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CHAPTER

ONE

Introduction

The function of a protein is determined by its three dimensional structure and by

its interactions with other biomolecules. From molecular biology and biochemical

experiments the linear sequence of a high amount of proteins and several possible

interaction partners are now available. However there is less information about their

structure and mode of action. Although there are now well established bioinformat-

ics tools[1–3] aimed at obtaining qualitative information on biochemical processes,

many important questions cannot be easily addressed with a knowledge-based ap-

proach and are still open to investigation: what is the kinetic mechanism of folding

and protein-ligand interaction? What is the driving force of the conformational

changes involved in these processes (enthalpic or entropic)? What is the role of the

solvent molecules?

Atomistic simulations in explicit solvent are a natural candidate to address

quantitatively these important issues. These techniques are now very popular and

have brought new insights in many fields of molecular physics ranging from solid

state physics to biochemistry. The continuous increase of computing power[4] and

of the reliability of empirical force fields [5–7] have led to simulations that resemble

experiments more and more closely. The timescale of molecular dynamics (MD)

simulations containing tens of thousands of atoms reach now routinely the µs time

scale. Although this improvements increase significantly the range of applicability

of MD many of the most interesting biological processes like enzyme reactions,

protein folding and protein-protein/DNA interaction, are still unaffordable by plain

MD as in most cases they occur on a time scale far beyond the µs. Furthermore,

to extract reliable thermodynamics and kinetics information from the simulations

data, the process under investigation must be reversibly observed several times[8].

Indeed more than 1 µs MD simulation is required to converge kinetic rates even for

a simple system like the Ace-Ala3-Nme peptide (see chapter 3).

To address this issue, simulations techniques were developed that allows accel-

erating rare events[9–30].

A technique that is particularly appropriate for studying complex conforma-

tional transitions and has been often used for studying biomolecules is metadynamics[30,
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6 Chapter 1

31]. This technique allows both accelerating rare events and computing free en-

ergies by adding to the normal forces a history-dependent bias which discourages

the system to remain close to the same configuration. The bias potential acts on

selected collective variables(CVs) that must be chosen a priori. For a complex sys-

tem, if the relevant conformations are unknown, it is difficult to select the optimal

CVs. In principle this problem could be alleviated by choosing simultaneously a

large number of CVs, but this decreases significantly the acceleration factor. Typ-

ically for metadynamics it is not practical to use more than 3 CVs[31]. This is a

common drawback of all the approaches that requires the choice of CVs like e.g

umbrella sampling[32].

An alternative enhanced simulation technique that does not require chosing CVs

is replica exchange molecular dynamics[28, 33] (REMD). This method consists in

performing multiple simulations at different temperatures in which the sampling at

a certain temperature is enhaced by exchanging the conformations between pairs

of replicas. Unfortunately this approach is also affected by severe convergence

problems when used with an explicit solvent potential energy function[34, 35]. To

overcome this limitations hamiltonian replica exchange approaches were recently

developed[36]. In these methods exchanges are performed between replicas having

the same temperature but a different hamiltonian. For example the hamiltonian

can be changed by adding a bias potential along a different CV in each replica[37].

These approaches require much fewer replicas for an enhanced sampling compared

to standard REMD. Bias exchange metadynamics[38] (BE) is a recently developed

approach that is based on a similar idea in a metadynamics framework. This

method uses a time-dependent bias that acts on different CVs for each replica.

Exchanges between the bias potentials are attempted at a certain frequency with

a metropolis acceptance criterion in which the force field contributions cancels

out. This scheme was shown[38] to allow an efficient exploration of the relevant

configurations and to improve the convergence of free energies. Indeed exchanges

among different replicas significantly reduce hysteresis problems[31] in the free en-

ergy reconstruction. Using BE it was possible to reversibly fold Trp-cage [38], villin

headpiece, advillin headpiece together with two of their mutants [39] and Insulin

chain B[40] using an explicit solvent force field, in less than 100 nanoseconds of sim-

ulation with only eight replicas. Recently this method was also used for exploring

the mechanism of enzymatic reactions[41].

Another critical issue in molecular simulations is that long time scale MD and

enhanced sampling techniques produce a large amount of data that must then be

analyzed to obtain the relevant information. Several methods[42–47] have been

developed to extract from MD trajectories the metastable conformations, to assign

their occupation probability, and to compute the rates for transitions among them.

These methods have the big advantage of reducing a complex dynamics in a high-

dimensional configuration space to a Markov process describing transitions among

a finite number of metastable states. This states are identified by a separation of

time scales:
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• the time required for the equilibration within each state,

• the time required for transitions among metastable states.

The latest process is typically the slowest. Their use is also justified by the

empirical observation that for most of the biological processes, transitions among

metastable conformations are stochastic in nature[42], due to thermal effects, the

presence of small energetic barriers and collisions with solvent molecules. These

models are very useful for extracting the long time scale behaviour of a com-

plex system which can be directly compared with the relaxation times measured

experimentally[42, 48]. Typically these methods are used for analyzing the outcome

of a long ergodic MD trajectory or a large number of short MD trajectories. These

trajectories can be obtained for example from worldwide distributed computing[49]

or from REMD[42, 46, 47]. Using short trajectories to construct markovian models

requires a proper choice of the procedure for dividing the conformational space

(binning). If statistics is poor it can be difficult to obtain accurate kinetic rates

between states as high free energy conformations are rarely explored. Reliable

rates in those cases can be obtained by increasing the bin size, but this affects the

reliability of the kinetic description. This problems can be in principle solved by

increasing the sampling of non converged regions or by using biased trajectories for

extracting the populations. However in enhanced sampling techniques the transi-

tions probabilities are altered by the bias, and the trajectories cannot be used for

computing the rates.

In this thesis we developed an approach that allows using trajectories generated

by bias exchange metadynamics for constructing a reliable kinetic and thermody-

namic model of complex biological processes. The approach aims at extracting

the same information from a BE simulation as one can obtain from the analysis

of a long ergodic MD run or of several shorter runs[42–47]. The rate model is

constructed following three steps:

1. A cluster analysis is performed on the BE trajectories in a possibly extended

CV space, assigning each configuration explored during the biased dynamics

to a reference structure (bin) that is close by in a high-dimensional CV space.

2. Next, the equilibrium population of each bin is calculated from the BE sim-

ulations using a weighted histogram analysis method(WHAM)[13] exploiting

the metadynamics bias potentials.

3. Finally, a kinetic model is constructed by assigning rates to transitions among

bins. The transition rates are assumed to be of the form introduced in Ref.

[50], namely to depend exponentially on the free energy difference between the

bins with a prefactor that is determined by a diffusion matrix D and by the

bins relative position. The only free parameter in the model is D, as the free

energies are already assigned. Following Ref. [46] D is estimated maximizing

the likelihood of an unbiased MD trajectory (not necessarily ergodic).
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The model constructed in this manner is designed to optimally reproduce the long

time scale dynamics of the system. It can be used, for example, for characterizing

the metastable misfolded intermediates of the folding process[51]. The advantage

of using biased trajectories, besides the acceleration of slow transitions, is a greatly

enhanced accuracy of the estimated free energy in the transition regions.

This approach is first illustrated on the solvated Ace-Ala3-Nme peptide (see

chapter 3). This system is simple enough to allow benchmarking the results against

a long standard MD simulation (∼ 2µs). Thermodynamics (e.g., bins and basins

free energies) and kinetics (e.g., mean first passage time between attractors and

first passage time distribution) properties calculated with the model are shown to

be in excellent agreement with the extended MD simulations.

The same approach is then applied to much more complex systems. The first

realistic application reported is the Trp-cage folding[48] (chapter 4). This is a de-

signed 20-residue polypeptide that, in spite of its size, shares several features with

larger globular proteins. Although the system has been intensively investigated

experimentally and theoretically, its folding mechanism is not yet fully understood.

Indeed, some experiments suggest a two-state behavior, while others point to the

presence of intermediates. For the Trp-cage folding the kinetic model predicts a

two state like relaxation time of ∼2300 ns in agreement with experiments (3100

ns). Despite of the single exponential kinetics the presence of several metastable

intermediates was also detected, one of which is a molten globule structure that

acts as a kinetic trap and is responsible of the observed relaxation time. Instead,

non-compact structures relax to the folded state on the sub-microsecond timescale.

Thus, surprisingly, the relaxation time measured by fluorescence may not be di-

rectly related to the ”folding” transition, if one calls ”folding” the transition from

a random coil to the native state. The model also predicts the presence of a state

at Cα-RMSD of 4.4 Å from the NMR structure in which the Trp strongly interacts

with Pro12. This state may explain the abnormal temperature dependence of the

Pro12-δ3 and Gly11-α3 chemical shifts. The structures of the two most stable mis-

folded intermediates are also in agreement with NMR experiments on the unfolded

protein.

The second application is on a larger biologically relevant protein: the insulin

chain B[40]. Insulin is a highly investigated protein with the important function of

regulating the glucose levels in the blood. It is composed by two chains (chain A and

B) linked with two difulfide bridges. Here we investigated the folding mechanism

of insulin chain B. This study is motivated by the following reasons: first, chain

B of insulin is believed to retain much of its structure independently of chain

A[52–54], second, structure-activity studies of insulin indicate the C-terminus of

chain B as integral to receptor information[55–57] and the terminal regions of this

chain are shown to be quite flexible. For this system the model allows identifying

three main basins separated from each another by large free energy barriers. The

characteristic native fold of chain B was observed in one basin, while the other

two most populated basins contained molten-globule conformations stabilized by
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electrostatic and hydrophobic interactions, respectively. Transitions between the

three basins occur on the microsecond time scale. The implications and relevance of

this nding to the folding mechanisms of insulin were investigated and are discussed

in chapter 5

The last application discussed in this thesis is the study of the binding mecha-

nism of a peptide substrate to the Human Immunodeciency Virus Type-1 Protease[58]

(HIV-1 PR). This protein cuts polyproteins to smaller fragments and is essential for

the virus life cycle. It is one of the main targets of anti-AIDS drug design as if in-

hibited the infection of the virus is reduced. Most FDA-approved HIV-1 PR mimic

the structure of a fragment of the natural substrate. Investigating the mechanism

by which substrates and drugs bind to this protein is crucial to understand the

molecular rational of drug resistance. HIV-1 PR is a symmetric homodimer with

a large binding pocket covered by two relatively flexible hairpins (flaps). These

flaps during the binding of the natural substrate adopt an open conformation to

allow the access to the binding site. Also for this system a kinetic model model

was constructed analyzing the BE simulation data. The computed binding free

energies and the kinetic constants measured were compatible with experimental

results. Surprisingly, the binding mechanism extracted with the model shows that

full opening of the flaps is not necessary for a short peptide, of size comparable to

that of a drug to enter in the binding pocket. Thus, it can be inferred that natural

substrate and drugs may bind throught different pathways and mutations of HIV-1

PR may affect in a different manner the binding pathway of the natural substrate

and of the drugs.
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CHAPTER

TWO

Methods

2.1 Molecular Dynamics Simulations

MD is a useful tecnique to study the microscopic behavior of a molecular systems.

In this section we will briefly summarize its most important features.

In atomistic simulation the main aspect are:

• The phase space sampling algorithm

• The choice of the interaction potential, V (r), between the atoms of the sys-

tem.

Several simulations approaches were developed in the last decades that differs

in the method to sample the phase space. In MD simulations the atoms trajectories

are extracted by integrating the Newton equations.

Fi = miai with Fi = −∂V (r)

∂ri

(2.1)

where V (r), the potential, is a function of the atoms positions. In this equa-

tion one assumes that the motion of the atomic nuclei can described by classical

dynamics. This can be considered a good approximation if the distance in the ener-

getic levels of the involved degrees of freedom is << kT , where k is the Boltzmann

constant and T the temperature. Within the classical approximation statistical

ensemble averages of selected observables can be performed using the ergodic hy-

pothesis. Namely thermodynamics information on the system can be estimated as

time averages.

2.1.1 Algorithms for integrating the Newton equations

MD simulations are based on the integration of the Newton equation. Due to the

complexity of these equations an analytic solution is unaffordable and approximated

methods must be used.

The features of a good integration algorithm can be summarized as follows:

11
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• It must allow using a large time step ∆t.

• It must be time reversible.

For the second point, as the Newton equations are time reversible also the

algorithm is supposed to satisfy the same symmetry. The algorithms that are not

time reversible do not normally preserve the phase space volume, i.e. they do not

satisfy the Liouville theorem.

A good way to check the accuracy of the algorithm is to follow the temporal

evolution of an observable A that should be conserved (e.g. the total energy). In

general a good algorithm must be such that:

| A(tn)− A(t0) |
〈A(t)〉 ¿ 1, for (tn − t0) À ∆t (2.2)

The algorithm employed in the MD code used for this thesis is leap-frog[59], a

variant of the Verlet algorithm:

vi(t+ ∆t/2) = vi (t−∆t/2) +
Fi(t)∆t

mi

(2.3)

ri(t+ ∆t) = ri(t) + vi(t+ ∆t/2)∆t (2.4)

where Fi,ri,vi are respectively the force acting on the atom i, the atom position

and the atom velocity.

2.1.2 The interaction potential

The potential function V (r) from which the forces used in MD are derived depends

on the atomic coordinates ri.

V (r) used in this thesis has the following expression:

V (r1, r2, . . . , rN) =
∑

bonds

1

2
Kd(d− d0)

2 + (2.5)

+
∑

angles

1

2
Kθ(θ − θ0)

2 +

+
∑

improper dihedrals

1

2
Kξ(ξ − ξ0)

2 +

+
∑

dihedrals

Kφ [1 + cos(nφ− δ)]

+
∑
ij LJ

[(
C12

ij

r12
ij

− C6
ij

r6
ij

)]
(2.6)

+
∑

ij coulomb

qiqj
4πε0εrrij
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The first two terms (two and three body interactions respectively) represent the

bonds and angles potentials, that are approximated by harmonic functions. The

third and fourth term describe 4 body interactions. Improper dihedral terms are

typically described by an harmonic function. Instead proper dihedrals are described

by periodic functions (i.e. cosine functions) of a given periodicity n. The last two

terms are a Lennard-Jones (LJ) potential and a coulomb potential between pair

(ij) of atoms. The parameters used in this kind of potentials are typically obtained

from quantum chemical calculations and experimental data (e.g. crystallographic

data, spectroscopic data, etc). Among the popular sets of parameters (force fields)

for MD simulations of proteins we can cite for example AMBER[60], GROMOS[61],

CHARM[62] and OPLS[63]. They all use the potential function expression given

above for all the atoms of the simulated system except for the GROMOS(and

CHARMM19 force field) force field in which a united atom description is used for

non-polar hydrogens.

In MD simulations the description of the solvent (water for most of the bio-

logically interesting systems) can be explicit or implicit. In the first case solvent

molecules with a full atomistic force field description are added in the simulation

box at the experimental density. In the implicit solvent description the solvent is

treated as a dielectric medium in which the system is embedded. This is clearly a

more approximated description but it is also computationally much more efficient

since in many practical cases the solvent constitutes the majority of the atoms. In

this thesis we used for all the MD simulations the AMBER03[64] force field with

an explicit description of the solvent given by the TIP3P[65] water model.

2.1.3 Constraints

Constraints are used in MD to fix bonds to their equilibrium value. This allows

increasing the simulation time step ∆t. Constraining the bond lenght does not

alter significantly the statistics as these are quantum degrees of freedom being

mostly in their ground state at the normal simulation temperature. Using the

bonds constraints it is possible to use ∆t ∼ 2fs [66] (2-4 times larger than the one

that can be used without constraints). A common method to introduce constraints

is the algorithm SHAKE [66], in which after each time step the atoms positions

iteratively are modified in order to satisfy the constraint.

SHAKE may have convergence problems when applied to large planar groups

and its implementation could hinder the efficiency of computing. To improve these

aspects the LINCS algorithm was recently introduced[67]. For water molecules it

is also possible to use an analytic solution of SHAKE called SETTLE[68]. Both

LINCS and SETTLE (for the water molecules) have been used in all the simulations

performed in this thesis.

2.1.4 Boundary conditions

To simulate a finite size system, boundary conditions are needed to avoid artifacts
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near the border of the simulation box. Typically periodic boundary conditions

(PBC) are used. In this scheme short range non bonded interactions are calculated

using the minimal image convention (only the nearest replica is considered). Typi-

cally a cut-off radius (Rc) is used for LJ interactions of the order of 10 Å. To avoid

interactions between a particle and its periodic image each box side must be larger

than 2Rc.

The coulomb energy is instead treated considering the full periodicity of the

system. For a periodic lattice made by N particles it is given by:

E =
1

8πε0

∞∑

|n|=0

?[ N∑
i=0

N∑
j=0

qiqj

|rij + n|
]

(2.7)

where n indicates the periodic images, i,j the particles and the symbol ? indicates

that the summation does not contain the term with i = j if n = 0.

The method used in this thesis to evaluate this energy is Particle Mesh Ewald[69].

2.1.5 Pressure and Temperature coupling

To compare simulation results with experiments it is necessary to control pressure

and temperature using thermostats like Nose Hoover[70], or Berendsen[71]. These

approaches introduce extra auxiliary variables that are evolved with suitable dy-

namics, designed with scope of endorsing the exploration of the correct temperature

or pressure.

2.1.6 The molecular partition function

If a classical MD simulation is performed in the NVT ensemble the atoms positions

distribution is canonical (here we assume to move only classical degree of freedom,

while the bond length and angles are constrained to their equilibrium value):

ρcan(r/b0) =
exp (−V (r/b0)/T )∫

exp (−V (r′)/T )δ(b− b0)dr
, (2.8)

where V (r) is the potential energy function (force field), r are the atom positions,

b is the vector of bond length and b0 is their equilibrium value. The notation

r/b0 is used to specify that the variations of the atoms coordinates are performed

in the surface of constrained bond lengths (the constraint is that they are fixed

to b0). Boltzmann constant unit are used in eq. 2.8, i.e. kB = 1, where kB is

the Boltzmann constant. This units of measure will be assumed for all the other

equations of this Thesis in which kBT is involved. Here it is assumed that the

bonds are mostly in their quantum ground state. Otherwise the summation over

all the accessible quantum levels should be included.
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2.2 Enhanced sampling techniques

Although MD is a powerful tool for exploring the microscopic behaviour of molec-

ular systems it may suffer from limitations especially if applied to the study of

complex conformational transitions. Indeed the sampled MD distribution is given

by eq. 2.8 and this means that only configurations having energy within few T from

the global minimum will be explored. This is a clear advantage considering that

only relevant configurations will be explored, but if there is an energy (in general

a free energy) barrier between two relevant configurations one of the two may not

be explored in a finite simulation time. To overcome this problem avoiding the

use of simplified models (e.g. ”coarse-grained” force fields or an implicit solvent

description) advanced simulation methods are required.

Broadly speaking these methods can be classified in four categories, according

to their scope and range of applicability:

1. Methods aimed at reconstructing the probability distribution or enhancing

the sampling as a function of one or a few predefined CVs. For instance,

in a chemical reaction one would choose the distance between two atoms

that have to form a bond or, in the study of nucleation, the size of the

nucleus and enhance the sampling as a function of these coordinates. Ex-

amples of these methods include thermodynamic integration [9, 72], free en-

ergy perturbation[10], umbrella sampling [11], conformational flooding [12],

weighted histogram techniques [13, 73, 74], Jarzynski’s identity-based methods[14,

75], adaptive force bias [15, 76], steered MD [16] and adiabatic molecular dy-

namics [17]. These approaches are very powerful but require a careful choice

of the CVs that must provide a satisfactory description of the reaction coor-

dinate. If an important variable is forgotten they suffer from hysteresis and

lack of convergence. Moreover, when more than a few CVs are used, the

computational performance rapidly degrades as a function of the number of

variables.

2. Methods aimed at exploring the transition mechanism and constructing re-

active trajectories[18], such as nudged elastic band [77], finite-temperature

string method[19, 78], transition path sampling [20, 79, 80], transition in-

terface sampling[81], milestoning [21] and forward flux method [82]. These

methods do not require in most of the cases the explicit definition of a re-

action coordinate, but require the a priori knowledge of the initial and final

states of the process that has to be simulated. For instance, if applied to

the study of folding, these methods require the knowledge of the folded and

“unfolded” state[83].

3. Methods for exploring the potential energy surface and localizing the sad-

dle points that correspond to the transition states like, for example, eigen-

value following [22], the dimer method[23], hyperdynamics[24], multiple-time

scale accelerated molecular dynamics[25] event-based relaxation[26]. These
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approaches are extremely powerful for exploring potential energy surfaces of

low dimensionality, but their reliability degrades with the complexity of the

system. Indeed, for very large or complex systems the number of possible

transition states surrounding a minimum becomes rapidly too large for a de-

terministic search. Even if strategies have been designed to alleviate this

problem that are effective in some special cases[26], in solvated systems the

concept of saddle point on the potential energy surface becomes fuzzy, and

these approaches cannot easily be applied.

4. Methods in which the phase space is explored simultaneously at different

values of the temperature, such as parallel tempering [27] and replica ex-

change [28], or as a function of the potential energy, such as multicanonical

MD [84] and Wang-Landau[29]. These approaches are very general and pow-

erful, however they are not immune from some of the limitations listed in

point 1. Indeed, these methods exploit more or less explicitly the potential

energy as a generalized CV. In several cases, ordered and disordered states

may correspond to the same value of potential energy, or be present in the

thermal ensemble at the same temperature. This may lead to hysteresis and

convergence problems[35].

2.2.1 Flattening the free energy profile

In order to introduce in more detail the enhanced sampling approach used in this

thesis we here consider a simple example: the transition from α to β of the Ace-

Ala3-Nme peptide (hereafter Ala3, see Fig. 2.1). This process can be described

using the ψ backbone dihedral angle.

Figure 2.1: α and β structures of Ala3. Structures of Ala3 corresponding to the
central ψ dihedral angle in α and β positions. The hydrogen bond formed in the α
conformation is displayed in the figure



Enhanced sampling techniques 17

100 150 200 250 300 350
Time[ps]

-300

-200

-100

0
ψ

[d
eg

]

Figure 2.2: α-β transition in Ala3 ψ dihedral angle of Ala3 as a function of time
taken from a MD simulation of Ala3 in explicit TIP3P[65] water

In Fig 2.2 it is shown the temporal behavior of ψ taken from a MD simulation of

Ala3. The peptide remains for a long time in a β conformation (time=100-250 ps).

Then a thermal fluctuation occurs stimulating the transition to a α conformation

(ψ∼0). The transition itself, if it happens, is relatively fast (it occurs within 5 ps).

The behaviour observed in Fig. 2.2 is prototypical of a metastability between two

states α and β. This can be quantified in terms of a time scale separation between

the equilibration within each state (α or β; fast) and the transitions among the

states (α-β transitions; slow).
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Figure 2.3: Histogram along the ψ dihedral angle of Ala3.The histogram is
calculated from a ∼300 ns MD simulation of Ala3 in explicit solvent

In Fig. 2.3 it is shown the histogram of ψ calculated from a much longer MD

trajectory of 300 ns. As it can be noted the probability p(ψ) of being in α or β is
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higher than the one to be in an intermediate conformation. From a thermodynamic

point of view this can be quantified by looking at the free energy as a function of

ψ, evaluated from the histogram as F (ψ) = −T log p(ψ). This function is displayed

in Fig. 2.4
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Figure 2.4: Free energy as a function of the the ψ dihedral angle of Ala3.
The free energy is calculated from the histogram outlined in Fig. 2.3 using the
equation F (ψ) = −RT log p(ψ).

The height of the maximum of the free energy function is related to the rate

of α-β interconversion. The lower is the height of the barrier the faster will be

the interconversion rate, i.e. the frequency of interconversion will increase if the

barrier is decreased. If one could artificially decrease the height of the barrier the

process would be no longer rare and could be observed most frequently during an

MD simulation. The highest interconversion rate is in fact obtained for a flat free

energy surface.

The free energy in the canonical ensemble, is formally defined as follows. Here

we suppose to have a system simulated using a MD simulation in the NVT ensemble.

The atoms position distribution is described by eq. 2.8. To simplify the notation

hereafter we omit the constraint specification in eq. 2.8. If we call s = (s1, s2, ..., sN)

a vector of N collective variables, the free energy F(s) can be obtained by integrating

eq. 2.8 on all the other degrees of freedoms.

F (s′) = −T ln

∫
ρcan(r)δ(s′ − s(r))dr = − ln

∫
exp (−V (r)/T )δ(s(r)− s′)dr∫

exp (−V (r′)/T )dr′
,

(2.9)

Under this framework a flat free energy surface can be obtained by adding a

potential VG(s(r)) = −F (s(r)) to V (r). In fact substituting V (r) with V (r) −
F (s(r)) in eq. 2.9 one readily obtains:
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∫
exp (−V (r)/T + F (s(r))/T )δ(s(r)− s′)dr∫

exp (−V (r′)/T + F (s(r′))/T )dr′
∝ exp (−F (s′)/T + F (s′)/T )∫

exp (−V (r′)/T + F (s(r′))/T )dr′

This corresponds to an uniform distribution in s. This imply that if one knows

the free energy profile as a function of the CVs, the rare event could be accelerated

by adding to the MD force field an artificial potential equal to −F (s(r)). This idea

of adding an additional potential to let the system explore different regions of the

configurations space is common in many free energy calculation methods. Indeed in

the standard umbrella sampling formulation[13] a bias potential VG(s(r)) is added

to the potential energy function and the canonical sampling is then recovered by

means a reweighting procedure:

ρcan(r) ∝ ρumbrella(r) exp(VG(s(r))) (2.10)

where ρumbrella(r) is the distribution function sampled during the umbrella sampling

simulation. Using this reweighting procedure also F (s) can be reconstructed with

an accuracy that depend on the shape of the bias potential. The highest accuracy

is obtained using VG(s(r)) = −F (s(r)) [13].

2.3 Metadynamics

The metadynamics method[30] can be considered as an evolution of umbrella sam-

pling in which is not necessary to specify VG. Like umbrella sampling it requires a

preliminary identification of a few CVs which are assumed to be able to describe the

process of interest. In this method the normal MD forces are combined with forces

derived from a history-dependent potential VG (s, t) defined as a sum of Gaussians

of height w centered along the trajectory in CVs space. This manner of biasing

the evolution was first used by the taboo search method [85] and, in the context

of MD, by the local elevation method [86]. A similar approach is also used in the

Wang and Landau algorithm [29] and adaptive force bias[15]. As we will discuss

in the following in metadynamics the sum of Gaussians is exploited to reconstruct

iteratively an estimator of the free energy.

The metadynamics bias potential can be written as:

VG(s, t) = w

t′<τ∑

t′=τg ,2τg ,...

exp

(
−

N∑
i=1

(si − si(t
′))2

2δs2
i

)
(2.11)

where τ is the total simulation time τg is the frequency at which the Gaussians

are added and δsi is the width of the Gaussian for each CV.

This potential has the remarkable property of gradually filling F (s). In the

example of fig. 2.5 starting from one free energy minimum the lowest transition

state from that minimum is the first to be explored. If the metadynamics simulation

is continued, at the end the bias potential will fill all the available CV space.
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Figure 2.5: Upper panel: trajectory of a one-dimensional system evolved by a
Langevin equation on the 3-minima potential represented in the lower panel. The
dynamics is biased with a metadynamics potential VG as defined by Eq. 2.11. The
parameters are δs = 0.4, w = 0.3 and τG = 300. Middle panel: time evolution of
the metadynamics bias potential VG. Blue line: VG as when the first minimum is
filled and the system ”escapes” to the second minimum; Red line: VG as when also
the second minimum is filled; Orange line: VG when the entire profile is filled and
the dynamics becomes diffusive. Lower panel: time evolution of the sum of the
metadynamics potential VG and of the external potential, represented as a thick
black line.

The novel idea of metadynamics is that if the walker is able to keep memory of all

the positions in which he has deposited the Gaussians he will be able to reconstruct

a negative image of the underlying free energy. More precisely, one assumes the

time dependent potential defined by the sum of Gaussians deposited up to time t

provides an unbiased estimate of the free energy in the region explored during the

dynamics. This property, that does not follow from any ordinary thermodynamic

identity, such as umbrella sampling [11], was postulated on a heuristic basis in Ref.

[30], and afterward verified empirically in several systems of increasing complexity.

Successively[87](see section below), it was shown that this property derives from

rather general principles, and can be demonstrated rigorously for a system evolving

under the action of a Langevin dynamics.
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2.3.1 Estimating the error

In order to best allocate the available computational resources to study with meta-

dynamics a given system, it is useful to estimate a priori the performance of the

method, and choose the parameters to obtain the best possible accuracy in a given

simulation time. The accuracy and efficiency of the free energy reconstruction is

determined by the Gaussian width δs , the Gaussian height w and the Gaussians

deposition time τG. The parameter w and τG determine the height and the rate at

which the Gaussians are placed. In Ref. [88] it has been shown that the error on

the reconstructed profile is approximately determined by the ratio w/τG and not

by w and τG separately. Indeed, adding a Gaussian of height, say, 0.2 kcal/mol

every ps is approximately equivalent to adding a Gaussian of height 0.1 kcal/mol

every 0.5 ps, as long as τG remains much shorter than the time required to fill the

free energy basin. In order to understand how δs and w/τG influence the accuracy

and construct an explicit expression for the error, consider first the idealized case

in which the CV evolves following an over-damped Langevin dynamics:

ds = − 1

T
D
dF (s)

ds
dt+

√
2DdW (t) (2.12)

where dW (t) is a Wiener process and D is the diffusion coefficient. The motion

of the walker described by Eq. 2.13 is assumed to satisfy reflecting boundary

conditions at the boundary of a region Ω. The evolution of this system under the

action of metadynamics is modeled adding a history-dependent term to the free

energy:

ds =
1

T
D
d

ds

(
F (s) +

∫ t

0

dt′g (s, s (t′))
)
dt+

√
2DdW (t) (2.13)

where g (s, s′) is a kernel that specifies how fast the metadynamics potential changes.

In normal implementation g is a Gaussian of width δs and height w/τG:

g (s, s′) =
w

τG
exp

(
−(s− s′)2

2δs2

)

It should be remarked that in real systems the evolution of the CVs is described

by a much more complex stochastic differential equation[89, 90] with memory and

inertial terms. Still, as it will be discussed in the following, the quantitative behav-

ior of metadynamics is reproduced rather precisely by this simple model. This is

because, if the CV set is properly chosen, all the relaxation times are smaller than

the time required to fill the free energy wells.

Equation 2.13 describes a non-Markovian process in CV space. In fact, the

forces acting on the CVs depend explicitly on their history. Due to this non-

Markovian nature it is not clear if, and in which sense, the system can reach a

stationary state under the action of this dynamics. In Ref.[87] a formalism was

introduced which allows mapping this history-dependent evolution into a Marko-

vian process in the original variable and in an auxiliary field that keeps track of
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the visited configurations. Defining

ϕ (s, t) =

∫ t

0

dt′δ (s− s (t′)) (2.14)

equation 2.13 can in fact be written as

dϕ = δ (s− s (t)) dt (2.15)

ds =
1

T
D

(
d

ds

(
F (s) +

∫
ds′ϕ (s′, t) g (s′, s (t))

))
dt+

√
2DdW (t)(2.16)

These equations are fully Markovian, i.e. the state of the system at time t + dt,

(s (t+ dt) , ϕ (s, t+ dt)), depends only on the state of the system at time t, (s (t) , ϕ (s, t)).

Using this property Eq. 2.13 can be rigorously analyzed to obtain, for instance, its

long time behavior.

The history-dependent potential at time t is related to ϕ (s′, t) by

VG (s, t) =

∫
ds′ϕ (s′, t) g (s, s′) (2.17)

In order to characterize the average properties of a system described by Eq. 2.16

it is convenient to consider the probability P (s, [ϕ] , t), to observe s and the field

realization ϕ. P (s, [ϕ] , t) satisfies a Fokker-Planck equation that can be directly

derived from Eq. 2.16 using standard techniques[91]. Ref.[87] shows that, for large

t, P (s, [ϕ] , t) converges to a distribution P∞ ([ϕ]) that does not depend on s. This

distribution is Gaussian in functional space and is given by

P∞ ([ϕ]) ∝ exp

(
D

2T

∫
dsds′ (ϕ (s′)− ϕ0 (s′)) ∂2

sg (s, s′) (ϕ (s)− ϕ0 (s))

)
(2.18)

where ϕ0 (s′) is defined in such a way that its convolution with the kernel g gives

minus the free energy of the system F (s) :

ϕ0 (s′) :

∫
ds′ϕ0 (s′) g (s, s′) = −F (s) (2.19)

Using Eq. 2.18 it is straightforward to prove that the average value of VG (s, t)

over several independent metadynamics runs is exactly equal to −F (s). In fact,

denoting by 〈·〉M the average over several metadynamics realizations, Eq. 2.17 gives

〈VG (s)〉M =

∫
ds′g (s, s′) 〈ϕ (s′)〉M =

=

∫
ds′g (s, s′)

∫
dϕP∞ (ϕ)ϕ =

=

∫
ds′g (s, s′)ϕ0 (s′) = −F (s) (2.20)

The metadynamics error in s is given by the expected deviation of VG (s, t) from
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−F (s):

ε2 (s) =
〈
(VG (s) + F (s))2〉

M
= (2.21)

=
〈
(VG (s)− 〈VG (s)〉M)2〉

M
(2.22)

Using the explicit expression for the probability to observe a given ϕ, Eq. 2.18,

allows computing the error that turns out to be independent on F (s). The specific

value depends only on the metadynamics parameters, on the shape of the domain

on which the system is confined, on the diffusion coefficient, and on temperature.

For example, in a cubic domain of side S in d dimensions [87] the error is

ε2 =
S2wT

DτG

(
δs

S

)d

(2π)
d
2

∑

k

1

π2k2
exp

(
−k

2π2

2

(
δs

S

)2
)

(2.23)

where the sum is performed over all the d dimensional vectors of integers of non-zero

norm.

Eq. 2.23 is an expression of the error of a single metadynamics simulation

as a function of the simulation parameters w/τG, δs, and the system-dependent

parameters, T , D and S. The error increase linearly with the filling speed w/τG

and is proportional to the inverse of D. The error increase also with δs but the

functional form is influenced also by the dimensionality d.

2.3.2 Disadvantages of standard metadynamics

Although metadynamics is a powerful technique used to accelerate rare events and

to reconstruct the free energy it suffers of several limitations that prevent its appli-

cability for complex processes like protein folding or protein-protein interaction[31].

A major problem is the filling speed that exponentially decreases with the dimen-

sionality. This limits the use of metadynamics to not more than 3 CVs. For slowly

diffusing systems the error in the free energy reconstruction may increase signifi-

cantly as indicated by eq. 2.23. Finally similarly to other methods that reconstruct

the free energy in a set of generalized coordinates, the reliability of metadynamics

is strongly influenced by the choice of the CVs. What happens if a relevant CV is

neglected? In this respect, a simple metadynamics run on an idealized model can

be enlightening. Consider the Z-shaped two-dimensional free energy depicted in

Fig. 2.6. If a metadynamics simulation is performed biasing only CV1 and neglect-

ing CV2 the simulation, that is started in basin B, is not able to perform in due

time a transition towards A, and metadynamics goes on overfilling this minimum.

A transition is finally observed only when the height of the accumulated Gaussians

will largely exceed the true barrier height. This behavior will continue indefinitely

without ever reaching a situation in which the free energy grows evenly like in the

example of Fig. 2.5.

A similar behavior is often observed in real cases and is a strong indication that

an important CV is missing.
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Figure 2.6: The effect of neglecting a relevant degree of freedom. Left side: 2D Z
shaped potential. Right side: the trajectory of a metadynamics simulation gener-
ated using only s1 as CV. Transitions from A to B are not properly described by
CV1, causing strong hysteresis in the reconstructed free energy.

2.4 Bias exchange metadynamics

BE[38] was developed in an attempt to alleviate the limitations of metadynamics

cited above. A large set of CVs that are expected to be relevant for the process

under investigation is chosen. A number NR (number of replica) of MD simula-

tions (walkers) are run in parallel, biasing each walker with a metadynamics bias

acting on just one or two collective variables. In BE the sampling is enhanced by

attempting, at fixed time intervals of a few ps, swaps of the bias potentials between

pairs of walkers. The swap is accepted with a probability

min
{
1, exp

[(
V a

G (ra, t) /T + V b
G

(
rb, t

)
/T − V a

G

(
rb, t

)
/T − V b

G (ra, t)
)
/T

]}
,

(2.24)

where ra and rb are the coordinates of walker a and b and V
a(b)
G (r, t) is the meta-

dynamics potential acting on the walker a(b). In this manner, each trajectory

evolves through the high dimensional free energy landscape in the space of the CVs

sequentially biased by different low dimensional potentials acting on one or two

CVs at each time. A clear advantage of this method is that a large number of

different variables can simultaneously be biased, and, ideally, the dimensionality

of the space explored by metadynamics can be made so large that all the residual

barriers orthogonal to the reaction coordinates can be crossed in the available sim-

ulation time. However the result of the simulation is not a free energy in several

dimensions, but several low dimensional projections of the free energy surface along

all the collective variables. Due to the efficaciously multidimensional nature of the

bias the system is capable of exploring a complex free energy landscape with high

efficiency. Moreover, since all the replicas are simulated at the same temperature,

it is not necessary to use a large number of replicas for systems described with

explicit solvent, as it is instead compulsory in replica exchange and parallel tem-
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pering [27, 28]. In BE the convergence of the bias potential to the corresponding

free energy projection is monitored like in standard metadynamics: if the CVs are

properly chosen and describe all the ”slow” degrees of freedom, after a transient

time, VG reaches a stationary state in which it grows evenly fluctuating around an

average that estimates the free energy[31].

2.5 Multidimensional free energy from bias ex-

change metadynamics

Here we introduce a method for calculating free energies in several dimensions

from a bias exchange metadynamics(BE)[38] simulation. The approach aims at

extracting the same information from a BE simulation as one can obtain from the

analysis of a long ergodic MD run or of several shorter runs[42–47]. The method

relies on the projection of the BE trajectory on the space defined by a set of

variables, which are assumed to describe the relevant physics of the system. These

variables are not necessarily the ones that are used for the BE simulation, can be

chosen a posteriori and can be up to ∼ 10, greatly extending the scope of normal

metadynamics.

The idea is to exploit the low-dimensional free energies obtained from BE to

estimate, by a weighted-histogram procedure, the free energy of a finite number of

structures that are representative of all the configurations explored by the system.

These structures are determined by performing a cluster analysis, namely grouping

all the frames of the BE trajectories in sets (bins) in which all the elements are close

to each other in CV space. Since the scope of the overall procedure is constructing

a model that describes also the kinetic properties of the system, it is important

that the bins are defined in such a way that they satisfy three properties:

1. The bins must cover densely all the configuration space explored in BE, in-

cluding the barrier regions.

2. The distance in CV space between nearest neighbor bin centers must not

be too large. This, as it will be shown in the following, is necessary for

constructing the rate model.

3. The population of each bin in the BE trajectory has to be significant, other-

wise its free energy estimate will be unreliable.

A set of bins that satisfy these properties is here defined dividing the CV space in

small hypercubes forming a regular grid. The size of the hypercube is defined by

its side in each direction: ds = (ds1, ds2, ..., dsn) where n is the number of collective

variables. This determines directly how far the bin centers are. Each frame of the

BE trajectory is assigned to the hypercube to which it belongs and the set of frames

contained in a hypercube defines a bin. This very simple approach is used here only

in order to keep directly under control the distance between the bins, but the results
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presented in this section also apply if the cluster analysis is performed with one

of the other approaches that have been developed for this scope [42, 43, 92]. The

canonical weight of each bin is estimated by a weighted histogram procedure based

on the metadynamics bias potentials. Denote by V i
G (s, t) the history-dependent

potential generated by the walker i up to time t expressed in Boltzmann constant

units. After a certain time tF metadynamics has explored all the available CV

space. At the end of the simulation, an estimate of the free energy is the average

of V i
G (s, t) after tF [31, 93]:

V i (s) =
1

ttot − tF

∫ ttot

tF

dt V i
G (s, t) (2.25)

where ttot is the total simulation time. During the last part of the BE run V i
G (s, t)

fluctuates around V i (s) (except for an irrelevant additive constant that grows lin-

early with time), but these fluctuations are small if the deposition rate of the

Gaussians is not excessive. In order to keep the error induced by these fluctuations

under control it is convenient to consider two different bias potentials of the form of

Eq. 2.25, one obtained extending the integral from tF up to (ttot + tF )/2, the other

from (ttot + tF )/2 up to ttot. Only the configurations collected after tF in which

the two bias potentials are consistent within a few T (T for Ala3 and 2T for the

Trp-cage) are retained for further analysis. The unbiased probability to observe

bin α is estimated on walker i using the standard umbrella sampling reweighting

formula:

pi
α =

∑

k∈Ωi
α

e
1
T (V i(si

k)−f i) (2.26)

where f i is a parameter that fixes the normalization and Ωi
α is the set of frames in

the walker i that are assigned to bin α. The pi
α -s are used to construct the best

possible estimate of the probability pα of observing bin α. This requires estimating

the error on pi
α. Here it is assumed that the error on a bin free energy estimate is:

σ2
(
pi

α

)
= g

∑

k∈Ωi
α

e
2
T (V i(si

k)−f i) = gpi
αe

1
T

“
V

i
α−f i

”
∼= gpαe

1
T

“
V

i
α−f i

”
(2.27)

where g is a constant that takes into account the correlation time and

V
i

α = T log




∑
k∈Ωi

α
e

2
T

V i(si
k)

∑
k∈Ωi

α
e

1
T

V i(si
k)


 . (2.28)

In order to simplify the notation we have neglected the position-dependence of

g. In the last passage in Eq. (2.27) the fact that pi
α is an unbiased estimator of pα

is assumed. The combined probability pα is now written as a linear combination of

the pi
α-s, namely pα = C

∑
i π

i
αp

i
α, where the weights πi

α are parameters that have

to be determined and C is normalization constant. The expected error on pα is

σ2 (pα) = C2
∑
i

(πi
α)

2
σ2 (pi

α). The optimal weights for each bin α are determined
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separately minimizing this error with the constraint
∑

i π
i
α = 1. This gives πi

α =

e
1
T

“
f i−V

i
α

”
(
∑

j e
1
T

“
fj−V

j
α

”
)−1 and, finally,

Fα = −T log pα = −T log
∑

i

πi
αp

i
α = −T log

∑
i n

i
α

∑
j e

1
T

“
fj−V

j
α

” (2.29)

with ni
α =

∑
k∈Ωi

α

e
1
T

“
V i(si

k)−V
i
α

”
. The constants f i are obtained iteratively from the

condition

e−
1
T

f i

=
1∑
α n

i
α

∑
α

e−
1
T

V
i
αpα = C

1∑
α n

i
α

∑
α

e−
1
T

V
i
α

∑
k n

k
α

∑
j e

1
T

“
fj−V

j
α

” . (2.30)

The free energy estimate given by Eq. 2.29 is affected by an error

σ2 (Fα) = T 2σ
2 (pα)

p2
α

=
gT 2

∑
i n

i
α

(2.31)

consistently with what is found in the normal weighted histogram analysis method[13].

Within this framework, the average value of an observable O can be calculated,

using the estimated free energies, as

〈O〉 =

∑
αOα exp (−Fα/T )∑

α exp (−Fα/T )
(2.32)

where the sums run over all the bins, T is the temperature and Oα is the average

value of O in the bin α. If the bin size is small enough, the bias potentials are

approximately constant for the configurations belonging to the same bin [39]. Thus

Oα can be reliably estimated as the arithmetic average of O in all the configurations

explored by the BE trajectory belonging to the bin α. Corrections deriving from

the variation of the bias potentials inside a bin have also been considered but they

lead to negligible effects for small ds.

The enthalpy Hα of bin α is obtained averaging the enthalpy over the struc-

tures belonging to the bin. The entropy Sα is estimated as Sα = (Hα − Fα) /T .

Neglecting the dependence of the entropy on the temperature, the free energy at a

temperature T ′ different from T is estimated as

Fα (T ′) = Hα − T ′Sα = Hα − T ′

T
(Hα − Fα (T )) (2.33)

with an error of σ2(Fα(T ′)) = (T ′
T

)2σ2(Fα(T )) + (1− T ′
T

)2σ2(Hα).

Using Eq. 2.32 together with Eq. 2.33 allows extrapolating the average value of

the observables for a few tens of K around the temperature at which the simulation

is performed. The uncertainty on O can be derived at each temperature from the

error on Fα, Hα, and Oα using error propagation on Eqs. 2.32 and 2.33:
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σ2(〈O〉) =

∑
α e

−2Fα(T ′)/T ′
[

(〈O〉−Oα)2

T ′2 σ2(Fα(T ′)) + σ2(Oα)
]

(∑
β e

−Fβ(T ′)/T ′
)2 (2.34)

where σ2(Oα) is the standard deviation of O inside bin α.

2.6 Kinetic model from a multi-dimensional free

energy

The free energy provides direct information on the probability distribution along

the CVs (thermodynamics), but can also be used to extract kinetic information,

e.g. the transition rate. For example the height of the barrier can be used in

transition state theory to estimate the rate between two states [94]. Another way

to extract kinetic information from the free energy is to assume that the dynamics

along the CVs can be approximated by a diffusion process:

ṡi(t) = −
∑

j

Dij

T

∂F (s)

∂sj

+Wi (2.35)

where D is the diffusion matrix, F (s) the free energy and W is a white noise

that obeys to the following relations:

〈W(t)〉 = 0 (2.36)

〈Wi(t
′)Wj(t)〉 = 2Dijδ(t

′ − t) (2.37)

The corresponding Fokker-Planck equation is:

∂ρ(s, t)

∂t
=

∑
i

−∂Ji

∂si

=
∑

i

∑
j

∂

∂si

Dij

(
ρ

T

∂F (s)

∂sj

+
∂ρ(s, t)

∂sj

)
(2.38)

where ρ(s, t) is the probability density. The vector J describe a flux and is intro-

duced in eq. 2.38 to show that the Fokker-Planck eq. can be written as a continuity

equation. For a one dimensional process in which the free energy is flat eq. 2.38 re-

duces to the Fick’s second law:∂ρ
∂t

= D ∂2ρ
∂x2 . Eq. 2.35 and 2.38 require estimating the

diffusion matrix D. Moreover in realistic systems, the dynamics of a process can

be described by eq. 2.38 only on an appropriate time scale. This will be discussed

in details in the following.

Different approaches are possible for integrating eq. 2.38. In order to construct

a bin based kinetic model, it is useful to write it as a master equation:

∂p(α)

∂t
=

∑

β

kβαp(β)− kαβp(α) (2.39)

This requires discretizing the CVs space in bins. If these form a regular grid an

explicit expression for the transition rates can be given[46]:
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kαβ = k0
αβe

− 1
2T (Fβ−Fα) (2.40)

where α and β are two neighbouring bins and k0
αβ = k0

βα are the rates associated to

simple diffusion on a flat free energy surface. This form ensures that the limiting

probability distribution of the dynamics is correct, namely that the probability to

observe bin α at long times scales is proportional to exp (−Fα/T ).

If the bins form a hypercubic grid in CV space the rates k0
αβ can be exactly

expressed as a function of the (possibly position-dependent) diffusion matrix Dα

and of the hypercube side ds [46]. In the following to simplify the notation we

denote by D the diffusion matrix appearing in the transition rate between two bins

α and β assuming that D is the average of Dα and Dβ[46]. In one dimension the

bins are labeled by a single integer (i) and, following Refs [46, 50], k0
(i)(i±1) = D

ds2 and

zero otherwise. In d dimensions the bins are labeled by d integers (i1, i2, · · · , id).
If D is diagonal, the one-dimensional expression for the rates can be generalized

straightforwardly. If D is non-diagonal the only rates different from zero are those

in which one or two of the components of (i1, i2, · · · , id) vary by one:

k0
(··· ,ik,··· )(··· ,ik±1,··· ) =

Dkk

ds2
k

−
∑

j 6=k

∣∣∣∣
Djk

dskdsj

∣∣∣∣

k0
(··· ,ik,··· ,ij ,··· )(··· ,ik±1,···ij±1,··· ) = max

(
Djk

dskdsj

, 0

)
(2.41)

This form of the rates can be derived discretizing the Fokker-Planck equation for

diffusion on the regular grid defined by the hypercube centers. To do this we use

a general formulation to derive finite difference schemes for the numerical solution

of partial differential equation, using Taylor expansion. As we want to derive the

prefactor k0
αβ of eq. 2.40 we consider eq. 2.38 for a flat free energy surface, i.e.

∂F (s)
∂sj

= 0:

∂ρ(s, t)

∂t
=

∑
i

∑
j

(
Dij∂

2ρ(s, t)

∂si∂sj

)
(2.42)

If the space is discretized eq. 2.42 can be approximated as:

∂ρ(sα, t)

∂t
∼ a0

αρ(s
α, t) +

∑

β

k0
βαρ(s

β, t) (2.43)

where β indicate the α neighbouring bins. The choice and the number of neigh-

bouring bins affects the properties of the discretization scheme. k0
βα and a0

α are

treated here as parameters to be determined. We Taylor expand ρ in the neigh-

bours of sα
i :
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ρ(sβ, t) = ρ(sα, t) +
∑

i

(sβ
i − sα

i )
∂ρ(sα, t)

∂si

+
1

2!

∑
i

∑
j

(sβ
i − sα

i )(sβ
j − sα

j )
∂2ρ(sα, t)

∂si∂sj

+
1

3!

∑
i

∑
j

∑

k

(sβ
i − sα

i )(sβ
j − sα

j )(sβ
k − sα

k )
∂3ρ(sα, t)

∂si∂sj∂sk

+ o(|∆s|4)

(2.44)

We now substitute this expression in eq. 2.43;

∂ρ(sα, t)

∂t
= aαρ(s

α, t) +

(∑

β

k0
βα

)
ρ(sα, t)

+
∑

i

(∑

β

k0
βα(sβ

i − sα
i )

)
∂ρ(sα, t)

∂si

+
1

2!

∑
i

∑
j

(∑

β

k0
βα(sβ

i − sα
i )(sβ

j − sα
j )

)
∂2ρ(sα, t)

∂si∂sj

+
1

3!

∑
i

∑
j

∑

k

(∑

β

k0
βα(sβ

i − sα
i )(sβ

j − sα
j )(sβ

k − sα
k )

)
∂3ρ(sα, t)

∂si∂sj∂sk

+ ...

(2.45)

This equation coincides with eq. 2.42 with a second order accuracy if:

a0
α +

∑

β

k0
βα = 0 (2.46)

∑

β

k0
βα(sβ

i − sα
i ) = 0 (2.47)

∑

β

k0
βα(sβ

i − sα
i )(sβ

j − sα
j ) = 2Dij (2.48)

∑

β

k0
βα(sβ

i − sα
i )(sβ

j − sα
j )(sβ

k − sα
k ) = 0 (2.49)

It is straightforward verifying that these relations are satisfied by rates k0
βα of

the form given by eq. 2.41.

The error of this procedure scales as the square of the distance between neigh-

boring bins[46]. Indeed the rates k0
βα are proportional to the inverse of the square

distance between neighbouring bins, instead the error in eq. 2.45 scales as |∆s|4.
At finite grid spacing the accuracy can be improved allowing transitions between

non-neighboring bins. This is because higher order relations can be imposed having

a larger number of neighbours. Eq. 2.43 involves the probability densities, but can
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be easily converted in a relation involving bins probabilities by multiplying all the

terms in eq. 2.43 for the volume factor
∏

i dsi.

2.6.1 Estimating the diffusion matrix by maximum likeli-

hood

In this section we describe a manner for estimating the D matrix entering in the

rates of eq. 2.40. The diffusion matrix is estimated using the approach of Ref. [46],

in which one maximizes the likelihood that a given MD trajectory is generated by a

rate equation of the form Eq. 2.40. Computing D requires first generating at least

one MD trajectory without the metadynamics bias. The accuracy of the procedure

can be improved, if the relevant metastable states of the system are known, by

running several independent MDs starting from these states. Otherwise one can

select at random a few conformations along the BE trajectory and use these as

the initial conditions for MD. The trajectory (or the set of trajectories) is then

mapped at a time lag ∆t onto the bins (α (0) , α (∆t) , α (2∆t) , · · · ). Then several

KMC trajectories are run with an initial guess for D, starting from the bins visited

by the MD trajectory. Using the KMC trajectories one computes the conditional

transition probabilities at a time lag ∆t pD(γ|β) among all the pairs of bins β, γ

visited by the trajectory. This is evaluated by counting transitions between the

bins:

pD(γ|β) =
n(γ(∆t)|β(0))

n(β)

where n(γ(∆t)) is the number of times the KMC trajectory is found in bin γ at

time ∆t being in bin β at time zero, and n(β) is the number of times the trajectory

visits bin β. This procedure is slightly different from the one used in Ref. [46],

where pD(γ|β) is calculated by diagonalizing the rate matrix, which in the cases

considered in this thesis has a very large size (of the order of 105 × 105). The

notation pD indicates that these probabilities depend parametrically on D.

Using these probabilities one evaluates the logarithm of the likelihood to observe

the sequence of bins obtained by MD. This is given by

L (D) = log
∏

t

pD (α (t+ ∆t) |α (t)) . (2.50)

L (D) is then maximized as a function of D. This can be done by simulated

annealing, starting from an initial guess of D and iterating until the likelihood

reaches a plateau. As outlined in Ref[47], the diffusion matrix found in this way

depends in general on the chosen time lag. A common behavior is that by increasing

the time lag ∆t the elements of the diffusion matrix converge to a well defined value.

This means that after this ∆t the dynamics between bins is close to Markovian and

is well approximated by the model proposed. As a consequence only transition that

occur on a time scale bigger than ∆t are correctly described by this model.

Applying this procedure the prefactor of the rate Eq. 2.40, which has the form of

a jump process among a discrete set of states, is directly optimized. This is a clear
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advantage with respect to other methods for computing D, in which a continuous

evolution of the collective variables is assumed. Moreover, as the free energies Fα

are known, the only variational parameter is D and comparably short trajectories

are sufficient to determine it with a good statistical accuracy. A good accuracy of

the free energy is of course crucial in this approach as they enter in Eq. 2.40 as an

exponential.

A model constructed in this manner allows studying the evolution of the system

on very long time scales using (e.g.) KMC. However, the reliability of the model

relies on several approximations. If the free energy is flat, by construction the model

gives the correct diffusive behavior but if F 6= 0 deviations from this behavior are

observed when the bin size is too large. On the other hand, a small bin size can

hinder the accuracy of the free energies. Thus, both large and small bin size may

alter the quality of the kinetic model due to bad description of the underlying

free energy surface or inaccurate sampling. Moreover even if there are no problems

related to the bin size, describing the dynamics with Eq. 2.40 amounts to neglecting

memory effects. This approximation can be particularly severe if an important

variable is not included explicitly in the model. The model is expected to be

reasonably accurate if the memory time is much smaller than the typical transition

time (usually between metastable sets) that one wants to measure.

In the next chapter we will discuss the validity of these hypothesis in real ap-

plications.



CHAPTER

THREE

Ace-Ala3-Nme: a benchmark system

The approach presented in chapter 2 is here illustrated on the Ace-Ala3-Nme pep-

tide (hereafter Ala3). Ala3 is a simple polypeptide that has been extensively used

as a benchmark system. Although small, this system shows several protein-like fea-

tures, such as intramolecular hydrogen bonds and a fragment of α-helical structure.

Since the system is small, it is possible to characterize carefully its equilibrium and

kinetic properties by extended MD simulations. The results obtained from the BE

simulations of Ala3 are benchmarked against the ones obtained from a long stan-

dard MD simulation (∼ 2 µs). For this system the model is capable of reproducing

with excellent accuracy the kinetics and thermodynamics observed in the unbiased

run.

3.1 Computational setup

Ala3 was simulated using BE and MD in explicit solvent using the GROMACS suite

of programs[95, 96] and the AMBER03[64] force field. Ala3 was placed in a periodic

cubic box containing 1052 TIP3P water [65] molecules. The time step was set to

2 fs and the LINCS [67] algorithm was used to fix the bond lengths of Ala3. The

SETTLE algorithm[68] was used to fix angle and bond length of water molecules.

Electrostatic and Lennard-Jones interactions were calculated with a cutoff of 1.0

nm. Lennard-Jones interactions are switched off smoothly from 0.9 nm to 1.0 nm.

The neighboring list was updated every 5 steps and the cut-off distance for the

short-range neighbor list was set to 1.1 nm. The Particle Mesh Ewald method

[69, 97] was used to treat long-range electrostatic interactions with a maximum

grid spacing for the fast Fourier transform of 0.12 nm and an interpolation order

of 4. A constant temperature of 300 K was achieved by coupling the system to a

Berendsen thermostat [71] with a characteristic time of 0.1 ps. A constant pressure

of 1 bar was achieved by coupling the system to a Berendsen barostat [71] with a

characteristic time of 2.5 ps. Several independent MD simulations were performed,

with a length varying between ∼ 30 ns and ∼ 300 ns, for a cumulative time of 1.8

µs.

33



34 Chapter 3

Figure 3.1: Structures of the attractors for the relevant free energy basins
of Ala3 found in the MD and BE simulations. Inset: Schematic picture of
Ala3 test system. The dihedral angles φ and ψ displayed in the figure are chosen as
CVs for the BE simulation. They are labeled with suffix according to their position
along the chain.

The conformations of Ala3 are here specified by its six backbone dihedral an-

gles (φi, ψi, where i = 1, 2, 3) (see Fig. 3.1, inset). Following Refs. [98–100], φ2

and ψ2 (central Ramachandran angles of Ala3) were considered in order to assign

the main conformations of the system, denoted by PPII (φ2 ∈ [−90◦,−30◦], ψ2 ∈
[120◦, 180◦]), β (φ2 ∈ [−180◦,−120◦], ψ2 ∈ [120◦, 180◦]), αR (φ2 ∈ [−90◦,−30◦],

ψ2 ∈ [−90◦, 0◦]), and αL (φ2 ∈ [30◦, 90◦], ψ2 ∈ [0◦, 90◦]). Besides the latter con-

formational states, eight different states were also considered in order to analyze

the results of the kinetic model. These are the free energy minima with the three

dihedrals (ψ1, ψ2, ψ3) in the α or β region of the Ramachandran plane, namely

(α, α, α), (α, α, β), etc. (see Fig. 3.1).

The system was also simulated using BE [38] exploiting the six dihedral angles

(see Fig. 3.1, inset) as CVs. Each CV was biased in a different walker. Hence,
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NR= 6, and each walker evolved under the action of a one-dimensional metady-

namics potential acting on one of the six CVs. The width and the height of the

Gaussians used in metadynamics were 0.1 rad and 0.1 kJ/mol respectively. A new

Gaussian was added to the metadynamics potential every 1 ps. Exchanges of the

bias potentials between pairs of walkers were attempted every 10 ps. Three in-

dependent BE simulations of 30 ns each (one simulation consist of 30 ns for each

replica) were carried out in order to check the reproducibility of the results.

3.2 Results

BE simulation of Ala3. The system was simulated using BE [38] employing the

six backbone dihedral angles as CVs for biasing the dynamics. As expected BE

improves the sampling of saddle regions (see Fig. 3.2B) and less stable minima

(e.g. the αL region of the Ramachandran angle).

The results of the BE simulation of Ala3 are six one-dimensional free energy

profiles (see Fig. 3.4), each a function of one of the six dihedral angles. After ap-

proximately 5 ns the free energy profiles do not change significantly anymore (see

also Fig. 3.2A and 3.3), except for the fluctuations that are typical of metadynam-

ics.

The profiles extracted from the three independent BE runs do not show sizable

differences (root mean square deviation (RMSD) of free energy ≈ 0.4 kJ/mol,

maximum deviation ≈ 1 kJ/mol), and they agree with the MD results within the

error bars (RMSD of free energy ≈ 0.8 kJ/mol, maximum deviation ≈ 2 kJ/mol,

see Fig. 3.2B). The profiles obtained applying eq.2.25 averaging on the last 10 ns

of a BE simulations are shown in Fig. 3.4.

Bin-based thermodynamic model. Even in this simple system the different

structures (see Fig. 3.1) are defined by the value of at least two of the six collective

variables and thus one-dimensional free energies are not very insightful. In order to

estimate the relative probability of the different structures we applied the approach

introduced in the chapter 2. The six dimensional space was divided in hypercubes

of side ds (“bins”). Due to the high dimensionality of the space the number of

bins increases rapidly by decreasing the box side. Reducing ds from 40◦ to 30◦ the

number of bins that are visited increases from 70,000 to 300,000. On the other

hand, for small ds most of the bins are visited only a few times, and this hinders

the accuracy of the free energy estimate (see Eq. 2.31). The free energy of each bin

was calculated for several choices of the bins size ds applying Eq. 2.29 to the BE

simulation data. The free energy profile entering in Eq. 2.29 was calculated using

eq.2.25 with tF =5 ns. In order to reduce the error induced by the time dependent

fluctuations, the bias potential was averaged independently in the two halves of the

interval [5ns, 30ns] (see chapter 2). Only configurations collected after 5 ns in which

the two averaged potentials are consistent within T are retained for further analysis.

The free energies were evaluated independently from the ∼ 2 µs equilibrium MD

trajectories by applying the standard thermodynamic relation Fα = −T log nα,
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Figure 3.2: Free energy profiles as a function of φ1 (see Fig. 3.1) for
Ala3 Panel A: time evolution of −VG(s, t) during a BE simulation between 1 and
8 ns; after ∼5 ns the bias potential converges and grows parallel to itself. Panel
B: Free energy profile from the 1.8 µs MD simulation compared with the profiles
obtained from three independent BE simulations. The 3 BE profiles are obtained
by applying eq. 2.25.

where nα is the population of the bin α. In Fig. 3.5, it is shown that the free

energies calculated in the two manners correlate very well, especially at low free

energy, where MD is accurate. Indeed, the horizontal stripes at high F in Fig.

3.5 correspond to bins that are explored only a small number of times in MD. In

Fig. 3.5, inset, it is shown the distribution of the relative error (FBE − FMD) /σMD

where FMD and FBE are the free energies of the bins computed by MD and BE

and σMD is the error on FMD estimated by Eq. 2.31 on the MD trajectory (using
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Figure 3.3: Free energy profiles as a function of time for Ala3 obtained
with a 30 ns BE simulation. −VG is reported for each backbone dihedral angle
at several times after the filling time. Each time is represented with a different
color: black (10 ns), red (11 ns), green (12 ns) and blue (13 ns). The parallel
growth in time of the metadynamics bias potential is evident from the picture.

Figure 3.4: Free energy profiles of Ala3 along the six backbone dihedral
angles for Ala3. The profiles are calculated using eq. 2.25 on the last 10 ns of a
30 ns BE simulation.

g = 1 ps). A Gaussian fit to these data (blue line) shows that this relative error has

an average value of zero and is normally distributed, indicating that the deviations

are unlikely to be systematic and are probably due to inaccurate sampling. If the

analysis is repeated for a larger bin size the width of the relative error distribution

becomes smaller. In fact, all the bins are visited more often and the free energies
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are computed with better accuracy. As already underlined, in normal MD the

error is small for low free energy states and large otherwise. In BE the error is

instead much more uniform, and the free energy can be computed reliably also for

several bins that are not even observed in MD. This property as we will show in

the following is essential for constructing a reliable kinetic model of the system.

Figure 3.5: Bins free energies of Ala3 from BE and from MD. Correlation
between the bins free energies calculated using Eq. 2.29 applied on BE simulations
data and using the standard thermodynamics relation Fα = −T log nα on MD
results. A bin size of 30◦ has been used. In the inset it is shown the distribution
of the deviations between the bins free energies calculated from BE and from MD,
divided by the estimated error on the MD free energy. A Gaussian fit of the
distribution is also shown.

The equilibrium population of each of the PPII, β, αR, and αLregions in the

(φ2, ψ2) Ramachandran plot defined in section 3.1 was computed by summing the

populations of the bins which are contained inside. The occupation probability

calculated from MD and BE simulations is reported in Table 3.1: extended confor-

mations (PPII and β) are the most populated, the helical αR state is less populated

while αL has an occupancy lower than 0.1%, in agreement with available experi-

mental data [101–103] and with previous simulations [98–100]. Once again (Table

3.1), the agreement between BE and MD results is very good for all the regions.

Bin-based kinetic model. A kinetic model of Ala3 was built according to

the procedure introduced in chapter 2. The free energies estimated from the BE

simulations were used for constructing the kinetic model according to eq. 2.40.

The diffusion matrix entering in eq. 2.41, was calculated by maximum likelihood

for several choices of the time lag ∆t and bin size on MD simulations of length

ranging from a few ns to 300 ns.
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Table 3.1: Equilibrium populations of the four main regions in the Ra-
machandran plot (φ2, ψ2) of Ala3.

PPII β αR αL

MD 34.3% 12.6% 22.0% 0.050%
BE 32.1% 12.0% 22.3% 0.085%

The results from BE are compared to those from MD.

Table 3.2: Diffusion matrix of Ala3. An MD trajectory of 60 ns is employed,
using a time lag of 16 ps and a cubic side of 30◦. The elements of the diffusion
matrix are expressed in rad2/ps. The position dependence of the matrix and the
statistical uncertainty give a total estimated error of 20%.

φ1 ψ1 φ2 ψ2 φ3 ψ3

φ1 0.040 0.000 0.000 0.000 0.000 0.000
ψ1 0.000 0.037 -0.018 0.000 0.000 0.000
φ2 0.000 -0.018 -0.034 0.000 0.000 0.000
ψ2 0.000 0.000 0.000 0.034 -0.014 0.000
φ3 0.000 0.000 0.000 -0.014 0.040 0.000
ψ3 0.000 0.000 0.000 0.000 0.000 0.038

To estimate the accuracy of the kinetic model the mean first passage times

(MFPT) for transitions among the four regions in (φ2, ψ2)-space PPII, β, αR, and

αL have been calculated both from MD and KMC. Moreover, the MFPT have been

calculated also for transitions between the 8 bins corresponding to the 8 free energy

minima obtained assigning the three ψ dihedral angles in the α or in the β region

(see section 3.1 and Fig. 3.1). First, the kinetic model has been constructed for a

bin size of 30◦ and optimizing a position independent D with a time lag ∆t = 16

ps (see table 3.2). The correlation plot between MD and KMC is shown in Fig.

3.6A, where only transitions observed at least 50 times in the MD trajectory are

reported. The overall correlation is excellent except for transitions that display a

large error bar in the MD simulation. The distribution of the first passage times

for well visited transitions involving the central dihedral angles are also shown in

Fig. 3.6 (panels B and C), both for MD and KMC. The agreement is excellent

especially for the αR→PPII transition, which occurs on a long time scale. All these

results show that the rate model is able to reproduce accurately the kinetics of the

real system. In order to quantify this accuracy it is useful to consider the slope S

of the line fitting the pairs (τMD
i , τKMC

i ) of MFPT in Fig. 3.6A, where i denotes a

transition, as well as the RMS relative deviation

E =

√√√√ 1

N

∑
i

(
τKMC
i − S τMD

i

S τMD
i

)2

where the sum runs over the N transitions. S and E, which should ideally have

the values 1 and 0, have been computed for many different models in order to point

out the critical issues that can affect the accuracy of the rate model:
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Figure 3.6: Mean first passage times between the free energy basins of
Ala3. Panel A: correlation between the MFPT among the four regions in (φ2, ψ2)-
space PPII, β, αR, and αL, and among the eight attractors (see text and Fig. 3.1),
obtained by MD simulations and by KMC using the kinetic model. The MFPT are
calculated as the average time to go from one region to another, without passing
through different regions. The error bars due to the statistical error in the MD
simulations are also displayed. Large bins have a cubic side of 36◦, while when not
specified a cubic side of 30◦ is used. Panel B: distribution of FPTs from αR to PPII

for MD and the kinetic model. Panel C: distribution of FPTs from PPII to β for
MD and the kinetic model. For panel B and C a cubic side of 30◦ and a time lag
of 16 ps was used for calculating the diffusion matrix D (see table 3.2).

• The time lag ∆t used to estimate D. A position independent D was

optimized for different choices of time lag ∆t and MD trajectory length. The

value of S that is obtained for each ∆t is reported in Fig. 3.7. For ∆t = 16

ps an error E = 0.180 and S = 0.995 is obtained, whereas for ∆t = 6 ps

E = 0.188 and S = 0.721, and for ∆t = 2 ps E = 0.185 and S = 0.357.
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This shows that the correct time scale is obtained if the time lag ∆t is large

enough. For very small ∆t the MD trajectory cannot be approximated by a

Markovian model [47].

• The size of the bins. Care must be taken in employing a bin size which is

small enough to describe accurately the free energy of the system as a function

of the CVs. Increasing the bin size from 30◦ to 36◦ still leads to reasonable

transition times: the standard deviation and the slope become E = 0.184 and

S = 0.766 for ∆t = 16 ps (Fig. 3.6A). If the bin size is further increased to

40◦ the kinetic model compares badly with MD: E = 0.682 and S = 0.152.

A position independent D was optimized for each bin size using a 300 ns MD

trajectory.

• The length of the MD trajectory used to estimate D by maximizing

the likelihood. The value of S as a function of the length of the MD

trajectory is reported in Fig. 3.7. A ∼ 50 ns MD trajectory is necessary to

obtain a D which accurately reproduces the MFPT with S ≈ 1. Increasing

the length of the MD trajectory up to 300 ns does not change significantly S,

whereas employing a shorter trajectory down to ∼ 10 ns gives slightly larger

errors. Thus changing the length of the MD trajectory between 10 − 300 ns

affects the time scale S much less than the time lag ∆t.

• The position-dependence of D. The MFPT was calculated using two

different diffusion matrices obtained maximizing the likelihood only for the

part of the MD trajectory that is close to two different attractors (ααα) and

(αβα), always using a time lag ∆t = 16 ps. The difference in the slope S is of

the order of 10-20 %. This shows that the error that derives from neglecting

the position dependence of D is, at least for this system, smaller than the

error due to the choice of the time lag ∆t.

As a general comment, even in the worst cases investigated (short ∆t, short MD

trajectory), provided the bins size is not very large, the rate model produces MFPTs

that are well correlated with the MD results, as shown by the relatively small value

of E. The various approximations introduced in deriving the model affect only the

proportionality factor, as quantified by S, that can be ∼ 0.5 in the worst case (see

Fig. 3.7). If the free energy of bins were estimated from MD and not from BE

the correlation in the MFPT would be completely lost (data not shown). This is

due to the fact that even in a quite extended MD simulation barriers are not well

sampled; instead, in the BE simulation all the relevant bins are explored and the

accuracy of the barriers between clusters is remarkably improved.

3.3 Discussion

The approach presented in chapter 2 exploits the trajectories of multiple metady-

namics simulations for building a thermodynamic and kinetic model of complex
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Figure 3.7: Dependence of the diffusion coefficient of Ala3 on the time lag
and the trajectory length. Dependence of the slope S of the line fitting the
pairs of mean first passage times (τMD

i , τKMC
i ) (see text and Fig. 3.6A) from the

parameters used in the fit of the diffusion matrix D: the length of the MD run and
the time lag ∆t. For ∆t ≥ 12 ps S converges to the optimal value 1 (dashed line).
A cubic side of 30◦ was used.

processes whose description requires a large number of collective variables. The

aim of the model is to reproduce the long time scale dynamics of the system and

to extract the metastable sets (clusters) of the kinetic process. The model is con-

structed as follows: in a first step the equilibrium probabilities of a finite set of

conformational states, or bins, are determined by a weighted-histogram procedure

exploiting the low-dimensional free energies estimated by metadynamics. In a sec-

ond step an approximated description of the kinetics is obtained estimating the

transition rates among the bins. The diffusion matrix entering in the model is esti-

mated by a maximum-likelihood procedure [46] employing relatively short unbiased

MD trajectories. The approach was tested on the Ace-Ala3-Nme peptide in explicit

solvent using the six backbone dihedral angles as CVs. For this system equilibrium

MD trajectories on the microsecond timescale are sufficient to sample the relevant

conformational space and were used as a reference to evaluate the accuracy of the

kinetic model obtained from the BE results. The bins free energies obtained with

the method presented in chapter 2 are in excellent agreement with free energies

computed from equilibrium MD. The transition rates among neighboring bins are

used to run a long KMC. The mean first passage times among selected states ob-

tained in this way are in agreement with those extracted from the reference MD

simulations.
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FOUR

Kinetic model of Trp-cage folding

In this chapter we describe a first application of the approach introduced in chapter

2 and 3 to a realistic model of a protein.

A system that is almost ideal for theoretical investigation is the Trp-cage (TC5b)[104],

a designed 20-residue miniprotein that folds rapidly [105] and spontaneously to a

globular structure. The NMR structure (1L2Y)[104] reveals a compact hydropho-

bic core, in which the Trp side chain is buried. The secondary structure elements

include a short α-helix (residues 2-8), a 310-helix (residues 11-14) and a polyproline

II helix at the C-terminus. The folding mechanism of this system has been stud-

ied with several experimental techniques. Calorimetry, circular dichroism spec-

troscopy (CD) [106] and fluorescence [105] show a cooperative two-state folding

behavior with transition midpoint at approximately 314 K and a relaxation time

of 3.1 µs at 296 K[105]. UV-Resonance Raman [107] reveals a more complex un-

folding behavior, with the presence of a compact intermediate that retains an α-

helical character and in which the hydrophobic core is even more compact. NMR

experiments[104, 108] show a substantially cooperative thermal unfolding, but the

large negative chemical shift deviations of Pro12-δ3 and Gly11-α3 suggest that

those residues might pack more tightly as the temperature is raised. Also fluo-

rescence correlation spectroscopy experiments cannot be interpreted in terms of a

simple two-state folding and the formation of a molten-globule-like intermediate

has been proposed [109].

By atomistic modeling the Trp-cage folding has been studied using several dif-

ferent approaches [110–120]. In particular, with an all-atom explicit-solvent de-

scription, the folding of Trp-cage has been studied by replica exchange molecular

dynamics (REMD) [118, 121]. Starting from an extended configuration, a structure

with a Cα root mean square deviation (RMSD) < 2 Å from the NMR reference

structure is obtained after 100 ns of simulation on 40 replicas[121]. A relatively

high melting temperature of 440 K is predicted. Other studies suggested that, even

if Trp-cage is a rather small system, achieving statistical convergence in a REMD

simulation may require much longer simulation times [34, 83]. The kinetics of Trp-

cage folding was studied, in explicit solvent, by transition path sampling (TPS)

43
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[83] and transition interface sampling (TIS) [122].

After the application of the approach described in chapter 2 to a simple system

(see chapter 3) we here apply it for constructing a detailed kinetic and thermody-

namic model of a complex process such as the Trp-cage folding.

A model is built that allows describing the folding process, computing the fold-

ing rates and the NMR spectra, simulating a T-jump experiment, etc. The scenario

that emerges is in good agreement with the available experimental data. By kinetic

Monte Carlo(KMC)[123, 124] and Markov cluster analysis(MCL)[125, 126] several

metastable sets (clusters) are identified. These states, except for the folded cluster,

can be considered misfolded intermediates of the folding process. At 298 K two

main clusters are present, with a population of 58% and 25%, respectively. The

most populated is the folded state and its structural properties are very close to the

NMR ensemble. The second most populated cluster retains a significant amount of

secondary structure, but has a Cα RMSD from the native state of approximately

4.4 Å. In this cluster, the Trp is trapped in a hydrophobic pocket and its distance

from Pro12 and Gly11 is reduced. The presence of this cluster in the thermal

ensemble of the system can explain some anomalies in the temperature behavior

observed in NMR [104] and UV-Raman [107] experiments. The structures of the

most populated misfolded intermediates are in good agreement with the unfolded

states distances reported in Ref.[108]. Using the kinetic model a fluorescence T-

jump experiment is also simulated. In agreement with the experimental results

[105], a relaxation time of 2.3± 0.7 µs is found. This time is primarily determined

by the relaxation towards the folded state of a compact molten globule-like struc-

ture, which acts as a kinetic trap. Relaxation times among all the other clusters,

including transitions between fully unstructured states and the folded state, are all

in the sub-microsecond time domain.

4.1 Computational setup

The simulations were performed with the GROMACS suite of programs [95, 96]

and the AMBER03 force field [64], at a temperature of 298 K. The initial structure

(pdb entry 1L2Y) [104] was solvated with 2075 TIP3P [65] water molecules in a

40× 40× 40 Å water box. The system was simulated using BE[38]. Five collective

variables (CVs) were biased according to the bias exchange scheme discussed in

chapter 2[38].

• CV 1 is the number of Cγ contacts; CV 2 is the number of Cα contacts; CV 3

is the number of backbone h-bonds. They are defined as

CV 1, 2, 3 =
∑
ij

1− (rij/rc)
8

1− (rij/rc)
10 (4.1)

where the sum runs over the appropriate set of atoms (all the Cγ for CV 1,

all the Cα for CV 2 and all the backbone H and O for CV 3) and rc = 5, 6.5
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and 2 Å for CV 1, CV 2, and CV 3 respectively.

• CV 4 is the fraction of ψ dihedrals belonging to the α region in the Ramachan-

dran plot, defined as

CV 4 =
N∑

i=1

1

2
(1 + cos (ψi − 45o)) (4.2)

where the sum runs over all residues .

• CV 5 is the correlation between successive ψ dihedrals, defined as

CV 5 =
N−1∑
i=1

√
1 + cos2 (ψi − ψi+1) (4.3)

where the sum runs over all residues .

All the variables are dimensionless and none of them requires the a priori knowledge

of the folded state. The Gaussian widths chosen for CV 1, CV 2, CV 3, CV 4,

CV 5 were σ1 = 1.0, σ2 = 2.0, σ3 = 1.0, σ4 = 0.4, and σ5 = 0.4, respectively.

Simulations were performed with 8 walkers: one for each variable plus two walkers

reconstructing a free energy surface in two dimensions: CV 3-CV 4 and CV 4-CV 5.

The last walker, the “neutral walker”, is not biased by any metadynamics potential,

but is allowed to exchange conformations with the others. A Gaussian of height

0.1 kJ/mol was added every 1 ps to the bias potential for all the walkers except

the neutral walker. The total length of the simulations was 50 ns. In Ref. [38] it

was shown that the neutral walker statistics is approximately canonical, and all the

averages were there computed using only its configurations, while the trajectories

of the biased walkers were not used at all. The converged free energy profiles for

each walker can be found in Ref. [38]. The MD simulations used for calculating the

diffusion matrix and the NMR properties were run with the same computational

setup of the BE simulation (except for specified changes in temperature).

4.2 Results

The results presented here were obtained analyzing, with the method introduced

in chapter 2 the BE trajectory of Trp-cage from Ref. [38].

Bin-based thermodynamic model. The set of bins used for constructing

the rate model was defined partitioning the five-dimensional CV space in small

hypercubes according to the procedure outlined in chapter 2. A convenient choice

of the cubic sides was found to be dsi = 2σi, where σi is the width of the Gaussian

used for CV i. With this choice, the number of bins that are explored at least

twice is ∼ 10000. To check the consistency of the model other cubic sides were also

attempted. We checked that the CVs we are using do not lump together different

conformations: indeed, the Cα RMSD from the bin reference structure is less then

2.5 Å for most of the low free energy bins. We also verified that if a compact



46 Chapter 4

secondary structure element is present in the reference structure of a bin, the same

structure element will be present in the overwhelming majority of frames assigned

to that bin: high RMSD values are primarily determined by flexible regions that

undergo fast rearrangement on the ns time scale.

Figure 4.1: Correlation between free energies of neutral walker and
WHAM for Trp-cage. Correlation between the bins free energy evaluated us-
ing the approach described in chapter 2 and using the neutral walker ensemble at
T=298 K. Inset: cumulative number of bins with an error smaller than the value
reported in abscissas. The error is estimated using eq 2.31. The value of g entering
this equation is estimated from the correlation time of the bin occupancies and is
equal to 10 ps.

The free energies of the bins were estimated using Eq. 2.29, evaluating the

biasing potentials on each of the eight replicas by Eq. 2.25 with tF =22 ns. In

order to reduce the error induced by the time-dependent fluctuations, the bias

potential was averaged independently in the two halves of the interval [22ns, 50ns]

(see chapter 2). Only configurations collected after 22 ns in which the two averaged

potentials are consistent within 2T are retained for further analysis. Unlike for the

Ala3 system in the case of the Trp-cage an extended ergodic MD simulation is not

available, as equilibrating the system would require performing a run of several
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Table 4.1: Diffusion matrix of Trp-cage close to cluster 1 and cluster 5.
A MD trajectory of 80 ns starting from the folded state and remaining close to it
was employed for calculating the diffusion matrix of cluster 1, using a time lag of
12 ns. A MD trajectory of 65 ns exploring cluster 5 was employed for calculating
the diffusion matrix of cluster 5, using a time lag of 12 ns. Units are 1/ns. The
statistical uncertainty on each element has been calculated by dividing the each
trajectory in 3 pieces and evaluating the diffusion matrix independently in each
part. The simulated T-jump experiment (see section 4.2.3) performed using these
diffusion matrix gives a relaxation time of 2322 ns (cluster 1) and 2148 ns (cluster
5) respectively.

cluster 1 CV 1 CV 2 CV 3 CV 4 CV 5
CV 1 0.867±0.180 -0.060±0.001 -0.026±0.002 0.0009±0.0001 -0.009±0.0003

CV 2 -0.060±0.001 3.027±0.474 0.660±0.155 0.010±0.002 -0.020±0.004

CV 3 -0.026±0.002 0.660±0.155 0.343±0.045 0.00040±0.00003 0.002±0.004

CV 4 0.0009±0.0001 0.010±0.002 0.00040±0.00003 0.073±0.003 -0.005±0.002

CV 5 -0.0090±0.0003 -0.020±0.004 0.002±0.004 -0.005±0.002 0.028±0.003

cluster 5
CV 1 0.362±0.007 0.156±0.002 0.004±0.00006 0.004±0.00005 -0.011±0.0001

CV 2 0.156±0.002 2.875±0.040 0.541±0.010 0.0180±0.0002 -0.023±0.0003

CV 3 0.004±0.00006 0.541±0.010 0.203±0.004 -0.000140±0.000002 -0.0130±0.0005

CV 4 0.004±0.00005 0.0180±0.0002 -0.000140±0.000002 0.0270±0.0003 0.00151±0.00002

CV 5 -0.011±0.0001 -0.023±0.0003 -0.0130±0.0005 0.00151±0.00002 0.040±0.002

tens of µs. Thus, for Trp-cage it is not possible to compare the equilibrium bins

free energies with the ones obtained using BE. Instead the free energies estimated

with the WHAM-like[13] procedure are compared with the ones obtained using the

neutral walker statistics as described in Ref. [38].

The correlation between the two free energies is excellent, especially for bins

with low free energy (see also Fig. 4.1). As shown in Ref. [38], the neutral walker

reliably reproduces the ensemble generated with normal replica exchange. This

shows that the three methods, replica exchange, the neutral walker method and

the weighted histogram approach described in the chapter 2, all give consistent

results for the statistics of the most populated bins. The errors on the free energies

computed using the neutral walker ensemble are large for bins whose occupancy is

low and bins of high free energy are sometimes not explored at all. The number

of bins whose error is below 4 kJ/mol is approximately 1000 and 3000 for the

neutral walker and the weighted histogram procedure, respectively (see also Fig.

4.1, inset). The weighted histogram free energies are systematically very reliable

up to ∼ 25 kJ/mol. It is worth to note that most of the low free energy bins are

visited independently by several walkers (e.g. the lowest free energy bin is visited

by all the walkers).

Bin-based kinetic model. Like for the Ala3 case, the free energies of the bins

were used for estimating the rate for the transitions between all the neighbouring

bins according to Eq. 2.40.
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Table 4.2: Diffusion matrix of Trp-cage. five MD trajectories for a cumulative
time of 500 ns are employed, using a time lag of 12 ns. Units are 1/ns.

CV 1 CV 2 CV 3 CV 4 CV 5
CV 1 0.445 0.263 0.010 0.012 -0.010
CV 2 0.263 2.725 0.530 0.034 -0.025
CV 3 0.010 0.530 0.300 -0.005 -0.015
CV 4 0.012 0.034 -0.005 0.037 -0.003
CV 5 -0.010 -0.025 -0.015 -0.003 0.040

The diffusion matrix entering in eq. 2.41 was evaluated using the maximum

likelihood approach described in chapter 2 on five MD trajectories for a total time

of ∼ 500 ns. In order to estimate the variation of D with the protein conforma-

tions, the MD trajectories were initiated from structures belonging respectively to

the folded state, and clusters 2, 3, 4 and 5 (see below for the definition of the

clusters). Optimizing D separately in each cluster leads to a cluster-dependent dif-

fusion matrix. The diffusion matrix of clusters 1 and 2 are shown in table 4.1, all

the are can be found in ref [48] (Text S1). However, these variations influence the

relevant observables only mildly. Indeed, the folding relaxation times (see section

4.2.3) computed with a cluster-dependent D or with a constant D (calculated using

all the MD trajectories at once) are consistent within a standard deviation of ±500

ns (see tables 4.2, 4.1).

This uncertainty is comparable to the one deriving from the error on the bins

free energy (see section 4.2.3). The error bars reported for each element of the

diffusion matrices indicate that they are well converged with the simulation length.

As the uncertainty induced by using different D is small, all the analysis below is

performed employing a position independent D obtained by likelihood optimization

using all the trajectories at once (see table 4.2).

The maximum likelihood analysis has been repeated sampling the MD trajec-

tory at several different time lags ∆t. Due to important memory effects D becomes

approximately independent on the time lag only for ∆t > 10−12 ns. The diffusion

matrix obtained with ∆t = 12 ns was used for constructing the kinetic model. As

a consequence, the rate model is by construction unable to reproduce the kinetics

of transitions that occur on a time scale shorter than ∼10-20 ns. The value of few

elements of the diffusion matrix as a function of the time lag is reported in Fig.

4.2.

4.2.1 Metastable sets (clusters) of the Trp-cage rate model

The rate model described in chapter 2 has the form of a generalized rate equation

with the rates given by Eq. 2.40. The presence of metastable sets (“clusters”)

was detected applying the MCL[125, 126] method to the Trp-cage kinetic model.

The algorithm requires choosing a parameter p that tunes the granularity of the
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Figure 4.2: Diffusion matrix of Trp-cage as a function of the time lag. Few
elements of the diffusion matrix are reported. A MD trajectory of ∼ 500 ns and
the maximum likelihood approach explained in chapter 2 is used for calculating D
at each time lag. After approximately 8-10 ns the diffusion matrix elements show
a converging behaviour.

description: for p = 1 only one cluster is detected, while for large p all the bins

are assigned to different clusters. Several choices of the p parameter are attempted

(in Ref. [125, 126] the value p = 1.2 is considered). At 298 K, for p = 1.13

only two relevant clusters are found, one with an occupancy of ≈ 90% and one

of ≈ 5%. The RMSD among the structures belonging to the big cluster is very

large, indicating that, for this system, p = 1.13 is not appropriate. For p = 1.14

the large cluster splits in two clusters with populations of ≈ 12% and ≈ 77%.

Still the larger cluster includes qualitatively different structures. At p = 1.15 the

larger cluster splits further in three, while the other clusters remain approximately

unchanged. Increasing further p up to 1.17 does not modify significantly the three

most populated clusters, whereas for p = 1.2 the system is fragmented in more

than 10 clusters. At p = 1.15, only 5 significantly populated (> 1 %) clusters are

found, the two larger ones having a population of ≈ 58% and ≈ 25% respectively

(Table 4.3). The average Cα RMSD between the clusters structures and the NMR

ensemble is ≈ 1.8 Å for cluster 1 and > 4.4 Å for cluster 2 and the other clusters.

Moreover, all the bins with Cα RMSD < 2 Å belong to cluster 1. This allows

concluding that MCL analysis using p = 1.15 is able to identify a folded cluster

with structural properties similar to the NMR ensemble. Its occupancy is of 58

% at 298 K. Remarkably, at this temperature it exists another cluster with non-

negligible population (25%) that contains structures that are different from the

structural ensemble generated from the NMR data (Cα RMSD = 4.4 Å). In the

next section the consequences of the existence of this second cluster in the thermal

ensemble at 300 K are discussed. It is worth to note that in the MD simulations

used for the calculation of D, if the trajectory starts from a structure belonging to
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a cluster, it remains there for most of the simulation (few tens of ns). This means

that MD simulations are consistent with the description of metastable states given

by the MCL algorithm. In Fig. 4.3A, the most populated clusters obtained for

p = 1.15 are shown using a projection on three variables, the Cα contacts, the

α-helix fraction, and the correlations between consecutive dihedrals. Each color

corresponds to a different cluster, and the lowest free energy bin (attractor) of each

cluster is depicted as a sphere of the same color.

The properties of the clusters depicted in Fig.4.3A are summarized in Table 4.3.

Table 4.3: Selected properties of the Trp-cage clusters represented in
Figure 4.3A, at 300 K. Enthalpies and entropies are expressed with respect to
the folded cluster value. The occupancy of each cluster B has been calculated as
PB =

∑
α∈B e

−Fα/T/
∑

α e
−Fα/T where the summation at the numerator is extended

to all bins α belonging to the cluster B. The observables reported in the table are
evaluated using Eq. 2.32, where the summation is extended only to the bins α
that belong to a specific cluster. The RMSD is computed as the average RMSD
between the cluster structures and all the structures in 1L2Y PDB entry. The
number of helical residues has been computed according to Ref. [127] using the
program g helix in the GROMACS distribution.

1 2 3 4 5
% occupancy 58.3± 0.8 24.6± 0.7 7.0± 0.3 1.2± 0.1 2.8± 0.2
∆H (kJ/mol) 0.0± 1.9 5.0± 2.6 11.7± 3.8 13.8± 5.3 38.2± 5.3
T∆S (kJ/mol) 0.0± 1.9 2.9± 2.6 6.5± 3.8 4.1± 5.3 30.7± 5.3
Cα RMSD (Å) 1.82± 0.05 4.44± 0.03 6.76± 0.04 5.54± 0.06 6.08± 0.05
Trp SASA (Å2) 47.1± 0.6 70.5± 1.0 126.4± 0.7 116.7± 1.0 140.4± 0.8
Helical residues 5.31± 0.02 2.91± 0.03 3.86± 0.04 0.66± 0.03 1.70± 0.03

In Fig. 4.5, the hydrophobic contacts and the hydrogen bonds with the Trp6 are

shown schematically for each attractor. Selected proton distances are also displayed

for the three most populated clusters. A good agreement with the NMR unfolded

state distances reported in Ref.[108] is found. Cluster 1, as already anticipated,

resembles very closely the NMR structure. More details will be provided in the

following section. Cluster 2 has a Cα RMSD of ∼ 4.4 Å with respect to the NMR

structure, but it retains at least part of the native α-helix. The Trp SASA in this

cluster is 70.5 ± 1 Å2, which compares with the value of 47.1 ± 0.6 Å2 observed

in the folded cluster. This indicates that Trp is shielded from the solvent also in

cluster 2. Arg16 forms a π-stacking with Tyr3 (see Fig.4.3A) while Trp6 is in con-

tact with Pro12, Pro18, Gly11 and the aliphatic chain of Arg16 (see Fig. 4.5). As

outlined in Fig. 4.5, except for the Arg16 Hβ2-Trp6 Hη2 distance, the cluster 2 at-

tractor(reference structure) shows Pro12 Hγ2-Trp6 Hη2 and Arg16 Hβ3-Trp6 Hη2

distances shorter than those in the folded cluster. The nearest hyperpolarized[108]

Trp6 proton can be different in each cluster (e.g. in cluster 1 the Arg16 Hβ2-Trp6

Hε1 distance is shorter than Arg16 Hβ2-Trp6 Hη2). These distances are in very
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Figure 4.3: Metastable kinetic clusters of Trp-cage. Panel A: metastable sets
(clusters) detected by MCL method using p = 1.15. The colored spheres correspond
to the lowest free energy bins of each cluster. The corresponding structures are
shown with the same color code. Panel B: occupancy as a function of temperature
of cluster 1, 2, and 5.

good agreement with those found in the NMR experiments[108] for the unfolded

state. This cluster resembles the intermediate observed in a 100 ns implicit solvent

simulation (Ref. [111]. Cluster 3 (orange) still contains a short α-helix. The Cα
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contacts are reduced with respect to the folded cluster and the Trp is partially

solvent exposed. The reference structure of cluster 3 is similar to the state I of

Ref. [83] and to the intermediate structure found in Ref. [118], with the difference

that the Asp9-Arg16 salt bridge in cluster 3 is formed only in a fraction of the bins

belonging to the cluster. This may indicate that the salt bridge is rather unstable.

The Leu7 Hδ2-Trp6 Hε3 distance in the cluster 3 attractor is shorter than that

in the folded state. Also in this case the distance compare well with the NMR

experiments value[108]. This imply that the presence of cluster 2 and cluster 3

(the two most populated misfolded clusters) is consistent with the unfolded state

ensemble information reported in Ref.[108]. The other clusters show only a small

residual secondary content and can be generically referred to as “unfolded states”.

The attractor of cluster 4 is stabilized by the formation of the Asp9-Arg16 salt

bridge. The bins belonging to cluster 5 are mostly compact molten globule struc-

tures characterized by the presence of several hydrophobic and Cα contacts (even

more than in the native state) but small secondary content (see Fig. 4.3A and Fig.

4.4).

In the most stable bin of this cluster Trp6 is in contact with Pro17 and Pro18

residues (see Fig. 4.5). In Fig. 4.3B the occupancies of cluster 1, 2, and 5 are

plotted as a function of temperature. As expected the folded cluster (cluster 1)

increases its occupancy as the temperature decreases. Its population is 50 % at

310 K, a temperature that is consistent with the experimental melting point of

317 K[106, 107]. The error on the occupancies becomes large at T > 325 K,

indicating that the temperature extrapolation based on Eq. 2.33 is unreliable after

this temperature. The occupancy of cluster 5 is almost negligible at 300 K (2.8 %),

but it grows significantly with temperature(see Fig. 4.3B). The importance of this

will become clear when the kinetic properties of the system will be discussed. The

helical content decreases only slowly with temperature, consistently with REMD

results in explicit solvent[121]. On the average, only ∼ 1 α-helical residue melts

between 290 and 320 K.

4.2.2 NMR Properties of Trp-cage

In order to characterize in more detail the nature of the clusters described in the

previous section, it is useful to consider their NMR properties. This has been

done using semiempirical chemical shift calculations for each protein configuration

explored by the BE simulation. This kind of calculations are very powerful as they

enable the accurate prediction of chemical shift for proteins and can be used in

combination with atomistic simulations for protein structure determination [129].

In this work the protons chemical shift deviations (CSD) and ring current shifts

(RCS) of a specific configuration were estimated using the SHIFTS program[130]

version 4.1. As only cluster 1 and 2 are compact and show a significant content of

secondary structure, the investigation is here restricted mainly to these two clusters.

The CSD and RCS calculated for the full ensemble of bins (or for a specific cluster),

were evaluated first averaging in each bin and then averaging the result using Eq.
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Figure 4.4: Bins network topology at T=298 K projected on three dimen-
sions: Cα contacts, dihedral correlations and α-helix fraction. Each bin
is represented as a sphere whose dimension and color is associated with the free
energy (kcal/mol). The location of the folded state and the molten globule (cluster
5) lowest free energy bins are indicated in the figure.

2.32 for all the bins (for all the bins belonging to a specific cluster, see above). The

RCS temperature derivatives were calculated by finite difference in the temperature

interval 298−303 K. A 20 ns MD simulation starting from the NMR structure[104]

at 282 K was also used for calculating NMR properties. The variation of the α

protons RCS with the temperature was calculated by applying Eq. 2.32 and 2.33.

In Fig. 4.6A the α protons CSDs of cluster 1 are compared with the experimental

results (full circles). The correlation between theoretical and experimental NMR

CSDs is rather good (R2 = 0.96), while cluster 2 shows a much smaller correlation

with experiments, especially for protons that have negative CSDs. The correlation

with NMR data is even smaller for all the other clusters. This confirms that the

cluster classification deriving from Markov cluster analysis accurately discriminates

between the folded state (cluster 1), an unfolded state with several native-like

features (cluster 2), and all the rest. The correlation with experiments is retained

using in the average the full ensemble of bin (R2 = 0.95).
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Figure 4.5: Trp6 interactions in the clusters reference structures of Trp-
cage. Hydrophobic contacts within 3.9 Å and hydrogen bonds(Å) are displayed.
The distances(Å) between Leu7, Pro12, Arg16 and Trp6 selected protons are shown
for the 3 most populated clusters. The corresponding values can be compared
with the unfolded state NOE contact distances reported in Ref.[108]. The nearest
hyperpolarized Trp6 protons in the NMR experiment are selected for measuring
distances. Short Ile4-Trp6 proton distances[108] (4-5 Å) are not reported in the
figure since they are found mostly in open random-coil like structures and in some
more compact cluster with population < 1%. This figure was generated using the
program LIGPLOT [128]

Even if correlation is good, it has to be noted that the proportionality factor

between theoretical and experimental CSDs is 0.46 in the full ensemble of bins and

0.6 in cluster 1. To investigate the origin of the variations in the proportionality

factor two 20 ns equilibrium MD simulations have been performed, at 282 K (ex-

perimental temperature) and at 300 K, starting from the NMR structure and with

the same computational setup used in the BE simulation. At both temperatures

the proportionality factor with experimental CSDs is 0.8 instead of 1, therefore 0.8

has to be considered the reference value for our computational setup. The optimal

proportionality factor of 0.8 is obtained if the CSDs are computed on the lowest

free energy bin of cluster 1. The slope difference between 0.6 (cluster 1) and 0.8

may be ascribed to small inconsistencies between the ensemble of structures gen-

erated with BE and by an unbiased MD starting from the NMR structure. The

further slope variation when the calculation is extended to the full ensemble of bins

is most likely a consequence of calculating NMR properties at 298 K instead of at

the experimental temperature of 282 K where the population of cluster 1 is larger.

Using a similar procedure (see chapter 2) RCS and its temperature derivative
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Figure 4.6: Simulated NMR chemical shift deviations and ring current
shifts in Trp-cage. Panel A: correlation between experimental and calculated α
protons CSD for the cluster 1 (black circles), the lowest free energy bin (empty
circles), and the ensemble obtained from a simulation started from the NMR struc-
ture at 282 K (black squares) and 300 K (empty squares). The continuous and
dashed lines are obtained from a linear regression on the black circles and the
squares, respectively. The thin dashed line corresponds to a proportionality factor
of 1 between experiment and theory. Panel B: correlation between protons ring
current shift temperature derivative and the corresponding ring current shift value
evaluated at 298 K. Results are shown for α protons (empty circles) and side chain
protons (black circles). Ring current shift temperature derivative is calculated as
a finite difference between 298 and 303 K using the chemical shift temperature
extrapolation obtained using Eq. 2.32 and 2.33.

were also computed. It is worth to note that most of the large CSD are due to the

Trp RCS[104]. The protons whose RCS is large are also those whose RCS depends

more strongly on T , in excellent agreement with the experimental data[104]. The

α protons RCS temperature derivatives as a function of the RCS are plotted in

Fig. 4.6B. The results are plotted as a function of the RCS estimated at 298 K.

The comparison is performed at 298 K and not at the experimental temperature
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of 282 K in order to avoid error propagation that is unavoidable if Eq. 2.33 is used

for extrapolating the results for a large temperature difference. Despite of this,

the two observables correlate linearly (R2 = 0.94 for the α-protons), consistently

with experiments[104]. Side chain protons in the C-terminal part of the protein

fall on the same correlation line, also in agreement with the experiments[104]. A

few protons deviate significantly from this linear behavior. The most significant

deviation are observed for Pro12-δ2, Pro12-δ3, and Gly11-α3, the last two being

also reported experimentally[104]. The RCS of Pro12-δ3 and Pro12-δ2 is large,

while their RCS derivative is almost zero. The cluster decomposition proposed

here can be used to elucidate the presence of these outliers. In fact, the RCS

of Pro12-δ3 is −0.53 ± 0.01 p.p.m. and −0.97 ± 0.02 p.p.m in cluster 1 and 2

respectively, while other protons (except Pro12-δ2 and Gly11-α3) have RCS which

are less negative in cluster 2 than in cluster 1 or similar in the two clusters. The

RCS of Gly11-α3 has a similar value in both clusters. This significant difference

derives from the fact that Pro12-δ3 and Pro12-δ2 in cluster 2 are much closer to

Trp than in cluster 1. Since, increasing the temperature, the relative population of

cluster 2 and 1 changes (see Fig. 4.3B), the RCS of Pro12-δ2, Pro12-δ3 and Gly11-

α3 changes with temperature less than the RCS of other protons. In view of these

results, the anomalous behavior of Pro12-δ3 and Gly11-α3 observed experimentally

can be considered a signature of the presence of cluster 2 in the thermal ensemble

of Trp-cage.

4.2.3 Dynamical properties: simulated Trp SASA T-jump

experiment

The fluorescence relaxation after a temperature jump (T-jump) was used in Ref.

[105] to infer information on the Trp cage folding kinetics. The fluorescence prop-

erties of the system are here estimated by computing the Trp solvent accessible

surface area (SASA), which is known to correlate with fluorescence[131]. The Trp

SASA was calculated for each bin averaging over all the configurations belonging to

a bin using the program g sas in the GROMACS distribution[132]. The Trp SASA

relaxation after a temperature jump (T-jump) was estimated using the rate model.

The T-jump experiment was mimicked generating 1,000,000 initial bins from an

equilibrium distribution at 291 K. The bins free energies at 291 K used for gener-

ating the distribution were evaluated applying Eq. 2.33. Starting from each initial

bin a KMC[123, 124] trajectory of 100 µs was run at 298 K. The Trp SASA was

then calculated as a function of time averaging over this ensemble. The influence

that the error on the free energies and on the enthalpies has on the results has been

checked generating several kinetic models in which Fα and Hα were defined adding

to the original values a random number drawn from a Gaussian distribution with

standard deviation given by the error interval. A simulated Trp SASA T-jump

experiment was repeated for each model. The error on the relaxation time was

estimated from the standard deviation of the measures on the different models.
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The result shows a smooth decay to an asymptotic value on the time scale of the

microseconds.

Figure 4.7: Simulated Trp-SASA T-jump of Trp-cage Simulated TRP SASA
evolution as a function of time at 298 K starting from an initial distribution at 291
K (black line). The red line is a double exponential fit to the data. The two time
constants of fit are τ1= 248 ns, τ2= 2313 ns. The diffusion matrix entering in the
kinetic model was calculated using several MD simulations for a cumulative time
of ∼ 500 ns. A time lag of 12 ns was used in the maximum likelihood approach for
calculating D.

A double exponential decay model describes very accurately the data (R2 =

0.9986, see Fig. 4.7). The two time constants are τ1 = 248, and τ2 = 2313 ns. The

large gap between the first and the second time constant is a strong indication of

two-state behavior. The value of τ2 is in agreement with the experimental relaxation

time of 3.1 µs for the florescence T-jump[105]. This shows that the rate model is

capable of reproducing accurately the dynamics of the real system, at least for

what concerns the relaxation of fluorescence. The microscopic rearrangements that

determine τ2 will be discussed in detail in the next section. The influence that

the error on the free energies and on the enthalpies has on the results is ∼ 500

ns. The error deriving from neglecting the position dependence of D is ∼ 500 ns

(see section 4.2, paragraph bin-based kinetic model and tables 4.2, 4.1). Thus the

overall error on the relaxation time is
√

(5002 + 5002) ∼ 700 ns. Including the

correction suggested in Ref.[133] to take into account the unphysical viscosity of

TIP3P water[134] the relaxation time is τ2 = 3763±1200 ns, still in fair agreement

with experiments.

4.2.4 Trp-cage folding dynamics

The rate model constructed for the Trp cage was shown in the previous section to be

in fair agreement with the experimental two state folding kinetics[105]. Nevertheless

MCL shows the presence of 5 relevant metastable states that are compatible (at
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least three of them) with other experimental observations [104, 107, 108]. Here we

use this model to investigate the folding mechanism of the Trp cage in order to

reconcile the two state kinetics with the presence 5 relevant clusters.

The characteristic times of the system are related to the eigenvalues of the rate

constant matrix. Consistently with what is found for the Trp SASA relaxation, the

second largest eigenvalue corresponds to a characteristic time of 2447 ns. The third

eigenvalue corresponds to 434 ns, with a gap of 2013 ns from the first, consistently

with a two state behavior[105]. The second eigenvector has large positive compo-

nents in cluster 1 and 2 and large negative components in cluster 5. This suggests

that the longest relaxation time of the system is associated to a transition between

these states. In order to analyze more quantitatively this issue, the rates for the

transitions between the clusters found by Markov cluster analysis were extracted

from a very long KMC simulation (τKMC = 1.5 seconds). For two clusters A and

B with occupancy PA and PB, the rate constant to go from A to B was calculated

counting the number of times NAB that a trajectory goes from A to B without

passing from any other cluster during the KMC simulation. The rate to go from

A to B was estimated as kAB = NAB/(PA · τKMC). To minimize the number of

recrossing, the KMC trajectory is assumed to visit a cluster any time it visits any

bin belonging to the group of lowest free energy bins containing 70% of the cluster

population. Bins that do not fall in this definition were considered as transition

states. The transition rates obtained in this manner are represented in Fig. 4.8.

For clarity, all the clusters whose occupancy is below 1% are omitted from the

figure. The equilibration between cluster 1 and 2 is rather fast and transition times

to cluster 3 are also in the sub-microsecond domain, but when the system reaches

cluster 5 on average ∼ 2 µs are necessary to return to the folded cluster. The

folding pathways schematized in figure are consistent with the two routes proposed

by Ref. [83], except for the transitions involving cluster 5. The folding pathway

initiating from cluster 4 and passing from cluster 3 is characterized by the early

formation of an α-helix and resembles the pathway passing from state I in Ref. [83].

The pathway passing from cluster 2 is instead characterized by the formation of

several hydrophobic contacts, while the α content remains on average lower. This

resembles the pathway passing from state L in Ref. [83]. If the molten-globule

state (cluster 5) is neglected the folding and unfolding rates are compatible with

those reported in Ref.[122], considering the difference in the force field.

4.3 Discussion

Trp-cage is a designed miniprotein that, due to its small size and fast folding

rate, has been the object of several theoretical investigations. Here this system is

analyzed with a new method, introduced in chapter 2, that allows deriving a kinetic

model of the system by analyzing a set of biased MD trajectories. The model

shows the presence of several metastable states (clusters). The most populated

one can be classified as the folded state. The second most populated cluster has a
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Figure 4.8: Schematic representation of the Trp-cage folding dynamics.
Times (inverse of rates) for the transitions between the relevant clusters are shown
on the arrows. The uncertainty on each transition time due to both the error on the
free energies and the position-dependence of D is at most 40%. Only the clusters
whose population is higher than 1% are shown. Continuous arrows correspond to
direct transitions between clusters that occur on a time smaller than 1µs. Dashed
arrows correspond instead to transition that occur on a time larger than 1µs or
taking place through other intermediate low-populated clusters, not represented in
the Figure.

Cα RMSD of ∼ 4.4 Å from the NMR structure and retains part of its secondary

structure (see Fig.4.3A). In this cluster the Trp is more strongly packed between

Gly11 and Pro12 than in the NMR structure and its population relative to cluster 1

increases with temperature (see Fig.4.3B). This can explain the anomalous behavior

of the temperature dependence of the CSD of Pro12-δ3 hydrogen atom observed

both experimentally[104] and in the simulated NMR experiment (see Fig.4.6B).

The cluster 2 and cluster 3 reference structures are consistent with experimental

unfolded state distances[108] (see Fig.4.5). The presence of these two clusters is

also in agreement with the strengthening of proline(s)-Trp excitonic interactions

with temperature and the broad α-helix melting observed in Ref.[107].

In spite of the presence of several intermediates both the simulated T-jump

experiment (see Fig. 4.7) and the spectrum of the kinetic matrix associated with

the rate model are consistent with a two state kinetics[105]. The calculated time

constant of the folding process is ∼ 2.3±0.7 µs (or ∼ 3.8±1.2 µs including the cor-

rection of Ref. [133]) in fair agreement with the experimental relaxation time[105].

To investigate the folding dynamics using the kinetic model we derived a folding

mechanism which involves the detected intermediates (see Fig.4.8). Starting from
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open structures, the folding process can follow two main routes. One of them con-

sists in an earlier formation of the N-terminal α-helix (cluster 3) followed by the

hydrophobic collapse, while the other involves first the formation of hydrophobic

contacts with less helical content (cluster 2) and then the completion of both sec-

ondary and tertiary structure. This is in agreement with the pathways found in

Ref. [83]. The time required to undergo these transitions is in the sub-microsecond

time domain, which is less than the slowest relaxation time found in the simulated

T-jump experiment and more consistent with the third eigenvalue of the kinetic ma-

trix. Indeed, the folding mechanism (see Fig.4.8) shows that, if Trp-cage reaches the

molten globule state, more than 2 µs are necessary to reach the folded state. This

implies that the experimental folding time is ultimately determined by the slow

equilibration between the first two clusters and the compact molten globule state

that acts as a kinetic trap. In this state no secondary structure element is present,

but a hydrophobic core with several tertiary contacts is formed. In Ref.[135] the

Pro12Trp mutation brings to an increased stability of the folded state and a faster

folding time of ∼ 1 µs. This seems to be in agreement with the folding mechanism

presented here, since the mutation would strongly stabilize cluster 1 and cluster 2

but not the molten globule cluster. A possible way to assess experimentally the

presence of the molten globule could be a mutation of Pro17 to a more polar residue

(e.g. Asn) or a chemical modification of this residue as the lower rigidity associated

to the absence of the Pro17 ring could destabilize the folded state[136]. In fact in

the attractor of cluster 5 Pro17 shows a strong interaction with Trp6, and this

interaction does not play a key role in other relevant clusters (see Fig. 4.5).



CHAPTER

FIVE

The Folding Free Energy Landscape of

Insulin chain B

In this chapter we present a fully atomistic model of the structural transitions and

possible folding pathways of insulin.

Insulin is an important hormone that interacts with the insulin receptor and

this regulates the entrance of glucose in the cells. High sugar levels in the blood

are a result of reduced secretion or activity of insulin, which can have detrimental

effects on the human metabolism[137]. The insulin monomer is composed of two

chains, A and B, containing 21 and 30 amino acids, respectively. The monomer

contains three disulfide bonds, one is an intra-A chain disulfide A6-A11 and two

inter-AB chain disulfides, A7-B7 and A20-B19, which clamp the A chain helices at

the end of the central B chain helix. At micromolar concentrations insulin forms

dimers, while in the pancreas it is stored as a hexamer in the presence of zinc ions.

Upon entrance into the serum, the hexamer dissociates and binds to its receptor

as a monomer[138].

There are many structures currently available of insulin and the general bind-

ing mode of the insulin-receptor complex is known[139]. The secondary structure

features of chain B of insulin are commonly defined as the N-terminus (residues

1 to 8), central α-helix (residues 9 to 19), a characteristic type-I β-turn (residues

20 to 23) and an extended C-terminus (residues 24 to 30). There are several

known conformational states for the N-terminus of chain B.[140–144] The princi-

pal conformations have been designated as the R-state and T-state,[145] although

additional conformations have also been identified.[146] The T-state is associated

with insulin’s activity and is believed to be representing the monomeric solution

state.[147] In the T-state, chain B consists of the α-helix (9 to 19) and an extended

N- and C-termini regions.[148, 149] In the R-state, all N-terminal residues form

α-helix, joining with the central helix.[150, 151] Another known variation is the

“freyed” or Rf-state, where the α-helix is only present for some of the N-terminal

residues (4 to 8) in addition to the central helix. A schematic showing each of the

described states is presented in fig. 5.1.

61
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Figure 5.1: Insulin chain B experimental structures. An overlay of X-ray
crystallographic structures of insulin chain B, showing experimentally observed
states: Rf state (1ZNI), R state (1EV3), O state (1B9E) and T state (1LPH).

Chain B of insulin is believed to retain much of its structure independently of

chain A.[52–54] Recent study by Budi et al. confirmed this property as they looked

at the effect of thermal and chemical stress on isolated insulin chain B and com-

plete insulin monomer[152, 153]. Structure-activity studies of insulin indicate the

C-terminus of chain B as integral to receptor information,[55–57] and also suggest

that the conformation of the C-terminus is influenced by the structure of the N-

terminus.[140, 141, 154] The inherent flexibility of the N- and C-termini regions of

chain B of monomeric insulin was observed both by experimental and theoretical

studies. Various investigations of insulin,[155, 156] including that on a preliminary

crystallographic structure of the native insulin monomer at low pH,[157] and also on

a solution structure of isolated chain B determined by NMR spectroscopy,[52, 54]

confirmed both termini’s mobility. Previous theoretical simulations, molecular dy-

namics (MD) using the GROMOS 37c forcefield showed conformational flexibility

of insulin chain B, reporting a high degree of movement in aqueous solution of both

monomer and dimer,[158] similar to the simulations performed by Zoete and co-

workers.[159] The effect of electric field on the flexibility of the chain was recently

investigated, where it was found that oscillating field had more disruptive effect,

while static field stabilized the secondary structure of chain B.[160, 161] Investi-

gation performed by Legge et al.[162] yielded information about the structure and

dynamics of insulin with respect to its biological behaviour by performing multi-

ple MD simulations with CHARMM27 forcefield in explicit solvent and ambient

conditions. Their work highlighted the importance of packing interactions for the
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conformational behaviour of chain B of insulin, specifically structures stabilized

by localized hydrophobic interactions. Although insulin has been the subject of

a large number of experimental and computational investigations, studies of the

monomeric or isolated chain B structure and dynamics in solution have been lim-

ited by the monomers’ susceptibility to self-associate into oligomers. To the best

of our knowledge there is no published study that has successfully simulated the

folding of isolated chain B of insulin in explicit solvent.

In this chapter, BE and the accompanying analysis methods introduced in chap-

ter 2 were used to investigate the folding mechanism of insulin, in particular the

folding pathways of its chain B in explicit solvent. The structural characteriza-

tion and biological relevance of the conformations revealed by the simulations is

described in the results section of this chapter.

5.1 Computational setup

In this study we utilized the Gromacs suite of programs[163] modified to perform

bias exchange metadynamics. The AMBER03 forcefield[64] was used for all calcu-

lations as it has been previously shown to give a good representation of the exper-

imentally observed behaviour of chain B of insulin.[164] The time step for all the

simulations was set to 2 fs. Atom based cutoff of 8 Å was used for nonbonded van

der Waals interactions. The Particle Mesh Ewald (PME) summation method[165]

was applied to treat long-range electrostatic interactions. All bond lengths were

constrained to their equilibrium value with the LINCS[67] algorithm. Constant

temperature was achieved by coupling the system to a Nose-Hoover thermostat[70]

with a characteristic frequency of 1 ps. Constant pressure was achieved by coupling

the system to a Berendsen barostat[71] with a relaxation time of 4 ps.

The starting structure for this study was an extended conformation sampled in

a previous work on the effect of electric field[160] on the conformation of porcine

insulin (PDB entry 1ZNI[150]). The protein was enclosed in a periodic box of 46 Å

70 Å 46 Å size, then solvated with 4220 TIP3P[65] water molecules, corresponding

to water density of ∼1.0 g/cm3. The positive charge of the protein was neutral-

ized by adding two Cl- counterions. The whole system was energy minimized to

remove steric clashes using the steepest descent algorithm after which 200 ps of

NPT molecular dynamics at 298 K and 1 atm were performed to equilibrate the

protein and solvent.

For the BE simulations seven generalized reaction coordinates were applied,

none of which require a priori knowledge of the folded state. A neutral walker was

also implemented, which is not biased by any metadynamics potential, i.e. evolves

as a classical MD simulation, but is allowed to exchange conformations with the

other replicas. The neutral walker statistics are approximately canonical as was

shown in reference.[38]
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5.1.1 Collective Variables

The seven collective variables are used in this study for both BE simulation and

subsequent analysis:

• N hb is the number of backbone H-bonds ;N Cγ is the number of Cγ contacts

and N sb is the number of salt bridges. They are defined as

Nhb,Cγ,sb =
N−1∑
i=1

N∑
j=i+1

1− r8
ij

r8
0

1− r10
ij

r10
0

(5.1)

where r ij is the distance between atoms i and j. The distance constraint r 0,

for N Cγ,N sb and N hb was set to 5.0, 4.5 and 2.0 Å, respectively.

• Ψα1 is the α fraction of the ψ backbone dihedral angles applied to the 1st

half (2VNQHLCGSHLVEAL15) of the protein; Ψα2 is the α fraction of the ψ

backbone dihedral angles applied to the 2nd half (16YLVCGERGFFYTPK29)

of the protein. They are defined as

Ψα1 ,2 =
N∑

i=1

1

2
[1 + cos (ψi − ψ0)] (5.2)

where i runs over all the residues belonging respectively to the 1st half of the

protein (Ψα1) and the 2nd half of the protein (Ψα2). ψ0 = - 50

• Ψcorr1 is the dihedral correlation applied to the 1st half; Φcorr2 is the dihedral

correlation applied to the 2nd half of the protein. They are defined as

Ψcorr 1,2 =
N∑

i=2

√
[1 + cos2 (ψi − ψi−1)] (5.3)

where i runs over all the residues belonging respectively to the 1st half of the

protein (Ψcorr1) and the 2nd half of the protein (Φcorr2).

The terminal residues were excluded from these CVs to permit their natural

flexibility.

The number of hydrogen bonds in N hb were calculated based on contacts be-

tween the HN and O backbone atoms of the protein. The potential salt bridge

pairs in N sb were considered between the C of the carboxylic groups and the Nζ of

Lysine and the Cζ of Arginine.

The rationale for choosing these CVs is that they are relevant for the description

of possible free energy barriers between peptide conformations. The free energy

barrier associated with the formation or disruption of H-bonds is described by the

N hb variable. The backbone conformational changes are affiliated with the Ψα1,

Ψα2, Ψcorr1 and Ψcorr2 variables. The N Cγ variable describes barriers associated

with the formation of hydrophobic clusters, and the salt bridge variable describes
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barriers associated with the formation of salt bridges. These variables are similar

to those used in chapter 4 for studyng the Trp-cage folding.

Each simulation was performed with 8 replicas, one neutral and one for each

collective variable. Exchanges between each replica were allowed every 20 ps of

MD simulation. Gaussian potentials of height 0.1 kJ mol-1 were added to the

time-dependent potential every 500 steps (1 ps) during the whole MD simulation.

The width of the Gaussians, which ultimately determines the resolution of the free

energy reconstruction, for each collective variable N hb, N Cγ, N sb, Ψα1, Ψα2, Ψcorr1

and Ψcorr2 was chosen to be 2.0, 2.0, 0.5, 0.8, 0.8, 0.5 and 0.5, respectively. The rate

and accuracy of exploration of the free energy surface depends on the chosen width

and height of the Gaussians, in the same manner as in the ordinary metadynamics.

Each replica was evolved for 96 ns, producing accumulated total of 768 ns.

5.1.2 Molecular docking

In this work we have used molecular docking to predict how insulin chain A and

insulin chain B may interact (see sec. 5.2.4). The HADDOCK program[166, 167]

was used to perform molecular docking simulations. This tool uses bioinformatics

and experimental information to define distance restrains that are then used along

the docking of two up to 6 biomolecules. The used procedure for docking with

HADDOCK is composed of two steps: 1) randomization of orientations and rigid

body energy minimization (EM); 2) semirigid simulated annealing (SA) in torsion

angle space. From one step to the other, the structures are ranked in terms of

HADDOCK scoring, and the best ones may proceed to the next step. This scoring is

a weighted sum of electrostatic, van der Waals (energetics obtained from a modified

version of the OPLS force-field[168]), desolvation energy, buried surface area and

terms that take into account the artificially added restraints.

In the first stage the two molecules are separated by 25 Å and rotated randomly

around their center of mass. Then cycles (in this work we used 20) of rigid body

EM are performed, where both molecules are rotated, followed by two cycles of

rotational and translational rigid body minimization.

The best structures in scoring terms, (tipically 200 structures) will proceed to

stage 2, a semi-flexible simulated annealing in torsion angle space. This semi-

flexible annealing consists of several stages: a) high temperature rigid body search

(2000K, 500 steps) b) Rigid body SA (cooling step from 2000K to 500K, 500 steps)

c) Semi-flexible SA with flexible side-chains at the interface (from 1000K to 50K,

1500 steps) d) Semi-flexible SA with both backbone and side-chains flexible inter-

face (from 500K to 50K, 1500 steps).

Finally, the docking solution are clustered (based on pairwise backbone RMSD

at the interface) and sorted based on HADDOCK score.
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5.2 Results

With the computational setup described above, we performed BE simulation of

chain B of insulin at 298 K, starting from an extended conformation using 8 replicas.

The the data produced by this simulations are analyzed following the approach

presented in chapter 2

5.2.1 Bin-based thermodynamic model

Cluster analysis was performed on the statistics accumulated in the last 40 ns of the

simulation and ˜17000 bins were found using a cubic side dsj=2σj. The population

of each bin was assigned by the WHAM procedure described in chapter 2 and their

free energies were determined. Several values of filling time were examined, such as

30 ns, 35 ns and 40 ns. The results from these filling times were in good agreement,

where all of the most populated bins showed similar population, with variation

below T. The filling time of 35 ns was used for the rest of the analysis.

The kinetic model was applied to construct the transition matrix between bins

used in the MCL method. The MCL method enabled the determination of the

clusters of the system. The bins contained within a cluster are structurally similar.

The transitions between bins that belong to the same cluster are faster compared

to the transitions occurring between the clusters. The parameter p, used in the

MCL method controls the height of the energy barriers for clustering. The MCL

calculation was performed with different values of the parameter p = 1.08, 1.12 and

1.14. Each p was also applied to the free energies derived at the different filling

times. We found that the population of the clusters obtained from the various

filling times is consistent and all most populated clusters are maintained.

With p = 1.08 three clusters were obtained with population of 70%, 25.5% and

4.5%, respectively. As they are obtained with a low p value a high free energy

barrier is expected between them. The most populated cluster (molten-globule 1)

contains bins that show several salt bridges between Glu13, Glu21, Lys29, Arg22

and the terminal residues. The second most populated cluster (molten-globule 2)

is stabilized primarily by hydrophobic contacts and the last cluster contains mostly

structures of the native-fold nature. For p = 1.12, molten-globules 1 and 2 split

into several sub-clusters for a total of 11 clusters with population above 1%. At p

= 1.14 the most populated clusters were not fully divided so we chose the results

at p = 1.08 and p = 1.12 for structural characterization and analysis.

The low free energy bins for each of the three clusters obtained for p = 1.08 are

shown in fig. 5.2.

The most populated cluster contains structures mainly governed by electrostatic

interactions, where the charged sidechains of the most stable bin (see fig. 5.2a) are

closely interacting with the terminal regions of the protein. In the low free energy

bins of molten-globule 2 (fig. 5.2b,c), residues Phe24 and Phe25 are packed into a

compact hydrophobic core (less than 1 kcal/mol from the lowest free energy bin).

This implies that these two residues play an important role in the stabilization of
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Figure 5.2: Low free energy bins representative structures of the three
clusters determined using p = 1.08. Molten-globule 1 a) Most stable bin of
the cluster, where all charged residues interact with the N and C termini of the
protein, giving rise to strong electrostatic contacts. Molten-globule 2 b) Most stable
bin of the cluster, where Phe25 (green) is buried in a hydrophobic pocket, while
Phe24 (yellow) is partially exposed to the solvent. c) This structure is only 0.9
kcal/mol from the most stable bin and shows the presence of a hydrophobic core in
which Phe24 (yellow) is present. Phe25 (green) is partially solvent exposed in this
cluster. d) In this bin the Tyr16 (orange) residue and partially Phe24 (yellow) are
buried in a hydrophobic pocket. The hydrophilic part of Tyr16 is directed toward
the Arg11, Gln21, and the terminal salt bridges. e) Lowest free energy bin in the
folded state cluster. f) Bin present between the native-like and molten-globule 2
cluster having the N-terminal α-helix unfolded.

the cluster. In the less stable bin Tyr16 can be found shielded from the solvent

(see fig. 5.2d). Part of the central α-helix is still retained in the structures within

the molten-globule 2 cluster. Possible role of the above mentioned residues in

the folding mechanism of chain B is discussed later. The most stable bin of the

native-like cluster resembles the Rf-state of chain B (see fig. 5.1, fig. 5.2e, fig.

5.2.1). The N-terminal α-helix can be found unfolded in some less stable bins (see

fig. 5.2f) belonging to the same cluster or near the border of the native-like and

molten-globule 2 clusters. This structure resembles states T and O of chain B of

insulin shown in fig. 5.1. Detailed structural comparison with experimental data

was performed on the conformations contained in the folded state cluster and the
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results are presented below.

Thermodynamic properties of the three clusters are listed in table 5.1.

Table 5.1: Thermodynamic properties of the clusters found using the
MCL algorithm with p= 1.08. All thermodynamic properties were calculated
with respect to the native-like clusters.

Molten globule 1 Molten globule 2 Native-like
%occupancy 70.0 ± 8.0 25.5 ± 1.0 4.5 ± 1.0

∆H (kcal/mol) 1.4 ± 0.3 7.0 ± 1.0 0.0 ± 0.8
∆S (kcal/mol K) 0.010 ± 0.0015 0.027 ± 0.004 0.0 ± 0.003

All observables and error evaluations are calculated according to the method

described in chapter 2. Both molten-globules 1 and 2 show an enthalpic penalty

with respect to the native-like cluster, although for molten-globule 1 the difference

is only slightly larger than the standard error. The two molten-globules are entrop-

ically stable. As expected the cluster with the largest entropy is molten-globule 2,

since it has the highest content of hydrophobic contacts.

Figure 5.3: Occupancy (%)of the three clusters found for p = 1.08 as a
function of temperature. A simple linear extrapolation from the calculated bins
enthalpy and entropy at 300 K have been used to obtain the clusters occupancy
versus temperature.

In fig. 5.3 the occupancy of each cluster as a function of temperature is reported.
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According to its entropy content, the population of molten-globule 2 increases as

temperature is raised. The native-like cluster occupancy does not vary strongly

with the temperature and the two molten-globules show complementary behaviour.

The presence of this type of conformations is supported by NMR studies performed

by Hua et al.[169, 170] which found local differences between the solution structures

of insulin and the crystal structure, suggesting that the biologically active form of

insulin is a molten-globule.

Fig. 5.4 shows the eight most populated clusters obtained for p = 1.12, repre-

sented in three dimensions, as contours around the most populated state: the C-

gamma contacts, the α-dihedral fraction in the 1st half of the protein (2VNQHLCGSHLVEAL15)

and the α-dihedral fraction in the 2nd half of the protein (16YLVCGERGFFYTPK29).

Each color corresponds to a different cluster. The lowest free energy bin of each

cluster is represented as a sphere of the same color and its 3D structure is depicted

in the order of increasing energy.

Although the most populated bin in our simulations is not the native state of

chain B, we sampled structures resembling the R and Rf-state presented in fig. 5.1.

It is evident from fig. 5.4 that there is a large energy barrier i.e. a kinetic

gap, between the folded state cluster and the other partially folded clusters. The

structural stability of the folded state could depend on factors, such as the bind-

ing to chain A. Specifically, insulin’s three disulfide bridges (A6-A11, A7-B7, and

A20-B19) play a critical role in the protein synthesis, structure and stability. To

investigate the effect of non-native disulfide pairing on insulin’s structure and bio-

logical activity, Hua et al.[171] prepared by direct chemical synthesis two insulin

isomers having disulfide bonds between the following pairs: (1) A7-A11, A6-A7,

A20-B19 and (2) A6-A7, A11-B7, A20-B19. Using CD and NMR spectroscopy

they found that the engineered isomers have less helical content compared to na-

tive insulin. Their thermodynamic studies by CD-detected guanidine denaturation

demonstrated that their non-native disulfide paired isomers are markedly less stable

than the native insulin, suggesting that this instability is in qualitative agreement

with the isomers’ lower α-helix content.

5.2.2 Structural analysis of the folded state cluster

Structural analysis was performed on the folded structures identified in cluster 5 of

fig. 5.4 which exhibit conformational elements typical for the X-ray crystallographic

states of chain B shown in fig. 5.1. The equilibrium averages of the observables

considered were calculated using the free energies obtained using eq. 2.32

To the best of our knowledge the structure of isolated chain B of porcine insulin

has not been determined. Most of the published work has been performed on engi-

neered insulin monomer[172] and NMR studies have been presented on mutated[54]

and oxidized[52] isolated chain B. A comparison of the structures contained in our

simulated folded state cluster have been performed with the solution NMR struc-

ture of isolated chain B of insulin,[52] X-ray crystallographic structure[150] and
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Figure 5.4: Metastable sets (bin clusters) detected by MCL using p = 1.12.
The clusters are shown as colored contours, with the colored sphere corresponding
to the lowest free energy bin of each cluster. The respective structures are presented
above with the same color code and ordered based on their free energy (1 is the
lowest, 8 is the highest free energy).

Figure 5.5: The lowest energy structure (blue) from the folded state
cluster superimposed with the X-ray crystallographic structure of chain
B, PDB code 1ZNI (pink).

previous molecular dynamics study on chain B which reproduced experimental

conformations.[162, 164] Conserved structural features of chain B were identified
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and their RMSD was calculated from the crystallographic Rf-state. The inter-

proton distance violations of the folded structures based on nuclear Overhauser

enhancement (NOE) distance restraint data were also analysed in detail.

The data derived from the NMR structure of bovine insulin chain B in solution

provide a useful benchmark for evaluating the conformations sampled during the BE

simulations. Hawkins et al.[52] derived NOE constraints from a 250 ms NOESY

spectrum of the oxidized chain B at 500 MHz, 300 K and pH of 2.2 to 2.5. As

coordinates for the structure were not available, NOE distance restraints were used

for validation of the conformations obtained.

In the folded state cluster, on average 13 out of 309 restraints were violated,

with only 6 severely over their upper limit (violation > 1.0 Å). A mean interproton

distance violation of 0.13 Å was also calculated. Most violations were found at the

C and N termini regions. The same NOE distance restraints, as implemented in ref

[164], were used to validate the structures sampled. The total number of violations

in the two individual simulations was 13 and 9 respectively, with 7 and 6 violations

considered severe. Several studies have alluded to the difficulty in the structural

definition of the C-termini region of chain B due to its inherent flexibility.[172]

Moreover, studies have shown that receptor binding must be accompanied by a

major conformation change in the carboxyl terminus of chain B.[173]

To further inspect the conformations from the folded state cluster, we calculated

the average equilibrium backbone RMSD of the important structural elements of

chain B, such as the α-helical region (residue Ser9 to Cys19) and β-turn region

(residue Gly20 to Gly23). The central helix of chain B plays a key role in the

insulin’s activity, while the conservation of the β-turn between residues Gly20,

Glu21, Arg22 and Gly23, plays an important part in the folding and conformation

stability.[174] The Gly20 to Gly23 turn is integral to the chain B secondary struc-

ture because it enables the C-terminal β-strand to pack against the central α-helix.

Although the turn is more flexible than these adjoining structural elements, its

pattern of hydrogen bonds and dihedral angles is essentially identical among multi-

ple crystal forms.[140–144] Therefore, RMSD calculations were performed from the

crystallized Rf-state of chain B to investigate the stability of the helix and β-turn

within the folded state cluster. An overlay of the helical region of the lowest energy

bin from the folded state cluster (structure 5, fig. 5.4) and the crystal structure of

chain B, taken from the PDB code 1ZNI is depicted in fig. 5.4.

The average RMSD over the helical region in the folded state cluster is 2.2

Å, where that for the lowest energy state is 1.7 Å. This result is illustrated by

the observed alignment between the lowest energy state and the crystal structure,

shown in fig. 5.4. We also found excellent agreement with the RMSD calculated

from the classical MD calculations performed in ref [164] on the folded crystal

structure, where an average RMSD of ˜ 1.9 Å was obtained for 2 independent 50

ns simulations.[164] The turn region between residues 20 and 23 was calculated to

have an average RMSD of 1.8 Å, with the lowest energy bin having deviation of 1.3

Å. Overall, these results are in agreement with experimental and theoretical data
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obtained by a different approach.

The key elements in directing insulin-receptor interactions and in formation

of insulin dimers are the well conserved Phenylalanine residues at B24 and B25.

Mutational analysis has been extensively applied to investigate the importance of

these residues in the hormone insulin (see references in [175]). The conservation of

secondary structures and support in intermolecular association are two distinct roles

associated with the benzyl side chains of Phe24 and Phe25.[175–178] It has been

suggested that Phe24 interacts with the hydrophobic core of insulin, specifically

with B12, B15 and the A20-B19 disulfide bond. Furthermore, Phe24 side chains

have shown to benefit the stability of the β-turn at B20-B23,[173] however it may

not interact directly with the receptor, unlike Phe25 which is more exposed to the

solvent and is easily accessible for receptor interaction. We support these findings

by the observed conformations of Phe24 and Phe25 in the folded state (structure

5, fig. 5.4). A turn is formed at the location of the two aromatics as a result of a

salt bridge formed between Ala30 and Arg22, resulting in the Phe25 to be slightly

solvent exposed. Aromatic ring interaction between Phe25 and His5 is preserving

the partial packing of the C-terminal β-strand against the α-helix. Furthermore,

residue Phe24 is strongly interacting with the α-helix and reduces the flexibility

of the β-turn. These observations are in agreement with the proposed roles of

Phe24,25 and give insight into the possible structural transformation C-terminus

adopts upon folding.

5.2.3 Folding pathway of chain B of insulin

The dynamics of the system was investigated by applying the Kinetic Monte Carlo

(KMC)[124] method to compute the transition between the clusters found by the

Markov cluster analysis. The method described chapter 2 was applied. This enabled

a construction of a reduced rate model in which only transitions between the clusters

are considered. The rate constants for this model are given by the inverse of the

transition times. For example, by taking two clusters A and B with occupancy, PA

and PB, the rate constant to go from A to B is calculated considering the number

of times (N AB) a trajectory goes from A to B without passing any other clusters

during a long KMC simulation (τKMC=1.5 seconds). In this way the actual time of

transition to go from A to B is estimated as kAB=N AB/(PA·τKMC). To minimize

the number of recrossing only the stable bins of each clusters were considered, i.e.

˜70% of the cluster population. The kinetic scheme of the insulin chain B folding

is outlined in fig. 5.6. The clusters are organized in a similar arrangement to

their contour representation in fig. 5.4. The results show that the folded cluster

is connected directly only to the molten-globule 2 cluster, while this cluster is

connected with that of the molten-globule 1, thus forming an overall linear pattern

(see fig. 5.6).

Transitions between these clusters occur in a few thousands of nanoseconds,

suggesting that the residence time of the three clusters is of the order of several
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Figure 5.6: Schematic representation of the clusters dynamics. Transitions
between the clusters are represented by an arrow along with the corresponding
transition time. Transition that occur on a time scale longer than 1 s are represented
as dashed arrows.

microseconds. Transitions between sub-clusters (obtained with p = 1.12) inside

each well (obtained with p = 1.08) occur in tens or hundreds of nanoseconds. The

transition region between the folded state and the molten-globule 2 is made of

states that contain unfolded N-terminal helical region, similar to the T and O state

of chain B (fig. 5.1, fig. 5.2f). This indicates that the first step of going from

the folded state to the nearest molten-globule state is by unfolding the N-terminal

α-helix (fig. 5.2e,f). In the second step the N-terminal region interacts with the

remaining helical elements forming a compact intermediate in which the Tyr16 is

buried in a hydrophobic pocket (fig. 5.2d). All these transitions involve the high

free energy bins (e.g. 3-5 kcal/mol from the most stable bin). The last step involves

a partial exposure of Tyr16 to allow Phe24 to be packed via hydrophobic contacts

(see fig. 5.2c), which results in a gain in free energy. The passage from molten-

globule 2 to 1 seems to involve the intermediate structure presented in fig. 5.3d.

In fact, the state displayed shows a salt bridge formation at the chains terminal

regions. The last step involves the expulsion of the Tyr16 from the pocket forming

the electrostatic core (fig. 5.2f). It is worth to note that many of the bins associated

with the insulin chain B folding could not exist in the presence of disulfide pairing

with chain A as this would result in a loss of flexibility (see section below).
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5.2.4 Docking with insulin chain A

To analyze the ability of different insulin chain B conformations to covalently bind

insulin chain A, molecular docking simulations were performed between several

conformations of chain A and the reference structures of the relevant bins of insulin

chain B. The insulin chain A conformations were extracted from several (NMR and

X-ray) PDB entries. For the insulin chain B the relevant bins reference structures

(having free energy lower than 6 kcal/mol with respect to the most stable bin of the

reference cluster) for each cluster were selected. We used the Haddock program to

perform all the docking simulations as described in section 5.1.2. The SG insulin A

-SG insulin B distance was restrained to an upper bound of 5.2 Å to allow a good

initial docking pose for disulfide bond formation. We used the standard procedure

of docking with Haddock package[166, 167] (see sec. 5.1.2). The docking solutions

are clustered[92] based on pairwise backbone RMSD at the interface. Cut-off for

clustering was chosen by analyzing if: 1) the number of clustered structures was

more than the 50% of the docking solutions; 2) the best structure (in term of

HADDOCK score) was included in one of the clusters. From this simulations we

found that the lowest free energy bin together with most of the relevant bins of the

folded cluster are in optimal conformation for the two disulfide bridge formation

with chain A.

Figure 5.7: The best docking pose between insilin chain A and the insulin
chain B folded state cluster. This structure corresponds to the highest score
conformation of the highest score cluster found using the Haddock package. Chain
A is colored in blue, instead chain B in red.

In Fig. 5.7 it is shown the best docking pose found between insulin chain A

and the insulin chain B folded state cluster. From the picture it is clear that the

sulfur atoms of both chains can get close to each other without steric repulsion.

The insulin chain B structure in Fig. 5.7 corresponds also to the lowest free energy

bin of the folded cluster.

The docking simulations show also that a few conformations of the others chain

B clusters might form disulfide bond with insulin chain A but they correspond
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mostly to high free energy bins. This indicates that the two disulfide bridge for-

mation with chain A would stabilize the folded state cluster with respect to the

others.

5.3 Discussion

Explicit solvent bias exchange metadynamics simulations were performed to ef-

fectively sample the conformational space available to chain B of insulin and to

shed some light on the complex structural transitions this important protein un-

dergoes upon folding. To exploit the statistics accumulated using this powerful

technique, the bin-based analysis described in chapter 2 was used. This allowed

constructing a model describing the complex conformational transitions chain B

experiences. The model suggested the existence of three metastable clusters sepa-

rated by large free energy barriers. The two most populated clusters had structures

with “molten-globule” characteristics, one being governed by electrostatic interac-

tions and another by mainly hydrophobic contacts. This finding is supported by

experimental studies which suggested this type of conformation to be biologically

active.[169, 170] The third cluster comprised conformations with folded structural

elements, resembling the known crystallographic states of chain B (α-helix, β-turn

and flexible termini). The folded state cluster contained physiologically important

features, such as: a well conserved α-helical content, a β-turn stabilized by inter-

action between Phe24 and the hydrophobic core of the α-helix; structural transfor-

mation of the C-terminus, favourable for possible binding to the insulin receptor.

The kinetics of the system can be qualitatively described by a three state model

for the folding pathway of insulin chain B. Starting from an extended structure,

at first the protein is governed by electrostatic interactions (molten-globule 1, fig.

5.2a). A progressive building of hydrophobic core is initiated by the burial of

the Tyr16, followed by further packing of Phe24 and Phe25 (molten-globule 2, fig.

5.2b,c), resulting in stable compact structures. Furthermore, the hydrogen bonding

interactions between the buried backbone groups commence the formation of an

α-helix at the core of the protein. An unfolded N-terminal region is found in the

structures at the border of molten-globule 2 and the folded basin, suggesting that

the last stage of the folding of chain B is the complete formation of the α-helix. The

transformation from molten-globule 2 to a folded state requires crossing of a high

barrier. Tens of microseconds are required to make this transition. The calculated

transition times gave further insight into the dynamics between the three wells,

suggesting that the residence time of the three wells is of the order of several

microseconds. Docking simulations suggest that the binding with chain A stabilize

mostly the folded cluster.
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CHAPTER

SIX

Substrate binding mechanism of HIV-1

protease from explicit-solvent atomistic

simulations

In this chapter we show that the technique described in chapter 2 can be used also

for studying binding of drugs. In particular, substrate binding to HIV protease.

Since more than 20 years the Human Immunodeficiency Virus Type-1 Protease

(HIV-1 PR) is one of the main targets of anti-AIDS drug design. HIV-1 PR cuts

polyproteins to smaller fragments, and is essential for the virus life cycle. Its

inactivation leads to non-infectious viral particles [179]. Many inhibitors have been

developed to block the aspartic protease active site, and several of them are used in

medical treatment. Most FDA-approved HIV-1 PR inhibitors are peptidomimetic,

i.e. they mimic the structure of a fragment of the natural substrate, competing

with its binding [180, 181].

The experimental literature about the structure and function of HIV-1 PR is

vast. X-ray crystal structures of HIV-1 PR in bound and unbound forms have

been reported, revealing a C2 symmetric homodimer with a large binding pocket

covered by two Gly-rich β-hairpins (flaps). The bound and unbound forms of the

enzyme show sizable structural differences: the complex has ”closed” flaps, i.e. in

contact with the ligand [180]. On the other hand the free enzyme can also adopt a

”semi-open” conformation with the flaps shifted up from the active site and only

partially in contact with each other [180]. The residues that do not belong to

the flaps show smaller displacements upon binding. The flexibility of the flaps

is confirmed by solution NMR [182, 183] and fluorescence experiments [184, 185].

In the unliganded protease, the semi-open form is considered predominant, but

there are also indications of the presence of a scarcely populated truly open form

with separated flap tips [182, 183]. Arguably, an extended opening of the flaps is

necessary to allow binding of the viral polyproteins, due to the large size of the

substrate. It is not clear if the binding of peptidomimetic inhibitors is a one-step or

a two-step process [184, 185]: in the latter case, binding would proceed through the

77
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fast formation of a collision complex, followed by a slower conformational change

to a tighter complex [184].

HIV-1 PR has been also largely investigated by computational methods. In

several works the binding affinity of different inhibitors has been computed by

molecular docking based on scoring functions [186, 187] or on the more predic-

tive Molecular Mechanics Poisson-Boltzmann Surface Area model (MM/PBSA)

[188, 189]. Although computationally expedient and very useful for drug design,

these approaches might be too approximate to capture the correct physical chem-

istry of the binding process. In particular, they typically do not account for the

flexibility of the whole protein and for hydration. Water molecules can make hydro-

gen bonds simultaneously with both the enzyme and the ligand. This is believed to

lower sizably both the enthalpy and entropy of binding [190]. In particular, a water

molecule (usually named W301) is hydrogen-bonded between the flaps tips and the

ligand in most experimental complexes with peptidomimetic inhibitors [180]. In or-

der to address the role of water and the flexibility of the system appropriately [191]

one can use explicit-solvent molecular dynamics (MD). The flap dynamics of the

free enzyme has been simulated by MD observing spontaneous opening and closing

events [192, 193]. Interestingly, full opening of the flaps has been suggested to

be unnecessary for dissociation of Saquinavir from protease mutants [194]. Coarse

grained [195, 196] and implicit solvent MD [195, 197] have further provided in-

sight on the binding of ligands to the proteases. In particular, in Ref. [195] it is

suggested that a cyclic-urea inhibitor can bind without full opening of the flaps.

Unfortunately, to date the high computational cost has limited the timescale of

explicit-solvent MD to 100 ns. This is not sufficient to observe binding and un-

binding processes. Thus an enhanced sampling technique is required to obtain a

realistic picture of the all process.

For systems of the complexity of HIV-1 PR, several variables may simultane-

ously play an important role for binding, e.g. the opening of the flaps, the distance

between the ligand and the cavity, the number of hydrogen bonds or hydrophobic

contacts with the flaps or with the cavity, the number of interfacial water molecules,

etc [191]. Here we adopted BE [38], to obtain a comprehensive picture of the sub-

strate binding and unbinding mechanism of wild-type HIV-1 PR. The calculations

are validated against experimental thermodynamic and kinetic data. We focus on

the substrate Thr-Ile-Met-Met-Gln-Arg (p2-NC cleavage site of the gag-pol viral

polyprotein). The choice of this ligand is motivated by the fact that most of the

inhibitors in clinical use are peptidomimetic, i.e. they are based on such natural

substrate, and they might share with it several features.

Our simulation shows several binding events, starting from the ligand outside

the enzyme and ending in the Michaelis complex, which is predicted to be the

lowest free-energy minimum. A quantitative kinetic model of the association and

dissociation process obtained here using the approach reported in chapter 2 has

allowed us to calculate binding free energies and rate constants that turn out to

be in agreement with available experimental data. Hydration and flap fluctuations
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turn out to play a key role for the binding. Remarkably, the main binding pathway

of the small substrate does not involve full opening of the flaps, which is instead

expected to occur, for topological reasons, when the enzyme binds the long viral

polyprotein in vivo. Several mutations that have been reported to bring drug

resistance involve residues forming important contacts with the substrate in the

molecular recognition process. Because of the similarity between the substrate and

some FDA-approved drugs it can be speculated that these mutations would affect

at a smaller extent the binding of the polyprotein expressed by the virus, as this

binding would take place through a different pathway. Thus, mutations have high

chances of influencing differently the binding kinetics of small ligands like drugs

and of the natural substrate.

6.1 Computational setup

MD simulations have been performed with the AMBER03 force field [64] for the

enzyme and substrate (hereafter termed SUB), and the TIP3P [65] model for wa-

ter. The initial atomic model has been obtained starting from the experimental

coordinates of the HIV-1 PR/MVT-101 complex (pdb code 4HVP), as described

in a previous work [198]. HIV-1 PR and SUB have been solvated by 7710 wa-

ter molecules in a 269 nm3 orthorhombic periodic box. 6 Cl−ions were added to

neutralize the net positive charge. The particle-mesh Ewald method [69, 97] was

used for long-range electrostatic with a short-range cutoff of 0.8 nm. A cutoff

of 0.8 nm was used for the Lennard-Jones interactions. All bond lengths were

constrained to their equilibrium length with the LINCS [67] algorithm. Also the

Cγ(Asp25)-Cγ(Asp25’) distance was constrained to 0.34 nm. The time step for the

MD simulation was 2.0 fs. NPT simulations at 300 K and 1 atm were performed

by coupling the system to a Nose-Hoover thermostat [70, 199] and a Berendsen

barostat [71], both with relaxation time of 1 ps. After 1.4 ns of equilibration, the

barostat was removed and the BE simulation was started. The atomic coordinates

were saved every 5 ps, the energy every 0.1 ps.

The indexing 1-99 and 1’-99’ is adopted for the two dimers forming HIV-1 PR.

Based on experimental [200] and theoretical evidence [201], Asp25 has been taken

deprotonated and Asp25’ monoprotonated. The substrate is indexed as Thr(P3)-

Ile(P2)-Met(P1)-Met(P1’)-Gln(P2’)-Arg(P3’), the scissile bond being P1-P1’. As

a reference experimental structure for the HIV-1 PR/SUB complex, the crystallo-

graphic positions of the complex between the inactive D25N protease and ATIM-

MQRG substrate [202] (pdb code 1KJ7) are considered. The crystallographic water

molecule located in the cavity under the flap tips and above SUB is called W301

following the usual terminology.

The BE approach allows biasing simultaneously several collective variables (CVs).

The following set of 7 CVs has been selected as putative reaction coordinates to

explore the binding mechanism. The CVs are explicit functions of the atomic co-

ordinates:
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• SA is the sum of hydrophobic sidechain carbons contacts between ligand and

flaps. SB is identical but counts contacts between the ligand and the part of

cavity not belonging to flaps. They are defined as

SA,B =
∑

i

∑
j

C(Rij)

with the sums running on the appropriate sets of atoms. Contacts are defined

by the following function, which switches smoothly from 0 to 1 for distances

below a threshold R0:

C(R) = [1− (R/R0)
n]/[1− (R/R0)

m]

where R is the distance between two atoms, R0 = 0.3 nm, n = 8, and m = 12.

• SC is defined like SA and SB, with the sum running over the possible H-bonds

among O and H atoms in the ligand and in the cavity.

• SD is the distance between the center of the scissile peptidic bond of the

ligand and the center of the Cγ(Asp25)-Cγ(Asp25’) atom pair in the catalytic

dyad.

• SE is the distance between the center of the Cαs in the left flap tip (residues

48-53) and the center of those in the right flap tip (residues 48’-53’).

• SF counts the number of water molecules bridging between the ligand and

the cavity:

SF =
∑

i

∑
j

∑
w

C(Riw) · C(Rwj)

where the sums over i and j run over O/H atoms (corresponding to native H

bonds) in the ligand and in the enzyme, respectively, while the sum over w

runs over all O atoms belonging to water molecules.

• SG is the distance between the center of the Cαs of the ligand and the center

of the Cαs of residues 24, 26, 27, 24’, 26’, 27’, located in the middle of the

enzyme and close to the Asp25 - Asp25’ catalytic dyad.

It has to be stressed that variable SC provides only an approximate count of the

H bonds, since a more rigorous definition would include the angles formed by

atoms and a more sharp switching function C(R). Similarly, the number of water

molecules bridging through H bonds between ligand and cavity is only approxi-

mately proportional to SF . However the present definitions are more suitable to

be used as differentiable collective variables. The CVs were saved every 0.1 ps.

To reduce the computational cost walls have been put on variables SD and SE

preventing them to reach values larger than 1.9 nm. Moreover, the ligand was

restricted to a cone of angle 45◦ with axis equal to the C2 symmetry axis of HIV-1

PR. Control simulations have been also performed beyond the restrictions above,

in order to check the convergence of the results.
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The parameters adopted in the BE simulations are the following: Gaussian

height 0.05 kcal/mol, Gaussian widths equal to 0.5 for SA,B,C,F and 0.02 nm for

SD,E,G, deposition of a Gaussian every 1 ps, exchanges of bias attempted every

2 ps. These parameters have been optimized in order to obtain a fast exploration

of the conformations while still retaining a good accuracy in the reconstructed free

energy.

BE simulations were performed biasing each of the 7 CVs on a different replica

(plus one replica without any bias) for a total of 45 ns per replica. We initialized

the simulation with the substrate completely outside the cavity and misoriented

with respect to the complex, namely with Arg(P3’) pointing towards the cavity.

After a few ns, in several replicas the substrate approaches the cavity and starts

to thread inside the pocket starting from Thr(P3). After 10 ns in one replica SUB

entered the binding pocket, and after 35 ns 4 out of 8 replicas fully accomplished

the binding process by reaching the structure of the Michaelis complex (6.2 and

state B1 in 6.1).

During the simulation, a total of 4 and 10 independent binding and unbinding

events were observed. This is sufficient to ensure an accurate and reproducible de-

scription of the binding/unbinding process and allows harvesting enough statistics

for constructing an accurate rate model.

To improve the statistics on the explored states, a simulation has been also

performed replicating 4 times each replica, for a total of 32 replicas and 40 ns

each. This redundancy speeds up the convergence of the reconstructed free-energy

profiles. The trajectories from both the 8-replicas and 32-replicas simulations, for

a total simulation time of 1.6 µs, have been employed to construct a kinetic model,

as described in the following section.

6.1.1 Construction of the kinetic model

Starting from the BE simulations data, a thermodynamic and kinetic model of the

binding process has been constructed, applying the methodology of chapter 2. A

careful analysis shows that in order to describe accurately the thermodynamics and

kinetics of the binding process it is sufficient to consider variables C, D, E, and F,

as the others are correlated to these. First, the BE trajectories have been analyzed

by subdividing the CV space of these four variables in a hypercubic grid of 3208

bins with sides in the four directions RC = 1, RD = 0.1 Å, RE = 0.1 Å, RF = 1.

Molecular structures within each bin differ by Cα-RMSD < 2 Å (substrate plus

enzyme cavity), indicating that this choice of variables appropriately discriminates

among all the relevant structures. The equilibrium free energy of each bin has

been computed by the weighted-histogram technique[13] reported in chapter 2. It

has been verified that multiplying by 1.5 or dividing by 1.5 the side of the hyper-

cubes has no relevant qualitative effect on the description of the system, while it

deteriorates the accuracy of the thermodynamic and kinetic models. Similarly, the

analysis has been repeated adding other variables and deriving the kinetic model in

5 or 6 dimensions. Also this leads to larger errors but no qualitative changes in the
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Figure 6.1: Representative structures of the free energy clusters (B1-B4) involved
in the main binding/unbinding mechanism (shaded box), plus the transition state
(TS). The clusters B6-B9, which are not involved in the main binding pathway,
are also displayed. Water molecules inside the enzyme cavity are displayed as blue
spheres, except for W301 which is a red sphere. The free energy of each state, in
kcal/mol, is reported below the corresponding structure. Arrows are labeled with
the corresponding transition rates (ms−1) when larger than 100 ms−1 (solid line).
Transitions with a smaller associated rate are depicted as dashed arrows.
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Figure 6.2: Comparison of the lowest free-energy structure from simulations (B1 in
6.1 and 6.1, dark colors) with the experimental structure of the complex between the
inactive D25N protease and substrate ATIMMQRG (pdb code 1KJ7, light colors)
[202]. Backbone atoms are displayed. The substrate is shown in green. W301 is
the crystallographic water molecule bridging between flap tips and the substrate.

overall picture. The error on the bin free energies, estimated according to standard

weighted-histogram analysis as detailed in chapter2, is at most 0.5 kcal/mol.

The kinetic model has been constructed following the procedure of chapter 2

[48]. The diffusion matrix Dij in the space of CVs C, D, E, and F. D is estimated

from a 10 ns MD simulation started in HIV-1 PR/SUB complex by maximizing

the likelihood of the trajectory within the kinetic model [46]. For a time lag of 100

ps the following values are obtained: DCC = 0.27, DDD = 0.0011, DEE = 0.0011,

DFF = 0.35, DCD = −0.0033, DCE = −0.0013, DCF = −0.073, DDE ≈ 0, DDF =

0.0034, and DEF = −0.0021. By enlarging the time lag to 200 ps the coefficients

vary by less than 16%, indicating that on this timescale a Markovian behavior is

attained [48]. The position dependence of D has been investigated by computing

D also from 10 ns MD trajectories started in each of the other metastable states

along the main binding pathway (states B2, B3, and B4 in 6.1). The maximum

variation in the diagonal elements of the diffusion matrix is only 30%, which leads

to similar variations in the relaxation times of the system. By comparison, the

maximum estimated error on the bin free energies is 0.5 kcal/mol, which leads to

almost one order of magnitude larger variations on the computed transition rates.

Therefore the position dependence of D is neglected.

The metastable states (clusters) of the network of bins have been found by the

Markov cluster analysis (MCL) algorithm [126] using p = 1.2. This allows identify-

ing 9 kinetic clusters (free-energy basins), corresponding to metastable states of the

enzyme-ligand system, which together include 99.1% of the equilibrium population.

These states have been characterized by the atomic structures corresponding to the

kinetic attractors (6.1, 6.1).

Within each of the clusters B1, B2, and B3, atomic structures differ by Cα

RMSD of maximum 2.5 Å. Using a smaller MCL parameter p = 1.15 brings into
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Table 6.1: Description of the kinetic clusters (local free-energy minima) explored
by bias-exchange metadynamics simulations
Basin ∆G

(kcal/mol)
SUB Flaps Water in cavity Comments

B1 0.0 in closed 1 above SUB
(W301)

crystallographic structure
of MVT-101

B2 0.9 in closed 3-4 under SUB and
laterally

B3 1.4 in closed 7-10 all around SUB
B4 5.0 out closed SUB fully solvated
(TS) 6.8 out closed SUB almost fully

solvated
H-bonds Arg(P3’)-Glu35,
Thr(P3)-Gly48’, Met(P1’)-
Gly49’, Met(P1’)-Gly51’

B5 3.4 in closed 1 between flap tips similar to B1, but W301
moved between flap tips

B6 1.7 half
in

one up SUB almost fully
solvated

SUB between flaps and loop
P79-T80-P81-V82

B7 1.7 in open lat-
erally

> 10 above SUB
and laterally

B8 1.6 in one up > 10 above SUB
and laterally

SUB conformation similar
to B1

B9 1.4 in one up SUB almost fully
solvated

coalescence the structurally distinct clusters B1, B2, and B9 in 6.1 (which differ for

the amount of water in the enzyme cavity or for the opening of the flaps). A larger

p = 1.3 leads to the fragmentation of cluster B2, which is structurally homogeneous

(Cα RMSD ≤ 2 Å).

To allow comparison with kinetic experiments, the long-time scale dynamics of

the system has been modeled on the network of bins by generating a kinetic monte

carlo (KMC) [123] trajectory of 100 s. The trajectory, starting from the complex,

performs ≈ 6000 transitions between the complex and the dissociated state. From

the analysis of the trajectory, the most probable binding/unbinding pathways be-

tween selected states are identified as the lowest free-energy paths. Transition rate

constants between a pair a and b of bins are computed as ka→b = Na→b/Pattot,

where Na→b is the number of transitions, Pa is the probability of state a, and ttot is

the duration of the trajectory. This procedure gives directly the dissociation rate

constant (units s−1) taking a as the bin corresponding to the experimental complex

(lowest free energy in cluster B1), and b as the bin corresponding to the dissociated

pair (lowest free energy in cluster B4). To compare with experimental data at stan-

dard conditions, the association rate constant (units M−1s−1) is obtained by scaling

kb→a with the ratio between the standard concentration (1 M) and the simulated

one (0.2 M), which is equivalent to scaling the probability of the dissociated state

by the inverse of the ratio. The transition rates have been reduced by a factor 2.26

to correct for the self-diffusion coefficient of TIP3P water which is larger than the

experimental one [203].
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6.1.2 Poisson-Boltzmann calculations

To check the effect of the finite simulation box on the free energies computed from

BE, (linearized) Poisson-Boltzmann calculations have been performed on several

HIV-1 PR/SUB structures using the program apbs [204] . The following parameters

have been used: grid spacing 0.45 Å, ion exclusion radius 2.2 Å, solute dielectric

constant 2, continuum solvent dielectric constant 78.5, boundary conditions based

on focusing, solute surface defined by a probe sphere of radius 1.4 Å.

The free energy correction (at zero ionic strength) to bring the ligand from state

B4 (see Fig. 6.1) to infinity is < kBT , which confirms that SUB does not sizably

interact with HIV-1 PR in this state.

In the same manner, it has been checked by a Poisson-Boltzmann calculation

that insertion of one Cl− ion in the cavity in absence of SUB requires 4.0 to 12.0

kcal/mol at ionic strength in the range 0− 0.1 M, due to the negative polarization

of the catalytic cavity. Indeed the Cl− counterions never enter the enzyme cavity

during the BE simulations.

6.2 Results

6.2.1 Binding and unbinding processes

From the BE trajectories a kinetic model has been constructed based on the

weighted-histogram approach described in chapter 2. The calculated lowest free-

energy path passes through the following states (Fig. 6.1, table 6.1):

• B4. SUB is solvated without any contact with the enzyme; the flaps are quite

closed (see below).

• TS. SUB outside the cavity, perpendicular with respect to the orientation in

the complex, with Thr(P3) close to the cavity. H-bonds are formed first with

Asp30’, then with Gly48’, Gly49’, and Gly51’ in one flap and with Glu35

(salt bridge with Arg(P3’)) on the loop in front of the cavity (Fig. 6.3).

• B3. The cavity, enlarged by a moderate displacement of the flaps, allows

SUB to enter (starting from Thr(P3)) together with a solvation shell.

• B2. The water molecules bridging between SUB and the flap tips are expelled,

tightening the cavity.

• B1. The water molecules bridging between SUB and the catalytic dyad are

expelled. A water molecule (W301) is introduced between SUB and Ile50-

Ile50’ on the flap tips. The experimental complex is formed (SUB+cavity all-

atom root mean square deviation (RMSD) 1.6 Å compared to experimental

structure [202], backbone RMSD = 0.9 Å. Cavity is defined as residues within

4.5 Å from SUB. See Fig. 6.2).
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Figure 6.3: The protease residues forming H-bonds with the substrate in either the
transition state or the earliest stage of binding (between B4 and TS in Fig. 6.1)
are labeled. The catalytic dyad Asp25-Asp25’ is shown in red.

The most populated state (46.9%) is the HIV-1 PR/SUB complex B1 (Fig. 6.1).

This result is a prediction of the experimental structure and stability of the complex.

The equilibrium population of the cluster corresponding to the enzyme separated

from the ligand (B4 in Fig. 6.1) is instead almost negligible.

The values taken by the reaction coordinates along the pathway are reported

in Fig. 6.4.

During the binding process, the flap tips undergo moderate displacements, with-

out fully opening: the distance between their tips (SE) fluctuates between 0.55 nm

(bound complex B1) and 0.83 nm (transition state TS, Fig. 6.4 and Figure S1 in

Supporting Information), the distance between the Asp dyad and flap tips varies

between 1.1-1.8 nm (all distances are referred to Cαs). The displacements are asym-

metric within the flap pair: one flap lifts above the cavity more than the other while

approaching the transition state, interacting directly with the ligand. An asym-

metric role of the flap tips upon binding is also suggested from crystallographic

data of the complex with the NC-p1 substrate [205]. The most probable binding

pathway is reversible: the unbinding pathway does not show sizable differences.

6.2.2 Thermodynamics and kinetics of the binding process

Our model of the binding and unbinding processes allows computing all relevant

thermodynamic and kinetic parameters, which can be compared with experimental

data.

The predicted binding free energy is ∆Gb ∼ FB1 − FB4 = −5.0 kcal/mol,

with a statistical error of 0.5 kcal/mol. The value of ∆Gb has been obtained

for a simulated molarity of 0.2 M. Correcting for normal conditions (1 M) gives

∆Gb = −6(1) kcal/mol. Corrections due to the finite size of the simulation box are

instead small: indeed by a Poisson-Boltzmann calculation it can be shown that in

state B4 SUB is practically not interacting with the enzyme. The final estimate
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along the main pathway for binding and unbinding.
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∆Gb = −6(1) kcal/mol compares well with ∆Gexp
b = −8.1 kcal/mol measured on

the peptidomimetic inhibitor MVT-101 [206] which is similar to SUB. Compar-

ison with other inhibitors whose thermodynamic data are available [181] is not

reported here as their Tanimoto shape and electrostatic similarity [207] with SUB

is significantly smaller.

Also the kinetics predicted by the model can be compared with experiments.

Fluorometric assay data are available for peptide substrates similar to SUB (=

TIM*MQR): values of kcat = 41 s−1 and KM ≡ (koff + kcat)/kon = 3.0 · 10−3 M

have been reported for the substrate ATIM*MQRG (pH= 5.5, ionic strength 0.4

M) [208], while kcat = 6.99 s−1 and KM = 2.5 · 10−4 M have been reported for

TNSATIM*MQRGNF (pH= 5.5) [209]. The rate constants for binding and un-

binding transitions, kon (B4→B1) and koff (B1→B4), have been computed from a

100 s kinetic monte carlo trajectory and corrected for a 1 M concentration. The

result is kon = 1.26 · 106 M−1s−1 and koff = 57.1 s−1. Employing the experimental

values of kcat a theoretical KM in the range 1.4 − 2.0 · 10−5 M is obtained. The

kinetic rate constants kon and koff are directly accessible from biosensor and flu-

orescence experiments on inhibitors, which are not cleaved by HIV-1 PR. For the

inhibitor MVT-101, analog to SUB, kon = 1.6 · 105 M−1s−1 and koff = 0.2− 0.4 s−1

have been reported (pH= 5.5) [184]. These values are compatible with our theoret-

ical estimates for SUB, considering the different ∆Gb (-8.1 kcal/mol for MVT-101

and -6.0 kcal/mol for SUB). In fact, FDA-approved peptidomimetic inhibitors of

similar size as SUB, binding more effectively than MVT-101, have ∆Gb between

−12 and −15 kcal/mol [181], and consistently display lower koff values, in the

range 10−4−10−3 s−1, whereas the kon values are similar to MVT-101, in the range

105−106 M−1s−1 [210]. It must be also considered that the kinetic constants display

a strong dependence on the experimental conditions like pH and ionic strength: in

our simulation the protonation of residues corresponds to pH= 7 and the ionic

strength is zero.

6.2.3 States with extensive flap opening

The dynamics of flaps opening in HIV-1 PR has been extensively studied, due to its

possible functional role [182–185, 192, 193]. Indeed, substates of the protease with

open flaps are crucial to allow binding of the long viral polyproteins, for simple

topological reasons connected to the large size of the substrate. However, our

results show that full opening of the flaps is not necessary to bind the smaller SUB

ligand. Our model includes also several states with open flaps (B6-B9 in Fig. 6.1

and Fig. 6.1), which are not part of the most probable binding/unbinding pathway

of SUB but which may be relevant for the viral polyprotein. E.g. state B9 is similar

to B2, but it has a larger distance between flap tips (1.1 − 1.8 nm, compared to

0.4− 1.1 nm in B2), and it has a free energy 0.7 kcal/mol higher. In states B6 and

B7 the flaps act as ”tweezers” which trap the ligand in between. The binding rate

associated to the pathway in which SUB approaches the enzyme cavity through

wide-open flaps is at least two orders of magnitude smaller than that associated



Results 89

TS

complex

free enzyme

distance Asp dyad−flap tips (nm)

di
st

an
ce

 b
et

w
ee

n 
fla

p 
tip

s 
(n

m
)

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Figure 6.5: Probability distribution of HIV-1 PR conformations in absence of SUB
(green), in complex with SUB (blue), and in the transition state (TS) for binding
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with the lowest free energy pathway, in which the flaps are closed.

The free energy of HIV-1 PR as a function of the distance between flap tips

(CV SE), restricted to configurations with the ligand far from the cavity, shows a

preferred distance of 0.6-0.75 nm. 1 kcal/mol is required for opening to more than

1 nm, consistently with Ref. [183, 192, 193]. Instead the complex shows tighter

flap tips with a distance of 0.55-0.65 nm (Fig. 6.5 and Figure S1 in Supporting

Information).

The associated and dissociated states are also distinguished by a different ele-

vation of the flap tips (Cα of Gly49-Gly49’) above the catalytic dyad (Cα of Asp25-

Asp25’): 1.1-1.2 nm for the complex and 1.2-1.4 nm for the free enzyme, with

the latter displaying also a larger flexibility of the flaps (see Fig. 6.5). These

two different conformations compare well respectively to the closed and semi-open

structures observed in liganded (e.g. 4HVP) and unliganded (e.g. 1HHP) crystal

structures. In agreement with recent solution NMR studies [183] fully open flaps

have a negligible population.

6.2.4 Hydration inside the enzyme cavity

The crystallographic structure of HIV-1 PR in complex with most peptidomimetic

inhibitors shows a water molecule (usually named W301) tetrahedrally hydrogen-

bonded between the flap tips and the ligand [180]. W301 is also part of the cal-

culated Michaelis complex (6.2 and state B1 in 6.1). Relocation of this water to a

position between the flap tips (stabilized by H-bonds with Gly51, Gly52, Gly49’,

Ile50’, Gly52’) is associated with an increase of free energy of 3.4 kcal/mol. This

state (B5 in 6.1) is not involved in the main binding pathway. A previous Free

Energy Perturbation (FEP) calculation [211] predicted a cost of 3.1± 0.6 kcal/mol

for the displacement of W301 in the HIV-1 PR/KNI-272 complex, while a different

FEP calculation on HIV-1 PR/MVT-101[212] displayed a negligible free energy

difference. Care should be taken in comparing the free energy value in the latter
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calculations with our results due to differences in the setup and in the reference

states.

6.3 Discussion

The binding and unbinding mechanism of wild-type HIV-1 PR to a model peptide

substrate (Thr-Ile-Met-Met-Gln-Arg) has been investigated by molecular dynam-

ics simulations using an all-atom force field with explicit water. To enhance the

sampling of the configuration space the bias-exchange metadynamics technique [38]

has been employed. The free energy has been computed as a function of 7 reaction

coordinates. These have been chosen in an attempt at capturing the most impor-

tant degrees of freedom associated with binding: the approach of the ligand, the

opening of the flaps, the hydrophobic and electrostatic interactions between ligand

and enzyme, the amount of interfacial water molecules. Each one of the 7 reaction

coordinates has been biased on a different replica of the system, until convergence

in the reconstructed free energy projections has been achieved. Starting with the

ligand far from the enzyme, several binding events have been observed leading to

the Michaelis complex. The substrate slides inside the cavity starting with the

Thr head and without sizably opening the flaps. The dissociation and association

pathways turn out to be very similar.

The simulation data have been used to build a detailed thermodynamic and

kinetic scheme of the binding and unbinding processes following the procedure de-

scribed in chapter 2. These feature several intermediate states (6.1 and 6.1). The

estimated statistical error on the calculated free energies is about 0.5 kcal/mol. The

binding free energy has been estimated as -6.0 kcal/mol. This compares well with

the experimental value of -8.1 kcal/mol measured with the structurally similar pep-

tidomimetic inhibitor MVT-101. The calculated absolute rate constant for binding

is 1.3 · 106 M−1s−1 and for unbinding is 57 s−1, consistently with experiments on

MVT-101 and on peptide substrates similar to SUB.

Flap opening is usually considered to play an important role in the binding of

the natural polyprotein substrate. Instead, the extent to which flaps open upon

the binding of a small substrate is not clear [213]. Here we found that in the most

probable association and dissociation pathways the flaps of the protease do not

open sizably and the substrate threads inside the enzyme cavity from the tight

lateral channel. When the ligand approaches the enzyme in the early stages of

binding, and in the transition state, it forms hydrogen bonds with residues Asp30’,

Ile47’, Gly48’, and Glu35, which all lie around the opening of the channel leading

to the catalytic cavity (6.3). It is remarkable that mutation of residues in this

region causes resistance to some FDA-approved peptidomimetic drugs [214]. We

here propose an argument which might help rationalize the origin of such drug

resistance, by making the plausible assumption that the binding process observed

for SUB is similar to that of other peptidomimetic inhibitors. In fact, the viral

polyprotein cleaved in the biological function of the enzyme is expected to bind
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through a different pathway. It may approach the cavity from above, after the flaps

have opened completely, due to the very large substrate size. Thus, mutations are

likely to affect in a different manner the barrier along the two pathways, and may

change the relative binding efficiency of drugs and substrate even without affecting

their relative affinity. A possible confirmation to our hypothesis would be provided

by kinetic experiments measuring the association rate of non-cleavable peptides of

increasing length. For longer peptides the preferred binding pathway should switch

from the closed flaps- to the open flaps-one, with a resulting significant decrease of

the association rate.

A crude estimate of the effect of mutations from a polar residue to an apolar

one is provided by alanine scanning[215, 216]. We applied this method on the

reference structures of TS, B1, B6, and B8 (the latter two having open flaps, 6.1).

Interestingly Glu35, whose mutation to Gly is indicated as generating resistance

to a few FDA approved drugs, is found to be an ”hot spot”[215, 216] only in TS.

This suggests, at a speculative level, that this mutation may play a role in the

binding pathway. To quantitatively assess this scenario free-energy calculations of

the binding mechanism of inhibitors to drug-resistant variants would be required.

Our results show that, due to sizably different conformations of the flaps, the

conformations of HIV-1 PR in absence of the ligand, in the transition state for

binding and in the complex have little overlap (see Fig. 6.5). This confirms the

appropriateness of docking protocols which account for the flexibility of the receptor

by using an ensemble of target enzyme conformations (e.g. relaxed complex scheme

[217]).

Individual water molecules at the interface between ligand and enzyme play a

pivotal role throughout the binding process, and they constitute a relevant reaction

coordinate which enables differentiating the intermediate states explored by the

system. Therefore we stress the importance of treating explicitly and accurately

the solvent molecules in computational studies of protein-ligand binding.
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CHAPTER

SEVEN

Conclusions and perspectives

In in this thesis we have presented an approach aimed at constructing a markovian

rate model for complex biomolecular processes starting from a set of biased MD

trajectories. We used BE as enhanced sampling technique to simulate complex

rare events like protein folding and protein ligand binding. We applied this simu-

lation technique also in another study[39], not reported in this thesis, in which it

was possible to predict the effect of a point mutation to the folding of Villin and

Advillin. As the method to reconstruct free energies reported in this thesis was

still not developed at that time, thermodynamic properties were there calculated

as in classical hamiltonian replica exchange by accumulating the statistics of an

unbiased walker. The approach presented in this thesis can be considered an im-

provement of this work and of the one presented in ref.[38]. There the focus was

primarily on the capabilities of BE and on the thermodynamic properties of the

systems studied. Here we were focused at extracting both thermodynamic and

kinetic properties from BE. This was achieved by constructing a markovian ki-

netic model from the simulation data similar to the one of refs. [42–47]. As a first

step reference structures are extracted through a binning procedure in the space

of selected collective variables. The populations of these states are then evaluated

exploiting the statistics accumulated during a BE simulation. The use of biased

trajectories allows achieving an excellent accuracy also at the transition regions.

Rates are estimated assuming a simplified form in which the kinetic prefactor is

determined by a diffusion matrix, that is estimated using a maximum likelihood

approach using short standard MD trajectories, not necessarily being ergodic.

This approach was applied to a benchmark system for which it was possible

to explore the relevant conformations using a standard MD of ∼2µs. An excellent

correlation for both thermodynamics and kinetic properties was found between the

kinetic model and MD. This approach was then applied to the folding of Trp-

cage and Insulin chain B and to study the binding mechanism of a little peptide

to HIV-1 protease. The results shows that the model allows obtaining a detailed

description of thermodynamic and kinetic properties of complex biomolecules in

agreement with experimental evidence. Several metastable states were extracted

93
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for all the systems studied that are intermediates in the kinetic mechanism. The

meaning of this states can be understood in terms of a separation of time scales: the

equilibration inside each state is faster than transitions from a state to another.

In the case of folding these represent ”misfolded” intermediates, instead for the

protein-ligand interaction study they are binding intermediates in which the ligand

can be far from the protein, or in a partially binded conformation.

Although with the model presented we could obtain results that are in fair

agreement with experiments there are several improvements that can be done to

increase the efficiency and the accuracy of the model:

• The CVs and the parameters used for BE simulation can be optimized to

obtain a more efficient sampling. In order to address this issue we performed

a recent study[218] in which a simplified protein force field was used and the

simulation parameter were selectively changed to find the best combination.

• The binning procedure to extract the reference states could be improved by

constructing a non uniform grid in the CVs space, e.g. by using the iterative

approach presented in ref. [42]. Optimizing the bin construction would lead

to a smaller number of bins, increasing thus the free energy accuracy and also

the time scale at which a markovian behavior is observed.

• The CVs used for the kinetic model construction can be optimized. Also this

would reduce the time scale at which a markovian behavior is observed.

• Assuming that the bias alters only the bins populations the diffusion matrices

can be calculated with the same methodology using directly continuous BE

trajectories. This also could increase the accuracy of the diffusion matrices

close to transition state regions.

The methodology presented in this thesis was already used by independetn

researchers (see ref. [41]) to extract thermodynamics information on the catalytic

mechanism of cis-trans isomerization of Cyclophilin A. Recently[219] the present

approach was also applied to investigate the binding of selected drugs to the prion

protein.

At the moment we are applying the same technique to study the binding mech-

anism of Barnase with Barstar. To this purpose explicit solvent BE simulations

(∼ 44000 atoms) were performed using CVs similar to one used for the binding

of the HIV-1 with the small peptide. Starting from the two moieties completely

separated and with a big layer of water in between (Fig. 7.1A), a structure very

close to the X-ray complex, was obtained after only 10 ns of simulation and using

only six replica. In Fig. 7.1C it is shown the protein RMSD of the residues at

the interface respect to the native complex as a function of the simulation time

for one of the six walkers. From the picture it can be noted that after ∼10 ns the

RMSD is smaller than 2Å. In Fig. 7.1B and 7.1D it is shown the lowest free energy

structure obtained at the end of the BE simulation (structure in blue) aligned with
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the equilibrated X-ray structure (structure in red). As it can be noted the two

structures are almost identical.

Figure 7.1: Barnase-Barstar complex. Panel A: Starting structure of the BE
sumulation. A layer of explicit water is evidenced in between the two proteins.
Panel B: in blue it is reported the lowest free energy structure obtained from the
BE simulation and it is aligned with the equilibrated X-ray structure (PDB entry
1BRS) that is shown in red. Panel C: RMSD (nm) of the residues at the interface
respect to the native complex (equilibrated using MD) as a function of the simultion
time for one of the 6 walker used in BE that get close to the native complex. Panel
D: the interface between the two proteins it is evidenced in the structrures of panel
B, the same color code is used.

To gain accuracy in the free energy calculation several independent simulation

were run starting from the structures obtained after 12 ns for a cumulative time

of ∼ 2µs. The next step will be constructing a kinetic model for the protein-

protein interaction hoping it allows undertanding how the two proteins recognize

each other, the role of the water and the contribution of specific residues to the

binding mechanism.
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