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Submitted in partial fulfillment of the

requirements for the degree of

“Doctor Philosophiæ”

Academic Year 2011/2012





To my mother and my father.

3



4



Deep as the relationship is between mathematics and physics, it would be wrong,
however, to think that the two disciplines overlap so much. They do not. And they
have their separate aims and tastes. They have distinctly different value judgements,
and they have different traditions. At the fundamental conceptual level they amaz-
ingly share some concepts, but even there, the life force of each discipline runs along
it own veins.

C. N. Yang.
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CHAPTER 1

Introduction

1.1 Some historical background

The notion of holomorphic vector bundle is common to some branches of mathemat-
ics and theoretical physics. In particular, such a notion seems to play a fundamental
role in complex differential geometry, algebraic geometry and Yang-Mills theory. In
this thesis we study a kind of holomorphic vector bundles over complex manifolds,
known as Higgs bundles, and some of their main properties. We restrict such ob-
jects to the case when the complex manifold is compact Kähler. On one hand,
complex manifolds provide a rich class of geometric objects, which behave rather
differently than real smooth manifolds. For instance, one of the main characteristic
of a compact complex manifold is that its group of biholomorphisms is always finite
dimensional. On the other hand, since the manifolds in which we are interested are
compact Kähler, we have that certain invariants associated with the holomorphic
bundle can be defined using cohomology classes.

In complex geometry, the Hitchin-Kobayashi correspondence asserts that the no-
tion of (Mumford-Takemoto) stability, originally introduced in algebraic geometry,
has a differential-geometric equivalent in terms of special metrics. In its classical
version, this correspondence is established for holomorphic vector bundles over com-
pact Kähler manifolds and says that such bundles are polystable if and only if they
admit an Hermitian-Einstein1 structure. This correspondence is also true for Higgs
bundles.

The history of this correspondence probably starts in 1965, when Narasimhan
and Seshadri [12] proved that a holomorphic bundle over a Riemann surface is stable
if and only if it corresponds to a projective irreducible representation of the funda-
mental group of the surface. Then, in the 80’s Kobayashi [3] introduced for the first
time the notion of Hermitian-Einstein structure in a holomorphic vector bundle,
as a generalization of a Kähler-Einstein metric in the tangent bundle. Shortly af-
ter, Kobayashi [4] and Lübke [41] proved that a bundle with an Hermitian-Einstein
structure must be necessarily polystable. Donaldson [50] showed that the result
of Narasimhan and Seshadri [12] can be formulated in term of metrics and proved
that the concepts of polystability and Hermitian-Einstein metrics are equivalent for
holomorphic vector bundles over Riemann surfaces. Then, Kobayashi and Hitchin
conjectured that the equivalence should be true in general for holomorphic vec-

1In the literature Hermitian-Einstein, Einstein-Hermite and Hermitian-Yang-Mills are all syn-
onymous. Sometimes also the terminology Hermitian-Yang-Mills-Higgs is used.
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tor bundles over Kähler manifolds. However, the route starting from polystability
and showing the existence of special structures in higher dimensions took some time.

The existence of Hermitian-Einstein structures in a stable holomorphic vector
bundle was proved by Donaldson for projective algebraic surfaces in [51] and for
projective algebraic manifolds in [52]. Finally, Uhlenbeck and Yau showed this for
general compact Kähler manifolds in [9] using some techniques from analysis and
Yang-Mills theory. Hitchin [16], while studying the self-duality equations over a
compact Riemann surface, introduced the notion of Higgs field and showed that the
result of Donaldson for Riemann surfaces could be modified to include the presence
of a Higgs field. Following the results of Hitchin, Simpson [17] defined a Higgs bun-
dle to be a holomorphic vector bundle together with a Higgs field and proved the
Hitchin-Kobayashi correspondence for such an object. Actually, using some sophis-
ticated techniques in partial differential equations and Yang-Mills theory, he proved
the correspondence even for non-compact Kähler manifolds, if they satisfy some
analytic conditions. As an application of this, Simpson [18] later studied in detail
a one-to-one correspondence between stable Higgs bundles over a compact Kähler
manifolds with vanishing Chern classes and irreducible representations of the fun-
damental group of the Kähler manifold.

The Hitchin-Kobayashi correspondence has been extended in several directions.
Simpson [17] studied the Higgs case for non-compact Kähler manifolds satisfying
some additional requirements and Lübke and Teleman [40] studied the correspon-
dence for compact complex manifolds. Bando and Siu [14] extended the corre-
spondence to torsion-free sheaves over compact Kähler manifolds and introduced
the notion of admissible Hermitian metric for such objects. Following the ideas of
Bando and Siu, Biswas and Schumacher [24] introduced the notion of admissible
Hermitian-Yang-Mills metric in the Higgs case and generalized this extension to
torsion-free Higgs sheaves.

In [51] and [52] Donaldson introduced a functional, which is known as the Don-
aldson functional, and later Simpson [17] defined this functional in his study of the
Hitchin-Kobayashi correspondence for Higgs bundles. Kobayashi in [5] constructed
the same functional in a different form and showed that it plays a fundamental role
in a possible extension of the Hitchin-Kobayashi correspondence. In fact, he proved
in [5] that for holomorphic vector bundles over projective algebraic manifolds, the
counterpart of semistability is the notion of approximate Hermitian-Einstein struc-
ture.

The correspondence between semistability and the existence of approximate
Hermitian-Yang-Mills structures in the ordinary case has been originally proposed
by Kobayashi. In [5] he proved that for a holomorphic bundle over a compact Kähler
manifold a certain boundedness property of the Donaldson functional implies the
existence of an approximate Hermitian-Einstein structure and that this implies the
semistability of the bundle. Then, using some properties of the Donaldson func-
tional and the Mehta-Ramanathan theorem, he established a boundedness property
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of the Donaldson functional for semistable holomorphic bundles over compact alge-
braic manifolds. As a consequence of this, he obtained the correspondence between
semistability and the existence of approximate Hermitian-Einstein structures when
the base manifold was compact algebraic. Then he conjectured that all three condi-
tions (the boundedness property, the existence of an approximate Hermitian-Einstein
structure and the semistability) should be equivalent in general, that is, indepen-
dently of whether the manifold is algebraic or not.

In the Higgs case and when the manifold is one-dimensional (a compact Rie-
mann surface), the boundedness property of the Donaldson functional follows from
the semistability in a similar way to the classical case, since we need to consider only
Higgs subbundles and their quotients and we have a decomposition of the Donald-
son functional in terms of these objects. The existence of approximate Hermitian-
Einstein metrics for semistable holomorphic vector bundles has been recently studied
in [46] using some techniques developed by Buchdahl [48], [49] for the desingulariza-
tion of sheaves in the case of compact complex surfaces. One of the main dificulties
in the study of this correspondence in higher dimensions arises from the notion
of stability, since for compact Kähler manifolds with dimensions greater or equal
than one, it is necessary to consider subsheaves and not only subbundles. On the
other hand, properties of the Donaldson functional commonly involves holomorphic
bundles. All of these difficulties appear also in the Higgs case, hence, in order to
study this correspondence in higher dimensions, it seems natural to introduce first
the notion of admissible Hermitian metrics on Higgs sheaves. Then, to define the
Donaldson functional for such objects using these metrics and finally, to study how
this functional defined for a semistable Higgs bundle, can be decomposed in terms
of Higgs subsheaves and their quotients.

1.2 About this thesis

This thesis is organized as follows. In Chapter 2 we study the basic results of Higgs
sheaves. These results are important mainly because the notion of stability in higher
dimensions (greater than one) makes reference to Higgs subsheaves and not only to
Higgs subbundles. The basic properties of Higgs sheaves are studied in the second
section; some of them are simple extensions to the Higgs case of classical results
on holomorphic vector bundles, however they play an important role in the the-
ory. In the last part of Chapter 2, we establish some results on semistable Higgs
sheaves. These properties will be important latter on, when we study the correspon-
dence between semistability and the existence of approximate Hermitian-Yang-Mills
structures.

In the first part of Chapter 3, we summarized some properties of metrics and
connections on Higgs bundles and introduce the space of Hermitian structures, which
is the space where the Donaldson functional is defined. Then we study some van-
ishing theorems in the context of Higgs bundles. As in the classical case, they
have important consequences. In fact, one of these vanishing theorems is crucial
to prove the semistability of a Higgs bundle admitting an approximate Hermitian-
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Yang-Mills structure. In the second part of Chapter 3, we introduce the notion of
(weak) Hermitian-Yang-Mills structure and we study the main properties of Higgs
bundles with such metrics. In particular, we prove that any weak Hermitian-Yang-
Mills structure can be transformed into an Hermitian-Yang-Mills structure under a
conformal change of the Hermitian metric of the Higgs bundle. In the final part
of Chapter 3 we introduce the notion of approximate Hermitian-Yang-Mills struc-
ture for Higgs bundles. This part is a generalization of the notion of approximate
Hermtian-Einstein structure for holomorphic vector bundles studied by Kobayashi
[5]. In the final part of this chapter we study some consequences of these notions.
In particular we prove a Bogomolov-Lübke inequality for Higgs bundles admiting an
approximate Hermitian-Yang-Mills structure.

In Chapter 4, we construct the Donaldson functional for Higgs bundles over com-
pact Kähler manifolds following a construction similar to that of Kobayashi and we
present some basic properties of it. In particular, we prove that the critical points of
this functional are precisely the Hermitian-Yang-Mills structures, and we show also
that its gradient flow can be written in terms of the mean curvature of the Hitchin-
Simpson connection. We evaluate this functional using local coordinates and we
show that it is in essence the same funtional introduced by Simpson in [17]. We
also establish some properties of the solutions of the evolution equation associated
with that functional. Next, we study the problem of the existence of approximate
Hermitian-Yang-Mills structures and its relation with the algebro-geometric notion
of Mumford-Takemoto semistability. We prove that if the Donaldson functional of
a Higgs bundle over a compact Kähler manifold is bounded from below, then there
exist an approximate Hermitian-Yang-Mills structure on it. This fact, together with
a result of Bruzzo-Graña Otero [21], implies the semistability of the Higgs bundle.
Then we show that a semistable but not stable Higgs bundle can be included into
a short exact sequence with a stable Higgs subsheaf and a semistable Higgs quo-
tient. We use this result in the final part of the chapter when we show that for a
Higgs bundle over a compact Riemann surface, the notion of approximate Hermitian-
Yang-Mills structure is in fact the differential-geometric counterpart of the notion of
semistability. These results cover the classical case if we take the Higgs field equal
to zero.

In Chapter 5 we study the notion of admissible Hermitian metric on a torsion-free
Higgs sheaf and we briefly review the Hironaka’s flattening procedure for resolution
of singularities of coherent sheaves. This can be immediately adapted to the Higgs
context, as a consequence we can associate with any torsion-free Higgs sheaf a Higgs
bundle, which is called a regularization of the Higgs sheaf. Then, we prove that any
Hermitian metric on a regularization of a Higgs sheaf induces an admissible metric
on the Higgs sheaf. In the second section of this chapter, we study some properties
of semistable Higgs sheaves closely related to the notion of adimissible metrics. In
particular, we show that the restriction of polystable Higgs sheaves to certains open
sets is also polystable, and using this we prove that the tensor product of semistable
Higgs sheaves is again semistable. In the third section, following the ideas of Biswas
and Schumacher [24] and Simpson [17] we construct the Donaldson functional for
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torsion-free Higgs sheaves. From this and a result of Simpson for Higgs bundles over
non-compact Kähler manifolds we show that the Donaldson functional for a stable
Higgs sheaf satisfies a boundedness property. Finally, following ideas of Buchdahl
[49] we start the study of the two-dimensional case. We show that a Higgs bundle
which is semistable but not stable can be included into an exact sequence with a
torsion-free Higgs quotient which in general non locally free. Finally, we show that
this sequence can be regularized in a similar form to the ordinary case, and hence
we end up with a sequence of Higgs bundles over a certain Kähler manifold. The
constructions that has been briefly introduced in the two-dimensional case, can also
be made in higher dimensions. These, together with the notion of admissible metrics
are in essence the first part of the strategy to prove the existence of approximate
Hermitian-Yang-Mills structures for semistable Higgs bundles. In this final part, we
do not present a complete proof of the existence of approximate Hermitian-Yang-
Mills structures for semistable Higgs bundles in higher dimensions, but only a brief
description of the main steps that should to be done to prove this part of the corre-
spondence in a future.

In Appendix A we write some basic properties of coherent sheaves. Then, we
review the definition of singularity set of a coherent sheaf and briefly comment some
of their main properties concerning the codimension of the singularity set. Then
we show the construction of the determinant bundle of a coherent sheaf and write
some facts on determinant bundles that are used through this work. In Appendix B
we present some general remarks on Higgs bundles and the origin of the Yang-Mills
equations. Finally, we summarize some facts about blow-ups and the resolution of
singularities.
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CHAPTER 2

Higgs sheaves

2.1 Preliminaries

We start with some basic definitions. Let X be an n-dimensional compact Kähler
manifold with Kähler form ω, and let Ω1

X be the cotangent sheaf to X, i.e., it is
the sheaf of holomorphic one-forms on X. A Higgs sheaf E over X is a coherent
sheaf E over X, together with a morphism φ : E → E⊗Ω1

X of OX -modules (that is
usually called the Higgs field), such that the morphism φ∧φ : E → E⊗Ω2

X vanishes.

Using local coordinates on X we can write φ = φαdz
α, where the index take

values α = 1, ..., n and each φα is an endomorphism of E. Then the condition
φ ∧ φ = 0 is equivalent to [φα, φβ ] = 0 for all α, β. This condition, also called the
integrability condition, implies that the sequence

E // E ⊗ Ω1
X

// E ⊗ Ω2
X

// · · ·

naturally induced by the Higgs field is a complex of coherent sheaves. A Higgs
subsheaf F of E is a subsheaf F of E such that φ(F ) ⊂ F ⊗ Ω1

X , so that the pair
F = (F, φ|F ) becomes itself a Higgs sheaf. A Higgs sheaf E = (E,φ) is said to be
torsion-free (resp. locally free, reflexive, normal, torsion) if the corresponding co-
herent sheaf E is torsion-free (resp. locally free, reflexive, normal, torsion). A Higgs
bundle E is by definition a Higgs sheaf which is locally-free.

Let E1 and E2 be two Higgs sheaves over a compact Kähler manifold X. A
morphism between E1 and E2 is a map f : E1 −→ E2 such that the diagram

E1
φ1

//

f

��

E1 ⊗ Ω1
X

f⊗1
��

E2
φ2

// E2 ⊗ Ω1
X

commutes. In the following we will write any morphism of Higgs sheaves simply as

f : E1 −→ E2 .

Let F = (F, φF ) be a Higgs subsheaf of E = (E,φ) and let G = E/F . Then, in
particular

0 // F // E // G // 0
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is an exact sequence of coherent sheaves. Tensoring this by Ω1
X we get the following

exact sequence

F ⊗ Ω1
X

f
// E ⊗ Ω1

X
// G⊗ Ω1

X
// 0 .

Since Ω1
X is locally free, the morphism f is injective (see [36], Ch.V, for details).

Therefore, from this one has the following commutative diagram

0 // F //

φF

��

E //

φ
��

G

ψ
��

// 0

0 // F ⊗ Ω1
X

// E ⊗ Ω1
X

// G⊗ Ω1
X

// 0

in which the rows are exact. The morphism ψ in the above diagram is defined by
demanding that all diagram becomes commutative (it is in fact well-defined because
the rows are exact). It follows from this that ψ is a Higgs field for the quotient sheaf
G and we say that the Higgs sheaf G = (G,ψ) is a Higgs quotient of E.

The kernel and the image of morphisms of Higgs sheaves are Higgs sheaves. In
fact, if f : E1 −→ E2 is a morphism of Higgs sheaves, K = ker f and ι : K −→ E1

denotes the obvious inclusion, we have the following commutative diagram (with
exact rows)

K
ι

//

φ
��

E1
f

//

φ1

��

E2

φ2

��

K ⊗ Ω1
X

ι′
// E1 ⊗ Ω1

X

f ′
// E2 ⊗ Ω1

X

where ι′ = ι⊗ 1, f ′ = f ⊗ 1 and φ is the restriction of φ1 to K. In that way the pair
K = (K,φ) becomes a Higgs subsheaf of E1.

Similarly, if F = im f , we denote by j : F −→ E2 the inclusion morphism and
write f = j ◦ p, we obtain the following commutative diagram

E1
p

//

φ1

��

F
j

//

ψ
��

E2

φ2

��

E1 ⊗ Ω1
X

p′
// F ⊗ Ω1

X

j′
// E2 ⊗ Ω1

X

where p′ = p ⊗ 1, j′ = j ⊗ 1 and ψ is the restriction of φ2 to F . From this we get
that F = (F,ψ) is a Higgs sheaf. Furthermore, from the above diagram it follows
that F is a Higgs subsheaf of E2 and at the same time a Higgs quotient E1.

A sequence of Higgs sheaves is a sequence of the corresponding coherent sheaves
where each map is a morphism of Higgs sheaves. A short exact sequence of Higgs
sheaves (also called an extension of Higgs sheaves or a Higgs extension [18], [26]) is
defined in the obvious way.
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Let

0 // F // E // G // 0 (2.1)

be an exact sequence of Higgs sheaves. Since in the ordinary case we identify F with
a subsheaf of E, we can see the Higgs field of F as a restriction of the Higgs field of
E, in that way we identify F with a Higgs subsheaf of E.

The Higgs field φ can be considered as a section of EndE ⊗ Ω1
X and hence we

have a natural dual morphism φ∨ : E∨ → E∨ ⊗ Ω1
X and the pair E∨ = (E∨, φ∨)

is a Higgs sheaf. On the other hand, if Y is another compact Kähler manifold and
f : Y → X is a holomorphic map, the pair defined by f∗E = (f∗E, f∗φ) is also a
Higgs sheaf.

We define the tensor product of two Higgs sheaves E1 and E2 in the following
way:

E1 ⊗ E2 = (E1 ⊗ E2 , φ) (2.2)

where φ = φ1 ⊗ I2 + I1 ⊗ φ2, and I1 and I2 are the identity endomorphisms on E1

and E2 respectively. Since

φ ∧ φ = (φ1 ⊗ I2) ∧ (φ1 ⊗ I2) + (I1 ⊗ φ2) ∧ (I1 ⊗ φ2)

+ (φ1 ⊗ I2) ∧ (I1 ⊗ φ2) + (I1 ⊗ φ2) ∧ (φ1 ⊗ I2)

= 0

the tensor product defined in (2.2) is automatically a Higgs sheaf.

On the other hand, we define the direct sum of two Higgs sheaves E1 and E2 as
follows

E1 ⊕ E2 = (E1 ⊕ E2 , pr∗1φ1 + pr∗2φ2) (2.3)

where pri : E1 ⊕ E2 → Ei (with i = 1, 2) denote the natural projections. If v1 and
v2 are sections of E1 and E2 respectively, then

pr∗1φ1(v1, v2) = (φ1v1, v2) , pr∗2φ2(v1, v2) = (v1, φ2v2) . (2.4)

From the above it follows that

(pr∗1φ1 + pr∗2φ2) ∧ (pr∗1φ1 + pr∗2φ2) = 0 ,

which shows that the direct sum given by (2.3) is a Higgs sheaf.

2.2 Mumford-Takemoto stability

Let X be a compact Kähler manifold and E = (E,φ) a Higgs sheaf over it. We define
the degree and the rank of E, denoted by deg E and rkE respectively, simply as the
degree and rank of the coherent sheaf E. Hence, if detE denotes the determinant
bundle of the coherent sheaf E we define

deg E =

∫

X
c1(detE) ∧ ωn−1 . (2.5)
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If the rank is positive, we introduce the quotient µ(E) = deg E/rk E which is
called the slope of the Higgs sheaf E. In a similar way as in the ordinary case (see
for instance [5], [9], [13], [14]) there is a notion of stability for Higgs sheaves [17],
[18], [21], [24]. Namely, a Higgs sheaf E is said to be ω-stable (resp. ω-semistable)
if it is torsion-free and for any Higgs subsheaf F with 0 < rkF < rkE we have the
inequality µ(F) < µ(E) (resp. ≤). We say that a Higgs sheaf is ω-polystable if it
decomposes into a direct sum of two or more ω-stable Higgs sheaves all these with
the same slope. Consequently, a polystable Higgs sheaf is semistable but not stable.

In dimensions greater or equal than two, the notion of stability (resp. semistabil-
ity) depends on the Kähler form, since the degree depends on it. Now, in dimension
one, the degree does not depend on the Kähler form and hence the notion of stabil-
ity (resp. semistability) does not depend on it and we can establish all our results
without any explicit reference to ω. We will see more about this when we study the
Hitchin-Kobayashi correspondence for Higgs bundles over compact Riemann sur-
faces.

On the other hand, the notion of stability (resp. semistability) makes reference
only to Higgs subsheaves. Then, in principle we have sheaves which are stable (resp.
semistable) in the Higgs case, but not in the ordinary case (see Appendix B for some
concrete examples).

Since the degree and the rank of any Higgs sheaf is the same degree and rank
of the corresponding coherent sheaf, we have the following (see [5], Ch. V, Lemma
7.3).

Lemma 2.1. Given an exact sequence of Higgs sheaves (2.1), then

rkF (µ(E) − µ(F)) + rkG (µ(E) − µ(G)) = 0 . (2.6)

From Lemma 2.1 it follows that the condition of stability (resp. semistability)
can be written in terms of quotient Higgs sheaves instead of Higgs subsheaves. To
be precise we conclude

Corollary 2.2. Let E be a torsion-free Higgs sheaf over a compact Kähler manifold
X with Kähler form ω. Then E is ω-stable (resp. semistable) if for every quotient
Higgs sheaf G with 0 < rkG < rkE it follows µ(E) < µ(G) (resp. ≤).

From the definition of degree, it follows that any torsion Higgs sheaf T has
deg T ≥ 0. Therefore, in a similar way to the classical case, this implies that in the
definition of stability (resp. semistability) we do not have to consider all quotient
Higgs sheaves. To be precise we have

Proposition 2.3. Let E be a torsion-free Higgs sheaf over a compact Kähler man-
ifold X with Kähler form ω. Then
(i) E is ω-stable (resp. semistable) if and only if µ(F) < µ(E) (resp. ≤) for any
Higgs subsheaf F with 0 < rkF < rkE and such that the quotient E/F is torsion-free.
(ii) E is ω-stable (resp. semistable) if and only if µ(E) < µ(G) (resp. ≤) for any
torsion-free quotient Higgs sheaf G with 0 < rkG < rkE.
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Proof: (i) and (ii) are clear in one direction. For the converse, suppose the inequality
between slopes in (i) (resp. in (ii)) holds for proper Higgs subsheaves with torsion-
free quotient (resp. for torsion-free quotients Higgs sheaves) and let consider an
exact sequence of Higgs sheaves as in (2.1).

Let E = (E,φ) and denote by ψ the Higgs field of G. That is, G = (G,ψ). Now,
let T be the torsion subsheaf of G. Since the Higgs field satisfies ψ(T ) ⊂ T ⊗ Ω1

X ,
the pair T = (T,ψ|T ) is a Higgs subsheaf of G with Higgs quotient, say G1. Then if
we define F1 by the kernel of the Higgs morphism E −→ G1, we have the following
commutative diagram of Higgs sheaves

0

��

0

��

T

��

0 // F //

��

E //

Id
��

G //

��

0

0 // F1
//

��

E // G1

��

// 0

F1/F

��

0

0

in which all rows and columns are exact. From this diagram we have that F is a
Higgs subsheaf of F1 with T ∼= F1/F. Since T is a torsion Higgs sheaf, deg T ≥ 0
and we also obtain

deg G = deg T + deg G1 ≥ deg G1 ,

deg F1 = deg F + deg T ≥ deg F .

Now, because T is torsion we have rkG = rkG1 and rkF1 = rkF and hence finally
we obtain

µ(F) ≤ µ(F1) , µ(G1) ≤ µ(G) .

At this point, the converse directions in (i) and (ii) follows from the hypothesis and
the last two inequalities. Q.E.D.

Lemma 2.4. Let E be a torsion-free Higgs sheaf over a compact Kähler manifold
X, then µ(E) = −µ(E∨).

Proof: Assume that E is a torsion-free Higgs sheaf, from a classical result (see [5],
Ch.V, Proposition 6.12 for more details) we know that the determinant bundle of
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E satisfies (detE)∨ = detE∨. From this and the definition of the degree of Higgs
sheaves we get the following

deg E∨ = deg (detE∨) = deg ((detE)∨) = −deg (detE) = −deg E

and the result follows from the definition of the slope. Q.E.D.

The following is a natural extension to Higgs sheaves of a classical result in
Kobayashi [5].

Proposition 2.5. Let E be a torsion-free Higgs sheaf over a compact Kähler man-
ifold X with Kähler form ω. Then
(i) If rkE = 1, then E is ω-stable.
(ii) Let L be a Higgs line bundle over X. Then L⊗E is ω-stable (resp. semistable)
if and only if E is ω-stable (resp. semistable).
(iii) E is ω-stable (resp. semistable) if and only if E∨ is ω-stable (resp. semistable).

Proof: (i) is a direct consequence of the definition of stability and (ii) is equal to
the classical case. We will see (iii) in the case of stability (the proof in the case
of semistability is similar and is obtained by replacing < by ≤ in the inequalities
between slopes).

Assume first E∨ is ω-stable and consider an exact sequence of Higgs sheaves

0 // F // E // G // 0

with G torsion-free. Dualizing it, we obtain the following exact sequence of Higgs
sheaves

0 // G∨ // E∨ // F∨ .

Since E and G are both torsion-free, we get from Lemma 2.4 and the above sequence
that

µ(E) = −µ(E∨) < −µ(G∨) = µ(G) ,

which means that E must be ω-stable.

Assume now that E is ω-stable and consider an exact sequence of Higgs sheaves

0 // F′ // E∨ // G′ // 0

with G′ torsion-free. Dualizing it, we obtain again an exact sequence of Higgs sheaves

0 // G′∨ // E∨∨ // F′∨ .

On the other hand, the natural injection σ : E −→ E∨∨ defines E as a Higgs
subsheaf E∨∨. From this and defining the Higgs sheaves H′ = E∩G′∨ and H′′ = E/H′
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we have the following commutative diagram

0

��

0

��

0 // H′ //

��

E //

σ

��

H′′ // 0

0 // G′∨ //

��

E∨∨ //

��

F′∨

0 // G′∨/H′ //

��

E∨∨/E //

��

T′′ // 0

0 0

where T′′ is defined such that the sequence on the bottom becomes an exact se-
quence1. In the above diagram all columns and arrows are exact and since E is
torsion-free, the quotient E∨∨/E is a torsion sheaf supported on a set of codimen-
sion at least two, and hence, the same holds also for G′∨/H′ and T′′. Therefore
deg G′∨ = deg H′ and rkG′∨ = rkH′. Consequently, G′∨ and H′ have the same slope
and it follows

µ(G′) = −µ(G′∨) = −µ(H′) > −µ(E) = µ(E∨) ,

which means that E∨ is ω-stable. Q.E.D.

Corollary 2.6. Let E be a torsion-free Higgs sheaf over a compact Kähler manifold
X with Kähler form ω. Then E is ω-stable (resp. semistable) if and only if the sheaf
E∨∨ is ω-stable (resp. semistable).

The above Corollary is an immediate consequence of the part (iii) of Proposi-
tion 2.5. It has been proved independently by Biswas and Schumacher (see [24],
Lemma 2.4 for details). Finally, we have a simple result concerning the direct sum
of semistable Higgs sheaves.

Theorem 2.7. Let E1 and E2 be two torsion-free Higgs sheaves over a compact
Kähler manifold X with Kähler form ω. Then E1 ⊕ E2 is ω-semistable if and only
if E1 and E2 are both ω-semistable with µ(E1) = µ(E2).

Proof: Assume first that E1 and E2 are both ω-semistable with µ(E1) = µ(E2) = µ
and let F be a Higgs subsheaf of E1 ⊕ E2. Then we have the following commuta-
tive diagram where the horizontal sequences are exact and the vertical arrows are
injective

0 // F1
//

��

F //

��

F2

��

// 0

0 // E1
// E1 ⊕ E2

// E2
// 0

1Notice that the map G′∨/H′ −→ E∨∨/E is injective and T′′ is just the corresponding quotient.
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where F1 = F ∩ (E1 ⊕ 0) and F2 is the image of F under E1 ⊕ E2 −→ E2. From the
above diagram we have

deg (E1 ⊕ E2) = deg E1 + deg E2 . (2.7)

Now, since by hypothesis E1 and E2 have the same slope µ, we have µ(E1 ⊕E2) = µ
and

deg F1 ≤ µ · rkF1 , deg F2 ≤ µ · rkF2 .

From these inequalities we obtain

µ(F) =
deg F

rkF
=

deg F1 + deg F2

rkF1 + rkF2
≤ µ

and the semistability of E1 ⊕ E2 is follows.

Conversely, suppose E1 ⊕ E2 is ω-semistable. Since E1 and E2 are at the same
time Higgs subsheaves and quotient Higgs sheaves of E1 ⊕ E2 we necessarily obtain

µ(E1 ⊕ E2) = µ(E1) = µ(E2) .

A Higgs subsheaf G1 of E1 is clearly a Higgs subsheaf of E1 ⊕E2 and hence µ(G1) ≤
µ(E1), which shows the semistability of E1. A similar argument shows the semista-
bility of E2. Q.E.D.

In the proof of the above result we showed also that the slope of E1 ⊕ E2 is the
same slope of E1 and E2, which says that the direct sum of semistable Higgs sheaves
can never be stable. In fact, even if they are stable, the direct sum is just polystable.
From Theorem 2.7 we know that the direct sum of semistable Higgs sheaves with
equal slope is again semistable. There is an analog result concerning the tensor
product, in that case we do not need the condition on the slopes. Kobayashi [5]
obtained this result for holomorphic bundles in the projective case as a direct con-
sequence of the equivalence between semistability and the existence of approximate
Hermitian-Yang-Mills structures when X is a projectve algebraic manifold. Simp-
son [17] proved this for Higgs bundles, again when X is projective. The general
result for Higgs sheaves has been proved recently by Biswas and Schumacher [24]
using an extension of the Hitchin-Kobayashi correspondence for torsion-free Higgs
sheaves. We will see more about this later, when we study the notion of admissible
Hermitian-Yang-Mills structure on a Higgs sheaf.

2.3 Semistable Higgs sheaves

The definition of semistability for Higgs sheaves that we have introduced in the
preceding section uses only proper Higgs subsheaves, this definition can be reformu-
lated in terms of Higgs sheaves of arbitrary rank (non necessarily proper). Indeed,
it was the way in which Kobayashi [5] introduced the notion of semistability for
holomorphic vector bundles. Therefore, alternatively we can say that a torsion-free
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Higgs sheaf E over a compact Kähler manifold X is ω-semistable if and only if
µ(F) ≤ µ(E) for every Higgs subsheaf F with 0 < rkF ≤ rkE or equivalently2 if and
only if µ(E) ≤ µ(Q) for every quotient Higgs subsheaf Q with 0 < rkQ ≤ rkE. Us-
ing the above definition it is easy to prove the following, which is a natural extension
to Higgs sheaves of a classical result in [5].

Proposition 2.8. Let f : E1 −→ E2 be a morphism of ω-semistable (torsion-free)
Higgs sheaves over a compact Kähler manifold X with Kähler form ω. Then we have
the following:
(i) If µ(E1) > µ(E2), then f = 0 (i.e, it is the zero morphism).
(ii) If µ(E1) = µ(E2) and E1 is ω-stable, then rkE1 = rk f(E1) and f is injective
unless f = 0 .
(iii) If µ(E1) = µ(E2) and E2 is ω-stable, then rkE2 = rk f(E1) and f is generically
surjective unless f = 0 .

Proof: Assume that E1 and E2 are both ω-semistable with slopes µ1 and µ2 and
ranks r1 and r2 respectively, and let F = f(E1); then F is a torsion-free quotient
Higgs sheaf of E1 and a Higgs subsheaf of E2.

(i) Suppose that µ1 > µ2 and f 6= 0, then

µ(F) ≤ µ2 < µ1 ≤ µ(F) ,

which is impossible. Therefore f must be the zero morphism.

(ii) Assume f 6= 0 and suppose that µ1 = µ2 and E1 is ω-stable. If r1 > rkF,
then

µ(F) ≤ µ2 = µ1 < µ(F) .

Hence, necessarily r1 = rkF and f is injective.

(iii) Assume f 6= 0 and suppose that µ1 = µ2 and E2 is ω-stable. If r2 > rkF,
then

µ(F) < µ2 = µ1 ≤ µ(F) ,

and consequently r2 = rkF and the result follows. Q.E.D.

From the above Proposition we have that any extension of semistable Higgs
sheaves with the same slope must be semistable. Namely we have

2This equivalence is clear from Lemma 2.1. On the other hand, if we assume that a sheaf E is
semistable according to our original definition and F is a Higgs subsheaf with rk F = rkE, then we
have a sequence

0 // F // E // Q // 0

with Q a torsion sheaf (it is a zero rank sheaf). From the above exact sequence it follows that
deg E = deg F + deg Q and since deg Q ≥ 0, necessarily µ(F) ≤ µ(E). This means that E is
semistable with respect to the new definition. The converse direction is immediate, and hence the
definition of semistability can be put in terms of Higgs subsheaves (or equivalently quotient Higgs
sheaves) of arbitrary rank.
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Corollary 2.9. Let

0 // F // E // G // 0

be an exact sequence of torsion-free Higgs sheaves over a compact Kähler manifold
X with Kähler form ω. If F and G are both ω-semistable and µ(F) = µ(G) = µ,
then E is also ω-semistable and µ(E) = µ .

Proof: The fact that µ(E) = µ follows from Lemma 2.1. Suppose now E is not
semistable and hence there exists a subsheaf H destabilizing it, i.e., there exists a
proper (non-trivial) Higgs subsheaf H such that µ(H) > µ. Without loss of gener-
ality we can assume that H is semistable3. Then we have a morphism f : H −→ G

with µ(H) > µ(G), and from Proposition 2.8 we have f = 0. Therefore, there exists
a morphism g : H −→ F where µ(H) > µ(F), and we have again g = 0, which means
that H must be trivial and from this we have a contradiction. Q.E.D.

3If it is not, we can destabilize H with a Higgs subsheaf H′. If it is semistable we stop, if it is
not, then we repeat this procedure. Clearly this finishes after a finite number of steps, since in the
extreme case we get a Higgs sheaf of rank one.
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CHAPTER 3

Higgs bundles

3.1 Metrics and connections on Higgs bundles

Let E = (E,φ) be a Higgs bundle of rank r over a compact Kähler manifold X
with Kähler form ω and let h be an Hermitian metric on it. Let Dh = D′

h +D′′ be
the Chern connection1 on E, where D′

h and D′′ = d′′ are the (1,0) and (0,1) parts.
Using this decomposition of Dh and the Higgs field φ, Simpson [17] introduced a
connection on E in the following way:

D′′ = D′′ + φ , D′
h = D′

h + φ̄h , (3.1)

where φ̄h is the usual adjoint of the Higgs field with respect to the Hermitian struc-
ture h, that is, it is defined by the formula

h(φ̄hs, s
′) = h(s, φs′) (3.2)

where s, s′ are sections of the Higgs bundle. Notice however that D′
h and D′′ are

not of type (1, 0) and (0, 1). The resulting connection Dh = D′
h + D′′ is called the

Hitchin-Simpson connection. Clearly

Dh = Dh + φ+ φ̄h (3.3)

depends on the Higgs field φ. Even more, it has an extra dependence on h via
the adjoint of the Higgs field. The curvature of the Hitchin-Simpson connection
is defined by Rh = D2

h and we say that the pair (E, h) is Hermitian flat, if this
curvature vanishes. Explicitly

Rh = (Dh + φ+ φ̄h) ∧ (Dh + φ+ φ̄h)

= Dh ∧Dh +Dh ∧ φ+ φ ∧Dh

+Dh ∧ φ̄h + φ̄h ∧Dh + φ ∧ φ̄h + φ̄h ∧ φ ,

then using again the decomposition Dh = D′
h +D′′ and defining

[φ, φ̄h] = φ ∧ φ̄h + φ̄h ∧ φ (3.4)

we obtain the following formula of the Hitchin-Simpson curvature in terms of the
Chern curvature

Rh = Rh +D′
h(φ) +D′′(φ̄h) + [φ, φ̄h] . (3.5)

1Also called the Hermitian connection, this is the unique connection compatible with the metric
h and the holomorphic structure of the bundle E, see Chapter I in [5] for more details.
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In the above formula, D′
h(φ) and D′′(φ̄h) are of type (2, 0) and (0, 2) respectively,

and the (1, 1)-part is given by

R1,1
h = Rh + [φ, φ̄h] . (3.6)

Let us consider again a Higgs bundle E = (E,φ) of rank r over an n-dimensional
compact Kähler manifold X with Kähler form ω. Consider the usual star operator
∗ : Ap,q → An−q,n−p and the operator L : Ap,q → Ap+1,q+1 defined by Lϕ = ω ∧ ϕ,
where ϕ is a form on X of type (p, q). Then we define, as usual,

Λ = ∗−1 ◦ L ◦ ∗ : Ap,q → Ap−1,q−1 (3.7)

which is the adjoint of the multiplication by the Kähler form ω. The connection
defined by (3.1) satisfies the following identities, which are indeed similar to the
Kähler indentities.

Proposition 3.1. Let h be an Hermitian metric on a Higgs bundle E over a compact
Kähler manifold X with Kähler form ω, then

i[Λ,D′
h] = −(D′′)∗ , i[Λ,D′′] = (D′

h)
∗ , (3.8)

where Λ is the adjoint of the multiplication by ω.

Proof: Using local coordinates (see [17] for details) it can be shown that

i[Λ, φ] = φ̄∗h , i[Λ, φ̄h] = −φ∗ . (3.9)

On the other hand, the standard Kähler identities (see [36]) are

i[Λ,D′
h] = −(D′′)∗ , i[Λ,D′′] = (D′

h)
∗ . (3.10)

At this point the result follows from (3.9), (3.10) and the decomposition of the
Hitchin-Simpson connection given by (3.1). Q.E.D.

Let h be an Hermitian metric on E, associated to h we have a Hitchin-Simpson
curvature Rh. We define the mean curvature of the Hitchin-Simpson connection, just
by contraction of this curvature with the operator iΛ. In other words, Kh = iΛRh.
The mean curvature is an endomorphism in End(E). If we consider a local frame
field {ei}ri=1 for E and a local coordinate system {zα}nα=1 of X, the components of

the mean curvature are given by Ki
j = ωαβ̄Ri

jαβ̄
, where Ri

jαβ̄
are the components

of the (1, 1)-part of the Hitchin-Simpson curvature.

The mean curvature can be considered also as an Hermitian form by defining

Kh(s, s
′) = h(s,Khs

′) , (3.11)

where s, s′ are sections of E.
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Let k be an Hermitian metric on E and let a be a selfadjoint endomorphism of
E (selfadjoint with respect to k). Then, one defines another metric h on E by

h(s, s′) = k(s, as′) , (3.12)

where s, s′ are sections of E. Since a is selfadjoint with respect to k we get

h(s, as′) = k(s, aas′) = k(as, as′) = h(as, s′) ,

thus a is also selfadjoint with respect to h. The metric defined by (3.12) is usually
denoted by h = ka. The origin of this notation, which appears quite often in
literature, is clear from a local point of view. In fact, using a local frame field
{ei}ri=1 on E we have

hij = k(ei, aej) = k(ei, ela
l
j) = kila

l
j

and hence the matrix representing h is the product of the matrices representing k
and a. Now, with respect to h we have

h(φ̄hs, s
′) = h(s, φs′) = k(s, aφs′) = k(as, φs′)

= k(φ̄kas, s
′) = h(φ̄kas, a

−1s′)

= h(a−1φ̄kas, s
′)

where we have used the fact that a−1 is selfadjoint2 with respect to h. Thus, we
obtain the formula

φ̄h = a−1φ̄ka , (3.13)

which relates the adjoint of the Higgs fields of the metrics k and h = ka.

3.2 The space of Hermitian structures

In this thesis we work with torsion-free Higgs sheaves over compact Kähler mani-
folds. Since every torsion-free sheaf is locally free outside a closed analytic subset, it
will be necessary to work with certain Higgs bundles over non-compact manifolds.
In this section we study some aspects of the space of Hermitian structures which
cover this last case. For more deatils see [5], [17].

Let E be a Higgs bundle of rank r over a Kähler manifold Y . Let Herm(E) denote
the space of all C∞-Hermitian forms on E. This is an infinite dimensional linear
space. If v ∈ Herm(E) and {ei}ri=1 is a local frame field, the matrix representing v
and defined by vij = v(ei, ej) is Hermitian.

2Notice that since a is selfadjoint with respect to k, we have

h(a−1s, s′) = k(a−1s, as′) = k(s, s′) = h(s, a−1s′) ,

which says that a−1 is selfadjoint with respect to the metric h.
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Let Herm+(E) be the space of all Hermitian structures, that is, it is the subset
of Herm(E) consisting of all positive definite Hermitian forms. If h, k are elements
in Herm+(E), the straight line

ht = th+ (1 − t)k , 0 ≤ t ≤ 1 (3.14)

remains inside Herm+(E), and hence the latter is a convex space. Herm(E) can be
considered as the tangent space of Herm+(E) at each point h. That is

ThHerm+(E) = Herm(E) (3.15)

at any Hermitian structure h.

In the case of a compact Kähler manifold X, we introduce a Riemannian metric
on the space Herm+(E) in the following way. Let v be an element in Herm(E), then
one defines h−1v as the endomorphism of E satisfying

v(s, s′) = h(s, h−1vs′) , (3.16)

where s, s′ are arbitrary sections of E. Then one defines a Riemannian structure
in Herm+(E) by defining an inner product at each tangent space. Namely, if v, v′

are elements in ThHerm+(E), these can be seen as elements in Herm(E) via the
identification (3.15) and hence one defines its inner product by

(v, v′)h =

∫

X
tr(h−1v · h−1v′)ωn/n! . (3.17)

The norm of any v in ThHerm+(E) is defined as usual, i.e.,

‖v‖2
h = (v, v)h =

∫

X
|v|2h

ωn

n!
, (3.18)

where

|v|2h = tr(h−1v · h−1v) . (3.19)

Let γ be an smooth curve ht , a ≤ t ≤ b in Herm+(E), then each ∂tht is an
element in Tht

Herm+(E) and we can consider the functional (usually called the
energy integral)

E(γ) =

∫ b

a
‖∂tht‖2

ht
dt . (3.20)

Consider the curve γǫ in Herm+(E) defined by ǫvt , a ≤ t ≤ b and ǫ ≥ 0. Then (see
[5] for more details)

d

dǫ
E(γ + γǫ)|ǫ=0 = −2

∫ b

a
(h−1
t ∂tvt · [h−1

t ∂2
t ht − h−1

t ∂tht · h−1
t ∂tht]) dt (3.21)

which means that the curve γ is a critical point of E if and only if

h−1
t ∂2

t ht − h−1
t ∂tht · h−1

t ∂tht = 0 , (3.22)
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or equivalently if and only if
d

dt
(h−1
t ∂tht) = 0 . (3.23)

From the preceding analysis we conclude that an smooth curve ht in the space
Herm+(E) is a geodesic if and only if the endomorphism h−1

t ∂tht, which is associated
to the Hermitian form ∂tht, is a fixed element in EndE.

Suppose k is a fixed element in Herm+(E) and that a is a self-adjoint endomor-
phism of E, then the curve ht = keta , 0 ≤ t ≤ 1 satisfies

h−1
t ∂tht = e−tak−1ketaa = a (3.24)

and hence, it is in a natural way a geodesic in Herm+(E).

Let Herm+
int(E) denote the set of all Hermitian metrics h satisfying

‖Kh‖L1
=

∫

Y
|Kh|h

ωn

n!
<∞ (3.25)

where Kh is the mean curvature of the Hitchin-Simpson connection of h. If Y is
compact, this space coincides with Herm+(E). However, in general it is a proper
subset of the space of Hermitian structures. The space Herm+

int(E) have been studied
by Simpson in [17]. It can be seen as an analytic manifold, which in general is not
connected, and has the the following properties. If k ∈ Herm+

int(E) is a fixed element,
then any other metric in the same component is given by h = kea with a an smooth
endomorphism of E which is selfadjoint with respect to k. Even more, Simpson
showed in [17] that for any Higgs bundle E over a Kähler manifold Y (satisfying
some additional requirements), the solution of the heat equation remains in the
same connected component of the initial metric. To be precise, if k is a fixed metric
in Herm+

int(E), then the unique solution ht with h0 = k is contained in the same
connected component as k.

3.3 Vanishing theorems for Higgs bundles

In the study of holomorphic bundles there exists some results on vanishing holomor-
phic sections if some specific conditions on the curvature apply. These results are
called vanishing theorems and play an important role in the study of (approximate)
Hermitian-Einstein structures (see [5], Ch. III). Some of these results also holds
in the context of Higgs bundles, in that case, we must replace the ordinary mean
curvature for the Hitchin-Simpson curvature.

Let s be a section of the Higgs bundle E = (E,φ), it is said to be φ-invariant
if there is a holomorphic 1-form λ on X such that φ(s) = s ⊗ λ. Using φ-invariant
sections we have a first vanishing theorem for Higgs bundles.

Theorem 3.2. Let E = (E,φ) be a Higgs bundle over a compact Kähler manifold
X and let h be an Hermitian metric on it.
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(i) If the Hitchin-Simpson mean curvature Kh is seminegative definite everywhere,
then every φ-invariant section s of E satisfies

Kh(s, s) = 0 (3.26)

and is parallel in the classical sense, that is, Dhs = 0 with Dh the Chern connection
of h.
(ii) If the Hitchin-Simpson mean curvature Kh is seminegative definite everywhere
and negative definite at some point of X, then E has no nonzero φ-invariant sections.

Proof: Let s be a φ-invariant section and assume Kh is seminegative definite every-
where. From the decomposition of the Hitchin-Simpson curvature (3.5) we have

Rhs = Rhs+D′
h(φ)s +D′′(φ̄h)s + [φ, φ̄h]s . (3.27)

In the above epxression, the terms involving D′
h and D

′′

are of type (2, 0) and (0, 2)
respectively. On the other hand, since φ(s) = s⊗λ we have [φ, φ̄h]s = 0. Therefore,
by applying the operator iΛ to the identity (3.27) we obtain

Khs = iΛRhs = iΛRhs = Khs , (3.28)

which in terms of Hermitian forms can be written as

Kh(s, s) = Kh(s, s) . (3.29)

Now, using the Weitzenböck formula (see [5] or [21] for more details) we have

iΛd′d′′h(s, s) = h(D′
hs,D

′
hs) − h(s,Khs) . (3.30)

Since by hypothesis Kh is a seminegative form, then from (3.29) and (3.30) we
conclude that

iΛd′d′′h(s, s) = |D′
hs|2h −Kh(s, s) ≥ 0 , (3.31)

where we denote

|D′
hs|2h = h(D′

hs,D
′
hs) .

By Hopf’s maximum principle it follows

iΛd′d′′h(s, s) = 0

and hence, necessarily Kh(s, s) = 0 and D′
hs = 0. Finally, since s is holomorphic and

Dh is the Chern connection (which is compatible with the holomorphic structure)
we have Dhs = 0 and this shows (i).

On the other hand, suppose now s is a nonzero φ-invariant section of E and
assume this time that Kh is seminegative definite everywhere and negative at some
point. Then, from (i) we have Dhs = 0 and hence the φ-invariant section s never van-
ishes. By the same part (i) we know Kh(s, s) = 0, and then we have a contradiction
since Kh must be negative at some point of X. Q.E.D.
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Theorem 3.3. Let E1 = (E1, φ1) and E2 = (E2, φ2) be two Higgs bundles over a
compact Kähler manifold X and let h1 and h2 two Hermitian metrics on E1 and
E2 respectively. Let K1 and K2 be the corresponding main curvatures and K1⊗2 the
mean curvature of E1 ⊗ E2. Then
(i) If both K1 and K2 are seminegative definite everywhere, then every φ-invariant
section s of E1 ⊗ E2 satisfies

K1⊗2(s, s) = 0 , D1⊗2s = 0 . (3.32)

(ii) If both K1 and K2 are seminegative definite everywhere and ether one is negative
definite somewhere in X, then E1 ⊗ E2 admits no nonzero φ-invariant sections.

Proof: In an analogue form to the classical case, we can decompose the Hitchin-
Simpson curvature of E1 ⊗ E2 as

R1⊗2 = R1 ⊗ I2 + I1 ⊗R2 . (3.33)

Taking the trace with respect to ω (that is, multiplying by the operator iΛ) we have
the following expression involving the mean curvatures

K1⊗2 = K1 ⊗ I2 + I1 ⊗K2 (3.34)

and at this point the result follows from Theorem 3.2. Q.E.D.

From the above results we have the following

Corollary 3.4. Let E be a Higgs bundle over a compact Kähler manifold X and let
h be an Hermitian metric on it. Let E⊗p denote the tensor power of E p-times with
Higgs field ψ (constructed from the Higgs field of E). Then
(i) If K is seminegative definite everywhere, then every ψ-invariant section s of E⊗p

is parallel in the clasical sense and satisfies

K⊗p(s, s) = 0 , (3.35)

where K⊗p represents the mean curvature of E⊗p.
(ii) If K is seminegative definite everywhere and negative definite at some point of
X, then E⊗p admits no nonzero ψ-invariant sections.

We can consider the tangent bundle TX as a trivial Higgs bundle (with Higgs
field equal to zero). Since we have an Hermitian metric on TX, we have a natural
mean curvature of TX, which we denote by KTX . In this way,

∧p T ∗X is also a
trivial Higgs bundle and we denote the mean curvature of it by KVp T ∗ . If E = (E,φ)
is a Higgs bundle over X and h is an Hermitian metric on E with mean curvature
KE, one has a mean curvature

KE⊗
Vp T ∗ = KE ⊗ IVp T ∗ + IE ⊗KVp T ∗ (3.36)

for the Higgs bundle E ⊗ ∧p T ∗X. At this point from Theorem 3.3 and Corollary
3.4 one has the following
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Corollary 3.5. Let E = (E,φ) be a Higgs bundle over a compact Kähler manifold
X and let h be an Hermitian metric on it with mean curvature KE. Then
(i) If KE is seminegative definite and KTX is semipositive definite everywhere, then
every φ-invariant section s of E ⊗ ∧p T ∗X is parallel and satisfies

KE⊗
Vp T ∗(s, s) = 0 . (3.37)

(ii) If, moreover, either KE is negative definite or KTX is positive definite at some
point of X, then E ⊗ ∧p T ∗X has no nonzero φ-invariant sections.

Let h be an Hermitian metric on E and consider a real positive function a = a(x)
on X, then, as we said earlier, h′ = ha = ah defines another Hermitian metric on
E. Since h′ is a conformal change of h, we have in particular φ̄h′ = φ̄h. Then, we
obtain

K′ ωn = in(R′ + [φ, φ̄h′ ]) ∧ ωn−1 =
(

K ′ + iΛ[φ, φ̄h]
)

ωn. (3.38)

Now, in the ordinary case with 20 = iΛd′′d′ (see [5], Ch. III for details) we obtain
the formula K ′ = K + 20(log a)I and, by replacing this in (3.38) we get

K′ = K + 20(log a)I , (3.39)

and hence, the same relation between mean curvatures also holds in the Higgs case.
Using the above expression we obtain the following result, which is an straightfor-
ward generalization to the Higgs case of a classical result of holomorphic bundles.

Lemma 3.6. Let E = (E,φ) be a Higgs bundle over a compact Kähler manifold
X and let h be an Hermitian metric on it. Let K be the Hitchin-Simpson mean
curvature and λ1 < · · · < λr the corresponding eigenvalues. If

∫

X
λr ω

n < 0 , (3.40)

there exists a real positive function a on X such that the mean curvature K′ of the
metric h′ = ah is negative definite.

Proof: Let f be a C∞-function on X such that λr < f and
∫

X
f ωn = 0 . (3.41)

Then, from [5] (see Lemma 1.31, Ch. III) we know the equation 20u = −f has a
solution u. Using this and by defining a = eu, we get

20(log a) = −f . (3.42)

Then, from (3.39) and since λr < f it follows that K′ must be negative definite.
Q.E.D.

From Lemma 3.6 and Theorem 3.2 we conclude the following vanishing theorem

Theorem 3.7. Let E = (E,φ) be a Higgs bundle over a compact Kähler manifold
X and let h be an Hermitian metric on it. Let K be the Hitchin-Simpson mean
curvature and λ1 < · · · < λr the corresponding eigenvalues. If

∫

X
λr ω

n < 0 , (3.43)

then E admits no nonzero φ-invariant sections.
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3.4 Hermitian-Yang-Mills structures

The concept of Hermitian-Einstein structure was introduced by Kobayashi to un-
derstand the Bogomolov semistability in a differential geometrical way. In a similar
form as in the ordinary case [5], [13], [9], we have a notion of Hermitian-Einstein
structure for Higgs bundles [17].

Let h be an Hermitian structure on a Higgs bundle E, we say that h is a weak
Hermitian-Yang-Mills structure with factor γ for E if

Kh = γ · I , (3.44)

where γ is a real function defined on X and I is the identity endomorphism on E.
This means that in components the mean curvature is given by Ki

j = γ · δij . From
this definition it follows that any metric h on a Higgs line bundle is necessarily a
weak Hermitian-Yang-Mills structure. Also, if h is a weak Hermitian-Yang-Mills
structure with factor γ for E, then the dual metric h∨ is a weak Hermitian-Yang-
Mills structure with factor −γ for the dual bundle E∨.

As in the ordinary case, for Higgs bundles we have some simple properties related
to the notion of weak Hermitian-Yang-Mills structure. In particular, from the usual
formulas for the curvature of tensor products and direct sums we have the following

Proposition 3.8. Let h1 and h2 be two weak Hermitian-Yang-Mills structures with
factors γ1 and γ2 for Higgs bundles E1 and E2, respectively. Then
(i) h1 ⊗ h2 is a weak Hermitian-Yang-Mills structure with factor γ1 + γ2 for the
tensor product bundle E1 ⊗ E2 .
(ii) The metric h1 ⊕ h2 is a weak Hermitian-Yang-Mills structure for the Whitney
sum E1⊕E2 with factor γ if and only if both metrics h1 and h2 are weak Hermitian-
Yang-Mills structures with γ1 = γ2 = γ.

Proof: (i) Assume that h1 and h2 are two weak Hermitian-Yang-Mills structures with
factors γ1 and γ2 for E1 and E2 respectively. Let K1 and K2 be the corresponding
mean curvatures. Then, the mean curvature of the tensor product bundle E1 ⊗ E2

is given by
K = K1 ⊗ I2 + I1 ⊗K2 (3.45)

where I1 and I2 denote the identity endomorphisms of E1 and E2 respectively. Then
from (3.45) it follows that h1 ⊗ h2 is a weak Hermitian-Yang-Mills structure with
factor γ1 + γ2.

(ii) Since the mean curvature of E1 ⊕ E2 is given by

K = K1 ⊕K2 (3.46)

the equivalence is clear. Q.E.D.

If we have a weak Hermitian-Yang-Mills structure in which the factor γ = c is
constant, we say that h is an Hermitian-Yang-Mills structure with factor c for E.
From Proposition 3.8 and this definition we get
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Corollary 3.9. If h ∈ Herm+(E) is a (weak) Hermitian-Yang-Mills structure with
factor γ for the Higgs bundle E. Then
(i) The naturally induced Hermitian metric on the tensor product E⊗p ⊗ E∨⊗q is a
(weak) Hermitian-Yang-Mills structure with factor (p− q)γ.
(ii) The induced Hermitian metric on

∧p E is a (weak) Hermitian-Yang-Mills struc-
ture with factor pγ for every p ≤ r = rkE.

In general, if h is a weak Hermitian-Yang-Mills structure with factor γ, the slope
of E can be written in terms of γ. To be precise, we obtain

Proposition 3.10. If h ∈ Herm+(E) is a weak Hermitian-Yang-Mills structure with
factor γ, then

µ(E) =
1

2nπ

∫

X
γ ωn. (3.47)

Proof: Let R be the Hitchin-Simpson curvature of E. Then we have the identity

inRh ∧ ωn−1 = Kh ω
n . (3.48)

Now, by hypothesis h is a weak Hermitian-Yang-Mills structure with factor γ, and
hence, taking the trace of (3.48) and then integrating over X we get

in

∫

X
trRh ∧ ωn−1 =

∫

X
(trKh)ω

n = r

∫

X
γ ωn . (3.49)

In the above equation, only the (1, 1)-part of the Hitchin-Simpson curvature con-
tributes with the integral over X. As we have seen before, the (1, 1)-part of Rh is
given by R1,1

h = Rh + [φ, φ̄h] where Rh is the Chern curvature of h. Now, using the
cyclic property of the trace it follows

tr [φ, φ̄h] = tr (φ ∧ φ̄h + φ̄h ∧ φ)

= tr (φ ∧ φ̄h − φ ∧ φ̄h)
= 0 .

From this we have that only the Chern curvature Rh contributes with the integral
on the left-hand side of (3.49). Thus, we have

2nπ deg E = 2nπ

∫

X

i

2π
trRh ∧ ωn−1 = r

∫

X
γ ωn (3.50)

and the result follows. Q.E.D.

As we have shown in the last section, if we have a real positive function a =
a(x) on X, then h′ = ah defines another Hermitian metric on E and we have a
relation between the Hitchin-Simpson mean curvatures given by (3.39). From this
we conclude the following

Lemma 3.11. Let h be a weak Hermitian-Yang-Mills structure with factor γ for
E and let a be a real positive definite function on X. Then h′ = ah is a weak
Hermitian-Yang-Mills structure with factor

γ′ = γ + 20(log a) . (3.51)
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Making use of the above Lemma we can define a constant c which plays an
important role in the definition of the Donaldson functional. Such a constant c is
an average of the factor γ of a weak Hermitian-Yang-Mills structure. Namely

Proposition 3.12. If h ∈ Herm+(E) is a weak Hermitian-Yang-Mills structure with
factor γ, then there exists a conformal change h′ = ah such that h′ is an Hermitian-
Yang-Mills structure with constant factor c, given by

c

∫

X
ωn =

∫

X
γ ωn . (3.52)

Such a conformal change is unique up to homothety.

Proof: Let c as in (3.52), then

∫

X
(c− γ)ωn = 0 . (3.53)

It is sufficient to prove that there is a function u satisfying the equation

20u = c− γ , (3.54)

where, as we said before 20 = iΛd′′d′. Because if this holds, then by applying
Lemma 3.11 with the function a = eu the result follows.

Now, from Hodge theory we know that the equation (3.54) has a solution if and
only if the function c − γ is orthogonal to all 20-harmonic functions. Since X is
compact, a function is 20-harmonic if and only if it is constant. But (3.53) says that
c − γ is orthogonal to the constant functions and hence the equation (3.54) has a
solution u. Finally, the uniqueness follows from the fact that 20-harmonic functions
are constant. In fact, if u′ is another solution to the equation (3.54), then u′ − u is
20-harmonic and hence it is equal to a constant, say b. Therefore a′ = eu

′

= eba.
Q.E.D.

Since every weak Hermitian-Yang-Mills structure can be transformed into an
Hermitian-Yang-Mills structure using a conformal change of the metric, without
loss of generality we avoid using weak structures and work directly with Hermitian-
Yang-Mills structures.

In [17], [18], Simpson studied an extension of the Hitchin-Kobayashi correspon-
dence for Higgs bundles, his remarkable result is even true for manifolds which are
not necessarily compact (satisfying some additional analytic requirements). His re-
sult in the case of compact Kähler manifolds is as follows:

Theorem 3.13. Let E be a Higgs bundle over a Kähler manifold X with Kähler
form ω. It is ω-polystable if and only if it admits an Hermitian-Yang-Mills structure
on it. That is, if and only if there exists an Hermitian metric h such that Kh = c · I
for some constant c.
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Finally, there is another important result, which is an extension of a famous
result in complex geometry, known as the Bogomolov-Lübke inequality and which
holds for Higgs bundles with Hermitian-Yang-Mills metrics, such a result can be
written as:

Theorem 3.14. Let E be a Higgs bundle over a compact Kähler manifold X and
suppose that there is an Hermitian-Yang-Mills structure on it, then

[

2r c2(E) − (r − 1)c1(E)2
]

∪ [ω]n−2 ≥ 0 . (3.55)

Proof: Let h be an Hermitian-Yang-Mills structure for E. Associated with this
metric we have closed 2k-forms ck(E, h) representing the k-th Chern classes. In
particular, for the first two representatives one has

c1(E, h) =
i

2π
trRh , c2(E, h) =

1

8π2

[

tr(Rh ∧Rh) − (trRh)
2
]

, (3.56)

where Rh is the Chern curvature corresponding to the metric h. Therefore

2r c2(E, h) − (r − 1) c1(E, h)
2 =

1

4π2

[

r tr(Rh ∧Rh) − (trRh)
2
]

. (3.57)

Now, multiplying by the Kähler form ω and using local unitary frame fields on X
and E, we have expressions for both traces on the right-hand side of the last formula.
Namely we get (see [5], Ch.IV, for details)

n(n− 1)(trRh)
2 ∧ ωn−2 =

[

|ρh|2 − σ2
h

]

ωn , (3.58)

n(n− 1) tr(Rh ∧Rh) ∧ ωn−2 =
[

|Rh|2 − |Kh|2
]

ωn , (3.59)

where |Kh| represents the pointwise norm of the (classical) mean curvature Kh. In
other words, this is the norm defined by |Kh|2 = trK2

h. The other terms are given
by σh = trKh and

|Rh|2 =
∑

i,j,α,β

|Rijαβ̄|
2 , |ρh|2 =

∑

i,α,β

|Riiαβ̄|
2 , (3.60)

where Ri
jαβ̄

are the components of the Chern curvature Rh. Hence, integrating over

X we can rewrite the right hand side of (3.57) in the following form

∫

X
(2r c2(E, h)−(r−1) c1(E, h)

2)∧ ωn−2

(n− 2)!
=

∫

X

[

r(|Rh|2 − |Kh|2) + σ2
h − |ρh|2

] ωn

n!
.

On the other hand, since in general we have the inequality r|Rh|2 ≥ |ρh|2, we
obtain

∫

X
(2r c2(E, h) − (r − 1) c1(E, h)

2) ∧ ωn−2

(n− 2)!
≥

∫

X

[

σ2
h − r |Kh|2

] ωn

n!
. (3.61)

Since h is an Hermitian-Yang-Mills structure, Kh = cI for some constant c and one
has

σh = trKh = tr(Kh − iΛ[φ, φ̄h]) = trKh = cr (3.62)
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and

|Kh|2 = tr
[

(Kh − iΛ[φ, φ̄h]) · (Kh − iΛ[φ, φ̄h])
]

= tr
[

K2
h

]

− 2 tr
[

Kh · iΛ[φ, φ̄h]
]

+ tr
[

iΛ[φ, φ̄h] · iΛ[φ, φ̄h]
]

= c2r − 2c iΛ tr[φ, φ̄h] + (iΛ)2tr
[

[φ, φ̄h]
2
]

.

We know that tr[φ, φ̄h] = 0, and hence we have only a contribution involving a trace
of the Higgs fields. Now, since φ ∧ φ = 0 = φ̄h ∧ φ̄h we get

tr
[

[φ, φ̄h]
2
]

= tr
[

(φ ∧ φ̄h + φ̄h ∧ φ) ∧ (φ ∧ φ̄h + φ̄h ∧ φ)
]

= tr
[

φ ∧ φ̄h ∧ φ ∧ φ̄h + φ̄h ∧ φ ∧ φ̄h ∧ φ
]

= 0 ,

where we have used again the cyclic property of the trace. Therefore |Kh|2 = c2r.
This equation together with (3.62) implies that

σ2
h − r |Kh|2 = 0 (3.63)

if h is an Hermitian-Yang-Mills structure. Using this the inequality (3.61) becomes
∫

X
(2r c2(E, h) − (r − 1) c1(E, h)

2) ∧ ωn−2

(n− 2)!
≥ 0 . (3.64)

Since X is compact Kähler, the integral on the left-hand side is independent of the
metric h and coincides with the left-hand side term in the inequality (3.55). Hence
the result follows. Q.E.D.

In the first part of the proof of the Bogomolov-Lübke inequality we use some
standard formulas. We can use some of them to establish results for Higgs bundles
with Hermitian metrics. In fact, from (3.56) we get

2 c2(E, h) − c1(E, h)
2 =

1

4π2
tr(Rh ∧Rh) . (3.65)

On the other hand, if we denote by R0
h the trace-free part of the Chern curvature,

i.e., R0
h is defined by the formula

R0
h = Rh −

trRh
r

I , (3.66)

where I is the identity endomorphism of E, we can rewrite the identity (3.57) as
follows:

2r c2(E, h) − (r − 1) c1(E, h)
2 =

r

4π2
tr(R0

h ∧R0
h) . (3.67)

At this point, applying (3.59) for Rh and its trace-free part R0
h, on (3.65) and (3.67)

respectively and then integrating over X, we conclude the following

Proposition 3.15. Let E be a Higgs bundle over a compact Kähler manifold X and
let h be an Hermitian structure on it, then

[

2 c2(E) − c1(E)2
]

∪ [ω]n−2 =
1

4π2n(n− 1)

∫

X

[

|Rh|2 − |Kh|2
]

ωn , (3.68)

[

2r c2(E) − (r − 1)c1(E)2
]

∪ [ω]n−2 =
r

4π2n(n− 1)

∫

X

[

|R0
h|2 − |K0

h|2
]

ωn . (3.69)
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Notice that in the above proposition h is any Hermitian metric on E, i.e., it is not
necessarily Hermitian-Yang-Mills. Therefore, h is the same thing as an Hermitian
metric on the corresponding holomorphic bundle E, and hence the above result is
in fact a property of holomorphic bundles. We write this proposition in terms of
Higgs bundles, because it will be important latter on, when we study the notion of
admissible Hermitian metric for Higgs sheaves (see [14], [24] for details).

3.5 Approximate Hermitian-Yang-Mills structures

As we have seen in the preceding section, if we have an Hermitian-Yang-Mills struc-
ture with factor c, this constant can be evaluated directly from (3.47) and we have

c =
2π µ(E)

(n − 1)! volX
. (3.70)

On the other hand, regardless if we have an Hermitian-Yang-Mills structure or not
on E, we can always define a constant c just by (3.70). Introduced in such a way, c
depends on c1(E) and the cohomology class of ω, but not on h.

Let consider now the endomorphism K − cI, as we said before the (pointwise)
norm of this endomorphim is given by the formula

|K − cI|2 = tr
[

(K − cI)2
]

. (3.71)

We say that a Higgs bundle E over a compact Kähler manifold X admits an ap-
proximate Hermitian-Yang-Mills structure or an ǫ-Hermitian-Yang-Mills metric, if
for any ǫ > 0 there exists a metric hǫ such that

max
X

|Kǫ − cI| < ǫ , (3.72)

where Kǫ is an abbreviation of the mean curvature Khǫ
. From the above definition

it follows that E∨ admits an approximate Hermitian-Yang-Mills structure if E does.
This notion also satisfies some simple properties with respect to tensor products and
direct sums.

Proposition 3.16. If E1 and E2 admit approximate Hermitian-Yang-Mills struc-
tures, so does their tensor product E1 ⊗ E2. Furthermore, if µ(E1) = µ(E2), so does
their Whitney sum E1 ⊕ E2

Proof: Assume that E1 and E2 admit approximate Hermitian-Yang-Mills structures
with factors c1 and c2 respectively and let ǫ > 0. Then, there exist h1 and h2 such
that

max
X

|K1 − c1I1| <
ǫ

2
√
r2
, max

X
|K2 − c2I2| <

ǫ

2
√
r1
,

where r1, r2 and I1, I2 are the ranks and the identity endomorphisms of E1 and
E2 respectively. Now, let K be the Hitchin-Simpson mean curvature of E1 ⊗ E2
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associated with the metric h = h1⊗h2. Then, by defining c = c1 +c2 and I = I1⊗I2
it follows

|K − cI| = |K1 ⊗ I2 + I1 ⊗K2 − (c1 + c2)II ⊗ I2|
≤ |(K1 − c1I1) ⊗ I2| + |I1 ⊗ (K2 − c2I2)|
≤ √

r2 |K1 − c1I1| +
√
r1 |K2 − c2I2|

< ǫ

and hence the tensor product E1 ⊗E2 admits an approximate Hermitian-Yang-Mills
structure.

On the other hand, if µ(E1) = µ(E2), necesarily the constants c1 and c2 coincide.
Then, taking this time c = c1 = c2, I = I1 ⊕ I2 and K = K1 ⊕K2, we have

|K − cI| = |K1 ⊕K2 − c I1 ⊕ I2|
=

√

tr (K1 − c1I1)2 + tr (K2 − c2I2)2

≤ |K1 − c1I1| + |K2 − c2I2| .

From this inequality it follows that E1⊕E2 admits an approximate Hermitian-Yang-
Mills structure. Q.E.D.

Corollary 3.17. If E admits an approximate Hermitian-Yang-Mills structure, so do
the tensor product bundle E⊗p⊗E∨⊗q and the exterior product bundle

∧p E whenever
p ≤ r.

Using some vanishing theorems we have a first result about approximate Hermitian-
Yang-Mills structures. Namely

Corollary 3.18. Let E be a Higgs bundle over a compact Kähler manifold X which
admits an approximate Hermitian-Yang-Mills structure. If deg E < 0, then E has
no nonzero φ-invariant sections.

Proof: Here we reproduce with some more detail the proof written in [21]. Suppose E

admits an approximate Hermitian-Yang-Mills structure, then for each ǫ there exists
a metric hǫ on E such that

max
X

|Kǫ − cI| < ǫ ,

where Kǫ represents here the Hitchin-Simpson mean curvature associated to hǫ.
This implies that the mean curvature, seen as an Hermitian form, must satisfy the
following inequality

−ǫ hǫ < Kǫ − c hǫ < ǫhǫ .

If we assume that deg E < 0, then c < 0 in the above inequality and hence for some
sufficient small ǫ the mean curvature Kǫ is negative definite. At this point the result
follows from the vanishing Theorem 3.2. Q.E.D.

From the above we have the following
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Proposition 3.19. Let E1 and E2 be two Higgs bundles over a compact Kähler
manifold X admiting approximate Hermitian-Yang-Mills structures. Then there are
no nonzero Higgs morphisms from E1 to E2 if µ(E1) > µ(E2).

Proof: Suppose E1 and E2 admit both approximate Hermitian-Yang-Mills structures,
then from Proposition 3.16 we know that there exists an approximate Hermitian-
Yang-Mills structure naturally induced on E∨

1 ⊗ E2. If additionally µ(E1) > µ(E2),
then we have

deg (E∨
1 ⊗ E2) < 0 .

At this point, the result is a straightforward consequence of Corollary 3.18. Q.E.D.

Proposition 3.19 should be compared with the first part of Proposition 2.8, which
is in fact the corresponding result on semistability for Higgs sheaves.

Finally, in a similar way as in the classical case, we have a version of the
Bogomolov-Lübke inequality (3.55) also for Higgs bundles admiting an approximate
Hermitian-Yang-Mills structure (see [5] and [45] for more details). To be precise, we
have the following result

Theorem 3.20. Let E be a Higgs bundle over a compact Kähler manifold X and
suppose that E admits an approximate Hermitian-Yang-Mills structure, then

[

2r c2(E) − (r − 1)c1(E)2
]

∪ [ω]n−2 ≥ 0 . (3.73)

Proof: Assume that E admits an approximate Hermitian-Yang-Mills structure. Let
ǫ > 0 and suppose hǫ is a metric on E satisfying (3.72). Then, we have closed 2k-
forms ck(E, hǫ) representing the k-th Chern classes and, in a similar way that in the
proof of Theorem 3.14, we obtain

(2r c2(E, hǫ) − (r − 1) c1(E, hǫ)
2) ∧ ωn−2

(n − 2)!
=

[

r(|Rǫ|2 − |Kǫ|2) + σ2
ǫ − |ρǫ|2

] ωn

n!

where this time the quantities on the right-hand side are associated to the metric
hǫ. That is, |Kǫ|2 = trK2

ǫ and σǫ = trKǫ, and using the formulas defined in (3.60)
we obtain the corresponding expressions for |Rǫ|2 and |ρǫ|2. Now, again one has
r|Rǫ|2 ≥ |ρǫ|2, and hence integrating over X we obtain

∫

X
(2r c2(E, hǫ) − (r − 1) c1(E, hǫ)

2) ∧ ωn−2

(n− 2)!
≥

∫

X

[

σ2
ǫ − r |Kǫ|2

] ωn

n!
. (3.74)

Since hǫ is an approximate Hermitian-Yang-Mills structure, we have

ǫ2 > |Kǫ − cI|2 = |Kǫ|2 − 2c σǫ + c2r . (3.75)

On the other hand,

|Kǫ|2 = tr
[

(Kǫ + iΛ[φ, φ̄ǫ]) · (Kǫ + iΛ[φ, φ̄ǫ])
]

= |Kǫ|2 + 2 iΛ tr
[

Kǫ · [φ, φ̄ǫ]
]

+ (iΛ)2tr
[

[φ, φ̄ǫ]
2
]

= |Kǫ|2 + 2 iΛ tr
[

Kǫ · [φ, φ̄ǫ]
]

.
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Now, since hǫ is an approximate Hermitian-Yang-Mills structure, Kǫ = cI+ ǫA with
A a selfadjoint endomorphism of E and hence we can estimate the term involving
the trace in the last expression as

tr
[

Kǫ · [φ, φ̄ǫ]
]

= c tr [φ, φ̄ǫ] + ǫ tr
[

A · [φ, φ̄ǫ]
]

= ǫ η (3.76)

where the (1, 1)-form η = tr
[

A · [φ, φ̄ǫ]
]

. Consequently

|Kǫ|2 = |Kǫ|2 + 2ǫ (iΛη) . (3.77)

Finally, from (3.75) and (3.77) it follows

σ2
ǫ − r |Kǫ|2 > (σǫ − cr)2 + f(ǫ)

where f(ǫ) = rǫ(2 (iΛη) − ǫ). Then, by replacing this last expression in (3.74) we
conclude

∫

X
(2r c2(E, hǫ) − (r − 1) c1(E, hǫ)

2) ∧ ωn−2

(n− 2)!
>

∫

X
f(ǫ)

ωn

n!
. (3.78)

Now, the integral on the left-hand side is independent of the metric hǫ. On the other
hand, the above inequality holds for all ǫ > 0 and clearly f(ǫ) → 0 as ǫ→ 0. There-
fore, one has the inequality (3.73) if E admits an approximate Hermitian-Yang-Mills
metric. Q.E.D.

According to Bogomolov [29] and Gieseker [30], the inequality (3.55) holds for
any holomorphic semistable bundle over an algebraic surface. In fact, because of that
Kobayashi proposed in [5] the notion of approximate Hermitian-Yang-Mills structure
as the differential-geometric counterpart of the notion of semistability. This seems
to be the case also for Higgs bundles, we will discuss more about this equivalence in
the context of Higgs bundles in future sections.

Finally, we have the following natural extension to Higgs bundles of a classical
result concerning coverings of compact Kähler manifolds. Its proof is identical to
the ordinary case (see [5] for more details).

Proposition 3.21. Let π : X̃ −→ X be a finite unramified covering of a compact
Kähler manifold X with Kähler form ω and let π∗ω be the Kähler form of X̃. Then
(i) If a Higgs bundle E over X admits and approximate Hermitian-Yang-Mills struc-
ture, then so does its pullback π∗E over X̃.
(ii) If a Higgs bundle Ẽ over X̃ admits and approximate Hermitian-Yang-Mills struc-
ture, then so does its pushforward π∗Ẽ to X.
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CHAPTER 4

The Donaldson functional

4.1 Donaldson’s functional and secondary characteristic classes

We want to construct a functional L on Herm+(E) whose gradient will be related
with the mean curvature of the Hitchin-Simpson connection. Such a functional has
been introduced by Donaldson [50],[52] in his study of stable holomorphic bundles
over projective algebraic manifolds. In [5], Kobayashi constructed this functional
in detail for holomorphic bundles over compact Kähler manifolds and called it the
Donaldson functional. Following the ideas of Donaldson, Simpson [17] introduced
an analog functional for Higgs bundles and used it to prove the Hitchin-Kobayashi
correspondence in the Higgs case.

Here, we introduce this functional in the Higgs case following the construction of
Kobayashi, we will see that such a functional coincides (up to a constant) with the
functional introduced by Simpson. The construction will be similar to the ordinary
case. However, there will be some differences, which in essence are due to the extra
terms involving the Higgs field φ in the Hitchin-Simpson curvature.

Given two Hermitian structures h, k in Herm+(E), we connect them by a curve
ht, 0 ≤ t ≤ 1, in Herm+(E) so that k = h0 and h = h1. We set

Q1(h, k) = log(det(k−1h)) , Q2(h, k) = i

∫ 1

0
tr(vt · Rt) dt , (4.1)

where vt = h−1
t ∂tht is the endomorphism associated with ∂tht ∈ Herm(E) at the

point ht and Rt denotes the curvature of the Hitchin-Simpson connection associated
with ht. The functionals Q1(h, k) and Q2(h, k) are usually called secondary charac-
teristic classes (see [13] for more details).

Notice that Q1(h, k) does not involve the curve (in fact, it is the same functional
of the ordinary case). On the other hand, the definition of Q2(h, k) involves the
curve explicitly and differs from the ordinary case because of the extra terms in
(3.5). We define the Donaldson functional by

L(h, k) =

∫

X

[

Q2(h, k) −
c

n
Q1(h, k)ω

]

∧ ωn−1/(n − 1)! , (4.2)

where c is the constant given by

c =
2π µ(E)

(n − 1)! volX
. (4.3)
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Notice that the components of (2, 0) and (0, 2) type of Rt do not contribute to
the functional L(h, k). This means that, in practice, it is enough to consider in the
definition of Q2(h, k) just the components of (1, 1)-type. To be more precise, in
computations involving integration over X, we can always replace the curvature by

R1,1
t = Rt + [φ, φ̄ht

] . (4.4)

The following Lemma and the subsequent Proposition are straightforward gen-
eralizations of a result of Kobayashi (see [5], Ch.VI, Lemma 3.6) to the Higgs case.
Part of the proof of this Lemma is similar to the proof presented in [5], however
some differences arise because of the term involving the commutator in the Hitchin-
Simpson curvature.

Lemma 4.1. Let ht, a ≤ t ≤ b , be any differentiable curve in Herm+(E) and k any
fixed Hermitian structure of E. Then, the (1,1)-component of

i

∫ b

a
tr(vt · Rt) dt+Q2(ha, k) −Q2(hb, k) (4.5)

is an element in d′A0,1 + d′′A1,0.

Proof: In a similar form as is shown by Kobayashi in [5], we consider the domain ∆
in R

2 defined by
∆ = {(t, s)/a ≤ t ≤ b , 0 ≤ s ≤ 1} (4.6)

and let h : ∆ → Herm+(E) be a smooth mapping such that

h(t, 0) = k , h(t, 1) = ht , for a ≤ t ≤ b . (4.7)

Let h(a, s) and h(b, s) line segments curves1 from k to ha and respectively from k
to hb. We define the endomorphisms u = h−1∂sh, and v = h−1∂th and we put

R = d′′(h−1d′h) + [φ, φ̄h] , Ψ = i tr[h−1d̃hR] , (4.8)

where d̃h = ∂shds+∂thdt is considered as the exterior differential of h in the domain
∆. It is convenient to rewrite Ψ in the form

Ψ = i tr[(u ds + v dt)R] . (4.9)

Applying the Stokes formula to Ψ (which is considered here as a 1-form in the
domain ∆) we get

∫

∆
d̃Ψ =

∫

∂∆
Ψ . (4.10)

The right hand side of the above expression can be computed straightforward from
definition. In fact, after a short computation we obtain

∫

∂∆
Ψ = i

∫ b

a
tr(vt · R1,1

t ) dt+Q1,1
2 (ha, k) −Q1,1

2 (hb, k) . (4.11)

1Notice that in general a line segment curve from k to ht can be written as h(t, s) = sht+(1−s)k.
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Therefore, we need to show that the left hand side of (4.10) is an element in
d′A0,1 + d′′A1,0 , and hence, it suffices to show that d̃Ψ ∈ d′A0,1 + d′′A1,0 .

Now, from the definition of Ψ we have

d̃Ψ = i tr[d̃(u ds+ v dt)R− (u ds+ v dt)d̃R]

= i tr [(∂sv − ∂tu)R− u∂tR + v ∂sR] ds ∧ dt .

On the other hand, a simple computation shows that

∂tu = −vu+ h−1∂t∂sh , ∂sv = −uv + h−1∂s∂th , (4.12)

∂tR = d′′D′v + [φ, ∂tφ̄h] , ∂sR = d′′D′u+ [φ, ∂sφ̄h] . (4.13)

Replacing these expressions in the formula for d̃Ψ and writing R = R + [φ, φ̄h] we
obtain

d̃Ψ = i tr
[

(vu− uv)R− u d′′D′v + v d′′D′u
]

ds ∧ dt
+ i tr

[

v [φ, ∂sφ̄h] − u [φ, ∂tφ̄h] + (vu− uv)[φ, φ̄h]
]

ds ∧ dt .

The first trace in the expression above does not depend on Higgs field φ (in fact, it
is the same expression that is found in [5] for the ordinary case). The second trace
is identically zero. In order to prove this, we need first to find explicit expressions
for ∂tφ̄h and ∂sφ̄h.

On the other hand, omitting the parameter t for simplicity, from the identity
(3.13) it follows that

φ̄hs+δs
= u−1

0 φ̄hs
u0 = φ̄hs

+ u−1
0 [φ̄hs

, u0] (4.14)

where u0 is the selfadjoint endomorphism such that hs+δs = hsu0. In other words, it
is the endomorphism defined by (3.16) with hs+δs ∈ Herm(E) and hs ∈ Herm+(E).
Now, in general we can write

hs+δs = hs + ∂shs · δs+ O(δs2) (4.15)

and hence, at first order in δs, we obtain u0 = 1 + u · δs and consequently ∂sφ̄h =
[φ̄h, u]. In a similar way we obtain the formula ∂tφ̄h = [φ̄h, v]. Therefore, using these
relations, the Jacobi identity and the cyclic property of the trace, we see that

tr
[

v [φ, ∂sφ̄h] − u [φ, ∂tφ̄h]
]

= tr
[

(uv − vu)[φ, φ̄h]
]

and hence the second trace in the last expression for d̃Ψ is identically zero. On the
other hand, the term involving the curvature R can be rewritten in terms of u, v
and their covariant derivatives. So, finally we get

d̃Ψ = −i tr[v D′d′′u+ u d′′D′v] ds ∧ dt . (4.16)

As is shown in [5], defining the (0,1)-form α = i tr[v d′′u] we obtain

d̃Ψ = −[d′α+ d′′ᾱ+ i d′′d′tr(vu)] ds ∧ dt (4.17)
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and hence d̃Ψ is an element in d′A0,1 + d′′A1,0 . Q.E.D.

As a consequence of Lemma 4.1 we get an important result for piecewise differ-
entiable closed curves. Namely, we have

Proposition 4.2. Let ht, α ≤ t ≤ β , be a piecewise differentiable closed curve in
Herm+(E). Then

i

∫ β

α
tr

(

vt · R1,1
t

)

dt = 0 mod d′A0,1 + d′′A1,0 . (4.18)

Proof: Let α = a0 < a1 · · · < ap = β be the values of t where ht is not differentiable.
Now take a fixed point k in Herm+(E). Then, Lemma 4.1 applies for each triple
k, haj

, haj+1
with j = 0, 1, ..., p − 1 and the result follows. Q.E.D.

4.2 Main properties of the Donaldson functional

From Proposition 4.2 we have some properties of the Donaldson functional. In
particular we have the following results

Corollary 4.3. The Donaldson functional L(h, h′) does not depend on the curve
joining h and h′ .

Proof: Clearly, from the definition of Q1

Q1(h, h
′) +Q1(h

′, h) = 0 . (4.19)

On the other hand, if γ1 and γ2 are two differentiable curves from h to h′, then
applying Proposition 4.2 to γ1 − γ2 we obtain

Q1,1
2 (h, h′) +Q1,1

2 (h′, h) = 0 mod d′A0,1 + d′′A1,0 , (4.20)

and the result follows integrating over X the identities (4.19) and (4.20). Q.E.D.

Proposition 4.4. For any metric h in Herm+(E) and any constant a > 0, the
Donaldson functional satisfies L(h, ah) = 0.

Proof: Clearly

Q1(h, ah) = log det[(ah)−1h] = −r log a .

Now, let b = log a and consider the curve ht = eb(1−t)h from ah to h. For this curve
vt = −bI and we have

R1,1
t = d′′(h−1

t d′ht) + [φ, φ̄t] = d′′(h−1d′h) + [φ, φ̄t] ,

where φ̄t is an abbreviation for φ̄ht
. Therefore, the (1,1)-component of Q2(h, ah)

becomes

Q1,1
2 (h, ah) = i

∫ 1

0
tr(vt · R1,1

t ) dt = i

∫ 1

0
tr

[

−b(R+ [φ, φ̄t])
]

dt = −ib trR
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and hence, from the above we obtain

c

n

∫

X
Q1(h, ah)ω ∧ ωn−1/(n − 1)! = −crb volX ,

∫

X
Q2(h, ah) ∧ ωn−1/(n − 1)! =

−ib
(n− 1)!

∫

X
trR ∧ ωn−1

=
−2πb

(n− 1)!
deg E

and the result follows from the definition of the constant c . Q.E.D.

Lemma 4.5. For any differentiable curve ht and any fixed point k in Herm+(E) we
have

∂tQ1(ht, k) = tr(vt) , (4.21)

∂tQ
1,1
2 (ht, k) = i tr(vt · R1,1

t ) mod d′A0,1 + d′′A1,0 . (4.22)

Proof: Since k does not depend on t, we get

∂tQ1(ht, k) = ∂tlog(det k−1) + ∂tlog(detht)

= ∂tlog(detht)

= tr(vt) .

Considering b in (4.5) as a variable, and differentiating that expression with respect
to b, we obtain the formula for Q1,1

2 (ht, k). Q.E.D.

Notice that in the above Lemma ht is any differentiable curve and k is an arbi-
trary metric. In other words, for this curve not necessarily h0 = k. Using Lemma
4.5 we have a formula for the derivative with respect to t of Donaldson’s functional.
Namely

d

dt
L(ht, k) =

∫

X

[

i tr(vt · R1,1
t ) − c

n
tr(vt)ω

]

∧ ωn−1

(n− 1)!

=

∫

X
[tr(vt · Kt) − c tr(vt)]

ωn

n!

=

∫

X
tr [(Kt − cI)vt]

ωn

n!
.

Since vt = h−1
t ∂tht and we can consider the endomorphism Kt as an Hermitian

form by defining Kt(s, s
′) = ht(s,Kts

′), for any fixed Hermitian metric k and any
differentiable curve ht in Herm+(E) we obtain2

d

dt
L(ht, k) = (Kt − c ht, ∂tht) , (4.23)

2Notice that from the definition (3.16), the endomorphism Kt can be written formally as Kt =
h−1

t Kt(·, ·) where Kt(·, ·) denotes this time the mean curvature as a form. Therefore, we can express
the derivative of the functional as an inner product of the forms Kt − c ht and ∂tht as in (3.17).
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where Kt is consider here as a form. For each t, we can consider ∂tht ∈ Herm(E) as
a tangent vector of Herm+(E) at ht, and hence the differential dL of the functional
evaluated at ∂tht is given by

dL(∂tht) =
d

dt
L(ht, k) . (4.24)

Therefore, the gradient of L (i.e., the vector field on Herm+(E) dual to the form
dL with respect to the invariant Riemannian metric introduced before) is given by
∇L = K − ch . From the above analysis we conclude the following

Theorem 4.6. Let k be a fixed element in Herm+(E). Then, h is a critical point
of L if and only if K − c h = 0. i.e., if and only if h is an Hermitian-Yang-Mills
structure for E.

As we said in Chapter 3, in order to derive some properties of L is convenient
to divide the Hichin-Simpson connection in two terms (see [17], [18]) in the form
D′
h = D′

h + φ̄h and D′′ = D′′ + φ. In fact, using the above decomposition, it is not
difficult to show that all critical points of L correspond to an absolute minimum.

Theorem 4.7. Let k be a fixed Hermitian structure of E and h̃ a critical point of
L(h, k), then the Donaldson functional attains an absolute minimum at h̃.

Proof: Let ht , 0 ≤ t ≤ 1 , be a differentiable curve such that h0 = h̃, then we can
compute straightforward the second derivative of L

d2

dt2
L(ht, k) =

d

dt

∫

X
tr [(Kt − cI)vt]

ωn

n!

=

∫

X
tr [∂tKt · vt + (Kt − cI)∂tvt]

ωn

n!
.

Since h0 is a critical point of the functional, then Kt − cI = 0 at t = 0 , and hence

d2

dt2
L(ht, k)

∣

∣

t=0
=

∫

X
tr(∂tKt · vt)

ωn

n!

∣

∣

t=0
. (4.25)

On the other hand, ∂tKt can be written in terms of the endomorphism vt in the
following way

D′′D′vt = D′′(D′vt + [φ̄t, vt])

= D′′D′vt + [φ,D′vt] +D′′[φ̄t, vt] + [φ, [φ̄t, vt]] ,

and since ∂tφt = [φ̄t, vt] we get

∂tR1,1
t = ∂tRt + [φ, ∂tφ̄t] = D′′D′vt + [φ, [φ̄t, vt]] . (4.26)

Therefore, taking the trace with respect to ω (i.e., applying the iΛ operator) we
obtain

iΛD′′D′vt = iΛ∂tR1,1
t = ∂tKt . (4.27)
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Hence, replacing this in the expression for the second derivative of L we find

d2

dt2
L(ht, k)

∣

∣

t=0
=

∫

X
tr(iΛD′′D′vt · vt)

ωn

n!

∣

∣

t=0
= ‖D′vt‖2

t=0 , (4.28)

(that is, h0 must be at least a local minimum of L). Now suppose in addition that
h1 is an arbitrary element in Herm+(E) and joint them by a geodesic ht, and hence
∂tvt = 0 . Therefore, for a such a geodesic we have

d2

dt2
L(ht, k) =

∫

X
tr(∂tKt · vt)

ωn

n!
. (4.29)

Following the same procedure we have done before, but this time at t arbitrary, we
get for 0 ≤ t ≤ 1

d2

dt2
L(ht, k) = ‖D′vt‖2

ht
≥ 0 (4.30)

(since there is an implicit dependence on t on the right hand side via D′, we write a
subscript ht in the norm) and it follows that L(h0, k) ≤ L(h1, k). Now if we assume
that h1 is also a critical point of L , we necessarily obtain the equality. Therefore, it
follows that the minimum defined for any critical point of L is an absolute minimum.
Q.E.D.

Let h0 be a fixed Hermitian structure, any Hermitian metric h will be of the
form h0e

v for some section v of End(E) over X. We can join h0 to h by the geodesic
ht = h0e

tv where 0 ≤ t ≤ 1 (note that here vt = h−1
t ∂tht = v is constant, i.e., it

does not depends on t). The associated endomorphism etv = h−1
0 ht is Hermitian

with respect to both ht and h0 . Now, in the proof of Theorem 4.7, we really got an
expression for the second derivative of L(ht, k). Namely

d2

dt2
L(ht, k) =

∫

X
tr [∂tKt · vt + (Kt − cI)∂tvt]

ωn

n!
. (4.31)

Since in our case the chosen curve is a geodesic, ∂tvt = 0, an hence

d2

dt2
L(ht, k) =

∫

X
tr(∂tKt · v)

ωn

n!
= ‖D′v‖2

ht
. (4.32)

Therefore, following [13], the idea is to find a simple expression for ‖D′v‖2
ht

or
equivalently for ‖D′′v‖2

ht
and to integrate it twice with respect to t. We can do this

using local coordinates, in fact, at any point in X we can choose a local frame field
so that h0 = I and v = diag(λ1, ..., λr) . In particular, using such a local frame field
we have hijt = e−λjtδij , and hence (after a short computation) we obtain

‖D′′v‖2
ht

=

∫

X

r
∑

i,j=1

|D′′vij |2e(λi−λj)t
ωn−1

(n− 1)!
. (4.33)

Now, take in particular k = h0, then at t = 0 the functional L(ht, k) vanishes. On
the other hand, since h0 is not necessarily an Hermitian-Yang-Mills structure we
have

d

dt
L(ht, k)

∣

∣

t=0
=

∫

X
tr [(K0 − cI)v]

ωn

n!
. (4.34)
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Then, integrating twice the expression (4.32) and using the formulas (4.33) and
(4.34) we obtain

L(ht, k) = t

∫

X
tr [(K0 − cI)v]

ωn

n!
+

∫

X

r
∑

i,j=1

ψt(λi, λj)|D′′vij|2
ωn−1

(n− 1)!
(4.35)

where ψt is a function given by

ψt(λi, λj) =
e(λi−λj)t − (λi − λj)t− 1

(λi − λj)2
. (4.36)

In particular, at t = 1 the expression (4.35) corresponds (up to a constant term) to
the definition of Donaldson’s functional given by Simpson in [17]. Notice also that
if the initial metric h0 is Hermitian-Yang-Mills, the first term of the right hand side
of (4.35) vanishes and the functional coincides with the Donaldson functional used
by Siu in [13].

4.3 The evolution equation

For the construction of Hermitian-Yang-Mills structures, the standard procedure is
to start with a fixed Hermitian metric h0 and try to find from it an Hermitian metric
satisfying K = ch using a curve ht, 0 ≤ t < ∞. In other words, we try to find that
metric by deforming h0 through 1-parameter family of Hermitian metrics and we
expect that at t = ∞, the metric will be Hermitian-Yang-Mills.

At this point we introduce the Laplacian operator

∆h = iΛD′′D′
h (4.37)

which depends on the Kähler metric ω via the adjoint multiplication Λ and also on
the metric h. Using this operator, we can rewrite (4.27) as

∂tKt = ∆tvt , (4.38)

where the subscript t here remember us the dependence of the Laplacian on the
metric ht.

As we said before, to get an Hermitian-Yang-Mills metric we want to make K−cI
vanish. Therefore, a natural choice is to go along the global gradient direction of
the functional given by the global L2-norm of Kt − cI. Now, taking the derivative
of this functional we obtain

d

dt
‖Kt − cI‖2 =

∫

X
2 tr (∂tKt · (Kt − cI))

ωn

n!

= 2

∫

X
tr (∆tvt · (Kt − cI))

ωn

n!

= 2

∫

X
tr (vt · ∆tKt)

ωn

n!
,
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and the equation that naturally emerges (i.e., the associated steepest descent curve)
is vt = −∆tKt , or equivalently

h−1
t ∂tht = −∆tKt . (4.39)

Since Kt is of degree two, the right hand side of the above equation becomes a term
of degree four and we get at the end a non-linear equation of degree four. To do the
analysis, it is easier to deal with an equation of lower degree. In fact, this is the main
reason for introducing the Donaldson functional. Following the same argument we
did before, but this time using the functional L(ht, k) with k fixed, in place of the
functional ‖Kt− cI‖2, we end up with a non-linear equation of degree two (the heat
equation), to be more precise, we obtain directly from (4.23) the equation

∂tht = −(Kt − cht) , (4.40)

where this time Kt represents the associated two form, and not an endomorphism3. It
is well-known that in the ordinary case the evolution equation (4.40) has a solution
(see [5], Ch.VI). Now, Simpson [17] has shown that also for the Higgs case, we
have always solutions to the above non-linear evolution equation. Indeed he proved
this for non-compact Kähler manifolds satisfying some additional conditions. That
proof covers the compact Kähler case without any change. Then, from the result of
Simpson we know there is a solution to the evolution equation (4.40). To be precise
we have the following

Theorem 4.8. Given an Hermitian structure h0 of E, the non-linear evolution
equation

∂tht = −(Kt − cht)

has a unique smooth solution defined for all time 0 ≤ t <∞ .

In the rest of this section, we study some properties of the solutions of the evo-
lution equation. In particular, we are interested in the study of the mean curvature
when the paramater t goes to infinite.

Proposition 4.9. Let ht , 0 ≤ t < ∞ , be a 1-parameter family of Herm+(E) satis-
fying the evolution equation. Then
(i) For any fixed Hermitian structure k of E, the functional L(ht, k) is a monotone
decreasing function of t; more precisely

d

dt
L(ht, k) = −‖Kt − cI‖2 ≤ 0 ; (4.41)

(ii) max |Kt − cI|2 is a monotone decreasing function of t;
(iii) If L(ht, k) is bounded below, i.e., if there exists a real constant A such that
L(ht, k) ≥ A > −∞ for 0 ≤ t <∞, then

max
X

|Kt − cI|2 → 0 as t→ ∞ . (4.42)

3Notice that the equivalent equation involving endomorphisms will be vt = −(Kt − cI).
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Proof: (i) From the proof of Lemma 4.5 we really know that

d

dt
L(ht, k) = (Kt − c ht, ∂tht) . (4.43)

Since ht is a solution of the evolution equation (4.40), by Theorem 4.8 we know that
for 0 ≤ t <∞

d

dt
L(ht, k) = − (Kt − c ht,Kt − c ht) = −‖Kt − c ht‖2 (4.44)

and the result follows from the definition of the metric on Herm+(E) (consider this
time as a metric for endomorphisms).

The proofs of (ii) and (iii) are similar to the proof in the classical case [5], but
we need to work this time with the operator ∆h = iΛD′′D′

h in place of the operator
2h = iΛD′′D′

h.

(ii) As we have shown before, with this definition ∆tvt = ∂tKt. On the other hand,
from the evolution equation we have vt = −(Kt−cI) and hence we get ∆tvt = −∆tKt,
and we obtain

∆tKt = −∂tKt . (4.45)

Now,

D′′D′|Kt − cI|2 = D′′D′tr(Kt − cI)2

= 2 tr((Kt − cI)D′′D′Kt) + tr(D′′Kt · D′Kt) + tr(D′Kt · D′′Kt)

and taking the trace of this with respect to ω (i.e., multiplying by the operator iΛ)
we get

∆t|Kt − cI|2 = 2 tr((Kt − cI)∆tKt) + iΛ tr(D′′Kt · D′Kt) + iΛ tr(D′Kt · D′′Kt)

= −2 tr((Kt − cI)∂tKt) − |D′′Kt|2 − |D′Kt|2

= −∂t|Kt − cI|2 − |D′′Kt|2 − |D′Kt|2 .

So, finally we have

(∂t + ∆t)|Kt − cI|2 = −|D′′Kt|2 − |D′Kt|2 ≤ 0 (4.46)

and the result follows from the maximum principle4 applied to |Kt − cI|2.

4The maximum principle for parabolic equations says that on a Riemannian manifold X, if a
function f : X × [0,∞) → R is of class C1 with continuous Laplacian and satisfies the inequality
(∂t + b∆)f ≤ 0, with b a positive constant. Then the function f(t), defined by

f(t) = max
x∈X

f(x, t)

is a monotone decreasing function in t.
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(iii) This follows from (ii) and (i) (this proof is an adaptation to the Higgs case of
the proof of Kobayashi in [5], see that reference for more details). By integrating
the inequality in (i) from 0 to s we obtain

L(hs, k) −L(h0, k) = −
∫ s

0
‖Kt − cI‖2dt .

Since L(hs, k) is bounded below by a constant independent of s, we have

∫ s

0
‖Kt − cI‖2dt <∞ .

In particular, from this we can conclude that

‖Kt − cI‖ → 0 as t→ ∞ . (4.47)

Let H(x, y, t) be the heat kernel of ∂t + ∆t and for (x, t) ∈ X × [0,∞) define the
function

f(x, t) = |Kt − cI|2. (4.48)

Fix t0 ∈ [0,∞) and set

u(x, t) =

∫

X
H(x, y, t− t0)f(y, t0) dy ,

where dy = ωn/n! .Then, u(x, t) is of class C∞ on X × (t0,∞) and extends to a
continuous function on X × [t0,∞). Hence for every (x, t) ∈ X × (t0,∞) we have

(∂t + ∆t)u(x, t) = 0 , u(x, t0) = f(x, t0) .

Considering this together with (4.46) we obtain

(∂t + ∆t)(f(x, t) − u(x, t)) ≤ 0 for (x, t) ∈ X × (t0,∞) .

Then, by the maximum principle, for t ≥ t0 we have

max
x∈X

(f(x, t) − u(x, t)) ≤ max
x∈X

(f(x, t0) − u(x, t0)) = 0 ,

and hence, with t = t0 + a we get

max
x∈X

f(x, t) ≤ max
x∈X

u(x, t0 + a) = max
x∈X

∫

X
H(x, y, a)f(y, t0) dy

≤ Ca

∫

X
f(y, t0) dy = Ca‖Kt0 − cI‖2 ,

where the constant Ca is given by

Ca = max
x,y∈X

H(x, y, a) .

Now, fix for instance a = 1 and let t0 → ∞. Then the result follows from (4.47).
Q.E.D.
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At this point we have some estimatives involving the mean curvature of the
Hitchin-Simpson connection. In fact, in a similar form as we did in the part (ii) of
the proof of the preceding proposition, we find

∂t|Kt|2 = 2 tr(∂tKt · Kt) , (4.49)

∆t|Kt|2 = 2 tr(∆tKt · Kt) − |D′′Kt|2 − |D′Kt|2 (4.50)

and hence, using (4.45) we obtain

2 |Kt| · ∂t|Kt| = ∂t|Kt|2 = −∆t|Kt|2 − |D′′Kt|2 − |D′Kt|2 . (4.51)

The last expression can be rewritten5 as

∂t|Kt| = −∆t|Kt| −
(|D′′Kt|2 + |D′Kt|2)

2 |Kt|
. (4.52)

Summarizing, from the identity (4.45), the expressions (4.51) and (4.52), we conclude
the following

Proposition 4.10. Let ht , 0 ≤ t < ∞ , be a 1-parameter family of Herm+(E)
satisfying the evolution equation. Then the mean curvature Kt of ht satisfies the
following:

(∂t + ∆t)Kt = 0 ; (∂t + ∆t)|Kt| ≤ 0 ; and (∂t + ∆t)|Kt|2 ≤ 0 . (4.53)

From this proposition we obtain some simple results. In particular, as a conse-
quence of the maximum principle, we know that in Proposition 4.10 the maximum
on X of |Kt| and |Kt|2 are monotone decreasing functions of t.

From standard properties of the heat equation (see [24], [14] for details) we know
the following

∫

X
|Kt|(y) dy ≤

∫

X
|K0|(y) dy , (4.54)

|Kt|(x) ≤
∫

X
H(x, y, t)|K0|(y) dy , (4.55)

where again dy = ωn/n! and H(x, y, t) is the heat kernel for differentiable functions
on X. The inequality (4.54) means that |Kt| is L1-bounded for t ≥ 0. The Proposi-
tion 4.10 and the formulas (4.54) and (4.55) play an important role in the study of
the heat equation for Higgs sheaves.

At this point we introduce the main result of the section. This establishes, in
part, a relation between the boundedness property of Donaldson’s functional and
the existence of approximate Hermitian Yang-Mills structures.

5The result is clear if |Kt| is strictly positive everywhere. However, |Kt| may eventually vanish
at some points. To get rid of this difficulty we can define |K|ǫ =

p

tr(K2) + ǫ with ǫ > 0 and since
this is nowhere vanishing, the formula holds for this new norm.
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Theorem 4.11. Let E be a Higgs bundle over a compact Kähler manifold X with
Kähler form ω . Then we have the implications (i) → (ii) → (iii) for the following
statements:
(i) for any fixed Hermitian structure k in E , there exist a constant B such that
L(h, k) ≥ B for all Hermitian structure h in E;
(ii) E admits an approximate Hermitian-Yang-Mills structure, i.e., given ǫ > 0 there
exists an Hermitian structure h in E such that

max|K − cI| < ǫ ; (4.56)

(iii) E is ω-semistable.

Proof: Assume (i). Then, in particular there exists a constant A such that

L(ht, k) ≥ A > −∞

for ht, 0 ≤ t <∞, a solution of the evolution equation. Thus, from Proposition 4.9
part (iii), it follows that given any ǫ > 0, there exists a t0 such that6

max|Kt − cI| < ǫ for t > t0 , (4.57)

which shows that (i) implies (ii).

On the other hand, that (ii) implies (iii) has been proved by Bruzzo and Graña-
Otero in [21], here we reproduce their proof.

Assume (ii) and let F be a proper nontrivial Higgs subsheaf of E. Then rkE = p
for some 0 < p < r and the inclusion F −→ E induces a morphism detF −→ ∧p E.
Tensoring by (det F)−1 we have a section s of the Higgs bundle

G =

p
∧

E ⊗ (det F)−1 . (4.58)

If ψ represents the Higgs field naturally defined on G by the Higgs fields of E and F,
then s is ψ-invariant. Now, since by hypothesis E admits an approximate Hermitian-
Yang-Mills structure, then from Proposition 3.16 we know that so does G and, in
particular, the constant cG associated with the Higgs bundle G becomes

cG =
2pπ(µ(E) − µ(F))

(n− 1)! volX
. (4.59)

From Corollary 3.18 we necessarily obtain deg G ≥ 0. Therefore cG is non-negative
and hence E must be ω-semistable, which shows (iii). Q.E.D.

Notice that by the Hitchin-Kobayashi correspondence if E is ω-stable, it has
an Hermitian-Yang-Mills structure and as we have seen before this metric must be
a minimum of the Donaldson functional. Hence the for stable Higgs bundles the
Donaldson functional is bounded from below and (iii) implies (i).

6Notice that indeed given an ǫ > 0, any Hermitian metric h = ht1 with t1 > t0 satisfies the
inequality (4.57).
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4.4 Semistable Higgs bundles

This section is in essence a natural extension to Higgs bundles of some classical
results on holomorphic vector bundles. Some of them are written in detail in [13],[5]
and [40].

As we have shown before, the direct sum of semistable Higgs sheaves with the
same slope is semistable. Therefore, this automatically holds for Higgs bundles and
hence, as a simple consequence of Proposition 2.7 we have

Proposition 4.12. Let E1 and E2 be two Higgs bundles over a compact Kähler
manifold X with Kähler form ω. If they are both ω-semistable with µ(E1) = µ(E2) =
µ, then E1 ⊕ E2 is also ω-semistable and µ(E1 ⊕ E2) = µ.

Let

0 // E′ ι
// E

p
// E′′ // 0 (4.60)

be an exact sequence of Higgs bundles. As in the ordinary case, an Hermitian
structure h in E induces Hermitian structures h′ and h′′ in E′ and E′′ respectively.
We have also a second fundamental form Ah ∈ A1,0(Hom(E′, E′′)) and its adjoint
Bh ∈ A0,1(Hom(E′′, E′)) where, as usual, B∗

h = −Ah. In a similar way, some prop-
erties which holds in the ordinary case, also holds in the Higgs case.

Proposition 4.13. Given an exact sequence (4.60) and a pair of Hermitian struc-
tures h, k in E. The function Q1(h, k) and the form Q2(h, k) satisfies the following
properties:
(i) Q1(h, k) = Q1(h

′, k′) +Q1(h
′′, k′′) ,

(ii) Q2(h, k) = Q2(h
′, k′) +Q2(h

′′, k′′) − i tr[Bh ∧B∗
h −Bk ∧B∗

k]
mod d′A0,1 + d′′A1,0 .

Proof: (i) is straightforward from the definition of Q1. On the other hand, (ii) fol-
lows from an analysis similar to the ordinary case.

Since the sequence (4.60) is in particular an exact sequence of holomorphic vector
bundles, for any h we have a splitting of the exact sequence by C∞-homomorphisms
(see [5], Ch.I for details) µh : E → E′ and λh : E′′ → E with

Bh = µh ◦ d′′ ◦ λh . (4.61)

We consider now a curve of Hermitian structures h = ht, 0 ≤ t ≤ 1 such that
h0 = k and h1 = h . Corresponding to ht we have a family of homomorphisms µt
and λt. We define the homomorphism St : E′′ → E′ given by

λt − λ0 = ι ◦ St . (4.62)

Then ∂tBt = d′′(∂tSt) and choosing convenient orthonormal local frames for E′ and
E′′, the endomorphism vt can be represented by the matrix

vt =

(

v′t −∂tSt
−(∂tSt)

∗ v′′t

)

.
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Here v′t, v
′′
t are the natural endomorphisms associated to h′t, h

′′
t respectively. Now,

from the ordinary case we have

Rt =

(

R′
t −Bt ∧B∗

t D′Bt
−D′′B∗

t R′′
t −B∗

t ∧Bt

)

where R′
t and R′′

t are the Chern curvatures of E′ and E′′ associated to the metrics
h′t and h′′t respectively.

On the other hand, the (1,1)-part of the curvature is given by R1,1
t = Rt+[φ, φt]

and since E′ and E′′ are Higgs subbundles of E, we obtain a simple expression for
the (1,1)-component of the Hitchin-Simpson curvature

R1,1
t =

(

R′1,1
t −Bt ∧B∗

t D′Bt
−D′′B∗

t R′′1,1
t −B∗

t ∧Bt

)

where

R′1,1
t = R′

t + [φ, φt]E′ , R′′1,1
t = R′′

t + [φ, φt]E′′ .

Hence, at this point we can compute the trace

tr(vt · R1,1
t ) = tr(v′t · R′1,1

t ) + tr(v′′t · R′′1,1
t )

+tr(∂tSt ·D′′B∗
t ) − tr((∂tSt)

∗ ·D′Bt)

+tr(v′t ·Bt ∧B∗
t ) − tr(v′′t ·B∗

t ∧Bt) .

The last four terms are exactly the same than in the ordinary case. Finally get that,
modulo an element in d′A0,1 + d′′A1,0

tr(vt · R1,1
t ) = tr(v′t · R′1,1

t ) + tr(v′′t · R′′1,1
t ) − ∂t tr(Bt ∧B∗

t ) . (4.63)

Then, multiplying by i and integrating from t = 0 to t = 1 the last expresion we
obtain (ii). Q.E.D.

As a consequence of Proposition 4.13 we get an important result for Higgs bundles
over compact Kähler manifolds when E and E′ have the same slope. Indeed, in that
case using Lemma 2.1 we know that also E′′ has the same slope of E and hence the
constants c′ and c′′ of E′ and E′′ are equal to the constant c of E. Then, integrating
Q1(h, k) and Q2(h, k) over X and since

−i tr(B ∧B∗) ∧ ωn−1 = |B|2ωn/n! (4.64)

we obtain an identity involving the Donadson functionals L(h, k) ,L(h′, k′) and
L(h′′, k′′). To be precise, we obtain the following

Corollary 4.14. Given an exact sequence (4.60) over a compact Kähler manifold X
with µ(E) = µ(E′) and a pair of Hermitian structures h and k in E. The functional
L(h, k) satisfies the following relation

L(h, k) = L(h′, k′) + L(h′′, k′′) + ‖Bh‖2 − ‖Bk‖2 . (4.65)
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Let E be a torsion-free Higgs sheaf which is ω-semistable but not ω-stable and
let E′ be a proper Higgs subsheaf with equal slope as E and torsion-free quotient,
say E′′. Then we have a short exact sequence of sheaves

0 // E′ // E // E′′ // 0 . (4.66)

Suppose now that E is locally-free, clearly the corresponding sequence (4.66) involv-
ing destabilizing subsheaves is not necessarily a sequence of Higgs bundles, so even
when the slopes are equal, we cannot apply apriori the decomposition of Corollary
(4.14). Now, in general for semistable Higgs sheaves which are not stable we have
the following result

Lemma 4.15. Let E be a torsion-free Higgs sheaf over a compact Kähler manifold
X with Kähler form ω and suppose E is ω-semistable but not ω-stable. Let consider
an exact sequence (4.66) with E′ of minimal rank among all proper Higgs subsheaves
with the same slope as E. Then E′ is ω-stable and E′′ is ω-semistable.

Proof: Assume E is ω-semistable and not ω-stable, and let E′ be a Higgs subsheaf
with minimal rank among all proper non-trivial Higgs subsheaves with the same
slope as E with torsion-free quotient.

Suppose E′ is not ω-stable, then there exists a proper Higgs subsheaf F′ of E′

with µ(F′) ≥ µ(E′) and since F′ is clearly a subsheaf of E which is ω-semistable, we
necessarily obtain µ(F′) = µ(E) and we get a contradiction, because E′ was chosen
with minimal rank. This shows that E′ is ω-stable.

Now let E′′ = E/E′, then from Lemma 2.1 it follows that µ(E′′) = µ(E) and
ω-semistable. In fact, if E′′ is not ω-semistable, then there exists a proper Higgs
subsheaf H of E′′ with µ(H) > µ(E′′). Then, using again Lemma 2.1 we have µ(E′′) >
µ(E′′/H) and defining K as the kernel of the morphism E −→ E′′/H, we get the exact
sequence

0 // K // E // E′′/H // 0

and since µ(E) = µ(E′′), using again the same Lemma we conclude that µ(K) > µ(E),
which contradicts the ω-semistability of E. Q.E.D.

4.5 Higgs bundles over Riemann surfaces

As we said before in the one-dimensional case, when X is a compact Riemann
surface, the notion of stability (resp. semistability) does not depend on the Kähler
form ω, therefore we can establish our results without make reference to any ω. In
this section we establish a boundedness property for the Donaldson functional for
semistable Higgs bundles over Riemann surfaces, which is in fact the main result of
the section. To be precise we have

Theorem 4.16. Let E be a Higgs bundle over a compact Riemann surface X.
If it is semistable, then for any fixed Hermitian structure k in Herm+(E) the set
{L(h, k), h ∈ Herm+(E)} is bounded below.
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Proof: In a similar way to the ordinary case (see [5], Ch.VI for a proof of this for
holomorphic bundles), the proof runs by induction on the rank of E. Fix first an
Hermitian metric k and assume that E is semistable.

If it is also stable, then by Theorem 3.13 it follows that there exists an Hermitian-
Yang-Mills structure h̃ on it. Now, by Theorem 4.7 we know that the Donaldson
functional must attain an absolute minimum at h̃. In other words, for any other
metric h

L(h, k) ≥ L(h̃, k)

and hence the set is clearly bounded below.

Suppose now that E is not stable, from Lemma 4.15 we know there exists a short
exact sequence

0 // E′ // E // E′′ // 0

with E′ stable and E′′ semistable. Since E′ and E′′ are torsion-free and dimX = 1,
they are also locally free and hence the sequence is in fact an exact sequence of
Higgs bundles. Assume now that h is an arbitrary Hermitian metric on E, then by
applying the Corollary 4.14 to the metrics h and k we obtain

L(h, k) = L(h′, k′) + L(h′′, k′′) + ‖Bh‖2 − ‖Bk‖2 , (4.67)

where h′, k′ and h′′, k′′ are the Hermitian structures induced by h, k in E′ and E′′

respectively. If the rank of E is one, it is stable and hence L(h, k) is bounded below
by a constant which depends on k. If the rank of E is greater than one, then by the
inductive hypothesis, L(h′, k′) and L(h′′, k′′) must be bounded below by constants
depending only on k′ and k′′ respectively. Then L(h, k) is bounded below by a con-
stant depending only on k. Q.E.D.

From Theorem 4.16, we get that all three conditions in Theorem 4.11, are equiv-
alent in the one-dimensional case. In particular from this we have

Corollary 4.17. Let E be a Higgs bundle over a compact Riemann surface X.
Then E is semistable if and only if E admits an approximate Hermitian-Yang-Mills
structure.

This equivalence between the notions of approximate Hermitian-Yang-Mills struc-
tures and semistability is one version of the so called Hitchin-Kobayashi correspon-
dence for Higgs bundles. As a consequence of the Corollary 4.17 we see that in the
one-dimensional case, all results about Higgs bundles written in terms of approxi-
mate Hermitian-Yang-Mills structures can be traslated in terms of semistability. In
particular we have

Corollary 4.18. Let π : X̃ −→ X be a finite unramified covering of a compact
Riemann surface X. Then
(i) If a Higgs bundle E over X is semistable, then so does its pullback π∗E over X̃.
(ii) If a Higgs bundle Ẽ over X̃ is semistable, then so does its pushforward π∗Ẽ to
the compact Riemann surface X.
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Corollary 4.19. If X is a compact Riemann surface and E1 and E2 are semistable
Higgs bundles over X, so is the tensor product E1 ⊗ E2. Furthermore, if µ(E1) =
µ(E2), so is the Whitney sum E1 ⊕ E2.

Notice that the second part of the above Corollary is in essence the Proposition
4.12 in the one-dimensional case. Therefore, we do not need the correspondence
between semistability and the existence of approximate Hermitian-Yang-Mills struc-
tures to prove this. However, that correspondence becomes useful in the proof of
first part. As a consequence of the first part of Corollary 4.19 we get the following
property

Corollary 4.20. If E is semistable, so is the tensor product bundle E⊗p⊗E∗⊗q and
the exterior product bundle

∧p E whenever p ≤ r .

The equivalence between the existence of approximate Hermitian-Yang-Mills
structures and the semistability must be true also in higher dimensions. However,
since torsion-free sheaves over compact Kähler manifolds with dimX ≥ 2 may not
be locally free (they are locally free only outside its singularity set) we need to con-
sider exact sequences of Higgs sheaves. To be precise, in order to use the inductive
hypothesis to prove Theorem 4.16 in higher dimensions, it is necessary to find Higgs
subbundles; but, in general one can expect to find at most Higgs subsheaves which
are Higgs subbundles only outside their singularity set. To get subbundles, these
singular sets have to be blown-up and appropriate metrics must be constructed.

Some of these aspects in higher dimensions, has been recently studied for holo-
morphic vector bundles by Jacob in [46], he uses some techniques on geometric ana-
lyisis and an extension of a method of regularization of sheaves that was introduced
by Buchdahl [49] in the case of compact complex surfaces.
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CHAPTER 5

Admissible metrics

5.1 Admissible metrics

Let us consider a torsion-free Higgs sheaf E over a compact Kähler manifold X and
let S = S(E) ⊂ X be the locus where E is not locally free, i.e., S is the singularity set
of the Higgs sheaf E. As we know, S is a complex analytic subset with codimS ≥ 2.
Following [24] (see also [14]), an admissible metric on E is an Hermitian metric h on
the bundle E|X\S with the following two properties:

(i) The Chern curvature Rh is square-integrable, and
(ii) The mean curvature Kh = iΛRh is L1-bounded.

Let us consider now the natural embedding of E into its double dual E∨∨; since

S(E∨∨) ⊂ S(E)

an admissible metric on E∨∨ restrics to an admissible metric on E. An admissible
metric h on a Higgs sheaf E is called an Hermitian-Yang-Mills structure on E, if on
X\S the mean curvature of its Hitchin-Simpson connection is proportional to the
identity. In other words, if

Kh = Kh + iΛ[φ, φ̄h] = c · I (5.1)

is satisfied on X\S for some constant c. It is important to note here that the admis-
sibility of a metric on a Higgs sheaf depend only on conditions imposed on the Chern
curvature. However, the notion of Hermitian-Yang-Mills structure does depend on
the Higgs field conditions imposed on the Hitchin-Simpson curvature.

The notion of admissibility can be relaxed to make only reference to certain open
sets in the following way: an admissible metric on a Higgs sheaf E is an Hermitian
metric h defined on an open set U , such that X\U is a complex analytic subset of
codimension at least two, which contains the singularity set of E. Using this modified
definition, any admissible metric on E induces an admissible metric on E∨∨. From
now on (if necessary) we will understand admissible metrics in this modified version.

Proposition 5.1. Let E1 and E2 be two torsion-free Higgs sheaves over a compact
Kähler manifold X and let h1 and h2 be two admissible metrics on these Higgs
sheaves. Then, h1 ⊗ h2 is an admissible metric on E1 ⊗ E2.

Proof: Suppose h1 and h2 are admissible metrics and let S1 and S2 the singularity
sets of E1 and E2, respectively. Then, h1 and h2 are Hermitian metrics on E1|U1
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and E2|U2
for some open sets U1 and U2 in X, where X\U1 and X\U2 are complex

analytic subsets of codimension greater or equal than two, containing the sets S1

and S2 respectively.

Since X\U1 ∩ U2 is the union of X\U1 and X\U2, it is a closed analytic subset
of codimension at least two containing S1 ∪ S2. From this we obtain that h1 ⊗ h2 is
an Hermitian metric on E1 ⊗ E2|U1∩U2

.

On the other hand, if K1⊗2 denotes the Chern mean curvature of h1 ⊗ h2, we
have from classical identities (see [5], Ch.I) that

|K1⊗2| ≤ |K1 ⊗ I2| + |I1 ⊗K2|
≤ √

r2|K1| +
√
r1|K2| .

Since K1 and K2 are L1-bounded, by integrating this inequality over U1 ∩ U2 it
follows that K1⊗2 is also L1-bounded. Similarly, for the Chern curvature R1⊗2 we
obtain

|R1⊗2|2 ≤ |R1 ⊗ I2|2 + |I1 ⊗R2|2 + 2|R1 ⊗ I2||I1 ⊗R2|
≤ r2|R1|2 + r1|R2|2 + 2

√
r1r2|R1||R2| .

Now, since R1 and R2 are square-integrable and the product |R1||R2| is L1-bounded,
the square-integrability of R1⊗2 follows integrating the above inequility over U1∩U2.
Q.E.D.

Let E = (E,φ) be a torsion-free Higgs sheaf over X. By Biswas and Schumacher
[24] (see also [39]), there exists a finite sequence of blowups with smooth centers

πj : Xj −→ Xj−1 ,

with j = 1, ..., k and X0 = X, such that the pullback of the sheaf E∨ to Xk modulo
torsion is locally free and π1 · · · πk outside S is a biholomorphism. In other words,
setting X̃ = Xk and

π = π1 · · · πk : X̃ −→ X , (5.2)

and denoting by T the torsion part of π∗E∨, then π∗E∨/T is a holomorphic bundle
over X̃ and π restricted to X̃\π−1(S) is a biholomorphism.

Let Ẽ be the dual of the bundle π∗E∨/T . Clearly, the morphism φ defines a
Higgs field ψ = π∗φ∨ on π∗E∨ and since ψ(T ) ⊂ T ⊗ Ω1

X̃
, the morphism ψ is well

defined on the quotient π∗E∨/T and we have a morphism

ψ∨ : Ẽ −→ Ẽ ⊗ Ω1
X̃
.

From the above analysis we conclude that Ẽ = (Ẽ, ψ∨) is a Higgs bundle over X̃ .
We say that Ẽ is a regularization of the Higgs sheaf E and that the map π, defined
by (5.2), is a morphism regularizing E.
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If ω is a Kähler metric on X, its pullback π∗ω is degenerate along the exceptional
divisor π−1(S) and hence it is not a Kähler metric on X̃. Following [24] we can define
a Kähler metric closely related to the form π∗ω as follows. Let η be an arbitrary
Kähler metric on X̃ and 0 ≤ ǫ ≤ 1 a parameter, then we define

ωǫ = π∗ω + ǫη . (5.3)

This is a Kähler metric for each ǫ > 0. Such a metric can be used to prove some
simple properties involving admissible metrics. In particular, we have the following
result

Proposition 5.2. Let E be a torsion-free Higgs sheaf over a compact Kähler man-
ifold X and Ẽ a regularization of it. Then, any Hermitian metric on Ẽ induces an
admissible metric on E.

Proof: Let h̃ be an Hermitian metric on Ẽ and denote by S the singularity set of E.
Let π be the morphism regularizing E. The Hermitian metric h̃ induces an Hermi-
tian metric h on E|X\S .

Let K = iΛR be the (classical) mean curvature of E|X\S associated with the

metric h. Since h̃ is defined on all X̃, the pullback of R, denoted by R̃, extends to
all X̃ as the curvature of the Hermitian metric h̃ and hence, on each point of X̃, we
have

inR̃ ∧ ωn−1
ǫ = iΛǫR̃ ω

n
ǫ = K̃ǫ ω

n
ǫ (5.4)

where iΛǫ denotes this time the adjoint of the multiplication by ωǫ and K̃ǫ represents
the corresponding mean curvature of Ẽ. Now, since X̃ is compact, for some positive
constant C we have

iR̃ ≤ iCωǫI (5.5)

where I here is the identity endomorphism of Ẽ. Hence, by applying iΛǫ to (5.5)
we have that CiΛǫ ωǫI − K̃ǫ must be a semi-positive definite endomorphism of Ẽ.
Therefore we get

|K̃ǫ|ωnǫ ≤ |K̃ǫ − CiΛǫωǫI|ωnǫ + |CiΛǫωǫI|ωnǫ
≤ tr [iΛǫ(CωǫI − R̃)]ωnǫ + tr (CiΛǫωǫI)ω

n
ǫ

≤ in tr (2CωǫI − R̃)ωn−1
ǫ

≤ in tr (2Cω1I − R̃)ωn−1
1 .

From this we conclude that K̃ǫ is uniformly integrable with respect to 0 < ǫ ≤ 1
and hence, taking the limit ǫ→ 0, it follows that K is L1-bounded.

On the other hand, from the theory of holomorphic bundles (see [14], Lemma 6)
we have

[

2 c2(Ẽ) − c1(Ẽ)2
]

∪ [ωǫ]
n−2 =

1

4π2n(n− 1)

∫

X̃

[

|R̃|2 − |K̃ǫ|2
]

ωnǫ , (5.6)

and hence, taking the limit ǫ→ 0, it follows that R is also square-integrable. Q.E.D.
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5.2 More about Higgs sheaves

Let E be a torsion-free Higgs sheaf over a compact Kähler manifold X. We know
that the codimension of its singularity set S is greater or equal than two. The (non-
compact) manifold X\S satisfies all assumptions Simpson imposes in [17] (see in
particular Propositions 2.1 and 2.2 in that reference). Therefore, we can see E as a
Higgs bundle over the non-compact manifold X\S. Thus, in studying torsion-free
Higgs sheaves we are considering implicitly Higgs bundles over non-compact Kähler
manifolds.

By Simpson [17], Proposition 3.3, we know that a torsion-free Higgs sheaf over
a compact Kähler manifold with an Hermitian-Yang-Mills structure must be at
least semistable. However, as Biswas and Schumacher showed in [24], this is just
one part of a stronger result. In fact, using the evolution equation, Biswas and
Schumacher obtained the Hitchin-Kobayashi correspondence for polystable Higgs
sheaves. Namely, they proved the following

Theorem 5.3. A torsion-free Higgs sheaf E over a compact Kähler manifold X with
Kähler form ω is ω-polystable if and only if there exists an Hermitian-Yang-Mills
structure on it.

From Theorem 5.3 it follows that any restriction of a stable Higgs sheaf E to X\S
is ω-polystable. In fact, using the modified definition of admissibility this also holds
for restrictions to certain open subsets of X. To be precise we have the following
result

Proposition 5.4. Let E be a torsion-free Higgs sheaf over a compact Kähler man-
ifold X with Kähler form ω and denote by S its singularity set. Let U ⊂ X be
an open set such that X\U is a closed analytic subset of codimension at least two
containing S. Then E|U is ω-polystable if E is ω-polystable.

Proof: Let E be a torsion-free sheaf over X and assume first that it is ω-stable. Then,
from Theorem 5.3, there exists an Hermitian-Yang-Mills structure h on it. Let U
be an open subset of X such that X\U is a closed analytic subset with codimension
greater or equal than two and suppose that S ⊂ X\U . Thus, h is in particular an
Hermitian-Yang-Mills metric on the Higgs bundle E|U and hence, from Proposition
3.3 in [17], it must be ω-polystable.

Assume now that E is ω-polystable. Then, it can be decomposed as a direct
sum of ω-stable Higgs sheaves with the same slope as E. From the first part of the
proof, we know that each restriction of these stable Higgs sheaves to U must be
ω-polystable and hence the result follows. Q.E.D.

Lemma 5.5. Let E1 and E2 be two torsion-free Higgs sheaves over a compact Kähler
manifold X with Kähler form ω. If both are ω-polystable, then E1⊗E2 modulo torsion
is also ω-polystable.
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Proof: Let E1 and E2 be ω-polystable. Then, from Theorem 5.3 we know there exist
Hermitian-Yang-Mills structures h1 and h2. Now, by Proposition 5.1, it follows that
h = h1 ⊗ h2 is an admissible metric on E1 ⊗ E2. Clearly, it is an Hermitian-Yang-
Mills structure and hence, using again Theorem 5.3, such a tensor product (modulo
torsion) must be ω-polystable. Q.E.D.

As a consequence of the above Lemma, Biswas and Schumacher [24] proved that
the tensor product of two semistable sheaves is again semistable. Here we present a
different proof. Notice first that from Lemma 5.5 we have the following

Lemma 5.6. Let E1 and E2 be two torsion-free Higgs sheaves over a compact Kähler
manifold X with Kähler form ω. If E1 is ω-semistable and E2 is ω-polystable, then
E1 ⊗ E2 modulo torsion is ω-semistable.

Proof: Assume that E2 is ω-polystable an E1 is ω-semistable. Following Simpson
[19] (see also [24]), there exists a filtration of E1 by Higgs subsheaves

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fk = E1 , (5.7)

in which the quotients Fj/Fj−1 for j = 1, ..., k are ω-polystable and they have all
the same slope as E1. Now, let U ⊂ X be the open set in which all terms of the
filtration (5.7), all quotients Fj/Fj−1, and also E2 are locally free. Then X\U is a
closed analytic subset of codimension greater or equal than two, and on U we have
the sequence

0 // F1
// F2

// F2/F1
// 0 (5.8)

as a sequence of locally free Higgs sheaves. Then, tensoring the above sequence by
E2 we obtain the sequence

0 // F1 ⊗ E2
// F2 ⊗ E2

// (F2/F1) ⊗ E2
// 0 (5.9)

which is again an exact sequence of locally free Higgs sheaves over U . Since F1 and
F2/F1 are both ω-polystable, and also E2 is ω-polystable by hypothesis, we have
by Proposition 5.4 that they are all ω-polystable over U . Therefore, it follows from
Lemma 5.5 that F1 ⊗ E2 and (F2/F1) ⊗ E2 are both ω-polystable with equal slopes
(in particular they are ω-semistable). Therefore, from this and Corollary 2.9, we
obtain the semistability of the Higgs sheaf F2 ⊗ E2 over the open set U .

Now, we consider the exact sequence

0 // F2
// F3

// F3/F2
// 0 . (5.10)

Since over U this is an exact sequence of locally free Higgs sheaves, tensoring again
by E2 we obtain over U the following exact sequence of locally free Higgs sheaves:

0 // F2 ⊗ E2
// F3 ⊗ E2

// (F3/F2) ⊗ E2
// 0 . (5.11)

Using again Lemma 5.5 we have that (F3/F2) ⊗ E2 is ω-polystable, in particular it
is ω-semistable and since F2 ⊗ E2 is also ω-semistable, we obtain (again by Corol-
lary 2.9) that F3 ⊗ E2 is ω-semistable. Continuing this process we get at the end
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that E1 ⊗ E2 is ω-semistable. Since all of this holds over U , whose complement has
codimension greater or equal than two, it can be extended on all X and E1 ⊗ E2 is
ω-semistable on X as well. Q.E.D.

Theorem 5.7. Let E1 and E2 be two torsion-free Higgs sheaves over a compact
Kähler manifold X with Kähler form ω. If both are ω-semistable, then E1 ⊗ E2

modulo torsion is also ω-semistable.

Proof: The Higgs sheaf E1 has a filtration by Higgs subsheaves as in (5.7), with
ω-polystable quotients with the same slope as E1. Now, let U ⊂ X be an open
subset such that all terms of the filtration, all quotients and also E2 are locally free.
Then, we have the exact sequences (5.8) and (5.9) and since E2 is ω-semistable, the
result follows by applying Lemma 5.6. Q.E.D.

5.3 Donaldson’s functional for Higgs sheaves

Let h be an admissible metric on a torsion-free Higgs sheaf E over a compact Kähler
manifold X. From [24] we know the Higgs field φ is bounded on X\S, and hence
the Hitchin-Simpson curvature

Kh = Kh + iΛ[φ, φ̄h] (5.12)

is L1-bounded. This means that any admissible metric h satisfies

∫

X\S
|Kh|ωn <∞ . (5.13)

According to Simpson [17], we can define the Donaldson functional on E|X\S for
metrics satisfying (5.13).

Let Herm+(EX\S) be the space of all smooth metrics on EX\S satisfying the
condition (5.13) and suppose that h and k are two metrics in the same connected
component of the space Herm+(EX\S). Then h = kev for some endomorphism v of
E|X\S and following Simpson [17], we can write the Donaldson functional as

L(kev , k) =

∫

X\S
tr [v(Kk − cI)]

ωn

n!
+

∫

X\S

r
∑

i,j=1

ψ1(λi, λj)|D′′vij |2
ωn−1

(n− 1)!
(5.14)

where the function ψ1 is given by (4.36). Equivalently, we can write this functional
using Kobayashi’s approach [5], which we used earlier for Higgs bundles in the com-
pact case. Therefore, if ht , 0 ≤ t ≤ 1 is a curve in a connected component of
Herm+(EX\S) such that h0 = k and h1 = h, we write

L(h, k) =

∫

X\S

[

Q2(h, k) −
c

n
Q1(h, k)ω

]

∧ ωn−1

(n− 1)!
(5.15)
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where

Q2(h, k) = i

∫ 1

0
tr(vt · Rt) dt , Q1(h, k) = log(det(k−1h)) . (5.16)

We define the Donaldson functional on the Higgs sheaf E just as the correspond-
ing functional (5.14), or equivalently (5.15), defined on the Higgs bundle E|X\S .

In [17] Simpson found an inequality between the supremum of the endomor-
phisms v relating the metrics h and k and the Donaldson functional for Higgs bundles
over (non necessarily) compact Kähler manifolds. To be precise he showed

Proposition 5.8. Let k be an Hermitian metric on a Higgs bundle E over a Kähler
manifold Y with Kähler form ω and suppose supY |Kk| ≤ B for certain fixed constant
B. If E is ω-stable, then there exist constants C1 and C2 such that

supY |v| ≤ C1 + C2 L(kev , k) (5.17)

for any selfadjoint endomorphism v with trv = 0 and supY |v| < ∞ and such that
supY |Kkev | ≤ B.

Since the Donaldson functional for a Higgs sheaf is just the corresponding func-
tional for the associated Higgs bundle and an admissible metric k satisfies (5.13),
this result can be immediately adapted to Higgs sheaves; hence we have

Corollary 5.9. Let k be an admissible metric on a torsion-free Higgs sheaf E over
a compact Kähler manifold X with Kähler form ω and suppose supX\S |Kk| ≤ B for
certain fixed constant B. If E is ω-stable, then there exist constants C1 and C2 such
that

supX\S |v| ≤ C1 + C2 L(kev, k) (5.18)

for any selfadjoint endomorphism v with trv = 0 and supX\S |v| <∞ and such that
supX\S |Kkev | ≤ B.

5.4 Higgs bundles over Kähler surfaces

Assume that dimX = 2 (that is, X is a compact Kähler surface) and denote by ω
the Kähler form of X. Let E = (E,φ) be a Higgs bundle over X. Then, its degree
is given by

deg E =

∫

X
c1(detE) ∧ ω , (5.19)

and hence, it depends on ω. Suppose that E is ω-semistable but not ω-stable and
let µ(E) = µ. Then, from Lemma 4.15, we know there are Higgs sheaves F and G

such that

0 // F // E // G // 0 (5.20)

is an exact sequence over X, where F is ω-stable, G is ω-semistable and

µ(F) = µ(G) = µ .
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We know that G is torsion-free and E is reflexive (it is in fact locally free), then
F is normal and since it is also torsion-free, it is reflexive. Consequently, it has a
singularity set S(F) of codimension at least three and hence F must be locally free.

From the above analysis we have that in the exact sequence (5.20) F and E are
Higgs bundles, but G is only a torsion-free Higgs sheaf. This means for instance,
that we cannot a priori apply the decomposition of the Donaldson’s functional that
we used in the one-dimensional case, since it holds only for Higgs bundles with equal
slopes. Therefore, if we want to use a decomposition of the Donaldson functional, we
need to find first an exact sequence of Higgs bundles closely related to the sequence
(5.20). In principle, this procedure could be done as follows.

If F and G are the corresponding coherent sheaves of F and G, from (5.20) it
follows that

0 // F // E // G // 0 (5.21)

is an exact sequence of coherent sheaves over the Kähler surfaceX. Now, for compact
complex surfaces, Buchdahl (see [48], Section 3, for details) showed that it was
possible to make a modification of X, such that we end up with an exact sequence
of holomorphic bundles over a modified manifold. To be precise, Buchdahl proved
in [48] that for any complex surface X and any given sequence (5.21), there exists a
modification π : X̃ −→ X of X consisting of finitely many blow-ups and locally free
coherent sheaves F̃ and G̃ over X̃ such that the following diagram

0 // π∗F //

��

π∗E //

��

π∗G //

��

0

0 // F̃ // π∗E // G̃ // 0

commutes, has exact rows, and outside the exceptional divisor π−1(S) the vertical
arrows are isomorphisms. Buchdahl in [48] called such a diagram a desingularization
of the torsion-free sheaf G and used this diagram to study the behaviour of stability
under pullbacks of blow-ups, and to prove the correspondence between polystability
and the existence of Einstein-Hermitian metrics for holomorphic bundles over com-
pact complex surfaces.

On the other hand, since F is a Higgs subsheaf of E, it follows that π∗F is a
Higgs subsheaf of π∗E; hence π∗G is the coherent sheaf of a Higgs sheaf π∗G and the
upper row in the above diagram becomes a short exact sequence of Higgs sheaves.
Furthermore, from this diagram we know that the rank of G̃ is equal to the rank of
π∗G. Consequently, if we denote by K the kernel of the morphism π∗G → G̃, we
know that K is the torsion subsheaf of π∗G and hence the pair K = (K, η), with η
the restriction of π∗φG to K, is a (torsion) Higgs sheaf1. Therefore, it follows that
G̃ = π∗G/K is a Higgs bundle. Finally, since the diagram is also commutative, the
morphism π∗E → G̃ is clearly a composition of Higgs morphisms and the lower row

1Notice that in the proof of Proposition 2.3, we show that the torsion subsheaf of any Higgs
sheaf is a Higgs sheaf.
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in the above diagram becomes a short exact sequence of Higgs bundles.

Summarizing, from all this we see that if the exact sequence (5.21) comes from a
sequence of Higgs sheaves, the above diagram is actually a diagram of Higgs sheaves.
In other words, for the exact sequence (5.20) there exists a modification π : X̃ → X
of X (consisting of finitely many blow-ups) and Higgs bundles F̃ and G̃ over X̃, such
that the diagram

0 // π∗F //

��

π∗E //

��

π∗G //

��

0

0 // F̃ // π∗E //
G̃

// 0

is commutative, with exact rows and such that outside π−1(S) the vertical arrows
are isomorphisms.

An Hermitian metric h on E induces an Hermitian metric π∗h on π∗E, and since
in the diagram of Higgs sheaves the lower row is an exact sequence of Higgs bundles,
we have induced Hermitian metrics h̃′ and h̃′′ in F̃ and G̃ respectively. In particular,
h̃′′ induces an Hermitian metric h′′ on GX\S and a similar argument to the one used
in the proof of Proposition 5.2 shows that the induced metric is an admissible one
for the torsion-free Higgs sheaf G.

At this point the strategy to prove the existence of approximate Hermitian-
Yang-Mills structures for semistable Higgs bundles would be as follows: first we
must identify the Donaldson functional of E with the Donaldson functional of π∗E
(constructed using the form π∗ω) and hence, using the Corollary 4.14, we can de-
compose it in terms of the functionals of the Higgs bundles F̃ and G̃. The Donaldson
functional of F̃ should be the same functional of the stable Higgs bundle F and there-
fore, it must be bounded from below. On the other hand, since G is only a semistable
(torsion-free) Higgs sheaf, we cannot apply the same argument for the functional of
G̃. However, since we have now an exact sequence of Higgs bundles, we can apply
an induction procedure similar to the one used in the one-dimensional case; clearly,
doing this, after a finite number of steps we get a stable Higgs quotient. Finally we
will need to check that this last functional is bounded from below.
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CHAPTER A

Coherent sheaves

A.1 Coherent sheaves

Coherent sheaves appear in sheaf theory and play an important role in Complex
Analisis. In this section we summarize some general notions about coherent sheaves,
some of them are already used throughout this work (see [5] and [2] for more details).

Let X be a complex manifold of dimension n and O = OX its structure sheaf;
we denote by Op the direct sum of p copies of the structure sheaf of X. An analytic
sheaf over X is a sheaf of O-modules over X. We say that an analytic sheaf E over
X is coherent if for any point x ∈ X, there exist a neighborhood U of x and integers
p and q such that

Oq|U // Op|U // E|U // 0 (A.1)

is an exact sequence. An analytic sheaf E is called a locally free sheaf, if for any
x ∈ X there is a neighborhood U of x such that E|U ∼= Or|U for some r. Just by
definition, locally free sheaves are coherent.

We have also the following important result (known as the Three Lemma),

Lemma A.1. Let

0 // F // E // G // 0

be an exact sequence of analytic sheaves over X. Then all sheaves are coherent if
two of them are coherent.

As a consequence of the Three Lemma we have that the Whitney sum of coherent
sheaves is coherent and we obtain also the following

Proposition A.2. If f : F −→ E is a morphism of coherent sheaves, then Ker f, Im f
and Coker f are all coherent sheaves.

If F and E are coherent sheaves over X, the sheaf Hom(E,F ) is also coherent.
From this and taking F = O, we get that the dual sheaf E∨ = Hom(E,O) is coher-
ent and hence E∨∨ is also coherent. From this and Proposition A.2 it follows that
the kernel of the natural map σ : E −→ E∨∨ is coherent. The sheaf Kerσ plays an
important role in the theory of sheaves, it is in fact the sheaf of torsion elements of
the coherent sheaf E.
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One of the most important properties of coherent sheaves is that locally they
admit free resolutions. To be precise, for any point x there exist a neighborhood U
such that

0 // Opd |U // · · · // Op0 |U // E|U // 0 (A.2)

with d ≤ n is an exact sequence. Such free resolutions are used to define the deter-
minant bundle of a coherent sheaf.

A.2 Singularity sets

For any integer 0 ≤ m ≤ n, we define the m-th singularity set of a coherent sheaf E
by

Sm(E) = {x ∈ X /dh(Ex) ≥ n−m} , (A.3)

where dh means the homological dimension (the length of a minimal free resolution
of the corresponding module). All of these singularity sets are closed analytic and
we have the following chain of inclusions

S0(E) ⊂ S1(E) ⊂ · · · ⊂ Sn−1(E) ⊂ Sn(E) = X . (A.4)

We call Sn−1(E) the singularity set of E, hence we have

Sn−1(E) = {x ∈ X /dh(Ex) ≥ 1} = {x ∈ X /Ex is not free} . (A.5)

Therefore, any coherent sheaf E is locally free outside Sn−1(E). We define the rank
of a coherent sheaf E, denoted by rkE, as rkEx with x ∈ X\Sn−1(E). A coherent
sheaf E is torsion-free, if every stalk Ex is torsion-free and we say that it is reflexive,
if it is isomorphic to E∨∨.

There exist some standard results concerning the above singularity sets. In
particular, we have some results for torsion-free and reflexive sheaves.

Theorem A.3. If E is a torsion-free coherent sheaf over a compact complex man-
ifold X of dimension n, then for all 0 ≤ m ≤ n

dimSm(E) ≤ m− 1 . (A.6)

The above result implies that the dimension of the singularity set of a torsion-
free coherent sheaf is less or equal than n − 2. In other words, for any torsion-free
coherent sheaf E we have

codimSn−1(E) ≥ 2 . (A.7)

From this we have in particular that every torsion-free coherent sheaf over a compact
Riemann surface is locally free.

Theorem A.4. If E is a reflexive coherent sheaf over a compact complex manifold
X of dimension n, then for all 0 ≤ m ≤ n

dimSm(E) ≤ m− 2 . (A.8)
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This means that the dimension of the singularity set of a reflexive coherent sheaf
is less or equal than n − 3, or equivalently, that for any reflexive coherent sheaf E
we have

codimSn−1(E) ≥ 3 . (A.9)

In particular, from (A.9) we know that every reflexive coherent sheaf over a compact
analytic surface is locally free.

A coherent sheaf E over X is said to be normal if for every open set U ⊂ X and
every analytic subset A ⊂ U of codimension at least two, the restriction map

Γ(U,E) −→ Γ(U\A,E) (A.10)

is an isomorphism, where Γ(U,E) and Γ(U\A,E) are the set of sections of E over
U and U\A respectively. By Hartog’s extension theorem, the structure sheaf OX of
any compact complex manifold X is normal.

We have some results relating the above notions

Proposition A.5. A coherent sheaf E over a complex manifold Xis reflexive if and
only if it is torsion-free and normal.

Proposition A.6. Let

0 // F // E // G // 0

be an exact sequence of coherent sheaves. If E is reflexive and G is torsion-free,
then F is normal.

Since in the above Proposition, F is also torsion-free (because it is a subsheaf
of a reflexive sheaf, which is in particular torsion-free), using Proposition A.5 we
conclude that F is also reflexive.

A.3 Determinant bundles

Let V be a holomorphic vector bundle of rank r over a compact Kähler manifold
X; its determinant bundle bundle, detV , is by definition the line bundle

∧r V . As
it is well known, there is a correspondence between holomorphic vector bundles and
locally free coherent sheaves. In our case, one associates with V the sheaf O(V )
of holomorphic sections of V . Moreover, every exact sequence (see [5], Ch.V for
details)

0 // Vm // · · · // V1
// V0

// 0 (A.11)

of holomorphic vector bundles over X, induces an exact sequence of locally free
coherent sheaves

0 // Em // · · · // E1
// E0

// 0 (A.12)

over X, where Ej = O(Vj) for j = 0, 1, ...,m, and we have the following

75



Lemma A.7. Given the exact sequence of holomorphic vector bundles (A.11), the

line bundle
⊗m

j=0(detVj)
(−1)j

is isomorphic to the trivial line bundle.

Let E be a coherent sheaf over a compact Kähler manifold X, then there exists
an open subset U ⊂ X and an exact sequence

0 // En // · · · // E1
// E0

// E|U // 0 (A.13)

over U , where each Ej with j = 0, 1..., n is a locally free coherent sheaf (it is
a resolution of E|U by locally free coherent sheaves). For each j, let Vj be the
corresponding holomorphic vector bundle of Ej . Then, the determinat bundle of E
is given by the formula

detE =

m
⊗

j=0

(detVj)
(−1)j

. (A.14)

The first Chern class of E is by definition the first Chern class of its determinant
bundle, that is, c1(E) = c1(detE). The degree of E is given by

degE =

∫

X
c1(detE) ∧ ωn−1 . (A.15)

Associated with determinant bundles of coherent sheaves we have the following
important result

Proposition A.8. If

0 // F // E // G // 0

is an exact sequence of coherent sheaves, then there is a canonical isomorphism

detE ≃ detF ⊗ detG . (A.16)

Assume now that E is a torsion-free sheaf of rank r, then there exists a canonical
isomorphism between detE and (

∧r E)∨∨ and from this it follows

Proposition A.9. If E is a torsion-free coherent sheaf, then there exists a canonical
isomorphism

(detE)∨ ≃ detE∨ . (A.17)

If E −→ E′ is a monomorphism between torsion-free coherent sheaves of the
same rank, then it induces a sheaf monomorphism detE −→ detE′ between its
determinant bundles.

A coherent sheaf E over X is said to be a torsion sheaf, if for every x ∈ X
the corresponding stalk Ex is a torsion module. For torsion sheaves we have the
following

Proposition A.10. If E is a torsion sheaf over X, then detE admits a non-trivial
holomorphic section. Moreover, if

supp(E) = {x ∈ X, Ex 6= 0} (A.18)

has codimension at least two, then detE is a trivial line bundle.
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For torsion-free sheaves over Kähler manifolds, there exists a result which plays
an important role in the theory and that is commonly cited as the Harder-Narasimhan
filtration theorem. This result can be written as

Theorem A.11. Let E be a coherent sheaf over a compact Kähler manifold X with
Kähler form ω. Then there exists a unique filtration of E by subsheaves

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ek−1 ⊂ Ek = E (A.19)

such that, for every 1 ≤ j ≤ k, the quotients Ej/Ej−1 are ω-semistable and the
slopes µ(Ej/Ej−1) are strictly decreasing.

Finally, for semistable sheaves we have the following result, which is called the
Jordan-Hölder theorem.

Theorem A.12. Let E be as in Theorem A.11 and assume that it is ω-semistable.
Then there exists a filtration of E by subsheaves

0 = Es ⊂ Es−1 ⊂ · · · ⊂ E1 ⊂ E0 = E (A.20)

such that, for every 0 ≤ i ≤ s − 1, the quotients Ei/Ei+1 are ω-stable and we have
µ(Ei/Ei+1) = µ(E). Moreover,

Gr(E) = (E0/E1) ⊕ (E1/E2) ⊕ · · · ⊕ (Es/Es+1) (A.21)

is uniquely determined by E up to an isomorphism.
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CHAPTER B

Some remarks on Higgs bundles

B.1 The Yang-Mills equations and the origin of Higgs bundles

The Yang-Mills equations arose in theoretical physics at the end of the 70’s and were
defined initially on R

4, the physically relevant solutions (the so called ’instantons’)
played an important role in quantum field theory. By imposing invariance under
translation in one direction, one gets equations on R

3 whose solutions may be inter-
preted as monopoles. In the 80’s, Atiyah [11] and Hitchin [16] studied in detail the
Yang-Mills equations formulated on R

2, in that case the equations were conformal
invariant and, beacuse of that, they were formulated in terms of Riemann surfaces.

The Yang-Mills equations can be introduced as follows (see [11], [16]). Let P be a
principal G bundle over R

4 and let A be a connection on it and RA its curvature. Let
g be the Lie algebra of G and write adP = P ×G g for the vector bundle associated
to the adjoint representation. Denoting by Ω2

R4(adP ) the space of two forms with
coefficients in adP , we have that RA is an element in Ω2

R4(adP ) and the Hodge star
operator becomes

∗ : Ω2
R4(adP ) −→ Ω2

R4(adP ) . (B.1)

A connection A is said to satisfy the self-dual Yang-Mills equations if its curvature
is invariant under the Hodge star operator, that is if

∗RA = RA . (B.2)

Using coordinates (xα)α=1,2,3,4 over R
4 and a local trivialization of P , the curvature

RA can be written as
RA =

∑

α<β

Rαβ dx
α ∧ dxβ (B.3)

and the self-dual Yang-Mills equations (B.2) become

R12 = R34 , R13 = R42 , R14 = R23 . (B.4)

Using this trivialization the connection is given by a one form A = Aαdx
α with

coefficients in adP and we have

RA = dA+A ∧A . (B.5)

Introducing the notation of covariant derivatives, Dα = ∂α+Aα, the components
of the curvature can be written as

Rαβ = [Dα,Dβ ] . (B.6)
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Now, we assume that Aα are independent of x3 and x4 and hence they are all
functions Aα(x1, x2) on R

2. In theroretical physics, such a process is usually called
dimensional regularization. From a physical point of view, this process is equivalent
ot consider solutions to the self-dual Yang-Mills equations on R

4 invariant under
translations in (x3, x4) ∈ R

2. Applying this dimensional regularization procedure,
A1 and A2 define a connection

A = A1 dx
1 +A2 dx

2 (B.7)

over R
2, and the components A3 and A4, that we denote by φ1 and φ2 respectively,

becomes auxiliary fields1 over R
2 which are Lie algebra valued. Hitchin called φ1 and

φ2 Higgs fields because they played a similar role to the Higgs field in theoretical
physics. Then, from (B.6) and using (B.4) we see that the self-dual Yang-Mills
equations can be rewritten as:

[D1,D2] = [φ1, φ2] , [D1, φ1] = [φ2,D2] , [D1, φ2] = [D2, φ1] . (B.8)

Introducing the field φ = φ1 − iφ2, that is usually called the complex Higgs field, we
can rewrite the equations in the form

2R = i[φ, φ∗] , [D1 + iD2, φ] = 0 . (B.9)

From the point of view of the induced connection on the principal bundle P over
R

2, the curvature R is a two-form with coefficients in adP and φ is a section of
(adP ) ⊗ C. If we write z = x1 + ix2 and define

Φ =
1

2
φdz ∈ Ω1,0(R2, (adP ) ⊗ C) , (B.10)

the self-dual Yang-Mills equations (B.9) become respectively

R+ [Φ,Φ∗] = 0 , D′′Φ = 0 . (B.11)

The second equation simply says that Φ is holomorphic. These equations are confor-
mally invariant, and thus may be studied on a compact Riemann surface (see [16]).
Hitchin studied in fact principal G bundles over a compact Riemann surface when
G = SU(2), and he found that a solution of the Yang-Mills equations defined a pair
(V, φ) consisting of a rank two vector bundle V and a morphism φ : V −→ V ⊗Ω1

X .
Soon after, Simpson [17],[18] generalized these ideas to holomorphic bundles.

Simpson studied pairs (E,φ), where E is a holomorphic bundle of arbitrary rank
over n-dimensional Kähler manifolds X (not necessarily compact, but satisfying
some additional conditions) and φ : E −→ E ⊗ Ω1

X is a morphism of OX-modules
satisfying the condition2 φ ∧ φ = 0. Simpson called such pairs Higgs bundles.

1This terminology has been used by Hitchin in [16]. This means that A3 and A4 are extra fields,
which do not form part of the connection. However, notice that such fields give contributions to
the Lagrangian of Yang-Mills involving derivatives, and hence, they are not auxiliary fields in the
sense of quantum field theory.

2Notice that such a condition is automatically satisfied in the one-dimensional case (over a
compact Riemann surface).

80



Using local coordinates on X, we can write

φ(z) =

n
∑

α=1

φα(z) dzα , (B.12)

where each φα(z) is an endomorphism of the fiber Ez. Hence

(φ ∧ φ)(z) =
∑

α

φα(z) dzα ∧
∑

β

φβ(z) dz
β

=
∑

α<β

[φα(z), φβ(z)] dz
α ∧ dzβ .

Thus, the condition φ ∧ φ = 0 is equivalent to

[φα(z), φβ(z)] = 0 (B.13)

for all α, β and all z. In other words, φ ∧ φ = 0 is equivalent to the commutativity
of the endomorphisms φα of E.

Let X be a compact Riemann surface and K the canonical line bundle on it.
Then, we can construct a Higgs bundle as follows: let K1/2 be a holomorphic line
bundle such that K = K1/2 ⊗ K1/2 and let E = K1/2 ⊕ K−1/2. Then E is a
holomorphic vector bundle of rank two over X. Now, let φ : E −→ E ⊗ Ω1

X be the
morphism given by

φ =

(

0 0
1 0

)

where 1 represents the canonical section of Hom(K1/2,K−1/2) ⊗ K (notice that
Hom(K1/2,K−1/2) = K−1 and hence it is well defined). Since dimX = 1, automat-
ically φ ∧ φ = 0; Furthermore,

c1(E) = c1(K
1/2) + c1(K

−1/2) = 0

and hence, the pair E = (E,φ) becomes a Higgs bundle of rank two over X with
zero degree. Suppose now that X has a genus g > 1, then degK1/2 > 0 and E is
not stable in the ordinary sense. Now, since

φ(K−1/2) ⊂ K−1/2 ⊗ Ω1
X

and it is the only φ-invariant subbundle of E, such a bundle is stable as a Higgs
bundle.

This example shows some general fact about Higgs sheaves. Namely, a stable
Higgs sheaf is not necessarily stable in the ordinary case. Now, clearly from the
definition the converse is always true, i.e., if a Higgs sheaf is stable in the ordinary
sense, it is stable as a Higgs sheaf.
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B.2 Blow-ups

The notion of blow-up is an important tool in the resolution of singularities, in this
Appendix we briefly review some basic facts about the projective space and the no-
tion of blow-up (for more details see the references [36], [1], [39]).

On P
n there is a natural Kähler metric, called the Fubini-Study metric, which

can be constructed as follows. Let z0, ..., zn be coordinates on C
n+1 and denote by

π : C
n+1 − {0} −→ P

n the natural projection map. Let U ⊂ P
n be an open set and

Z : U −→ C
n+1 − {0} a lifting of U , i.e., a holomorphic map with π ◦ Z = idU , and

consider the (1,1)-form

η =
i

2π
d′d′′log‖Z‖2 . (B.14)

This form is closed. Indeed, it is exact because it can be rewritten as

η =
i

4π
(d′ + d′′)(d′′ − d′)log‖Z‖2

=
i

4π
d(d′ − d′′)log‖Z‖2 .

The form η defined by (B.14) is also independent of the lifting. In fact, if Z ′ : U −→
C
n+1−{0} is another lifting, then necessarily Z ′ = fZ with f a nonzero holomorhic

function and
log‖Z ′‖2 = log‖Z‖2 + log f + log f̄ . (B.15)

Since f is holomorphic, d′′f = d′f̄ = 0 and hence Z ′ defines the same form η.
Now, this form is also positive definite. In order to prove this, it is sufficient to
prove the positivity at one point (the unitary group U(n + 1) leaves η invariant
and acts transitively on P

n). Let wα = zα/z0 be the coordinates on the open set
U0 = {z0 6= 0} in P

n and consider the lifting on U0 given by Z = (1, z1, ..., zn), we
obtain (ommiting the summation symbol for simplicity)

η =
i

2π
d′d′′log [1 + wαw̄α]

=
i

2π
d′

[

wαdw̄α
1 + wαw̄α

]

=
i

2π

[

dwα ∧ dw̄α
1 + wαw̄α

− w̄αdwα ∧ wβdw̄β
(1 + wαw̄α)2

]

.

At the point [1, 0, ..., 0] in P
n

η =
i

2π

∑

dwα ∧ dw̄α , (B.16)

which is clearly positive definite3 and hence is a Kähler metric on the projective
space.

3Remember that in general, using holomorphic coordinates w1, ..., wn, a (1,1)-form ω is said to
be positive if the corresponding matrix gij(z) is a positive definite matrix for each w.
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Now we review the notion of blow-up at a point. Let consider the space C
n with

n ≥ 2 and let z = (z1, ..., zn) be the standard coordinates of C
n and w = [w1, ..., wn]

be the normal coordinates of P
n−1. If B is a small ball center at 0 ∈ C

n, we define

B̃ = {(z,w) ∈ B × P
n−1/ziwj = zjwi} . (B.17)

This is a complex submanifold of B × P
n−1 of dimension n. We have natural map-

pings π : B̃ →֒ B × P
n−1 → B and π′ : B̃ →֒ B × P

n−1 → P
n−1. The surjective

mapping π is called the blow-up of B at 0. This map has the following important
property:

π−1(z) = (z, [z]) if 0 6= z ∈ B and π−1(0) = {0} × P
n−1 . (B.18)

The map π restricted to B̃\π−1(0) is a biholomorphism, π−1(0) is a codimension
one submanifold of B̃ and is usually called the exceptional divisor of the blow-up.

Now, let X be a complex manifold of dimension n ≥ 2 and x ∈ X a fixed
point and consider a neighborhood U of x biholomorphic to B in C

n. Let X̃ be
the manifold obtained from X by replacing U ∼= B̃, then we have a surjective
holomorphic map from X̃ onto X, which we still denote by π, with

L ≡ π−1(x) ∼= P
n−1 (B.19)

and such that restricted to X̃\L it is a biholomorphism. The map π is called the
blow-up of X at x.

It is possible also to consider the blow-up along a submanifold (see [36] or [49]).
If S is a complex submanifold of X with codimension greater or equal than two,
we can blow-up X along S. As a consequence of this, we obtain a complex mani-
fold X̃ and a surjective holomorphic map π : X̃ −→ X which is called the blow-up
of X along S; again π restricted to X̃\π−1(S) is a biholomorphism, the hypersur-
face π−1(S) is called the exceptional divisor and S is called the center of the blow-up.
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SISSA, (2010).

[46] A. Jacob, Existence of approximate Hermitian-Einstein structures on
semistable bundles, ArXiv:1012.1888v1, 2010.

[47] M. A. de Cataldo, Singular Hermitian metrics on vector bundles, J. reine
angew Math. 502 (1988), pp. 93-122.

[48] N. M. Buchdahl, Hermitian-Einstein connections and stable vector bundles
over compact complex surfaces, Math. Ann. 280 (1988), pp. 625-648.

87



[49] N. M. Buchdahl, Blowups and gauge fields, Pacific Journal of Math. 196
(2000), pp. 69-111.

[50] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J.
Diff. Geom. Soc. 18 (1983), pp. 269-278.

[51] S. K. Donaldson, Anti-self-dual Yang-Mills connections on complex algebraic
surfaces and stable vector bundles, Proc. London Math. Soc. 3 (1985), pp. 1-26.

[52] S. K. Donaldson, Infinite determinants, stable bundles and curvature, Duke
Math. J 54 (1987), pp. 231-247.

[53] S. K. Donaldson and P.B. Kronheimer, The geometry of four manifolds,
Clarendon Press - Oxford. (1990).

[54] D. S. Freed and K. Uhlenbeck, Instantons and four manifolds, 2nd edition,
Springer-Verlag. (1991).

[55] B. Anchouche and I. Biswas, Einstein-Hermitian connections on polystable
principal bundles over a compact Kähler manifold, Amer. J. Math. 123 (2001),
pp. 207-228.
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