the self 
onsisten
y of an integer �eld Ansatz. Moreover, it is 
lear fromthe parallel 
avity approa
h[26, 29, 30℄ that the �elds u (also 
alled \
avity biases"), are theinformation felt by a spin upon the magnetization bias 
oming from a de�nite hyper-edge the
onsidered spin belongs to. This bias 
an be 0 or �1 at zero temperature. The 
avity �elds hare then the sum of all biases a
ting on the spin, after deleting (
avity) one hyper-edge in
identon the 
onsidered vertex. The situation is exempli�ed in �g. (2.3.2), a pi
torial view of the
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tive �elds a
ting on a given hyper-edge a and on a given spin S in a hyper-graph of uniformrank 3: h1 and h2 are the sums of the 
avity \biases" fu1igi and fu2jgj 
oming from the bluehyper-edges, and in turn generate a new bias ua atta
hed to the red hyper-edge. The biasua merges following the 
avity/repli
a iterative pres
ription (also 
alled sum/produ
t rule in
omputer s
ien
e) with bias ub 
oming from hyper-edge b. Together they form �eld h a
tingon spin S. The �elds are then further propagated in the rest of the hyper-graph (white in thepi
ture) and updated through eqs. (2.79) and (2.80). The general rank 
ase is analogous. Theinteger �elds Ans�atze readP (h) = +1Xt=�1 ptÆ(h� t) (2.81)Q(u) = q+Æ(u� 1) + q�Æ(u+ 1) + q0Æ(u) (2.82)with Pt pt = 1, Pt>0 pt = p+, Pl<0 pl = p� and q+ + q� + q0 = 1. The fun
tional saddle pointequations turn into a set of self 
onsisten
y equations for the distribution weights:pt = 1< k >Xk k
k Xn+;n�;n0�0 (k � 1)!n+!n�!n0!qn++ qn�� qn00 Æn++n�+n0;k�1Æn+�n�;t (2.83)p+ = 1< k >Xk k
k Xn+;n�;n0�0;n+>n� (k � 1)!n+!n�!n0!qn++ qn�� qn00 Æn++n�+n0;k�1 (2.84)p� = 1< k >Xk k
k Xn+;n�;n0�0;n�>n+ (k � 1)!n+!n�!n0!qn++ qn�� qn00 Æn++n�+n0;k�1 (2.85)q+ = 12 < l >Xl lvl((p+ + p�)l�1 + (p+ � p�)l�1) (2.86)q� = 12 < l >Xl lvl((p+ + p�)l�1 � (p+ � p�)l�1) (2.87)In the spin glass 
ase the last two equations are expli
itly symmetri
 in the ex
hange p+ $ p�:q+ = q� = 12 < l >Xl lvl(p+ + p�)l�1 (2.88)2.3.3 The ferromagneti
 solutionThe saddle point equations of the ferromagneti
 
ase admit a zero energy solution with p� =q� = 0 other than the trivial paramagneti
 one:p0 = 1< k >Xk k
k(1� 1< l >Xl lvl(1� p0)l�1)k�1q+ = 1� q0 = 1< l >Xl lvl(1� p0)l�1p+ = 1� p0 (2.89)The energy of the ferromagneti
 solution is always equal to zero, so the value of the potentialreturns the zero temperature entropy of the ground states (GS). With a little algebra we get:SGS = log(2)[� < k > (1� p0)(1� q0) + < k >< l > Xl vl(1� p0) +
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Figure 2.1: Pi
torial view of the e�e
tive �elds a
ting on a given hyper-edge a and on a givenspin S in a hyper-graph of uniform rank 3. The rank 3 was taken as the simplest example of ageneral-like 
ase.
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d 

2 1/2 1/23 0.818469 0.9179354 0.772278 0.9767705 0.701780 0.9924386 0.637080 0.997380Table 2.1: Stati
 and Dynami
 Thresholds for the p-spin on Poissonian distributed hyper-graphs. < k > (1� q0) +Xk 
kqk0 � < k >< l > ℄= �< k >< l > log 2(1 +Xl vl(l(1� p0)l � (1� p0)l � l(1� p0)l�1)) +log 2Xk 
k(1� 1< l >Xl lvl(1� p0)l�1)k (2.90)The appearan
e of a solution of (2.89) as a fun
tion of a parti
ular values of < k > = < l >� 
dsignals the birth of a metastable ferromagneti
 state, that be
omes thermodynami
ally favoredwhen Spara = SGS. Typi
ally, the two entropy lines will 
ross at a 
riti
al value of < k > = <l >� 

. After that value the GS entropy will gradually tend to zero. In the dense hyper-graphlimit one retrieves the usual in�nite dimensional mean �eld ferromagnet with zero ferromagneti
GS entropy and a �nite number (2) of ground states. An example of this 
urves 
an be seenin �g.(2.21) for the Poissonian 3-spin 
ase. In the pure 2-spin 
ase the transition if always ofse
ond order, regardless of the graph degree distribution:
d = 

 = 1=2 ; (2.91)whi
h is the per
olation point. Indeed, the system progressively magnetizes as soon as itper
olates, i.e. as soon as a magneti
 perturbation 
an propagate along a �nite fra
tion of thegraph.A spe
ial 
ase: Poissonian random hyper-graphs of average degree < k >=< l > 
This simpler spe
ial 
ase 
an be retrieved putting
k = e�<l>
(< l > 
)kk! (2.92)and 
onsequently obtainingp0 = e�
Pl lvl(1�p0)l�1 (2.93)SGS = log 2[p0(1� log(p0))� 
Xl vl(1� (1� p0)l)℄ (2.94)In the table 2.1 the values of gamma at the appearan
e of the ferromagneti
 solution and atthe ferromagneti
 transition are shown for some models of in
reasing �xed rank l.
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alled the ferromagneti
 thresholds with the same name of the spin-glass ones, be
ause wewill see further in the text how the values 
oin
ide in the two 
lasses of models. The 3-spin(3-XOR-SAT) [19℄ and the 2+p-spin [21℄ spe
ial 
ases are 
ontained in these equations. Nosign of repli
a symmetry breaking is present in the pure ferromagneti
 models. As we will seein the next se
tion, the physi
al interpretation of the RSB phenomenon 
an be explained in thegeneralized p-spin 
ase (but also in a more general framework, for instan
e in the K-SAT 
ase)as a 
lustezization pro
ess in the spa
e of solutions (ground states) of the model. The numberof su
h 
lusters is in general exponential in N as well as the number of solution within ea
h
luster. Solutions in di�erent 
lusters are separated by O(N) spin 
ips. In the ferromagneti

ase, however, there are only ferromagneti
 solutions, forming a single 
lusters. After thetransition from the paramagneti
 to the ferromagneti
 state, there 
annot be a further phasetransition. We will also see that in the 2-spin-glass 
ase also the SG transition is se
ond orderin nature. Clusterization is therefore not possible be
ause the whole system progressively fallsin the same GS attra
tion basin. If the hyergraph is made of a fra
tion of rank 2 and anotherof higher rank, the two phenomena 
an be seen to 
ompete as it is shown in an applied examplein 
hapter 5.2.3.4 The spin-glass states and the RS energy linesThe glass saddle point equations 
an be further simpli�ed expli
itly exploiting the symmetryof the e�e
tive �elds and biases distributions P (h) and of the Q(u). Everything 
an be writtenas a fun
tion of the single parameter p0, that 
ounts the fra
tion of free spins:p0 = 1< k >Xk k
k [ k�12 ℄Xn (1� 1< l >Xl lvl(1� p0)l�1)2n( 12 < l >Xl lvl(1� p0)l�1)k�1�2n (2.95)q+ = q� = 1� q02 = 12 < l >Xl lvl(1� p0)l�1 (2.96)p+ = p� = 1� p02 (2.97)For Poissonian hyper-graphs the general repli
a symmetri
 result will read, after some algebrai
manipulation of the series de�ning p0 and the general pt9,p0 = exp �
Xl lvl(1� p0)l�1! I0  
Xl lvl(1� p0)l�1! (2.98)pk = p�k = exp �
Xl lvl(1� p0)l�1! Ik  
Xl lvl(1� p0)l�1! (2.99)(2.100)The GS energy of the glassy states will be:E0 = � < k > (1� p0)(1� q0)2 + < k >< l > Xl vl(1� p0)l +2Xk 
k Xn+;n�;n0�0 k!n+!n�!n0! (1� q02 )n++n�qn00 min(n+; n�)Æn++n�+n0;k (2.101)9Noti
e that the next expressions are normalized thanks to the propertyP+1t=�1 It(x) = ex.



2.4. THE 1RSB CALCULATIONS 45This expression further simpli�es in the 
ase of �xed rank models. In parti
ular for the 3-spinthe GS energy reads10: E0 = 
(1� p0)32 � 3
(1� p0)22 p1 : (2.102)However, the above equation leads to wrong predi
tions: a solution di�erent from the trivialparamagneti
 one, Qj(u) = Æ(u) 8 spins j, appears at 
RSd = 1:16682 with a negative energy.At 
RS
 = 1:29531 the energy be
omes positive, giving a lower bound for the true energy ofthe system. The ba
kbone (1 � p0, fra
tion of �xed spins) values are respe
tively 1 � pd) =0:52042 and 1� p
 = 0:656153. The values of 
RSd and 
RS
 
an be variationally re�ned via theintrodu
tion of a fra
tional valued �elds Ansatz as in [9℄, that 
an be seen to 
lose on the saddlepoint equations. In parti
ular, the best \RS" stati
 threshold was ground down to 1:216. ThisAnsatz has however no physi
al meaning.On the other hand, the numeri
al zero temperature Monte-Carlo simulations indi
ate thatthere exits a non-trivial solution from the point 
 � 0:82. A 
areful look at the numeri
s ofthe population dynami
s solution of the more general 1RSB equations we'll write in the nextse
tion shows that the probability distributions of 
avity �elds u on a given site i indeed takethe form Qi(u) = �i Æ(u) + 1� �i2 [Æ(u� 1) + Æ(u+ 1)℄ ; (2.103)with �elds distribution s
alar weights labeled by the site indi
es and 
u
tuating from site to site,and with a fra
tion t always being trivial, i.e. �i = 1 and Qi(u) = Æ(u). This is the signature ofrepli
a symmetry breaking. The positive energy GS 
orresponds, in the optimization probleminterpretation, to the fa
t that in
reasing the number of 
onstraints over that of variables thereis usually a thershold beyond whi
h some 
onstraints are violated even by the globally bestvariable assignments. The RS T = 0 energy 
urve for the poissonian 3-spin is shown in �g. (2.2),while in �g. (2.3) the fun
tion G(p0; 
) � p0 � e�3
(1�p0)2I0(3
(1 � p0)2) in the paramagneti
phase and at 
RSd and 
RS
 is shown as a title of example.2.4 The 1RSB 
al
ulationsIn this se
tion we will fo
us on the 1RSB solution. When working at T = 0 we will disregard the
ontribution of vanishing �elds. As we anti
ipated in the previous se
tion, the repli
a symmetri
results are 
orre
t for the ferromagneti
 disordered models, but give wrong quantitative resultsfor the transition thresholds and for the energy in the spin-glass 
ase. To go one further steptowards the exa
t solution of this 
lass of models, we observed good numeri
al eviden
e thatthe repli
a symmetry does in fa
t spontaneously break down in a region suÆ
iently 
lose to thesatis�ability threshold. Therefore, the quantitatively wrong results of the RS pi
ture underliea very di�erent qualitative stru
ture of the phase spa
e.The 1RSB hypotesis assumes that on a given site i, the lo
al 
avity �elds in the variousstates, hai , are i.i.d. variables taken from the same distribution Pi(h) ([14, 12℄ and De Domini
is-P. Mottishaw and Wong-Sherrington in [1℄). However, the distribution Pi(h) 
u
tuates fromsite to site, so that the 
orre
t order parameter is a fun
tional P[P (h)℄ giving the probability,when one pi
ks up a site at random to �nd on this site a 
avity �eld distribution Pi(h) = P (h).Moreover the 
avity �elds and the LGS energies are not 
orrelated (There will however be
orrelation between the lo
al �elds and the energy shifts 
omputed in the 
avity approa
h).10Noti
e that it will be possible to reprodu
e the RS results as a limiting 
ase of the 1RSB 
al
ulation.
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Figure 2.2: Integer �elds RS spin-glass energy in the Poissonian 3-spin 
ase. It is negativebelow 
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2.4. THE 1RSB CALCULATIONS 47The same hypothesis must hold in for the u-�elds a
ting on the nodes of the dual hyper-graph (
he
k nodes in the fa
tor graph notation, see appendix). Averaging over the sites andassuming the validity of the Parisi breaking s
heme [2℄, the fun
tional orders paramenets 
annow be written as�(~�) = Z dPP[P ℄ Z n=mYg=1 dhgPg(hg) n=mYg=1 0� e�hgPma=1 �ag(2 
osh(�hg))m1A (2.104)�̂(~�) = Z dQQ[Q℄ Z n=mYg=1 dugQg(ug) n=mYg=1 0� e�ugPma=1 �ag(2 
osh(�ug))m1A (2.105)where the n repli
as have been ea
h divided into n=m groups of m repli
ated spins, and �agrepresents the a-th repli
a spin belonging to group g. Pg and Qg are lo
al �elds probabilitiesdistributions within group g. In the RS 
ase there is only one state �. The e�e
tive �elds 
annottherefore 
u
tuate from LGS to LGS and the unique global ground state 
an be obtained inthis framework by �xing the lo
al distribution to be Pi(h) = Æ(h� ~hi), so that all the LGS areautomati
ally equal. On a given site i, this distribution is �xed by the single number ~hi. Thevarious ~hi's are i.i.d., taken from a distribution PRS(~h) su
h thatPRS[P (�)℄ = Z d~hPRS(~h)Æ �P (�)� Æ((�)� ~h)� (2.106)Substituted into (2.104) gives ba
k de�nition (2.64) with~h ! hPRS(~h) ! P (h)and therefore satis�es exa
tly the RS re
ursion relation. The same 
onsiderations as usualapply to the u-�elds.Finding a 
lose analyti
al solution to the self 
onsistent equations (2.40) and (2.41) in the1RSB 
ase is in general not easy. In order to pro
eed we �rst propose a simpler variationalapproximation of the free-energy (2.39) and of the fun
tional order parameters spa
e. In thegeneral 
ase this Ansatz is NOT exa
t be
ause negle
ts 
orrelations between LGS indu
ed bydi�erent degree 
u
tuations from site to site and assumes an extra symmetry that is usually not
ontained in the model. Nevertheless, it is pointed out in [22℄ and we will see later in the 
hapterthat it gives very good variational estimates on the transition thresholds and 
orre
tly predi
tsfor the models studied the presen
e of a dynami
al region 
hara
terized by a non zero valueof the 
omplexity. Moreover, for the p-spin there exists a 
lass hyper-graphs (namely the �xeddegree ones) where the Ansatz self 
onsistently 
loses under the original 
omplete form (2.39)of the potential, and it gives nearly exa
t results in the low temperature region in remarkableagreement with the numeri
s. Overall this simpler variational 
al
ulation is important be
auseit introdu
es some key features of the full solution:2.4.1 The variational fa
torized AnsatzIn the following propose the use of a simple Ansatz whi
h was �rst studied in (Wong andSherrington in [1℄), and developed for the Bethe latti
e spin glass by Golds
hmidt and Lai (in[1℄), is named the Fa
torized Ansatz. The underlying idea is to assume that the distributions



48 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELPi(h) are i independent, i.e. that the P[P ℄ is a fun
tional Æ fun
tionP[Pg℄ = Æ (Pg � P ) (2.107)Q[Qg℄ = Æ (Qg �Q) (2.108)The assumption is simple be
ause the order parameter is a single fun
tion P (h) and the RSequation are only slightly modi�ed. However one should note that, in general, one may expe
t aPi(h) whi
h 
u
tuates: as anti
ipated,this is obviously the 
ase whenever the degree 
u
tuates,but also in the 
ase of the �xed degree, the fa
torized Ansatz is not ne
essarily exa
t. Somespe
ial models where the fa
torized Ansatz gives an exa
t solution have been studied re
entlyin the 
ontext of error 
orre
ting 
odes [154℄. Using (2.107) and (2.107) into (2.104) and (2.105)one immediately �nds: �(~�) = n=mYg=1 �g( ~�g)�g( ~�g) = Z dhgP (hg) e�hgPma=1 �ag(2 
osh(�hg))m (2.109)�̂(~�) = n=mYg=1 �̂g( ~�g)�̂g( ~�g) = Z dugQ(ug) e�ugPma=1 �ag(2 
osh(�ug))m (2.110)Noti
e that eqs. (2.109) and (2.110) give ba
k the RS solution for m = n! 0.In the repli
a n! 0 limit we 
an write:X~� �(~�)�̂(~�) = n=mYg=1(X~�g �g( ~�g)�̂g( ~�g) � 1 + nm log(X~�g �g( ~�g)�̂g( ~�g))Xk 
k log(X~� ( ^�(~�))k) = nmXk 
k log(X~�g ( ^�g( ~�g))k) (2.111)X~�1;:::;~�l �(~�1):::�(~�l) exp(�Xa �a1 :::�al ) = nm X~�g;1;:::; ~�g;l �g( ~�g;1):::�g( ~�g;l) exp(�Xa �g;1a:::�g;la)where the new �g ve
tors are m-dimensional quantities (the repli
a index runs now from 1 tom) inside ea
h single 
luster. Due to 
luster equivalen
e the index g will be dropped in thefollowing. We are left with the following expression for the potential:��mF [�;m℄ = � < k > log(X~� �(~�)�̂(~�))� �< k >< l > +< k >< l > Xl vl log( X~�1;:::;~�l �(~�1):::�(~�l) exp(�Xa �a1 :::�al )) +Xk 
k log(X~� ( ^�(~�))k) (2.112)at the saddle point, the previous quantity will represent the free energy of a single generi

luster. The stationary 
ondition on (2.112) leads to saddle point equations:�(~�) = X~� �(~�)�̂(~�) 1< k >Xk k
k (�̂(~�))k�1P~�(�̂(~�))k (2.113)



2.4. THE 1RSB CALCULATIONS 49�̂(~�) = X~� �(~�)�̂(~�) 1< l >Xl lvlP~�1;:::;~�l�1 �(~�1):::�(~�l�1) exp(�Pa �a�a1 :::�al�1)P~�1;:::;~�l �(~�1):::�(~�l) exp(�Pa �a1 :::�al ) (2.114)Equations (2.112), (2.113) and (2.114) are homogeneous in the order parameters �(~�) and�̂(~�) that 
an be 
onsidered as automati
ally normalized. We re
all that now P (h) and Q(u)are single inner 
luster distributions. Substituting into the saddle point equations, after a
al
ulation analogous to the RS 
ase we obtain11:P (h) = (2 
osh(�h))m< k > * (2 
osh(�(u0 + h0)))m(2 
osh(�h0)2 
osh(�u0))m+u0;h0 �Xk k
k� Æ(h�Pk�1t=1 ut)(Qk�1t=1 2 
osh(�ut))m�futg� (2 
osh(Pkt=1 ut))m(Qkt=1 2 
osh(�ut))m�futg (2.115)Q(u) = 2m< l > * (2 
osh(�(u0 + h0)))m(2 
osh(�h0)2 
osh(�u0))m+u0;h0 �Xl lvl DÆ(u� 1� tanh�1(tanh(�)Ql�1t=1 tanh(�ht)))EfhtgD(1 + tanh(�)Qlt=1 tanh(�ht))mEfhtg (2.116)for the diluted ferromagnet. The spin glass solutions 
oin
ide with the previous ones at thesymmetri
 saddle point in the same way as in the RS 
ase. As a fun
tion of the e�e
tive �elds,the potential now reads�m�F = � < k > log hA(�; h; u)mih;u +Xk 
k log hB(�; u1; :::; uk)miu1;:::;uk +< k >< l > Xl vl log�(
osh �)m DC+(�; h1; :::; hl)mEh1;:::;hl�� �m< k >< l > (2.117)for the ferromagnet and�m�F = � < k > log hA(�; h; u)mih;u) +Xk 
k log hB(�; u1; :::; uk)miu1;:::;uk +< k >2 < l >Xl vl �log�(
osh �)m DC+(�; h1; :::; hl)mEh1;:::;hl� +log�(
osh �)m DC�(�; h1; :::; hl)mEh1;:::;hl��� �m< k >< l > (2.118)for the spin glass, with: A(�; h; u) = 1 + tanh(�h) tanh(�u)2B(�; u1; :::; uk) = 2 
osh(�Pkt=1 ut)Qkt=1 2 
osh(�ut)C�(�; h1; :::; hl) = 1� tanh(�) lYt=1 tanh(�ht) (2.119)11From now on we will often use the notation R dxP (x)(�) � h(�)ix.



50 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELFerromagneti
 metastable states and spin-glass LGS symmetryIt 
ould seem useless to write the 1RSB expressions also for the ferromagneti
 model, sin
ewe know that in this 
ase the RS solution is 
orre
t for the GS. For
ing the 1RSB fa
torizedAnsatz on the ferromagnet physi
ally means that we look at the stru
ture of the positive energymetastable states. We did it to stress the fa
t that the saddle point equations of the two modelsadmit a 
ommon symmetri
 solution also in the non paramagneti
 phase. The expression forthe free-energy of the two models 
oin
ide at this saddle point. However, the symmetri
 oneis NOT the lowest energy GS solution of the ferromagneti
 model, whi
h always have zeroreferen
e energy, but it des
ribes positive energy metastable states. On the other hand, thesemetastable states 
oin
ide with the LGS of the spin-glass in the disordered phase. This propertyis a pe
uliar symmetry of the p-spin model and will give us an alternative way to 
ompute theexa
t 
omplexity without resorting to the 
omplete 1RSB solution.The zero temperature phaseIf we adopt zero temperature Ans�atze (2.81), (2.82) and keepm� = y (2.120)�nite, we get the following saddle point equations:q0 = 1� 1Pl lvl 1
l Xl lvl 1
l (1� p0)l�1 (2.121)p0 = 1� 2Pk k
k 1�k Pn+>n�;n0�0 (k�1)!n+!n�!n0!qn++ qn�� qn00 e�2yn�Æn++n�+n0;k�1Pk k
k 1�k Pn+;n�;n0�0 (k�1)!n+!n�!n0!qn++ qn�� qn00 e�2ymin(n+;n�)Æn++n�+n0;k�1 (2.122)p� = 1� p02 (2.123)q� = 1� q02 (2.124)with 
l = 1 + e�2y � 12 (1� p0)l (2.125)�k = Xn+;n�;n0�0 k!n+!n�!n0!qn++ qn�� qn00 e�2ymin(n+;n�)Æn++n�+n0;k (2.126)and the expression for the potential 
an be written in terms of y as:F (y) = 1y "< k > log(1 + e�2y � 12 (1� q0)(1� p0))� < k >< l > Xl vl log
l �Xk 
k log(�k)#(2.127)The 
hoi
e (2.120) is ne
essary to �nd a solution that is self 
onsistent and in best possibleagreement with numeri
al simulations. In fa
t, the s
aling parameter y has a mu
h deeperphysi
al meaning that will be elu
idated in the following.The stationary 
onditions also admit a 
ompletely paramagneti
 p0 = 1, q0 = 1, F = 0solution that puts us ba
k into the paramagneti
 phase. In the limit y ! 012 one retrieves12This limit 
an indeed be read as m! n.



2.4. THE 1RSB CALCULATIONS 51the RS results. In order to �nd the physi
al value of the free-energy, expression (2.127) forthe potential has to be further maximized with respe
t to the parameter y. The study of thepotential F (y) allows us to rea
h a qualitative understanding of the typi
al phase diagrams, eventhough the exa
t nature of the symmetry phenomena is not properly 
aught by the fa
torizedAnsatz. The following pi
ture will therefore retain its validity in the 
omplete 1RSB solution.2.4.2 The 
onstru
tion of the phase diagramIn order to build the zero temperature phase diagram of this 
lass of models we have to make
ase by 
ase a sensible 
hoi
e of the 
ontrol parameters13. A priori the 
ontrol parameters spa
eis very large, in
luding the values of all the fra
tions f
kg and fvlg. However, typi
ally onlya small number of this quantities plays a relevant role: the dilution parameter 
 =< k > = <l >14, the fra
tion of 2-edges v2, the quotient v2=v315 and few other 
olle
tive 
ombinations onthe rank and degree distributions weights.If the fra
tion v2 is bigger than a 
ertain 
riti
al value depending on the remaining orderparameters, the model is found to be Viana-Bray like. In the ferromagneti
 
ase, the transitionis a 
ontinuous one from the trivial paramagneti
 to the magnetized phase. In the spin-glass, theglassy phase most probably is rea
hed through a 
ontinuous1-RSB 
as
ade. The onset of the
ontinuous transition is set by the 2-loops per
olation 
ondition of the fra
tion of rank 2 graphmerged in the whole topologi
al stru
ture. There are no pre
ursor phenomena in neither ofthe transitions, whi
h means no formation of �nite energy metastable states in the ferromagnetand no LGS 
omplexity in the spin-glass. From the physi
al point of view, the 1RSB pi
ture -even in the general treatment - is therefore only an approximation of the Viana-Bray spin-glassbehavior. From the 
omputational 
omplexity side, however, the GS sear
h is simpler be
auseof the absen
e of metastable states of Hamming distan
e O(N). The zero temperature related2-XOR-SAT like problems are Polynomial also in the UNSAT phase and they present no hardregion before the SAT/UNSAT transition.Whenever a tri
riti
al point [11, 21℄ 
ondition 
an be met16, the models undergo a 
rossoverinto a phase diagram where the transition are dis
ontinuous: paramagneti
/1RSB or para-magneti
/�rst order ferromagneti
 respe
tively. In these 
ases overwhelming eviden
e for apre
ursors/dynami
al region has been observed. From the 
omputational 
omplexity point ofview, the presen
e of a dynami
al region 
oin
ides with typi
al (exponential or polynomial,depending on the problem 
lass) slowing down in the solution times of the sear
h algorithms.From the physi
s point of view, pre
ursors are LGS that appear with a higher energy but expo-nential in number, so that the system freezes without rea
hing the still present E = 0 true GSessentially for entropi
 reasons. In the optimization problem these states 
orrespond to quasioptimal solutions with deep enough basins of attra
tion to trap the sear
hing pro
edure. Forsome parti
ular 
hoi
es of the rank and degree distributions the 
ondition for the existen
e ofthe tri
riti
al point 
annot be ful�lled. In those 
ases intermediate models 
an be explored,that show both a dynami
al region and a 
ontinuous phase transition, followed by a further dis-
ontinuous jump. Examples of these somehow pathologi
al 
ases are shown in the �rst se
tionof 
hapter 5. The dynami
al region is denoted by the hyper-graph diluteness interval [
d; 

℄.13This is true in general and has to be done also in the RS and in the 
omplete 1RS 
ase.14often denoted with � in the literature, for instan
e in the K-SAT 
ase.15The importan
e of this quotient will be stressed in two examples in 
hapter 3 and 5.16We anti
ipate the 
ondition to be v2 = 3v3 = 1=(2
tri
riti
al) in the generalized p-spin 
ase.



52 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELThe 
omplexityThe 
omplexity �(e; 
) was de�ned as the logarithm of the number of the LGS of a givenenergy density e at a value of the diluteness 
, divided by the number of the variables N . Itis a 
ru
ial thermodynami
al quantity17 whose presen
e tell us we are in a symmetry brokenphase. The expli
it 
omputation of �(e; 
) at T = 0 has been 
arried out in [24, 30℄ for theViana-Bray and the 3-SAT model. The 
ase of the generalized p-spin is 
ompletely analogousand we refer to those papers for details. It turns out that the zero temperature 
omplexity 
anbe 
al
ulated as the Legendre transform of the potential F (y). Indeed, the T ! 0 limit of thedis
ussion in [7℄ gives e�yF (y) = Z deN (e; 
)eye ; (2.128)where we have already de�ned the number of metastable states at a given energy density e andtuning parameter 
 in terms of the 
omplexity �(e; 
) viaN (e; 
) � e�N�(e;
) : (2.129)therefore we obtain, retaining only dominant 
ontributions at the saddle point in y in the largeN limit, �(e; 
) = ye� yF (y) (2.130)e = �yF (y)�y (2.131)y = d�(e; 
)de (2.132)at �xed 
. From the previous equations we 
an also write�(y; 
) = y2�F (y)�y ; (2.133)that is the T = 0 
orre
t limit of the 
onstru
tion of [7℄. We see eventually the physi
al meaningof the s
aling parameter y as the derivative of the 
omplexity with respe
t to a variation of theenergy of the lo
al ground states. This quantity therefore regulates the quantity of metastablestates one is bound to meet varying the energy. The distribution density of these states turn outto determine a level 
rossing phenomenon under the 1RSB 
avity equations iteration. Indeed,one of the postulates [24℄ of the 
avity method that was not 
learly yet stated is that the energiesE�0 of the �-LGS of low energy (near to that of the GGS) are assumed to be i.i.d. variableswith a distribution given by a Poisson pro
ess of density�(E0) = exp(y(E0 � Eref)) (2.134)where Eref is a referen
e energy, whi
h is near to the GGS energy, and y must be equal to ourrepli
a s
aling parameter in order for the two methods to give the same results in the 1RSB
ase. During the iteration of the 
avity equations, the lo
al energy shifts 
an therefore indu
ea level 
rossing, and the �elds distributions have to be re-weighted a

ordingly. Sin
e the level
rossing dynami
s will be driven by the geometry of the phase spa
e whi
h in turn is determinedby (2.134), we see how the s
aling parameter y is so important. Its role is automati
ally taken17of not trivial de�nition, sin
e the notion of LGS in disordered systems is still not 
ompletely 
lear.
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orre
t a

ount by Parisi's RSB pres
ription in repli
a method, where the parameterm adds an extra variational dimension in the variational spa
e and maximizing the potentialwith respe
t to m essentially 
orresponds to 
hoosing the best repli
a symmetry broken statesdistribution pi
ture. Lowering the temperature the repli
a states lands
ape 
hanges and mmust follow a

ordingly. Sin
e the equations for the potential 
an be written in terms of m�in the low temperature limit, is is natural to explore the possibility of m s
aling as 1=�. Inthe 
avity pi
ture there is no initial notion of RSB, that has to be introdu
ed via an ad ho
postulate. However, as we have seen, this allows to 
larify the physi
al meaning of this 1=�s
aling.How 
an one pra
ti
ally draw the phase diagram from the knowledge of the potential(2.127)?� In general, for regions of high hyper-graph diluteness (very low 
), F (y) is equal to zero:the system is paramagneti
 and the only possible non trivial 
ontribution to the entropyare given by the presen
e of vanishing �elds. As it was already mentioned in the RSse
tion, this is however not the 
ase of the p-spin model, where it is possible to prove 18that the paramagneti
 phase is always trivial. This result is in perfe
t agreement withnumeri
s.� Entering the dynami
al region, F (y) is negative for any value of y and monotoni
allyin
reasing, with typi
al shape shown in �g. (2.4). Its maximum tends ba
k to zero inthe limit y ! 1. In this limit, eqs. (2.121)-(2.124) redu
e to a non trivial symmetri
glassy solution with p0 ; q0 > 0 that we will expli
itly write for the 
ase of the Poissonian3-spin in the following. This solution is in fa
t not exa
t, be
ause it disregards site to site
u
tuations that lead to a non zero fra
tion of spins i with free �elds (i.e. with pi0 = qi0 =1) that are numeri
ally observed solving the full equations via a population dynami
sintrodu
ed in [23, 24℄. Indeed, numeri
ally is well observed an adiabati
 like separationin the degrees of freedom of some spins 
ompared to others, as it was do
umented in [18℄.This is re
e
ted in the fa
t that not all spins have the same �elds distributions, but thesame distribution of �elds distributions. This 
on
ept is at the basis of the 
omplete 1RSBpi
ture and will be made 
lear in the next se
tion. Nevertheless, we 
an here 
ompute avariational bound 
omplexity at energy density e = 0, even if its nature is not 
ompletely
lear in the variational Ansatz 
ontext.{ �(e = 0) is found to be non zero in [
d; 

℄, monotoni
ally de
reasing with 
. How-ever, the spin-glass has already an exponential number of LGS, even if in this phasee = 0 and therefore they are also GGS.{ At 
 = 
d the 
omplexity is non zero only for e = 0, whi
h means that LGS appearinitially as GGS, and the sear
h algorithms, even if trapped in one of them, still 
ansolve the problem.{ If 
d < 
 < 

, a non zero energy density 
omplexity interval forms, s.t. �(e) > 0for e 2 [0; ed℄. The dynami
al region is therefore not only 
hara
terized by a sudden
lustering of ground states: at the same point an exponential number of metastablestates appear. Su
h states are expe
ted to a
t as a trap around ed > 0 sub-optimalsolutions for lo
al sear
h algorithms, 
ausing an exponential slowing down of the18Cal
ulations have been done but are not shown in this thesis.
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h pro
ess. This pi
ture applies for instan
e to simulated annealing or greedypro
edures based on lo
al information.� At 
 = 

 the zero energy density 
omplexity goes to zero. This means that the numberof GGS is not exponential any more and the asso
iated 
ombinatorial problem has nozero 
ost solutions in the typi
al 
ase. There 
ould be of 
ourse rare satis�able instan
esevents, su
h that the probability of �nding non zero energy goes exponentially to zerowith N , but is stri
tly zero only in the thermodynami
 limit. These rare events 
an playa relevant role in pra
ti
al design of sear
h solution pro
edures in [85, 86, 87, 88℄, butthey will not be studied here. The 
 = 

 point 
orresponds to the ferromagneti
 �rstorder transition in the unfrustrated model the 
rossing points of the Sferro and the Sparaanalyti
al lines of �g (2.21).� For 
 > 

 the maximum of F (y) is positive and it is rea
hed for a �nite value y� ofthe s
aling parameter. This 
orresponds to a positive value of the lowest energy: it is nolonger possible to satisfy simultaneously all the hyper-edges 
onstraints.As will have said, it is possible to 
al
ulate the 
omplexity �(e) of states with e > 0 by theLegendre transform of the potential F (y). �(e) is found to be typi
ally non negative inside anenergy density interval [e
; ed℄19. This 
orresponds to the dashed regions of the 
urves for thepotential F (y) in �g. (2.4)-A, where dF (y)=dy < 0. An energy therefore gap opens up, s.t.e
 > 0 and in
reases with 
.Explanation of �g. (2.4):�g.A: Qualitative typi
al s
heme of the potential F (y) and behavior. The pi
ture reprodu
esthe RS limit along the line y = 0. The 1RSB potential 
urves tend to the RS result in thislimit, and 
orrespond to the maximum of the potential only on the lower dimensional y = 0 line.Enlarging the variational spa
e introdu
ing y, and therefore taking into a

ount the 
omplexity,gives the blue point better results. We will argue in the next se
tion that in the 
omplete 1RSBpi
ture this variational spa
e is indeed large enough to �nd the exa
t solution for the p-spinmodel. Re
ently it has been shown [30℄ that this 
ould be the 
ase also for more 
ompli
atedmodels. In order to obtain the results for non negative 
omplexity one only needs the fun
tionF (y) in the left region where dF (y)=dy � 0. �g.B: �(e) at in
reasing values of 
. The meaningof ed, e
 and 
̂ is explained in the text. Regions of negative 
omplexity are not shown. The
omplexity shows a somewhat unusual two bran
hed form: the lower bran
h is 
on
ave andgoes from e = e
, the ground state (GGS) energy where the 
omplexity vanishes, to e = ed, themaximal energy beyond whi
h one does not �nd any lo
al ground state, whi
h 
orresponds toa value y = yM . It 
orresponds to the bla
k 
ontinuous regions of the F (y) 
urves in A Theupper bran
h is 
onvex, and interpolates between the RS solution (obtained at y = 0) and themaximal 
omplexity point (obtained at y = yM). This se
ond bran
h does not seem to have adire
t physi
al interpretation and in this 
ontext 
an be simply ignored. On the other hand,it must be present insofar as the y ! 0 limit of our RSB solution gives ba
k the RS solution(the green arrow in A represent the bran
h of the potential 
urves that tend to the red RS sub-spa
e, where ea
h point is pi
ked by a parti
ular value of 
). Clearly a better understandingof this se
ond bran
h would be wel
ome. �g.C-D: ed, e
,�(ed), �(e
) as a fun
tion of 
. This19in the interval [0; e
) �(e) < 0. This means that the probability of �nding a state of energy density withinthat interval is exponentially small in N . �(e
) = 0.
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56 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELis the typi
al pi
ture given by the fa
torized Ansatz in the �xed degree p-spin. In the 
aseof 
u
tuating degree, �(ed) is found to in
rease with 
 also for p > 2, as in the 
ase of the�xed degree Viana-Bray model. It has not been 
he
ked yet whether this is an artifa
t of thefa
torized approximation. Let's 
ompare the two models at the same �xed l and su
h thatthe average degree l
 of the Poissonian 
ase is equal to k of the �xed degree one: for low 
the high fra
tion of \free" spins in the 
u
tuating degree 
ase has a large weight and therefore
ontributes a lot to lowering the 
on�gurational entropy. This e�e
t is more pronoun
ed forlarge l. In
reasing 
, the 
u
tuating model tends to the �xed degree one, and both of them tothe fully 
onne
ted l-spin in the 
 !1 limit. Therefore, the lowering e�e
t on the 
omplexityof the free spins diminishes and the total value of the threshold energy 
omplexity in
reases tosaturate the �xed degree upper bound. The pi
ture is qualitatively shown in �g .(2.6).It is important to noti
e that in the dynami
al region the y ! 1 limit means that theenergy/
omplexity 
urves have in�nite derivative in e = 0. This means not only that thenumber of metastable states is exponential, but that its relative variation with energy is in�nitewhen they appear. This property follows dire
tly from the de�nition of 
omplexity and from the
onstraint of having a �nite value of it already at zero energy density. This enormous explosionof states is however surprising. It indi
ates a 
riti
al transition in 
omplexity 
hara
terized byan in�nite \sus
ettivity" of the number of GS to an in�nitesimal 
hange in energy. Thereforee = 0 is an 
riti
al instability point of the system. In the dynami
al region, this instability pointis not separated from the higher energy metastable states. The number of GGS is large, butnevertheless the number of LGS at energy density just above zero is exponentially larger. Thispi
tures re
alls qualitatively the formation of s
ale-free domains at any size at the 
riti
al pointin 
ontinuous phase transitions. Above 

, on the other hand, even if the 
u
tuations in therelative number of metastable states are large, they loosely speaking explore an almost emptyspa
e be
ause the total number of states is o(1). Be
ause of this dis
onne
tedness property ofthe 
on�gurational spa
e at energy below e
, In the thermodynami
 limit (and for all pra
ti
alpurposes for very large single instan
es in 
ombinatorial optimization problems), the systemdoes not feel the presen
e of the instability be
ause it is in a region that 
an be explored onlyby means of rare events. At 

, the typi
al number of GGS is O(1), so it is 
lear that the jumpmust be in�nite at e = 0, sin
e we havey�(

) � 1O(N2) dN (e)de je=0 (2.135)and the variation of states must be exponential in order to have �nite 
omplexity at e > 0. Thesituation is shown in the blow up in �g. (2.5)and in �gs. (2.8) and (2.9), where the exponentialexplosion in the number of metastable states is underlined. In those \pathologi
al" 
ases wherea 
ontinuous transition appears inside the dynami
al region, the zero energy 
omplexity dropssuddenly to zero as shown in �g (5.9). Some examples of energy/
omplexity 
urves have been
omputed in �g. (2.7) for parti
ular values of 
 in the Poissonian 3-spin. Analogous 
urves inthe 
ontext or error 
orre
ting 
odes are shown in 
hapter 5. In regions of very high 
, it mighto

ur that e
 ! ed ! 0 and the number of LGS might 
ease to be exponential for all energies.Clusters of sub-optimal solutions 
ould be no more separated by a Hamming distan
e of orderN In fa
t, in that region the validity of the 1RSB pi
ture for 
 >> 

 is still un
ertain. This inparti
ularly 
ould be true in more 
ompli
ated models as the K-SAT, as it has been noted in[89, 90℄. The 1RSB pi
ture, however, gives a bound on the asymptoti
 values of the 
omplexity,in 
ase no further symmetry breaking was present in
reasing graph density.
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58 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODEL3-spin with Poissonian degree distributionIn the 
ase of Poissonian degree distributions, the summations into the saddle point equationsand the free energy 
an be expli
itly done, leading to more 
ompa
t expressions. This 
anbe done in general for any degree k, but we will here only give the expressions for the 3-spin(< k >= 3
), without loosing generality. After some algebra one �ndsp0 = I0(z1)I0(z1) + 2Pk>0 Ik(z1)ey�k (2.136)pl = = p�l = Il(z1)ey�lI0(z1) + 2Pk>0 Ik(z1)ey�k (2.137)z1 = 3

 (1� p0)2 (2.138)
 = ey � (1� p0)3 sinh(y) (2.139)for the saddle point equations andF (y) = �1y (
 log
� log�� z1 
osh(y)� z1 sinh(y)p0) + 
 (2.140)� = 1I0(z1) + 2Pk>0 Ik(z1)ey�k (2.141)for the potential. Il(x) is the modi�ed Bessel fun
tion of l-th order. Following the previouspres
ription on the potential, in the y� =1 limit eq. (2.136) redu
es top0 = 12e 3
(1�p0)22�(1�p0)3�1 ; (2.142)with limy!1 F (y) = 0. Besides the trivial paramagneti
 one, equation (2.142) admits a sym-metri
 zero energy non trivial solution in the dynami
al region [
d; 

℄ = [0:851428; 0:939083℄.One 
an expli
itly 
he
k that no other non trivial y� < 1 solutions are stable in this region.At 
d = 0:851428, the transition is dis
ontinuous and a �nite ba
k-bone suddenly appears withweight 1 � p0 = 0:798335. At 

, the predi
ted value for the ba
kbone is 1 � p0 = 0:9309.This means that in the fa
torized Ansatz approximation more than 93% of the spins are �xedwith probability 1 at the transition, for the 3-spin model. These values are upper bounds forthe true values, that will be retrieved via the 
omplete 1RSB 
al
ulation. In pi
ture (2.7) thebehavior of the �(e; 
) and F (y) for some examples around the stati
 transition is shown. One
ould argue that the natural s
aling to 
orre
tly fo
us on the 
riti
al behavior of the potential
urve around the transition is given by the 
hange of variable t � e�y. The plot of F (t) is alsoshown as a title of example. From that plot the singularity in the y !1() t! 0 is madeevident. In the plots of the potential, the o

urren
e of the stati
 transition point is betterseen res
aling the y axis as t � e�y 2 (0; 1). Noti
e how for values of y too small the solutionis unstable with respe
t to the paramagneti
 one. In parti
ular this implies the instability ofthe RS solution (y ! 0).2.4.3 On the physi
al ir-relevan
e of fra
tional �eldsThe zero temperature saddle point equations for the potential admit a 
losed solution also if thee�e
tive �elds h have rational support. This solutions 
an be seen as an improvable RS s
heme
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Figure 2.7: �(e; 
), F (y) and F (t) for the 3-spin model around the variational stati
 threshold.and 
an be proved to give variational results with the te
hnique of 
hapter 6. Solutions of su
ha kind have been explored in the past for the random 3-SAT model [9℄, and very re
ently ina RS approa
h20 to the graph 
oloring problem in [57℄. However, it is 
lear from the physi
alnature of the u and h �elds that their non vanishing part should be integer at zero temperature.Nevertheless, sin
e we are working in a variational 
ontext, the attempt to re�ne the thresholdvalues via rational �elds is legitimate. Let us again spe
ialize to the Poissonian 3-spin 
ase. Ifwe introdu
e a fra
tional �eld Ansatz as in [9, 11℄Pr(h) = +1Xl=�1 p lr Æ  h� lr! = Pr(�h) (2.143)bypassing the introdu
tion of lo
al u-�elds saddle point equations readp lr<1 = �eg0(y)�l (2.144)� = e�g0(y)�0 + 2Pl>0 �l (2.145)�l = e ylr Z 2�0 d�2� 
os(l�)ePrj=1 g jr (y)
os(�j) (2.146)g0(y) = 3

 (1� (1� p0)2) (2.147)20At the beginning of this thesis the RS analysis with fra
tional �elds has been extensively 
arried out withpedagogi
al purpose also for the 3-spin and the 3-hyper-graph bi
oloring problem, with results analogous to theones in [9℄ and that are not reported here.
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 (p lr + 1� p0 � 2 lXl0=1 p l0r )p lr e� ylr (2.148)g1(y) = 12

 (1� p02 � r�1Xl=1 p lr )2e�y (2.149)
 = 1� (1� p0)32 + 12 rXl=1((1� p0 � 2 l�1Xj=1 p jr )3 � (1� p0 � 2 lXj=1 p jr )3)e� 2lyr ;(2.150)where r is a �lter parameter that 
an be arbitrarily in
reased to thi
ken the �elds sieve. As itturns out in the 
al
ulation (analogously to the RS 
ase), only the �rst r weights are neededto write the potential F (y) = �1y (
 log(
)� 3
 + �) + 
 (2.151)Analogous equations 
an be written in the general l-spin 
ase, the bi
oloring and the random 3-SAT models and - in a mu
h less 
ompa
t form - for generi
 
hoi
es of the generating fun
tions(2.5) and (2.6). However, we won't further write down the equations be
ause fra
tional �eldsdo not show to improve the optimal saddle point value of (2.127). Numeri
ally, no solutionsseem to be stable at zero temperature other than the integer �elds one. This is also the 
asefor the other studied models: Bi
oloring over 3-hyper-graphs and random 3-SAT. This result isdi�erent from the RS 
ase, where in fa
t the fra
tional Ansatz gave better empiri
al thresholdvalues. This is a hint for the fra
tional Ansatz to be a sign of RSB phenomena. Sin
e we arealready working here in a RSB framework, it is therefore plausible for this spurious solutionnot to be stable any more.2.4.4 A parti
ular exa
t 
ase: hyper-graphs with �xed degree dis-tributionThe 
ase of �xed rank and degree hyper-graphs21 is a pe
uliar one, be
ause all spins are topo-logi
ally equivalent on the hyper-graph, leading to a fa
torized 
losed form of the 
ompletesaddle point equations. This is not pe
uliar of p-spin like models, but 
an be extended, as wewill see for the bi
olorig problem, to other systems of spins on a random graph with �xed rankand degree. Noti
e that stri
tly speaking the solution is still non exa
t, be
ause it negle
tssite to site 
u
tuations that may depend on the state of the system and not on its topologi
alproperties. However, it gives results [22℄ in very good agreement with numeri
s. In this 
asethe exa
t equations (2.40) and (2.41) 
an be written in a fa
torized and normalized 
losed formas �(~�) = (�̂(~�))k�1P~�(�̂(~�))k�1 (2.152)�̂(~�) = X~�1;:::;~�l�1 �(~�1):::�(~�l�1) exp(�Xa �a�a1 :::�al�1 � 1) (2.153)21or the slightly more general version of a degree distribution with 
onstant sub-degrees, taking advantage ofthe alternative formalism of appendi
es C.



2.4. THE 1RSB CALCULATIONS 61where �̂(~�) has to be normalized: �̂(~�) ! (2 
osh(�)�m�̂norm(~�) and �̂norm(~�) ! �̂(~�). Aftersome algebra one obtains:�m�F (�;m) = (1� k(l � 1)l ) log(X~� �̂(~�)k) + k(l � 1)l log(X~� �̂(~�)k�1) (2.154)with: P (h) = (2 
osh(�h))m � Æ(h�Pk�1t=1 ut)Qk�1t=1 (2 
osh(�ut))m�futg� (2 
osh(�Pkt=1 ut))mQkt=1(2 
osh(�ut))m �futg (2.155)Q(u) = *Æ  u� 1� tanh�1(tanh(�) l�1Yt=1 tanh(�ht))!+fhtg (2.156)For the l-spin with even degree the Ansatz 
loses on q0 = 0 = p0 and 
onsequently p� =q� = 1=2, be
ause on every spin the e�e
tive 
avity �eld is given by the 
ontribution of k � 1odd � lo
al �elds. using this result a very simple expression in the s
aling regime m� = y isobtained22: F (y) = �1y  (1� k(l � 1)l ) log( 12k kXi=0 k!(k � i)!i!eyjk�2ij)+ (2.157)k(l � 1)l log( 12k�1 k�1Xi=0 (k � 1)!(k � 1� i)!i!eyjk�1�2ij)!For odd degrees eq. (2.158) is more involved and has the formF (y) = �1y  (1� k(l � 1)l ) log g(k; y) + k(l � 1)l log(k � 1; y)! (2.158)g(k; y) = ey�k Xn+;n�;n0>0 k!n+!n�!n0! (q02 )n0(1� q02 )n++n�e�2ymin(n+;n�)Æk;n0+n++n�(2.159)In table 2.4.4 the optimal value y� of the s
aling parameter and the GS energy densities egs =�y=y�(yF (y)) = F (y�) are shown in the 3-spin for various values of the graph degree k. We alsoreport numeri
al estimations of the GS energy (enumgs ) obtained by extrapolating the results ofexhaustive enumerations (sizes up to N = 60 averaged over 1000��10000 samples). Moreoverin [22℄ the y� value for the 3-spin model with l = 4 has been estimated to be 1:41(1), perfe
tly
ompatible with our analyti
 value. In �gs (2.8)-(2.11), some examples of the behavior of �(e),F (y), e(y) and �(y) for �xed degree and rank hyper-graphs are shown. Noti
e the di�erentbehavior of l = 2 
ases, 
orresponding to the Viana-Bray models. The meaning of the di�erent
urves bran
hes has been previously explained and is the same as in �g (2.4). In �g (2.12) thedependen
e of �(ed) on k at �xed rank l. In �g (2.13) the dependen
e of the �(e) 
urve on lfor a �xed degree (k = 10 in the example) is shown.22With the alternative formalism of appendix C.1 we 
an write an exa
t fa
torized Ansatz for stru
ture witharbitrary degree distribution and �xed sub-degrees (one for ea
h k-sub-hyper-graph). The �nal formulas arereported in appendix C.2.
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k egs enumgs y�1{3 -(k)/3 14 -1.21771 -1.218(6) 1.411555 -1.39492 -1.395(7) 1.095726 -1.54414 -1.544(9) 0.90163Table 2.2: Optimal value y� of the s
aling parameter and the GS energy densities for the 3-spinand for various values of the graph degree k.
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2.5. THE GENERAL 1RSB EQUATIONS 652.5 The general 1RSB equationsThe pi
ture that 
ame out from the use of the fa
orized Ansatz was a big improvement 
omparedto the RS approximation and it will qualitatively hold in many aspe
ts in the following, butwe pointed out some not satisfa
tory features of it, in parti
ular the fa
t thet we are stillessentially negle
ting site dependen
e of the lo
al �elds distributions. If we sti
k to the moregeneral (within Parisi's s
heme) forms (2.104) and (2.104) of the fun
tional order parametersand we plug it into the exa
t expression for the potential (2.39) we 
an write, after a 
al
ulationthat is longer and a bit more involved but essentially equivalent to the RS 
ase:m�F1RSB(m; �) = �< k >< l > � < k >< l > hlog(
osh(�J))iJ + (2.160)< k > *log* 2 
osh(�(h+ u))2 
osh(�h)2 
osh(�u)!m+h;u+P;Q �Xk 
k *log* 2 
osh(�Pkt=1 utQkt=1 2 
osh(�ut)!m+futg+fQtg �< k >< l > Xl vl *log* 1 + tanh(�J) lYt=1 tanh(�ht)!m+fhtg+fPtg;JOne has to keep in mind that there are now two levels of distributions, and the 
avity �elds onone site are not �xed in one state anymore, but are only \biased" toward one set of values bya given site dependent distribution. In this sense the u-�elds (that are the polarizations felt byone spin 
oming from neighboring variables) have been 
alled 
avity biases. In the same sense,an algorithm that exploits the RSB biases stru
ture to propagate information along the verti
esof the hyper-graph will have to work pass information on the whole probability distributions- the survey - of biases instead of a simple belief of the s
alar value of the �eld. This is thereason why the new algorithm 
lass presented in [29, 30℄ has been 
alled Survey Propagation.The survey passing pro
edure a
ting on a single spin S0 is shown in �g 2.14). The 
ompletesaddle point 
onditions are this time translated into integral equations on P[P ℄ and Q[Q℄23:P(P ) = 1< k >Xk k
k Z k�1Yt=1 DQtQ(Qt)Æ(P (�)� P (�jQ1; :::; Qk�1)) (2.161)Q(Q) = 1< l >Xl lvl l�1Yt=1DPtP(Pt) hÆ (Q(�)�Q(�jP1; :::; Pl�1; J))iJ (2.162)Q(ujP1; :::; Pl�1; J) = N l�1P [P1; :::; Pl�1; J ℄ Z l�1Yt=1 dhtPt(ht)Bl�1J (h1; :::; hl�1)mÆ (u� uJ(h1; :::; hl�1))(2.163)P (hjQ1; :::; Qk�1) = N k�1Q [Q1; :::; Qk�1℄(2 
osh(�h))m Z k�1Yt=1 dut Qt(ut)(2 
osh(�ut))m Æ(h� kXl=1 ul)(2.164)where N k�1Q [Q1; :::; Qk�1; J ℄ and N l�1P [P1; :::; Pl�1℄ insure normalization and Bl�1J (h1; :::; hl�1) isa res
aling term that 
an be re-absorbed in the normalization in the 
ase of the p-spin model24.23For the reader interested in reprodu
ing this results we remind that in the following expression the limit forthe number of repli
a groups = n=m! 0 has been taken. In (2.160) the terms of order O(n=m) are retained.24In that 
ase it does not depend on the �elds.
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2.5. THE GENERAL 1RSB EQUATIONS 67Eqs (2.161)- (2.164) are very general and valid for models other that the p-spin. From modelto model the nature of the fun
tions uJ and Bl�1J 
hange. J represent the set of all 
ouplings
ontained in an elementary energeti
 
onstraint, and it is a simple s
alar for the p-spin. m is anumber in the interval (0; 1℄, whi
h sele
ts families of solutions at di�erent free-energy levels.The physi
al free-energy is estimated maximizing over m. For the p-spin uJ has the usual formuJ(h1; :::; hl�1) = 1� tanh�1  tanh(�J) l�1Yt=1 tanh(�ht)! ; (2.165)where J is a s
alar be
ause only one 
oupling enters the lo
al energeti
 term. Another exampleis the K-SAT 
ase, where with 
al
ulations very similar to the p-spin model one �ndsuJ(h1; :::; hp�1) � uJ(fJtg; fhtg) = J� tanh�1 24 �2 Qp�1t=1 �1+Jt tanh(�ht)2 �1 + �2 Qp�1t=1 �1+Jt tanh(�ht)2 �35 (2.166)BJ(h1; :::; hp�1) � B(fJtg; fhtg) = 1 + �2 p�1Yt=1  1 + Jt tanh(�ht)2 ! : (2.167)It is evident the re-weighting of the inner distributions with m that be
omes responsible for they-regulated T = 0 level 
rossing25 Depending on the 
hoi
e of the quen
hed disorder distribution�(J), we 
an spe
ialize (2.160) the the ferromagneti
 as well as the spin-glass 
ases. Theexpression for the free-energy for models other than the p-spin 
an be 
al
ulated along thesame lines. For instan
e, the general 1RSB energy for the K-SAT model is given in 
hapter 6.2.5.1 General Solution at T = 0The previous equations 
an be iteratively solved via a population dynami
s algorithm pre-sented in [23℄ and valid in prin
iple at all temperatures. The algorithm expli
itly makes useof the re-weighting terms in (2.161)-(2.164). The zero temperature limit of (2.161)-(2.164) and(2.160) 
an be dire
tly 
omputed, or from the repli
a equations or exploiting the straightfor-ward generalization of the T = 0 repli
a/
avity self 
onsistent equations written in [24℄ for theVian-Bray model. Equivalently, their limit 
an be dire
tly 
al
ulated from the repli
a results(2.161)-(2.164), substituting (in the s
aling regime y � m�) 2 
osh(�h)2 
osh(�ut)!m ! e�y�Pk�1t=1 jutj����Pk�1t=1 ut���� (2.168)in the general 
ase,uJ(h1; :::; hl�1)! min(jJ j; jh1j; :::; jhl�1j) � sign J l�1Yt=1 ht! (2.169)for the p-spin, uJ(fJtg; fhtg) ! �J2 K�1Yt=1 �(Jtht) (2.170)B(fJtg; fhtg)m ! 1 (2.171)25The re-weighting is obviously present also at �nite temperature, as well as the level 
rossing, and is evenmore 
ompli
ated due to thermal e�e
ts. We fo
used on zero temperature be
ause of the dire
t 
onne
tion withoptimization theory.



68 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELfor the K-SAT26 and res
aling the normalization fa
tors a

ordingly. If the quen
hed disorderdistribution �(J) has support only on �1 values, eq. (2.169) redu
es to the usualuJ(h1; :::; hl�1)! J �min(1; jh1j; :::; jhl�1j) � sign l�1Yt=1 ht! (2.172)already seen in the p-spin spin-glass in the RS and fa
torized 
ases. We would like to stresshere that all 
al
ulations 
ould be redone for a more general 
hoi
e of �(J). The exponentialterm, when 
al
ulated dire
tly via the 
avity method, readse�y(e(N+1)min �e(N)min) = e�(�(N+1)min ��(N)min) (2.173)and plays the role of a re-weighting of states due to a population shifts in the number (
omplex-ity) of states (
lusters) under the 
avity equation iteration from an N to an N +1 hyper-graph.This terms essentially favors terms with low minimal (min in the equation) energy or 
omplex-ity, helping the equations to 
onverge towards the 
orre
t GS. Noti
e that inside the dynami
alregion the GS is found for y !1.In this 
ase the re-weighting fa
tor (2.173) will be
ome in general an Indi
ator fun
tion�(A(fP (h)g)) (or �(A(fQ(u)g)), depending on whi
h �elds we de
ide to work with) over theset A of e�e
tive �elds distributions that do not lead to lo
al 
onstraints 
ontradi
tion andtherefore do not in
rease the value of the energy from the e = 0 GS one. Beyond 

 thisin in the typi
al 
ase no longer possible, be
ause no all lo
al 
ontradi
tions 
an be satis�eddue to frustration per
olation. However, solutions with a minimal number of violated energy
onstraints will be favored.Similarly to the RS or the fa
torized 
ase, one 
an on physi
al grounds require the form ofa given site �eld distribution fun
tion to 
lose on an integer support27. Given ki the degree ofspin i belonging to an edge of rank li we 
an writeP (hjki � 1)( ~pi;ki) = ki�1Xr=�ki+1 pi;kir Æ(h� r) (2.174)P (ujli � 1)( ~qi;l�i) = 1Xr=�1 qi;lir Æ(u� r) (2.175)It is parametrized by a ve
tor of weights, ~pi = (pi�ki; :::; piki)28 whi
h 
an 
u
tuate from one sitei to the next. Sin
e at T = 0 the �elds take integer values, the probability depends on a �nitenumber (2k) of parameters for all fra
tions of verti
es of degree k, and the full order parameteris not a fun
tional, but a fun
tion R(~p) of the ve
tor of weights whi
h is given in the limit oflarge N by:Rh(~p) = 1N Xj 24 ki�1Yr=�ki+1 Æ �pjr � pr�35 = 1< k >Xk k
k 24 k�1Yr=�k1 Æ �pkr � pr�35 ; (2.176)26In [30℄, where for the 3-SAT 
ase all details of the 
al
ulation via the 
avity method are shown, the fun
tionuJ appears res
aled by a fa
tor 2 ne
essary to work with integer �elds. Indeed, the fa
tor 
an be simply re-absorbed from the beginning de�ning the K-SAT Hamiltonian has twi
e the value of the 
ost fun
tion of the
ombinatorial problem. The same holds for other models su
h has the hyper-graphs Bi
oloring of 
hapter 4.27In some 
ases, as for instan
e the K-SAT, this hypothesis is the only one possible.28we have dropped the apex ki.
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k), y = 0:8 (red)and y = 1:2 (green). Noti
e the big e�e
t of non-fa
torization. The best fa
torized solution,with y = 0:4174, would give a Æ peak at p0 = :3353. The RS solution would give a Æ peak atp0 = 1=3.where pkr is the weight of a �led r of a spin of degree k and the se
ond equation holds on thetypi
al sample, on
e averaged over the hyper-graph ensemble. Analogously for the u-biases:Ru(~q) = 1N Xj 24 1Yr=�1 Æ �qjr � qr�35 = 1< l >Xl lvl 24 lYr=�l Æ �qlr � qr�35 ; (2.177)Therefore, two Ans�atze have to be 
he
ked in order to �nd an analyti
al solution: the one onthe weights of a single site distribution , atta
hed to P (h) or Q(u), and the fra
tions of sitesgiven a 
ertain distribution of �elds, atta
hed to Rh(~p) and Rq(~u). Di�erently from the RS andthe fa
torized Ansatz approa
h, the qualitative 
onsequen
es of the general RSB equations are
learly visible on the fa
t that the probability distribution of 
avity �elds is site dependent, andthis pi
ture survive at zero temperature, as it is shown for instan
e for the 
ase of the Viana-Bray model in �g. (2.15). There the probability distributions P (p0) = (1=N)Pi Æ (pi0 � p0) forthe zero 
avity �elds weights p0 (
0 in the �gure) are shown for di�erent values of the s
alingparameter y. The distributions are broad due di�erent site-to-site. Both the RS and thefa
torized solution give a single Æ peak in the same situation. taken from [24℄. Moreover, theindividual 
avity �eld distributions Pi(~p) are not symmetri
 under �eld reversal (i.e. Pi(pr) 6=Pi(p�r)), while only the full order parameter is statisti
ally symmetri
 (i.e. the site to site
u
tuations of pr are identi
al to those of p�r).If as a title of example one spe
ializes to the Poissonian p-spin 
ase, whose spe
i�
 resultshave been already given in the last se
tions, equations (2.169) and (2.171) redu
e to a single
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losed form that 
an be written only in terms of the u-biases distributions:Q0(u) = C0 Z p�1Yt=1 ktY�=1 du�tQt(u�t )Æ0�u� uJ 0� k1X�=1 u�1 ; : : : kp�1X�=1 u�p�11A1A �� exp 24�y wJ 0� k1X�=1 u�1 ; : : : kp�1X�=1 u�p�11A35 ; (2.178)where C0 is a normalization fa
tor, � is the \
lause" index,wJ 0� k1X�=1 u�1 ; : : : kp�1X�=1 u�p�11A = 1� p�1Xt=1 ������ ktX�=1 u�t ������ (2.179)is the re-weighting fa
tor and numbers fktgp�1t=1 are i.i.d. random numbers taken from a Poissondistribution of mean 
p29. Sin
e the 
avity biases, as said, take values f0;�1g, symmetri
solutions of the form Qi(u) = �i Æ(u) + 1� �i2 [Æ(u� 1) + Æ(u+ 1)℄ ; (2.180)
an be sought in general30. Indeed, form (2.180) is very well observed numeri
ally, with afra
tion r of trivial distributions with �i = 1. Moreover, the weights �i 
an be 
omputedanalyti
ally [26, 30℄. As in the fa
torized Ansatz 
ase, various phases are found, their stabilitydepending on 
.The histogram pi
ture for the site �elds distributionsQi(ui) is pi
torially shown in �g. (2.16)From eq. (2.178), in the limit y ! 0, the site �elds distributions 
on
entrate on one single deltafun
tion for ea
h site i. There is no re-weighting fa
tor and the averageQ(Q(u)) � 1N NXi=1Qi(ui) (2.181)
an be seen as an average over the values of the single s
alar �elds ui, giving ba
k the averageRS solution (
al
ulations 
an be dire
tly done via inspe
tion).In the fa
torized Ansatz 
ase, due to the re-weighting, a normalization Ci(y) is present (C0for the referen
e spin S0 in (2.178)). However in this 
ase Ci(y) = C(y) 8i 2 f1; :::; Ng, be
auseall sites share the same state to state 
u
tuations (see again �g. (2.16).In the general 1RSB 
ase, the normalization (and the re-weighting) fa
tors are site depen-dent, all site distributions (or their numeri
al 
oeÆ
ients at T = 0) 
u
tuate from site to siteand eq. (2.181) gives the general 1RSB repli
a solutions31.Looking at the iteration equation for general values of y (2.178), the only way one 
an obtaina trivial distribution Q0(u) = Æ(u) on the l.h.s. is when 9 t su
h that all the kt distributionsare trivial Therefore, for one given iteration with given fktg, the probability that Q0(u) = Æ(u)29Noti
e that the sums here go up to k instead of the k � 1 of the 
avity original formulation. This is ape
uliarity of the Poissonian degree distribution \self similarity" as it has been already seen in the previousse
tions.30�i � qi0 of eq.(2.177).31Again 
al
ulations 
an be 
he
ked dire
tly. In order to prove equivalen
e the reitrodu
tion of h �eldsdistributions is then not ne
essary, but it simpli�es a bit the notation.
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72 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELis 1� Qp�1t=1 (1� rkt). The average over iterations and over the random 
onne
tivities fktgleadto a simple equation for the fra
tion of trivial distributions:r = e�2p
 1Xk1;:::;kp�1=0 p�1Yt=1 (p
)ktkt! �1� p�1Yt=1(1� rkt)� = 1� �1� e�p
(1�r)�p�1 : (2.182)For 
 < 
d the only solution is r = 1, while above 
d a non-trivial solution appears. Noti
ethat equation (2.182) is identi
al to the magnetization 
ondition of the ferromagneti
 model,
on�rming our previous observations of thresholds 
oin
iden
e.For large y, numeri
al results show that the 
avity biases spontaneously divide in two
ategories: 
avity biases of type \a" with Qi(u) = Æ(u) and those of type \b" with Qi(u) =12 [Æ(u� 1) + Æ(u+ 1)℄ that are responsible for the propagation of the intera
tions. In fa
t, thefollowing distribution of 
avity biasesQi(u) = ( Æ(u) with prob: r (`type a0)12 [Æ(u� 1) + Æ(u+ 1)℄ with prob: 1� r (`type b0) (2.183)is a �xed point under the iteration pro
ess (2.178) for y = 1, provided the fra
tion of trivialknowledges t satis�es (2.182). Using the extension to the hyper-graphs 
ase of the expressionsin [24℄, one �nds the 
omplete 1RSB expression for the potential F (y ! 1) = 0, whi
h isindeed the expe
ted result.Beyond 
d: the lo
ation of the stati
 phase transitionIn order to study the 
omplexity and the phase transition point one needs to take 
are of theleading 
orre
tions in the limit y � 1. For �nite y, the distribution (2.183) is no longer stable;we need to study a more general distribution of biases whi
h takes 
are of the appearan
e of anon-trivial 
ontribution to the peak in u = 0, arising from frustrated intera
tions:Qi(u) = ( Æ(u) with prob: r (`type a0)12(1� �i) [Æ(u� 1) + Æ(u+ 1)℄ + �i Æ(u) with prob: 1� r (`type b0) (2.184)where the fra
tion r of trivial biases is always �xed by (2.182). For large y, substituting thisdistribution into the self-
onsisten
y equation (2.178) shows that the weight 
an be 
omputedas a series expansion in powers of e�y, rapidly de
reasing for large y. If one pro
eeds in doingso the expression for the potential F (y) 
an be 
al
ulated around the stati
 transition and avalue of 

 again 
oin
iding with the ferromagneti
 one in found.Thanks to the Legendre transform already used in the fa
torized Ansatz approximation the
omplexity 
am be 
al
ulated, leading to important 
orre
tions to the fa
torized results.We would like to stress in 
on
lusion that this is only an introdu
tory review of the steps of
omplete 1RSB solution, that 
an be found in details in [26, 30℄, and that the 1RSB equations
an be reformulated also in the single sample 
avity analysis presented in [29, 30℄ for the 3-SAT model, where the re-weighting fa
tor (2.173) lies at the hearth of the e�e
tiveness of theproposed Survey Propagation algorithm. There, the indi
ator fun
tion �(A) plays the role of a�lter on the messages surveys that would lead to 
on
i
ting information 
oming from a fun
tionnode (
lause) to the variable to be �xed.



2.6. "FERROMAGNETIC COMPLEXITY" 732.6 "Ferromagneti
 
omplexity"From the usual de�nition of the free energy �F = �E � Stot and from the fa
t that we areworking with a 
lusterized system of m repli
as, we 
an split the total entropy of our system inan mS part 
ounting the 
ontribution within 
lusters and a 
omplexity � 
ounting the 
lustersmultipli
ity. We 
an therefore write �m�F (m; �) = �(�;m) + mS(�) � m�U(�;m), whereU is the total internal energy. The 
omplexity of the original, m = 1 system will be thereforegiven by the stationary point 
ondition [7℄��(�) = m2��F (m; �)�m jm=1 (2.185)at �nite temperature. However, if we want to 
ompute ��(1) we must solve the saddle pointequations for m = 1, and then take the zero temperature limit, whi
h is a 
ase not 
ontainedin the y !1 limit of the previous se
tion. This limit in prin
iple underestimates the numberof LGS at � = 1, and does not allow to 
ompute the 
omplexity at �nite energy above thestati
 transition, be
ause in that 
ase the states at y = 0 (and m = 1 
ounts part of them)turn out not to be lo
ally stable, as we have seen on the general dis
ussion on the 
omplexity.In the general 
ase therefore ��(1) 6= �(y�) (2.186)and it is not 
orre
t. We will 
all ��(1) maybe with abuse of language the zero temperatureferromagneti
 
omplexity of the diluted p-spin model for the following reasons: eq. (2.185) does
ompute the 
on�gurational entropy of the metastable states of the ferromagneti
 p-spin dilutedmodel, and indeed, expli
itly solving the T = 0 1RSB saddle point equations for m = 1 with a
al
ulation similar to the RS 
ase32 one �nds:��(
) = Spara(
)� SRSferro(
) (2.187)where Sferro simply is the zero temperature entropy of the RS ferromagneti
 solution and wehave made expli
it the dependen
e on 
. This result is valid for all degrees distributions in theferromagnet33.The existen
e of a metastable states 
omplexity for disordered ferromagnets is not in 
on-trast with the fa
t that the GS is repli
a symmetri
. After the magnetization transition, aferromagneti
 solution is always present in the model, but is the 
enter of a single 
luster.There 
annot be more than one magnetized 
luster, be
ause the �xed spins are the ones be-longing to a 
ore subgraph that is univo
ally de�ned and shared by all other solutions, atHamming distan
e O(1) and found by spin 
ipping in the paramagneti
 fra
tion of variables.This properties will be dis
ussed in the last se
tion for the spin-glass 
ase, but is valid alsofor the single ferromagneti
 
luster. However, also in this 
ases a dynami
al transition in themetastable states is present. Between 
d and 

 an exponential number of states appear be-tween e = 0 and e = ed. Even though all 
lusters at e = 0 are identi
ally magnetized, the32The reader interested in reprodu
ing this 
al
ulation should nevertheless be 
areful to the fa
t that whilein the RS limit the analyti
 
ontinuation of x �Pna=1 �a 2 = is taken, in this 
ase obviously x �Pma=1 �a =sigma1 = �1.33Noti
e that when more that one possible value for SRSferro(
) is present one has to take the largest one whi
his the thermodynami
ally favored entropy within the non paramagneti
 
hoi
es. This means in 
ase the systemundergoes a 
ontinuous transition before the dis
ontinuous one (see 
hapter 5 for examples), ��(
) drops tozero at the transition point 
 = 1=(2v2).
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energy gapFigure 2.17: 
omplexity versus energy density of metastable states above the ferromagneti
transition for models with dynami
al 1RSB phase. The lower left dot at e = 0 is the ferromag-neti
 solution.

Figure 2.18: Energy lands
ape above the ferromagneti
 transition. The narrow 
entral diprepresents the zero energy ferromagneti
 solution.presen
e of non zero energy metastable states is responsible for a slowing down of the dynami
sanalogous to the glassy 
ase. A �nite 
omplexity therefore arises and indeed 
an be 
al
ulatedvia a 1RSB steps. The glassy behavior of p > 2-spin ferromagnets has been studied in [20℄also at �nite temperature as a model for stru
tural glass transition or blo
ked 
on�gurations
omplexity in granular systems [80℄. Also the models studied in 
hapter 5 in the error 
orre
t-ing 
odes appli
ation are ferromagneti
 in nature. It is important to noti
e that also in this
ases a dynami
al transition in the metastable states only is present. After 

 an energeti
 gapin 
omplexity opens up. However, di�erently from the spin-glass 
ase, a single ferromagneti

luster at zero energy is always present. This situation in pi
torially shown in �gs.(2.17) and(2.18), and is also the 
ase of some ad ho
 built ferromagneti
-like hard-satis�able versions ofthe satis�ability model we studied in [55℄ and exploited to build a generator of very hard butsatis�able 
lauses. For this 
lass of models we expe
t lo
al sear
h algorithms of any presentlyavailable kind not to be able to over
ome the energy gap and �nd the global ferromagneti
solution for large system sizes. This was su

essfully veri�ed with SAT solvers like walk-sat in
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heme of solution 
lustering in ferromagneti
 models with dynami
al 1RSB phase.[55℄ and for de
oding sum-produ
t algorithms in e.
.
. in 
hapter 5, as well as for simulatingannealing. Moreover, this should be the 
ase also for algorithms that are mu
h less a�e
tedfrom the dynami
al transition and perform very well throughout the [
d; 

℄ region, like SurveyPropagation [29, 30℄.The 
luster pi
ture in energy and 
 is modi�ed 
onsequently in the way show in �g. (2.19)Some real 
omplexity plots for the 
ase of error 
orre
ting 
odes will be shown in Chapter 5.For Poissonian degrees distribution the ferromagneti
 
omplexity reads��(
) = log 2 1� p0(1� log p0)� 
Xl vl(1� p0)l! (2.188)and ��(
) = log 2 �1� p0(1� log p0)� 
(1� p0)3� (2.189)for the 3-spin. Remarkably enough, ��(
) is in perfe
t agreement with numeri
al simulations [19,22℄ of the true �(e = 0; 
) and with the general 1RSB analyti
al results of the previous se
tion,with the Poissonian 
ase and 
an in prin
iple be seen for any l and any degree distribution.In �g. (2.22) The analyti
 expression for �3�spin poiss(e = 0; 
) 
al
ulated via eq. (2.185) is
ompared with numeri
al simulations. The results of numeri
al 
lustering with an overlap 
ut-o� of 0.7 (averaged over 1000, 1000, 500 and 50 samples) 
onverge to the analyti
al predi
tion.Extensive numeri
al experiments on both versions (ferromagneti
 and spin-glass) of T = 0 3-spin (3-XOR-SAT) were performed in [19℄ in order to 
on�rm analyti
al predi
tions. We remindthat in a region where an extensive number of GGS is present, the 
ombinatorial problem isPolynomial in the worst 
ase as will be extensively review (and exploited) in 
hapter 3 and5. We used a global polynomial method that redu
es the problem of the GGS sear
h to thatof solving a large sparse linear system in Galois Field 2 (GF[2℄)34. The simulations whoseoutput is shown in �gs. (2.20),(2.21) and (2.22) used the polynomial pro
edure as well as lo
alalgorithms, namely the Davis-Putnam (DP) 
omplete ba
ktra
k sear
h [91℄ and the in
ompletewalk-SAT randomized heuristi
 sear
h [92℄ , to 
he
k the hardness of the problem for lo
alsear
h35. The existen
e of at least one solution in the satis�able 3-XOR-SAT allowed us to run34This method will be reviewed in 
hapters 3 and 5 for the interested reader.35mixed randomized and ba
ktra
king pro
edures have been also re
ently investigated. See for example [88℄,based on a systemati
 study reported in [93℄.
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Figure 2.20: The probability that a formula is SAT as a fun
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Figure 2.21: The lowest lines are the analyti
al expressions for the entropy of the ferromagneti
model. The numeri
al estimation (not reported) perfe
tly 
oin
ide. Dashed parts 
orrespondto metastable states. The rest of the data (entropy in the main body and energy and ba
kbonesize in the inset) 
ome from exhaustive enumeration of the ground states in the spin-glass modeland of �rst ex
ited states in the ferromagneti
 one (only N = 40; 60) and they 
oin
ide.walk-SAT in the whole range of 
, the halting 
riterion always being �nding a SAT assignment.These results are quite surprising be
ause tells us that the dynami
 and stati
 p-spin spin-glassthresholds 
oin
ide with the values of appearan
e of a metastable ferromagneti
 solution andwith the thermodynami
 ferromagneti
 transition (some values where given in the Poissonianand l �xed 
ase in table 2.4.4). We will see in the next se
tion why it is so.2.6.1 Hiding solutions in random satis�ability problemsWe would like to make here a very brief digression to say, as we pointed out a few lines above,that the pe
uliar low and zero temperature solutions spa
e stru
ture of the ferromagneti
-likemodels des
ribed in this 
hapter is not restri
ted to the generalized p-spin model, but the samequalitative pi
ture of �gs. (2.17), (2.18) and (2.19) also applies to ad ho
 
onstru
ted ferro-magneti
 versions of 
ombinatorial optimization problems su
h as Hyper-graphs Bi
oloring3636See later 
hapter 3 for details.
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Figure 2.22: Ground states 
on�gurational entropy versus mean 
onne
tivity for the Poissonian3-spin. With the analyti
 result we mean in this 
ase ��(
), whi
h is also in perfe
t agreementwith the 
omplete 1RSB 
urve.and random K-SAT. In this 
ontext, the extreme hardness of �nding the narrow basin fer-romagneti
 solution hidden among a mu
h larger exponential number of metastable states athigher energies, for 
 >> 
d, has revealed itself very useful in the design of hard and solvable
ombinatorial instan
es. Indeed, this is a very wel
ome in 
omputer s
ien
e, sin
e a majorproblem in evaluating sto
hasti
 lo
al sear
h algorithms for NP-
omplete problems is the needfor a systemati
 generation of hard test instan
es having previously known properties of theoptimal solutions. On the basis of statisti
al me
hani
s results, we therefore proposed a 
lassof random generators of hard and satis�able instan
es for the 3-satis�ability problem based ofa well suited ferromagneti
 version of it. The design of the hardest problem instan
es is basedon the existen
e of a �rst order ferromagneti
 phase transition and the glassy nature of ex
itedstates. This subje
t would surely deserve a 
hapter on its own, but we de
ided not to in
ludeit here in order not to overload the thesis. However, at the end of this 
hapter we in
luded thepublished arti
le [55℄ - presenting our results - in its entireness. We would also like to men-tion that the generator des
ribed in the arti
le was e�e
tively implemented and submitted inthe SAT2002 Cin
innati Sat-Solvers 
ompetition, where it performed ex
ellently. We believethese results to be e very 
lear example of the utility of statisti
al physi
s insight in the �eldof 
ombinatorial optimizationNoti
e, on the opposite side, we will see in details in 
hapter 5 how error 
orre
ting 
odesalgorithms expli
itly try to avoid entering the dynami
al region (and therefore to work ina regime of an e�e
tive 
 < 
d) in order to work eÆ
iently, sin
e a larger basin of for theferromagneti
 solution37 is needed for the algorithms to rapidly 
onverge.37The ferromagneti
 solution 
an be gauged to 
orrespond to the 
omplete retrieved original (before 
orrup-tion) message parity 
he
k error 
orre
ting 
odes. See 
hapter 5 for details.
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t alternative solution of the p-spin model atT = 0We would like here to review a rigorous alternative solution for both the dynami
al and stati
thresholds of the generalized p-spin. We stress that the following solution is exa
t. No needfor either repli
a or 
avity 
al
ulations is en
ountered. This does not invalidate the relevan
eof previous se
tions, be
ause this last method is limited to the p-spin at zero temperature (p-XOR-SAT), whose 
on�gurational spa
e symmetries do not in general o

ur in other models.Moreover, this derivation is a strong psy
hologi
al argument in favor of the exa
tness of 1RSB
al
ulations in more 
ompli
ated 
ases. The method was presented in [26℄ for the spe
ial 
aseof the 3-spin Poissonian hyper-graphs (as the prototype model of this whole line of resear
h)and, with an almost equivalent formulation, in [94℄. In this se
tion we'll stri
tly follow [26℄,where all the results have been already established. Extending the 
al
ulations to arbitraryrank and degree distribution hyper-graphs was straightforward, so that this se
tion will not
ontain any original result. It was only written for 
ompleteness, to show a 
lear example ofthe growing interplay between statisti
al physi
s methods and algorithms analysis. Indeed, alarge amount of work is 
urrently being performed in this dire
tion with bene�ts for both �elds.See [95, 93℄ and referen
es for some examples. We will exploit 
on
epts from graph theory andall the 
al
ulations will be simple annealed averages, whi
h are rigorous. All the formulas willbe written for the generi
 p-spin, and the parti
ular 
ase p = 3 on Poissonian hyper-graphs willbe 
onsidered in order to make 
onne
tion with the expli
it results of the previous se
tions.The physi
al idea behind the graph theoreti
al derivation is the following. In a randomhyper-graphs there are many variables with 
onne
tivities 0 and 1, whose 
avity/e�e
tive �eldsat zero temperature are null. A small 
u
tuation in the number of these variables, indu
e verylarge 
u
tuations in physi
al observables, as for example in the entropy. Thus, the idea is toremove all these \
oppy" spins and to study the properties of the residual hyper-graph, the\
ore", where 
on
i
ting 
onstraints, if present, must lie. We �nd that, on the 
ore, sample-to-sample 
u
tuations are negligible and this allows us to study its properties by mean of verysimple annealed averages.2.7.1 The onset of frustration: hyper-loops in the graphAnalogously to what happens with loops in usual graphs (p = 2), in a disordered model de�nedon a hyper-graph (p > 2) frustration is indu
ed by the presen
e of hyper-loops [19, 21℄, whi
hare also 
alled hyper-
y
les in the literature [68, 63℄ and where already introdu
ed in 
hapter1 and �g. (1.1). We re
all here that a hyper-loop is a sub-hyper-graph C � H, su
h thatevery vertex in C has even degree in C. In terms of the in
iden
e matrix Â, the hyper-loop
orresponds to a set of rows R su
h that, for every 
olumn, the sum modulo 2 of the elementsis zero, i.e. Pi2R aji mod[2℄ = 0 8j. The presen
e of hyper-loops is dire
tly related to thepresen
e of frustration in the system: If the produ
t of the signs of hyperloop intera
tions isnegative, Qm2C Jm = �1, then not all su
h intera
tions 
an be satis�ed at the same time. The
riti
al point 

, where hyperloops per
olate, is a T = 0 phase boundary for the p-spin glassmodels de�ned by Hamiltonian (2.9): For 
 < 

 all the intera
tions 
an be satis�ed and theGS energy is zero, while for 
 > 

 the system is in a frustrated spin glass phase and GGS ofzero energy no longer exist. The 
riti
al point 

 
orresponds to the SAT/UNSAT thresholdfor the random p-XORSAT problem. In terms of the random linear system Â ~x = ~y mod[2℄, aslong as 
 < 

, solutions to the system will exist with probability 1 in the large N limit for any
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TWO STEPS IN THE LEAF REMOVAL ALGORITHM

FOR A MIXED 2−3 RANK HYPER−GRAPH

Figure 2.23: Two generi
 steps of the leaf removal algorithm on a portion of 2+3-hyper-graph.y. We would like to re
all again the existen
e of somehow anomalous models. If the fra
tion v2of rank 2 edges is larger than a 
ertain 
riti
al threshold, a giant 
omponent made of a purely2-sub-hyper-graph (plus fra
tions of other edges of order lO(1)), forms. Within this extensive
onne
ted sub-graph, 2-loops per
olate at 
 = 1=2 and give rise to frustration. More generalhyper-loops, formed by a �nite fra
tion of all ranks edges, per
olate at the stati
 threshold(2.187), giving rise to a dis
ontinuous ferromagneti
 transition in ferromagneti
 models38 , orspin-glass in the frustrated 
ases. But at that point the 
ontinuous transition at 
 = 1=2 hasalready taken pla
e. In fa
t, these models do not radi
ally di�er from the other 
ases, be
ausethe topologi
al emergent stru
tures that lead to propagation of frustration in the hyper-graphare the same. The only di�eren
e being a \time"39 s
ale separation in the �xed rank hyper-graphs An axample of general phase diagram that in
lude these 
ases will be drawn in the �rstse
tion of 
hapter 5.2.7.2 Leaf removal algorithmGiven a hypergraph the leaf removal algorithm pro
eeds as follows [96℄: As long as there isa vertex of degree 1 remove its unique hyper-edge. Two subsequent steps of the algorithmare illustrated in �g. 2.23 for a 2 + 3-hyper-graph. Very similar algorithms have been re
entlystudied in [97, 95℄. During the whole pro
ess the remaining hyper-graph is still a random one,sin
e no 
orrelation 
an arise among the hyper-edges if it was not present at the beginning.When there are no more verti
es of degree 1 in the hypergraph the pro
ess stops and we 
all
ore the resulting hypergraph, 
leared of all isolated verti
es. However, while in poissonian
ases we 
an infer the degree distribution of k � 2 verti
es to remain poissonian during thewhole pre
ess [95, 26℄, when working in a more general 
ase the leaf removal in prin
iple allowsfor a traje
tory in the random graphs ensemble spa
e. The evolution equations at ea
h step
an still be written, but one is not guaranteed eny more that the solutions will refer to thestarting graph of to some di�erent stru
ture. Sin
e the equations we will retrieve 
oin
ide tothe ones givin the ferromagneti
 thresholds also in the general 
ase, we believe the method to38Rigorously speaking, hyper-loops are not responsible for the ferromagneti
 transition, but only for thespi-glass one. The extensive ferromagneti
 
luster appears when similar stru
tures that have been 
alled hyper-
onstraints per
olate. A pi
torial example of su
h a stru
ture, whi
h is stri
tly speaking also a 
y
le, is givenin the right drawing of �g. (1.1). However, in the random hyper-graph these stru
tures are both of typi
al sizeO(logN) and they di�er one from the other by a small stattisti
al variation of the graph. We therefore inferthat tey appear at the same time. This is the physi
al reason for the 
oin
iden
e of 
riti
al lines at T = 0 inthe ferromagneti
 and in the spin-glass model.39I.e. the growing hyper-graph mean density 
, if we imagine to randomly grow the hyper-graph from aninitial set of dis
onne
ted verti
es.
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ase.The leaf removal algorithm is not able to break up any hyper-loop, sin
e ea
h vertex in thehyperloop has at least degree 2. The 
 value where the 
ore size be
omes di�erent from zero,let us 
all it 
d, is therefore 
ertainly smaller than the per
olation point of hyperloops 

 (forp = 2 these two values 
oin
ide).The evolution of a hypergraph in extensive time T 2 [0;M ℄ under the appli
ation of theleaf removal algorithm 
an be des
ribed in terms of the probability, 
k(t), of �nding a vertexof degree k after having removed T = tN hyperedges where the res
aled `time' t ranges from 0to 
. let us 
all Nk(T ) the number of surviving verti
es of degree k at extensive time T , andMl(T ) the number of l-edges at time T . At time T +1 (one leaf removal iteration) we randomly
hoose vertex of degree one and remove the edge among the vertex belongs to. Therefore thenumber of zero degree verti
es will in
rease by one, plus the probability N1(T )=sumk0k0Nk0(T )that the other l� 1 verti
es of the erased edge have degree one (in that 
ase also those verti
eswill have degree zero after the iteration), weighted over the probability lMl(T )=Pl0 l0Ml0(T ) ofhaving found a rank l edge. Putting all together one 
an write:N0(T + 1) = N0(T ) + 1 + N1(T )Pl(l � 1)lMl(T )Pk0 k0Nk0(T )Pl0 l0Ml0(T ) (2.190)In the same way we 
an write the evolution equations for Nk(T ) as:N1(T + 1) = N1(T )� 1 + (2N2(T )�N1(T ))Pl(l � 1)lMl(T )Pk0 k0Nk0(T )Pl0 l0Ml0(T ) (2.191)Nk>1(T + 1) = Nk(T )� 1 + ((k + 1)Nk+1(T )� kNk(T ))Pl(l � 1)lMl(T )Pk0 k0Nk0(T )Pl0 l0Ml0(T ) : (2.192)De�ning a res
aled time t = T=N 2 [0; 
℄ and
k(t) � Nk(T )N = Nk(tN)N (2.193)(
k(t) and vl(t) are well behaved quantities in the N large limit, with of 
ourse 
k(0) = 
k andvl(0) = vl of the initial hyper-graph), to the leading order in N we 
an write the evolutionequations (see Ref. [95℄ for a detailed derivation of similar equations) for the fra
tions 
k(t) as�
0(t)�t = Pl l(l � 1)vl(t)
1(t)< l >t< k >t + 1 ;�
1(t)�t = Pl l(l � 1)vl(t)(2
2(t)� 
1(t))< l >t< k >t � 1 ; (2.194)�
k(t)�t = Pl l(l � 1)vl(t)((k + 1)
k+1(t)� k
k(t)< l >t< k >t 8k � 2 ;where < k >t= Pk k
k(t) =< k > (
 � t), sin
e the mean degree linearly de
reases withtime (we remove one intera
tion per step) and vanishes at t = 
; while < l >t= Pl lvl(t).These equations are the generalization of eqs.(22) in [26℄, sin
e one has to take into a

ountthe probability / lvl that the edge removed has rank l. It is more 
onvenient in the general
ase to resort to the generating fun
tional formalism of eqs. (2.5) and (2.6): summing up allpower-weighted terms of (2.194) one obtains the general evolution equation_
(x; t) = (1� x) "1 + v00(1; t)v0(1; t) 
0(x; t)
0(1; t)# (2.195)



2.7. AN EXACT ALTERNATIVE SOLUTION OF THE P -SPIN MODEL AT T = 0 81where _f(x; t) � �f(x; t)=�t and f 0(x; t) � �f(x; t)=�x. On the other hand, we must follow inparallel the evolution equation for the rank fra
tion vl(t): we 
an writeMl(T + 1) =Ml(T )� lMl(T )Pl0 l0Ml0(T ) ; (2.196)Res
aling as the time as before in t! tN as in the degrees equation and noti
ing thatMl(tN) =Nvl(t), we are left with: _v(x; t) = 1
 � t "v(x; t)� xv0(x; t)v0(1; t) # (2.197)The parti
ular boundary 
onditions under whi
h we are interested in solving eqs. (2.195) and(2.197) are v(x; 0) = v(x)
(x; 0) = 
(x)v0(1; 0) = v0(1) = 

0(1) = 

0(1; 0) :Eqs (2.195) and (2.197) are standard partial linear di�erential equations. Exploiting (2.198),after some analyti
s we 
an write:v(x; t) = 11� t
 v  xv�1  1� t
!! (2.198)
(x; t) = 
0�1 + 
0 �
�1 �1� t
��
0(1) (x� 1)1A+
(1� x) 1� 
�1  1� t
!! 
0  
�1  1� t
!! (2.199)It is 
onvenient to work in the variable z � v�1(1� t=
), s.t. the fra
tion of degree 1 variables
an be written as _
(0; t) = 
0  1 + v0(z)v0(1)! 
0(z)
0(1) � 
(1� z)v0(z) : (2.200)A part from the always present _
(0; 
) = 0 solution, more non trivial solutions z� of the equation1� z� = 
0 �1 + v0(z�)v0(1) �
0(1) (2.201)
an be found in 
ertain regions of values of 
. This equation turns out to be equivalent to theself-
onsistent 
ondition for the magnetization in the unfrustrated model, found via the repli
aor the 
avity 
al
ulation, through the mapping1� z =) p0 ; (2.202)where we re
all p0 to be the fra
tion of verti
es whose spins feel e�e
tive �eld equal to zero.Writing (2.201) in terms of the link probability distributions (1.6), we 
an res
ale the generatingfun
tions as 
link(x) = 
0(x)
0(1)vlink(x) = v0(x)v0(1)



82 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODELso that to obtain: 1� z� = 
link h1� vlink(z�)i : (2.203)Armed with the results of the previous se
tions, we'll 
all 
d the graph density at the parti
ularz�d the point where (2.201) is satis�ed together with its z-derivative�
link h1� vlink(z)i�z jz� + 1 = 0 (2.204)This 
orresponds to the �rst time a non trivial solution appear. Beyond that point, formthe leaf removal pro
ess point of view, we are pres
ribed to take as the valid z� the largestsolution of (2.201), as the point where the algorithm halts. to z� will 
orrespond a halting timet� = 
(1 � 
(z�)). In the parti
ular 
ase of Poissonian p-spin, the solutions of (2.201) 
an bere
ast in the parti
ular form�(t) = p h
(
 � t)p�1i 1p ; (2.205)
1(t) = �(t) 24e��(t) � 1 +  �(t)p
 ! 1p�135 ; (2.206)
0(t) = 1� 1Xk=1 
k(t) : (2.207)where �(t) =< k >t �
1(t) + �(t)e��(t) is the mean degree of all the verti
es of k � 2 at timet. As in the general 
ase, the leaf removal algorithm stops when there are no more verti
es ofdegree 1, so one 
an predi
t the resulting 
ore by �xing �(t) = ��, where �� is the largest zeroof the equation 
1(t�) = 0 or equivalentlye��� � 1 +  ��p
! 1p�1 = 0 : (2.208)As before, noti
e that on
e we de�ne z� = [��=(p
)℄1=(p�1), eq. (2.208) 
an be rewritten as1� z� = exp ��p
(z�)p�1� ; (2.209)eq. (2.203) (or its parti
ular 
ase (2.209)) 
oin
ides with (2.89) and (2.182), the equation for theba
kbone size in any 1RSB 
luster, the fra
tion of variables (z�)2 = (1� t) with a non trivialdistribution of 
avity u or h-�elds. In
identally, we observe here that eq. (2.203) is the sameequation appearing in parity 
he
k diluted error 
orre
ting 
odes theory as the 
onvergen
ethreshold for sum-produ
t or belief propagation (BP) algorithms in the 
orrupted messagere
onstru
tion pro
ess. This 
oin
iden
e is not surprising from a statisti
al physi
s point ofview: indeed, we will see in 
hapter 5 how the mapping between spin systems on diluted hyper-graphs and and su
h kind of 
odes interprets the low performan
e of BP-like algorithms interms of a dynami
al phase transition. At t�, z� gives us the size of the 
ore. In the l = 2 
asethe leaf removal algorithm is able to delete all the edges only for tree-like graphs. As soon asthere are loops in the graph, a 
ore 
ontaining these loops arises (see �g. 2.26). In a randomgraph the leaf removal transition 
oin
ides with the per
olation one at 
per
 = 1=2. The shapeof the fun
tion 
1(�) is shown in �g. 2.24 for Poissonian graphs and is similar in the general 
ase:For 
 � 
per
, there is only one zero in �� = z� = 0; While, for 
 > 
per
, �� > 0 ; z� > 0 and
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Figure 2.24: The fun
tion 
1(�)=� for l = 2.
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Figure 2.25: The fun
tion 
1(�)=� for l = 3. Inset: fun
tion ��(
) for l = 3.a 
ore arises, whose size grows as (
 � 
per
)2 near the 
riti
al point. For l > 2 the per
olationtransition, taking pla
e for example at 
per
 = 1l(l�1) for �xed rank, does not a�e
t at all theleaf removal algorithm whi
h is able to delete all the hyper-edges, even those forming loops(but not hyper-loops), far beyond 
per
 (see �g. 2.27). The shape of the fun
tion 
1(�) for l = 3and Poissonian graphs is shown in �g. 2.25. It is 
lear (see inset of �g.( 2.25)) that when ��(
)be
omes di�erent from zero it dire
tly jumps to a �nite value: ��(
d) = 1:25643 for l = 3. The
ore transition is therefore dis
ontinuous unless it is driven by simple 2-loops per
olation.2.7.3 The 
ore and the 
al
ulation of the 

 thresholdIn the 
ore, the number of verti
es N
 and the number of hyper-edges M
 
an be expressed asa fun
tion of the distributions v and 
, 
 and z� asM
 = N(
 � t�) = N
v(z�)N
 = N(1� 
(0; z�)) (2.210)
(0; z�) = 
 1� v0(z�)v0(1) !+ 
(1� z�)v0(z�)The �rst equation states that the number of hyper-edges left is the initial one minus thenumber of step the leaf removal algorithm has been run (during ea
h step only one hyper-edgeis deleted). The lower 
urves in �g. 2.28 show the normalized number of verti
es N
=N andnumber of intera
tions M
=N in the 
ore as a fun
tion of 
, for l = 3 and Poissonian degrees.It is natural now to study the residual problem on the 
ore, Â
 ~x
 = ~y
 mod[2℄, where Â
 is theM
�N
 sparse random matrix obtained from Â deleting all the rows 
orresponding to removedintera
tions and all empty 
olumns. In the rest of the subse
tion we will derive a general result



84 CHAPTER 2. THE GENERALIZED DILUTED P -SPIN MODEL
CORE

GRAPHS WITH LOOPS

NO CORE
TREE−LIKE GRAPHS

Figure 2.26: Core on l = 2 graphs.
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RANK 3 HYPER−GRAPHS

Figure 2.27: Core on hyper-graphs.that, when applied to the problem on the 
ore, gives a ne
essary and suÆ
ient 
ondition forthe existen
e of solutions to the 
ore linear system. Then we will show that, from a solution inthe 
ore, a solution for the original system 
an always be 
onstru
ted.Let us 
all NJ;N;M the number of GS for a given disorder realization J (i.e. a given hyper-graph and 
ouplings realization 
onsistent with distribution �(J)):NJ;N;M =X~� MYm=1 Æ(�im1 : : : �imp = Jm) : (2.211)
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Figure 2.28: From bottom to top (on the left): For l = 3, normalized number of hyper-edgesand verti
es in the 
ore, and fra
tion of frozen sites, i.e. magnetization (or ba
kbone) in a state.In [26℄ the authors show that, in the large N limit, if the hyper-graph does not 
ontain anyvertex of degree less than 2, NJ;N;M is a self averaging quantity, that is it does not 
u
tuate
hanging J. In order to show self-averageness they proved that, on hyper-graphs (p > 2) withminimum degree at least 2, the following equalities holdNJ;N;M = 2N�M ; limN!1 N 2J;N;M � � NJ;N;M �2� NJ;N;M �2 = 0 ; (2.212)where the over-line stands for the average over the disorder ensemble, that is over the ways of
hoosing M hyper-edges among �Np� and the ways of giving them a sign Jm = �1. The aboveequalities state that the probability distribution of NJ;N;M over the disorder ensemble is a deltafun
tion, and thus the quen
hed average equals the annealed onelogNJ;N;M = logNJ;N;M = log(2) (N �M) : (2.213)For the interested reader that survived the 
al
ulations of the previous se
tions, 
al
ulating themomenta of NJ;N;M following [26℄ should be simple. We only state the results in the generaldistributed hyper-graphs 
ase: The se
ond moment is given byN 2J;N;M = 2N�MX~� MYm=1 Æ(�im1 : : : �imp = 1)! 2N�Me�NPk 
k log(xk++xk�) ; (2.214)in the thermodynami
 limit, where x+; x� solve the following equationsx+ + x� = 1< l >Xl lvl "Xk k
khki xk�1+ + xk�1�xk+ + xk� #l�1 ; (2.215)x+ � x� = 1< l >Xl lvl "Xk k
khki xk�1+ � xk�1�xk+ + xk� #l�1 : (2.216)This is simply the output of the annealed 
al
ulation of the p-spin model, where the fun
tionalorder parameter are repla
ed by s
alars x�. The annealed 
al
ulations do not make use of
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as and are therefore rigorous. The value of x+ (resp. x�) is proportional to the fra
tionof variables taking values 1 (resp. -1) in the set of 
on�gurations whi
h maximize the lastsum in eq. (2.214). Then the typi
al magnetization of this model is given by m = x+�x�x++x� .Solutions to eqs.(2.215,2.216) 
an be 
lassi�ed depending on the value of magnetization m. Infull generality there are 3 solutions: a �rst symmetri
 one (x+ = x�) with m = 0, a se
ond onewith large magnetization and a third one with an intermediate value of m. For some 
hoi
esof P (k) (e.g. a Poissonian) solutions with m > 0 may exist only for MN large enough. Thesolution with intermediate magnetization always 
orresponds to a minimum of FN;M and 
anbe in general negle
ted. The symmetri
 solution x+ = x� = 2�1=l always exists and givesFN;M = log(2) (1� MN ). For l > 2 and P (0) = P (1) = 0, i.e. for hyper-graphs with minimumdegree 2, the solution with large magnetization also exist for any 
 value and has x+ = 1,x� = 0 and FN;M = 0. As expe
ted, the intermediate solution, when it exists, has negativeentropy and therefore is not the physi
al one. Then, for l > 2 and P (0) = P (1) = 0, we 
an
on
lude that Pk 
k log �xk+ + xk�� = 0, equalities in eq. (2.212) hold, and the number of GS isa self-averaging quantity. Sin
e the 
ore generated by the leaf removal algorithm has minimumdegree 2, we may apply the above result, and �nd that the SAT/UNSAT threshold is given bythe 
ondition N
(

) =M
(

) : (2.217)For the Poissonian 3-spin this last 
ondition gives pre
isely the ferromagneti
 and the 1RSBspin-glass threshold 

 = 0:917935.For more 
ompli
ated rank distributions, however, another (x� 6= 2�1=l) solution 
an appearand give a value for the entropy higher than zero. When it is the 
ase, this solution is always theone 
orresponding to the 
ontinuous phase transition of the rank 2 sub-graph. The 
onditionfor the existen
e of a tri
riti
al 
rossover point is given by the simultaneous satisfa
tion of(2.203), (2.204), (2.217) and v2 = 1=2
, that redu
e to:
tri
riti
al = < k >22v2 < k(k � 1) > = 3 < k(k � 1) >2< k >< k(k � 1)(k � 2) > : (2.218)In the Poissonian degrees 
ase this redu
es to v2 = 3v3 = 1=2
tri
riti
al. The presen
e of this
ontinuous transition was related in previous work - in models as the 2+p-SAT - to a 
rossoverbetween problems with typi
al40 P to typi
al NP 
omplexity [11℄. A simpler model that 
an bestudied in full detail and shows this kind of 
rossover behavior is the �+ p-XOR-SAT. Resultsare reported in the next 
hapter. It will be interesting to see (
hapter 5) that a large fauna ofmodels exists, due to the freedom in degree and rank distributions 
hoi
es in the generalized p-spin model (and in prin
iple for a wider 
lass of Hamiltonians treatable with similar means). Insome 
ases it is easy to see that no 
rossover tri
riti
al point exists, but a general 
ore developsat 
d, followed by 2-loops per
olation in the subgraphs before 
ondition (2.217) is ful�lled onthe embedding hyper-graph.2.7.4 Ground States ClusteringBefore the SAT/UNSAT threshold (
 � 

) the system is not frustrated and then a gaugetransformation setting all 
oupling signs to 1 
an always be found: Given an unfrustrated GS40Noti
e that the notion of typi
al 
omputational 
omplexity is however not well de�ned and some very re
entresults [30, 58℄ seem to show no 
on
ept of NP 
omplexity in the typi
al 
ase, even though the role and natureof the phase transitions en
ountered are still 
ru
ial in the heuristi
 understanding of the hardness onset andon the 
lever algorithm design.



2.7. AN EXACT ALTERNATIVE SOLUTION OF THE P -SPIN MODEL AT T = 0 87~�0 a possible gauge transformation is �0i = �i�0i and J 0m = Jm�0im1 : : : �0imp = 1. It is then possibleto 
onsider only the ferromagneti
 system (Jm = 1 8m), whi
h 
orresponds to the linear systemÂ ~x = ~0 mod[2℄. This is also what it will be done in a more 
omplete study of the 
omputational
ost and memory transition of sparse systems solving algorithms in 
hapter 5. The solutionsto the linear system we are studying form a group: The sum of 2 solutions is still a solutionand the null element is the solution ~x = ~0. Therefore, if one looks at the 
on�gurational spa
esitting on a referen
e GS, the set of GS will look the same, whatever the referen
e GS is. Animmediate 
onsequen
e of this symmetry is that, if GS form 
lusters, these 
lusters must be allof the same size.For 
 � 

, hyper-loops are absent and the total number of GS (or solutions) is alwaysgiven by 2N�M , i.e. their entropy is S(
) = log(2) (1� 
). From the previous 
al
ulations it ispossible to divide the N variables in 2 sets: ~x
 represents the N
 variables in the 
ore, and ~xn
the N � N
 variables in the non-
ore part of the hyper-graph, that is variables 
orrespondingto verti
es remained isolated at the end of the leaf removal pro
ess. Thus also the entropy 
anbe divided in 2 parts. One part is given by the solutions in the 
ore, that is by the possibleassignments of ~x
, S
(
) = log(2)N
(
)�M
(
)N ; (2.219)whi
h is non-negative for 
d � 
 � 

. The other part is given by the possible multipleassignments of ~xn
 during the re
onstru
tion pro
essSn
(
) = S(
)� S
(
) : (2.220)�g. (2.29) is a pi
torial representation of the N -dimensional hyper
ube (represented as a spher-i
al surfa
e for 
onvenien
e) of variables assignments binary ve
tors ~x = (x1; ::::; x2). The
onje
ture, supported by numeri
s, is that solutions are 
on
entrated in 
lusters, ea
h one ofthem around a referen
e one whi
h is one of the solutions of the 
ore-redu
ed system. By def-
Nc−Mc

phase space hyper−cube

N−N Ncc

non core variables give the 
intra cluster entropy
Snc = S − Sc = S − Σ

N−N

Ncore solution     −vector
= core solution

# clusters = eN Σ = # =  2

Figure 2.29: Pi
torial representation of 
lustering of solutions in the dynami
al region [
d; 

℄.inition, a 
luster is a set of solutions with �nite Hamming distan
e d su
h that d=N ! 0 asN ! 1. In virtue of the group symmetry property property, all the 
lusters have the samesize. We 
all their number is eN�(
), where �(
) is indeed the 
omplexity Of the system. If the
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onje
ture represented in �g. (2.29) is true, the number of 
lusters must equal the number ofsolutions in the 
ore, that is �(
) = S
(
) : (2.221)The intra-
luster entropy, i.e. the normalized logarithm of the 
luster size, is then given bythe non-
ore entropy Sn
(
) = S(
) � S
(
) = S(
) � �(
). In order to prove the validity of(2.221) the authors of [26℄ were able to show that:� all the solution assignments of the 
ore variables ~x
 are \well separated", that is thedistan
e among any pair of them is extensive. This is what gives rise to the 
lustering,with a number of 
lusters whi
h is at least as large as the number of 
ore solutions(� � S
).� then, for any �xed ~x
, all possible assignments of non-
ore variables ~xn
 belong to thesame 
luster, and so � = S
.The �rst step is a

omplished by 
al
ulating the probability distribution of the distan
e amongany two solutions in the 
ore. Thanks to the group property, one 
an restri
t the 
al
ulation�xing one solution to the null ve
tor ~0, working again with the ferromagneti
 model. Forsimpli
ity the authors have performed an annealed average, but this does not invalidate theexa
tness of the results be
ause in 
an be proved via the Jensen inequality that the annealedaverage gives a lower bound on the 
ore solutions distan
es, whi
h is enough for the validityof the proof. These last two steps of the 
al
ulations are identi
al in the general and in thePoissonian 3-spin 
ase, so we refer ba
k to the original paper [26℄ where they are explained indetails. As far as the 
omplexity remains positive, the 
ore system has an exponential number ofsolutions and it is therefore solvable (SAT). It is then always possible to assign values to the non
ore variables so that the original system is also always solvable. Sin
e the 
omplexity goes tozero at 

, beyond that threshold the 
ore linear system only have exponentially rare solutions inN . We are therefore in the USAT region. Changing the values of the non 
ore variables does notallow to �nd a 
ore solution di�erent form the starting one (absent in this 
ase), so we 
annotsolve the original system if we 
annot start from a 
ore solution as a starting point: the largersystem is not solvable if a 
ore subsystem of it leads to 
ontradi
tion. Having proved identity(2.221), eq. (2.217) therefore provides the exa
t threshold for random XOR-SAT satis�ability.We stress on
e more that these results 
oin
ide with the general 1RSB/
avity solution and withthe heuristi
 derivation of the 
omplexity 
urve via the study of the metastable states of theferromagneti
 model via the fa
torized Ansatz.



Chapter 3Some parti
ular 
ases of interest
3.1 The 2+p-XOR-SAT model: role of phase 
oexis-ten
e and �nite-size s
alingThe statisti
al me
hani
s study of random K-SAT have provided some geometri
al understand-ing of the onset of 
omplexity at the phase transition through the introdu
tion of a fun
tionalorder parameter whi
h des
ribes the geometri
al stru
ture of the spa
e of solutions. The na-ture of the SAT/UNSAT transition for the di�erent values of K appears to be a parti
ularlyrelevant predi
tion [31℄. The SAT/UNSAT transition is a

ompanied by a smooth (respe
tivelyabrupt) 
hange in the stru
ture of the solutions of the 2-SAT (resp. 3-SAT) problem. Morespe
i�
ally, at the phase boundary a �nite fra
tion of the variables be
ome fully 
onstrainedwhile the entropy density remains �nite. Su
h a fra
tion of frozen variables (i.e. those variableswhi
h take the same value in all solutions) may undergo a 
ontinuous (2-SAT) or dis
ontinu-ous (3-SAT) growth at the 
riti
al point. This dis
repan
y is responsible for the di�eren
e oftypi
al 
omplexities of both models re
ently observed in numeri
al studies. The typi
al solv-ing time of sear
h algorithms displays an easy-hard pattern as a fun
tion of 
 with a peak of
omplexity 
lose to the threshold. The peak in sear
h 
ost seems to s
ale polynomially withN for the 2-SAT problem and exponentially with N in the 3-SAT 
ase. From an intuitivepoint of view, the sear
h for solutions ought to be more time-
onsuming in presen
e of a �-nite fra
tion of fully quen
hed variables sin
e the exa
t determination of the latter requires analmost exhaustive enumeration of their 
on�gurations. To test this 
onje
ture, a mixed 2 + p-model has been proposed, in
luding a fra
tion p (resp. 1 � p) of 
lauses of length two (resp.three) and thus interpolating between the 2-SAT (p = 0) and 3-SAT (p = 1) problems. Thestatisti
al me
hani
s analysis predi
ts that the SAT/UNSAT transition be
omes abrupt whenp > p0 ' 0:4 [31, 13, 11, 14℄. Pre
ise numeri
al simulations support the 
onje
ture that thepolynomial/exponential 
rossover o

urs at the same 
riti
al p0. Though the problem is both
riti
al (

 = 1=(1� p) for p < p0) and NP-
omplete for any p > 0, it is only when the phasetransition be
omes of the same type of the 3-SAT 
ase that hardness shows up. An additionalargument in favor of this 
on
lusion is given by the analysis of the �nite-size e�e
ts on PN(
;K)and the emergen
e of some universality for p < p0. A detailed a

ount of these �ndings maybe found in [31, 13, 11, 14, 9℄. For p < p0 the exponent �, whi
h des
ribes the shrinking of the
riti
al window where the transition takes pla
e, is observed to remain 
onstant and 
lose tothe value expe
ted for 2-SAT. The 
riti
al behavior is the same of the per
olation transition inrandom graphs (see also ref. [53℄). For p > p0 the size of the window shrinks following some89



90 CHAPTER 3. SOME PARTICULAR CASES OF INTERESTp-dependent exponents toward its statisti
al lower bound [119℄ but numeri
al data did not allowfor any pre
ise estimate. In this se
tion, we study an exa
tly solvable version of the random2+p SAT model whi
h displays new features and allows us to settle the issue of universality ofthe 
riti
al exponents. The threshold of the model 
an be 
omputed exa
tly as a fun
tion ofthe mixing parameter p in the whole range p 2 [0; 1℄. Rare events are found to be dominantalso in the low 
 phase, where a 
oexisten
e of satis�able and unsatis�able instan
es is found.A detailed analysis for the p = 1 
ase 
an be found in ref. [19℄. The existen
e of a global{ polynomial time { algorithm for determining satis�ability allows us to perform a �nite sizes
aling analysis around the exa
tly known 
riti
al points over huge samples and to show thatindeed the exponent 
ontrolling the size of the 
riti
al window 
eases to maintain its 
onstantvalue � = 3 and be
omes dependent on p as soon as the phase transition be
omes dis
ontin-uous, i.e. for p > p0 = :25. Above p0 and below p1 � 0:5, the exponent � takes intermediatevalues between 3 and 2. Finally, above p1 the 
riti
al window is determined by the statisti
al
u
tuations of the quen
hed disorder [119℄ and so � = 2.3.1.1 Model de�nition and outline of some resultsThe model we study 
an be viewed as the mixed 2+ p extension of the 3-XOR-SAT (or hSAT)model dis
ussed in [19℄, as mu
h as the 2 + p-SAT [31℄ is an extension of the usual K-SATmodel. In 
omputer s
ien
e literature and its 
riti
al behavior was still re
ently 
onsidered anopen issue [82℄. We 
an write an instan
e of our model as a mixture of 2 and 4-
lauses setsde�ned in 
hapter 1 (with 50% satisfying assignments). A 
ompa
t de�nition 
an be a
hievedby the use of the ex
lusive OR operator �, e.g. C(ijkj+1) = xi� xj � xk. Then, we randomly
hoose two independent sets E3 and E2 of pM triples fi; j; kg and (1 � p)M 
ouples fi; jgamong the N possible variable indi
es (see se
tion 2.1 for de�nitions) and respe
tively pM and(1� p)M asso
iated unbiased and independent random variables Tijk = �1 and Jij = �1, andwe 
onstru
t a Boolean expression in Conjun
tive Normal Form (CNF) asF = ^fi;j;kg2E3C(ijkjTijk) ^fi;jg2E2C(ijjJij) : (3.1)As in [19℄, we 
an build a satis�able version of the model 
hoosing 
lauses only of the C(ijj+1)and C(ijkj + 1) type. For p < p0 the problem is easily solved by lo
al and global algorithms,whereas interesting behaviors are found for p > p0, where the lo
al algorithms fail. Theabove 
ombinatorial de�nition 
an be re
ast in a simpler form as a minimization problem of a
ost-energy fun
tion on a topologi
al stru
ture whi
h is a mixture of a random graph (2-spinedges) and hyper-graph (3-spin hyper-edges). We end up with a diluted spin model where theHamiltonian reads HJ [S℄ =M � Xfi;j;kg2E3 Tijk SiSjSk � Xfi;jg2E2 Jij SiSj ; (3.2)where the Si are binary spin variables and the the random 
ouplings 
an be either �1 atrandom. The satis�able version is nothing but the ferromagneti
 model: Tijk = 1 and Jij = 1for any edge. As the average 
onne
tivity 
 of the underlying mixed graph grows beyond a
riti
al value 

(p), the frustrated model undergoes a phase transition from a mixed phase inwhi
h satis�able instan
es and unsatis�able ones 
oexist to a phase in whi
h all instan
es areunsatis�able. At the same 

(p) the asso
iated spin glass system, undergoes a zero temperatureglass transition where frustration be
omes e�e
tive and the ground state energy is no longer
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tions satis�ed). At the same 
riti
al point theunfrustrated, i.e. ferromagneti
, version undergoes a para{ferro transition, be
ause the sametopologi
al 
onstraints that drive the glass (mixed SAT/UNSAT to UNSAT) transition inthe frustrated model are shown to be the ones responsible for the appearan
e of a nonzerovalue of the magnetization in the unfrustrated one [19℄. We shall take advantage of su
h
oin
iden
e of 
riti
al lines by making the analyti
al 
al
ulation for the simpler ferromagneti
model. Moreover, the nature of the phase transition 
hanges from se
ond to random �rst order,when p 
rosses the 
riti
al value p0 = 1=4. For p > p0 the 
riti
al point 

(p) is pre
eded by adynami
al glass transition at 
d(p) where ergodi
ity breaks down and lo
al algorithms get stu
k(lo
al algorithms are pro
edures whi
h update the system 
on�guration only by 
hanging a �nitenumber of variable at the same time, e.g. all single or multi spin 
ip dynami
s, together withusual 
omputer s
ientists heuristi
 algorithms). The dynami
al glass transition exist for bothversions of the model [20℄ and 
orresponds to the formation of a lo
ally stable ferromagneti
solution in the unfrustrated model [22℄ (the lo
al stability is intimately related to the ergodi
itybreaking). Spe
ializing to the present 
ase the general results of the �rst 
hapter, we 
an lookfor a self 
onsistent Ansatz for the zero temperature e�e
tive �elds distribution P (h) in thesatis�able 
ase., whi
h turns out to have the following simple formP (h) =Xl�0 rlÆ(h� l) ; (3.3)with a self-
onsisten
y equation for r0:r0 = e�3p
(1�r0)2�2(1�p)
(1�r0) = 1X
1=0 1X
2=0 e�3p
e�2(1�p)
 (3p
)
1
1! (2(1� p)
)
2
2! (1�(1�r0)2)
1(r0)
2 :(3.4)The equations for the frequen
y weights rl with l > 0 follow from the one for r0 and readrl = [3p
(1� r0)2 + 2(1� p)
(1� r0)℄ll! : (3.5)The previous self 
onsisten
y equations for r0 (or for the magnetization m = 1� r0) 
an easilybe derived by the same probabilisti
 argument used in [19℄, due to the fa
t that the 
lauseindependen
e allows to treat the graph and the hyper-graph part separately. Note that in thesimple limit p = 0 we retrieve the equation for the per
olation threshold in a random graph of
onne
tivity 
 [61, 62, 67℄. The ground state entropy 
an be written in the SAT phase as:S(
) = log(2)[r0(1� log(r0))� 
(1� p)(1� (1� r0)2)� 
p(1� (1� r0)3)℄ (3.6)To �nd the value of the paramagneti
 entropy we put ourself in the phase where all sets of 4-and 2-
lauses a
t independently, ea
h therefore dividing the number of allowed variables 
hoi
eby two: the number of ground states will be Ngs = 2N�p
N�(1�p)
N = 2N(1�
). The resultingvalue of Spara = (1� 
) log(2) 
oin
ides with the one found setting r0 = 1 in eq.(3.6). Solvingthe saddle point equation for r0, we �nd that a paramagneti
 solution with r0 = 1 always exists,while at a value of 
 = 
d(p) there appears a ferromagneti
 solution in the satis�able model.For p = 0, the 
riti
al value 
oin
ides as expe
ted with the per
olation threshold 
d(0) = 1=2.As long as the model remains like 2-SAT, up to p < p0 = 0:25, the threshold is the pointwhere the ferromagneti
 solution appears and also where its entropy ex
eeds the paramagneti
one. The 
riti
al magnetization is zero and the transition is 
ontinuous. For larger values
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Figure 3.1: Criti
al lines (the upper is the stati
 and lower the dynami
) in the (
; p) plane.Tri
riti
al point point (0:25; 0:667) separates 
ontinuous transitions from dis
ontinuous ones(where 
d < 

).Figure 3.2: Criti
al magnetizations at 
d(p) and 

(p) versus p.of the 
ontrol parameter p the transition be
omes dis
ontinuous. There appears a dynami
altransition at 
 = 
d(p) where lo
ally stable solutions appear. At 
 = 

(p) > 
d(p), the nontrivial r0 6= 1 solution a
quires an entropy larger than the paramagneti
 one and be
omesglobally stable. The shape of 
 = 
d(p) and 
 = 

(p) as fun
tions of p are shown in �g. 3.1.The inset pi
ture shows the magnetization of the model at the points where the dynami
al andthe stati
 transitions take pla
e.3.1.2 Numeri
al simulationsThe model 
an be eÆ
iently solved by a polynomial algorithm based on a representation modulotwo (i.e. in Galois �eld GF[2℄). The same te
hniques will be exploited in 
hapter four, where wewill stress the physi
al impli
ation of su
h a mapping for the memory and CPU 
ost transitionsmet by algorithms trying to solve linear systems modulo two built in order to 
orrespond tothe spin model in the dynami
al region. If a formula 
an be satis�ed, then a solution to thefollowing set of M equations in N variables exists( SiSjSk = Tijk 8fi; j; kg 2 E3SiSj = Jij 8fi; jg 2 E2 (3.7)Through the mapping Si = (�1)�i, Jij = (�1)�ij and Tijk = (�1)�ijk , with �i; �ijk; �ijk 2 f0; 1g,eq.(3.7) 
an be rewritten as a set of binary linear equations( (�i + �j + �k) mod 2 = �ijk 8fi; j; kg 2 E3(�i + �j) mod 2 = �ij 8fi; jg 2 E2 (3.8)For any given set of 
ouplings f�ij; �ijkg, the solutions to these equations 
an be easily foundin polynomial time by e.g. Gaussian substitution. The solution to the M linear equations in Nvariables 
an be summarized as follows: a number Ndep of variables is 
ompletely determinedby the values of the 
oupling f�ij; �ijkg and by the values of the Nfree = N �Ndep independentvariables. The number of solutions is 2Nfree and the entropy S(
) = log(2)Nfree=N = log(2)(1�Ndep(
)=N). As long as Ndep = M we have the paramagneti
 entropy Spara = log(2)(1 � 
).However Ndep may be less than M when the intera
tions are su
h that one 
an generate linear
ombinations of equations where no �'s appear, like 0 = f(f�ij; �ijkg). This kind of equations
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Figure 3.3: SAT probabilities PSAT (
; p) for p = 0 and p = 0:5. Data has been averaged over104 di�erent random hyper-graphs. Verti
al straight lines are analyti
al predi
tions for 
riti
alpoints: 

(p = 0) = 0:5 and 

(p = 0:5) = 0:810343. Bold 
urves for 
 < 

 are analyti
alpredi
tions for the SAT probability in the large N limit.
orrespond to the presen
e of loops (resp. hyper-loops [19℄) in the underlying graph (resp.hyper-graph). A hyper-loops (generalization of a loop on a hyper-graph) is de�ned as a set Sof hyper-edges su
h that every spin (i.e. node) is \tou
hed" by an even number of hyper-edgesbelonging to S (see �g. 3.4). Here we are interested in the fra
tion of satis�able instan
esPSAT (
; p), averaged over the random 
ouplings distribution. One 
an show that, for anyrandom hyper-graph, PSAT is given by 2�Nhl , where Nhl is the number of independent hyper-loops [19℄. In �g. 3.3 we show the fra
tion of satis�able instan
es as a fun
tion of 
 forp = 0 and p = 0:5. The verti
al lines report the analyti
al predi
tions for the 
riti
al points,

(p = 0) = 0:5 and 
(p = 0:5) = 0:810343. In the limit of large N and for p = 0:5 thefra
tion of SAT instan
es sharply vanishes at the 
riti
al point in a dis
ontinuous way, that islim
!
�
 PSAT (
) > 0 while lim
!
+
 PSAT (
) = 0. This is the usual behavior already measuredin 3-SAT [31, 13℄ and 3-hyper-SAT [19℄, with the SAT probabilities measured on �nite systems
rossing at 

 and be
oming sharper and sharper as N in
reases. On the 
ontrary for p = 0and large N the probability of being SAT be
omes zero at 

 in a 
ontinuous way. The main
onsequen
e is that �nite size 
orre
tions make PSAT (
) larger than its thermodynami
al limitboth before and after the 
riti
al point and thus the data 
rossing is 
ompletely missing. Notealso that for p < 1 the fra
tion of SAT instan
es for 
 < 

(p) is �nite and less than 1 evenin the thermodynami
al limit, implying a mixed phase of SAT and UNSAT instan
es. This isdue to the presen
e in the random hyper-graph of loops made only by 2-spin edges (indeed themixed phase is absent for p = 1 when only 3-spin intera
tions are allowed [19℄). The expressionfor the SAT probability in the thermodynami
al limit (bold 
urves in �g. 3.3, the lower mostfor p = 0 and the uppermost for p = 0:5) 
an be 
al
ulated analyti
ally and the �nal result hasbeen obtained in [21℄ and readsPSAT (
; p) = e 12 
(1�p)[1+
(1�p)℄ [1� 2
(1� p)℄1=4 for 
 � 

(p) : (3.9)We have numeri
ally 
al
ulated the SAT probabilities for many p and N values, �nding atransition from a mixed to a 
ompletely UNSAT phase at the 

(p) analyti
ally 
al
ulated in
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Figure 3.4: Typi
al loop and hyper-loop. Lines are 2-spin edges, while triangles are 3-spinedges. Note that every vertex has an even degree.

0.01

0.1

1

10 100 1000 10000

w
(N

,p
)

N

p = 0.0  
p = 0.2  
p = 0.3  
p = 0.4  
p = 0.5  
p = 0.75
p = 1.0  1

1.5

2

2.5

3

0 0.25 0.5 0.75 1

ν(
p)

pFigure 3.5: S
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al window width. Errors are smaller than symbols. Lines are�ts to the data.Figure 3.6: Criti
al � exponents obtained from the �ts shown in �g. 3.5. For p = 0:75 andp = 1 �lled squares show the sub-leading term power exponent, the leading term one being�xed to �1=2 (�lled 
ir
les).the previous se
tion. We also �nd, in agreement with analyti
al results, that the transitionis 
ontinuous as long as p � 1=4 and then it be
omes dis
ontinuous in the SAT probability.Let us now 
on
entrate on the s
aling with N of the 
riti
al region. We have 
onsideredseveral alternative de�nitions for the 
riti
al region. The one we present here seems to be thesimplest and also the most robust, in the sense it 
an be safely used when the transition is both
ontinuous (p � 0:25) and dis
ontinuous (p > 0:25). We assume that the size of the 
riti
alregion is inversely proportional to the derivative of the SAT probability at the 
riti
al pointw(N; p)�1 = �PSAT (
; p)�
 �����
=

 : (3.10)For any value of p the width w(N) goes to zero for large N and the s
aling exponent �(p) isde�ned through w(N; p) / N�1=�(p) : (3.11)In �g. 3.5 we show, in a log-log s
ale, w(N; p) as a fun
tion of N for many p values, togetherwith the �ts to the data. The uppermost and lower-most lines have slopes �1=3 and �1=2respe
tively. Data for p � 0:5 
an be perfe
tly �tted by simple power laws (straight lines in�g. 3.5) and the resulting �(p) exponents have been reported in �g. 3.6. We note that as longas p � 0:25 the � exponent turns out to be highly 
ompatible with 3, whi
h is known to be the
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on
lude that for p < 1=4 the exponents are those of the p = 0�xed point. For 0:25 < p � 0:5 we �nd that the � exponent takes non-trivial values between2 and 3. Then one of the following two 
on
lusions may hold. Either the transition for p > p0is driven by the p = 1 �xed point and the � exponent is not universal, or more probably anydi�erent p value de�nes a new universality 
lass. This result is very surprising and interestingfor the possibility that di�erent universality 
lasses are simply the 
onsequen
e of the randomhyper-graph topology. More 
ompli
ated is the �tting pro
edure for p > 0:5. In a re
entpaper [119℄ Wilson has shown that in SAT problems there are intrinsi
 statisti
al 
u
tuationsdue to the way one 
onstru
t the formula. This white noise indu
es 
u
tuations of order N�1=2in the SAT probability. If 
riti
al 
u
tuations de
ay faster than statisti
al ones (i.e. � < 2),in the limit of large N the latter will dominate and the resulting exponent saturates to � = 2.Data for p = 0:75 and p = 1 shown in �g. 3.5 have a 
lear upwards bending, whi
h we interpretas a 
rossover from 
riti
al (with � < 2) to statisti
al (� = 2) 
u
tuations. Then we have �ttedthese two data sets with a sum of two power laws, w(N) = AN�1=� +BN�1=2. The goodness ofthe �ts (shown with lines in �g. 3.5) 
on�rm the dominan
e of statisti
al 
u
tuations for largeN . Moreover we have been able to extra
t also a very rough estimate of the 
riti
al exponent� from the subleading term. In �g. 3.6 we show with �lled squares these values, whi
h turn outto be more or less in agreement with a simple extrapolation from p � 0:5 results.3.1.3 Con
lusionsThe exa
t analysis of a solvable model for the generation of random 
ombinatorial problems hasallowed us to show that 
ombinatorial phase diagrams 
an be a�e
ted by rare events leading toa mixed SAT/UNSAT phase. The energy di�eren
e between su
h SAT and UNSAT instan
es isnon extensive and therefore non dete
table by the usual � !1 statisti
al me
hani
s studies.However, a simple probabilisti
 argument is suÆ
ient to re
over the 
orre
t proportion ofinstan
es. Moreover, through the exa
t lo
ation of phase boundaries together with the use ofa polynomial global algorithm for determining the existen
e of solutions we have been able togive a pre
ise 
hara
terization of the 
riti
al exponents � depending on the mixing parameterp. The p-dependent behavior 
onje
tured in ref. [31℄ for the random 2+p SAT 
ase �nds here aquantitative 
on�rmation. The mixing parameter dependen
y also shows that the value of thes
aling exponents is not 
ompletely determined by the nature of the phase transition and thatthe universality 
lass the transtion belongs to is very probably determined by the topology ofthe random hyper-graph. The model we study has also a physi
al interpretation as a dilutedspin glass system. It would be interesting to know whether the parameter-dependent behaviorof 
riti
al exponent plays any role in some physi
ally a

essible systems. A generalization ofthe present model to a mixture of di�erent rank hyper-graphs will be presented in 
hapter fourin a 
omputer s
ien
e 
ontext . In the general 
ase we will see that, depending on the fra
tionsof hyper-graphs involved, phase diagrams still more 
omplex with, for example, a 
ontinuosphase transition pre
eded by a dynami
al one.
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 ordering on random graphsThe results of this se
tion are the output of a joint work with Alexei Vazquez, Ri

ardo Ze

hinaand Alessandro Vespignani [98℄.3.2.1 Introdu
tionThe in
reasing eviden
e that many physi
al, biologi
al and so
ial networks exhibit a high degreeof wiring entanglement has led to the investigation of graph models with 
omplex topologi
alproperties[99℄. In parti
ular, the possibility that some spe
ial nodes of the 
luster (hubs) possesa larger probability to develop 
onne
tions pointing to other nodes has been re
ently identi�ed ins
ale-free networks [100, 101℄. These networks exhibit a power law degree distribution pk � k�
 ,where the exponent 
 is usually larger than 2. This kind of degree distribution implies thatea
h node has a statisti
ally signi�
ant probability of having a large number of 
onne
tions
ompared to the average degree of the network. Examples of su
h properties 
an be foundin 
ommuni
ation and so
ial webs, along with many biologi
al networks, and have led to thedeveloping of several dynami
al models aimed to the des
ription and 
hara
terization of s
ale-free networks[100, 101, 102℄.Power law degree distributions are the signature of degree 
u
tuations that may alter thephase diagram of physi
al pro
esses as in the 
ase of random per
olation [105, 106℄ and spreadingpro
esses [107℄ that do not exhibit a phase transition if the degree exponent is 
 � 3. In thisperspe
tive, it is interesting to study the ordering dynami
s of the Ising model in s
ale-freenetworks. The Ising model is, indeed, the prototypi
al model for the study of phase transitionsand 
omplex phenomena and it is often the starting point for the developing of models aimed atthe 
hara
terization of ordering phenomena. For this reason, the Ising model and its variationsare used to mimi
 a wide range of phenomena not pertaining to physi
s, su
h as the forming andspreading of opinions in so
ieties and 
ompanies or the evolution and 
ompetition of spe
ies.Sin
e so
ial and biologi
al networks are often 
hara
terized by s
ale-free properties, the studyof the ferromagneti
 phase transition in graphs with arbitrary degree distribution 
an �nduseful appli
ation in the study of several 
omplex intera
ting systems and it has been re
entlypursued in Ref. [108℄. The numeri
al simulations reported in Ref [108℄ show that in the 
ase of adegree distribution with 
 = 3 the Ising model has a 
riti
al temperature T
, 
hara
terizing thetransition to an ordered phase, whi
h s
ales logarithmi
ally with the network size. Therefore,there is no ferromagneti
 transition in the thermodynami
 limit.In this se
tion we present a detailed analyti
al study of the Ising model in graphs witharbitrary degree distribution that heavily relies on the general results of the �rst 
hapter. Byrelaxing the degree homogeneity in the usual mean �eld (MF) approa
h to the Ising model, it ispossible to show that the existen
e of a disordered phase is related to the ratio of the �rst twomoments of the degree distribution. Motivated by this �nding, we apply the repli
a 
al
ulationmethod in order to �nd an exa
t 
hara
terization of the transition to the ordered state andits asso
iated 
riti
al behavior. We �nd that a disordered phase is allowed only if the se
ondmoment of the degree distribution is �nite. In the opposite 
ase, the strong degree of the hubspresent in the network prevails on the thermal 
u
tuations, imposing a long-range magneti
order for any �nite value of the temperature. Corre
tions to this pi
ture are found when theminimal allowed degree is m = 1. The value of the 
riti
al temperature and exponents is foundfor any degree exponent 
 > 3 and a transition to the usual in�nite dimensional MF behavior isre
overed at 
 = 5. Moreover, in the range 3 < 
 � 5 non trivial s
aling exponents are obtained.
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ompletion of the present work we be
ome aware that Dorogovtsev, Goltsev andMendes [109℄ have obtained with a di�erent approa
h results whi
h partially overlap with thosereported in this se
tion.Let us 
onsider a network with arbitrary degree distribution 
k. Then 
onsider the Isingmodel with a ferromagneti
 
oupling 
onstant on top of this network. The Hamiltonian of thissystem is given by H =M � NXi>j=1Jijsisj +H0Xi �isi; (3.12)whereM = hkiN=2, Jij = 1(0) if there is (there is not) a edge 
onne
ting node i and j, si = �1are the spin variables, and N is the network size. H0�i is a general external random �eld with�i following the a priori general probability distribution �(�i). As one 
an easily see, this isa parti
ularly simple 
ase of the models introdu
ed in the �rst 
hapter. A simple mean �eldapproa
h is already able to predi
t the 
onditions for the existen
e of a transition temperatureas a fun
tion of the 
hara
teristi
 moments of the degree distribution and to give a rather goodestimate of its numeri
al value as: T
 = ��1
 = hk2ihki : (3.13)Hen
e, when hk2i = hki is �nite there is a �nite 
riti
al temperature as an eviden
e of thetransition from the para-magneti
 to a ferro-magneti
 state. However, if hk2i is not �nitethe system is always in the ferromagneti
 state. Nevertheless, the following result is onlyapproximate, it does not take into a

ount the full probability distribution of the e�e
tive�elds in the system but it relies only on the value of the mean magnetization, whi
h we willsee not to be enough to properly des
ribe the 
riti
al behavior of the model.3.2.2 The repli
a approa
h on general random graphsIn the present se
tion we will re�ne the mean �eld pi
ture via a the repli
a 
al
ulation Wewill show how this method allows to 
al
ulate values of and 
onditions for the existen
e of a
riti
al temperature of the model that we believe to be exa
t. Moreover, these results 
ontainthe 
lassi
al mean �eld theory predi
tion in the limits where the latter is appli
able. Beingthe system a diluted ferromagnet with only a limited number of ground states and absen
e offrustration we believe the repli
a symmetri
 Ansatz to be suÆ
ient to �nd the 
orre
t solutionof the problem. The details of the 
al
ulation of the repli
a free energy 
an be followed fromthe formulas of the �rst 
hapter keeping 
k general and V (l̂) = Æ(l̂� 2). We only rewrite belowthe saddle point equations and the 
orresponding free energy expression for this parti
ular 
ase,in order to make the se
tion more readable:P (h) = 1< k >Xk kpk Z k�1Yt=1 dutQ(ut)Æ  h�Xt ut �H0! (3.14)Q(u) = Z dhP (h)Æ "u� 1� tanh�1(tanh(�) tanh(�h))# (3.15)where P (h) is the average probability distribution of e�e
tive (or 
avity) �elds a
ting on thesites and Q(u) is that of the 
avity �elds due to the 
ontribution of a single neighbor. We wouldlike to stress the importan
e of the fa
t that the strong inhomogeneities present in the graph
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Figure 3.7: pi
torial representation of the e�e
tive �elds a
ting on site S1 on
e its 
onne
tionJ12 with S2 (and therefore with the left part of the graph with probability 1 in the N ! 1limit) has been removed.are 
orre
tly taken into a

ount and handled via the 
omputation of the whole probabilitydistributions. In the Ising 
ase we 
an easily work only with the u-�elds, whose self 
onsistentequation for the Q(u) reads:Q(u) = 1< k >Xk kpk Z k�1Yt=1 dutQ(ut)Æ "u� 1� tanh�1 "tanh(�) tanh � k�1Xt ut + �H0!##(3.16)This is an integral equation that 
an be solved at every value of � using a population dynami
salgorithm su
h as the RS simple version of that proposed in [23℄. We 
hose to work in termsof the u-�elds be
ause they are 
onne
ted to the lo
al magnetization, whose mean value is themain quantity we are interested in studying around 
riti
ality. The equation for the physi
almagnetization probability distribution will indeed be:�(s) =Xk pk Z kYt=1 dutQ(ut)Æ "s� tanh �Xt ut + �H0!# (3.17)The equations for < u > and < s > follow:< u >= Z uQ(u)du = 1< k >Xk kpk Z k�1Yt=1 dutQ(ut) 1� tanh�1 "tanh(�) tanh � k�1Xt ut + �H0!#(3.18)< s >= Z s�(s)ds =Xk pk Z kYt=1 dutQ(ut) tanh � kXt ut + �H0! (3.19)The free energy reads�F = < k > � Z Z dhduP (h)Q(u) log(1 + tanh(�h) tanh(�u))�



3.2. FERROMAGNETIC ORDERING ON RANDOM GRAPHS 9912 Z 2Yt=1 dhtP (ht) log(1 + tanh(�) 2Yt=1 tanh(�ht))��Xk pk Z kYt=1 dutQ(ut) log 2 
osh(�Pkt=1 ut + �H0)Qkt=1 2 
osh(�ut) !�< k > �log(2) + 12(� � log(
osh(�)))� (3.20)At the saddle point the expression further simpli�es. The internal energy and the spe
i�
 heatat the saddle point 
an be 
al
ulated from eq.(3.20) through relations < E >= � ��F�� andC = d < E > =dT and further exploiting (3.14) and (3.15):< E >= < k >2 � < k >2 Z dh1dh2P (h1)P (h2) tanh(�) + tanh(�h1) tanh(�h2)1 + tanh(�) tanh(�h1) tanh(�h2)! (3.21)C = �2 < k >2(
osh(�))2 Z dh1dh2P (h1)P (h2) 1 + (tanh(�h1) tanh(�h2))2(1 + tanh(�) tanh(�h1) tanh(�h2))2! (3.22)The term < k� > =2 gauges the value of the energy to zero at T = 0 and no external �eld.3.2.3 Ferromagneti
 phase transitionAt T = 0 and in the limit of non vanishing �elds (u and h � O(1)) it is straightforward to seethat the 
avity �elds 
an take only 0 or 1 values. The equation (3.16) 
an be solved exa
tlywith the Ansatz Q(u) = q0Æ(u)+(1� q0)Æ(u�1). Plugging this Ansatz into eqs. (3.16), (3.18),and (3.19) one obtains: hui = 1� q0; (3.23)hsi = 1�G0(q0); (3.24)q0 = G1 (q0) ; (3.25)where G0(x) =Xk k pk xk; G1(x) = 1< k >Xk k pk xk�1; (3.26)are the generating fun
tions of the degree distributions of a vertex 
hosen at random and avertex arrived following an edge 
hosen at random [69℄, respe
tively. We point out that theseequations 
orre
tly 
oin
ides with that obtained in the problem of per
olation in a randomgraph with an arbitrary degree distribution [112, 69℄, where the average magnetization hsi isjust the size of the giant 
omponent. Moreover, these expressions 
an be easily generalized tohigher order hyper-graphs as it has been done in [19, 21℄. From eq. (3.24) it follows that thereis a �nite magnetization whenever the solution q0 of eq. (3.25) is less than 1. This happenswhenever hk2ihki � 2; (3.27)that is just the 
ondition for per
olation in a random graph [112, 69℄. On the 
ontrary, forhk2i = hki < 2 the magnetization (the size of giant 
omponent) is 0, i.e. the system is in aparamagneti
 state.



100 CHAPTER 3. SOME PARTICULAR CASES OF INTERESTFor random graphs satisfying the per
olation 
ondition in eq. (3.27) we are now interestedin �nding the value of �
 for the ferromagneti
 transition. There are few equivalent ways to doso. In the general 
ase we 
an derive both sides of eq.(3.18) in u = 0 self 
onsistently, obtaining1T
 = �
 = �12 log 1� 2 hkihk2i! : (3.28)In the limit hk2i � 2 hki we 
an expand the logarithm getting the �rst order 
ondition T
 =hk2i = hki whi
h is the value found in the naive mean �eld approximation (3.13). Hen
e, theMF approa
h in developed in the previous se
tion is valid for hk2i � 2 hki and, in this 
ase, itgives the same results as those obtained using the repli
a approa
h.3.2.4 Criti
al behavior around �
The 
riti
al behavior of the thermodynami
al quantities < s >, �, ÆC, and < s >H0� H1=Æ0
lose to �
 
an be 
al
ulated without having to expli
itly solve the self 
onsistent equations forthe whole probability distributions Q(u) and �(s). SuÆ
iently 
lose to the 
riti
al point we
an assume Q(u) � Æ(u� < u >) being < u > in�nitesimal. In fa
t this Ansatz is in
orre
t if� > �
, be
ause it 
orre
tly takes into a

ount the degree distribution but disregards the nontrivial stru
ture of the Q(u) , whi
h does not merely translate from the 
riti
al form Æ(u) at �
,but immediately develops a 
ontinuum stru
ture. In the zero temperature limit the 
ontinuumshape will again 
ollapse in a distribution of delta peaks dis
ussed above. Nevertheless, suÆ-
iently 
lose to the transition we 
an expe
t only the �rst momenta of the Q(u) to be relevant.For distributions with < k4 > �nite one is left with a 
losed system of equations for the �rstthree momenta all 
ontributing to the same leading order. De�ning �n =< k(k� 1):::(k�n) >and A = ((tanh(�))2�2)=(�2 < k > �(tanh(�))2�1)< u > = tanh(�)tanh(�
) < u > ��2 tanh(�)[1� (tanh(�)℄23 < k > �h�1 < u3 > +3�2 < u >< u2 > +�3 < u >3i< u2 > = A < u >2 (3.29)< u3 > =  (tanh(�))3A�2 + �3�3 < k > �(tanh(�))3 < �1! < u >3The expli
it 
al
ulations are show in appendix D as a title of example. Exa
tly analogous
al
ulations 
an be done for the the free energy, the energy and the spe
i�
 heat Proportionalityis found also for < k4 >=1, where the 
al
ulation is a bit more involved be
ause the leadingmomenta are to be found via an analyti
 
ontinuation in the values of their order. Corre
tlytaking into 
onsideration the values of the leading momenta is important in 
ase one is interestednot only on 
al
ulating 
riti
al exponents, but also the amplitudes, be
ause in general moreterms at the same leading order are present, as we see in eq.(3.29). However, the exponents aredetermined by the lowest non trivial last analyti
 value of the momenta of the distribution pk,and do not 
hange in the general 
ase be
ause all relevant momenta of the Q(u) give the samedivergen
e in the momenta of the pk. One example again is given in eq.(3.29). Sin
e we arenot interested in the 
al
ulation of amplitudes we 
an therefore resort to the variational AnsatzQ(u) � Æ(u� < u >) in the proximity of the transition. However we would like to stress that
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al
ulations 
an be done also in the general 
ase. eqs.(3.18), (3.19) then be
ome< u > � 1< k >Xk kpk 1� tanh�1(tanh(�) tanh(�(k � 1) < u > +�H0)) (3.30)< s > � Xk pk tanh(�k < u > +�H0) (3.31)The 
orresponding expressions for the free energy, the energy and the spe
i�
 heat 
an beretrieved in the same way and will not be written here for the sake of spa
e. If < k4 > is �nitethe �rst non trivial term of the power series expansion of eq.(3.30) that still gives an analyti

ontribution is simply < u >3. One �nds< u > �  3 < k >�2
 (tanh �
) < k(k � 1)3 >!12 � 12 (3.32)< s > � < u >; � � ��1; < s >� H1=30 (3.33)where � = 1� T=T
 as usually de�ned. All exponents are the usual mean �eld ones. However,one �nds a �nite jump in the spe
i�
 heat. The transition is therefore �rst order in thetraditional sense. If we keep all the relevant momenta in our 
al
ulation, we �nd the expe
ted
orre
tion to the amplitudes. For example we �nd< u >� p3((�
 tanh(�
) < k >)((�1 + 3�2)A+ �3 >))� 12 � 12 : (3.34)This equation redu
es to (3.32) if we disregard higher momenta.3.2.5 Power law distributed graphsIn the following we are mostly interested in the 
ase of a power law distribution of the typepk = 
 k�
; m � k <1; (3.35)where 
 is a normalization 
onstant and m is the lowest degree. Note that in the 
ase of apower law distribution< k2 >= 
 kmaxXk=m k2�
 > 
 m kmaxXk=m k1�
 = m < k > : (3.36)Hen
e, we have that for m � 2 the graph is always per
olating for all 
 independently on the
uto� kmax. Then form � 2 the 
riti
al temperature is always given by eq. (3.28). In parti
ularfor m > 2 and 
 � 1 the 
riti
al temperature approa
hes the limit T lim
 = �2= log(1 � 2=m)while for m = 2 the 
riti
al temperature tends to zero in the large 
 limit. However, for m = 1there is a 
riti
al value 
? beyond whi
h the graph is no longer per
olating [111℄. 
? is the valueof 
 at whi
h hk2i = 2 hki, resulting �(
?�2)�(
?�1) = 2 that have the solution 
? = 3:47875:::. If 
 � 
?the system is always paramagneti
 while for 
 < 
? there is a transition to a ferromagneti
state at a temperature given by eq. (3.28). In �g. 3.8 we show the phase diagram together withthe 
riti
al lines for m = 1, 2 and 3.
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Figure 3.8: The phase diagram of the Ising model on s
ale-free graphs with a power law degreedistribution pk = 
k�
 , m � k < 1. The ferromagneti
 transition lines depends on the valueof m, with m = 1 
ir
les, 2 squares, and 3 diamonds.3.2.6 2 < 
 � 3For 2 < 
 � 3 the se
ond moment of the degree distribution diverges and, therefore, as dis
ussedin previous se
tions, the system is always in a ferromagneti
 state. In this 
ase it is importantto investigate the behavior of hui and hsi when � ! 0. This 
omputation 
an be done usingeither the mean-�eld or the repli
a approa
h obtaining the same results. In fa
t, in this 
asewe have lim�!0Q(u) = Æ(u) and putting this limit distribution into the self 
onsistent equationfor < u > and < s > we re
over the mean �eld asymptoti
 behavior. For 2 < 
 � 3 the sumsin eq.(3.30) are dominated by the large k region. In this 
ase these sums 
an be approximatedby integrals resulting hui � (
 � 2)(m� hui)
�2 Z 1m�hui dxx1�
 tanhx; (3.37)while the magnetization, hsi = Pk pk tanh (�k hui), is simply given byhsi � 
 � 1
 � 2m� hui : (3.38)The above integral 
annot be analyti
ally 
al
ulated but its asymptoti
 behaviors for � ! 0
an be obtained. For 
 = 3 the integral in the rhs of eq. (3.37) is dominated by the small xbehavior. Thus, approximating the tanh x by x and 
omputing hui we obtainhui � exp(�1=m�)m� ; 
 = 3: (3.39)On the other hand, for 
 < 3 the integral in the rhs of eq. (3.37) is �nite for any value ofm� hui and, therefore, for m� hui � 1 it follows thathui � [(
 � 2)I℄ 13�
 (m�) 
�23�
 ; 
 < 3; (3.40)where I = R10 dxx1�
 tanh x. Finally, substituting eqs. (3.39) and (3.40) on eq. (3.38) we gethsi � exp(�1=m�); 
 = 3; (3.41)
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 ; 2 < 
 < 3: (3.42)With the same te
hnique one 
an study the behavior of the other physi
ally relevant quantities.Extra
ting the leading asymptoti
 terms from the expressions for the energy and the spe
i�
heat T =1, we �nd an in�nite order phase transition withÆC � e�2=m��2 ; 
 = 3;ÆC � �(
�1)(3�
); 2 < 
 < 3: (3.43)Extra
ting from eq.(3.18) the leading behavior of �u � � < u > =�H0 at H0 = 0 and pluggingthe result together with eqs.(3.39), (3.40), (3.41) and (3.42) into � � � < m > =�H0 oneobtains: � � 1m2� (3.44)The limiting 
ase 
 = 3 
orresponds with the Barabasi-Albert model studied in [108℄ bymeans of numeri
al simulations. The magnetization exhibits an exponential de
ay in agreementwith our 
al
ulation in eq. (3.41). Moreover, the 
riti
al temperature was observed to in
reaselogarithmi
ally with the network size N . Computing T
 in eq. (3.13) for 
 = 3 we obtainT
 � (m=2) lnN , whi
h is in very good agreement with their numeri
al results. It is worthremarking that similar exponential and logarithmi
 dependen
ies have been observed for theorder and 
ontrol parameter in some non-equilibrium transitions [107, 110℄.3.2.7 3 < 
 � 5In this 
ase hk2i is �nite and, therefore, there is a ferromagneti
 transition temperature given byeq. (3.28). However, hk4i is not �nite and the derivation of the MF 
riti
al exponents performedin Se
. 3.2.4 is not valid. In order to �nd the 
riti
al exponents we 
an write the fun
tionsinside the degrees sums as power series in < u >. The 
oeÆ
ients of the two series will howeverdepend on the higher momenta of the degrees distribution and will be in�nite beyond a 
ertainpower of < u >. This is dire
t 
onsequen
e of the fa
t that the power expansion of the tanh(y)around 0 is 
onvergent as long as the y < �=2, while for any < u > in our 
ases there will existan k? su
h that < u > lays outside the 
onvergen
e radius. Nevertheless, the fun
tion is wellapproximated by the expansion when one trun
ates it up to the maximum analyti
al value ofthe exponent su
h that all momenta of the power law distribution taken into 
onsideration are�nite.For 3 < 
 < 5 the highest analyti
al exponent of the expansion of eq.(3.30) in powers of< u > is nmax = 
 � 2, where the integer value has been analyti
ally 
ontinued and so shouldbe done with the 
orresponding series 
oeÆ
ient. In this range of values of s nmax is lower than3 so is to be taken as the 
orre
t value instead of n = 3 that leads to non anali
ities. Withanalogous 
al
ulations we are able to �nd all other 
riti
al exponents:< u > � < s >� � 1
�3ÆC � � (5�
)=(
�3)� � ��1; < s >� H�=(1+�)0 � H1=(
�2)0 (3.45)As an example of this kind of 
al
ulation, the 
riti
al exponent governing the behavior of< u > 
an be found in the appendix D, where a value for the non universal amplitude in the
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omputed. On the other hand, for 
 = 5 one 
an �nd a logarithmi

orre
tion to the previous values expanding the inverse hyperboli
 tangent in eq.(3.30) to thethird order in the tails of the degrees distribution. The results are:< u > � < s >� � 1=2=(� log(�))1=2ÆC � 1=(� log(�))� � ��1; < s >� H1=30 =(� log(H0))1=3 (3.46)The spe
i�
 heat is 
ontinuous at �
 for 
 2 (3; 5℄, indi
ating a phase transition of order > 1.A part from the logarithmi
 
orre
tions in the 
 = 5 
ase, the universality relations betweenthe exponents are satis�ed.This treatment parallels the T = 0 
al
ulations done in [113℄ for the 
ase of per
olation
riti
al exponents in a power law graph in presen
e of further dilution. If we introdu
e a 
uto�into the degrees distribution the 
riti
al exponent very 
lose to the transition point is alwaysthe mean �eld one, due to the fa
t that the sum over the degrees is always �nite and thereis no non analyti
ity in < u >= 0 for any 
. However the in
uen
e of non trivial terms isvery strong (de
reasing if we in
rease 
). eq.(3.32) is always valid but only in a very narrowregion around �
. The numeri
al values of T
 and of the amplitudes in the 
riti
al behaviorof the magnetization are also strongly a�e
ted being a fun
tion of the moments of the degreesdistribution. In the in�nite 
uto� limit the mean �eld window shrinks to zero and one re
oversthe non trivial behavior. Indeed, if we work with large enough a 
uto� at 
 2 (3; 5) and
al
ulate the average magnetization in regions where �(k � 1) < u > (�) � �=2, limit of theradius of 
onvergen
e of the series expansions of tanh�1(tanh(�) tanh(�(k� 1) < u >)), we seea 
ontribution in the magnetization 
urves that goes as (� � �
)1=(
�3). This region be
omesdominant for large values of the 
uto�. In summary, we have obtained the phase diagram of theIsing model on a random graph with an arbitrary degree distribution. Three di�erent regimesare observed depending on the moments hk2i and hk4i of the distribution. For hk4i �nite the
riti
al exponents of the ferromagneti
 phase transition 
oin
ides with those obtained from thesimple MF theory. On the 
ontrary, for hk4i not �nite but hk2i �nite we found non-trivialexponents that depend on the power law exponent of the degree distribution 
. On the otherhand, for hk2i not �nite the system is always in a ferromagneti
 state. Moreover, at T = 0 were
over the results obtained by the generating fun
tion formalism for the per
olation problemon random graphs with an arbitrary degree distribution.



Chapter 4Two examples of NP optimizationproblems
4.1 The Hyper-Graph Bi
oloring ProblemThe Bi
oloring problem of a uniform rank 3 hyper-graph is de�ned as follows: you want to 
olor(with 2 
olors, say red and blue) the hyper-graph verti
es in su
h a way that no hyper-edgehas got all verti
es of the same 
olor an example for a small fra
tion of a sample hyper-graphis shown in �g. (4.1). Again, the problem 
ould be immediately generalized to hyper-graphs ofgeneri
 degree and distribution, along the same lines of the p-spin. In the following, however,we will show only the 
al
ulation in the Poissonian random graph 
ase and �xed rank 3. The�rst 
hoi
e is justi�ed by the sear
h of the behavior of the problem in the average 
ase (itis proved to be NP in the worst one), and the will of testing the a

ura
y of the variational1RSB fa
torized Ansatz for a problem in the same hardness 
lass of the K-SAT. Indeed wefound out that the behaviors of both models seem very similar, with some signi�
ant di�eren
efrom the generalized p-spin. As in the K-SAT, the present model will undergo a sat/unsatphase transition at T = 0 as a fun
tion of mean degree. The se
ond (�xed degree) 
hoi
e wasperformed to show another 
ase admitting an exa
tly fa
torized 1RSB solution and how thissolution seems however to be here less relevant for the understanding of the general behavior.The model Hamiltonian is nothing but the 
ost fun
tion of the asso
iated 
ombinatori
problem and readsH = Xi1<i2<i3 Ji1i2i3Æs1;s2Æs1;s3 = 14 Xi1<i2<i3 Ji1i2i3(1 + s1s2 + s2s3 + s1s3) (4.1)The resulting model is an anti-ferromagnet with a pe
uliar type of three body intera
tion term,with spins 
onne
ted via the following distribution of 
ouplingsYi1<i2<i3 P (Ji1i2i3) = Yi1<i2<i3  (1� 3!
N2 )Æ(Ji1i2i3) + 3!
N2 Æ(Ji1i2i3 � 1)! (4.2)Frustration is given by the anti-ferromagneti
 
ouplings. Exploiting the usual repli
a tri
k onegets < Zn >J�Xsai e�
N+ 
N2 Pi1<i2<i3 e��4 Pna=1(1+sai1 sai2+sai2sai3+sai1 sai3 ) (4.3)105
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and, with the usual multilevel gas pi
ture (�(~�) = 1N PNi=1 Æ(~�;~si))< Zn >� Z Y~� d�(~�)e�n�NF [�(~�)℄ (4.4)n�F [�(~�)℄ = 
 +X~� �(~�) log(�(~�))� 
 X~�1;~�2;~�3 �(~�1)�(~�2)�(~�3)e��4 Pna=1(1+�a1�a2+�a2�a3+�a1�a3 ) (4.5)In the large N limit we are left with the 
ontribution at the saddle point�(~�) = e�3
+3
P~�1;~�2 �(~�1)�(~�2)e��4 Pna=1(1+�a1�a2+�a2�a3+�a1�a3 ) (4.6)4.1.1 The RS resultsPlugging the RS Ansatz into (4.6) one gets after some manipulation. A small te
hni
al di�eren
efrom the p-spin is that here, as it will be in the K-SAT 
ase, �elds are originally at half integervalues. They 
an be res
aled on integers thanks to a res
aling of � ! 2�, that does notin
uen
e the zero temperature properties. The �nal result reads:Z 1�1 P (h)ex�h = e�3
e3
 R1�1 R1�1 dh1dh2P (h1)P (h2)ex�u(h1;h2) (4.7)with u(h1; h2) = 1� log(��=�+) (4.8)�� = 2 
osh(�(h1 � h2)) + 2 
osh(�(h1 + h2))e�� (4.9)or P (h) = e�3
Xt (3
)tt! Z 1�1 Z 1�1 tYi=1 dhi1dhi2P (hi1)P (hi2)Æ(h� tXi=1 u(hi1; hi2)) (4.10)
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tion u(h; g) takes the values of the 
avity biases introdu
ed in
hapter 2. An analogous equation for the free energy 
an be found generalizing the p-spinmodel approa
h from the usual Hamiltonian term �Pa(�a1 :::�ak � 1) to any J�(�a1 ; :::; �ak) In theBi
oloring 
ase J�(�a1 ; :::; �ak) = J�(�a1 ; �2; �a3) = ��=4Pa(�a1�a2 + �a1�a2 + �a1�a2 + 1). However,we are here interested in the 
ombinatorial problem itself, and therefore in taking the zerotemperature limit.The trivial paramagneti
 solution P (h) = Æ(h) and Spara = log(2) � 
 log(4=3) is alwayspresent in the SAT zero energy phase. This is in 
ontrast with the 3-SAT 
ase and similarto the paramagneti
 phase of the p-spin. Moreover in the RS framework, the only saddlepoint solution in the zero energy SAT phase is the previous one. The absen
e of lo
al �elds,as in the p-spin models, drives out the appearan
e of a non trivial form for the P (h) at lowbut non zero values of 
, di�erently to what happens in the 3-SAT 
ase. Indeed, in the US
ase we 
an distinguish two di�erent regimes of e�e
tive �elds s
aling as O(T ) or tending to a�xed value in the zero temperature limit. In the �rst regime one 
an write integro-di�erentialequations for the probability distribution of magnetizations and the ground state entropy (inthe sat phase), as in 3-SAT or in the p-spin models. One 
an then solve them perturbatively,writing a series expansion in the average degree (or in 
) along the same lines of [9℄. It is foundthat the total paramagneti
 solution is stable for all 
 and the expansion 
ollapses ba
k to theannealed expression to all orders. However it is to be noted that this does not rule out thepossibility of an intermediate 
ross-over region of mixed s
aling of the order parameter, whererepli
a symmetry would have to be broken in a non trivial manner. Indeed, the behavior of theBi
oloring model in degree seems to share intermediate properties between the p-spin modelsand the 3-SAT.In the se
ond regime the saddle point equations (4.7) redu
e toZ +1�1 dhP (h)e�hx = exp��3
2 + 3
 Z +10 Z +10 dh1dh2P (h1)P (h2)ex�min(1;h1;h2)+3 
 Z 0�1 Z 0�1 dh1dh2P (h1)P (h2)e�x�min(1;jh1j;jh2j)� (4.11)Looking again for a symmetri
 integer �elds solution of the type we getp0 = e� 3
2 (1�p0)2I0(3
2 (1� p0)2) (4.12)pk>0 = pk<0 = e� 3
2 (1�p0)2Ik(3
2 (1� p0)2) (4.13)In the RS framework , the only saddle point solution in the zero energy SAT phase is theperfe
t paramagneti
 one P (h) = Æ(h). The absen
e of lo
al �elds, as in the p-spin models,drives out the appearan
e of a non trivial form for the paramagneti
 P (h) at low values of
, di�erently to what happens in the 3-SAT 
ase. No other stable integer �elds solution isfound to exist. A p0 6= 0 spin glass metastable solution appears for 
 = 2:3335, that howeverinitially 
orresponds to a non physi
al negative energy value. As in [9℄, the RS estimate for 

is therefore given by the point where the energyEGS = 2
 �1� p02 �3 � 3
4 (1� p0)2r1 (4.14)



108 CHAPTER 4. TWO EXAMPLES OF NP OPTIMIZATION PROBLEMSturns positive1. This gives a rough upper bound of 2.45, that 
an be tra
ked down to2.35 by the introdu
tion of rational �elds, following again the pres
ription of [9℄. After a longmanipulation one �nds the following saddle point equations, 
losed in the �rst r weights:p0 = e� 3
(1�p0)22 Z 2�0 d�2�ePrj=1 �j 
os(j�) (4.15)pk = e� 3
(1�p0)22 Z 2�0 d�2� 
os(k�)ePrj=1 �j 
os(j�) (4.16)with �j<r = 6
pj(1� 2 jXl=0 pl + pj) (4.17)�r = 3
2 (1� 2 r�1Xj=0 pj)2 (4.18)EGS = 2
r 0�(1� p02 )3 + r�1Xj=1(1� p02 � jXl=1 pl)31A�1r 0� rXj=1 j�j(p0 + pj2 + j�1Xl=1 pl)1A+ p02r rXj=1 j�j � 1r rXj=1�j j�1Xl=1(l � j)pl (4.19)One would however like to go beyond s
heme whi
h is RS and furthermore does not re
e
tthe physi
al phenomena taking pla
e in the model. Indeed, There are no reasons for lo
al �eldsat T = 0 not to have support on integer values. Even though the last solution is a legitimatevariational one2, it is believed [24, 30, 29℄ that in fa
t signals the presen
e of non trivial RSBphenomena.4.1.2 The RSB Cal
ulationsIn order to improve the previous results we used the same RSB fa
torized Ansatz that was quitesu

essful in the p-spin and that seems to provide a nearly exa
t solution for any model de�nedon �xed degree graphs, independently of the spe
i�
 form of the Hamiltonian. We won't showall the 
al
ulations, exhaustively done for the p-spin 
ase and essentially identi
al in this 
ase.Let us spe
ialize initially to �xed degree k-hyper-graphs The �nal self 
onsistent equation readsP (h) = (2 
osh �h)mAl�1 Z k�1Yi=1 DhiDgiW (hi; gi)m(4 
osh(�hi) 
osh(�gi))m � Æ h� k�1Xi=1 u(hi; gi)! ; (4.20)1Noti
e the 
lose similarity with the RS expressions for the 3-spin written in 
hapter 3 and the ones for the3-SAT in [9℄ and easily retrievable form the 1RSB equations of the next se
tion. In fa
t, the only di�eren
eseen by the RS treatment seems to be a res
aling of the hyper-graph diluteness parameter 
3�spin ! 
Bi
=2!
3�SAT =4, that re
e
ts the size of the elementary 
lause in the 
ombinatorial problem (3-spin intera
tions
orrespond to 4 3-SAT like 
lauses, for instan
e). It is 
lear that from the RS point of view all these modelsare equivalent and their di�eren
e, whi
h is well seen theoreti
ally experimentally, needs a broader pi
ture,that 
ould explain for instan
e why in the dynami
al region 3-XOR-SAT is still Polynomial thanks to a globalsolution pro
edure, while 3-SAT in NP-
omplete.2This 
an be rigorously proven as an additional spe
ial 
ase of the general 
al
ulations of 
hapter 6.



4.1. THE HYPER-GRAPH BICOLORING PROBLEM 109k+1 egs y�1{6 0 17 0.003711 1.966118 0.027383 1.171189 0.058131 0.9288710 0.093181 0.7874611 0.131392 0.6931512 0.172118 0.55338Table 4.1: Energy densities at the optimal value y� of the s
aling parameter for the Bi
oloringmodel on �xed degree K 3-hyper-graphs.where W (h; g) = p���+ is the re-weighting fun
tion that in the exa
t 1RSB has been 
on-ne
ted to LGS level 
rossing [23, 24℄. The RS (resp. paramagneti
) equation is re
overed form = n! 0 (resp. P (h) = Æ(h)). Ak�1 is a normalization fa
tor. At T = 0:p0 = 1g(k; y) [(k�1)=2℄Xt=0 (k � 1)!(k � 1� 2t)!(2t)!Ak�1�2tB[y℄2t22t (4.21)F = �1y  (1� 2k3 ) log(g(k; y)) + 2k3 log(g(k � 1; y))! (4.22)with: A = 1� (1� p0)22B[y℄ = (1� p0)22 e�yg(k; y) = [(k�1)=2℄Xt=0 (k � 1)!(k � 1� 2t)!(2t)!Ak�1�2tB[y℄2t22t +2 kXr=0 eyr [(k�1)=2℄Xt=0 k!Ak�r�2tB[y℄r+2t(k � r � 2t)!t!(r + t)!2(r + 2t)Table 4.1 shows the GS energy densities egs at the optimal y� for some 
hoi
es of l.The same Ansatz plugged into the variational free energy for poissonian degree distributiongives, after 
al
ulations similar to the p-spin,P (h) = (2 
osh �h)mXl=1 e�3
(3
)k�1Ak�1(k � 1)!  Z k�1Yi=1 DhiDgiW (hi; gi)m(4 
osh(�hi) 
osh(�gi))m Æ h� k�1Xi=1 u(hi; gi)!! ;(4.23)and, in the T = 0 limit, p0 = I0(z1)I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.24)pl = = p�l = Il(z1)e yl2I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.25)



110 CHAPTER 4. TWO EXAMPLES OF NP OPTIMIZATION PROBLEMSz1 = 3
4
(1� p0)2e� y2 (4.26)
 = 1 + (1� p0)34 (e�y � 1) (4.27)for the saddle point equations andF (y) = �1y (
 log
� log �� z1 
osh(y)� z1 sinh(y)p0) (4.28)� = 1I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.29)for the potential. Again, as we expe
ted, no found RSB solution has support on non integer�elds. Optimizing over y, we �nd an upper bound for the 
riti
al value of 

 of 2:145, very
lose to the numeri
al exa
t estimate [117℄. This value is found maximizing the free-energy andtuning 
 and y to the point where this maximum 
rosses to positive values for the �rst time,indi
ating the onset of positive energy density global ground states.Complexity results of the Bi
oloring modelUsing eq. (2.133) it is also possible to write a variational expression for the 
omplexity. Obvi-ously, the number of LGS will be overestimated be
ause 
orrelations between LGS, that hereare negle
ted, 
an and indeed do redu
e the number of states at Hamming distan
e of orderN . The notion of LGS is however a subtle one, and 
urrently under debate. For some lateinsights see for example [24℄. The dynami
al threshold for the Bi
oloring model is then de�nedas the point where the 
omplexity attains for the �rst time a non zero value. This 
orrespondsto the point where LGS with highest energy density �rst appear. The fa
torized Ansatz givesthe estimate 
d � 1:881. The point where the number of LGS 
eases to be extensive in expN
oin
ides with the previously 
al
ulated one at 

 � 2:145.We also tried to obtain an exa
t value for the true zero temperature 
omplexity, as done inthe p-spin 
ase thanks to the a

idental equivalen
e with the its ferromagneti
 version before thestati
 transition. The reason for that possibility lied in the fa
t that in that parti
ular 
ase theLGS turned out to be orthogonal and un
orrelated, so that one 
ould look at the 
on�gurationalspa
e sitting on a referen
e GS 
hosen at will. In the dynami
al region 
lusters of solutions allof the same size and equivalent to the ferromagneti
 
luster formed. Indeed, the 
omplexity
al
ulated as in eq. (2.187) was seen to be identi
al to that of the number of metastable statesinto the ferromagneti
 model. Can this be done in the Bi
oloring 
ase too? No apparent gauge
luster symmetry of this kind seem to be present in this 
ase (as well as in the K-SAT, graph-
oloring or other models), so we expe
t the answer to be negative. Nevertheless, we tried toretrieve the solution of the fa
torized symmetri
 saddle point equations in the m = 1 
ase.This 
an be done along the same lines of the p-spin, leading however to the negative expe
tedresult: the m = 1 saddle point equationsp0 = e�
(1�p0)2 (4.30)pl = p�l = p02 
l(1� p0)2ll! (4.31)give no non trivial solution before 
� = 2:454, whi
h is well above the transition point ofthe model. Therefore at the beginning of this work the exa
t value for the 
omplexity was



4.2. RESULTS OF THE VARIATIONAL RSB CALCULATIONS FOR THE RANDOM 3-SAT111erroneously thought to be zero anywhere before the stati
 transition. In
identally, (4.30) and(4.31) turn out to be the symmetrized version of the solutions of a ferromagneti
 spin versionof the Bi
oloring model, built with the hamiltonianH = 14 Xi1<i2<i3 Ji1i2i3(1 + si1si2 � si2si3 � si1si3) (4.32)Contrary to the p-spin model, there is no 
orresponden
e between the saddle point equations inthe frustrated and the ferromagneti
 models, be
ause the two are not related by any symmetrytransformation. Consequently, 
ounting the metastable states in the ferromagneti
 model doesnot 
orrespond to 
ounting the Bi
oloring LGS. Moreover, the ferromagneti
 model showsan intermediate 
ontinuously magnetized phase between the paramagneti
 and the ba
kboneferromagneti
 ones. Models showing this behavior are interesting for their own sake and havebeen investigated in [55℄. We argue that this intermediate transition re
e
ts in the spin-glassas an indi
ator that also Bi
olorig, as 3-SAT (see also [30℄), admits a 
rossover region where asimple 1RSB fa
torized Ansatz is not suÆ
ient. In fa
t, due the absen
e of 
luster symmetrythe LGS 
annot be gauged to the same ferromagneti
 one. A non trivial 1RSB solution 
anbe found with the general te
hnique re
ently put forward in [29, 30, 24℄. In working with thefa
torized Ansatz approximation, an upper bound for the 
omplexity is 
al
ulated, where thenumber of LGS is overestimated be
ause 
orrelations that 
an de
rease the number of a
tuallydis
onne
ted3 
lusters are not taken into a

ount. The general solution 
an be expli
itly foundwith the same te
hniques reviewed in 
hapter 2, even though the saddle point equations areslightly more 
ompli
ated [114℄. This solutions shows a narrower but still non zero dynami
alregion of positive 
omplexity. Thresholds 
al
ulable in this way are 
onje
tured to be exa
tfor the Bi
oloring problem. A similar pi
ture applies to the K-SAT 
ase. Moreover in theBi
oloring T = 0 saddle point equations, the absen
e of non trivial vanishing �elds (as it beseen via series expansion around the perfe
t paramagneti
 solution as well as via numeri
alexperiments) lead us to believe the last solution to be exa
t for any value of 
 in the phasediagram of the model, even when models as K-SAT seem to show an 1-RSB transition. Thisproperty 
an be tra
ed ba
k, in our opinion, to the absen
e in the model Hamiltonian to singlespin-
ip asymmetri
 terms, present for instan
e in the SAT models. This terms 
an give rise tolo
al 
u
tuations that vanish only at zero temperature but 
an give rise to further symmetrybreaking in the phase spa
e. The same is not true in the K-SAT 
ase [30, 89, 90℄, as willbe dis
ussed in the following se
tion. In this sense the Bi
oloring model lies in a somehowintermediate position between the p-spin and the random K-SAT model. Eventually, we wouldlike to noti
e that, 
ontrary to the K-SAT 
ase we will mention in the following se
tion, thefa
torized Ansatz gives upper bounds whose value nearly overlaps the latest estimated numeri
althresholds [117℄.4.2 Results of the variational RSB 
al
ulations for therandom 3-SATK-SAT is a 
entral problem in theoreti
al 
omputer s
ien
e [34℄. A throughout study of randomversion model has been 
arried out by the physi
s 
ommunity in [9, 14, 30, 12℄ and referen
es3Separated by a Hamming distan
e of order N .



112 CHAPTER 4. TWO EXAMPLES OF NP OPTIMIZATION PROBLEMStherein , where the reader is referred to for the de�nition of the problem, the mapping on spin-glass like model and for various analyti
al and numeri
al approa
hes to its solution. Rigorousapproa
hes 
an be read for example in [177, 115℄.In this short se
tion we simply want to state the results for the RSB variational 
al
ulationsexploiting the fa
torized Ansatz, and dis
ussing some more re
ent results announ
ed in [29℄ andobtained in [30℄. We worked dire
tly at zero temperature. Through a 
omputation analogousto the ones for the p-spin and the Bi
oloring model we found, for the spe
ial 3-SAT 
ase,p0 = I0(z1)I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.33)pl = = p�l = Il(z1)e yl2I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.34)z1 = 3
4
(1� p0)2e� y2 (4.35)
 = 1 + (1� p0)38 (e�y � 1) (4.36)for the saddle point equations andF (y) = �1y (
 log
� log �� z1 
osh(y)� z1 sinh(y)p0) (4.37)� = 1I0(z1) + 2Pk>0 Ik(z1)e yk2 (4.38)for the potential. Noti
e that for y = 0, re-summing the Bessel fun
tions one immediatelyretrieves the RS integer �elds solution of [9℄:p0 = e� 3
4 (1�p0)2I0(3
4 (1� p0)2) : (4.39)Again, 
losed fra
tional �elds equations 
an be written as in the RS and in the p-spin andBi
oloring 
ases, but no solutions have support on non integer values. The variational expressionfor the 
omplexity (2.133) leads to the presen
e of a dynami
al region in the range of values
 2 [
d; 

℄ = [3:94; 4:39℄. However, as in the Bi
oloring model, LGS are not un
orrelated asexpli
itly stated in the fa
torized Ansatz pi
ture. A more general solution found in [30℄ withthe T = 0 
avity method [24℄ with a dynami
al region [
d; 

℄ = [3:921; 4:256℄.The di�eren
e between the previous variational results and the zero temperature general1RSB 
avity result is both quantitative and qualitative: in ref. [14℄ the predi
ted nature of theintermediate phase is di�erent with respe
t to the one predi
ted by the non-vanishing �elds
omplete 1RSB solution, while in ref. [22℄ the stru
ture of the order parameter is oversimpli�ed.(as well as in [22℄) the authors work dire
tly at zero temperature (T = 0), whi
h has theadvantage that they do not need to study the subtle question of the limit T ! 0. The reasonwhy this limit is subtle is due to the fa
t that some of the lo
al �elds, at low temperatures, vanishlinearly in T , and thus 
ontribute to the lo
al magnetization m = tanh(�H) (the vanishing�elds!). The lo
al magnetization at T = 0 is zero for a zero �eld, it is equal to 1 for a �nite �eld,and it takes an intermediate value m 2℄� 1; 1[ for a vanishing �eld. The variational approa
hof [14℄ fo
uses onto vanishing �elds, and �nds a 
ontinuous phase transition at 
s ' 3:96 wherethe vanishing �elds in di�erent states start to 
luster. However as these are all vanishing �elds,



4.2. RESULTS OF THE VARIATIONAL RSB CALCULATIONS FOR THE RANDOM 3-SAT113this means that the 
orresponding lo
al magnetizations, in a given state, are not frozen to �1but take some intermediate value, even in the T ! 0 limit. In the T = 0 
avity approa
h(as well as in [22℄), the HSP 
orresponds to a dis
ontinuous transition at zero temperature,involving �elds whi
h are not vanishing, but are of order one. This means that, in a givenstate, a �nite number of lo
al �elds are non-zero integers, giving rise to magnetizations �1, asone 
ould expe
t at zero temperature. This phenomenology 
annot be found by 
onsideringvanishing �elds. Its study with repli
as would require using a more 
ompli
ated Ansatz.Note that this approa
h working dire
tly at T = 0 also has its limitations, for instan
ewe are unable to determine pre
isely the self overlap (or the typi
al radius) of a state, or itsinternal entropy, pre
isely be
ause we do not 
ontrol the vanishing �elds.Moreover the 1RSB pi
ture does not take into a

ount the possible arising of non trivial
orrelations among LGS at higher values of 
. This 
ould lead to higher RSB phenomena, aseviden
e is taken in [89, 90℄. However, this seems not to be the 
ase in the dynami
al regionand immediately beyond the stati
 transition, where the only known phenomenon that 
ouldgive rise to su
h further symmetry breaking is indeed the presen
e of vanishing �elds at �nitetemperature. A population dynami
s study of this region with the 1RSB �nite temperatureAnsatz of [23℄ shows that the distribution of lo
al �elds tend to peak on integers when thetemperature goes to zero in the dynami
al phase, and this is a strong argument in favor ofthe exa
tness of the 1RSB solution. Very re
ently [58℄ a solution of the long standing graph-
oloring problem on random graphs has been proposed whi
h does not su�er from the need ofintrodu
ing pathologi
al fra
tional �elds and works at the 
omplete 1RSB level. Similarly tothe p-spin, Hyper-graphs Bi
oloring and the K-SAT 
ase, the presen
e of a dynami
al region ofmetastable states is found and the authors 
laim the obtained dynami
al and stati
 thresholdsto be exa
t. Noti
e that the 
al
ulations of 
hapter 6 
ould be in prin
iple extended to thegraph-
oloring, proving results in [58℄ to be rigorous upper bounds.
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Chapter 5Phase and 
omputational 
omplexitytransitions
5.1 Global algorithms transitions in linear systems over�nite �elds5.1.1 Introdu
tionThe methods and 
on
epts of statisti
al physi
s of disordered systems 
onstitute a very usefultool for the understanding of the onset of 
omputational 
omplexity in randomly generatedhard 
ombinatorial problems. On
e the optimization problems are translated into zero tem-perature spin glass problems, one may study the geometri
al 
hanges in the spa
e of solutionsas symmetry breaking phenomena. In this 
ontext one may view the exponential regimes ofrandomized sear
h algorithms as out-of-equilibrium phases of sto
hasti
 pro
esses. However,
ombinatorial problems are not always exponentially hard: Problems that 
an be solved inpolynomial time, even in their worst-
ase realizations 
ompose the so 
alled Polynomial (P)
lass [34℄. Su
h problems are often of great pra
ti
al relevan
e and are ta
kled using large s
ale
omputations. Examples 
an be found in all dis
iplines: In physi
s, just to make one exam-ple, one may study ground states of 2D spin glass like Hamiltonians resorting to a polynomialmax-
ut algorithm [121℄. The major appli
ation are obviously found in engineering: Examplesare design problems (�nite elements methods), 
ontrol theory (
onvex optimization), 
odingtheory (parity 
he
k equations) and 
ryptography (integer fa
torization). Due to the pra
ti
alrelevan
e of the problems and to the typi
ally large number of variables used for their en
oding,that is the size of the problems, it is of basi
 interest to look at the �ne stru
ture of the 
lass Pin order to 
on
retely optimize the 
omputational strategies. For instan
e, in error 
orre
ting
odes it is 
ru
ial to have algorithms that 
onverge in linear time with respe
t to the numberof en
oded bits, any power larger than one being 
onsidered of no pra
ti
al interest. Quite ingeneral, the trade-o� between time and memory resour
es is the guiding 
riterion whi
h sele
tsthe algorithms used in real-world appli
ations. Roughly speaking polynomial algorithms 
anbe divided in di�erent groups depending on the solving strategy they implement. The maingroups are lo
al algorithms (e.g. greedy/gradient methods), global algorithms (e.g. Gaussianelimination or Fourier transforms methods), iterative algorithms (e.g. Lan
zos method) andparallel algorithms. See Ref. [122℄ for a basi
 introdu
tion to the subje
t. In what follows weshall study a prototype problem of the P 
lass, that is the problem of solving large and random115



116 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSsparse systems in some Galois �eld GF(q). Working in GF(q) is 
ompletely equivalent to per-form any operation modulo q. Firstly, we give a pre
ise analysis of the 
omputational featuresfor non-trivial ensembles of random instan
es. By a statisti
al me
hani
s study, we look intothe { symmetry breaking { geometri
al stru
ture of the spa
e of solution thereby providingan explanation for the 
hanges in the power law behavior observed in di�erent algorithms.Moreover, we are able to predi
t and explain in terms of 
lustering of solutions, the memory
atastrophe found in global algorithms su
h as Gaussian elimination. Su
h an e�e
t seriouslyhampers appli
ation of this sort of global algorithms in many 
ir
umstan
es, one example beingsymboli
 manipulations. This memory 
atastrophe indu
e in turn an even more dramati
 in-
rease in CPU time, whi
h make large problems una�ordable above the dynami
al threshold 
d(see below for its de�nition). Se
ondly, we 
onsider a spe
i�
 \real-world" appli
ation, namelythe Integer Fa
torization problem used in RSA publi
 key 
ryptography [123℄. By a non-trivialmapping of the fa
toring problem on a sparse linear system modulo 2, endowed with a quitepe
uliar statisti
al distribution of matrix elements, we analyze whi
h are the 
hara
teristi
 ge-ometri
al properties of solutions that are responsible for the usage of spe
i�
 algorithms and
onstitute the possible bottlene
k for the near future. Interestingly enough, the 
hanges in bothtime or memory requirements during the solution pro
ess of sparse systems 
an be interpretedin physi
al terms as a dynami
al transition at whi
h the phase spa
e of the asso
iated physi
alsystems be
omes split into an exponential number of ergodi
 
omponents. While it is to beexpe
ted that lo
al algorithms get stu
k by lo
al minima at su
h phase boundary, it is lessobvious to predi
t whi
h is the 
ounterpart of the dynami
al transition in global algorithms,for whi
h polynomial time 
onvergen
e is guaranteed even for the hardest instan
es. Indeed thedynami
al transition manifests itself as a phase transition in the 
omputational requirementswhi
h in turn leads to a slowing down phenomenon that saturates the upper bound for the
onvergen
e time. Su
h a 
hange of s
ale in memory requirements 
onstitute a serious problemfor hardware implementations of large s
ale simulations.5.1.2 Random Linear systems in GF(2): rigorous results and statis-ti
al me
hani
s analysisAs is well known in the 
ontext of error 
orre
ting 
odes [124℄, solving a sparse linear systemmodulo 2 is equivalent to �nding the zero temperature ground states of a 
lass of multipledegree intera
tions p-spin models on diluted random graphs. Let us 
onsider a random linearsystem in GF(2) in the form Â~x = ~y mod[2℄, where Â is a 0-1 matrix of dimensionM�N . Forea
h of its spe
i�
 
hoi
es Â 
an be interpreted as the 
onta
t matrix of a parti
ular randomhyper-graph belonging to a spe
i�
 ensemble. The 
lass of random matri
es we shall deal withare de�ned by the fra
tion of rows vl with l non zero elements. The latter are pla
ed uniformlyat random within ea
h row. The notation has been 
hosen to be 
onsistent with the one ofthe previous 
hapters. We fo
us on matri
es that lead to graphs with an average rank valuehli = Pl lvl �nite and mu
h less than both M and N . We are interested to the limit of verylarge matri
es, where we 
an assume N;M ! 1 with a �nite ratio 
 � M=N . This is theregime in whi
h a study of the 
omputational 
ost is important in that it applies dire
tly tolarge s
ale 
omputations. In the limit N;M !1 average quantities 
hara
terizing the system(e.g. the average fra
tion of violated equations) are known to be equal to the most probablevalues (i.e. their probability distribution is strongly peaked [125℄) and therefore single randomlarge systems behave as the average over the ensemble. We will always assume v1 = 0 at thebeginning, sin
e rows with a single one 
orresponds to trivial equations whi
h 
an be removed



5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS117a priori from the set. The equivalen
e between linear systems and spin models is a quitestraightforward generalization of the mapping used in the 2+p-XORSAT model (whi
h by theway 
an in turn be seen as a parti
ular 
ase of the present model, where only two and threevariables equations are present.). We start from a set of linear equations in GF(2), Â~x = ~y, andwe build up a spin Hamiltonian whose ground state energy Egs 
ounts the minimal number ofunsatis�ed equations. In the 
ase where Egs = 0, ground state 
on�gurations will 
orrespondto solutions of the original set of linear equations and the zero-temperature entropy will 
ountthe number of su
h solutions. The 
onstru
tion is done as follows: For every equation, labelledby i 2 [1 : : :M ℄, let us de�ne the set of variables ~x entering equation i asv(i) � fj 2 [1 : : :N ℄ : Aij = 1g : (5.1)With the transformation sj = (�1)xj and Ji = (�1)yi, we have that every equation 
an be
onverted in a term of the Hamiltonian throughNXj=1Aijxj = yi , Xj2v(i) xj = yi , Yj2v(i) sj = Ji ; (5.2)where the multi-spin intera
tion 
ontain at least 2 spins sin
e we set v1 = 0. Then the Hamil-tonian H = 12 24M � MXi=1 Ji Yj2v(i) sj35 ; (5.3)�ts the above requirements and 
an be used in the analyti
al treatment. A better form for theabove Hamiltonian 
an be obtained grouping together l-spin terms with the same l, that isH = 12 24M �Xk Xi1<i2<:::<ik Ji1i2:::iksi1 : : : sik35 ; (5.4)where si = �1 are Ising spins and the 
ouplings Ji1i2:::ik are i.i.d. quen
hed random variablestaking values in f0;�1g. The total number of intera
tions, that is of terms with J 6= 0, isM, and the energy is zero if and only if all the intera
tions are satis�ed. For ea
h unsatis�edintera
tion the energy in
reases by 1. The fra
tion of intera
tions of l-spin kind is vl and thusthe probability of having Ji1i2:::il 6= 0 equals alM=�Nl � ' 
vll!=N l�1, while the sign of Ji1i2:::ildepends on the probability distribution of the 
omponents of ~y,P (Ji1i2:::il) = "1� 
vll!N l�1 # Æ(Ji1i2:::il) + 
vll!N l�1 hp Æ(Ji1i2:::il � 1) + (1� p) Æ(Ji1i2:::il + 1)i ; (5.5)where p 2 [0; 1℄ 
ontrols the fra
tion of zeros in ~y. As long as the system admits at least onesolution, it 
an always be brought by a gauge transformation in the form with p = 1, ~y = ~0.This 
orresponds to have positive or null 
ouplings only, like in a diluted ferromagneti
 model.The li
eity of the gauge transformation is a pe
uliarity of generalized p-spin models of this kind,as stated in the �rst 
hapter. In order to make a 
onne
tion between the behavior of solvingalgorithms and the stru
ture of the matrix Â, we study the geometri
al properties of the spa
eof solution, i.e. ground states of (5.4), as a fun
tion of 
 for non-trivial 
hoi
es of fvlg. We mayhave a

ess to the stru
ture of su
h a spa
e by just performing the T = 0 statisti
al me
hani
sanalysis of the spin glass model, with 
ontrol parameter 
. For 
 large enough, at say 

,



118 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSthe system of equations be
omes over-determined and some of the equations 
an no longer besatis�ed. This fa
t is re
e
ted in the ground state energy of the asso
iated spin glass modelbe
oming positive. The interesting aspe
t of the problem is that, under proper 
onditions,there appears a 
lustering phenomenon with ma
ros
opi
 algorithmi
 
onsequen
es at someintermediate value 0 < 
 = 
d < 

. We will fo
us our attention on the latter transition, thusassuming a priori that at least one solution always exist. This allow us to �x ~y � ~0 hereafter.The 
omplete pi
ture of the typi
al stru
ture of the solution spa
e 
an be obtained through theRS repli
a 
al
ulations of 
hapter 1 spe
ialized to the 
ase of Poissonian degree hyper-graphwith a priori general 
hoi
e of v(x). Due to the zero energy 
ondition (Egs = 0 for 
 < 

), thedominan
e of thermodynami
al states is purely to be determined in entropi
 terms. De�ningS0(
) as the logarithm of the number of solutions to Â~x = ~0 divided by N , we have thatS0(
) = S(m; 
) = log(2) 24(1�m)[1� log(1�m)℄� 
Xl�2 vl(1�ml)35 ; (5.6)where m solves G(m) = 1�m� e�
Pl�2 lvlml�1 = 0 : (5.7)When more than one solution to eq.(5.7) exist, the one maximizing S(m; 
) must be 
hosen.At �xed fvlg, one 
an study the phase diagram as a fun
tion of 
. At low enough 
, eq. (5.7)has only the trivial solution m = 0 and the system is paramagneti
 with entropy S(0; 
) =log(2) (1�
). As long as v2 > 0, the 
ondition for the 
ontinuous phase transition of two-loopsper
olation in the rank 2 sub-graph is given by the instability 
ondition:�G(m)�m �����m=0 = 0G(m = 0) = 0 ; (5.8)that redu
es to1 
̂ = 12v2 (5.9)Typi
ally a non trivial magnetized solution for the order parameter, m� > 0, appears at a value
d su
h that G(m�) = 0 and �G(m)�m �����m=m� = 0 : (5.10)This 
ondition gives a threshold for the onset of the dynami
al region at
d = 1(1�m�)Pl�2 l(l � 1)vl(m�)(l�2) (5.11)and 
ontains the 
ondition for 
̂ as a parti
ular 
ase. This last solution be
omes entropi
allyfavored at a value 

 found solving S(0; 

) = S(m�; 

) : (5.12)As in the 
ase of the 2+p-XOR-SAT model of 
hapter 2, we 
an look for the presen
e of atri
riti
al point where 
̂ = 
d = 

. This is given by the instability 
onditionG(m� = 0) = 0 G0(m� = 0) = 0 and G00(m� = 0) = 0 (5.13)1
 = 1=2 for v2 = 1.



5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS119that redu
es to v2 = 3v3 = 12
tri
riti
al : (5.14)Noti
e that the value of the tri
riti
al point, if it exists, does not depend on other than thefra
tion of two variables over three variables equations. There are obviously 
ases 2 where atri
riti
al point does not exist. In those situation the shift from a 
ontinuous to a dis
ontinuoustransition is sharp. A part of these last examples, the 2+p model retains a great deal ofgenerality, and indeed this parti
ular 
ase treated in 
hapter 2 and in [21℄ retains many ofthe qualitative features of this more general analysis. 3. The 
ru
ial observation is now thefollowing. At 
d, together with the magnetized solution, there appear other spin glass solutionsto the saddle-point equation. In parti
ular, it 
an be shown [26℄ that the di�eren
e betweenthe paramagneti
 and the ferromagneti
 entropies,�(
) = S(0; 
)� S(m�; 
) ; (5.15)gives the 
on�gurational entropy of the problem, that is the number of 
lusters of solutions 4.There exist exp[�(
)N ℄ well separated 
lusters [Hamming distan
es � O(N )℄, ea
h one 
on-taining a number exp[S(m�; 
)N ℄ of 
losed solutions [Hamming distan
es � O(1)℄. This
lusterizations has two main 
onsequen
es. Lo
al algorithms for �nding solutions running inlinear time in N stop 
onverging [19℄: this is the typi
al situation for greedy algorithm whi
hget stu
k in one of the most numerous lo
al minima at a positive energy. Global algorithms,whi
h are guaranteed to 
onverge in polynomial time, need to keep tra
k along 
omputationof this 
omplex stru
ture of solutions and a memory linear in N turns out to be insuÆ
ient,as we will show below. For a general 
hoi
e of fvlg, the 
on�gurational entropy reads, fromeq. (2.185), �(
) = log(2) 241� (1�m)[1� log(1�m)℄ + 
Xl�2 vlml35 ; (5.16)where m is the largest solution to eq. (5.7). As dis
ussed in Ref. [21, 26℄, the values of 
d and

 are found as the points where �(
) �rst appears with a non zero value and where it rea
heszero again. We remind the reader that the 
orre
t expression for the 
omplexity 
an be foundvia eq. (2.185) only due to the parti
ular symmetry of this family of models. Moreover, evenin this simple 
ase we will see at the end of this se
tion that there are 
hoi
es of the generatingfun
tion v(x) for whi
h this 
omplexity pi
ture is not physi
al, being ruled out by a previouslyo

urring 
ontinuous transition. The algorithmi
 
onsequen
es of having �(
) > 0 have beenalready exposed in Refs. [19, 22℄: For 
 > 
d a glassy state with positive energy arises, whi
htraps any lo
al dynami
s, preventing it to 
onverge towards the ground state of zero energy.We 
onje
ture the 
ounterpart on global algorithms, su
h as Gaussian elimination, to be thatthe resolution time in
reases with N faster than linear. In the next se
tion we will 
he
k theabove 
onje
ture with two di�erent Gaussian elimination algorithms, none of whi
h is able tosolve the system in linear time for 
 > 
d.2think for example to a 2+4 model where only v2 and v4 are di�erent from 0.3We will see in the following that there are however 
ases where no tri
riti
al point is present, be
ause
ondition (5.14) 
annot be ful�lled by the parameters of the hyper-graph degree distribution.4Two solutions belong to the same 
luster (resp. to di�erent 
lusters) if their Hamming distan
e is O(1)[resp. O(N )℄.
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Figure 5.1: Typi
al shape of the Ât matrix after tN steps of Gaussian elimination.
t = 0.0 t = 0.3 t = 0.7Figure 5.2: The evolution of the Ât matrix for a spe
i�
 1024 � 1024 random system. Everydot 
orresponds to a 1 entry.5.1.3 Algorithms behaviorIn this se
tion we analyze the performan
es of a 
ouple of di�erent `Gaussian elimination'algorithms, their di�eren
e being in the order equations are solved. We will measure thenumber of operations and the size of the memory required for the solution of a set of linearequations, that is the 
omplexity for �nding all solutions to Â~x = ~y. We will see that, for ageneri
 ensemble of random problems, any algorithm undergoes an easy/hard transition at a
ertain 
 value, whi
h 
an not be pushed beyond the dynami
al transition threshold 
d. Inthis 
ontext we 
all easy su
h problems whi
h are solvable with a CPU-time and memory oforder N , and hard those requiring resour
es s
aling with N�, where � > 1. Given a set of Mlinear equations in N variables, Gaussian elimination pro
eeds as follows [for 
on
reteness wewill always work in GF(2)℄: At ea
h step, it takes an equation, e.g. x1 + x2 + x3 = y1, solves itwith respe
t to a variable, e.g. x1 = x2 + x3 + y1, and then it substitutes variable x1 with theexpression x2+x3+y1 in all the equations still unsolved. This pro
edure gives all the solutionsto any set of linear equations in, at most, O(N 3) steps and using O(N 2) memory. Neverthelessthis bounds only holds in the worst 
ase, namely when the matrix Â is dense. Very often, ina
tual appli
ations, the matrix is sparse and the algorithm is faster. We de�ne sparse a matrixwith O(N ) ones and dense that with O(N 2) ones. In order to analyze the 
omputational
omplexity of this problem, and its 
onne
tions to phase transitions, we fo
us on a spe
i�
ensemble of random problems, generalizations to other ensembles being straightforward. We
hoose sets of M = 
N linear equations, ea
h one 
ontaining exa
tly k = 3 of the N variables,taking values in GF(2). Thus the degree of a variable, de�ned as the number of equations thisvariable enters in, takes values from a Poissonian distribution of mean 3
. For very large N ,that is in the thermodynami
al limit, we are interested in how the 
omplexity 
hanges with 
.Moreover, for a �xed 
 su
h that the problem is hard, we would like to know when (in terms ofthe running-time t) and why the algorithm be
omes slower and slower. The running-time t is



5.1. GLOBAL ALGORITHMS TRANSITIONS IN LINEAR SYSTEMS OVER FINITE FIELDS121measured as the number of equations already solved, normalized by N , and thus takes valuesin [0; 
℄. Ât is the matrix representing the set of equations after tN steps, and it has the formshown in �g. 5.1. See �g. 5.2 for the a
tual shape of Ât in a spe
i�
 
ase with 1024 equationsin 1024 variables. For ease of simpli
ity, we have reordered the variables and the equations ofthe system, su
h that, at the i-th step, we solve the i-th equation with respe
t to xi. With this
hoi
e the left part of the matrix Ât has ones on the diagonal and zeros below. The right part
an be naturally divided in an upper part U and a lower one L. The density of ones in the Lmatrix | let us 
all it �(t; 
) | is uniform and depends on the initial 
, the time t and thealgorithm used for solving the linear system. The density of ones in the U part is not uniformand varies from row to row, as shown in �g. 5.1 with gray tones. For 
ontinuity reasons thedensity at the m-th row of U is exa
tly �(m=N ; 
). Then U is sparse or dense depending onwhether L is. De�ning l(t; 
) = �(t; 
)N(1 � t) the average number of ones per row in L, wehave that a sparse (resp. dense) matrix 
orresponds to having a �nite l (resp. �). At ea
h timestep, the number of operations required are dire
tly related to the density of the matrix Ât andthus to that of L. More spe
i�
ally, solving with respe
t to the variable in the upper left 
ornerof L, the number of operations is proportional to the number of ones in the �rst row of L, i.e.k(t; 
), times the number of rows of L having a one in the �rst 
olumn, i.e. �(t; 
)N(
� t), andthus equals l(t; 
)�(t; 
)N(
 � t) = l2
 � t1� t = N2�2(
 � t)(1� t) : (5.17)Then, if the matrix L is sparse a �nite number of operations per step is enough, while O(N 2)operations are required when L is dense. Integrating over time t 2 [0; 
℄, we have that the total
omplexity is given byN Z 
0 
 � t1� t l2(t; 
)dt = N3 Z 
0 (
 � t)(1� t)�2(t; 
)dt : (5.18)Sin
e the fun
tion �(t; 
) is 
ontinuous in t, we 
on
lude that�(t; 
) / 1=Nk(t; 
) finite 8 t 2 [0; 
℄) , �max(
) = 0, ( CPU time / NMemory / N (5.19)�(t; 
) finitek(t; 
) / N 9 t 2 [0; 
℄) , �max(
) > 0, ( CPU time / N3Memory / N2 (5.20)where �max(
) = limN!1 maxt2[0;
℄ �(t; 
) (5.21)is the order parameter signaling the onset of the hard regime. Having found the relation betweenthe density of ones in L and the 
omputational 
omplexity we are interested in, we 
an nowrun the algorithms and measure the density �(t; 
). The easy/hard transition should manifestitself with �max(
) be
oming di�erent from zero.Simplest Gaussian eliminationLet us start with the simplest algorithm, whi
h solves the equations in the same (random) orderthey appear in the set and with respe
t to a randomly 
hosen variable. In this very simple
ase, one 
an easily show that the 
omplexity for solving a set of linear equations with initialparameter 
 = 
0 is exa
tly the same as for solving a larger system with 
 > 
0 up to timet = 
0. For this reason, in this 
ase the fun
tion �(t; 
) does not depend on 
 and 
an be
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Figure 5.3: Density of ones in the L matrix during the solving pro
ess with the simplestGaussian elimination algorithm. The verti
al bar marks the analyti
al 
riti
al point 

 = 0:918.
al
ulated on
e for all the relevant 
 values. Moreover, it is known [19℄ that this algorithm,in the limit of very large N , keeps the matrix sparse for all 
 < 2=3. In �g. 5.3 we show thefun
tion �(t) for many large N values. The dotted-dashed line is a guide to the eyes and itshould not be too mu
h di�erent from the thermodynami
al limit: It goes through the twopoints (
 = 2=3 and 
 = 0:918) where �(t) must vanish and 
oin
ide with numeri
al data inthe region, where data for di�erent sizes seem to be quite 
lose to the asymptoti
 shape. Inthe thermodynami
al limit, the algorithm keeps the matrix sparse for times t � 2=3 and soit undergoes an easy/hard transition at 
 = 2=3: As long as 
 � 2=3, �max(
) = 0, while�max(
) > 0 for 
 > 2=3. As we will see below the lo
ation of the transition depends onthe algorithm used and, in this 
ase, does not 
orrespond to any underlying thermodynami
altransition. We note en passant that the 
 value where the L matrix be
omes sparse againseems to 
orrespond to the 
riti
al point 

 = 0:918 [19, 26, 94℄ (marked with a verti
al linein �g. 5.3). An explanation to this observation will be given in a forth
oming publi
ation. Itimplies that the value of the 
riti
al point 

, whi
h is relevant e.g. in the XOR-SAT model[82℄ in theoreti
al 
omputer s
ien
e, 
ould be obtained also by solving di�erential equations for�(t).Smart Gaussian eliminationNow we turn to a more 
lever Gaussian elimination algorithm, whi
h works as follows: At ea
htime step, it 
hooses the variable x having the smallest degree in L, i.e. that 
orresponding tothe less dense 
olumn of L, and solves with respe
t to x any of the equations where x entersin. Clearly, in this 
ase, the dynami
s and thus the density of ones in L depend on the initial
 value: A smaller 
 implies that for a longer time we 
an 
hoose variables of degree 1, whi
hdo not in
rease the average number of ones per row in L. It 
an be rigorously shown [26℄using, the leaf removal pro
edure des
ribed in the �rst 
hapter, that this pro
edure keeps thedensity of the L matrix 
onstant, �(t; 
) = �(0; 
), for times smaller than t� = 
(1 � m3),where m is the largest solution to 1�m = exp(�3
m2). The last equation is exa
tly eq. (5.7)with fv3 = 1; vk 6=3 = 0g. Running the algorithm for di�erent 
 values we obtain the densitiesreported in the main panel of �g. 5.4. For 
 < 
d = 0:818 the density remains O(1=N ) allalong the run, while for 
 > 
d there is a time when the density be
omes �nite and the problem
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ess with a smart Gaussianelimination algorithm (N = 8192). Inset: Zoom on the low-density part (with a di�erentnormalization).hard to handle. In order to better show what happens around t�, we have plotted in the inset of�g. 5.4 the mean number of ones per row, k(t). It is 
lear that for 
 < 
d this number remains
onstant, sin
e one 
an solve the system 
hoosing only variables of degree 1, not altering the Lmatrix. On the 
ontrary, for 
 � 
d there is a time t�(
) when variables of degree 1 terminate,and the algorithm has to start making substitutions in L, thus in
reasing the density of ones.Then 
d marks the onset of 
omputational hardness, both in memory and CPU time. One mayobje
t that also this value for the easy/hard transition may depend on the parti
ular algorithm.Note, however, that a 
ompletely di�erent linear algorithm des
ribed in Ref. [19℄ (whi
h �rstlyworks with high-degree variables) seems to work up to 
d. Moreover, as seen in the previousse
tion, we have analyti
ally found that at 
d a transition takes pla
e, whi
h drasti
ally 
hangesthe stru
ture of the solutions spa
e, and so we argue that any algorithm running in linear time
an 
onverge only up to 
d. Indeed is shown in [26℄ that solutions spontaneously form 
lustersfor 
 > 
d and this parti
ular stru
ture requires a larger memory to be stored.5.1.4 The RSA 
ryptosystem and fa
torizationIn this se
tion we shall validate the above s
enario on a 
on
rete appli
ation, namely integerfa
torization problems arising in the RSA 
ryptosystem. Su
h problems allow for a non-trivialmapping onto huge linear systems in GF(2) with a rather pe
uliar stru
ture of the underlying
onta
t matrix. In order to be as self-
ontained as possible, we �rstly give a short review of theproblem and the methodology (a detailed des
ription of the RSA 
ryptosystem 
an be found in[123℄). The only known method for breaking RSA implies fa
torization of the private key, whi
h
onsists in a natural number whi
h is the produ
t of two big prime numbers, n = p � q, with pand q approximately of the same size ' pn. Keys 
urrently used in appli
ations are numbers nranging from 1024 bits (309 de
imal digits) to 2048 bits (617 digits) length. The �rst attempt ata massive parallel fa
torization was the RSA129 (129 digits, 428 bits) 
hallenge, solved in 1994with the quadrati
 sieve (QS) algorithm. More re
ently, in August, 1999 the RSA155 
hallengedwas solved using the general number �eld sieve (GNFS ) algorithm. This has for
ed to abandonthe 512-bit (155 digits) length for sensitive information se
urity. There are now several sub-exponential algorithms for solving the fa
torization problem, the faster of whi
h is GNFS. QS
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ture, 
onsisting of two phases: a �rst one in whi
h a big (thesize depending mostly on the size of n) linear system in GF(2) is produ
ed, and a se
ond one inwhi
h this system is solved. Although the �rst phase is de�nitely more 
ostly, the solving phase(whi
h a�e
t this se
tion) takes a respe
table part of the total time and memory requirement.Espe
ially as numbers get bigger this be
omes a limitation, be
ause the fastest solving methodsused employ a sole workstation, with the 
onsequent memory restri
tion. Moreover, in re
entfa
torizations a new �ltering phase has been pla
ed between the previous two, in whi
h pie
esof the system (spe
i�
ally 
olumns of the f0; 1g�matrix) get dis
arded in order to simplify thesolving phase, e�e
tively transferring part of the total time from the se
ond phase to the �rstone.The QS algorithmFor a ni
e des
ription of the QS algorithm see [126℄. Syntheti
ally, QS works at follows. Itbuilds a list of integer numbers fyigi2I su
h that:� yi � x2i mod[n℄ for some xi and yi 6= xi;� yi is 
ompletely fa
torizable in a given (relatively small) subset of B primes 
alled thefa
tor-base.This is 
alled the sieving phase. The algorithm then sear
hes a subset J � I of elements ofthe list su
h that Qi2J yi = z2 is a square (solving phase). On
e found, z2 � x2 mod[n℄ (herex = Qi2J xi) and this implies that n divides (x + z)(x � z) and then g
d(x � z; n) will likely(further trials will in
rease the probability) be a non-trivial fa
tor of n. In order to �nd elementpairs xi,yi su
h that yi � x2i mod[n℄ we 
an use the polynomial y = f(x) = x2�n and evaluateit at di�erent values of x, keeping only values of y whi
h 
ompletely fa
torize between the �rstB primes (the fa
tor-base). The sieving will allow us to do this eÆ
iently. The idea is that,given p, it is easy to �nd whi
h are the values of f(x) whi
h are divisible by p, be
ause p dividesf(x) if and only if f(x) = x2� n � 0 mod[n℄ and this is a quadrati
 equation in GF(p), havingat most 2 solutions. These solutions are nothing but the square roots of n modulo p (if theyexist). This has a �rst 
onsequen
e, i.e. that a prime p will not divide f(x) if n is not a squaremod[p℄ independently of the value of x. So if we 
an dete
t these primes, we 
an eliminate themdire
tly from our set of primes. Dete
ting them is very easy: Using Fermat's little theorem, weknow that np�1 � 1 mod[p℄ ; (5.22)assuming that p do not divide n (whi
h is trivially a reasonable assumption, anyway, be
ausewe are sear
hing a divisor of n). If p is an odd prime, i.e. not 2 (all n are a squares mod[2℄),then 
alling m = n p�12 we have that m2 � 1 mod[p℄, so m � �1 mod[p℄. This m will proveto be handy. If n � s2 mod[p℄ then m � sp�1 � 1 mod[p℄. Conversely, if m � 1 then n isa square modulo p (not proven here). The number m is 
alled the Lagrange symbol and 
anbe 
omputed eÆ
iently in one of the �rsts stages of the algorithm. Useful primes (those withm = 1) are roughly a random half of all the �rst B primes. So now we will keep only this halfand rede�ne \the �rst B primes" as \the �rst B primes with m = 1". Computing the squareroot modulo p is a bit more diÆ
ult than knowing that it exists, but 
an also be done eÆ
iently.For instan
e, the easiest 
ase is when p+14 is an integer, then �n p+14 �2 = n p+12 � mn mod[p℄. Asm = 1 (or else there is no solution) then �n p+14 mod[p℄ are the required square roots. On
e we
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omputed the two solutions f(x1;2p ) � 0 mod[p℄, then adding p; 2p; 3p; : : : to them we willobtain all x su
h that f(x) is divisible by p. The sieve idea is to initialize an array with valuesof f(x) for 
onse
utive x 2 [[pn℄; [pn℄ +M ℄ indexed by x, and then for ea
h p in our fa
torbase to divide the 
orresponding arithmeti
 progression of ff(x1;2p + kp); k = 1; : : :g by p. Atthe end those values whi
h are 
ompletely fa
tored between the primes in the fa
tor base willbe
ome 1 (Well, not exa
tly. Some of them 
an have multiple times the same prime fa
tor.But we 
an set up a threshold instead of 1 below whi
h we 
onsider the number 
ompletelyfa
tored. We 
an re
he
k afterwards). We take those values and put their fa
torization in anarray f(x1) � � � f(xm)p1...pB 2664 �(1)1 � � � �(m)1... . . . ...�(1)B � � � �(m)B 3775 mod[2℄The solving phase is 
on
eptually simple: A solution of the homogeneous linear system Âv = 0is a f0; 1gve
tor v whi
h represent 
orre
tly the subset J , in the sense that vi = 1if and only ifi 2 J .The matrix ensembleCorrelationsWe have implemented the simplest QS des
ribed in [126℄ in order to analyze the outputmatrix ensemble. We attempted to look for 
orrelations in the presen
e/absen
e of di�erentprimes in the set of divisors of the variables yi. Spe
i�
ally we 
he
ked that there is virtually no
orrelation between rows of the matrix: We have taken one su
h output matrix (resulting fromthe fa
torization of a produ
t of two 20 digits primes) and 
omputed the 
ovarian
e between the
orresponding spin variables s1; s2 of two rows r1; r2, the averages being taken along di�erent
olumns, hs1s2i � hs1ihs2i :On
e repeated for all r1 < r2, we found that all pairs have 
orrelations in the interval 0� 0:06,a proportion of 0:9999 pairs having 
orrelations in 0� 0:02.Dependen
e on \fa
torization hardness"We then examined dependen
e of the resulting distributions of ones per row on the \fa
tor-ization hardness" of the number n. Typi
ally (depending on the algorithm) the 
omplexity offa
torization depends on the size of the smallest prime divisor of n 5: For instan
e, trial divisionends in exa
tly this amount of steps. It was 
onje
tured that this would be re
e
ted in thestru
ture of the output matrix. We have 
onstru
ted 25 numbers n with di�erent fa
tor sizes(from now on, fa
tor type 10+10+10 will mean a 30 digit number 
onstru
ted as a produ
t oftree 10-digit primes) organized as follows:� 5 of type 20+20� 5 of type 10+305This is why in RSA we 
hoose n = p � q with p; q ' pn.
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es ofsize around 1300. The line is the best power law �t on X > 3 data, giving an exponent � �2:2.� 5 of type 13+13+13� 5 of type 10+10+10+10� 5 of type 5+5+5+5+5+5+5+5All 25 numbers di�ered between them in less than a 0.01%. We then made QS 
ompute thefa
torization matri
es, with a fa
tor base of size 1500. This value for the size of the fa
tor basehas been 
hosen experimentally in order to minimize the sieving phase duration. The resultingmatri
es were of size 1500 � 1510 and were then post-pro
essed in order to remove rows and
olumns with a single 1. The �nal size is thus redu
ed of about 200 
olumns and rows. Theresulting distributions of ones per row are plotted in �g. 5.5, showing very little variations.They 
an be very well des
ribed by a unique distribution, whi
h is substantially a power lawwith some little deviations in the range of type-2 and type-3 rows. The best �t in the regionX > 3 gives an exponent � �2:2. Our 
on
lusion is that statisti
al properties of the resultingmatrix do not depend on the fa
torization hardness. The bottlene
k for fa
torizing a largehard number is mainly determined by the time required by QS to generate the matrix, whi
hindeed strongly depends on the size of the smallest fa
tor. In the rest of the se
tion we willanalyze the solving phase, assuming the fa
torization matrix to have un
orrelated rows and thenumber of ones per row to be a random variable extra
ted from distribution in �g. 5.5. Thesetwo assumptions have been experimentally veri�ed.Linear solving methodsPlain standard Gaussian elimination exe
ution time is 
ubi
 in the size of the matrix (ourmatri
es are almost square). Fortunately, we 
an pa
k 32 matrix entries in a single 4-byte word,and then the sum operation is implemented as the low-
ost bit-wise logi
al XOR operation,saving a fa
tor 32 in time. As also the matrix is very sparse, instead of keeping in memoryall of it, we 
an memorize only the position of 1's. This forbid us to use the fa
tor-32 tri
k,but allows us to do the �rst steps very qui
kly. At some time in the Gaussian eliminationpro
ess (typi
ally more than half of the pro
ess), the remaining (non eliminated) part will bevery dense, and then it will be 
onvenient to swit
h to the standard method above. This is
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Figure 5.6: Phase diagram (a, 
) for a typi
al 
hoi
e of s = 2:2 and lmax = 200. The bold line1=(2a) represents the 
ontinuous transition, while 
d(a) and 

(a) 
orresponds respe
tively tothe spinodal and the 
riti
al lines of a �rst order transition. The dot marks the origin of theselines.what was done in the solving phase of RSA129. Another option is to use in one of the stagesan iterative algorithms, like the dis
rete Lan
zos. The Lan
zos method has the advantage ofhaving a stable O(N 2) total time for a sparse matrix, but �nds only one solution (or a pre�xedquantity in the blo
k-Lan
zos variant) instead of all of them. For fa
torization this is not aproblem, be
ause we need only a few solutions to have a reasonable 
han
e. This is the methodthat was used in the solving phase of RSA155.Power law distributed fvlg: Phase diagram and 
omparison with real appli
ationdataThe previous analysis leads to the 
onstru
tion of matri
es whose density of non zero entriesfollows quite well a power law distribution with light deviations due to rows with a small numberof ones and a 
uto�, lmax, of some hundreds. Then we use the following distribution in theanalyti
al treatment: v2 = a ; (5.23)vk = � l�s for 3 � l � lmax ; (5.24)where � is a normalizing fa
tor equal to (1� a)=Plmaxl=3 l�s. The fa
torized integers 
onsideredin the previous se
tion lead to an exponent s ' 2:2 and to a non zero support up to lmax � 200.The 
hoi
e of keeping v2, and only v2, as an independent parameter is di
tated by the verydi�eren
e in the physi
al behavior of 2-spin terms and l-spin terms with l > 2. The study of thephase diagram in the 
ontrol parameter 
 for 
hoi
es of a, s and lmax retrieved from real datareveals a non trivial behavior. In �g. 5.6 we show the phase diagram for s = 2:2 and lmax = 200.Only part of the entire phase diagram (a 2 [0; 1℄, 
 2 [0; 1℄) is shown for 
larity. The linesfurther go on smoothly outside the drawn portion. If a is high enough, we are in the rightmostregion I of the phase diagram, where algorithms smoothly �nd solutions to the system and donot undergo any 
riti
al slowing down. Indeed, 
rossing the bold hyperbole 
 = 1=(2a) given by
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Figure 5.7: Dependen
e on s and lmax of the origin of �rst order 
riti
al lines. The bold 
urve isthe 
ontinuous phase transition 
 = 1=(2a). Ea
h solid bell-shaped 
urve in the left plot is theensemble of su
h origins, de�ned as the point where, de
reasing a, another non trivial solutionto the saddle point equations appears. Ea
h 
urve from right to left is indexed by a di�erentvalue of lmax = 10; 30; 100; 200; 1000; 2000; 10000. Ea
h point on the 
urve 
orresponds to aparti
ular value of s (the dot is for s = 2:2 and lmax = 200 as in �g. 5.6). Along the 
urves in
reases for de
reasing 
 (see right plot). From ea
h point of the 
urve originate the two�rst order 
riti
al lines shown for s = 2:2 and lmax = 200 in �g. 5.6, and pi
torially drawnfor di�erent s values in the right plot. When the origin joins the se
ond order hyperbole thesystem is at a tri
riti
al point. stri
riti
al s
ales very rapidly with lmax 
onverging to� 2:73�2:74already for lmax � 100.
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ondition �G(m)=�mjm=0 = 0, the system undergoes a 
ontinuous transition in the orderparameter m, representing the fra
tion of variables taking the same value in all the solutions.The problem of �nding solutions is always easy, as for the 
ase fa = 1; vk 6=2 = 0g. De
reasing awe meet a �rst intermediate region II, where the birth of a meta-stable non-trivial saddle-pointsolution at 
 = 
d(a) is given by the solution of eq. (5.10). However, algorithms should not bemu
h a�e
ted by this meta-stable state, be
ause the system starts magnetizing 
ontinuouslybefore, 
rossing the bold line. In
reasing 
 up to the 
riti
al value 

(a) one meets a �rst ordertransition, where the magnetization, that was already non-zero, undergoes a further jump. These
ond 
entral region III shows an inversion between 
d(a) and the bold line 1=(2a). These twointermediate regions have not been exhaustively studied yet, be
ause real data all fall in theleftmost one. The shape of the 
entral part of the phase diagram is very sensitive to the 
hoi
eof the 
ontrol parameters s and kmax, as shown in �g. (5.7). The 

(a) 
urve in the se
ond andthird regions is found solving S(m�; 

) = S(m�; 

) ; (5.25)where m� is the smallest positive solution to G(m) = 0, whi
h 
orresponds to the magnetizationof the ferromagneti
 state arisen from the se
ond order transition (bold line). The points of
rossing showing the onset of di�erent regions, from right to left, are found respe
tively as:�G(m)�m = 0 & S(m�; 
) = S(m�; 
), �G(m)�m = 0 & 
 = 12a and S(m�; 
) = S(0; 
) & 
 = 12a .The leftmost part IV shows the typi
al behavior des
ribed in [19℄. In
reasing 
 the systemnever rea
hes the 
ontinuous transition on the bold line, but it undergoes a �rst dynami
altransition at 
d(a) and se
ond thermodynami
al one at 

(a), found via eq. (5.25) with m� = 0sin
e we are still below the se
ond order transition line. Con�gurational entropy is non-zerobetween 
d(a) and 

(a), and solving algorithms are a�e
ted by it. There are typi
ally otherspinodal lines in the phase diagram, but they always 
orrespond to sub-optimal solutions, andwere, therefore, not shown in the pi
ture. The 
orresponding behavior of the magnetization inregions I, II, III and IV as well as at the boundaries are shown in �g.( 5.8). There, the lower
urve represents the 
ontinuous phase transitions typi
al of loops per
olation in rank 2 graphs.Indeed, if the fra
tion v2 is high enough, all the previous 
luster separation and orthogonalityarguments do not hold, be
ause in region II, prior to 
lustering, the rank 2 sub-graph onebig enough to form an extensive 
onne
ted 
omponent where usual per
olation is attained.In region III 
lustering appears before, but that the rank 2 subgraph per
olates for a valueof 
 where the 
omplexity of metastable states is still extensive. Therefore, In region II thedynami
al phese transition is shielded by the 
ontinuos one, while in III a �rst dynami
altransition is present, but the stati
 one is again due to simple 2 loops per
olation phenomenon.In real data the fra
tion of 2-variables equations is typi
ally of the order of 0.2 and 
 ' 1. So wealways work deep into phase IV where, during the solving pro
edure, the system undergoes a�rst dynami
al transition, that 
orresponds to a slowing down of the solving algorithms, before�nding solutions. Noti
e that whenever the �rst physi
al stati
 transition is the 
ontinuous one,the value of the 
omplexity drops to zero. The typi
al 
urves for the 
omplexity of the highestenergy density metastable states as a fun
tion of 
 is exempli�ed if �g. (5.9) for regions III andIV. For the parti
ular form of the v(x) studied in this se
tion and for the limit lmax !1, itis easy to see that 
ondition (2.218) reads:v2 = 31�s�(s)� 2�s � 1 + 31�s (5.26)The full phase diagram of the model studied in this se
tion 
an be also retrieved in two di�erentways: The �rst one [26℄ uses the leaf removal equation for the general p-spin model introdu
ed
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hapter. Spe
ializing the form of the generating fun
tion v(x) to the present 
asewe immediately �nd the equivalen
e between eq.(2.203) and the self 
onsistent 
ondition (5.7)for the magnetization of the ferromagneti
 model, as it was already noted in 
hapter 1. Theinstability 
ondition for 
 analogously follows from eq.(2.204). Moreover, it 
an be shownthat 
ondition (2.217) is equivalent to the vanishing ferromagneti
 
omplexity threshold usedin this se
tion. The same is obviously true for the 
ontinuous threshold 
̂ and for 
tri
riti
al,when present. The se
ond alternative way to solve this model with statisti
al physi
s toolsis the general 1RSB-like solution via the 
avity method at T = 0. Its general strategy waspresented in [23℄ and [24℄, applied to the parti
ular 
ase of the p-spin model on uniform rankPoissonian degree hyper-graphs in [26℄ and straightforwardly extended in the multiple rank 
asein 
hapter 1. The method has been shown to be equivalent to the repli
a method on averagesamples. Although it is not proven to be exa
t yet, it 
an be proven along the same lines of the
al
ulations presented in 
hapter 5 to give rigorous upper bounds to the thresholds. Sin
e thesevalues 
oin
ide with the exa
t ones found via the generalized leaf-removal method, and sin
ethe 
lustering property of the p-spin in the dynami
al region implies the physi
al exa
tness ofa 1RSB pi
ture without further symmetry breaking phenomena, we are very 
on�dent in theresults.Overall, we have analyzed the behavior of di�erent type of polynomial algorithms in thesolutions of large-s
ale linear systems over �nite �elds. The 
onne
tion between memory re-quirements and 
lustering phase transitions as been made 
lear on both arti�
ially generatedproblem as well as on a \real-world" appli
ations. While the role of the dynami
al glass tran-sition in lo
al sear
h algorithm was already well known (trapping in lo
al minima), we haveprovided a 
lear example of the role of su
h type of glass transition in global dynami
al pro-
esses whi
h are guaranteed to 
onverge to the global optimum in some polynomial time. Thememory 
atastrophe found is su
h 
ases 
onstitutes a 
on
rete limitation for the performan
eof single-ma
hine programs.
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 phase transition for de
oding algorithmsThe 
ontent of this se
tion is the output of a 
ollaboration with Andrea Montanari, Silvio Franzand Federi
o Ri

i-Tersenghi [127℄.5.2.1 Introdu
tionRe
ently there has been some interest in studying \
omplexity phase transitions", i.e. abrupt
hanges in the 
omputational 
omplexity of hard 
ombinatorial problems as some 
ontrol pa-rameter is varied [128℄. These phenomena are thought to be somehow related to the physi
sof glassy systems, where the physi
al dynami
s experien
es a dramati
 slowing down as thetemperature is lowered [129℄.Complexity is a 
entral issue also in 
oding theory [130, 131℄. Coding theory [132, 134, 133℄deals with the problem of 
ommuni
ating information reliably through an unreliable 
hannelof 
ommuni
ation. This task is a

omplished by making use of error 
orre
ting 
odes. In 1948Shannon [135℄ proved that almost any error 
orre
ting 
ode allows to 
ommuni
ate withouterrors, as long as the rate of transmitted information is kept below the 
apa
ity of the 
hannel.However de
oding is an intra
table problem for almost any 
ode. Coding theory is therefore ari
h sour
e of interesting 
omputational problems.On the other hand it is known that error 
orre
ting 
odes 
an be mapped onto disorderedspin models [38, 136, 137, 138, 139℄. Remarkably there has re
ently been a revolution in
oding theory whi
h has brought to the invention of new and very powerful 
odes based onrandom 
onstru
tions: turbo 
odes [140℄, low density parity 
he
k 
odes (LDPCC) [141, 142℄,repetition a

umulated 
odes [143℄, et
. As a matter of fa
t the equivalent spin models havebeen intensively studied in the last few years. These are diluted spin glasses, i.e. spin glasseson random hyper-graphs [12, 23, 22, 20℄.The new 
odes are de
oded by using approximate iterative algorithms, whi
h are 
loselyrelated to the TAP-
avity approa
h to mean �eld spin glasses [144, 145℄. We think thereforethat a 
lose investigation of these systems from a statisti
al physi
s point of view, having inmind 
omplexity (i.e. dynami
al) issues, 
an be of great theoreti
al interest6.Let us brie
y re
all the general setting of 
oding theory [132℄ in order to �x a few notations(
f. �g. 5.10 for a pi
torial des
ription). A sour
e of information produ
es a stream of symbols.6The reader is invited to 
onsult Refs. [146, 147, 148, 149, 150, 151, 152, 153, 154, 155℄ for a statisti
alme
hani
s analysis of the optimal de
oding (i.e. of stati
 issues).
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e, that the sour
e produ
es unbiased random bits. The stream ispartitioned into blo
ks of length Nblo
k. Ea
h of the possible 2Nblo
k blo
ks is mapped to a
odeword (i.e. a sequen
e of bits) of length N > Nblo
k by the en
oder and transmitted throughthe 
hannel. An error 
orre
ting 
ode is therefore de�ned either as a mapping f0; 1gNblo
k !f0; 1gN , or as a list of 2Nblo
k 
odewords. The rate of the 
ode is de�ned as R = Nblo
k=N .Let us denote7 the transmitted 
odeword by xin = [xin1 ; : : : ; xinN ℄T. Due to the noise, a di�erentsequen
e of symbols xout = [xout1 ; : : : ; xoutN ℄T is re
eived. The de
oding problem is to infer xingiven xout, the de�nition of the 
ode, and the properties of the noisy 
hannel.It is useful to summarize the general pi
ture whi
h emerges from our work. We shall fo
uson Gallager 
odes (both regular and irregular). The optimal de
oding strategy (maximum-likelihood de
oding) is able to re
over the transmitted message below some noise threshold:p < p
. Iterative, linear time, algorithms get stu
k (in general) at a lower noise level, andare su

essful only for p < pd(alg:), with pd(alg:) � p
. In general the \dynami
al" thresholdpd(alg:) depends upon the details of the algorithm. However, it seems to be always smallerthan some universal (although 
ode-dependent) value pd. Moreover, some \optimal" linear-timealgorithms are su

essful up to pd (i.e. pd(alg:) = pd). The universal threshold pd 
oin
ideswith the dynami
al transition [129℄ of the 
orresponding spin model.The plan of the se
tion is the following. In Subse
tion 5.2.2 we introdu
e low density parity
he
k 
odes (LDPCC), fo
using on Gallager's ensembles, and we des
ribe message passingde
oding algorithms. We brie
y re
all the 
onne
tion between this algorithms and the TAP-
avity equations for mean-�eld spin glasses. In Subse
. 5.2.3 we de�ne a spin model whi
hdes
ribes the de
oding problem, and introdu
e the repli
a formalism. In Subse
. 5.2.4 weanalyze this model for a parti
ular 
hoi
e of the noisy 
hannel (the binary erasure 
hannel).In this 
ase 
al
ulations 
an be fully expli
it and the results are parti
ularly 
lear. Then, inSubse
. 5.2.5, we address the general 
ase. The Appendi
es of [127℄ 
olle
t some details of our
omputations that we have not in
luded here not to overload this thesis8.
5.2.2 Error 
orre
ting 
odes, de
oding algorithms and the 
avityequationsThis Subse
tion introdu
es the reader to some basi
 terminology in 
oding theory. In the �rstpart we de�ne some ensembles of 
odes, namely regular and irregular LDPCC. In the se
ondone we des
ribe a 
lass of iterative de
oding algorithms. These algorithms have a very 
learphysi
al interpretation, whi
h we brie
y re
all. Finally we explain how these algorithms areanalyzed in the 
oding theory 
ommunity. This Se
tion does not 
ontain any original result.The interested reader may 
onsult Refs. [156, 141, 134, 145℄ for further details.7We shall denote transmitted and re
eived symbols by typographi
 
hara
ters, with the ex
eption of sym-bols in f+1;�1g. In this 
ase use the physi
ists notation and denote su
h symbols by �. When 
onsideringbinary symbols we will often pass from the x notation to the � notation, the 
orresponden
e � = (�1)x beingunderstood. Finally ve
tors of length N will be always denoted by underlined 
hara
ters: e.g. x or �.8The reader should noti
e that in [127℄ the notations for the hyper-graph rank and degree probabilitydistribution and generating funtions are reversed.
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3Figure 5.11: The Tanner graph for the H2(3) Hamming 
ode.En
oding : : :Low density parity 
he
k 
odes are de�ned by assigning a binary N �M matrix Ĥ = fHijg,with Hij 2 f0; 1g. All the 
odewords are required to satisfy the 
onstraintĤ x = 0 (mod 2) : (5.27)The matrix Ĥ is 
alled the parity 
he
k matrix and the M equations summarized in eq. (5.27)are the parity 
he
k equations (or, for short, parity 
he
ks). If the matrix Ĥ has rank M (thisis usually the 
ase), the rate is R = 1�M=N .There exists a ni
e graphi
 representation of eq. (5.27) whi
h is often used in the 
odingtheory 
ommunity: the Tanner graph representation [64, 65℄. One 
onstru
ts a bipartite graphby asso
iating a left-hand node to ea
h one of the N variables, and a right-hand node to ea
hone of the M parity 
he
ks. An edge is drawn between the variable node i and the parity 
he
knode � if and only if the variable xi appears with a non-zero 
oeÆ
ient in the parity 
he
kequation �.Let us for instan
e 
onsider the 
elebrated H2(3) Hamming 
ode (one of the �rst examplesin any book on 
oding theory). In this 
ase we have N = 7, M = 3 andĤ = 264 1 0 0 1 1 0 10 1 0 1 0 1 10 0 1 0 1 1 1 375 : (5.28)This 
ode has 24 = 16 
odewords x(�) = [x(�)1 ; : : : ; x(�)7 ℄T, with � 2 f1; : : : ; 16g. They are thesolutions of the three parity 
he
k equations: x1 + x4 + x5 + x7 = 0; x2 + x4 + x6 + x7 = 0;x3 + x5 + x6 + x7 = 0 (mod2). The 
orresponding Tanner graph is drawn in �g. 5.11.In general one 
onsiders ensembles of 
odes, by de�ning a random 
onstru
tion of the parity
he
k matrix. One of the simplest ensembles is given by regular (k; l) Gallager 
odes. In this
ase one 
hooses the matrix Ĥ randomly among all the N �M matri
es having k non-zeroentries per row, and l per 
olumn. The Tanner graph is therefore a random bipartite graphwith �xed degrees k and l respe
tively for the parity 
he
k nodes and for the variable nodes.Of 
ourse this is possible only if M=N = l=k.Amazingly good 
odes [158, 159, 157℄ where obtained by slightly more sophisti
ated irregular
onstru
tions. In this 
ase one assigns the distributions of the degrees of parity 
he
k nodesand variable nodes in the Tanner graph. A

ordingly to the notations introdu
ed in the �rst
hapter, We shall denote by fvlg the degree distribution of the 
he
k nodes and f
kg the degree
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oming from the 
hannel must be used for de
oding the H2(3)Hamming 
ode: a pi
torial view.distribution of the variable nodes. This means that there areN
k bits of the 
odeword belongingto k parity 
he
ks and Nvl parity 
he
ks involving l bits for ea
h k and l. In this 
ase, we shallalways assume vl = 0 for l < 3 and 
k = 0 for k < 2 It is useful to rede�ne here the generatingpolynomials 
(x) � 1Xk=3 
kxk ; v(x) � 1Xl=2 vlxl ; (5.29)whi
h satisfy the normalization 
ondition 
(1) = v(1) = 1. Moreover we de�ne the average
he
k and variable degrees < l >� l = v0(1) and < k >� k = 
0(1). Parti
ular examples of thisformalism are the regular 
odes, whose generating polynomials are 
(x) = xk, v(x) = xl.: : : and de
odingThe 
odewords are transmitted trough a noisy 
hannel. We assume antipodal signalling: onesends �in 2 f+1;�1g signals instead of xin 2 f0; 1g through the 
hannel (the 
orresponden
ebeing given by � = (�1)x). At the end of the 
hannel, a 
orrupted version of this signals isre
eived. This means that if �in 2 f+1;�1g is transmitted, the value xout is re
eived with prob-ability density Q(xoutj�in). The information 
onveyed by the re
eived signal xout is 
onvenientlydes
ribed by the log-likelihood9:h(xout) = 12 log Q(xoutj+ 1)Q(xoutj � 1) : (5.30)We 
an represent this information by wavy lines in the Tanner graph, 
f. �g. 5.12.The de
oding problem is to 
ompute the probability for ea
h transmitted bit �ini to takethe value �i, given the stru
ture of the 
ode and the re
eived message xout = [xout1 ; : : : ; xoutN ℄T.This is in general an intra
table problem [130, 131℄. Re
ently there has been a great interestin dealing with this problem using approximate message passing algorithms.Message passing algorithms are iterative: at ea
h step t one keeps tra
k of Mk messagesfrom the variable nodes to the 
he
k nodes fy(t)�!ig and vi
e-versa fx(t)i!�g. Messages 
an be9Noti
e the un
onventional normalization: the fa
tor 1=2 is inserted to make 
onta
t with the statisti
alme
hani
s formulation.
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Figure 5.13: A graphi
 representation of the operations exe
uted in a message passing algorithm.At the variable node i (on the left): x(t+1)i!1 = F (y(t)2!i; y(t)3!i; hi). At the 
he
k node � (on theright): y(t+1)�!1 = G(x(t)2!�; x(t)3!�; x(t)4!�).thought to travel along the edges and 
omputations to be exe
uted at the nodes. A node
omputes the message to be sent along ea
h one of the edges, using the messages re
eivedfrom the other (!) edges at the previous iteration (the variable nodes make also use of thelog-likelihoods h(xouti )), 
f. �g. 5.13. At some point the iteration is stopped (there exists nogeneral stopping 
riterion), and a 
hoi
e for the bit �i is taken using all the in
oming messages(plus the log-likelihood h(xouti )).The fun
tions whi
h de�ne the \new" messages in terms of the \old" ones, 
an be 
hosento optimize the de
oder performan
es. A parti
ularly interesting family is the following:x(t+1)i!� = hi + X�03i:�0 6=� y(t)�0!i (5.31)y(t+1)�!i = 1� ar
tanh 24 Yj2�: j 6=i tanh �x(t)j!�35 ; (5.32)where we used the notation i 2 � whenever the bit i belongs to the parity 
he
k �. The messagesfx(�)i!�g and fy(�)�!ig 
an be res
aled in su
h a way to eliminate the parameter � everywhere ex
eptin front of hi. Therefore � allows to tune the importan
e given to the information 
ontained inthe re
eived message.After the 
onvergen
e of the above iteration one 
omputes the a posteriori log-likelihoodsas follows: Hi = hi +X�3i y(1)�!i : (5.33)The meaning of the fHig is analogous to the one of the fhig (but for the fa
t that the Hiin
orporate the information 
oming from the stru
ture of the 
ode): the best guess for the biti is �i = +1 or �i = �1 depending whether Hi > 0 or Hi < 0.The most popular 
hoi
e for the free parameter � is � = 1: this algorithm has been inventedseparately by R. G. Gallager [141℄ in the 
oding theory 
ontext (and named the sum-produ
talgorithm) and by D. Pearl [160℄ in the arti�
ial intelligen
e 
ontext (and named the beliefpropagation algorithm). Also � =1 is sometimes used (the max-produ
t algorithm).The alerted reader will noti
e that the eqs. (5.31)-(5.32) are nothing but the 
avity equationsat inverse temperature � for a properly 
onstru
ted spin model. This remark is the obje
t ofRefs. [161, 144℄.In the analysis of the above algorithm it is 
onvenient to assume that �ini = +1 for i =1; : : : ; N . This assumption 
an be made without loss of generality if the 
hannel is symmetri




5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 137(i.e. if Q(xj+ 1) = Q(�xj � 1)). With this assumption the hi are i.i.d. random variables withdensity p(h) � Q(x(h)j+ 1)jx0(h)j ; (5.34)where x(h) is the fun
tion whi
h inverts eq. (5.30). In the following we shall 
onsider twoparti
ular examples of noisy 
hannels, the generalization being straightforward:� The binary erasure 
hannel (BEC). In this 
ase a bit 
an either be re
eived 
orre
tlyor erased10. There are therefore three possible outputs: f+1;�1; 0g. The transitionprobability is:Q(xoutj+ 1) = 8><>: (1� p) if xout = +1 ;p if xout = 0 ;0 if xout = �1 ; Q(xoutj � 1) = 8><>: 0 if xout = +1 ;p if xout = 0 ;(1� p) if xout = �1 :(5.35)We get therefore the following distribution for the log-likelihoods: p(h) = (1� p) Æ1(h)+p Æ(h) (where Æ1 is a Dira
 delta fun
tion 
entered at +1). Let us re
all that the 
apa
ityof the BEC is given by CBEC = 1� p: this means that a rate-R 
ode 
annot assure error
orre
tion if p > 1� R.� The binary symmetri
 
hannel (BSC). The 
hannel 
ips ea
h bit independently withprobability p. NamelyQ(xoutj+ 1) = ( (1� p) if xout = +1 ;p if xout = �1 ; Q(xoutj � 1) = ( p if xout = +1 ;(1� p) if xout = �1 :(5.36)The 
orresponding log-likelihood distribution is p(h) = (1 � p) Æ(h � h0) + p Æ(h + h0),with h0 = ar
tanh(1� 2p). The 
apa
ity of the BSC is11 CBSC = 1� h(p): a rate-R 
ode
annot 
orre
t errors if p > ÆGV (R).It is quite easy [162, 156℄ to write a re
ursive equations for the probability distributions ofthe messages �t(x) and b�t(y):�t+1(x) = 1k 1Xk=2 
kk Z k�1Yi=1 dyi b�t(yi) Z dh p(h) Æ  x� h� k�1Xi=1 yi! ; (5.37)b�t+1(y) = 1l 1Xl=3 vll Z l�1Yi=1 dxi �t(xi) Æ  y � 1� ar
tanh "l�1Yi=1 tanh �xi#! : (5.38)These equations (usually 
alled the density evolution equations) are 
orre
t for times t� logNdue to the fa
t that the Tanner graph is lo
ally tree-like. They allow therefore to predi
twhether, for a given ensemble of 
odes and noise level (re
all that the noise level is hidden inp(h)) the algorithm is able to re
over the transmitted 
odeword (for large N). If this is the 
ase,the distributions �t(x) and b�t(y) will 
on
entrate on x = y = +1 as t ! 1. In the opposite
ase the above iteration will 
onverge to some distribution supported on �nite values of x andy. In Tab. 5.1 we report the threshold noise levels for several regular 
odes, obtained using the10This is what happens, for instan
e, to pa
kets in the Internet traÆ
.11We denote by h(p) the binary entropy fun
tion h(p) = �p log2 p� (1�p) log2(1�p). It is useful to de�ne itsinverse: we denote by ÆGV (R) (the so-
alled Gilbert-Varshamov distan
e) the smallest solution of h(Æ) = 1�R.
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 pd p
 pd(� = 1) pd(� = 2) pd(� =1)(6; 3) 0:4882 0:4294 0:100 0:084 0:078 0:072(10; 5) 0:4995 0:3416 0:109 0:070 0:056 0:046(14; 7) 0:5000 0:2798 0:109 0:056 0:039 0:029(6; 5) 0:8333 0:5510 0:264 0:139 0:102 0:078Table 5.1: The stati
 and dynami
al points for several regular 
odes and de
oding algorithms,
f. eqs. (5.31), (5.32).density evolution method, together with the thresholds for the optimal de
oding strategy, seeRef. [154℄.Finally let us noti
e that the �xed point of the iteration (5.37)-(5.38) is the repli
a symmetri
order parameter for the equivalent spin model.5.2.3 Statisti
al me
hani
s formulation and the repli
a approa
hWe want to de�ne a statisti
al me
hani
s model whi
h des
ribes the de
oding problem. Theprobability distribution for the input 
odeword to be � = (�1; : : : ; �N) 
onditional to there
eived message, takes the formP (�) = 1Z ÆĤ [�℄ exp( NXi=1 hi�i) ; (5.39)where ÆĤ [�℄ = 1 if � satis�es the parity 
he
ks en
oded by the matrix Ĥ, 
f. eq. (5.27), andÆĤ [�℄ = 0 otherwise. Sin
e we assume the input 
odeword to be �in = (+1;+1; : : : ;+1), the hiare i.i.d. with distribution p(h).We modify the probability distribution (5.39) in two ways:1. We multiply the �elds hi by a weight �̂. This allows us to tune the importan
e of there
eived message, analogously to eqs. (5.31) and (5.32). This modi�
ation was already
onsidered in Ref. [154℄. Parti
ularly important 
ases are �̂ = 1 and �̂ = 0.2. We relax the 
onstraints implied by the 
hara
teristi
 fun
tion ÆĤ [�℄. More pre
isely,let us denote ea
h parity 
he
k by the un-ordered set of bits positions (i1; : : : ; ik) whi
happears in it. For instan
e the three parity 
he
ks in the Hamming 
ode H2(3), 
f. eq.(5.28), are (1; 4; 5; 7), (2; 4; 6; 7), (3; 5; 6; 7). Moreover let 
k be the set of all parity 
he
ksinvolving k bits (in the irregular ensemble the size of 
k is N
k). We 
an write expli
itlythe 
hara
teristi
 fun
tion ÆĤ [�℄ as follows:ÆĤ [�℄ = 1Yl=3 Y(i1:::il)2
l Æ(�i1 � � ��il;+1) ; (5.40)where Æ(�; �) is the Krone
ker delta fun
tion. Now it is very simple to relax the 
onstraintsby making the substitution Æ(�i1 � � ��il ;+1)! expf�[�i1 � � ��il � 1℄g.Summarizing the above 
onsiderations, we shall 
onsider the statisti
al me
hani
s model de�nedby the HamiltonianH(�) = � 1Xl=3 X(i1:::il)2
l(�i1 � � ��il � 1) � �̂� NXi=1 hi�i ; (5.41)



5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 139at inverse temperature �.We address this problem by the repli
a approa
h [163℄ The repli
ated partition fun
tionreads hZni � Z Y~� d�(~�)db�(~�) e�NS[�;b�℄ ; (5.42)with the a
tionS[�; b�℄ = kX~� �(~�)b�(~�)� kl 1Xl=3 vl X~�1:::~�l J�(~�1; : : : ; ~�l)�(~�1) � � ��(~�l)� (5.43)� 1Xk=2 
k log "X~� b�(~�)kH(~�)#� k + kl ;where J�(~�1; : : : ; ~�k) � e�Pa(�1 :::�k�1) ; H(~�) = he�̂hPa �aih ; (5.44)h�ih being the average over p(h). The order parameters �(~�) and b�(~�) are 
losely related, atleast in the repli
a symmetri
 approximation, to the distribution of messages in the de
odingalgorithm [154℄, 
f. eqs. (5.37), (5.38).In the 
ase of the BEC an irrelevant in�nite 
onstant must be subtra
ted from the a
tion(5.43) in order to get �nite results. This 
orresponds to takingHBEC(~�) � p+ (1� p)Æ~�;~�0 ; (5.45)where ~�0 = (+1; : : : ;+1).5.2.4 Binary erasure 
hannel: analyti
al and numeri
al resultsThe binary erasure 
hannel is simpler than the general 
ase. Intuitively this happens be
auseone 
annot re
eive misleading indi
ations 
on
erning a bit. Nonetheless it is an important 
aseboth from the pra
ti
al [164℄ and from the theoreti
al point of view [165, 156, 158℄.The de
oding algorithmIterative de
oding algorithms for irregular 
odes were �rst introdu
ed and analyzed withinthis 
ontext [158℄. Belief propagation be
omes parti
ularly simple. Sin
e the knowledge abouta re
eived bit is 
ompletely sure, the log-likelihoods fhig, 
f. eq. (5.30), take the valueshi = +1 (when the bit has been re
eived12) or hi = 0 (when it has been erased). Analogouslythe messages fx(t)i!�g and fy(t)�!ig must assume the same two values. The rules (5.31), (5.32)be
omex(t+1)i!� = ( +1 if either hi = +1 or y(t)�0!i = +1 for some �0 3 i (with �0 6= �);0 otherwise, (5.46)y(t+1)�!i = ( +1 if x(t)j!� = +1 for all the j 2 � (with j 6= i);0 otherwise. (5.47)12Re
all that we are assuming the 
hannel input to be �ini = +1 for i = 1; : : : ; N .



140 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONSThere exists an alternative formulation [158℄ of the same algorithm. Consider the systemof M linear equations (5.27) and eliminate from ea
h equation the re
eived variables (whi
hare known for sure to be 0). You will obtain a new linear system. In some 
ases you mayhave eliminated all the variables of one equation, the equation is satis�ed and 
an thereforebe eliminated. For some of the other equations you may have eliminated all the variables butone. The remaining variable 
an be unambiguously �xed using this equation (sin
e the re
eivedmessage is not misleading, this 
hoi
e is surely 
orre
t). This allows to eliminate the variablefrom the entire linear system. This simple pro
edure is repeated until either all the variableshave been �xed, or one gets stu
k on a linear system su
h that all the remaining equationsinvolve at least two variables (this is 
alled a stopping set [165℄).Let us for instan
e 
onsider the linear system de�ned by the parity 
he
k matrix (5.28).Suppose, in a �rst 
ase, that the re
eived message was (0; �; 0; �; 0; �; 0) (meaning that the bitsof positions 2, 4, 6 were erased). The de
oding algorithm pro
eeds as follows:8<: x1 + x4 + x5 + x7 = 0x2 + x4 + x6 + x7 = 0x3 + x5 + x6 + x7 = 0 ) 8<: x4 = 0x2 + x4 + x6 = 0x6 = 0 ) 8<: 0 = 0x2 = 00 = 0 : (5.48)In this 
ase the algorithm su

eeded in solving the de
oding problem. Let us now see whathappens if the re
eived message is (�; 0; �; 0; �; 0; �):8<: x1 + x4 + x5 + x7 = 0x2 + x4 + x6 + x7 = 0x3 + x5 + x6 + x7 = 0 ) 8<: x1 + x5 + x7 = 0x7 = 0x3 + x5 + x7 = 0 ) 8<: x1 + x5 = 00 = 0x3 + x5 = 0 : (5.49)The algorithm found a stopping set. Noti
e that the resulting linear system may well have aunique solution (although this is not the 
ase in our example), whi
h 
an be found by means ofsimple polynomial algorithms [166℄. Simply the iterative algorithm is unable to further redu
eit. The analysis of this algorithm [156℄ uses the density evolution equations (5.37), (5.38) andis greatly simpli�ed be
ause the messages fx(t)i!�g and fy(t)�!ig take only two values. Theirdistributions have the form:�t(x) = �t Æ(x) + (1� �t) Æ1(x) ; b�t(x) = �̂t Æ(y) + (1� �̂t) Æ1(y) ; (5.50)where Æ1(�) is a delta fun
tion 
entered at +1. The parameters � and �̂ give the fra
tion ofzero messages, respe
tively from variables to 
he
ks and from 
he
ks to variables. Using eqs.(5.37) and (5.38), we get:�t+1 = p 
0(�̂t)
0(1) ; �̂t+1 = 1� v0(1� �t)v0(1) : (5.51)The initial 
ondition �0 = �̂0 = 1 
onverges to the perfe
t re
overy �xed point � = �̂ = 0 ifp < pd. This 
orresponds to perfe
t de
oding. For p > pd the algorithm gets stu
k on a non-trivial linear system: �t ! ��, �̂t ! �̂�, with 0 < ��; �̂� < 1. The two regimes are illustrated in�g. 5.14.Stati
 transitionIn the spin model 
orresponding to the situation des
ribed above, we have two types of spins:the ones 
orresponding to 
orre
tly re
eived bits, whi
h are �xed by an in�nite magneti
 �eldhi = +1; and the ones 
orresponding to erased bits, on whi
h no magneti
 �eld a
ts: hi = 0.
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Figure 5.14: The evolution of the iterative de
oding algorithm on the BEC, 
f. eqs. (5.51).Here we 
onsider the (6; 5) 
ode: �t+1 = p[1� (1� �t)5℄4. On the left p = 0:5 < pd, on the rightp = 0:6 > pd.We 
an therefore 
onsider an e�e
tive model for the erased bits on
e the re
eived ones are �xedto +1. This 
orrespond somehow to what is done by the de
oding algorithm: the re
eived bitsare set to their values in the very �rst step of the algorithm and remain un
hanged thereafter.Let us 
onsider the zero temperature limit. If the system is in equilibrium, its probabilitydistribution will 
on
entrate on zero energy 
on�gurations: the 
odewords. We will have typ-i
ally Nwords(p) � 2Nswords(p) 
odewords 
ompatible with the re
eived message. Their entropyswords(p) 
an be 
omputed within the repli
a formalism as it was expli
itly done in [127℄. Theresult is swords(�; �̂; p) = k�(1� �̂) + kl 
(1� �) + p v(�̂)� kl ; (5.52)whi
h has to be maximized with respe
t to the order parameters � and �̂. The saddle pointequations have exa
tly the same form as the �xed point equations 
orresponding to the dy-nami
s (5.51), namely � = p
0(�̂)=
0(1) and �̂ = 1� v0(1� �)=v0(1)The saddle point equations have two stable solutions, i.e. lo
al maxima of the entropy(5.52): (i) a 
ompletely ordered solution � = �̂ = 0, with entropy swords(0; 0) = 0 (in some 
asesthis solution be
omes lo
ally unstable above some noise plo
); (ii) (for suÆ
iently high noiselevel) a paramagneti
 solution ��; �̂� > 0. The paramagneti
 solution appears at the same valuepd of the noise above whi
h the de
oding algorithm gets stu
k.The �xed point to whi
h the dynami
s (5.51) 
onverges 
oin
ides with the statisti
al me-
hani
s result for ��; �̂�. However the entropy of the paramagneti
 solution swords(��; �̂�) isnegative at pd and be
omes positive only above a 
ertain 
riti
al noise p
. This means that thelinear system produ
ed by the algorithm 
ontinues to have a unique solution below p
, althoughour linear time algorithm is unable �nd su
h a solution.The \dynami
al" 
riti
al noise pd is the solution of the following equationp
00(�̂�)v00(1� ��)v0(1)
0(1) = �1 ; (5.53)where �� and �̂� solve the saddle point equations. The stati
 noise 
an be obtained setting
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Figure 5.15: The phase diagram of the family of 
odes with generating polynomials v(x) =�x4 + (1 � �)x6, 
(x) = �x2 + (1 � �)x3. The dashed line gives the lo
al stability thresholdfor the 
ompletely ordered ferromagneti
 phase. The 
ontinuous and dot-dashed lines refer(respe
tively) to the stati
 and dynami
 
riti
al points p
(�) and pd(�).swords(��; �̂�) = 0. Finally the 
ompletely ordered solution be
omes lo
ally unstable forplo
 = 
0(1)v0(1)
00(0)v00(1) : (5.54)As an example let us 
onsider the one-parameter family of R = 1=2 
odes spe
i�ed by thefollowing generating polynomials: v(x) = �x4 + (1 � �)x6, 
(x) = �x2 + (1 � �)x3. This isan irregular 
ode whi
h smoothly interpolates between the regular (6; 3) and (4; 2) 
odes. Thelo
al stability threshold is given byplo
(�) = (3� �)26�(5� 3�) : (5.55)The dynami
al and 
riti
al 
urves pd(�) and p
(�) are reported in �g. 5.15. Noti
e that the� value where pd(�) rea
hes its maximum, 
orresponding to the best 
ode in this family, isneither 0 nor 1. This is a simple example showing that irregular 
odes (0 < � < 1) aregenerally superior to regular ones (� = 0 or � = 1 in this example). Noti
e also that abovethe tri
riti
al point �t � 0:79301412, pt � 0:39057724 the three 
urves plo
(�), p
(�) and pd(�)
oin
ide. In the following we shall study in some detail the � = 0 
ase, whi
h 
orresponds to aregular (6; 3) 
ode, the 
orresponding 
riti
al and dynami
al points p
 and pd are given in Tab.5.1.Dynami
al transitionThe dynami
al transition is not properly des
ribed within the repli
a symmetri
 treatmentgiven above. Indeed, the paramagneti
 solution 
annot be 
onsidered, between pd and p
,as a metastable state be
ause it has negative entropy. One 
annot therefore give a sensibleinterpretation of the 
oin
iden
e between the 
riti
al noise for the de
oding algorithm, and theappearan
e of the paramagneti
 solution.
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a symmetry-breaking (1RSB) 
al
ulation, let usreview some important 
on
epts on 
on�gurational 
omplexuty [7, 167℄ already introdu
ed andexploited in the se
ond 
hapter. Let us 
all m�(�;m) the free energy of m weakly 
oupled\real" repli
as times beta. This quantity 
an be 
omputed in 1RSB 
al
ulation. In the limit� ! 1, with m� = y �xed, we have m�(�;m) ! ��(y). The number of metastable stateswith a given energy density � is NMS(�) � eN�(�) ; (5.56)where the 
omplexity �(�) is the Legendre transform of the m repli
as free energy:�(�) = ��� ��(y)j�=�[y�(y)℄ : (5.57)The (zero temperature) dynami
 energy �d and the stati
 energy �s are13, respe
tively, themaximum and the minimum energy su
h that �(�) � 0.The stati
 energy is obtained by solving the following equations:( �s = �(y) ;��(y) = 0 ; (5.58)whi
h 
orresponds to the usual pres
ription of maximizing the free energy over the repli
asymmetry breaking parameter m [163℄. The dynami
 energy is given by( �d = �[y�(y)℄ ;�2[y�(y)℄ = 0 : (5.59)Finally, if �s = 0 the 
omplexity of the ground state is �(0) = � limy!1 y�(y).At the time the 
al
ulation were done we weren't able to exa
tly 
ompute the 1RSB freeenergy �(y). After results of [24, 30, 26℄, exa
t 1RSB 
al
ulations 
ould be redone. Howeverex
ellent results 
an be obtained within an \almost fa
torized" variational Ansatz, 
f. [127℄.The pi
ture whi
h emerges is essentially not 
hanged by the exa
t 1RSB solution , as we have
he
ked numeri
ally, and is the following:� In the low noise region (p < pd), no metastable states exist. Lo
al sear
h algorithmsshould therefore be able to re
over the erased bits.� In the intermediate noise region (pd < p < p
) an exponentially large number of metastablestates appears. They have energy densities � in the range �s < � < �d, with �s > 0.Therefore the transmitted 
odeword is still the only one 
ompatible with the re
eivedmessage. Nonetheless a large number of extremely stable pseudo-
odewords stop lo
alalgorithms. The number of violated parity 
he
ks in these 
odewords 
annot be redu
edby means of lo
al moves.� Above p
 we have �s = 0: a fra
tion of the metastable states is made of 
odewords. More-over �(0) (whi
h gives the number of su
h 
odewords) 
oin
ides with the paramagneti
entropy swords(��; �̂�) 
omputed in the previous Se
tion.As an illustration, let us 
onsider the (6; 3) regular 
ode. In �g. 5.16 we plot the resulting
omplexity 
urves �(�) for three di�erent values of the erasure probability p. In �g. 5.17, left13Noti
e that one 
an give (at least) three possible de�nitions of the dynami
 energy: (i) from the solutionof the non-equilibrium dynami
s: �(d)d ; (ii) imposing the repli
on eigenvalue to vanish: �(r)d ; (iii) using, as inthe text, the 
omplexity �(�): �(
)d . The three results 
oin
ide in the p-spin spheri
al fully 
onne
ted model,however their equality in the present 
ase is, at most, a 
onje
ture.
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Figure 5.16: The 
omplexity �(�) for (from top to bottom) p = 0:45 (below p
), p = 0:5, andp = 0:55 (above p
).
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 energies �s and �d of the metastablestates (respe
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omplexity max��(�)and the zero energy 
omplexity �(0).
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Figure 5.18: Energy relaxation for the Hamiltonian of the (6,3) regular 
ode during the simu-lated annealing with � MCS per temperature and 1000 equidistant temperatures in [0; 1℄frame, we report the stati
 and dynami
 energies �s and �d as fun
tions of p. In the right framewe present the total 
omplexity �tot � max��(�) = �(�d), and the zero energy 
omplexity�(0).Numeri
al resultsIn order to 
he
k analyti
al predi
tions and to better illustrate the role of metastable states,we have run a set of Monte Carlo simulations, with Metropolis dynami
s, on the Hamiltonian(5.41) of the (6,3) regular 
ode for the BEC. Noti
e that lo
al sear
h algorithms for the de
odingproblem have been already 
onsidered by the 
oding theory 
ommunity [168℄.We studied quite large 
odes (N = 104 bits), and tried to de
ode it (i.e. to �nd a groundstate of the 
orresponding spin model) with the help of simulated annealing te
hniques [169℄.For ea
h value of p, we start the simulation �xing a fra
tion (1� p) of spins to �i = +1 (thispart will be kept �xed all along the run). The remaining pN spins are the dynami
al variableswe 
hange during the annealing in order to try to satisfy all the parity 
he
ks. The energy ofthe system 
ounts the number of unsatis�ed parity 
he
ks.The 
ooling s
hedule has been 
hosen in the following way: � Monte Carlo sweeps (MCS) 14at ea
h of the 1000 equidistant temperatures between T = 1 and T = 0. The highest tem-perature is su
h that the system very rapidly equilibrates on the paramagneti
 energy �P (T ).Typi
al values for � are from 1 to 103.Noti
e that, for any �xed 
ooling s
hedule, the 
omputational 
omplexity of the simulatedannealing method is linear inN . Then we expe
t it to be a�e
ted by metastable states of energy�d, whi
h are present for p > pd: the energy relaxation should be strongly redu
ed around �dand eventually be 
ompletely blo
ked.In order to illustrate how the system relaxes during the simulated annealing we show in�g. 5.18 the energy density as a fun
tion of the temperature for p = 0:4 (left) and p = 0:6(right) and various 
ooling rates, � = 10; 102; 103 (ea
h data set is the average over manydi�erent samples).14Ea
h Monte Carlo sweep 
onsists in N proposed spin 
ips. Ea
h proposed spin 
ip is a

epted or nota

ordingly to a standard Metropolis test.
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Figure 5.19: Lowest energies rea
hed by the simulated annealing. Errors are sample to sample
u
tuations.For p = 0:4 < pd the �nal energy strongly depends on the 
ooling rate and the slowest
ooling pro
edure is always able to bring the system on the ground state, 
orresponding to thetransmitted 
odeword. De
oding by simulated annealing is therefore su

essful.For p = 0:6 > pd the situation drasti
ally 
hanges. Below a temperature Td (marked byan arrow in �g. 5.18, right frame) there is an almost 
omplete stop of the energy relaxation.Td marks the dynami
al transition and the 
orresponding energy �d(Td) = �P (Td) is 
alled thethreshold energy. The energy of threshold states still varies a little bit with temperature, �d(T ),and the �nal value rea
hed by the simulated annealing algorithm is its zero-temperature limit�d(0) = �d. Remember that, by 
onstru
tion, ground states of zero energy are present for anyp value, but they be
ome unrea
hable for p > pd, be
ause they be
ome shielded by metastablestates of higher energy.We show in �g. 5.19 the lowest energy rea
hed by the simulated annealing pro
edure fordi�erent p and � values. While for p < pd all parity 
he
ks 
an be satis�ed and the energyrelaxes to zero in the limit of a very slow 
ooling, for p � pd the simulation get stu
k in ametastable state of �nite energy, that is with a number of unsatis�ed parity 
he
ks of order N .The agreement with the analyti
 predi
tion (dotted line) is quite good everywhere, but very
lose to pd.Dis
repan
ies between analyti
al predi
tions and numeri
al results may be very well dueto �nite-size e�e
ts in the latter. One possible explanation for large �nite-size e�e
ts near thedynami
 
riti
al point pd is the following. Metastable states of energy �d are stable under anylo
al dynami
, whi
h may 
ip simultaneously only a �nite number of spins, and under globaldynami
s 
ipping no more than !N spins simultaneously. Physi
al intuition (threshold statesbe
ome more robust in
reasing p) imply that the fun
tion !(p) must monotonously in
reasefor p 2 [pd; 1℄. Moreover, 
ontinuity reasons tell us that !(pd) = 0. The fa
t that !(p) isvery small 
lose to pd, together with the fa
t that in numeri
al simulations we are restri
ted to�nite values of N , allow the lo
al Monte Carlo dynami
 to relax below the analyti
al predi
ted
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hara
terization of this e�e
t is presently under study andwill be presented in a forth
oming publi
ation.5.2.5 The general 
hannel: analyti
al and numeri
al resultsWe 
onsidered the 
ase of a general noisy 
hannel using two di�erent approa
hes: a �nite-temperature and a zero-temperature approa
h. While the �rst one o�ers a 
lear 
onne
tionwith the dynami
s of de
oding-by-annealing algorithm, the se
ond one gives a ni
e geometri
alpi
ture of the situation.Finite temperatureSuppose you re
eived some message en
oded using a Gallager 
ode and you want to de
ode it,but no one explained to you the belief propagation algorithm, 
f. eqs. (5.31), (5.32).A physi
ist idea would be the following. Write the 
orresponding Hamiltonian H(�), seeeq. (5.41), and run a Monte Carlo algorithm at inverse temperature �. If you wait enoughtime, you will be able to sample the 
on�guration � a

ording to the Boltzmann distributionP�(�) / e��H(�). Then 
ool down the system adiabati
ally: i.e. 
hange the temperaturea

ording to some s
hedule f�1; �2; : : : ; g with �k " 1, waiting enough time at ea
h temperaturefor the system to equilibrate.As � !1 the Boltzmann measure of the Hamiltonian (5.40) 
on
entrates on the 
odewords(for whi
h the ex
hange term in eq. (5.40) is equal to zero). Moreover ea
h 
odeword is givena weight whi
h depends on its likelihood. In formulae:lim�!1P�(�) = 1Z�̂ P (�jxout)�̂ ; (5.60)where P (�jxout) is the probability for � to be the transmitted 
odeword, 
onditional to there
eived message xout, and Z�̂ is a normalization 
onstant. Therefore when � � 1, our algorithmwill sample a 
odeword with probability proportional to P (�jxout)�̂. For good 
odes below the
riti
al noise threshold p
, the likelihood P (�jxout) is strongly 
on
entrated15 on the 
orre
tinput 
odeword. Therefore the system will spend most of its time on the 
orre
t 
odeword assoon as � � 1 and �̂ � 1 (for �̂ < 1, p
 has a non-trivial dependen
e on �̂, 
f. Ref. [154℄).This algorithm will su

eed as long as we are able to keep the system in equilibrium at alltemperatures down to zero. If some form of ergodi
ity breaking is present this may take anexponentially (in the size N) long time. Let us suppose to spend an O(N) 
omputational timeat ea
h temperature �i of the annealing s
hedule (this is what happens in Nature). We expe
tto be able to equilibrate the system only at low enough noise (let us say for p < pd(�̂)), whenthe magneti
 �eld in eq. (5.41) is strong enough for single out a unique ergodi
 
omponent.The random linear 
ode limitSome intuition on the stati
 phase diagram 
an be gained by looking at the k; l ! 1 limitwith rate R = 1 � k=l �xed, 
f [127℄. Unhappily, in this limit the dynami
 phase transitiondisappears: the de
oding algorithm is always unsu

essful, as 
an be understood by lookingat eqs. (5.31)-(5.32). This phenomenon is analogous to what happens in the random energy15Namely we have P (�injxout) = 1 � O(e��N ). This happens be
ause there is a minimum O(N) Hammingdistan
e between distin
t 
odewords [141℄.



148 CHAPTER 5. PHASE AND COMPUTATIONAL COMPLEXITY TRANSITIONS

0 0.1 0.2 0.3 0.4
p

0

0.1

0.2

0.3

0.4

0.5

e−
2β

PARA

FERRO

pc

0 0.1 0.2 0.3 0.4
p

0

0.1

0.2

0.3

0.4

0.5

e−
2β

FERRO

PARA

SG−>

pcFigure 5.20: The phase diagram for the model (5.40) in the limit k; l ! 1 with R = 1� k=l�xed. Here we 
onsider R = 1=6 and �̂ = 1 (on the left) and 1:5 (on the right). The rightmost(i.e. noisier) point for whi
h the ferromagneti
 phase is globally stable is always at � = 1,p = ÆGV (R) � 0:264. Along the dashed line the entropy of the paramagneti
 phase vanishes.model (REM) [170℄: the dynami
 transition is usually said to o

ur at in�nite temperature.We refer to Se
. 5.2.5 for further 
lari�
ations of this point.There exist a paramagneti
 and a ferromagneti
 phases, with free energy densitiesfP = � 1� hlog(2 
osh �̂h)ih + 1� R� log(1 + tanh �) ; (5.61)fF = � �̂� hhih : (5.62)One must be 
areful in 
omputing the entropy be
ause of the expli
it dependen
e of the Hamil-tonian (5.40) upon the temperature. The result is that the ferromagneti
 phase has zero entropysF = 0, while the entropy of the paramagneti
 phase issP = hlog(2 
osh �̂h)ih � h�̂h tanh �̂hih � (5.63)�(1� R) log(1 + tanh �) + (1� R)�(1� tanh �) :In the low-temperature, low-noise region the paramagneti
 entropy sP be
omes negative. Thissignals a REM-like glassy transition [170℄. The spin glass free energy is obtained by maximizingover the RSB parameter m (with 0 � m � 1) the following expressionfSG(m) = �(1� R)�m log(1 + e�2�m)� 1mhlog(2 
oshm�̂h)ih : (5.64)The generi
 phase diagram is reported in �g. 5.20. At high temperature, as the noise levelis lowered the system undergoes a paramagneti
-ferromagneti
 transition and 
on
entrates onthe 
orre
t 
odeword. At low temperature an intermediate glassy phase may be present (for�̂ > 1): the system 
on
entrates on a few in
orre
t 
on�gurations.



5.2. THE DYNAMIC PHASE TRANSITION FOR DECODING ALGORITHMS 149

0 0.1 0.2 0.3 0.4 0.5
p

0

0.02

0.04

0.06

0.08

0.1

0.12

e−
2β

Figure 5.21: The dynami
al phase transition for a regular (6; 5) 
ode (
f. eq. (5.40) with k = 6and l = 5) with �̂ = 1.Theoreti
al dynami
al lineThe existen
e of metastable states 
an be dete
ted within the repli
a formalism by the so-
alled marginal stability 
ondition. One 
onsiders the saddle point equations for the 1RSBorder parameter, �xing the RSB parameter m = 1, 
f. [127℄. The dynami
al temperature Td(p)is the highest temperature for whi
h a \non-trivial" solution of the equation exists. At thistemperature ergodi
ity of the physi
al dynami
s breaks down (at least this is what happensin in�nite 
onne
tivity mean �eld models) and we are no longer able to equilibrate the systemwithin an O(1) physi
al time (i.e. an O(N) 
omputational time).We looked for a solution of eqs. (B-3-B-3) in [127℄ using the population dynami
s algorithmof Ref. [23℄. We 
he
ked the \non-triviality" of the solution found by 
onsidering the varian
e ofthe distributions �(x), �̂(y) (more pre
isely of the populations whi
h represent su
h distributionsin the algorithm).We 
onsider the (6; 5) regular 
ode be
ause it has well separated stati
 and dynami
althresholds p
 and pd, 
f. Tab. 5.1. The resulting dynami
al line for the Hamiltonian (5.40)with �̂ = 1, is reported in �g. 5.21. The dynami
 temperature Td(p) drops dis
ontinuouslybelow a noise pd(�̂): for p < pd(�̂) the dynami
al transition disappears and the system 
anbe equilibrated in linear 
omputational time down to zero temperature. We get pd(1) � 0:14,whi
h is in good agreement with the 
oding theory results, 
f. Tab. 5.1Numeri
al experimentsWe have repeated for the BSC the same kind of simulations already presented at the end ofSe
. 5.2.4 for the BEC.We have run a set of simulated annealings for the Hamiltonian 5.41 of the (6,5) regular
ode. System size is N = 12000 and the 
ooling rates are the same as for the BEC, the onlydi�eren
e being the starting and the ending temperatures, whi
h are now T = 1:2 and T = 0:2(plus a quen
h from T = 0:2 to T = 0 at the end of ea
h 
ooling). This should not have anyrelevant e�e
t be
ause 0:2� Td � 0:6.The important di�eren
e with respe
t to the BEC 
ase is that now we have no �xed
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Figure 5.22: Energy relaxation for the Hamiltonian of the (6,5) regular 
ode during the simu-lated annealing with � MCS per temperature and 1000 equidistant temperatures in [0:2; 1:2℄.Noti
e that, in both 
ases p > pd. The dot-dashed line is the theoreti
al predi
tion for theparamagneti
 ex
hange energy.spins, all N spins are dynami
al variables subje
t to a random external �eld of intensityh = (1=�)ar
tanh(1� 2p), 
f. eq. (5.41).Also here, as in the 
ase of the BEC, the energy relaxation for p > pd undergoes a drasti
arrest when the temperature is redu
ed below the dynami
al transition at Td, see �g. 5.22.Unfortunately, in this 
ase, we are not able to 
al
ulate analyti
ally the threshold energy�d(0), but only the dynami
al 
riti
al temperature Td and then the threshold energy at thetransition �d(Td) whi
h is higher than �d(0). The di�eren
e �� = �d(Td)� �d(0) is usually notvery large (see e.g. the BEC 
ase), but it be
omes apparent when p is de
reased towards pd.Indeed for p = 0:25 (�g. 5.22 left) the Metropolis dynami
s is still able to relax the system fortemperatures below Td and then it rea
hes an energy well below �d(Td). On the other hand forp = 0:5 (�g. 5.22 right), where �� is small the relaxation below Td is almost absent and theanalyti
 predi
tion is mu
h more a

urate. Noti
e that for this 
ase we have run a still longerannealing with � = 104: the asymptoti
 energy is very 
lose to that for � = 103 and hardlydistinguishable from the analyti
al predi
tion.In �g. 5.23 we report the lowest energy rea
hed by the simulated annealing for many valuesof p and � = 10; 102; 103, together with the analyti
 
al
ulation for the threshold energy atTd. This analyti
al value is an upper bound for the true threshold energy �d(0) where linearalgorithms should get stu
k, but it gives very a

urate predi
tions for large p values where ��is very small. In the region of small p a more 
omplete 
al
ulation is needed.Zero temperatureThis approa
h follows from a physi
al intuition that is slightly di�erent from the one explainedin the previous paragraphs. On
e again we will formulate it algorithmi
ally. For sake ofsimpli
ity we shall refer, in this Se
tion, to the BSC. We refer to the Appendi
es of [127℄ formore general formulae.The overlap between the transmitted 
odeword and the re
eived messageqin;out = 1N NXi=1 �ini �outi ; (5.65)
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Figure 5.23: Lowest energies rea
hed by the simulated annealings. Errors are sample to sample
u
tuations. The theoreti
al predi
tion �d(Td) is 
omputed using the results in �g. 5.21 forTd(p).is, typi
ally, qin;out = 1 � 2p. Given the re
eived message, one 
an work in the subspa
e ofall the possible 
on�gurations whi
h have the pres
ribed overlap with it16, i.e. all the � su
hthat (1=N)PNi=1 �i�outi � (1 � 2p). On
e this 
onstraint has been imposed (for instan
e ina Kawasaki-like Monte Carlo algorithm) one 
an restri
t himself to the ex
hange part of theHamiltonian (5.40) Hex
h(�) = �PlP(i1:::il) �i1 � � ��il and apply the 
ooling strategy alreadydes
ribed in the previous Se
tion.Below the stati
 transition p
 there exists a unique 
odeword having overlap (1� 2p) withthe re
eived signal. This is exa
tly the transmitted one �in. This means that �in is the uniqueground state of Hex
h(�) in the subspa
e we are 
onsidering. If we are able to keep our systemin equilibrium down to T = 0, the 
ooling pro
edure will �nally yield the 
orre
t answer tothe de
oding problem. Of 
ourse, if metastable states are en
ountered in this pro
ess, the timerequired for keeping the system in equilibrium diverges exponentially in the size.We expe
t the number of su
h states to be exponentially large17:NMS(�; qjp) � eN�p(�;q) ; (5.66)where � is the ex
hange energy density Hex
h(�)=N . Noti
e that we emphasized the dependen
eof these quantities upon the noise level p. In fa
t the noise level determines the statisti
s of there
eived message �out. The stati
 threshold is the noise level at whi
h an exponential numberof 
odewords with the same overlap as the 
orre
t one (q = 1� 2p) appears: �p(0; 1� 2p) > 0.The dynami
 transition o

urs where metastable states with the same overlap begin to exist:�p(�; 1� 2p) > 0 for some � > 0.16Of 
ourse this is true up to O(N�1=2) 
orre
tions. For instan
e one 
an work in the spa
e of 
on�gurations� su
h that (1� 2p� Æ)N <PNi=1 �i�outi < (1� 2p+ Æ)N , for some small number Æ.17For a related 
al
ulation in a fully 
onne
ted model see Ref. [171℄.
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ode limitIt is quite easy to 
ompute the 
omplexity �p(�; q) in the limit k; l !1 with rate R = 1� k=l�xed. In parti
ular, the zeroth order term in a large k; l expansion 
an be derived by elementarymethods.In this limit we expe
t the regular (l; k) ensemble to be
ome identi
al to the random linear
ode (RLC) ensemble. The RLC ensemble is de�ned by taking ea
h element of the parity 
he
kmatrix Ĥ, 
f. eq. (5.27) to be 0 or 1 with equal probability. Distin
t elements are 
onsideredto be statisti
ally independent.Let us 
ompute the number of 
on�gurations � having a given energy and overlap with there
eived message �out. Given a bit sequen
e x 6= 0, the probability that L out of M equationsĤx = 0 are violated is PL;x =  ML ! 2�M : (5.67)Therefore the expe
ted number of 
on�gurations x whi
h violate L 
he
ks and have Hammingdistan
e W from the re
eived message xout isNW;L = ÆW;Wxout ÆL;0[1� 2�M ℄ +  NW ! ML ! 2�M ; (5.68)where Wxout is the weight of xout, i.e. its Hamming distan
e from 0. Noti
e that, up toexponentially small 
orre
tions, the above expression does not depend on xout.Introdu
ing the overlap q = 1� 2W=N and the ex
hange energy density � = 2L=N , we getNW;L � 2N ~�(�;q) with~�(�; q) = h[(1� q)=2℄ + (1� R) h[�=2(1�R)℄� (1� R) : (5.69)The typi
al number N typW;L of su
h 
on�gurations 
an be obtained through the usual REM
onstru
tion: N typW;L � 2N ~�(�;q) when ~�(�; q) � 0 and N typW;L = 0 otherwise.Now we are interested in pi
king, among all the 
on�gurations having a given energy density� and overlap q, the metastable states. In analogy with the REM, this 
an be done by elimi-nating all the 
on�gurations su
h that �� ~�(�; q) < 0. In other words, the number of metastablestates is NMS(�; q) � 2N�(�;q) with �(�; q) = ~�(�; q) when ~�(�; q); ��~�(�; q) > 0, �(�; q) = �1otherwise.In �g. 5.24 we plot the region of the (�; q) plane for whi
h �(�; q) > 0, for R = 1=2 
odes.Noti
e that, in this limit �(�; q) does not depend on the re
eived message �out (and, therefore,is independent of p). As expe
ted we get p
 = ÆGV (R) and pd = 0.In order to get the �rst non-trivial estimate for the dynami
al point pd, we must 
onsiderthe next term in the above expansion. This 
orre
tion 
an be obtained within the repli
aformalism, see [127℄. In �g. 5.25 we reprodu
e 
ontour of the region f(�; q) : �p(�; q) > 0g fora few regular 
odes of rate R = 1=2: (l; k) = (6; 3),(10; 5),(14; 7). The main di�eren
e betweenthese 
urves and the exa
t results, 
f. Se
. 5.2.5, is the 
onvexity of the upper boundary of the�p(�; q) > 0 region (dashed lines in �gs. 5.24 and 5.25).The 
orresponding estimates for p
 and pd are reported in Tab. 5.2.
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 pd(1)(6; 3) 0:097 0:071(10; 5) 0:108 0:060(14; 7) 0:109 0:049(6; 5) 0:264 0:108Table 5.2: Dynami
al and stati
 thresholds at the �rst nontrivial order in a large k,l expansion,
f. Tab. 5.1.
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on�gurational entropy versus the energy for the (6; 5) regular 
ode. Symbolsrefer to various noise levels. From top to bottom p = 0:5; 0:4; 0:35; 0:3; 0:25, 0:2; 0:18; 0:155.Continuous lines give the result of a variational 
omputation, 
f. App. E.The 
omplete 
al
ulationThe full 1RSB solution for 
an be obtained through the population dynami
s method [23℄.Here, as in Se
. 5.2.5, we fo
us on the example of the (6; 5) 
ode. In �g. 5.26 we plot the
on�gurational entropy as a fun
tion of the energy of the states along the lines of 
onstant q,together with the 
orresponding results obtained within a simple variational approa
h, brie
yintrodu
ed in the Appendix. The approximate treatment is in quantitative agreement with the
omplete 
al
ulation for � < �d, but predi
ts a value for the threshold energy whi
h is largerthan the 
orre
t one: �vard > �d. Here �vard � 0:127 and almost p-independent.Unhappily the estimate of the dynami
 energy obtained from this 
urves is not very pre
ise.Moreover, at least two more 
onsiderations prevent us from 
omparing these results with theones of simulated annealing simulations, 
f. Se
. 5.2.5: (i) In our annealing experiments theoverlap with the re
eived message �out is free to 
u
tuate; (ii) We 
annot ex
lude the 1RSBsolution to be
ome unstable at low temperature.However the population dynami
s solution give the estimate pd � 0:155. This allows us to
on�rm that the point pd = 0:139 where the de
oding algorithm fails to de
ode, 
f. Tab. 5.1,
oin
ides with the point where the metastable states appear.5.2.6 Con
lusionsWe studied the dynami
al phase transition for a large 
lass of diluted spin models in a random�eld, the main motivation being their 
orresponden
e with very powerful error 
orre
ting 
odes.In a parti
ular 
ase, we were able to show that the dynami
 
riti
al point 
oin
ides exa
tlywith the 
riti
al noise level for an important 
lass of de
oding algorithms, 
f. Se
. 5.2.4. For ageneral model of the noisy 
hannel, we 
ouldn't present a 
ompletely expli
it proof of the samestatement. However, within numeri
al pre
ision, we obtain identi
al values for the algorithmi
and the statisti
al me
hani
s thresholds.It may be worth listing a few interesting problems whi
h emerge from our work:� Show expli
itly that the identity between statisti
al me
hani
s and algorithmi
 thresholdsholds in general. From a te
hni
al point of view, this is a surprising fa
t be
ause the two
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tively, within a repli
a symmetri
, 
fr. eqs. (5.37), (5.38),and a one-step repli
a symmetry breaking 
al
ulations.� We 
onsidered message-passing and simulated annealing algorithms. Extend the aboveanalysis to other 
lasses of algorithm (and, eventually, to any linear time algorithm).� Message passing de
oding algorithms get stu
k be
ause they are unable to de
ode somefra
tion of the re
eived message, the \hard" bits, while they have been able to de
ode theother ones, the \easy" bits. A 
loser look at this heterogeneous behavior would be veryfruitful.
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Chapter 6Determining bounds
6.1 Variational bounds for optimization problems andspin systemsIn this �nal 
hapter we generalize to the 
ase of diluted spin models and random 
ombinatorialoptimization problems a te
hnique re
ently introdu
ed by Guerra (
ond-mat/0205123) to provethat the repli
a method generates variational bounds for disordered systems. We analyzea family of models that in
ludes the Viana-Bray model, the diluted p-spin model or randomXOR-SAT problem, and the randomK-SAT problem, showing that the repli
a method providesan improvable s
heme to obtain lower bounds of the free-energy at all temperatures and ofthe ground state energy. In the 
ase of K-SAT the repli
a method thus gives upper boundsof the satis�ability threshold. The repli
a method [176, 2℄, originally devised as a tri
k to
ompute thermodynami
al quantities of physi
al systems in presen
e of quen
hed disorder, hasfound appli
ations in the analysis of systems of very di�erent nature, as Neural Networks,Combinatorial optimization problems [2, 35, 27℄, Error Corre
tion Codes [27℄ et
. Althoughmany physi
ists believe that the method, within the Repli
a Symmetry Breaking s
heme ofParisi [2℄, is able to potentially give the exa
t solution of any problem treatable as a mean �eldtheory, the ne
essary mathemati
al foundation of the theory is still la
king, after more then 20years from its introdu
tion in theoreti
al physi
s. The last times have seen a growing interestof the mathemati
al 
ommunity in the method, leading to important but still partial results,
on�rming in 
ertain 
ases the repli
a analysis, with more 
onventional and well establishedte
hniques [177℄. Apart the remarkable ex
eption of the analysis of the fully 
onne
ted p-spinmodel in ref. [178℄ and the rigorous analysis of Random Energy Models [179℄, the analysis ofthe mathemati
ians has been, as far as we know, restri
ted to the high temperature regionsand/or to problem of repli
a symmetri
 nature. Very wel
omed have been the te
hniquesre
ently introdu
ed by Guerra and Toninelli [60℄ whi
h allow rigorous analysis not relyingon the assumption of high temperature, and valid even in problems with repli
a symmetrybreaking. Along these lines, an important step towards the rigorous 
omprehension of therepli
a method, has been undertaken in [60℄, where it has been shown how in the 
ase of theSherrington-Kirkpatri
k model, and its p-spin generalizations, the repli
a free-energies witharbitrary number of repli
a symmetry breaking steps 
onstitute variational lower bounds tothe true free-energy of the model. As stated in that paper, the analysis is restri
ted to fully-
onne
ted models, whose repli
a mean �eld theory 
an be formulated in terms of a singlen� n matrix. However, in re
ent times, many of the more interesting problems analyzed with157
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a theory pertain to the so 
alled \diluted models" where ea
h degree of freedom intera
tswith a �nite number of neighbors. The introdu
tion of a \population dynami
s algorithm"[23℄ has allowed to treat in full generality -within statisti
al pre
ision- 
ompli
ated sets ofprobabilisti
 fun
tional equations appearing in the one step symmetry broken framework ofdiluted models. The same algorithm has been used as a starting point of a generalized \beliefpropagation" algorithm for optimization problems [145, 30℄. Furthermore, at the analyti
 level,simpli�
ations due to graph homogeneities in some 
ases [22℄, and to the vanishing temperaturelimit in some other 
ases [9℄ have led to supposedly exa
t solutions of the ground state propertiesof diluted models, 
ulminated in the resolution of the random XOR-SAT on uniform graphsin [22℄ and the random K-SAT problem in [30℄ within the framework of \one-step repli
asymmetry breaking" (1RSB). The aim of this 
hapter, is to show that the repli
a analysis ofdiluted models provides lower bounds for the exa
t free-energy density, and ground state energydensity. We analyze in detail the 
ases of the diluted p-spin model on the Poissonian degreehyper-graphs also known as random XOR-SAT problem and the random K-SAT problems. Weexpe
t that along similar lines free-energy lower bounds 
an be found for many other diluted
ases. The Guerra method we use sheds some light on the meaning of the repli
a mean �eldtheory. The physi
al idea behind the method is that within mean �eld theory one 
an modifythe original Hamiltonian weakening the strength of the intera
tion 
ouplings or removing thempartially or totally, and 
ompensate this removal by some auxiliary external �elds. In disorderedsystems these �elds should be random �elds, taken from appropriate probability distributionsand possibly 
orrelated with the original values of the quen
hed variables eliminated from thesystems. One is then led to 
onsider Hamiltonians interpolating between the original modeland a pure paramagnet in a random �eld, and by means of these models a
hieving free-energylower bounds. We will see that the RS 
ase 
orresponds to assuming independen
e between therandom �elds and the quen
hed disorder. The Parisi RSB s
heme, assumes at ea
h breakinglevel a pe
uliar kind of 
orrelations, and gives free-energy bounds improving the RS one. The
hapter is organized in this way: in se
tion 6.1.1 we introdu
e some notations that will beextensively used in the following se
tions. In se
tion 6.1.2 we introdu
e the general strategyto get the repli
a bounds We then spe
ialize to the repli
a symmetri
 and the one step repli
asymmetry broken bounds, giving the results in the p-spin and the K-SAT 
ases. Con
lusionsare drawn in se
tion 6.1.5. In the appendi
es some details of the 
al
ulations in both the p-spinand the K-SAT 
ases are shown. Our results will be issue of expli
it 
al
ulations. Although atthe end we will get bounds, formalizable as mathemati
al theorems, the style and most of thenotations of the 
hapter will be the ones of theoreti
al physi
s.6.1.1 NotationsSin
e the aim of this 
hapter is to obtain rigorous results, it is ne
essary to review and extendhere some notations already introdu
ed at beginning. The spin models we will 
onsider in thiswork are de�ned by a 
olle
tion of N Ising �1 spins S = fS1; :::; SNg, intera
ting throughHamiltonians of the kind H(�)(S;J) = MX�=1HJ(�)(Si�1 ; :::; Si�p ) (6.1)where the indi
es i�l are i.i.d. quen
hed random variables 
hosen uniformly in f1; :::; Ng. Wewill 
all ea
h term HJ(�) a 
lause. The subs
ript J (�) in the 
lauses indi
ates the dependen
eon a single or a set of quen
hed random variables, as it will be soon 
lear. The number of
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lauses M will be taken to be proportional to N . For 
onvenien
e we will 
hoose it to be forea
h sample a Poissonian number with distribution �(M;�N) = e��N (�N)MM ! . The 
u
tuationsof M will not a�e
t the free-energy in the thermodynami
 limit, and this 
hoi
e, whi
h slightlysimplify the analysis, will be equivalent to 
hoosing a �xed value ofM equal to �N . The 
lausesthemselves will be random. The p-spin model[19℄ has 
lauses of the formHJ(�)(Si�1 ; :::; Si�p ) = J�Si�1 � ::: � Si�p : (6.2)This form redu
es to HJ(�)(Si�1 ; Si�2 ) = J�Si�1Si�2 in the 
ase of the Viana-Bray spin glass p = 2.In both 
ases the J� will be taken as i.i.d. random variable with regular symmetri
 distribution�(J) = �(�J). Noti
e that for �(J) = 1=2[Æ(J+1)+Æ(J�1)℄ the model redu
es to the randomXOR-SAT problem [82℄ of 
omputer s
ien
e. The random K-SAT 
lauses have the form [9℄HJ(�)(Si�1 ; :::; Si�p ) = pYl=1 1 + J�i�l Si�l2 ; (6.3)where the J�i�l = �1 are i.i.d. with symmetri
 probability. (The number p of spin appearing ina 
lause is usually 
alled K in the K-SAT problem, for uniformity of notation we will deviatefrom this 
onvention). Noti
e that in all 
ases, on average ea
h spin parti
ipate to � = MN
lauses, and that the set of spins and intera
tions de�nes a random diluted hyper-graph ofuniform rank p and random lo
al degree with Poissonian statisti
s in the thermodynami
 limit.At high enough temperature, the existen
e of the free-energy in the thermodynami
 limit formodels of this kind has been proved in by Talagrand in [180℄, together with the validity of theRS solution. A proof valid at all temperature based on the ideas presented in this 
hapter, 
anbe obtained for even p in analogy of the analysis in [60℄ for long range models. We sket
h it inappendix C in the 
ase of the p-spin model.In establishing the free-energy bounds we will need several kind of averages:� The Boltzmann-Gibbs average for �xed quen
hed disorder: given an observable A(S)!(A) = PSA(S) exp(��H(S;J))Z (6.4)where Z = PS exp(��H(S;J)) and � is the inverse temperature. Obviously, !(A), aswell as Z will be fun
tions of the quen
hed variables, the size of the system and thetemperature. This dependen
e will be made expli
it only when needed.� The disorder average: given an observable quantity B dependent on the quen
hed vari-ables appearing in the Hamiltonian, we will denote as E(B) its average. This will in
ludethe average with respe
t to the J variables and the 
hoi
e of the random indi
es in the
lauses as well as with respe
t to other quen
hed variables to be introdu
ed later.� We will need in several o

asion the \repli
a measure"
(A1; :::; An) = E(!(A1):::!(An)) (6.5)and some generalizations that we will spe
ify later.� We will o

asionally use other kinds of averages, as well as other notations, for whi
hwe will use an angular bra
ket notation, with a subs
ript indi
ating the variable(s) over
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h the average is performed. e.g. an average over a random variable u with probabilitydistribution Q(u) will be denoted equivalently as R duQ(u)(�) � R dQ(u)(�) � h�iu. Anal-ogously, averages over distribution families of Q(u) will be denoted as R dQQ(Q)(�) �R DQ(Q)(�) � h�iQ. Subs
ripts will be omitted whenever 
onfusion is not possible.� Another notation we will have the o

asion to use in the one for the overlaps among lspin 
on�gurations fSa1i ; :::; Sali g, out of a population of n fS1i ; :::; Sni g:q(a1;:::;al) = 1N NXi=1 Sa1i � ::: � Sali (1 � ar � n 8r); (6.6)and in parti
ular q(n) = q(1;:::;n) = 1N NXi=1 S1i � ::: � Sni ; (6.7)This notation will be extended to multi-overlaps in the 1RSB 
ase, as we will spe
ify inse
tion 6.1.4.In the following we will need to 
onsider averages where some of the variables are ex
luded,e.g. the averages when a variable ukii is erased. These average will be denoted with a subs
ript�ukii e.g. if an ! average is 
on
erned the notation will be !(�)�ukii . Other notations will bede�ned later in the text whenever needed.Our interest will be 
on�ned to bounds to the free-energy density FN = � 1�NE logZ andthe ground state energy density UGS = limN!1 1=NE [min (UN )℄ valid in the thermodynami
limit, so that O(1=N) will be often impli
itly negle
ted in our 
al
ulations.6.1.2 The general strategyThe strategy to get the repli
a bound is a generalization of the one introdu
ed by Guerra inthe 
ase of fully 
onne
ted models [60℄. We will 
onsider models whi
h will interpolate betweenthe original ones we want to analyze and pure paramagnet in random �elds with suitably
hosen distribution. The underlying idea is that, given the mean �eld nature of the modelsinvolved, if one was able to re
onstru
t the real lo
al �elds a
ting on a given spin variable viaa given hyper-edge, and to introdu
e auxiliary �elds a
ting on that variable in su
h a way toenergeti
ally balan
e the deletion of the hyper-edge, then it would be possible to have an exa
texpression for the free-energy in terms of su
h auxiliary �elds even when the whole edge set wasemptied. A single step in the iteration pro
edure is exempli�ed in �g (6.1), where the deletionof a 
lause parallels the insertion of a spin variable in the original formulation of the 
avitymethod. Indeed, the two pro
edures 
an be seen to be equivalent on average on poissonianhyper-graphs, as the results of this 
hapter will 
on�rm. However, if the repla
ement is donewith some approximate form of the auxiliary �elds distribution fun
tion, the real free-energywill be the one 
al
ulated using the approximate �elds plus an ex
ess term at every step ofthe graph deletion pro
ess. The proof of the de�nite sign of this ex
ess term gives a way todetermine bounds for the thermodynami
 quantities. We will prove the existen
e of repli
alower bounds to the free-energy density of the p-spin model and the random K-SAT problem.In this last 
ase our result proves that the re
ent repli
a solution of [30℄ gives a lower boundto the ground state energy and therefore an upper bound for the satis�ability threshold. Theproofs will stri
tly hold in the N ! 1 limit, due to the presen
e of 
orre
tions of order 1=N
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Figure 6.1: Erasure of a 
lause and 
orresponding inje
tion of balan
ing �elds for the parti
ular
ase of fun
tion nodes of degree three.in the 
al
ulated expressions for any �nite size graph. Moreover, our proofs will be restri
tedto the p-spin model the the K-SAT with even p. In the 
ases of odd p the same bound wouldhold if one 
ould rely on some physi
ally reasonable assumptions on the overlap distribution(see below). Our analysis will start from the TAP (Cavity) equations for the models [181, 23℄,and their probabilisti
 solutions implied by the 
avity, or equivalently the repli
a method atvarious degrees of approximation. We will 
onsider in parti
ular the repli
a symmetri
 (RS)and one step repli
a symmetry broken solutions, but it should be 
lear from our analysis howto generalize to more steps of repli
a symmetry breaking. In the TAP/
avity equations onesingles out the 
ontribution of the 
lauses and the sites to the free-energy and de�nes 
avity�elds h(�)i and u(i)� respe
tively as the lo
al �eld a
ting on the spin i in absen
e of the 
lause �and the lo
al �eld a
ting on i due to the presen
e of the 
lause � only. If we de�ne ZN [Si℄ as thepartition fun
tion of a given sample with N spins where all but the spin i are integrated, FN;�ithe free-energy of the 
orresponding systems where the spin Si and all the 
lauses it belongs toare removed, we 
an write,ZN [Si℄ = e��FN;�i Y�2Ti XSi�2 ;:::;Si�p e��HJ(�) (Si� ;Si�2 ;:::;Si�p )+Ppl=2 h(�)i�l Si�l= e��FN;�i Y�2TiB(i)� e�u(i)� Si (6.8)where Ti is the set of 
lauses 
ontaining the spin i, and the 
onstant B(i)� = e���F (i)� 
an beinterpreted as suitable shifts in the free-energy due to the 
ontribution of the 
lause � for �xedvalue of the spin i. We noti
e that denoting J� as J , and renaming the �elds in (6.8) intoh1; :::; hp�1, eq. (6.8) de�nes fun
tionsuJ(h1; :::; hp�1) and BJ(h1; :::; hp�1) : (6.9)
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Figure 6.2: Diagrammati
 representation of the relations for g, u and h �elds a
ting on spin S.The 
avity solution 
loses under the 
ondition g ! h. The hyper-edge intera
tion is drawn inthe fa
tor-graph notation.The equation are 
losed by the self-
onsistent 
ondition:h(�)i = X�2fTi��g u(i)� (6.10)These equations are at the basis of iterative algorithms su
h as the \belief propagation" or \sum-produ
t" know for a long time in statisti
al inferen
e [160℄ and 
oding theory [141℄ and the morere
ently proposed algorithm of \survey propagation"[30℄. Conditions (6.8) and (6.10) 
an bediagrammati
ally represented as in �g.(6.2). The 
avity �elds solutions of (6.8,6.10) are randomvariables whi
h 
u
tuate for two reasons [2, 23, 24℄. First, they di�er from sample to sample.Se
ond, within the same sample the equations 
an have several solutions whi
h 
an level-
ross.The 
avity/repli
a method provides under 
ertain assumption probabilisti
 solutions. In theRS approximation, one just supposes a single solution to give the relevant 
ontribution in agiven sample. The sample to sample 
u
tuation indu
e probability distributions P (h) and Q(u)whose relations implied by (6.8,6.10) are:P (h) = Xk e��p (�p)kk! Z du1 Q(u1):::duk Q(uk)Æ(h� kXi=1 uk) (6.11)Q(u) = Z dh1 P (h1):::dhp�1 P (hp�1)hÆ(u� uJ(h1; :::; hp�1))iJ (6.12)where h�iJ denotes the average over the random variables appearing in a 
lause. In additionto sample to sample 
u
tuations, the 1RSB solution assumes 
u
tuations of the �elds fromsolution to solution of the equations, so that the fun
tions P (h) and Q(u) will be themselvesrandomly distributed a

ording to some fun
tional probability distributions P(P ) and Q(Q)related by the self-
onsisten
y equations [12℄Q(Q) = Z DP1P(P1):::DPp�1P(Pp�1)hÆ(Q(�)�Q(�jP1; :::; Pp�1; J))iJ (6.13)



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS163P(P ) = 1Xk=0 e��p (�p)kk! Z kYl=1DQlQ(Ql)Æ(P (�)� P (�jQ1; :::; Qk)) (6.14)where:Q(ujP1; :::; Pp�1; H) = NP [P1; :::; Pp�1℄ Z dh1 P1(h1):::dhp�1 P1(hp�1)BJ(h1; :::; hp�1)m �Æ(u� uJ(h1; :::; hp�1)) (6.15)P (hjQ1; :::; Qk) = NQ;k[Q1; :::; Qk℄ (2 
osh(�h))m Z kYl=1 dul Ql(ul)(2 
osh(�ul))m �Æ(h� kXl=1 ul) (6.16)where NQ;k[Q1; :::; Qk℄ and NG[G1; :::; Gp�1℄ insure normalization and BJ(g1; :::; gp�1) is a res
al-ing term of the form (6.9) that 
an be re-absorbed in the normalization in the 
ase of the p-spinmodel. Its form for the K-SAT 
ase is given in the appendix. m is a number in the interval(0; 1℄, whi
h within the formalism sele
ts families of solutions at di�erent free-energy levels.The physi
al free-energy is estimated maximizing over m.The interpretation of these equations has been dis
ussed many times in the literature [2,23, 24℄. We will show here, that su
h 
hoi
es in the �eld distributions result in lower boundsfor the free-energy analogous to the ones �rst proved by Guerra in fully 
onne
ted models. Inorder to prove these bounds, we will have to 
onsider auxiliary models where the number of
lauses �N will be redu
ed to �tN (0 � t � 1), while this redu
tion will be 
ompensated inaverage by some external �eld terms of the kind:H(t)ext =Xi kiXli=1 ulii Si (6.17)where the numbers ki will be i.i.d. Poissonian variables with average �p(1� t). The diagram-mati
 pi
ture is similar to the 
avity one, as seen inAs the notation suggests, the �elds uli will play the role of the 
avity �elds u(i)� of the TAPapproa
h, and they will be i.i.d. random variables with suitable distribution. Indeed, for ea
h�eld ulii we will 
hose in an independent way p � 1 primary �elds gli;ni (n = 1; :::; p � 1) and
lause variables J li;ni su
h that the relationulii = uJli;ni (gli;1i :::gli;p�1i ) (6.18)is veri�ed. Noti
e that the 
ompound HamiltonianH(t)tot[S℄ = H(�t)[S℄ +H(t)ext[S℄ (6.19)will 
onstitute a sample with the original distribution for t = 1, while it will 
onsist in a systemof non intera
ting spins for t = 0. The key step of the pro
edure, 
onsists in the 
hoi
e of thedistribution of the primary �elds glii . We will also �nd useful to de�ne �elds hi verifyinghi = kiXl=1 uli: (6.20)The �eld u are related to the g's by a relation similar to (6.8), while the h's are related tothe u's by a relation similar to (6.10). Of 
ourse, the statisti
s of the �elds h and the g's
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oin
ide in the TAP approa
h. It is interesting to note that the bounds we will get, areoptimized pre
isely when their statisti
al ensemble 
oin
ide. As we mentioned, various Repli
abounds are obtained assuming for the �elds glii the type of statisti
s implied by the di�erentrepli
a solution. So, the Repli
a Symmetri
 bound is got just supposing the �eld as quen
hedvariables 
ompletely independent of the quen
hed disorder and with distribution G(g). For theone-step RSB bound on the other hand the distribution G will itself be 
onsidered as random,subje
t to a fun
tional probability distribution G[G℄. More 
ompli
ated RSB estimates, not
onsidered in this 
hapter, 
an be obtained along the same lines. The 
ase of the fully 
onne
tedmodels 
onsidered by Guerra 
an be formalized in this way where the various �eld distributionsinvolved are Gaussian.6.1.3 The RS boundWe 
onsider in this 
ase i.i.d. �elds u and h distributed a

ording probabilities Q(u) and P (h)verifying the following relation with the distribution Q(g) of the primary �elds.Q(u) = Z dg1 G(g1):::dgp�1 G(gp�1)hÆ(u� uJ(g1; :::; gp�1))iJ (6.21)P (h) = P (hjk)�(k; �p(1� t)) (6.22)P (hjk) = Z du1 Q(u1):::duk Q(uk)Æ(h� kXi=1 uk) (6.23)The distribution G(g) will be 
hosen to be symmetri
 under 
hange of sign of g, and regularenough for all the expression below to make sense. The RS bound 
an now be obtained followinga pro
edure to the one of Guerra for the SK model, and 
onsidering the t dependent free-energy;with obvious notation: F (t) = limN!1FN(t) = limN!1� 1�N E logZN(t) (6.24)where E represents the average over all the quen
hed variables, the one de�ning the 
lausesand the external �elds. We then 
onsider the t derivative of FNddtFN(t) = � 1N� ddtE(logZN): (6.25)As in [60℄ we will then write F (1) = F (0) + Z 10 dt ddtF (t) (6.26)and show, by an expli
it 
omputation, that, up to O(1=N) terms that will be systemati
allynegle
ted, the expression 
oin
ides with the variational RS free-energy plus a remainder. Infortunate 
ases this term will have negative sign and negle
ting it will immediately result ina lower bound for the free-energy. This happens in the Viana-Bray model, the p-spin and theK-SAT for even p. In the 
ases of odd p we were not able to prove the sign de�niteness of theremainder, although as we will dis
uss we believe this to be the 
ase on a physi
al basis.The time derivative of F take 
ontributions from the derivative of the distribution of thenumber of 
lauses M d�(M;�tN)dt = �N�(�(M;�tN)� �(M � 1; �tN)) (6.27)
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h sited�(ki; �p(1� t))dt = �p(�(ki; �p(1� t))� �(ki � 1; �p(1� t))) (6.28)so that:ddtE logZ(t) = �N�XM (�(M;�tN)� �(M � 1; �tN))E 0 logZ(t)+�pXi Xki (�(ki; �p(1� t))� �(ki � 1; �p(1� t)))E 00i logZ(t) (6.29)where we have denoted as E 0 the average with respe
t to all the quen
hed variables ex
ept Mand with E 00i the average with respe
t to all the quen
hed variables ex
ept ki, and simply Z(t)the partition fun
tion of the N spin system ZN(t).In the �rst term of (6.29) we 
an single out the M -th 
lause, and writeZ(t) = Z�M(t)!(e��HM (SiM1 ;:::;SiMp )�M ; (6.30)where by Z�M(t) we denote the partition fun
tion of the system in absen
e of the M -th 
lause,and !(�)�M is the 
anoni
al average in absen
e of the M -th 
lause. In the following termswe single out the ki-th �eld u term, Z(t) = Z�ukii (t)!(e�ukii Si)�ukii , where Z�ukii (t) is the par-tition fun
tion in absen
e of the �eld �ukii and analogously for the average !(�)�ukii . Finally,rearranging all terms we �ndddtE logZ(t) = N�XM (�(M � 1; �tN))E 0 log[!(e��HJ(M)(SiM1 ;:::;SiMp ))�M)℄�p�Xi Xki �(ki � 1; �p(1� t))E 00i log[!(e�ukii Si)�ukii ℄: (6.31)where we have used PM �(M � 1; �tN)E 0 logZ�M = Pki �(ki � 1; �p(1 � t))E 00i logZ�ukii =E logZ. We noti
e at this point that the statisti
al ensemble de�ned by �(M � 1; �tN))E 0 
anbe substituted with the original one E and the average of the variables appearing in the 
lause wehave singled out. To be more pre
ise, we remark that the average !(�) depends on the quen
hedvariables D = fJ;ug appearing in the Hamiltonian. Writing expli
itly this dependen
e as!(�jD), and denoting as D�M all the quen
hed variables ex
ept the ones appearing in theM -th
lause, our statement is that thanks to the Poissonian distribution ofM and the uniform 
hoi
eof the indi
es of ea
h 
lause,XM (�(M � 1; �tN))E 0 log[!(e��HJ(M)(SiM1 ;:::;SiMp )jD�M)℄ = (6.32)E 0� 1Np Xi1;:::;iphlog[!(e��HJ (Si1 ;:::;Sip)jD)℄iJ1A :where by h�iJ we denote the average with respe
t to the random variables appearing in the
lause. This is a 
ru
ial step in our analysis, in fa
t, similar 
onsiderations apply to the termin the se
ond line of (6.31), whi
h 
an be written asXki �(ki � 1; �p(1� t))E 00i log[!(e�ukii Si)�ukii ℄ = E Dlog! �e�uSi�Eu : (6.33)



166 CHAPTER 6. DETERMINING BOUNDSThe same kind of averages E and ! appear in the two terms whi
h 
an be therefore dire
tly
ompared as we will do in the next se
tion. This property, linked to the Poissonian 
hara
terof the graph de�ned by the model would not hold for other ensembles of random graphs andthe analysis would be te
hni
ally more involved. Substituting in (6.31) we �nd:1N ddtE logZ(t) = �E 24 1Np Xi1;:::;iphlog[!(e��H(Si1 ;:::;Sip))℄iH � pN Xi hlog!(e�uSi)iu35 (6.34)Rearranging terms and using (6.26) we �nally �nd that the free-energy FN 
an be written asFN = Fvar[G℄ + Z 10 dt RRS [G; t℄ +O(1=N) (6.35)where Fvar[G℄ 
oin
ides the expression of the variational free-energy in the repli
a treatmentunder 
ondition G[h℄ = P [h℄ 8 h at t = 0 and R 10 dt RRS[G; t℄ is a remainder term. Insteadof writing the formulae for general 
lauses, in order to keep the notations within reasonablesimpli
ity, we spe
ialize now to the spe
i�
 
ases of the p-spin model and the K-SAT. Noti
ethat in all models F [0℄ = � 1� hlog(2 
osh(�h))ihjt=0 (6.36)p-spinIn the 
ase of the p-spinHJ(Si1 ; :::; Sip) = J Si1 �:::�Sip. Substituting in eq.(6.34) and rearrangingterms one immediately �nds:F p�spinvar [G℄ = 1� [� (p hlog(
osh �u)iu � hlog(
osh �J)iJ)� hlog(2 
osh �h)ih+�(p� 1)*log 1 + tanh(�J) pYt=1 tanh(�gt)!+fgtg;J35 (6.37)while the remainder is the t integral ofRp�spinRS [G; t℄ = ��� 24 1Np Xi1;:::;ipE Dlog(1 + tanh(�J)!(Si1:::Sip))EJ �pE hlog(1 + tanh(�u)!(Si))iu +(p� 1)E *log(1 + tanh(�J) pYt=1 tanh(�gp))+fgtg;J35 : (6.38)The expression for F p�spinvar [G℄ 
oin
ides with the RS free energy on
e extremized over thevariational spa
e of probability distributions, as proven in the appendix. Terms have beenproperly added and subtra
ted in order to get a remainder whi
h equal to zero if maximizationover G is taken, and the temperature is high enough for repli
a symmetry to be exa
t [180℄. Aswe will see, the remainder turns out to be positive. F p�spinvar [G℄ is therefore, for all G for whi
hits expression makes sense, a lower bound to the free-energy. At saturation the 
onditionG[h℄ = P [h℄jt=0 8 h (6.39)should hold, whi
h is simply the self-
onsisten
y RS equation.



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS167By using equationE hlog(1 + tanh(�u)!(Si))iu = E *log(1 + tanh(�J) p�1Yt=1 tanh(�gr)!(Si))+fgtg;J (6.40)we 
an establish that the remainder is positive for even p. We expand the logarithm of thethree terms in (absolutely 
onverging) series of tanh(�J), and noti
e that thanks to the parityof the J and the g distributions, they will just involve negative terms. We 
an then take theexpe
ted value of ea
h terms and writeRp�spinRS [G; t℄ = 1� 1Xn=0htanh2n �JiJ 1n
 h(q(2n))p � pq(2n)htanh2n �gip�1g + (p� 1)htanh2n �gipgi(6.41)where we have introdu
ed the overlap q(l) and the repli
a measure 
 de�ned in se
tion 2. Theseries in (6.41) is an average of positive terms in the 
ase of the Viana-Bray model p = 2,where we get perfe
t squares, and more in general for all even p, as we 
an easily, starting fromthe observation that in this 
ase xp � pxyp�1 + (p � 1)yp is positive or zero for all x = q(2n),y = htanh2n �JiJ real.In the 
ase of p odd, the same term is positive only if x is itself positive or zero. Thebound of the free-energy would therefore be established if we were able to prove that theprobability distributions of the q(2n) has support on the positives.1 This property, whi
h tellsthat anti-
orrelated states are not possible, is physi
ally very sound whenever the Hamiltonianis not symmetri
 under 
hange of sign of all spins. In fa
t, one expe
ts the probability ofnegative values of the overlaps to be exponentially small in the size of the system for large N .Unfortunately however we have not been able to prove this property in full generality. Noti
ethat upon maximization on G, the results of [180℄ imply that the remainder is exa
tly equal tozero if the temperature is high enough for repli
a symmetry to hold.K-SATIn the 
ase of the K-SAT, using def.(6.3) for the 
lause H, we �nd relation:uJ(h1; :::; hp�1) � uJ(fJtg; fhtg) = J� tanh�1 24 �2 Qp�1t=1 �1+Jt tanh(�ht)2 �1 + �2 Qp�1t=1 �1+Jt tanh(�ht)2 �35 ; (6.42)where � � e��� 1 < 0. Via dire
t inspe
tion, the variational free-energy 
oin
ides with the RSexpression [9℄FK�SATvar [G℄ = 1� 24�(p� 1)*log 1 + (e�� � 1) pYt=1 1 + tanh(�gt)2 !!+fgtg;fJtg�hlog(2 
osh(�h))ih + �phlog(2 
osh(�u))iu ��p*log0�1 + (e�� � 1)2 p�1Yt=1  1 + tanh(�gt)2 !1A+fgtg;fJtg375 (6.43)1A di�erent suÆ
ient 
ondition for the series to have positive terms is that jq(2n)j � htanh(�g)2nig , but it isnot 
lear its physi
al meaning.



168 CHAPTER 6. DETERMINING BOUNDSwhile the remainder is the t integral ofRK�SATRS [G; t℄ = ���E 24 1Np Xi1;:::;ip*log 1 + (e�� � 1)!( pYt=1 1 + JtSit2 )!+fJtg�pN Xi *log0�1 + �!0�1 + JSi2 p�1Yt=1 1 + Jt tanh(�gt)2 1A1A+fgtg;J;fJtg +(p� 1)*log 1 + � pYt=1 1 + Jr tanh(�gt)2 !+fgtg;fJtg35 : (6.44)Considerations analogous to the 
ase of the p-spin, have led us to add and subtra
t termsfrom eq.(6.34) to single out the proper remainder term. Expanding in series the logarithms,exploiting the symmetry of the probabilities distribution fun
tions and taking the expe
tationof ea
h term of the absolutely 
onvergent series we �nally obtain:RK�SATRS [G; t℄ = �� Xn�1 (�1)nn (��)n
 h ~R(Qn; p)i (6.45)with~R(Qn; p) = (1+Qn)p� p(1+Qn)h(1+J tanh(�g))nip�1J;g +(p� 1)h(1+J tanh(�g))nipJ;g (6.46)where we have de�ned �� � �=(2p) < 0 and Qn � Pnl=1hJ liJP1;na1<:::<al qa1:::al. Detailed 
al
ula-tions are given in the appendix. As in the p-spin 
ase, the previous sum is obviously positive forp even. For p odd we should again rely on the physi
al wisdom that all q(a1;:::;al) have positivesupport and so have the fun
tions 1+Qn � 0. Again, the variational free-energy 
oin
ides withthe RS expression on
e extremized over G at the 
ondition P = G at t = 0.6.1.4 The 1RSB BoundWe establish here a more 
omplex estimate, in a larger variational spa
e of fun
tional probabilitydistributions. The general strategy will be here to 
onsider the same form for the auxiliaryHamiltonian, but now with a more involved 
hoi
e for the �elds distribution. The �elds ondi�erent sites or di�erent index li will be still independent, but ea
h site �eld distributionGlii (glii ) will be itself random i.i.d., 
hosen with a probability density fun
tional G[G℄, withsupport on symmetri
 distributions G(�g) = G(g). It will be assumed that G is su
h that allthe expressions below make sense. In this 
ase, the variational approximation for the free-energywill be obtained from an estimate of��FN [m; t℄ = 1mNE1 logE2(Zm(t)) (6.47)where we have denoted with:� E2 the average w.r.t. gli;ni for �xed distributions Gli;ni a

ording to the measureC NYi=1 kiYli=1 p�1Yn=1 dgli;ni Gli;ni (gli;ni )0B� BJli;ni (gli;1i :::gli;p�1i )2 
osh(�uJli;ni (gli;1i :::gli;p�1i ))1CAm (6.48)where C ensures the normalization.
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t to the quen
hed 
lause variable, distributions the Glii 's andthe Poissonian variables ki's, whi
h will be i.i.d. with probabilities �(J), G(Glii ) and�(ki; (1� t)�) respe
tively.The number m is real in the interval (0,1℄. The statisti
al ensemble of the auxiliary �elds uand h will be now related to the one of the g by:Q(Q) = Z DG1G(G1):::DGp�1G(Gp�1)hÆ(Q(�)�Q(�jG1; :::; Gp�1; J))iJ (6.49)P(P ) = 1Xk=0 e��p(1�t) (�p(1� t))kk! Z kYl=1DQlQ(Ql)Æ(P (�)� P (�jQ1; :::; Qk)) (6.50)where:Q(ujG1; :::; Gp�1; J) = NG[G1; :::; Gp�1℄ Z dg1 G1(g1):::dgp�1 G1(gp�1)BJ(g1; :::; gp�1)m �Æ(u� uJ(g1; :::; gp�1)) (6.51)G(gjQ1; :::; Qk) = NQ;k[Q1; :::; Qk℄ (2 
osh(�g))m Z kYl=1 dul Ql(ul)(2 
osh(�ul))mÆ(g � kXl=1 ul) (6.52)where NQ;k[Q1; :::; Qk℄, NG[G1; :::; Gp�1℄ and BJ(g1; :::; gp�1) have been previously de�ned. Withnotations similar to the ones of the RS 
ase, we 
an writeddt(��FN [m; t℄) = ��XM (�(M;�tN)� �(M � 1; �tN))E 01 1Nm logE2Z(t)m+ (6.53)�pN Xi Xki (�(ki; �p(1� t))� �(ki � 1; �p(1� t)))E 001;i 1Nm logE2Z(t)mwhi
h, extra
ting expli
itly the 
ontribution from theM -th 
lose in the �rst term and the ki-th�eld u in the se
ond, following 
onsiderations similar to the RS 
ase we �nd:ddt(��FN [m; t℄) = �XM (�(M � 1; �tN)) 1mE 01 log 24E2Zm�M!(e��HJ(�)(SiM1 ;:::;SiMp ))m�ME2Zm�M 35�p�N Xi Xki �(ki � 1; �p(1� t)) 1mE 001;i log 2664E2Zm�ukii !(e�ukii Si)m�ukiiE2Zm�ukii 3775 : (6.54)Again it 
an be re
ognized that the primed averages 
oin
ide with the averages over the originalensembles plus the averages on the variables appearing in the terms we extra
ted. Finally weget: ddt(��FN [m; t℄) = �mE1 24 1Np Xi1;:::;ip*log E2Zm!(e��HJ (Si1 ;:::;Sip))mE2Zm !+J� pN Xi *log E2Zmh!(e�uSi)miuE2Zm !+Q35 : (6.55)



170 CHAPTER 6. DETERMINING BOUNDSRearranging all terms one �nds the estimate:FN = Fvar[G℄ + Z 10 dt R1RSB [G; t℄ +O(1=N) (6.56)where this time Fvar[G℄ 
oin
ides with F1RSB[G℄, the expression of the variational free-energy inthe 1RSB treatment at the saddle point G = P at t = 0, and R 10 dt R1RSB [G; t℄ is the remainder.Noti
e that the derivation immediately suggests how to generalize the analysis to more stepsof repli
a symmetry breaking. Let us now spe
ialize the formulae for the p-spin model and theK-SAT. Again, in this 
ase we will need the expression for F [0℄:F [0℄ = 1�m "*log* 12 
osh(�h)!m+h+P#jt=0 : (6.57)p-spinIn this 
ase, plugging def.(6.2) in eq.(6.55) rearranging, adding and subtra
ting terms one �nds:F p�spinvar [G℄ = 1�m "*log* 12 
osh(�h)!m+h+P ��m hlog(2 
osh(�J))iJ �p*log* 12 
osh(�u)!m+u+Q + (6.58)�(p� 1) Dlog h(1 + tanh(�J) tanh(�g1)::: tanh(�gp))mig1;:::;gpEG1;:::;Gp;J�while the remainder is the t integral ofRp�spin1RSB [G; t℄ = � ��mE1 24 1Np Xi1;:::;ip*log E2Zm(1 + !(Si1:::Sip) tanh(�J))mE2Zm !+J �pN Xi *log E2Zm h(1 + !(Si) tanh(�u))miuE2Zm !+Q + (6.59)(p� 1) Dlog h(1 + tanh(�J) tanh(�g1)::: tanh(�gp))mig1;:::;gpEG1;:::;Gp;J�The expression for F p�spinvar [G℄ 
oin
ides with the 1RSB free-energy, as proven in the appendix.on
e maximized over the variational spa
e of probability distribution fun
tionals G. The max-imization 
ondition reads: G[P ℄ = P[P ℄ jt=0 8 P ; (6.60)whi
h is simply the self 
onsisten
y 1RSB 
ondition. For even p (and in parti
ular for p = 2that 
orresponds to the Viana-Bray 
ase), one 
an 
he
k that the remainder is positive justexpanding the logarithm in series and exploiting the parity of the J and the g distributions.As this is 
onsiderably more involved then in the RS 
ase, we relegate this 
he
k to appendixA.K-SATIn the K-SAT 
ase the expression for fun
tion BJ(h1; :::; hp�1) reads:BJ(h1; :::; hp�1) � B(fJtg; fhtg) = 1 + �2 p�1Yt=1  1 + Jt tanh(�ht)2 ! ; (6.61)



6.1. VARIATIONAL BOUNDS FOROPTIMIZATION PROBLEMS AND SPIN SYSTEMS171while the 
orresponding one for uJ(h1; :::; hp�1) is the same as in the RS 
ase. The 
orrespondingrepli
a free-energy and remainder readFK�SATvar [G℄ = 1m� 264�(p� 1)*log* 1 + � pYt=1 1 + Jt tanh(�gt)2 !!m+fgtg+fGtg;fJtg ��p*log* B(fJtg; fgtg)2 
osh(�uJ(fJtg; fgtg))!m+fgtg+fGtg;fJtg;J +*log* 12 
osh(�h)!m+h+P# (6.62)The remainder is the t integral ofRK�SAT1RSB [G; t℄ = � ��mE1 264 1Np Xi1;:::;ip*log0�E2Zm �1 + �! �Qpt=1 1+JtSit2 ��mE2Zm 1A+fJtg �pN Xi *log0B�E2Zm D�1 + � 1+J!(Si)2 Qp�1t=1 1+Jt tanh(�gt)2 �mEfgtgE2Zm 1CA+fGtg;fJtg;J +(p� 1)*log* 1 + � pYt=1 1 + Jt tanh(�gt)2 !!m+fgtg+fGtg;fJtg375 (6.63)The expression for FK�SATvar [G℄ 
oin
ides with the 1RSB free energy on
e extremized under
ondition (6.60), with the 
orresponding K-SAT probability distribution fun
tionals. Noti
ethat The proof of the positivity of (6.63) for even p is again dove via series expansion, all thedetail are explained in Appendix B.At this point we 
an take the zero temperature limit, �nding that the resulting expressiongives us a lower bound for the ground-state energy of the system, i.e. the minimal number ofunsatis�ed 
lauses. Noti
e that the T ! 0 limit of the repli
a free-energy is not trivial. Thene
essary assumptions on the �eld distributions to get it 
orre
t are well known in the physi
alliterature, and have been re
ently reviewed in [24℄. Re
ently M�ezard, Parisi and Ze

hina [30℄have worked out the K-SAT 1RSB solution for p = 3 predi
ting a non zero ground-state energyfor values of � above a satis�ability threshold of �
 = 4:256, very well in agreement with thenumeri
al simulations. Our results, together with the additional hypothesis of positivity of thesupport of the overlap fun
tions imply that this value is an upper bound to the true threshold.6.1.5 Summary and 
on
lusionsIn this 
hapter we have established that the free-energy of some families of diluted randomspin models 
an be written as the sum of a term identi
al to the ones got in the 
avity/repli
aplus an error term. Both the repli
a term and the remainder are di�erent in di�erent repli
as
heme, 
orresponding to the 
hoi
e of statisti
al ensemble of the 
avity �elds. We believe thatthe sign of the remainder is in general negative in the model we have 
onsidered, although wehave been able to prove that only in the 
ase of even p. For odd p our belief is supported bythe physi
al wisdom that the overlap distributions are supported on the positives in the largeN limit.



172 CHAPTER 6. DETERMINING BOUNDSWe have 
onsidered the 
ases of repli
a symmetry and one step of repli
a symmetry breaking.It is 
lear that the analysis 
ould be extended to further levels of repli
a symmetry breaking,although the 
omplexity of the analysis would greatly in
rease. The 1RSB level is thought togive the exa
t s
heme to treat the p spin model and the K-SAT problem for p � 3. For theViana-Bray model on the other hand it is believed that no �nite RSB s
heme furnish the exa
tsolution, and one needs to 
onsider the limit of in�nite number of repli
a symmetry breaking.It is not 
lear to us how to generalize the analysis to this 
ase.Our analysis of the diluted models underlines a strong link between the Guerra method andthe 
avity method whi
h remained rather hidden in the fully 
onne
ted 
ase. In the 
avityapproa
h one 
onsiders in
omplete graphs in whi
h either sites or 
lauses are removed from the
omplete graph. Then, with the aid of pre
ise physi
al hypothesis, 
onsisten
y equations arewritten that allow to 
ompute the free-energy from the 
omparison between the site and 
lause
ontributions. In the approa
h presented in this 
hapter the removal of 
lauses is 
ompensatedin average by the addition of some external �elds whi
h have pre
isely the statisti
s whi
his assumed with 
avity. The novelty of the approa
h is that it gives some 
ontrol on theapproximation involved, and proves the variational nature of the repli
a free-energies. Of 
oursea 
omplete 
ontrol on the remainder in various situations would result in rigorous solutions.Although we have mainly worked at �nite temperature, the zero temperature limit 
an be
onsidered without harm. This is parti
ularly relevant in random satis�ability problem, whereit is typi
ally found a SAT-UNSAT transition where the ground state energy passes from zeroto non zero values.



Con
lusions and perspe
tivesIn this thesis a quite extensive exploration of repli
a methods for the study of statisti
al prop-erties of spin systems on diluted random hyper-graphs was performed. We hope to have beenable to show a relevant number of examples, that have been under our dire
t investigation,where this method turns out to be very powerful.The starting body of the 
al
ulations was shown quite in details at least for some parti
ular
lasses of models, so that the interested reader should be able to retrieve the expressions shownin the text quite easily, at least for the repli
a symmetri
 and the 1RSB variational fa
torized
ase.We also hope to have given at least a 
avour of the equivalen
e between the 
avity and therepli
a te
hniques, even though the 
avity formulation was only sket
hed.It was stressed along the whole thesis that the repli
a/
avity method main assumption isthat of absen
e of non trivial 
orrelations between the spin variables, on
e the system is studiedin a parti
ular thermodynami
 state. This property applies to mean �eld-like systems as theone studied, where the method is in still in prin
iple non exa
t, but 
an be shown to lead atleast to a rigorous variational approa
h. Moreover, this variational approa
h is systemati
 and
an be applied to a wide 
lass of problems of interest not only in modern statisti
al physi
s, butalso in 
ombinatorial optimization theory, information theory and theoreti
al 
omputer s
ien
e.A proof of the well founded variational nature of the 
avity/repli
a method was a
hieved in thelast part of this work, even though more work is needed to formulate it in full generality.For disordered systems rigorous 
al
ulations that do not make use of the 
avity/repli
amethod are usually very hard. In the lu
ky simple 
ases where rigorous treatment is possi-ble, as for example the XOR-SAT 
ase, the equivalen
e between the rigorous results and therepli
a/
avity ones was stressed, as well as the physi
al interpretation of the su
h results interms of geometri
al 
hanges in the spa
e of solutions of the models studied.The deeper understanding of the repli
a/
avity method has led to the possibility of extend-ing in algorithmi
 terms to single problem instan
es. This opens the road to appli
ations toreal natural systems, as for instan
es a novel interpretation of message 
ow and organizationin realisti
 diluted neural networks. One of our future aims is to work in that dire
tion.Very re
ently, a full study of the 1RSB solution of the random 3-SAT, p-XOR-SAT andgraph q-
oloring problems have been a
hieved. This results are very promising, and one furtherstep that is 
urrently under study is to investigate the possibility of extending it to systems inpresen
e of more 
omplex geometri
al stru
ture and non trivial 
orrelations between the hyper-graph verti
es. Indeed, the repli
a/
avity method 
orresponds to the Bethe approximation inthe 
ase of disordered systems. Sin
e this Ansatz 
an be seen as a �rst order expansion of amore systemati
 variational approa
h to the study of non pure mean �eld statisti
al systemsthat goes under the name of Cluster Variation Method (CVM), a formulation of the CVM fordisordered systems seems to be ne
essary. 173



174 CHAPTER 6. DETERMINING BOUNDSWe would like to 
on
lude this thesis with a 
onsideration: re
ent numeri
al results on theperforman
e of the Survey Propagation algorithm deep in the random 3-SAT dynami
al region,the so 
alled hard/sat phase, seem to 
on�rm2 that the 
omplexity of the algorithm s
ales asO(N logN) all the way up to the SAT/UNSAT threshold. The early study of the arising of
omplexity in the typi
al 
ase were motivated in the past by the 
onvi
tion of the existen
e ofa deep link between the onset of phase transitions in the random version of 
omputationallyhard problems and the NP 
omplexity in the worst 
ase. If 
on�rmed, this last results seemto open a path in a di�erent dire
tion, and typi
al 
ase 
omplexity may turn out to have littleto say in the long standing P versus NP debate. Worst 
ase instan
es of an NP 
ompleteproblem 
ould eventually form an elusive set of highly non-typi
al 
ases, most probably verydependent on the parti
ular ad ho
 algorithm built for their solution. Nevertheless, for a wide
lass of 
omputational problems spontaneously emerging in Nature, the study of typi
al 
ase
omplexity will probably still be a very relevant issue.

2Alfredo Braunstein and Ri

ardo Ze

hina, private 
ommuni
ation.



Appendix AFa
tor graphsThe duality property in hyper-graphs is made evident when working in the fa
tor-graphformalism (see for instan
e [65, 66, 64℄), where ea
h hyper-edge is substituted by a fun
tionnode (otherwised 
alled 
he
k node or 
lause node, depending on the 
ontext), whose in
iden
eedges 
onne
t it to the variable nodes that belong to the original hyper-edge, as in �g. (A.1).This formalism is parti
ularly handy when one is interested in message passing pro
edureson the hyper-graphs, and more in general whenever one is interested in 
omputing physi
alquantities referring to the hyper-edges as a whole and not to single verti
es. This formalismis expli
itly used in 
hapters 5 and 6 and is impli
it throughout the whole work. Noti
e thatthe rank distribution of the dire
t hyper-graph is the fun
tion node degree distribution of thefa
tor graph.

Variable node Function nodeFigure A.1: From the hyper-graph to the fa
tor graph pi
ture.175
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Appendix BNormalization fa
tor �[P (k)℄The 
al
ulation is equivalent to that of the numerator in the 
al
ulation of the averages. We
an rewrite eq. (2.23) in the form�[P (k)℄ = Z Yi (d i2� ) exp(�iXi  iki) Z Yl Yi1<:::<il " 1� l!
lN l�1! Æ(Ji1;:::;il)+ (B.1)l!
lN l�1�(jsign(Ji1;:::;il)j)# exp(iXl Xi1<:::<il( lXj=1 ij )Ji1;:::;il)= Z Yi (d i2� ) exp(�iXi  iki) Z Yl Yi1<:::<il 241� l!
lN l�1 + l!
lN l�1 exp(i lXj=1 ij )35�N!1 Z Yi (d i2� ) exp(�iXi  iki) exp 24�NXl 
l0�1� 1N l Xi1;:::;il e i1+:::+ il1A35= Z Yi (d i2� ) exp(�iXi  iki) exp 24�N< k >< l > +NXl 
l  1N Xi e i!l35plus terms of order O(1=N). De�ning � � 1N Xi e i (B.2)and again expressing the 
onstraint on � in integral form we getZ d�d�̂2�N Z Yi (d i2� ) exp "�N  ��̂ + iPi  ikiN + < k >< l > � < k >< l > Xl vl�l � �̂N Xi ei i!#= 1Xt=0 Z d�d�̂2�N e�N��̂ Z Yi (d i2� ) exp "�iXi  iki �N< k >< l > +N< k >< l > Xl vl�l# �̂tt! eit i= Z d�d�̂2�N exp "�N��̂�N< k >< l > +N< k >< l > Xl vl�l +NXk 
k log �̂kk!!# (B.3)we 
an evaluate this expression at the saddle point, getting��̂ = < k > (B.4)Pl lvl�l< l > = 1 (B.5)177



178 APPENDIX B. NORMALIZATION FACTOR �[P (K)℄For the 
ase of hyper-graphs of uniform rank l, eq.(B.5) implies that we must have � = 1. Thisis not automati
ally true for multiple rank hyper-graphs. However, the assumption � = 1 isself 
onsistent also in the general 
ase, leading to the �nal expression�[P (k)℄ � e�N�<k>�Pk 
klog�<k>kk! �� (B.6)In assuming � = 1 we make the same normalization error we make in the 
omputation of thenumerator, assuming the fun
tional order parameter �(~�) to be normalized to one. As we seein the text, this error is at most )(1) in the free energy potential in the physi
ally relevant limitn! 0. If we redo the previous 
al
ulation taking into expli
it a

ount the 
onstraints over therank distribution, expression (B.3) be
omes:Z d�d�̂2�N exp "�N��̂ �N< k >< l > +N< k >< l > Xl vl log �ll! !+NXk 
k log �̂kk!!# � (B.7)exp "�N  < k > +< k >< l >+ < k > log(< k >) + < k >< l > Xl vl log(l!) +Xk 
k log(k!)!#where � and �̂ 
an
el out automati
ally. The same holds for the numerator, where the fun
tionalorder parameters 
an be taken as normalized due to the homogeneity of the free energy.



Appendix COn the 
hoi
e of the fun
tional orderparameterIn 
hoosing the fun
tional order parameter we 
an adopt two variations on the same analyti
alformalism. Either one 
an be used, depending on the way we 
hoose to look at the hyper-graph.A �rst way is that of treating every �xed degree sub-hyper-graph independently, assigning toea
h of them its own degree distribution. Let's 
all this 
hoi
e (�). Under (�), all sub-stru
tures will be merged assigning to ea
h of them a given fra
tion of all intera
tions. Sub-hyper-graphs are independent, and any one is allowed a generi
 degree distribution. The overalldegree distribution is the 
onvolution of all distributions of sub-graphs. An alternative way ofpro
eeding ((�)) 
onsiders the hyper-graph as a whole and works dire
tly with the overalldegree distribution. The two routes are equivalent, but they 
an lead to easier or more diÆ
ultrelative notations depending on the kind of graph we work with. In parti
ular, (�) leads (seefor instan
e appendi
es C.1 and C.2) to the introdu
tion of a whole set of order parameters, onefor ea
h degree, and allows to easily write a spe
ial exa
t one repli
a symmetry broken solutionin the 
ase of uniform rank and 
onstant degree, as well as in mixtures of single degree andrank sub-graphs, as the one shown in �gure (C.1). In the 
ase of hyper-graphs of the type of�g. (C.1), fa
torization is still possible be
ause all sites keep being equivalent, even though theelementary \plaquette" 
an now be seen as a more 
omplex entity made of regular groups ofhyper-edges of di�erent ranks. Moreover, given a 
ertain hyper-graph stru
ture, we re
all thatit is possible to build its dual 
ounterpart in the following way: to every intera
tion plaquettethere 
orresponds a site on the dual hyper-graph. Every two new sites are 
onne
ted if their
orresponding plaquettes of the dire
t hyper-graph have a 
ommon spin. The dual of a givenhyper-graph is therefore a stru
ture where the rank and the degree intera
tion distributions areex
hanged. This leads to the possibility of �nding a fa
torized exa
t solution also for �xed rankhyper-graphs with a non trivial albeit very pe
uliar degree distribution. The dual of �g. (C.1),for instan
e is a uniform rank 3 hyper-graph with bimodal 2 and 3 degrees, but stru
turedin su
h a way that again it 
an be seen as a more 
omplex stru
ture where the fundamentalbuilding blo
s are triplets of triplets, as shown in �g. (C.2).A spin model on this graph 
ould be solved through duality. Moreover, duality 
an behelpful any time 
al
ulating some properties of the studied model is hard in terms of degreedistribution, but easy in terms of the rank distribution of the dual (The two inter
hange throughduality). An example 
ould be the 
al
ulation of metastable states 
omplexity in the spinmodels asso
iated to Binary Channel in Error Corre
ting Codes, even though that quantityhas been found by di�erent means in 
hapter 5. On the other hand, if one is interested only in179
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Figure C.1: mixed 2 and 3-hyper-graph with 
onstant 2 and 1 sub-degrees.

Figure C.2: Superimposed dual of the previous hyper-graph. Note that it 
an be seen as ade
orated hype-graph of �xed degree, where de
orated plaquettes are the 
ir
led ones.



C.1. THE DEGREE SUB-DISTRIBUTIONS: AN ALTERNATIVE CALCULATION 181�xing the overall ranks and degrees, formalism (�) is more 
ompa
t and appropriate. In �xedrank and degree random graphs (�) and (�) are equivalent. However, we will work with theformalism (�), unless otherwise stated.C.1 The degree sub-distributions: an alternative 
al
u-lationThe 
onstraint on the whole hyper-graph degree distribution is now substituted with a 
on-straint on the degrees of ea
h single rank l sub-hyper-graph we 
an divide the stru
ture into:Yi Yk Æ( X<i2;:::;ik>i Jii2:::ik � lki ) (C.1)All 
oupling 
onstants probabilities are still treated as independent. This will lead to theintrodu
tion of a set of auxiliary variables  ki and eventually to a whole set of fun
tional orderparameters in f�k(~�) = 1N Pi Æ(~� � ~si)ei ki ; �̂k(~�)g8k. Ca
ulations are then formally equivalentto those in the text.C.1.1 RS resultsThe resulting set of repli
a symmetri
 saddle point equations reads�l(~�) = 1Nl X~k P (~k)klQl0 6=l �̂l0(~�)kl0 �̂l(~�)kl�1P~�Ql �̂l(~�)kl (C.2)Nl = X~� �l(~�) (C.3)�̂l(~�) = 1< l >lvl X~�1;:::;~�l�1 �l(~�1):::�l(~�l�1)e�Pna=1 �a�a1 :::�al�1 (C.4)P (~k) �= P (k1; :::; klmax) (C.5)and the free energy�n�F = �Xl < kl >X~� �l(~�)�̂l(~�) +X~k P (~k) log(X~� Yl �l(~�)kl) +1< l >Xl < kl > vl X~�1;:::; ~�l �l( ~�1):::�l(~�l)e�Pna=1 �a1 :::�al (C.6)< kl > �= Z d~kP (~k)kl (C.7)C.1.2 Fa
torized 1RSB results: 1The similar 
al
ulations in the 1RSB 
ase fa
torized Ansatz lead to�l(~�) = 1Nl X~k P (~k)klQl0 6=l �̂l0(~�)kl0 �̂l(~�)kl�1P~�Ql �̂l(~�)kl (C.8)



182 APPENDIX C. ON THE CHOICE OF THE FUNCTIONAL ORDER PARAMETERNl = X~� �l(~�) (C.9)�̂l(~�) = 1̂Nl 1< l >lvlP~�1;:::;~�l�1 �l(~�1):::�l(~�l�1)e�Pma=1 �a�a1 :::�al�1P ~�1;:::; ~�l �l(~�1):::�l(~�l)e�Pma=1 �a1 :::�al (C.10)N̂l = X~� ~�l(~�) (C.11)where the fun
tional parameter is taken within a repli
a group, and�m�F (m; �) = �Xl < kl > log(X~� �l(~�)�̂l(~�))�mXl < kl >X~k P (~k) log(X~� Yl �l(~�)kl)+1< l >Xl < kl > vl log( X~�1;:::; ~�l �l( ~�1):::�l(~�l)e�Pma=1 �a1 :::�al ) + mPl vl < kl >< l > (C.12)From this point on, one 
ould pro
eed again with the formalism in the main text, keepingin mind that the overall graph will be the inter
onne
tions of the l-substru
tures, and theoverall degree distribution the 
onvolution of the partial ones. This will re
e
t also on di�erentdistributions on the magneti
 �elds a
ting on spins.C.2 Fa
torized 1RSB results: 2The fa
torized Ansatz formulas are valid in the slightly more general 
ase of a mixture ofhyper-graphs of �xed sub-degree, as for instan
e the example of In that 
ase, with the sameformalism of appendix C.1 we obtain self 
onsistent repli
a equations:�(~�) = Bkl�1l (~�)Ql0 6=lBkl0l0 (~�)P~� Bkl�1l (~�)Ql0 6=lBkl0l0 (~�) (C.13)Bl(~�) = X~�1;:::;~�l�1 �(~�1):::�(~�l�1)e�Pma=1 �a�a1 :::�al�1 (C.14)re
ast in a familiar form:�m�F (m; �) =  1�Xl kl(l � 1)l ! log(X~� Yl Bkll (~�))+Xl kl(l � 1)l log(Bkl�1l (~�)X~� Yl0 6=lBkl0l0 (~�))(C.15)If kl = k 8l, we obtain �(~�) = Bk�1l (~�)Ql0 6=lBkl0(~�)P~� Bk�1l (~�)Ql0 6=lBkl0(~�) (C.16)and �m�F (m; �) =  1� kXl (l � 1)l ! log(X~� Yl Bkl (~�)) +kXl (l � 1)l log(Bk�1l (~�)X~� Yl0 6=lBkl0(~�)) (C.17)that redu
e to the equations in the text (with B(~�) = �̂(~�)).



Appendix DCriti
al exponents and non universalamplitudes
D.1 Case < k4 > �niteIn this appendix we show the expli
it 
al
ulations leading to eq. (3.34) in the text. Using eq.(3.19) for the 
ase H0 = 0 and assuming all u's to 
u
tuate around the zero value we 
an write:< u > = 1� < k >Xk k
k Z k�1Yt=1 dutQ(ut) tanh�1  tanh(�) tanh(� k�1Xt=1 ut)!� 1< k >Xk k
k Z k�1Yt=1 dutQ(ut) "tanh(�) k�1Xt=1 ut!��23 tanh(�)(1� tanh2(�)) k�1Xt=1 ut!335 +O(< u >5)= 1< k >Xk k
k [tanh(�)(k � 1) < u >��23 tanh(�)(1� tanh2(�)) Z k�1Yt=1 dutQ(ut) k�1Xt=1 ut!335= 1< k >Xk k
k [tanh(�)(k � 1) < u >��23 tanh(�)(1� tanh2(�))(k � 1) < u3 > +3(k � 1)(k � 2) < u2 >< u >+(k � 1)(k � 2)(k � 3) < u >3i= tanh(�)tanh(�
) < u > ��23 tanh(�)(1� tanh2(�))< k > h< k(k � 1) >< u3 >+3 < k(k � 1)(k � 2) >< u >< u2 >+ < k(k � 1)(k � 2)(k � 3) >< u >3i (D.1)where we have exploited the se
ond of the identities:Z k�1Yt=1 dutQ(ut) k�1Xt=1 ut!2 = (k � 1) < u2 > +(k � 1)(k � 2) < u >2 (D.2)183



184 APPENDIX D. CRITICAL EXPONENTS AND NON UNIVERSAL AMPLITUDESZ k�1Yt=1 dutQ(ut) k�1Xt=1 ut!3 = (k � 1) < u3 > +3(k � 1)(k � 2) < u2 >< u >+(k � 1)(k � 2)(k � 3) < u >3 (D.3)We assume now that < u2 > � < u >2< u3 > � < u >3 (D.4)We will see this Ansatz to be self 
onsistent in the following. Indeed, the se
ond and thirdmomenta 
an be written as< u2 > = 1< k > �2 Xk k
k Z k�1Yt=1 dutQ(ut) tanh�1(tanh(�) tanh(� k�1Xt=1 ut))!2� " tanh2(�) < k(k � 1)(k � 2) >�2 < k > � tanh2(�) < k(k � 1) ># < u >2 (D.5)< u3 >= 1< k > �3 Xk k
k k�1Yt=1 dutQ(ut) tanh�1(tanh(�) tanh(� k�1Xt=1 ut))!3 �264tanh3(�) � tanh2(�)<k(k�1)(k�2)>2�2<k>� tanh2(�)<k(k�1)>�+ < k(k � 1)(k � 2)(k � 3) >�3 < k > � tanh3(�) < k(k � 1) > 375 < u >3where we have made use of Ansatz (D.4) and identities (D.3) and rearranged the terms. Puttingall together we �nd eq.(3.34). As one 
an see, the 
riti
al exponent is the usual mean �eldone (1/3) and its value does not depend on taking into 
onsideration higher momenta of thedistribution Q(u).D.2 S
ale free networks: 
ase 3 < 
 < 5We show here the expli
it 
al
ulations leading to the non trivial mean �eld 
riti
al exponent� = 1=(
 � 3) in absen
e of a 
uto� on high degrees of the distribution, together with anapproximate expression for the non universal amplitude. Under the approximation Q(u) =Æ(u� < u >) we 
an still expandF�(< u >) � 
� < k >Xk k1�
 tanh�1 (tanh(�) tanh(�(k � 1) < u >)) (D.6)where 
 is the probability degree distribution normalization 
onstant, but sin
e the 
onvergen
eradius of the hyperboli
 tangent is �=2 the series will 
onverge as long as �(k� 1) < u >� �=2only. For any value of the temperature and the 
avity magnetization it is then possible to �nda k su
h that the argument of the tangent lies outside of the 
onvergen
e radius. Nevertheless,the fun
tion F�(< u >) is still asymptoti
 approximable by a polynomial whose maximumdegree will be a fun
tion of the exponent 
. If we 
all S(n)� (k;< u >) the nth degree trun
ationof the series expansion of the kth term of F�(< u >), we 
an write�����F�(< u >)� 
� < k >Xk k1�
S(n̂)� (k;< u >)����� ����F�(< u >)� P(n̂)� (< u >)��� � O(< u >2n̂+3) (D.7)



D.2. SCALE FREE NETWORKS: CASE 3 < 
 < 5 185where n̂ is the maximum degree s.t. the 
oeÆ
ients of P(n̂)� (< u >) are �nite and the polynomialhas degree 2n̂+1 due to the antisymmetry of the hyperboli
 tangent. The 
onvergen
e 
onditionsumming over k for the polynomial 
oeÆ
ient of maximum degree translates in the one for the
onvergen
e of the new power series:(1� 
) + 2n̂+ 1 < �1 (D.8)so that one �nds n̂ < 
 � 32 (D.9)For 
 > 5 the �rst non trivial term of the series expansion of < u > is therefore simplyn̂ = 1, and one retrieves the simple mean �eld result. But for the range of the exponent we areinterested in in this appendix the �rst non trivial term will indeed be the analyti
al 
ontinuation(D.9). It is immediate to see how the desired exponent value is retrieved. The 
al
ulation ofthe amplitude pro
eeds in a similar way. We 
an write again from the power expansion of theself-
onsistent expression for < u > up to the highest 
onverging term< u >� C(�; 
) < u >
�2= C(�; 
) < u >2n̂+1 (D.10)where C(�; 
) is the analyti
 
ontinuation of
 tanh(�)< k > Xk k1�
(k � 1) 1Xt=0 (�1)t(1� tanh2(�))t22t � 2tXr=0C2tr (�1)r 22n̂+1((t� r)(k � 1)�)2n̂+1(2n̂+ 1)! (D.11)The series in k has, as a dominant term:(�1)2n̂+1(2n̂+ 1)!Xk k(2�
)+(2n̂+1) � �(3� 
) (D.12)as one 
an easily see from the series expansion of the integral representation of the Gammafun
tion. Putting all together one �ndsC(�; 
) � 
 tanh(�
)(�2�)
�3
 �(3� 
)< k > 1Xt=0 (�1)t(1� tanh2(�))t22t 2tXr=0C2tr (t� r)s�3< u > �  1� tanh2(�
)jC(�; 
)j tanh(�)! 1s�3 j� � �
j 1s�3 (D.13)In fa
t, in order to �nd the exa
t value of the non universal amplitudes we would need to extendthe 
al
ulation of the previous paragraph. The mean value of the 
avity magnetization 
an bewritten as< u > = 1< k > �Xk k
k Z k�1Yt=1 dutQ(ut)Xn an tanhn(�) tanh(�Xt ut)!n= 1< k > �Xk k
k Z k�1Yt=1 dutQ(ut)Xn an tanhn(�)Xm 0�Xm Xl1;:::;ln nYt=1 bltÆ  m;Xt lt!1A�m  k�1Xt=1 ut!m (D.14)



186 APPENDIX D. CRITICAL EXPONENTS AND NON UNIVERSAL AMPLITUDESwhere an and blt are numeri
al 
oeÆ
ients of the Taylor expansions of the inverse hyperboli
tangent and the hyperboli
 tangent respe
tively and* k�1Xt=1 ut!m+ = n1+::::+nk�1=mXn1;:::;nk�1 m!n1!::::nk�1! < un1 > :::: < unk�1 > (D.15)The pro
ess is now a little more involved sin
e it is ne
essary to �nd a 
lose form for the analyti

ontinuation of the momenta of the distribution Q(u), where m takes real values m(
). UsingNewton's expansion for real exponents eq.(D.15) be
omes:* k�1Xt=1 ut!m+ = 1Xn1;:::;nk�2=0 n1+:::nk�2Yt=1 (m� t)n1!::::nk�2! k�2Ys=1 < uns >< um�Ps ns > (D.16)Consequently, it 
an still be immediately seen that for any value of m the proportionalityrelation * k�1Xt=1 ut!m+ /< u >m (D.17)still holds under the assumption < ur >/< u >r 8 r 2 R, and one is left this time with anin�nite system of equations for the non integer moments that 
an be iteratively solved andgive the desired 
orre
tion to expression for the non universal amplitude. Moreover, the valueof 
riti
al exponent is not 
hanged. Similar expansions 
an be done for all other physi
alquantities.



Appendix EE.C.Codes: BSC, A T=0 variational
al
ulationThe zero temperature equations simplify in the limit y ! 1, 
orresponding to vanishingex
hange energy. In that 
ase, a �nite value of q is obtained if the magneti
 �eld h0 is kept�nite, and it 
an be proved that the relation q = tanh(h0) holds. In this limit, a dire
t inspe
tionof the saddle point equations reveals that only the values �(l � 1) are possible for the 
avity�elds x, and the values �1 for the y's. More expli
itly, the order parameters Q[�℄ and bQ[�̂℄ aresupported on distributions of the form�(x) = �+Æ(x� l + 1) + ��Æ(x+ l � 1) ; �̂(z) = �̂+Æ(z � 1) + �̂�Æ(z � 1) : (E.1)The fun
tional order parameter bQ[�̂℄, redu
es to the probability distributions of a single number�̂+ representing the probability of z = +1.A simple approximation is obtained by using (E.1) and negle
ting the 
u
tuations of �̂+, inthe spirit of the fa
torized Ansatz. This is exa
t 1 for h0 = 0, where our model redu
es to theone analyzed in [22℄. It 
an be proved that, for y = 1 and h0 6= 0, this approximation givesthe same result as the k; l !1 limit, 
f. Se
. 5.2.5. For instan
e in the 
ase of (k; l) = (6; 5)we get pvar
 = 0:264 whi
h 
oin
ides with the exa
t result.1This assertion is true only for even values of l, but a
tually it is a very good approximation for any valueof l.
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Figure E.1: The region of metastability as predi
ted by the approximated Ansatz (E.1) for the(6,5) 
ode. 187



188 APPENDIX E. E.C.CODES: BSC, A T=0 VARIATIONAL CALCULATIONThe same form for the fun
tional order parameter 
an also be used as a variational approx-imation for y �nite, although in this 
ase it is not justi�ed to assume z = �1. In Fig. E.1, weindi
ate the region of the (p; �) plane su
h that �p(�; 1� 2p) > 0, as obtained from this simpleapproa
h.



Appendix FDetails of the 
al
ulations of Chapter 6
F.1 p-spinF.1.1 Che
k of the positive sign of Rp�spin1RSBIn this appendix we will expli
itly show that expression (6.59) has positive de�nite sign. Thenotations will be those of the general p-spin 
ase. Spe
i�
 results in the Viana-Bray 
aseare immediately retrieved if one assigns p = 2. We pro
eed expanding in series ea
h of thethree sub-terms and showing that every element of the sum of the resulting series is positivesemide�nite.The �rst term writes: E1 Dlog E2Zm(1+tanh(�J)!(Si1 :::Sip))mE2Zm EJ =Pl�1 (�1)l+1l P1;1k1;:::;klQlu=1 �m(�1)ku�1ku! Qku�1ru=1(r1 �m)� �(tanh(�J)Pls=1 ks�J �E1 �Qls=1 E2(Zm!(Si1 :::Sip)ks )E2(Zm) � (F.1)where the term E1( � ) in the last line of eq.(F.1) 
an be written as
(l) h(q(k1;:::;kl))pi � (F.2)E10�E(1)2 :::E(l)2 Zm(1):::Zm(l)!(1)(S1;1i1 :::S1;1ip :::Sk1;1i1 :::Sk1;1ip ):::!(l)(S1;li1 :::S1;lip :::Skl;li1 :::Skl;lip )(E2Zm)l 1A :where ea
h !(s) (s = 1; :::; l) is a produ
t of ks Gibbs measure with independent �elds (variablesappearing in the E(s)2 averages), and same �elds distributions and quen
hed disorder (variablesappearing in E1). The quantities q(k1;:::;kl) have been de�ned as:q(k1;:::;kl) = 1N Xi S1;1i � ::: � Sk1;1i � ::: � S1;li � ::: � Skl;li (F.3)and in this 
ase the averages are performed using a a generalized repli
a measure, de�ned as:
(l)[(q(k1;:::;kl))n℄ = E1 24Qls=1E(s)2 Zm(s)!(s)(Si1 :::Sin)ks(E2Zm)l 35 (F.4)189



190 APPENDIX F. DETAILS OF THE CALCULATIONS OF CHAPTER 6for any integer n. The average over J sele
ts the terms with even Pls=1 kl in (F.1) so that we�nally �nd�Xl�1 mll 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1rs=1(rs �m)ks! !�(tanh(�J))Pls=1 ks�J 
(l) h(q(k1;:::;kl))pi (F.5)noti
e that (rs � m) � 0 8 integer rs > 0 only in the 
urrent hypothesis that m 2 [0; 1℄.Analogously, the term E1 *log E2Zm h(1 + tanh(�u)!(Si))miuE2Zm +Q (F.6)writes�Xl�1 mll 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1r=1 (r �m)ks! !* lYs=1 Dtanh(�u)ksEu+Q 
(l) h(q(k1;:::;kl))i (F.7)or, making use of the de�nition of G(g),�Xl�1 1l 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1r=1 (r �m)ks! !* lYs=1 D(tanh(�g))ksEg+p�1G � (F.8)�(tanh(�J))Pls=1 ks�J 
(l) h(q(k1;:::;kl))iEventually, following analogous manipulations, the last term*log* 1 + tanh(�J) pYt=1 tanh(�gt)!m+fgtg+J;fGtg (F.9)
an be written as�Xl�1 mll 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1r=1 (r �m)ks! !* lYs=1 D(tanh(�g))ksEg+pG �(tanh(�J))Pls=1 ks�J :(F.10)Invoking (6.49) and 
olle
ting allRp�spin1RSB [G; t℄ = ��mXl�1 mll 1;1Xk1;:::;klPls=1 kseven lYs=1 Qks�1r=1 (r �m)ks! !�(tanh(�J))Pls=1 ks�J �
(l) h(q(k1;:::;kl))p � pA(k1; :::; kl)p�1(q(k1;:::;kl)) + (p� 1)A(k1; :::; kl)lpi (F.11)where we have de�ned: A(k1; :::; kl) � * lYs=1 D(tanh(�g))ksEg+G (F.12)



F.1. P -SPIN 191Ea
h inner term of the series (F.11)
(l) h(q(k1;:::;kl))p � pA(k1; :::; kl)p�1(q(k1;:::;kl)) + (p� 1)A(k1; :::; kl)pi (F.13)is always positive semide�nite for p even while we need the 
ondition 
onditions q(k1;:::;kl) � 0for p odd. For p = 2 one retrieves the Viana-Bray result where (F.13) is a perfe
t square. Asin the RS 
ase, one 
an now integrate eq.(F.11) and re
ognize that on
e more the total truefree-energy 
an be written as variational term plus a positive extra one. The variational term
oin
ides with the 1RSB free-energy at stationarity and under 
onditionG(P ) = P(P )jt=0 8 P : (F.14)F.1.2 Che
k of F p�spinvar [P ℄ = F p�spin1RSB [P ℄In this appendix we want to show expli
itly thatF p�spin1RSB [P℄ = � hlog(
osh(�J))+i 1�m 24�p*log* 2 
osh(�(h+ u))2 
osh(�h)2 
osh(�u)!m+u;h+Q;P �� Z dJ�(J)*log*(1 + tanh(�J) pYt=1 tanh(�ht))m+h1;:::;hp+P1;:::;Pp �Xk e��p (�p)kk! *log* 2 
osh(�Pkl=1 ul)Qkt=1 2 
osh(�ut)!m+u1;:::;uk+Q1;:::;Qk35 (F.15)
oin
ides with the variational expressionF p�spinvar [G℄ = 1�mh *log* 12 
osh(�h)!m+h+P � �m hlog(2 
osh(�J))iJ ��p*log* 12 
osh(�u)!m+u+Q + (F.16)�(p� 1) Dlog h(1 + tanh(�J) tanh(�g1)::: tanh(�gp))mig1;:::;gpEG1;:::;Gp;J ifound in se
tion 6.1.4, on
e this last expression is extremized with respe
t to G. For a derivationof (F.15) in the repli
a formalism see the �rst 
hapter. Substituting in (F.17) the 1RSB self
onsistent 
onditions for uJ(h1; :::; hp�1) and G[P ℄ = P[P ℄ 8P , we 
an write:*log* 2 
osh(�(h+ u))2 
osh(�h)2 
osh(�u)!m+u;h+Q;P = (F.17)��p log 2 + �p*log* 1 + tanh(�J) pYt=1 tanh(�ht)!m+fhtg+fPtg;JTo 
ondense the expressions we 
an de�nepk = e��p (�p)kk! (F.18)



192 APPENDIX F. DETAILS OF THE CALCULATIONS OF CHAPTER 6Using the trivial identity�p*log* 12 
osh(�u)!m+u+Q = Xk pk *log* 1Qkt=1 2 
osh(�ut)!m+futg+fQtg (F.19)and the relation*log* 12 
osh(�h)!m+h+P = Xk pk *log* 2 
osh(�Pkl=1 ul)Qkt=1 2 
osh(�ut)!m+u1;:::;uk+Q1;:::;Qk +Xk pk *log* 1Qkt=1 2 
osh(�ut)!m+futg+fQtg (F.20)given by eqs. (6.50) and (6.52) and putting all pie
es together we �nally �ndF p�spinvar [P℄ = F p�spin1RSB [P℄ (F.21)at the 1RSB saddle point. The equivalen
e of the 
orresponding RS expressions is even simplerat it is done along the same lines of 
al
ulation, exploiting the RS self 
onsisten
y 
onditionG(h) = P (h) 8h.F.2 K-SATF.2.1 Che
k of the positive sign of RK�SATRS ...The aim of this appendix is to show that the expression for the remainder RRS[G; t℄ in (6.35)for the K-SAT model 
ase as positive sign. For the K-SAT RRS[G; t℄ spe
ializes to:1RK�SATRS [G; t℄ = ���E �Dlog �! �exp��Qpr=1 1+JrSr2 ��EfJtg�p hlog (1 + !(S) tanh(�u))iu �p*log0�1 + �2 p�1Yt=1  1 + Jt tanh(�gt)2 !1A+fgtg;fJtg +(p� 1)*log 1 + � pYt=1 1 + Jr tanh(�gt)2 !+fgtg;fJtg35 (F.22)whi
h thanks to the relation between Q(u) and G(g), rewrites asRK�SATRS [G; t℄ = ���E 24*log 1 + (e�� � 1)!( pYt=1 1 + JtSt2 )!+fJtg�p*log0�1 + �!0�1 + JS2 p�1Yt=1 1 + Jt tanh(�gt)2 1A1A+fgtg;J;fJtg +(p� 1)*log 1 + � pYt=1 1 + Jr tanh(�gt)2 !+fgtg;fJtg35 (F.23)1The sum of the site indi
es has been eliminated by symmetry.



F.2. K-SAT 193The last term has been added and subtra
ted from eq.(6.35) in order to extra
t a remainderthat would vanish if repli
a symmetry holds, and maximization is performed on G(g). As inthe p-spin 
ase, we will pro
eed in a Taylor expansion of expression (F.23) in powers of �, andrely on absolute 
onvergen
e to average ea
h term of the series.Expanding the �rst term in (F.23) we 
an writeE 24*log 1 + �!( pYt=1 1 + JtSt2 )!+fJtg35 =Xn�1 (�1)n+1n (��)nE 24*!  pYt=1(1 + JtSt)!n+fJtg35 =Xn�1 (�1)n+1n (��)n
 24 pYt=10�1 + nXl=1 DJ ltEJt 1;nXa1<:::<al Sa1t :::Salt 1A35 =Xn�1 (�1)n+1n (��)n
 24 pYt=10�1 + nXl=1 DJ ltEJt 1;nXa1<:::<al qa1:::al1A35 =Xn�1 (�1)n+1n (��)n
[(1 +Qn)p℄ (F.24)where we have de�ned �� � (e�� � 1)=(2p) and Pnl=1 DJ lEJP1;na1<:::<al qa1:::al � Qn. Noti
e thatdue to the negative sign of ��, the 
oeÆ
ients (�1)n+1(��)n are all negative.The analogous expansion of the se
ond term is:E 264*log0�1 + �!0�1 + JS2 p�1Yt=1 1 + Jt tanh(�gt)2 1A1A+fJtg;J;fgtg375 =Xn�1 (�1)n+1n (��)n
 240�1 + nXl=1hJ liJ 1;nXa1<:::<al qa1:::al1A*p�1Yt=1 nYl=1 (1 + Jt tanh(�gt))+fJtg;fgtg35 =Xn�1 (�1)n+1n (��)n
 h(1 +Qn) h(1 + J tanh(�g))nip�1J;g i (F.25)Finally, the third terms in eq.(F.23) immediately reads*log 1 + � pYt=1 1 + Jt tanh(�gt)2 !+fJtg;fgtg = Xn�1 (�1)n+1n (��)nh(1 + J tanh(�g))nipJ;g (F.26)The sum of the three pie
es in eq.(F.23) gives:RK�SATRS [G; t℄ = �� Xn�1 (�1)nn (��)n
 h ~R(Qn; p)i (F.27)with~R(Qn; p) = (1+Qn)p� p(1+Qn)h(1+J tanh(�g))nip�1J;g +(p� 1)h(1+J tanh(�g))nipJ;g (F.28)The previous sum is always positive semide�nite for p even while we need 1+Qn � 0 for p odd.



194 APPENDIX F. DETAILS OF THE CALCULATIONS OF CHAPTER 6F.2.2 ...and of RK�SAT1RSBWe pro
eed in the same way as in the p-spin 
ase. The algebra is elementary but more tediousand involved, therefore we will only list the �nal results of the 
al
ulation. Starting fromeq.(6.63), we again expand in series the �rst term, getting, with a treatment similar to the RS
ase: RK�SAT1RSB [G; t℄ =Xl�1 mll 1;1Xk1;:::;kl(���)Pls=1 ks lYs=1 Qks�1r=1 (r �m)ks! !
(l) [(1 +Q(k1; :::; kl))p℄(F.29)where we have de�ned:Q(k1; :::; kl) � lXs=1 k1;:::;ksXr1;:::;rs DJ (r1+:::+rs)EJ sYt=1 k1;:::;ksXa1<:::<art=1 q(ar1 ;:::;ars) (F.30)Analogous steps give for the se
ond term in eq.(6.63)Xl�1 mll 1;1Xk1;:::;kl(���)Pls=1 ks lYs=1 Qks�1r=1 (r �m)ks! !
(l) [1 +Q(k1; :::; kl)℄* lYs=1 D(1 + J tanh(�g))klEg+p�1G;J (F.31)and for the third termXl�1 mll 1;1Xk1;:::;kl(���)Pls=1 ks lYs=1 Qks�1r=1 (r �m)ks! !* lYs=1 D(1 + J tanh(�g))klEg+pG;J ;(F.32)where in the last two terms we 
an further expand* lYs=1 D(1 + J tanh(�g))klEg+nG;J = 0� k1;:::;klXr1;:::;rl=1 lYs=1 ksrs!DJ (r1+:::+rl)EJ * lYs=1 h(tanh(�g))rsig+nG1Awith n equal to p� 1 and p respe
tively. Sin
e �� < 0 it is easy to see how only positive termsof the series survive.Colle
ting all, we eventually �nd the 
omplete power expansion for RK�SAT1RSB :��mXl�1 mll 1;1Xk1;:::;kl(���)Pls=1 ks lYs=1 Qks�1r=1 (r �m)ks! ! � (F.33)
(l) h(1 +Q(k1; :::; kl))p � p(1 +Q(k1; :::; kl))A(k1; :::; kl)p�1 + (p� 1)A(k1; :::; kl)piwhere we have de�ned A(k1; :::; kl) � * lYs=1 D(1 + J tanh(�g))klEg+G (F.34)Again, every term of the expansion is positive for even p and for p odd under 
ondition 1 +Q(k1; :::; kl) � 0.



F.2. K-SAT 195F.2.3 Che
k of FK�SATvar [P ℄ = FK�SAT1RSB [P ℄As in the 
ase of the p-spin, we 
an show the equivalen
e of FK�SAT1RSB [P℄ and FK�SATvar [P℄ at the1RSB saddle point. We re
all that K ! p and � � e�� � 1 < 0 in our notation. In the K-SAT
ase we obtain the spe
i�
 relations:BH(h1; :::; hp�1) � B(fJtg; fhtg) = 1 + �2 p�1Yt=1  1 + Jt tanh(�ht)2 ! (F.35)uH(h1; :::; hp�1) � uJ(fJtg; fhtg) = J� tanh�1 24 �2 Qp�1t=1 �1+Jt tanh(�ht)2 �1 + �2 Qp�1t=1 �1+Jt tanh(�ht)2 �35 (F.36)to plug in in eq.(6.52) Along the same line of the general 1RSB 
omputation of 
hapter 1 we
an write the 1RSB free energy asFK�SAT1RSB [P℄ = 1m� 264��*log* 1 + � pYt=1 1 + tanh(�ht)2 !!m+h1;:::;hp+P1;:::;Pp +�p Dlog h(1 + tanh(�h) tanh(�u))miu;hEQ;P ��Xk pk *log* 2 
osh(�Pkl=1 ul)Qkt=1 2 
osh(�ut)!m+u1;:::;uk+Q1;:::;Qk35 (F.37)where pk is de�ned by eq.(F.18), and we already performed the average over the quen
heddisorder J exploiting the symmetry of the probability distributions. On the other handFK�SATvar [G℄ = 1m� 264�(p� 1)*log* 1 + � pYt=1 1 + Jt tanh(�gt)2 !!m+fgtg+fGtg;fJtg ��p*log* B(fJtg; fgtg)2 
osh(�uJ(fJtg; fgtg))!m+fgtg+fGtg;fJtg;J +*log* 12 
osh(�h)!m+h+P# (F.38)Under the symmetri
 1RSB saddle point 
onditions we 
an average out the quen
hed disorder,as before. Thanks to eqs.(6.52), (F.36) and the 
ondition G = P we observe that*log* B(g1; :::; gp�1)2 
osh(�u(g1; :::; gp�1))!m+fgtg+fGtg = Dlog h(1 + tanh(�h) tanh(�u))miu;hEQ;P +Dlog hB(h1; :::; hp�1)mifhtgEfPtg (F.39)Moreover, we 
an exploit the relations (valid at the saddle point)*log* 12 
osh(�u)!m+u+Q = *log* B(g1; :::; gp�1)2 
osh(�u(g1; :::; gp�1))!m+fgtg+fGtg �Dlog hB(h1; :::; hp�1)mifhtgEfPtg (F.40)



196 APPENDIX F. DETAILS OF THE CALCULATIONS OF CHAPTER 6and *log* 12 
osh(�h)!m+h+P = Xk pk *log* 2 
osh(�Pkl=1 ul)Qkt=1 2 
osh(�ut)!m+u1;:::;uk+Q1;:::;Qk ��p*log* 12 
osh(�u)!m+u+Q (F.41)The proper res
aling with m of the probability distributions (6.52) is 
ru
ial in the 
al
ulation.Using the last expressions and rearranging terms we eventually �ndFK�SATvar [P℄ = FK�SAT1RSB [P℄ (F.42)at the 1RSB saddle point. Again, the 
orresponding RS 
he
k is even simpler and 
an beperformed along the same lines.F.2.4 Existen
e of the free-energy of the p-spin modelLet us brie
y sket
h the proof of the existen
e of the thermodynami
 limit of free-energy of thep-spin model for p even. Let us de�ne a model whi
h interpolates between two non intera
tingsystems with N1 and N2 spins respe
tively, and a system of N = N1 + N2 spins. Ea
h 
lause� = 1; :::;M will belong to the total system with probability t, to the �rst subsystem withprobability N1=N(1� t) and to the se
ond subsystem with probability N2=N(1� t). We 
hosethe indi
es i�1 ; :::; i�p in the following way: for ea
h 
lause the indi
es will be i.i.d. with probabilityt, the indi
es will be 
hosen uniformly in the set f1; :::; Ng, with probability (1� t)N1=N theindi
es will be 
hosen in f1; :::; N1g and with probability (1� t)N2=N in the set fN1+1; :::; Ng.Let us 
onsider the free-energy FN(t) = �1N� logZ(t). A dire
t 
al
ulation of its t-derivativedFN(t)dt = � 1� 24 1Np 1;NXi1;:::;1p+N1N 1Np1 1;N1Xi1;:::;1p+N2N 1Np2 N1+1;NXi1;:::;1p 35Ehlog(1 + tanh(�J)!(Si1:::Sip))iJ :(F.43)Expanding the logarithm in series, observing that thanks to the symmetry of the J distributionthe odd term vanish, introdu
ing the repli
a measure and using the 
onvexity of the fun
tionxp for even p one proves that dFN (t)dt � 0 whi
h implies sub-additivity FN � N1N FN1+ N2N FN2 ; thisis in turn is a suÆ
ient 
ondition to the existen
e of the free-energy density. The same proveapplies to the even p random K-SAT model. For odd p we fa
e a diÆ
ulty similar to the onein the repli
a bounds. We 
an not prove sub-additivity due to the need to 
onsider negativevalues of the overlaps, and non 
onvexity of xp for negative x.
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