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INTRODUCTION

Every area of mathematics is characterized by a guiding problem. In algebraic geometry
such problem is the classification of algebraic varieties. In its strongest form it means to
classify varieties up to biregular morphisms. However, birationally equivalent varieties share
many interesting properties. Therefore for any birational equivalence class it is natural to
work out a variety, which is the simplest in a suitable sense, and then study these varieties.
This is the aim of birational geometry. In the first part of this thesis we deal with the biregular
geometry of moduli spaces of curves, and in particular with their biregular automorphisms.
However, in doing this we will consider some aspects of their birational geometry. The second
part is devoted to the birational geometry of varieties of sums of powers and to some related
problems which will lead us to computational geometry and geometric complexity theory.

Part i is devoted to moduli spaces of curves, their fibrations and their automorphisms.
The search for an object parametrizing n-pointed genus g smooth curves is a very classi-
cal problem in algebraic geometry. In [DM] P. Deligne and D. Mumford proved that there
exists an irreducible scheme Mg, coarsely representing the moduli functor of n-pointed
genus g smooth curves. Furthermore they provided a compactification Mg n of Mg, adding
Deligne-Mumford stable curves as boundary points and pointed out that the obstructions to
represent the moduli functor of Deligne-Mumford stable curves in the category of schemes
came from automorphisms of the curves. However this moduli functor can be represented
in the category of algebraic stacks, indeed there exists a smooth Deligne-Mumford algebraic
stack My parametrizing Deligne-Mumford stable curves.

In Chapter 1 we recall some well known facts about the moduli space Mg,n and the stack
Mg,n. These two geometric objects have been among the most studied objects in algebraic
geometry for several decades. Despite this, many natural questions about their biregular and
birational geometry remain unanswered.

Chapter 2 is devoted to the computation of the automorphism groups of Mg and Mg n.
These results appeared in [Ma]. The biregular automorphisms of the moduli space Mg, of
n-pointed genus g-stable curves and of its Deligne-Mumford compactification Mg, has been
studied in a series of papers, for instance [BM1] and [Ro].

Recently, in [BM1] and [BM2], A. Bruno and M. Mella studied the fibrations of Mg ,, using
its description as the closure of the subscheme of the Hilbert scheme parametrizing rational
normal curves passing through n points in linear general position in P™~2 given by M.
Kapranov in [Ka]. It was expected that the only possible biregular automorphisms of Mg r,
were the ones associated to a permutation of the markings. Indeed Bruno and Mella as a
consequence of their theorem on fibrations derive that the automorphism group of M , is
the symmetric group Sy, for any n > 5 [BM2, Theorem 4.3].

The aim of this work is to extend [BM2, Theorem 4.3] to arbitrary values of g,n and to the
stack Mg . Our main result can be stated as follows.

Theorem. Let Mg be the moduli stack parametrizing Deligne-Mumford stable n-pointed genus g
curves, and let Mg n, be its coarse moduli space. If 29 —2+n > 3 then

AutMgn) = Aut(Mgn) = Sn



the symmetric group on n elements. For 2g — 2 +n < 3 we have the following special behavior:
- Aut(M; ) = (C*)? while Aut(M ) is trivial,
- Aut(MOA) = Aut(ﬁo/ﬂ = Aut(ﬂm ) = PGL(2) while Aut(ﬁm ) =C*,

- Aut(Mg) and Aut(Mg) are trivial for any g > 2.

These issues have been investigated in the Teichmiiller-theoretic literature on the automor-
phisms of moduli spaces My, developed in a series of papers by H.L. Royden, C. ]. Earle, I.
Kra, M. Korkmaz, [Ro], [EK] and [Kor]. A fundamental result, proved by Royden in [Ro], states
that the moduli space Mg of genus g smooth curves marked by n unordered points has no
non-trivial automorphisms if 2g —2 +n > 3, which is exactly our bound.

Note that in the cases g =n = 1 and g = 1,n = 2 the automorphism group of the stack
differs from that of the moduli space. This is particularly evident for M ;. It is well known
that My 1 = P! and M; ; = IP(4,6). Clearly P' = IP(4,6) as varieties, however they are not
isomorphic as stacks, indeed IP(4, 6) has two stacky points with stabilizers Z4 and Z¢. These
two points are fixed by any automorphism of IP(4, 6) while they are indistinguishable from
any other point on the coarse moduli space M ;.

The proof of the main Theorem is essentially divided into two parts: the cases 2g —2+n > 3
and 2g—-2+n < 3.

When 2g —2 +n > 3 the main tool is [GKM, Theorem o0.9] in which A. Gibney, S. Keel and
L. Morrison give an explicit description of the fibrations Mgn — X of Mg n on a projective
variety X in the case g > 1. This result, combined with the triviality of the automorphism
group of the generic curve of genus g > 3, let us to prove that the automorphism group
of Mg, is trivial for any g > 3. Since every genus 2 curve is hyperelliptic and has a non
trivial automorphism, the hyperelliptic involution, the argument used in the case g > 3
completely fails. So we adopt a different strategy: first we prove that any automorphism of
M1 preserves the boundary and then we apply a famous theorem of H. L. Royden [Moc,
Theorem 6.1] to conclude that Aut(M3 1) is trivial.

Then, applying [GKM, Theorem 0.9] we construct a morphism of groups between Aut(Mg )
and Sy. Finally we generalize Bruno and Mella’s result proving that Aut(Mg ) is indeed
isomorphic to S, when 2g—2+4n > 3.

When 2g —2+mn < 3 a case by case analysis is needed. In particular the case g = 1,n =2
requires an explicit description of the moduli space M ,. Carefully analyzing the geometry
of this surface we prove that M ; is isomorphic to a weighted blow up of IP(1,2,3) in the
point [1:0: 0], in particular Mu is toric. From this we derive that Aut(mLz) is isomorphic
to (C*)2.

Finally we consider the moduli stack Mg . The canonical map Mgn — Mg induces a
morphism of groups Aut(Mgn) — Aut(Mgn). Since this morphism is injective as soon
as the general n-pointed genus g curve is automorphisms free, we easily derive that the
automorphism group of the stack Mg r, is isomorphic to Sy, if 2g —2+n > 3. Then we show
that Aut(M; ,) is trivial using the fact that the canonical divisor of M; > is a multiple of a
boundary divisor.

In Chapter 3 we extend the techniques of Chapter 2 to moduli spaces of weighted pointed
curves. These results appeared in [MMz2]. In [Has] B. Hassett introduced new compactifica-
tions ﬁg, Afn] of the moduli stack Mg, and Mg, A[n] for the coarse moduli space Mg, by
assigning rational weights A = (aj, ..., an), 0 < a; < 1 to the markings. In genus zero some
of these spaces appear as intermediate steps of the blow-up construction of My ,, developed
by M. Kapranov in [Ka], while in higher genus they may be related to the Log minimal model
program on Mg .



We deal with fibrations and automorphisms of these Hassett’s spaces. Our approach consists
in extending some techniques introduced in Chapter 2, [BM1] and [BM2] to study fiber
type morphisms from Hassett’s spaces and then apply this knowledge to compute their
automorphism groups.

In [BM1] and [BM2], A. Bruno and M. Mella, thanks to Kapranov’s works [Ka], managed to
translate issues on the moduli space M ,, in terms of classical projective geometry of P™ 3.
Studying linear systems on P 3 with particular base loci they derived a theorem on the
fibrations of Mg r,.

Theorem. [BM2, Theorem 1] Let f: Moy, — Mo r be a dominant morphism with connected fibers.
Then f factors through a forgetful map.

Via this theorem on fibrations they construct a morphism of groups between Aut(Mg )
and S;;, the symmetric group on n elements, and prove the following theorem:

Theorem. [BMz2, Theorem 3] The automorphism group of Moy, is isomorphic to Sy, for any n. > 5.

As already noticed some of the Hassett’s spaces are partial resolutions of Kapranov’s
blow-ups. The main novelty is that not all forgetful maps are well defined as morphisms.
Nonetheless we are able to control this problem and derive a weighted version of the fibration
theorem. This allows us to compute the automorphisms of all intermediate steps of Kapranov’s
construction, see Construction 3.0.11 for the details.

Theorem. The automorphism groups of the Hassett’s spaces appearing in Construction 3.0.11 are
given by

- Aut(Mo o, n)) = (C*)" 3 xSy, ifr=1, s <n-3,
- Aut(mo/Am[n]) = (C)V 3 xS,_2xSy, ifr=1,s=n—3,
- Aut(mo,Am [n]) =S, ifr> 2.

In particular the Hassett’s space M Ain_sn), thatis P™—3 blown-up at all the linear spaces
of codimension at least two spanned by subsets of n — 2 points in linear general position, is
the Losev-Manin’s moduli space L, introduced by A. Losev and Y. Manin in [LM], see [Has,
Section 6.4].

In higher genus we approach the same problem. This time the fibration theorem is inherited
by [GKM, Theorem o0.9]. Concerning the automorphisms, for Hassett’s spaces the situation is
a bit more complicated than for Mg, because a permutation of the markings may not define
an automorphism of the Hassett’s space Mg a (). Indeed in order to define an automorphism
permutations have to preserve the weight data in a suitable sense, see Definition 3.2.11. We
denote by A ) the subgroup of S, of permutations inducing automorphisms of Mg A ]

and ﬂg, Am]- In Theorems 3.2.16 and 3.2.19 we prove the following statement:

Theorem. Let Mg a[n] be the Hassett's moduli stack parametrizing weighted n-pointed genus g
stable curves, and let ﬂg, A[n] be its coarse moduli space. If g > 1 and 2g — 2 +n > 3 then

Aut(ﬂg,A [n]) = Aut(mg,A[n]) = ‘AA[n]'
Furthermore
- Aut(My a[2)) = (C*)? while Aut(M; A[2)) is trivial,

- Aut(M],A“]) = PGI_(Z) while Aut(ﬁLAm) =C*.



Note that this Theorem is exactly the weighted analogue of the main result of Chapter 2.

Chapter 4 collects some conjectures on fibrations and automorphisms of the moduli spaces
of stable maps. In symplectic topology and algebraic geometry, Gromov-Witten invariants are
rational numbers that, in certain situations, count holomorphic curves. The Gromov-Witten
invariants may be packaged as a homology or cohomology class, or as the deformed cup
product of quantum cohomology. These invariants have been used to distinguish symplectic
manifolds that were previously indistinguishable. They also play a crucial role in string theory.
They are named for M. Gromov and E. Witten.

Gromov-Witten invariants are of interest in string theory. In this theory the elementary
particles are made of tiny strings. A string traces out a surface in the spacetime, called the
worldsheet of the string. The moduli space of such parametrized surfaces, at least a priori,
is infinite-dimensional; no appropriate measure on this space is known, and thus the path
integrals of the theory lack a rigorous definition.

However in a variation known as closed A model topological string theory there are six spacetime
dimensions, which constitute a symplectic manifold, and it turns out that the worldsheets
are necessarily parametrized by pseudoholomorphic curves, whose moduli spaces are only
finite-dimensional. Gromov-Witten invariants, as integrals over these moduli spaces, are then
path integrals of the theory.

The appropriate moduli spaces were introduced by M. Kontsevich in [Kh], these spaces are
denoted by Mg n (X, B) where X is a projective scheme, and parametrize holomorphic maps
from n-pointed genus g curves, whose images have homology class 3, to X. If X is a homoge-
neous variety the Mom (X, B) is a normal, projective variety of pure dimension. Furthermore
if X = PN then MO,H(IPN,d) is irreducible. On the other hand when g > 1, and even
when g = 0 for most schemes X # PN the space Mg (X, ) may have many components
of dimension greater than expected. To overcome this gap and give a rigorous definition
of Gromov-Witten invariants J. Li, G. Tian in [LT1], [LT2], and K. Behrend, B. Fantechi in [BF]
introduce the notions of virtual fundamental class and virtual dimension.

Recently F. Poma in [Po], using intersection theory on Artin stacks developed by A. Kresch in
[Kr], constructed a perfect obstruction theory leading to a virtual class and then to a rigorous
definition of Gromov-Witten invariants in positive and mixed characteristic, satisfying the
axioms of Gromov-Witten invariants given by M. Kontsevich and Y. Manin in [KhM], and the
WDVYV equations.

The Gromov-Witten potential, which is a function encoding the information carried by
Gromov-Witten invariants, satisfies WDVV equations. This is equivalent to the associativity
of the quantum product. As a consequence it turns out that the quantum cohomology ring
QH*X is a supercommutative algebra, and the complex cohomology H* (X, C) has a structure
of Frobenius manifold. For these reasons, the moduli spaces of stable maps play a key role
both in geometry and in theoretical physics.

By virtue of the results obtained in Chapters 2 and 3 I believe that in most cases the auto-
morphisms of a moduli space parametrizing curves, and perhaps those of moduli spaces
in general, are just modular automorphisms, that is automorphisms that derive from the
nature of the parametrized objects. My belief is also supported by the calculation of the
automorphisms of moduli spaces of vector bundles over a curve in [BGM].

In Chapter 4 we consider the space Mo, (P", d). After giving some evidence on what its
automorphisms should be by observing that Sy, and Aut(IPN) act naturally on My ,, (PN, d)
we conjecture that:

Conjecture. For any n > 5 we have

Aut(Mo,n (PN, d)) = Aut(Mo (PN, d)) = Sy, x PGL(N +1).



By the way, such conjecture would fit in a more general theory of a modular nature of the
automorphisms of varieties admitting a modular interpretation.

Part ii is devoted to Varieties of Sums of Powers and to some related topics. In 1770 E.
Waring stated that every integer is a sum of at most ¢ positive cubes. Later on C.G.]. Jacobi
and others considered the problem of finding all the decompositions of a given number into
sums of cubes, [Di]. Since then many problems related to additive decomposition have been
named after Waring.

For instance a variation on the Waring problem asked which is the minimum positive integer
h such that the generic polynomial of degree d on IP™ admits a decomposition as a sum
of h powers of linear forms. In 1995 |. Alexander and A. Hirshowitz [AH] completely solved
this problem over an algebraically closed field of characteristic zero. They proved that the
minimum integer h is the expected one h = L%H (“gd)J, except in the following cases: d = 2,
foranyn,hsuchthat2< h<m;d=4,n=2,h=5d=4n=3,h=9d=3,n=4h=7;
d=4n=4h=14

The set up we are interested in is that of homogeneous polynomials over the complex field.
Let F € k[xo,...,xn]q be a general homogeneous polynomial of degree d. The additive
decomposition we are looking for is

F=L{+...+Lf,

where L; € k[xp,...,xnl7 are linear forms. The problem is a classical one. The first results
are due to |.J. Sylvester, [Sy] and then to D. Hilbert, [Hi], H-W. Richmond, [Ri], F. Palatini, [Pa],
and many others. In the old times the attention was essentially focused on studying the cases
in which the above decomposition is unique. When this happens the unique decomposition
gives a canonical form of a general polynomial. As widely expected the canonical form very
seldom exists [Me2] [Me1].

The set of additive decompositions of a given general polynomial is usually compactified
in Hilb((IP™)*) and is called the Variety of Sums of Powers, VSP for short, see Definition 5.0.6
for the precise statement. The interest in these special varieties increased greatly after S.
Mukai [Mu1] gave a description of the Fano 3-fold V,; as a VSP of quartic polynomials in
three variables. Since then different authors have exploited the area and generalized Mukai’s
techniques to other polynomials, [DK], [RS], [IR1], [IR2], [TZ]. See [Do] for a very nice survey.
The known cases are not many and, to the best of our knowledge, this is the state of the art.

d n|h VSP(Fq4, h) Reference
2h—1 |1 | h 1 point Sylvester(Sy]
2 2| 3 | quintic Fano 3 —fold Mukai[Mu1]
3 2 4 P2 Dolgachev and Kanev[DK]
4 21 6 Fano 3 —fold V,, Mukai[Mu1]
5 217 1 point Hilbert, [Hi], Richmond, [Ri], Palatini, [Pa]
6 2 | 10 | K3 surface of genus 20 Mukai[Mu2]
7 2112 5 points Dixon and Stuart[Dx]
8 2115 16 points Mukai[Muz2]
2 3| 4 G(1,4) Ranestad and Schreyer([RS]
3 3 1 point Sylvester’s Pentahedral Theorem|[Sy]
3 4 W Ranestad and Schreyer([RS]
3 5110 8 Iliev and Ranestad[IR1]




where W is the 5-dimensional variety parametrizing lines in the linear complete intersection
P'°NOG(5,10) C P! of the 10-dimensional orthogonal Grassmannian OG(5,10), and 8 is a
smooth symplectic 4-fold obtained as a deformation of the Hilbert square of a polarized K3
surface of genus eight.

Chapter 5 contains the results of [MM1]. In this chapter we aim to understand a gen-
eral birational behavior of VSP. To do this we prefer to adopt a different compactification.
This approach is probably less efficient than the usual one to study the biregular nature of
VSP. On the other hand it allows to study birational properties in an easier way.

Let F € k[xp,...,xnlq be a general homogeneous polynomial of degree d and V = V4, C
PN = P(k[xo,...,%Xnlq) the Veronese variety. A general additive decomposition into h linear

factors
h
F=> L
1

is associated to an h-secant linear space of dimension h—1 to the Veronese V C PN. In
this way we can realize the set of additive decompositions into G(h —1,N) and consider
the closure there. This compactification is expected to be more singular than the one into
the Hilbert scheme, and it is well defined only for h < N —n. See Remark 5.0.13 for a brief
comparison with VSP. On the other hand we may use projective techniques and this yields
several interesting results about the birational nature of VSP’s.

Theorem. Assume that F is a general quadratic polynomial in n+ 1 variables. Then the irreducible
components of VSP(F, h) are unirational for any h and rational for h =n+ 1.

This theorem cannot be extended to higher degrees. For instance think about the men-
tioned examples of either S. Mukai or A. Iliev and K. Ranestad. On the other hand rational
connectedness should be the general pattern for this class of varieties. In this direction the
main result in Chapter 5 is the rational connectedness of infinitely many VSP with arbitrarily
high degree and number of variable.

(Ta"M)-1

Theorem. Assume that for some positive integer 0 < k < n the number ~—-+— is an integer. Then

the irreducible components of VSP(F, h) are rationally connected for F € k[xo,...,xnlq general and
(n+d)_]

h >

n

k+1

The common kernel of these theorems is Theorem 5.1.1 which, under suitable assumption,
connects VSP(F, h) with chains of VSP(F,h —1). In this way we reduce the rational connect-
edness computations to special values of h where the compactification in the Grassmannian
variety is well defined.

In Chapter 6 we extend the definition of VSP replacing the Veronese variety V with an
arbitrary non-degenerate variety X C PN. We denote these varieties by VSP{ (h). In Propo-
sition 6.1.4 we prove a rationality result on VSP (h) when X C PN is a variety of minimal
degree. Then, in Theorem 6.3.3, we generalize Theorem 5.3.1 replacing the Veronese variety
with an arbitrary unirational variety.

In Chapter 7 we consider the problem of finding explicit decompositions of homogeneous
polynomials as sums of powers of linear forms. Polynomials often appear in issues of applied
mathematics, for instance in signal theory [CM], algebraic complexity theory [BCS], coding
and information theory [Ro]. For applied sciences is interesting to determine:

- whether a polynomial admits a decomposition into a number of forms,



- and eventually to calculate explicitly the decomposition.

We first focus on the case Secy, (V}) = PN. Using apolarity we give an effective method to
reconstruct the decompositions in a number of cases (construction 7.1.1). Then we concentrate
on cases where the decomposition is unique; as the above table shows, if Secy, (V}) = PN,
these are very few. In each case we give an algorithm to calculate the decomposition 7.1.6,
7.1.9, 7.1.12, and provide examples using symbolic calculus software such as MacAulay2 [Mcz2]
and MatLab. Furthermore we use Bertini [Be] to solve systems of polynomial equations of
high computational complexity. All scripts are listed in Appendix 7.2.4.

Then we focus our attention on the case Secy, (V') ; PN and adopt the philosophy dictated
by the following trivial but crucial observation:

FF=Y1", N LE then its partial derivatives of order | lie in the linear space (LS, .., L3™Y) for any
l=1,.,d-1

In the case n = 2 we prove that, in order to establish if a homogeneous polynomial
F € k[xo,x1]q admits a decomposition as sum of h powers, it is enough to verify that
dim(Hp) = h—1, where Hj is the linear space spanned by the partial derivatives of order
d —h of F. Furthermore, if dim(Hp) = h —1 we get a method to write the linear forms related
to F 7.2.9. Finally trying to extend the method in higher dimension we compute the dimension
of the linear space of polynomials whose (d — 1)-derivatives lie in general linear subspace
H c (PN)*, this space is also called the (d — 1)-th prolongation of H. Consequently we find
the formula for the dimension of Secy (V3'), and the secant defect of V3'. Furthermore we
obtain a criterion to determine whether a polynomial admits a decomposition in the cases
d=2andd=3,h=2.

Chapter 8 is devoted to the study of a particular tensor, namely the matrix multiplication
tensor. Homogeneous polynomials are symmetric tensors and in Chapter 7 we considered
their decompositions as sums of linear forms, that is as sums of rank one symmetric tensors.
Similarly in Chapter 8 we study the matrix multiplication tensor in order to give a lower
bound on its rank. These last results appeared in [MR].

The multiplication of two matrices is one of the most important operations in mathematics
and applied sciences. To determine the complexity of matrix multiplication is a major open
question in algebraic complexity theory. Recall that the matrix multiplication My |, is
defined as the bilinear map

Mn,l,m: Matnxl(C)XMathm(C) — Matnxm(C)
(X,Y) — XY,

where Mat;, x1(C) is the vector space of n x 1 complex matrices. A measure of the complexity
of matrix multiplication, and of tensors in general, is the rank. For the bilinear map My 1,m
this is the smallest natural number r such that there exist ay, ..., a; € Mat,, 1 (C)*, by, ..., by €
Matixm (C)* and cy, ..., ¢+ € Matn xm (C) decomposing My, 1 m (X, Y) as

Mnm(X,Y) =) ai(X)bi(X)cq
i=1

for any X € Maty, »1(C) and Y € Mat; 1, (C).

In the case of square matrices the standard algorithm gives an expression of the form
Mpnn(X,Y) = ZIL; a; (X)bi(X)ci. However V. Strassen showed that such algorithm is not
optimal [S].

We are concerned with lower bounds on the rank of matrix multiplication. The first lower



bound %nz was proved by V. Strassen [S1] and then improved by M. Bliser [Bl], who found
the lower bound %nz —3n.

Recently J.M. Landsberg [La1], building on work with G. Ottaviani [LO1], found the new lower
bound 3n2 —4n3 —n. The core of Landsberg’s argument is the proof of the Key Lemma [La1,
Lemma 4.3]. We improve the Key Lemma and in Theorem 8.2.4 we obtain new lower bounds
for matrix multiplication.

Our strategy is the following. We prove Lemma 8.2.2, which is the improved version of [La1,
Lemma 4.3], using the classical identities for determinants of Lemma 8.0.30 and Lemma 8.0.31,
to lower the degree of the equations that give the lower bound for border rank for matrix
multiplication. Then we exploit this lower degree as Blaser and Landsberg did.



Part1

AUTOMORPHISMS OF MODULI SPACES OF CURVES






A BRIEF SURVEY ON MODULI OF CURVES

To fix the ideas, we work over an algebraically closed field k. Consider a class of objects M

over k, for instance the class of closed subschemes of P™ with fixed Hilbert Polynomial, the
class of curves of genus g over k, the class of vector bundles of given rank and Chern classes
over a fixed scheme, and so on. We wish to classify the objects in M.
The first step is to give a rule to determine when two objects of M are the same (usually
isomorphic) and then to give the elements of M up to isomorphism. This determines M as a
set. Now we want to put a natural structure of variety or scheme on M. In other words we
are looking for a scheme M whose closed points are in a one-to-one correspondence with the
elements of M, and whose scheme structure describes the variations of elements in M, more
precisely how they behave in families.

Definition 1.0.1. A family of elements of M, over the parameter scheme S of finite type over
k, is a scheme X — S flat over S, whose fibers at closed points are elements of M.

The first request on M, to be a Moduli Space for the class M, is that for any family X — S
of objects of M there exists a morphism ¢ : S — M such that for any closed point s € S, the
image f(s) € M corresponds to the isomorphism class of the fiber X; = @ '(s) in M.
Furthermore we want the assignment of the morphism ¢ to be functorial. To explain the last
sentence consider the functor F : Gch — Gets, that assigns to S the set F(S) of families X — S
of elements of M parametrized by S. If S — S is a morphism, for any family X — S we can
consider the fiber product X x5 S’ — S', that is a family over S'. In this way the morphism
S' =S gives rise to a map of set F(S) = F (S/), and F becomes a controvariant functor.

In this language to assign a morphism ¢ : S — M to any family X — S with the required
properties, means to give a functorial morphism « : ¥ = Hom(—, M).

Finally we want to make M unique with the above properties. So we require that if N is any
other scheme, and {3 : ¥ — Hom(—, N) is a functorial morphism, then there exists a unique
morphism e : M — N such that f = he o &, where he : Hom(—, M) — Hom(—, N) is the
induced map on associated functors.

Definition 1.0.2. We define a coarse moduli space for the family M to be a scheme M over k,
with a morphism of functors « : ¥ — Hom(—, M) such that

- the induced map F(Spec(k)) — Hom(Spec(k), M) is bijective i.e. there is a one-to-one
correspondence with isomorphism classes of elements of M and closed points of M,

- o is universal in the sense explained above.

We define a tautological family for M to be a family X — M such that for each closed point
m € M, the fiber X, is the element of M corresponding to m by the bijection F(Spec(k)) —
Hom(Spec(k), M) above.

A jump phenomenon for M is a family X — S, where S is an integral scheme of dimension at
least one, such that all fibers X; for s € S are isomorphic except for one Xs, that is different.
In this case the corresponding morphism S — M have to map s to a point and all other
closed points of S to another point, but this is not possible for a morphism of schemes, so a
coarse moduli space for M fails to exist.

11



Example 1.0.3. Consider the family y? = x3 4 t?x 4 t3 over the t-line. Then for any t # 0 we
get smooth elliptic curves all with the same j-invariant
4t 4
j =123 ———— =123. —,
) 4t6 4 27t6 31
and hence all isomorphic. But for t = 0 we get the cusp y? = x3. This is a jump phenomenon,
so the cuspidal curve cannot belong to a class having a coarse moduli space.

Definition 1.0.4. Let J be the functor associated to the moduli problem M. If F is isomorphic
to a functor of the form Hom(—, M), then we say that J is representable, and we call M a fine
moduli space for M.

Let « : ¥ — Hom(—, M) be an isomorphism. In particular ¥(M) — Hom(M, M) is an
isomorphism, and there is a unique family Xy — M corresponding to the identity map
Idpm € Hom(M, M). The family Xy is called the universal family of the fine moduli space M.
Note that for any family X — S there exists an unique morphism S — M, such that X — S is
obtained by base extension from the universal family. Conversely, if there is a scheme M and
a family Xy with the above properties then ¥ is represented by M.

Remark 1.0.5. If M is a fine moduli space for M then it is also a coarse moduli space,
furthermore the universal family Xy — M is a tautological family.

A benefit of having a fine moduli space is that we can study it using infinitesimal methods.

Proposition 1.0.6. Let M be a fine moduli space for the moduli problem M, and let Xo € M be
an element corresponding to a point xo € M. The Zariski tangent space Tx ;M is in one-to-one
correspondence with the set of families X — D over the dual numbers D = k[e]/(e?), whose closed
fibers are isomorphic to Xo.

Proof. We know that to give a morphism f : Spec(D) — M is equivalent to give a closed point
X0 € M and a tangent direction v € Ty, M. But a morphism f : Spec(D) — M corresponds to
a unique family X — Spec(D) whose closed fibers are isomorphic to Xy € M corresponding
to the point xo € M, where xo = f((Spec(D))red)- O

Let J : Gch — Gets be the functor associated to the moduli problem M. Suppose that
¥ is representable, and let M be the corresponding fine moduli space. For any local Artin
k-algebra A we have that Spec(A) is a fat point and (Spec(A))req is a single point. For any
Xo € M we can define the infinitesimal deformation functor of ¥ as the functor Att — Gets
that sends A in the set of morphisms f : Spec(A) — M such that f((Spec(A))red) = xo-
Clearly studying this functor we get information on the geometry of M in a neighborhood of
X0-

Recall that a pro-object is an inverse limit of objects in rt, the category of Artin local algebras
over a field k. If J: 2rt — Gets is a deformation functor we say that J is pro-representable if
it is isomorphic to Hom(—, R) for some pro-object R.

Proposition 1.0.7. Let J be the functor associated to the moduli problem M, and Xo € M. Consider
the functor Fy that to each local Artin ring A over k assigns the set of families of M over Spec(A) whose
closed fiber is isomorphic to Xo. If M has a fine moduli space, then the functor F is pro-representable.

Proof. Let M be a fine moduli scheme for M, and let xo € M corresponds to Xy € M. Let
OM,x, be the local ring of M at xo and 9y its maximal ideal. The natural homomorphisms

o= OMxo /My = OMxo/May = OMixe/Mxos
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make (Om,x, /,‘m;‘o) into an inverse system of rings. The inverse limit @ OM,xo/ zm;go is
denoted by Opm x,, and is called the completion of On x, With respect to My, or the M-
adic completion of O, x,-

Since M is a fine moduli space, each element of J5(A) corresponds to a unique morphism
Spec(A) — M that maps (Spec(A)req) = Spec(k) at xp. Such morphism corresponds to a
ring homomorphism GMrXO — A. We conclude that the functor Fy is pro-representable and
that it is represented by the pro-object O x,, Mixy-adic completion of Opm x, - O

Definition 1.0.8. A controvariant functor J : &ch — Gets is a sheaf for the Zariski topology, if
for every scheme S and every {U;} open covering of S, the diagram

FS) > [[suw) = [Fuiny)
is exact. This means that:
- given x,y € F(S) whose restriction to F(U;) are equal for all i, then x =y,

- given a collection of elements x; € F(U;) for each i, such that for each 1, j, the restrictions
of xi,%j to F(U; N'U;) are equal, then there exists an element x € F(S) whose restriction
to each F(U;) is xy.

Proposition 1.0.9. If the moduli problem M has a fine moduli space, then the associated functor F is
a sheaf in the Zariski topology.

Proof. Since M has a fine moduli space, for any scheme S we have F(S) = Hom(S, M).
Furthermore morphisms of schemes are determined locally, and can be glued if they are given
locally and are compatible on overlaps. O

Remark 1.0.10. Using Grothendieck’s theory of descent one can show that a representable
functor is a sheaf for the faithfully flat quasi-compact topology, and hence also for the étale

topology.
Examples of Moduli Spaces

We will give some examples of representable functors.

Example 1.0.11. (Grassmannians) Let V be a k-vector space of dimension n, and let r < n be
a fixed integer. Consider the controvariant functor Gr: Gch — Sets defined as follows

- For any scheme S, Gr(S) is the set of rank r vector subbundle of the trivial bundle S x V.

-Iff:S > S isa morphism of schemes, and Eg/ isa rank r subbundle of §’ x V, we
define
Gr(f)(Eg/) = f*(Eg/) = (f x Idy) ' (Eg).

Note that for S = Spec(k) we have that Gr(Spec(k)) is the set of rank r subbundle of
Spec(k) x V = V ie. the set of r-dimensional subspace of V, that is the Grassmannian
Gr(r, V).

If E € Gr(S) is a rank T subbundle of S x V, we can construct a morphism fg : S — Gr(r, V)
defined by s — Eg, where E; is the fiber of E over s € S. In this way we get a map

@(S): Gr(S) —» Hom(S, Gr(r,V)), E — fE.

The collection {¢(S)} gives a functorial isomorphism between Gr and Hom(—, Gr(r, V)).
Then the functor Gr is representable and the Grassmannian Gr(r, V) is the corresponding
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fine moduli space. The universal family corresponding to the identity map Idgy(y,v) €
Hom(Gr(r, V), Gr(r, V)) is clearly the universal bundle on Gr(r, V) given by {(W,v)|v € W} C
Gr(r,V) x V.

Example 1.0.12. (Hilbert Scheme) Let P € Q[z] be a fixed polynomial. For any S scheme over
k consider ]Py =TPN xS, and the functor

HilbY : Sch — Sets,

that maps S in the set of subschemes Y C IPY such that the projection 7t: Y — S is flat, and
for any s € S the fiber 7' (s) is a subscheme of PN with Hilbert polynomial P. The functor
Hilbl is representable by a scheme Hilbp(IPN) projective over k and called the Hilbert
Scheme.

To any closed subscheme Y C PN we can associate its structure sheaf Oy, its ideal sheaf Jy,
and the structure sequence
0= Jy = Opn — Oy = 0.

Then we can regard the Hilbert scheme as the space parametrizing all the quotients Opn — Oy,
with Hilbert polynomial P.

Example 1.0.13. (Grothendieck’s Quot Scheme) As a generalization of the discussion above
consider a fixed coherent sheaf € on PN. The scheme parametrizing all the quotients
€& — F — 0 with Hilbert polynomial P is called the Quot Scheme. Grothendieck showed
that the local deformation functor of the Quot functor is pro-representable and that the Quot
functor is representable by a projective scheme.

Example 1.0.14. (Picard Scheme) Let X be a scheme of finite type over an algebraically closed
field k and let x € X be a fixed point. Consider the functor

Picx x : Gch — Gets,

that associates to S the group of all invertible shaves £ on X x S, with a fixed isomorphism
L)y X S =0s.

If X is integral and projective, then this functor is representable by a separated scheme, locally
of finite type over k, called the Picard Scheme of X.

Example 1.0.15. (Hilbert-Flag Scheme) Consider a functor that associates to each scheme S
aflagYi CY, C..CY C ll’y of closed subscheme, all flat over S and where the fibers if
Y; have a fixed Hilbert Polynomial P; for any j = 1,..., k. This functor is representable by a
scheme, projective over k, called the Hilbert-Flag Scheme.

1.1 GIT CONSTRUCTION OF Mg

The aim of Geometric invariant theory is to solve the problem of constructing quotient in
the framework of algebraic geometry. In this section we collect the main results of this theory,
which are fundamental for the construction of moduli spaces. For a detailed discussion see
[MFK], and for a complete and very readable treatment see [Do].

We concentrate on the special case of projective schemes and reductive groups. So let Z be
a projective scheme and let G be a reductive group acting on Z. Consider an embedding
Z — P" = P(V) given by a line bundle £ on Z, so that Z = Proj(S) for some graded ring
S finitely generated over k. When the action of G on Z can be lifted to an action on V we
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say that there exists a G-linearization of £, or that G acts linearly with respect to the given
embedding. In this case G acts on S and the subring

SC ={seS|gs=sVge G} CS,

is called the ring of invariants of S with respect to the action of G. A fundamental theorem in
geometric invariant theory ensures that if G is reductive then S€ is a graded algebra, finitely
generated over k. In particular for affine schemes we have the following.

Theorem 1.1.1. (Nagata) Let G be a geometrically reductive algebraic group acting rationally on an

affine scheme Spec(A). Then AS is a finitely generated k-algebra.

The inclusion S€ < S induces a rational map
m:Proj(S) =72 --» Q= Proj(SG), z— (fo(z),...,Th(z)),
where the f;’s are generators of S©. The open subset
Z5% :={z € Z|f(z) # 0 for some homogeneous nonconstant f € SG},

that is the locus where 7 is regular, is called the locus of semi-stable points with respect to
the action of G. Now it seems natural to view Q as the quotient of Z*% modulo G. However
the fibers of 7t may fail to be equal to the orbits of G, indeed it may happen that there are
non-closed orbits and in this case the closed points of Q will not be in bijective correspondence
with the orbits of G. Let Mg be the maximum among the dimensions of all G-orbits in Z°%,
this discussion leads us to the following definition

7% :={zc€ 7% |0g(z)NZ% = 0g(z)and dim(O¢(z)) = Mg}

The subset Z*° is called the set of stable points with respect to the action of G. We expect that
the fibers of 7 zs are equal to orbits of G.

Theorem 1.1.2. (Fundamental Theorem of GIT) Let G be a reductive group acting linearly on a

projective scheme Z = Proj(S). The quotient Q := Proj(SC) is a projective scheme and the morphism
n:Z% = Q
satisfies the following properties:
- For every x,y € 2%, n(x) = m(y) if and only #Wﬂ@ﬂ 755 £ ).

- (Universal property) If there exists a scheme Q' with a G-invariant morphism 7@ : 255 — Q’,
then there exists a unique morphism @ : Q — Q' such that ™ = o .

- For every x,y € Z°%, m(x) = mt(y) if and only if Og(x) = Og(y).

A quotient satisfying the first and the second properties of Theorem 1.1.2 is called a
categorical quotient and denoted by Z//G. If in addition the quotient satisfies the third
property then it is called a geometric quotient and denoted by Z/G.

The most efficient tool to check stability is probably the so called numerical criterion for stability.
This criterion reduces the study of the action of a reductive group G to the study of the action
of its one-parameter subgroups. Let G be a reductive group acting linearly on IP(V) and let
Z C P(V) be a G-invariant subscheme. If G, denotes k* with is multiplicative structure and

A:Gn—G
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is a one-parameter subgroup of G, there exist a basis {vy, ..., v+} of V and integers {wy, ..., Wy}
such that the action of A on V is given by

Aty =tViviVte G, 0 <1<

If v=7) i o «iv; the integers n; such that the oj do not vanish are called the A-weights of v.
We denote by z € Z the point corresponding to the vector v, € V.

Theorem 1.1.3. (Hilbert-Mumford) The point z € Z is semi-stable if and only if for any one-parameter
subgroup A of G the A-weights of v, are not all positive.

The point z € Z is stable if and only if for any one-parameter subgroup A of G the vector v, has both
positive and negative A-weights.

The point z € Z is unstable if and only if there exists a one-parameter subgroup A of G such that the
A-weights of v, are all positive.

Construction of Mg

Fix integers d > 0, g > 3 and N = d—g. Let Hilbz(x) be the Hilbert scheme finely
parametrizing the close subschemes of PN with Hilbert polynomial P(x) = dx — g + 1. There
exists a universal family J{ with a tautological polarization £

£ — M 7 Hilbh ™,

such that the fiber X}, :== 7w '(h) is isomorphic to the subscheme of PN corresponding to
he Hilbz(x), and Ly, := £x, is isomorphic to the line bundle giving the embedding of X}, in
PN.
Let X ¢ PN be a curve, we want to construct its Hilbert point in Hilb;(x), and consider the
exact sequence

O'—)jx-)O]PN — Ox — 0.

By a theorem due to J. P. Serre, for m >> 0, we get the following exact sequence in cohomology
0+ HO(PN, Ix(m)) — HO(IPN, Opn (m)) — HO(X, Ox(m)) 0.

Furthermore it can be proven that there exists an integer m such that for any m > ™ and
for any subscheme of PN having Hilbert polynomial P(x) the above sequence is exact. This
means that the degree m part of the ideal of X, that is HO(PPN, Ix (m)), uniquely determines
X. We can associate to X a point in the Grassmannian parametrizing P(m)-dimensional
quotients of H®(IPN, Opn (m)) and this correspondence is injective. For any m > T we get an

embedding
P(m)

@m tHIb™ = P( A HOPN, 0pn (m))).
We have an action of SL(N + 1) on ]P(/\P(m) HO(]PN,O]PN (m))) and any embedding ¢
determines a linearization of the action of SL(N + 1) on Hilbi(x). Our aim is to construct ﬂg
as a quotient of a suitable subscheme of Hilbi(x).

Translating the Hilbert-Mumford criterion 1.1.3 in this setting one gets the following theorem:

Theorem 1.1.4. If d > 20(g — 1) then there are infinitely many linearizations of the action of
SL(N + 1) on Hilby,™ such that

- (Mumford-Gieseker) if X C PN is a smooth, connected, non-degenerate curve of genus g and
degree d, then its Hilbert point is stable,
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- (Gieseker) if h € Hilbi(x) is a SL(N + 1)-semi-stable point then all connected component of
Xn are Deligne-Mumford semi-stable curves.

Consider now the case d = r(2g — 2) for an integer r and fix once and for all an integer m
such that Gieseker-Mumford theorem holds. Consider the following subset of Hilb%(m) s$

H=1{he Hilbﬁl(m) 55 Lix, = w%: and the curve is connected}.

The SL(N + 1)-invariant set H parametrizes only DM-stable curves by Gieseker’s theorem. In
fact, for v > 3 the dualizing sheaf w" is very ample on DM-stable curves and it contracts
exactly the destabilizing components of a DM-semi-stable curve.

Finally one can prove that H consists only of SL(N + 1)-stable points, that it is a closed

subscheme of Hilbﬁ(m) *% and that the r-th projective canonical model of any stable curve of
genus g is an H. At this point it is natural to construct the moduli space of genus g stable
curves as the GIT quotient

Mg :=H/SL(N+1).

1.2 THE STACK Mgn

The study of moduli problems introduces a new kind of objects: the so called moduli stacks.
We have seen that a moduli problem gives rise to a functor, if the functor is representable we
have a fine moduli space, that is a scheme. Sometimes, if it is not representable one can find a
coarse moduli space, which parametrizes the isomorphism classes of our objects over a field,
but does not describe all the possible families of objects. It happens that the functor related
to a moduli problem is not representable by a scheme. We search for a sort of generalized
scheme.

A scheme is constructed out of affine schemes by gluing the isomorphism defined on Zariski
open subset. In the same spirit consider a collection of schemes {X;}, and for each i,j étale
morphisms Yi; — Xi, Yji — Xj and isomorphisms ¢y : Y;; — Yj, satisfying a cocycle
condition for each i, j, k. We glue together the X; along the ¢; ;. This quotient may not exist
in the category of schemes, but it is an algebraic space.

Instead of the functor J, which sends any scheme S in the set of isomorphism classes of
families X — S, consider a new object F, which to each scheme S assigns the category J(S)
of families and isomorphisms between such families. This object is called a fibered category
over the category of schemes. The sheaf axioms for the functor J are replaced by the stack
axioms for the fibered category &, which are the following. For any scheme S and any étale
covering {U; — S}, consider

F(S) = [ 7)) = T[T xs W) = [ [ F(U x5 Uj x5 W)

- The fact that the first arrow is injective means that if a,b € F(S) and if a;, b; are their
restriction on J(U;), and there is an isomorphism ¢; : a; — b; such that for each i,
the isomorphisms @4, @j restrict to the same isomorphism of a; ; and b; ; on U; x5 Uj,
then there is a unique isomorphism ¢ inducing ¢; on each U;.

- The fact that the sequence is exact at the first middle term means that if we give objects
ai € F(U;) for each i and isomorphisms @i ; : a; — a; on U; x5 U; satisfying a cocycle
condition on each U; x5 U; x5 Uy, then there exists a unique object a € F(S) restricting
to each a; on U;.

A Deligne-Mumford stack is a fibered category J satisfying the stack axioms, and such that
there exists a scheme X and a surjective étale morphism Hom(—, X) — J. An Artin stack is a
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fibered category J satisfying the stack axioms, and such that there exists a scheme X and a
surjective smooth morphism Hom(—, X) — F.

The moduli space of curves ﬁg is a Deligne-Mumford stack for any g > 2. In the paper The
irreducibility of the space of curves of given genus [DM], Deligne and Mumford introduced stacks
for the first time, they compactified the stack My adding stable curves, and they proved its
irreducibility in any characteristic.

We define a family of pointed curves of genus g parametrized by a scheme S as an ob-
ject

C

ﬂJ) 01,0

S

where 7 is a flat and proper morphism, o is a section of 7 for anyi=1,..,n, Cs = w1 (s) is
a nodal connected curve of arithmetic genus g and o (s) are distinct smooth points for any
s € S(k).

A morphism between two families C — S, C' — Sover Sisa morphism of schemes
@ : C — C such that the following diagrams

C%C’ C%C/
4 o.
S S '

commute. We consider the pseudofunctor
Mg n : Gch — Groupoids

mapping a scheme S to the groupoid M4 (S) whose objects are the families parametrized by S
and whose morphisms are the isomorphisms between these families. A curve (C,x1, ..., Xn) €
Obj(Mg,n (Spec(k))) is called a pre-stable genus g curve. We denote by 9y  the stack associated
to this pseudofunctor.

Remark 1.2.1. The stack M, is never a DM-algebraic stack. It contains points representing
curves with automorphism groups of positive dimension. Take a smooth curve (C,x1,...,xn) €
Obj(Mg,n (Spec(k))) and consider (Cl,x;,...,x;) where C' := CUP!, x; :=x; fori<nand
Xp == 0o € P'. Then C’ is a nodal connected curve of arithmetic genus po(C’) = g, but
dim(Aut(C")) = 1.

Definition 1.2.2. A pre-stable genus g curve (C,x1,...,xn) with n marked points is called
stable if one of the following equivalent conditions are satisfied

- Aut(C,xq,...,xn) is étale;
- Aut(C,xq,...,xn) is finite;

- Let C — C be the normalization of C. For any irreducible component C; of C the
inequality 2g(C;) —2 +ny > 0 holds, where n; is the number of special points on C;,
that are points mapped to a node or to a marked point on C.
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We define Mg », in the same way of the stack Mg, but adding the stability condition on
the fibers. Clearly we have a natural morphism Mgn — Mg n and if 29 —2+n > 0 there is a
morphism Mg, — Mg n. Both these morphisms are open embeddings.

On the other hand we can construct a category fibered in groupoids in the following way. Let
g,n € Z such that g,n > 0 and 2g — 2 +n > 0. We define a category Mgy , over the category
of schemes in the following way. Obj(9t4 ) consists of families

C

7T J) 01,,0mn

N

where 7 is a flat and proper morphism, o is a section of mforany i=1,..,n, Cs = w1 (s) is
a smooth connected curve of genus g and oy (s) are distinct smooth points for any s € S(k).
A morphism between two objects C — S and C' — S’ is a couple (F, f) where : C — C’ and
f:S — S" are morphisms of schemes and the following diagrams

C
d
s

f f
e —_

!/

c’ C
]
— 3 S

—_
f f

commute. This category is called the category of n-pointed genus g smooth curves. The category
My, is a category fibered in groupoids over the category of schemes and this remains true
even if the inequality 2g —2+n > 0 does not hold. One can prove that in this category
morphisms are a sheaf and that every descend datum is effective.

Theorem 1.2.3. The category fibered in groupoids Mg is a stack.

Proof. Consider a scheme S and two families & and E/

C c’
7'[J/’> 01,..,0n T[’J>
ol
S S

parametrized by S. We define a functor
F:&ch/S — Gets

sending f: X — S to Mor(f*&, *&'). By applying the universal property of the fiber product
we get the following diagrams

/
ojof o;of

04,X

CxiZCXSX%C C;(;:CIXSX%C/

Tdy HXJ Jﬂ Idy ”Xl J”,
S

X—S
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To give a morphism *& — f*& is equivalent to giving a morphism f: Cx — C;< such that
Oix = 0‘1{"X of, mx = 7'[;( o f, and f makes the diagram over the identity cartesian. That
is f is an isomorphism. Now, let {X; — X} be an étale cover, and consider isomorphisms
fi:Cx, — C;< such that fj ¢, y and fﬂc are naturally isomorphic. Since {Cyx, — Cx} is

an étale cover and morphisms form a sheaf in the étale toPology, the f; glue to a morphism

f:Cx — C . The morphism f commutes with 7y, OX,i, Ty, Oy i, Since this is true for the f;

and morph1sms are a sheaf in the étale topology. Furthermore we can define §—'

and then glue. This proves that morphisms are a sheaf.

Now, let S be a scheme, {S; — S} an étale cover, &; objects C; — Si, and @y : C1|5 — C]‘S
isomorphisms. Using the ¢;; we can glue the &; to a global & over S, by descent theory we
obtain a morphism 7t: C — S. To construct the sections consider the composition

étale locally

0S.j
i
S —— Ci —— C

which agree locally and glue to define global sections o35 : S — C. Since {S; — S} is an
étale cover, and the ground field is algebraically closed, any morphism Spec(K) — S factors
through at least one of the S; — S. Then the fibers of 7 are genus g connected curves. Finally,
since smoothness and properness are local in the target even in the Zariski topology the
morphism 7 is smooth and proper. This proves that every descent datum is effective. O

Lemma 1.2.4. Let (C,{x1,...,xn}) be a n-pointed genus g pre-stable curve. The sheaf wc(x1 + ... +
xn) is ample if and only if (C,{x1,...,xn}) is stable.

Proof. An invertible sheaf £ on a proper curve C is ample if and only if it has positive
degree on every irreducible component of C. Let C; be an irreducible component of C.
We have deg(wc(x1 + ... + xn)|c,|) = deg(wc|c,) + mc; = deg(wc,) +4(CiNCE) + me, =
2pa(Cq) =2+4(CiNCY) + mc, = 2pa(Ci) —2+nc,, where mc,, nc, are respectively the
number of marked and special points on Ci. Now, deg(wc (X1 + ... +Xn)|c;|) > 0 for any i if
and only if 2p4(Ci) —2+nc, > 0 for any i if only if (C,{xq,...,xn}) is stable. O

Definition 1.2.5. Let X be a scheme, and G be a group scheme acting on X. The quotient
stack [X/G] is defined as the category whose objects are of the type

|

where P — S is a principal G-bundle, P — X is a G-equivariant morphism, and whose
morphisms are isomorphisms of principal G-bundle commuting with maps to X.

*>X

Let 7t: C — S be a family of stable curves of genus g. By Lemma 1.2.4 the relative dualizing
sheaf wc /s is relatively ample. The r-th power w%’; ¢ is relatively ample, and n*w%;s is
locally free of rank N+ 1 = ho(ouC y s) =(2r—1)(g—1) on S. Therefore any genus g stable
curve can be embedded in PN using the sections of wC s+ The Hilbert polynomial of such a
curve is determined by deg(P) =1,P(0) =1—g,P(1) = (W& ). We can write P(z) = Az+B,

c/s
then P(0) =B=1—g,and P(1) = A :X(W%;5)~ Then

P(z) = (2rz—1)(g—1).
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Let Hilb” (PN) be the Hilbert scheme parametrizing subschemes of PN with Hilbert poly-
nomial P. There is a closed subscheme H of Hilb" (PN) parametrizing m-canonically em-
bedded stable curves. To give a morphism S — H is equivalent to give a closed subscheme
i: C < PN x S such that the projection 7: C — S is a family of genus g stable curves, and
there exists an isomorphism @ : ]P(mw%;s) — PN x S making the diagram

C L) ]P(T[*(.U%;S)
i /
PN xS

commutative. Finally there is a natural action of Aut(PN) =PGL(N+1)on H given by
PGL(N+1)xH—>H, (0,a:C 3PN xS) = (6 oax:C PN xS).
Theorem 1.2.6. For g > 2 there is an equivalence of stacks

Mg = [H/PGL(N +1)].

Proof. Let m: C — S be a family of genus g stable curves. We have a canonical projective
bundle P, = H’(n*w%;s) — S. Let E = Isomg(Pﬂ,lPSN) be the S-scheme parametrizing

isomorphisms from P to PY. The group PGL(N + 1) acts on E by
PGL(N+1)xE = E, (0,9) — o 'oe.
and E is a PGL(N + 1)-principal bundle. Now, consider the pull-back

Ce=CxgE—F ¢

I

C—S

since the projection E xg E — E has a section A : E — E x E, the PN-bundle P, :=
]P(HE*(U%DE) is trivial, and we have an isomorphism &g : P, — IPIS\J xs E. Letig : Cg —

P, be the canonical embedding, the composition &g oig : Cg — ]Py xs E gives a family of
stable curves in PN, corresponding to a morphism fy : E — H, which clearly is PGL(N + 1)-
equivariant.

Now, consider a morphism

c’ _e . C
' l l T
¥
s ——S
v . . . ’ - .
in My. We have a canonical isomorphism 7, w -~/ /5! = @*m.wc /s and two cartesian squares

P(w®™ ) — ]P(w%}“s)

£
L, 1 |
g ——§ g ——§

where f_+ is compatible with f and f_,. Then we get the following:
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- an objects m: C — S to
E
S
- a morphism

o
<
o

fr
—_—

T

s

wne——~0n

®
—_—

P
—_—
to a morphism

I S—
S

This defines a morphism of stacks

F: Mg — [H/PGL(N +1)].

f
/ P
E
’ ¢
S

[ N

On the other hand given a morphism S — H we have a corresponding family 7t : C — S of
genus g stable curves embedded in IPY. By forgetting the embedding C — PY we obtain
an object in Mg, furthermore morphisms in the same PGL(N + 1)-orbit are sent to the same
object of My. So we get a morphism

G : [H/PGL(N +1)] = M.

Take an object ¢, := (E//S — H) in [H/PGL(N +1)], and let 7./ : C' = E be the family
induced by tllle PGT,_(N + 1)-equivariant morphism E" — H. If 3 — His the universal family
then ./ : C — E is the pull-back of H{ — H by the morphism E — H. Furthermore if
E — E' we can consider the pull-back Cg — E and the following diagram

E%C*)j{

I |

The scheme Cg carries a natural PGL(N + 1)-action. By descent theory C = C¢/PGL(N + 1)
exists as a scheme, and there is a morphism 7 : C — S such that the base extension
me 1 CxsE — E isexactly 7tgs : C — E:

5= C % L

C

r

E
B
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The family 7t: C — S is exactly G(£) € Mg. If E = Isomg(Pmngl) where P = P(ﬂ*w%}“s)
we get that Fo G(&) is isomorphic to &, that is Fo G = Id. Finally, from the construction it is
clear that Go F = Id. O

Proposition 1.2.7. For any g > 2 the stack Mg is a Deligne-Mumford stack.

Proof. Since a genus g > 2 stable curve over an algebraically closed field has a finite and
reduced automorphism group the stabilizers of the geometric points of Mg are finite and

reduced. So My is a DM stack. O

1.3 DETAILS ON ALGEBRAIC CURVES

In this section we recall some well known results on algebraic curves and their automor-
phisms. Finally, using deformation theory we prove that M is as smooth stack.

Curves of Genus Zero

There is only one smooth curve of genus g = 0 over an algebraically closed field k, namely
IP]. A family of curves of genus zero over a scheme S is a scheme X, smooth and projective
over S, whose fibers are curves of genus zero.

Proposition 1.3.1. The space M = Spec(k) is a coarse moduli scheme for curves of genus zero.
Furthermore it has a tautological family.

Proof. The set Hom(Spec(k), Spec(k)) consists of a single element and clearly is in a one-to-one
correspondence with the set of families over Spec(k) that consists of the family P} — Spec(k).
Clearly P} — Spec(k) is a tautological family. If X — S is a family there is a unique morphism
S — M = Spec(k), in this way we get the functorial morphism « : ¥ — Hom(—, M).

Now suppose that  : § — Hom(—, N) is another morphism of functors. In particular the
family P} — M determines a morphism e € Hom(M, N). Let X — S a family over a scheme
S of finite type over k. For any closed point s € S the fiber is Xs = IP!, then any closed point
s goes to the point n = e(M) € N. Now the restriction of the family on S to an Artin closed
subscheme of S is trivial, so factor through Spec(k). We conclude that the morphism 3 factors
through «. O

Clearly the tautological family is P" — Spec(k), that is the unique family over M = Spec(k).

Suppose M = Spec(k) to be a fine moduli space for the curves of genus zero. Then the
universal family is P! — Spec(k). Since any other family is obtained by base extension from
the universal family it must be trivial i.e. of the form P! x, S — S. But the ruled surfaces
provide an example of non trivial families of curves of genus zero.
Consider for instance the blow up Bl,IP? of P? is a point p. The projection 7t : Bl,IP? — P!
makes Bl, P2 into a ruled surface, but it is not a product. Note that Pic(Bl, P2) = Pic(P! x
P') = Z @ Z, but on Bl,IP? we have a (—1)-curve, the exceptional divisor. Suppose that
there is a (—1)-curve C = (a,b) on P! x P'. We have C2 = (aL + bR)(aL +bR) = 2ab = —1,
a contradiction.

Definition 1.3.2. A pointed curve of genus zero over k is a curve of genus zero with a choice

of a k-rational point. A family of pointed curves of genus zero is a flat family X = S, whose
geometric fibers are curves of genus zero, with a section 6 : S — X.

The fact that 0 : S — X is a section means that mo 0 = Ids. Then for any point s € S the
image o(s) is a point of the fiber X5 = P! over s. The section o is sometimes called an S-point
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of X.

A way to obtain a fine moduli space for the curves of genus zero is to rigidify the curves
by taking three distinct points. We know that there is a unique automorphism of P! that
fixed three distinct points, namely the identity. Consider the families of curves of genus
zero with three marked points i.e. the families of X — S, whose fibers are curves of genus
zero, with three sections o1, 02,03 : S — X, such that on each fiber the sections have distinct
support. Since a curve X of genus zero with three marked points is rigid i.e. Aut(X) = {Idx},
the corresponding functor is representable by M = Spec(k) and the universal family is
P! — Spec(k) with three distinct points, say [0: 1],[1:0],[1:1].

Grothendieck Spectral Sequence

We begin recalling the notion of five terms exact sequence or exact sequence of low degree terms
associated to a spectral sequence. Let

EMF = HM(A)

be a spectral sequence whose terms are non trivial only for h,k > 0. Then this is an exact
sequence
0 By = HI(A) = EY! = E7° — H2(A).

The Grothendieck spectral sequence is an algebraic tool to express the derived functors of a
composition of functors G o F in terms of the derived functors of ¥ and §.
Let F: G — Cy and G : C; — @3 be two additive covariant functors between abelian
categories. Suppose that G is left exact and that F takes injective objects of €y in G-acyclic
objects of C;. Then there exists a spectral sequence for any object A of C;

ENF = (R"G o R*F)(A) = RMK(Go F)(A).
The corresponding exact sequence of low degrees is the following
0+ R'G(F(A)) = RT(GF(A)) = S(R'F(A)) — RZG(F(A)) — R*(GF)(A).

As a special case of the Grothendieck spectral sequence we get the Leray spectral sequence.
Let f : X — Y be a continuous map between topological spaces. We take €7 = b(X) and
Cz = 2Ab(Y) to be the categories of sheaves of abelian groups over X and Y respectively. Then
we take JF to be the direct image functor f, : Ab(X) — Ab(Y) and § =Ty : Ab(Y) — Ab to be
the global section functor, where 2(b is the category of abelian groups. Note that

My of, = Iy : A6(X) — Ab

is the global section functor on X. By Grothendieck’s spectral sequence we know that
(RMTy o R*f,)(€) = RMK(Iy o f,)(€) = RV KTy (&) for any € € Ab(X), that is

HM (Y, R¥f,€) = HMPR(X, €).
The exact sequence of low degrees looks like
0 HU(Y, £.€) = H'(X, &) = HO(Y,RTf,&) — H(Y, £.€) — H*(X, €).

Finally we work out the spectral sequence of Ext functors. Let € € Coh(X) be a coherent sheaf on
a scheme X. Consider the functor

Hom(&,—) : €oh(X) — €oh(X), Q — Hom(E, Q),
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and the global section functor
Ix : Coh(X) = 2Ab, Q — Ix(Q).

Note that I'x o Hom(&, —) = Hom(&, —). By Grothendieck spectral sequence we have (R"Tx o
R¥Hom(€,—))(Q) = RM¥(Hom(€,—)(Q) for any Q € €oh(X), that is

HM (X, ext®(&,Q)) = Ext™t*(¢, Q).
The corresponding sequence of low degrees is

0 H'(X,Hom(&,Q)) — Ext'(&,Q) — HO(X, éxt! (&,Q)) — H2(X, Hom(E,Q)) — Ext?(E, Q).

Deformations of Schemes

Let X be a smooth scheme of finite type over k. We define the deformation functor

Defx : et — Gets of X sending an Artin ring A to the set of couples (XA 4 Spec(A), @)
modulo isomorphism, where 74 is a smooth morphism, ¢ : X — Xy is an isomorphism, Xy is
defined by the cartesian diagram

Xg — Xa

l J

Spec(k) —— Spec(A)

and (Xa, @), (X/A, (p,) are isomorphic if there is an isomorphism « : Xa — X/A such that the
diagram

/
commutes and @ = xo @.

Theorem 1.3.3. For any semi-small exact sequence 0 +— 1 — A — B > 0 in Act, let T'Defy =
HY(X, Tx), then

1. there exists a functorial exact sequence

T'Defyx ® I — Defx(A) — Defx(B) — T?Defx ® [;

2. for any (XA, A, @) € Defx(A), let G = Stab(Xa) C T'Defx ® 1, we have a functorial
exact sequence
0 T'Defx ® I — Aut(Xa) — Aut(Xg) — G + 0.

Now let X be any scheme over k. Consider the exact sequence of low degree for Ext functors
with sheaves Qx and Ox. We have
0+ H'(X,Hom(Qx, Ox)) — Ext! (Qx, Ox) = HO(X, Ext! (Qx, Ox)) — HZ (X, Hom(Qx, Ox)).

The set of deformations of X over the dual numbers D = ke[f] is in one-to-one correspondence

with the group Ext! (Qx, Ox). Then we get the sequence

0 — H'(X, Hom(Qx, Ox)) — Defx (D) — HO(X, &xt! (Qx, Ox)) — H2(X, Hom(Qx, Ox)).

25



Differentials and Ext groups

Let X be a smooth scheme and let Y be a closed subscheme with ideal sheaf J. We have an
exact sequence of sheaves
7/9% = Qx ® Oy = Qy — 0,

where the first map is the differential. Furthermore Y is smooth if and only if
* Qy is locally free,

e the sequence is also exact on the left

0 7/7% = Qx ® Oy = Qy — 0.

In this case the sheaf J is locally generated by Codim(Y,X) elements, and its is locally free of
rank Codim(Y,X) onY.

Remark 1.3.4. Let Y C X be an hypersurface not necessarily smooth. We can associate to Y a
Cartier divisor {(U;, fi)}, and the ideal sheaf J is locally generated by f; on U;. Furthermore
Ox(Y) is the sheaf locally generated by f;1 on U;. We conclude that Ox(—Y) = J is locally
free. If Y C X is a reduced hypersurface, then J is locally free of rank one. We have the
differential d : 7/9%2 — Qx ® Oy, if f is a local generator of J then df is a local generator of
Im(d), since Y is reduced then df # 0, Im(d) is locally free of rank one, and the map d is
injective. So we have again an exact sequence

0 7/7% = Qx ® Oy = Qy — 0.

Let f = f(x1,...,xn), with n = dim(X), be a local equation for Y in X. Then df = aa—)f]dm +
.t aann. Since Y is reduced the differential is injective, furthermore /72 is locally free of

rank one and Qx ® Oy is locally free of rank n. Applying Hom(—, Oy) to the sequence
0 7/7% = Qx ® Oy = Qy =0,
we obtain
0 = Hom(Qy, Oy) — Hom(Qx|y, Oy) = Hom(J/3%,0y) — Ext' (Qy, Oy) — Ext' (Qxy, Oy).

Remark 1.3.5. Let X be a noetherian scheme such that any coherent sheaf on X is quotient of
a locally free sheaf i.e. Coh(X) has enough locally free objects. We define the homological
dimension of F € Coh(X), denoted by hd(J), to be the least length of a locally free resolution
of F or o if there is no finite one. Clearly J is locally free if and only if hd(F) =1 if and only
if Ext'(%,5) =0 far any § € Mod(X). Furthermore hd(J) < n if and only if Ext}(F,8) =0
for any i > n and § € Mod(X). Finally hd(J) = Supyex(pdo Fx), where pd is the projective
dimension.

In our case Qyy is locally free, and by the preceding remark Ext' (Qx|y, Oy) = 0. Then
we get the exact sequence

0 —~ Hom(Qy, Oy) — Hom(Qxjy, Oy) — Hom(J/9%,0y) — Ext!(Qy, Oy) = 0.

Consider now the special case X = A™ and Y = Spec(A), where A = k[xq,...,xn]/(f). The
map Hom(Qany, Oy) — Hom(J/9%,0y) is the transpose of the differential d : 7/9% —
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Qpanjy. Furthermore Hom(Qanjy, Oy) = A™ and Hom(J/9%) = A. We can write the map
Hom(Qan|y, Oy) — Hom(3/9%,0y) as

of of
@A™ = A, (0,0 ) > X — F e F o —.
0x1 0Xn

We rewrite our exact sequence as

0 — Hom(Qy, Oy) = A™ = A — Ext' (Qy, Oy) — 0.

Then Im(p) = (a’%, - 3=) € A, and Ext'(Qy, Oy) = A/(aan],..., ).

Now let Y = C C A? be a nodal curve. In an étale neighborhood of the node we can
assume C = Spec(A), where A = k[x,yl/(xy). From the preceding discussion we get
Ext'(Qc,0¢) = A/(x,y) = k. So Ext! (Qc,0¢)p = 0 if p is a smooth point of C and

Ext! (Qc,0c¢)p = kif p € Sing(C). Furthermore

Ext'(Qc,0x) = ) 0.
peSing(C)

Curves of Genus One

An elliptic curve over an algebraically closed field is a smooth projective curve of genus one.
Let X be an elliptic curve and let P € X be a point, consider the linear system |2P| on X. Since
the curve is not rational |2P| has no base points, and since deg(K —2P) =2g—-2—-2=-2<0
the divisor 2P| is non-special i.e. hO(K —2P) = 0. By Riemann-Roch theorem hO(2P) =
deg(2P) — g+ 1 = 2. Then the linear system |2P| defines a morphism f : X — P! of degree 2
on P'. Now by Riemann-Hurwitz theorem we have

2g—2 = deg(f)(2gp1 —2) + deg(R¢),

then deg(R¢) = 2- deg(f) =4, and f is ramified in four points and clearly P is one of them.
If x1,x2,%x3,00 are the four branch points in P!, then there is a unique automorphism of
P! sending x1 to 0, x7 to 1, and leaving co fixed, namely y = % After this change of
coordinates we can assume that f is branched over 0,1,A,00 € P!, whitA € k, A #0, 1.

We define the j-invariant of the elliptic curve X by

. A2 —A+1)3
=i =282 2 2
j=JA) N 1)
It is well known that over an algebraically closed field k with char(k) # 2 the scalar j(X)
depends only on X. Furthermore two elliptic curves X,X' are isomorphic if and only if
iX) = j(X/), and every element of k is the j-invariant of some elliptic curve. Then there is a
one-to-one correspondence with the set of elliptic curves up to isomorphism and A} given by
X = j(X).

Definition 1.3.6. A family of elliptic curves over a scheme S is a flat morphism of schemes
X — S whose fibers are smooth curves of genus one, with a section o : S — X. In particular,
an elliptic curve is a smooth curve C of genus one with a rational point P € C.

Consider the functor F : Sch) — Gets where F(S) is the set of families of elliptic curves over
S modulo isomorphism. One can prove that J does not have a fine moduli space, but the
affine line A} is a coarse moduli space for J.
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Now a natural question is how to compactify this coarse moduli space to obtain a complete
moduli space. In addition to elliptic curves we admit also irreducible nodal curve of arithmetic
genus pq = 1 with a fixed nonsingular point. We consider families X — S whose fibers are
elliptic curves or pointed nodal curve, then taking j(C) = oo for the nodal curve the projective
line P! becomes a coarse moduli space.

Let C be a reduced, irreducible curve with pq = 1 and such that Sing(C) is a node. Such a
curve can be embedded in P2 as the nodal cubic C = Z(y%z — x> + x?z). Consider the low
degrees exact sequence for Ext functors,

0 H'(X, Hom(Qc, O¢)) — Ext' (Qc, Oc) — HO(X, ext' (Qc, O¢)) — HZ(X, Hom(Qc, O¢)).

Since &xt' (Qc, O¢) is concentrated at the singular point of C we know that HO(X, ext (Qc,O0¢))
is a T-dimensional k-vector space. Now we consider the sheaf Hom(Q¢, C) = Tc.

Recall that if X is a smooth variety and Y C X is a closed irreducible subscheme defined by
the sheaf of ideals J, then there is an exact sequence

9/7* = Qx ® Oy — Qy — 0.
Furthermore Y is smooth if and only if
- the sheaf Qy is locally free, and

- the sequence above is also exact on the left

0 79/7% = Qx ® Oy = Qy — 0.

Consider the sequence for a general subscheme Y and apply the functor Hom(—, Oy). We
obtain
0Ty = Txjy = Ny/x — ext' (Qy, Oy) — 0.

For our nodal curve C in P? we have
0= Tc — T]PZ\C — NC/IPZ — ext! (Qc,0c) — 0.

We know that Ne/p2 = Oc(C) = O¢(3), let D be the divisor associated to O¢(3). Since C
is a local complete intersection the dualizing sheaf w® is an invertible sheaf. We define the
canonical divisor as the divisor corresponding to w® with support in C;eg. Since there are no
regular differentials on C we have deg(K — D) < 0. By Riemann-Roch theorem for singular
curves we get

hO(N¢ p2) = deg(D) +1—pa =9+1—-1=9.

Consider now the Euler sequence

&3 Tpa = 0.

0 O]PZ — O]PZ(1)
Tensorizing by Oc we get
0 Oc = 0c(1)93 = Tp2jc — 0.

Using the dualizing sheaf w{- = O¢, and Serre duality we get h'(Oc(1)) =h0(Oc(—1)) =0.
The cohomology sequence looks like

0+ HO(C,0¢) = HO(C,0c(1)%3) = HO(C, Tpz2;c) = H'(C,0¢) = 0,
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SO ho(Tﬂgzm) = 9. Furthermore the map HO(C,NC/]Pz) — HO(C, &xt'(Qc, 0¢)) is surjective
since the former parametrizes the embedded deformations of C as a subscheme of IP? and
the latter parametrizes the abstract deformations of the node. We conclude that ho(T¢) > 0.
Let 0 € HO(C, T¢) be a nonzero section, we have an exact sequence 0 — O¢ 5 Tc >R 0.
The cokernel R is not zero, because Tc is not locally free. Then T is a proper subsheaf of
Oc, using the dualizing sheaf wg = O¢ and Serre duality we get h (Te) = ho(fC) =0. We
conclude that Def(C) is one-dimensional.

Automorphisms of Curves

The only curve of genus one is P!, and its automorphism group is PGL(2) which is an open
subset of IP3. If we choose one or two marked points in P! the automorphism group remains
infinite of dimension two and one respectively. However a well known theorem in projective
geometry asserts that if we fix three marked points the automorphism group is trivial.

We will see that an elliptic curve has infinitely many automorphisms, but if we choose a
marked point then its automorphism group is finite. Finally we will prove that any curve X
of genus g > 2 has finitely many automorphisms, and we will give a bound on the cardinality
on Aut(X).

Recall that an elliptic curve X has a group structure, more precisely if we fix a point on X
then we get a bijective correspondence between the points of X and the divisors of degree
zero in C1°(X), so any translation X x X — X gives an automorphism of X. Clearly if we
choose a marked point p € X, then the only possible translation is the identity, in this way the
automorphism group becomes finite.

Proposition 1.3.7. Let E be an elliptic curve over k with a marked point. The automorphism group
Aut(E) is a finite group of order dividing 24. More precisely

- ifj(E) #0,1728, then | Aut(E)| = 2,
- ifj(E) = 1728 and chat(k) # 2,3, then | Aut(E)

=4,
- ifj(E) = 0 and chat(k) # 2,3, then | Aut(E)| = 6,

- ifj(E) =0,1728 and chat(k) = 3, then | Aut(E)| = 12,
- ifj(E) =0,1728 and chat(k) = 2, then | Aut(E)| = 24.

Proof. We consider the case char(k) # 2,3. Then E can be realized as a plane smooth cubic
and can be written in Weierstrass form

y2 =% +oax+B,

furthermore every automorphism of E is of the form

!/ /
x=u’x,y=udy,

for some u € k*. Such a substitution will give an automorphism if and only if
ua=q, u_6[3 =p.

If -3 =0 then j(E) # 0,1728, the only possibilities are u = £1. If 3 = 0 then j(E) = 1728,
and u satisfies u* = 1, so Aut(E) is cyclic of order 4. If o = 0 then j(E) = 0, and u satisfies
u® =1, so Aut(E) is cyclic of order 6. O
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Proposition 1.3.8. Any smooth curve X of genus g > 2 has finitely many automorphisms.

Before proving the proposition we recall some general facts about canonically embedded
varieties.

Remark 1.3.9. (Canonically Embedded Varieties) Let f : X — Y be a dominant morphism between
smooth varieties. The pullback f* : f*Qy — Qx defines a canonical morphisms between
the cotangent sheaves, and since pullback commutes with maximal exterior powers we get
a canonical morphism f* : f*wy — wx of the canonical sheaves. In particular if X =Y and
f € Aut(X), since f*wx = wx, we get an automorphism f* of wx. Then an automorphism
of X induces an automorphism of wx, and an automorphism on the vector space of the its
global section HO(X, wx).

Suppose now that wx is ample, then w%“ is very ample for some n > 0. Any automor-
phism of X induces also an automorphism of w%n. Let o : X — ]P(HO(X,wgg(m)*) be the
corresponding embedding. Then we have an action of Aut(X) on P(HO(X, w%n)*), and any
f € Aut(X) induces an automorphism of P(HO(X, w%“)*) =IPN. We have seen that if X has
ample canonical sheaf then Aut(X) is a closed algebraic subgroup of PGL(N + 1). Clearly the
same argument works if X has ample anticanonical sheaf.

Proof. Recall that if f : X — Y is a morphism of schemes, with X separated and Y smooth,
and Def; is the deformation functor of f, then T'Defs = HO(X,f*Ty). In particular for
f=1Idx: X — X we get TI]dXDefIdX = Trq, Aut(X) = HO(X, Tx), and h°(X, Tx) = 0 since X is
a curve of genus g > 2. The curve X has canonical ample sheaf, and by the preceding remark
we can embed Aut(X) in PGL(N +1) € P(N+1 12=1 a5 closed subscheme. Since the tangent
space of Aut(X) has dimension zero we conclude that Aut(X) is a finite set of points. O

In the following proposition we give a bound on the number of automorphisms of a curve
of genus g > 2.

Proposition 1.3.10. Let X be a projective curve of genus g > 2, then the group Aut(X) is finite and
| Aut(X)] < 84(g—1).

Proof. Let W(X) be the set of Weierstrass points of X, we know that W(X) is finite. If
¢ € Aut(X) is a non trivial automorphism then ¢ has at most 2g + 2 fixed points. Since the
set of Weierstrass points is fixed by the group Aut(X) we have a morphism

F: Aut(X) — Perm(W(X)),

where Perm(W(X)) is the group of permutations of W(X). If X is non hyperelliptic there are
more than 2g + 2 Weierstrass points on X and there is a unique automorphism that leaves
more that 2g + 2 points fixed, the identity. So ker(F) = {Idx}.

If X is hyperelliptic then any automorphism in the subgroup (J) generated by the involution
J : X — X fixes the Weierstrass points, but since J? = Idx this subgroup is finite. We conclude
that F is a morphism of Aut(X) into a finite group and with finite kernel, then the group
Aut(X) is finite.

Let G = Aut(X) and |G| = n, consider the projection m : X — X/G. For any X € X/G we
have T '(X) ={x e X|n(x) =X} ={x € X|3g € G, g(x) =x} ={g'(X), g€ G}, then is a
morphism of degree n. The map 7t is branched only at fixed point of G. Let Py, ...,Ps be a
maximal sets of ramification points of X lying over distinct points of X/G, and let r; be the
index of ramification of P;. Recall that if P € X is a ramification point, and r is its ramification
index, then the fiber 7~ (7t(P)) consists of exactly T points, each having ramification index r,
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essentially because X is a covering space for X/G. So in the fiber of any P; there are % points
each with ramification index r;. Then the degree of the ramification divisor is

By Riemann-Hurwitz formula we get 29 —2 = n(2a —2) + anS:1 (1— rlj), where « is the
genus of X/G. Then

M_Zoc 2+Z 177_

Note that since 1; > 2 we have } 7 < 1— .- < 1. Since we may assume n > 1 it is clear that

g > o. Now we have to analyze the expressmn 200— 2+ ZJ: (1— ;)

- If oc > 2 we obtain 200 —2+ 3 5_;(1 >2-37 401 >2,50 292 > 2 and
ngg—l.

_Ifoc:1thenZoc—2+Z]-S:1(1—%)22]21(1—%_)2%,5024’%22%and
n<4(g—1).

—Ifoc:OthenZOc—Z—i—ZjS:](]—rlj):2;11(1 ) 2. Since 3 _4( ) 2>0

and 1 — Tl < 1, we conclude that s > 3.
)

- Ifs>5,thean:1(1_rlj)_2>l so 29=2 >

3 = and

N[—=

n<4(g—1).

- If r = 4 then the Tj cannot be all equal to 2, otherwise we would have 24%2 =0, so
g = 1. Then at least one is > 3 and glVESZ) (1= —) —2>3(1— %) +(1 —%) —2=

]6,5049—> 6and

n<12(g—1).

- In the case s = 3 we can assume without loss of generality 2 < r; <13 < 3. We
have r3 > 3 otherwise Z)s 11— rlj) —2<0. Thenr, > 3.
Ifr3 >7thenn < 84(g—1).
Ifr3=6andr; =2thent, >4and n < 24(g—1).
Ifrg=6andr; >3thenn < 12(g—1).
Ifr3=5andr; =2thenr; >4and n <40(g—1).
Ifr3=5and r; >3 thenn < 15(g—1).
Ifr3=4thenr; >3and n < 24(g—1).

O

To compactify the coarse moduli space Mg Deligne and Mumford introduces stable curves.
We have seen that Trq, Aut(X) = HO(X, Tx), an element of this space is called an infinitesimal
automorphism.

Definition 1.3.11. A reduced, connected, projective curve X, having at most nodes as singu-
larities is said to be stable if HO(X, Tx) = 0, i.e. X has no infinitesimal automorphisms.

31



Clearly for a curve X of genus g > 2 the following are equivalent,
- X has no infinitesimal automorphisms,
- HO(X, Tx) =0,
- Aut(X) is finite.

By the preceding discussion any smooth curve of genus g > 2 is stable.
Consider the local infinitesimal deformation functor of J for a stable curve X of genus
922,
Defy : rt — Gets,

which associates to any Artin local algebra A the set of isomorphism classes Y — Spec(A)
of families of curves of genus g over Spec(A), with a fixed isomorphism Yy — X, where
Yo — Spec(k) is the central fiber of Y. Note that the isomorphism Yy — X is not unique,
indeed we can recover any other isomorphism composing with an automorphism of X, and
the set of such isomorphisms is a principal homogeneous space under the action of Aut(X).
The following remark will be important in order to prove that Mg is smooth.

Remark 1.3.12. Let X be a proper scheme and let Defx be its deformation functor. Then
T efy = Ext!(LY, Ox), where L% is the cotangent complex of X. If X has only local complete
intersection singularities the L} coincides with Qx in degree zero. Recall that from the
spectral sequence of Ext groups we have

HI(X, ExtP(Qx, Ox)) = ExtPtd (Qx, O0x).
Consider the special case where X = C is a nodal curve and p 4+ q = 2. Then

- HO(C, &xt2(Qc, O¢)) = 0 because Q¢ admits a locally free resolution of length one.
Indeed take an embedding C — Y of Y in a smooth surface, then we have an exact
sequence

0 7/9% = Qy®0c — Q¢ = 0.

- HY(C, &xt' (Qc, O¢)) = 0 because Ext' (Q¢,O¢) is supported on Sing(C) which is zero
dimensional.

- H2(C,Hom(Qc¢, O¢)) = 0 because dim(C) = 1.
We conclude that Ext?(Qc, O¢) = T2Defc = 0.

Theorem 1.3.13. (Smoothness of My) Let X be a stable curve of arithmetic genus g > 2. Then the
functor of local infinitesimal deformations Defx of X is pro-representable by a regular local ring of
dimension 3g — 3. In other words My is a smooth Deligne-Mumford stack of dimension

dim(Mg) = 3g—3.

Proof. The functor Defx is pro-representable since X is projective and does not have infinitesi-
mal automorphism. Furthermore T2Defx = H2(X, Tx) = 0 since dim(X) = 1, then there are
no obstructions to deforming X and the local ring representing Defy is regular. Furthermore
from remark 1.3.12 we get Ext?(Qx, Ox) = T?Defx = 0 for a nodal curve. Then in any case
the deformation functor of X is unobstructed. So far we have proved that My is a smooth
DM stack. To compute its dimension we distinguish two cases.
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- If X is a smooth curve, and 0 — I — A — B — 0 is a semi-small exact sequence in tt,
then there is a functorial exact sequence

H'(X, Tx) ® I — Defx(A) — Defx(B) — H?(X, Tx) ® L

On a curve Tx = wy, where wx is the canonical sheaf of X. Then deg(Tx) = 2 —2g,
and since h®(Tx) == 0, by Riemann-Roch theorem we get hO(Tx) —h'(Tx) =2—2g—
g+1=3-3g,and h!(Tx) = 3g — 3. We conclude that in a point x € Mg corresponding
to the isomorphism class of a smooth curve X, the tangent space TyMy has dimension
3g—3.

- Now consider the case where X is a stable nodal curve. We have a sequence
0 — H'(X, Hom(Qx, Ox)) = Ext' (Qx, Ox) — HO(X, &xt! (Qx, Ox)) — 0,

there being no H? on a curve. We denote by & the number of nodes in X. Since the sheaf
Qx is locally free on the smooth locus of X, the sheaf ext'(Qyx, Ox)) is just k at each
node, then dim(H° (X, Ext! (Qx, Ox))) = 6. The curve X is Lc.i, then the dualizing sheaf
wx is an invertible sheaf, and since wx = Qx on the open set of regular points, we
have an injective morphism va — Hom(Qx, Ox), and an exact sequence

0 wy — Hom(Qx,Ox) = Oz 0,

where Z = Sing(X). Since X is stable h®(Hom(Qx, Ox)) =0, by the cohomology exact
sequence we get h°(wy) = 0, and

0 HO(X,07) = H' (X, wy) — H' (Hom(Qx, 9x)) — 0.

By Riemann-Roch for singular curves we get h! (wvx) =3g—3, and since h°(0z) =5
we get h! (Hom(Qx, Ox)) =3g—3—5. Finally

dim(Ext! (Qx, Ox)) = h!(Tx) + hO(&xt! (Qx, Ox)) =3g—3—5+6=3g—3.

We conclude that any point of M is smooth and Mg is a smooth stack of dimension 3g—3. [

Remark 1.3.14. Theorems 1.2.6 and 1.3.13 hold also for n > 0. That is Mg, is a smooth
DM-stack of dimension 3g — 3 + 1 for any g, n such that 2g —2 +n > 0. The notation is more
convoluted but the proofs work exactly in the same way.
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THE AUTOMORPHISM GROUP OF Mg,n

We work over the field of complex numbers. Let us begin whit some preliminaries on Mg n
and the moduli stack Mg n.

Nodal curves

The arithmetic genus g of a connected curve C is defined as g = h'(C,O¢). Suppose
that C has at most nodal singularities. Let C = (J{_, C; be the irreducible components
decomposition of C, and set  := §Sing(C). Let

v:C= fi—>C

-

i=1

be the normalization of C. The associated morphism O¢ < O¢ on the structure sheaves yield
the following sequence in cohomology

0 HO(C,0¢c) = H°(C,0) — C° — H'(C,0¢) — H'(C,0=) — 0.
C C

We get a formula for the arithmetic genus g of C

Y
g=h'"(COg)+8—v+1=) gi+do—y+]1

i=1
where g; = h!(Cy, Oa) is the geometric genus of Cj.

Definition 2.0.15. A stable n-pointed curve is a complete connected curve C that has at most
nodal singularities, with an ordered collection x1, ..., xn € C of distinct smooth points of C,
such that (C,x1, ..., xn) has finitely many automorphisms.

This finiteness condition is equivalent to say that every rational component of the normal-
ization of C has at least three points lying over singular or marked points of C.
As we saw in Chapter 1 moduli spaces of smooth algebraic curves have been defined and then
compactified adding stable curves by Deligne and Mumford in [DM]. Furthermore Deligne and
Mumford proved that, if 2g —2+n > 0, there exists a coarse moduli space Mg 5, parametrizing
isomorphism classes of n-pointed stable curves of arithmetic genus g, and this space is an
irreducible projective variety of dimension 3g —3 +n.

Boundary of Mg v, and dual modular graphs

The points in the boundary dMg ,, of the moduli space Mg represent isomorphisms
classes of singular pointed stable curves. The geometry of such curves is encoded in a
graph, called dual modular graph. The boundary has a stratification whose loci, called strata,
parametrize curves of a certain topological type and with a fixed configuration of the marked
points.

Each nodal curve has an associated graph. This allows to represent nodal curves in a very
simple way and translate some issues related to nodal curves in the language of graph theory.
Let C be a connected nodal curve with y irreducible components and & nodes. The dual
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graph I'c of C is the graph whose vertexes represent the irreducible components of C and
whose edges represent nodes lying on two components.

More precisely, each irreducible component is represented by a vertex labeled by two numbers:
the genus and the number of marked points of the component. An edge connecting two
vertex means that the two corresponding components intersect in the node corresponding to
the edge. A loop on a vertex means that the corresponding component has a self-intersection.
Recently, S. Maggiolo and N. Pagani developed a software that generates all stable dual graphs
for prescribed values of g, n whose detailed description can be found in [MP].

We denote by Ai;, the locus in Mg, parametrizing irreducible nodal curves with n marked
points, and by A; p the locus of curves with a node which divides the curve into a component
of genus i containing the points indexed by P and a component of genus g — i containing the
remaining points.

The closures of the loci Airr and A; p are the irreducible components of the boundary amg,n
[Mor, Proposition 1.21].

Forgetful morphisms

For any i =1,...,n there is a canonical forgetful morphism
T - ﬂg,n — mg,n—]

forgetting the i-th marked point. If g > 2 and [C, x1, ..., %, ..., xn] € MQ,TH is a general point
the fiber

~

7 ([C, X1, ey Xy X)) = C

is isomorphic to C and m; plays the role of the universal curve. Note that if n > 2 the fiber
71;1 ([C,x1,..., X}, ..., xn]) always intersects the boundary of Mg,n, in fact the points of the fiber
corresponding to marked points represent singular curves with two irreducible components:
C itself and a IP! with two marked points and intersecting C in a point. In the same way for
any I C {1,..,n} we have a forgetful map 7ty : Mgn — Mg 1. The map 7; has sections
$ij 1 Mgn—1 = Mg n defined by sending the point [C,x1, ..., ¥, ..., Xn] to the isomorphism
class of the n-pointed genus g curve obtained by attaching at x; € C a P! with two marked
points labeled by x; and x;.

The universal curve

The moduli space Mg 1 with the forgetful morphism 7t: Mg 1 — My at first glance seems
to play the role of the universal curve over My. However, on closer examination one realizes
that 7' ([C]) = C if and only if [C] € M‘; the locus of automorphisms-free curves. It is well
known that the set-theoretic fiber of 7w: Mg 1 — Mg over [C] € M is the quotient C/ Aut(C).
For example over an open subset of M, the fibration 7t: M7 — M3 is a IP'-bundle and this
is true even scheme-theoretically.

Remark 2.0.16. The situation is different if instead of considering the moduli space My ; we
consider the Deligne-Mumford moduli stack ﬂQJ . In fact, in this case the fiber 7' ([C]) is
isomorphic to C and via the morphism 7 : Mg 1 — Mg the stack Mg ; plays the role of the
universal curve over M.

Divisor classes on Mg n

Let us briefly recall the definitions of classes A and {; on Mg . Consider the forgetful
morphism 7t: Mg 11 — Mg n forgetting one of the marked points and its sections o7, ..., oq :
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Mgn = Mgn1. Let wx be the relative dualizing sheaf of the morphism 7. The Hodge class
is defined as
A= cq (T (wn)).

The classes \; are defined as
Py == o} (c1(wr))

for any i = 1,...,n. Finally we denote by i, and 6; p the boundary classes on ﬁg,n-

Cyclic quotient singularities

Any cyclic quotient singularity is of the form A™/u,, where . is the group of r-roots of
unit. The action p, ~ A™ can be diagonalized, and then written in the form

wr X A™ — A™, (e,%1, 0, xn) — (€%7%7, ..., €% xn ),

for some ay, ..., ar € Z/Z,. The singularity is thus determined by the numbers 1, ay, ..., an.
Following the notation set by M. Reid in [Re], we denote by %(a1 , ..., ) this type of singularity.
Fibrations of Mg n

The following result by A. Gibney, S. Keel and I. Morrison gives an explicit description of the
fibrations Mg n — X of Mg, on a projective variety X in the case g > 1. We denote by N the
set {1,...,n} of the markings, if S C N then S¢ denotes its complement.

Theorem 2.0.17. (Gibney - Keel - Morrison) Let D € Pic(Mgn) be a nef divisor.

- If g > 2 either D is the pull-back of a nef divisor on Mg, — 1 via one of the forgetful morphisms
or D is big and the exceptional locus of D is contained in OMg n.

- If g = 1 either D is the tensor product of pull-backs of nef divisors on My s and My sc via
the tautological projection for some subset S C N or D is big and the exceptional locus of D is
contained in OMg n.

The above theorem will be crucial to determine the automorphism group of Mg n, and can
be found in [GKM, Theorem 0.9]. An immediate consequence of 2.0.17 is that for g > 2 any
fibration of Mg, to a projective variety factors through a projection to some Mg ; with i < n,
while M4 has no non-trivial fibrations. This last fact had already been shown by A. Gibney in
her Ph.D. Thesis [Gib].

Such a clear description of the fibrations of My is no longer true for g = 1, an explicit
counterexample to this fact was given by R. Pandharipande and can be found in [BM2, Example
A.2], see also [Pan] for similar constructions. However, if we consider the fibrations of the

type
— © — T —
M],n — M],n - M],nf1

where ¢ is an automorphism of m],n/ thanks to the second part of Theorem 2.0.17 we can
prove the following lemma.

Lemma 2.0.18. Let ¢ be an automorphism of My n. Any fibration of the type 7t o @ factorizes
through a forgetful morphism 7 : My 5 — My n_1.
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Proof. By the second part of Theorem 2.0.17 the fibration 71; o ¢ factorizes through a product
of forgetful morphisms 7tse x s : My, = My s XM, M sc and we have a commutative
diagram

J— © J—
Ml,n ? M1,n
Ttsc Xﬂsl lT[i

JE— [— P —
M]/S XHL] M]/SC M'I,TL*-I

The fibers of 7; and 7tse x g are both 1-dimensional. Furthermore ¢ maps the fiber of
mise X s over ([C,Xay, - Xa ), [C, Xy, ooy Xp, 1) tO n;l (@(IC, xay, v Xag [Coxp ooy Xb 1))
Take a point [C, X7, ..., Xn_1] € Mj 1, the fiber 7'[1_1 ([C,x1, ..., xn—1]) is mapped isomor-
phically to a fiber I' of 7tsc x g which is contracted to a point y = (nge x ms)(I'). The
map

ll) : M],nf1 — M],s Xmm M],sc, [C,X],...,Xn,]] =y,

is clearly the inverse of . So @ defines a bijective morphism between M s XM Mj se

and M; ,_1, and since M ;, 1 is normal @ is an isomorphism. This forces S = {j}, S¢ =
{1,...,j,...,n}. So we reduce to the commutative diagram

P ® J—
Ml,n ? M1,n
Ttsc Xﬂjl JT[i

[— —_— @ —_
Mi1 x5, Min—1 — My g

and 7t; o @ factorizes through the forgetful morphism ;. O

2.1 THE MODULI SPACE OF 2-POINTED ELLIPTIC CURVES

Let (C, p) be a nodal elliptic curve. Then there exists (a,b) € A%\ (0,0) such that (C,p) is
isomorphic to (C’, [0:1:0]), where

c' = Z(zy2 —x3 —axz? —bz?) c P2.

This representation is called Weierstrass representation of the elliptic curve. Consider now the
4-fold
X = Z(zy? —x3 — axz? —bz3) ¢ A x A3.

There is an action of C* x C* ~ X given by
C* xC* x X = X, (M E),(x,y,z,a,b)) = (EA’x, EA3y, &z, A% a, A®D).

The moduli stack MU is the quotient stack [AZ\ (0,0)/C*] = P(4,6) and the moduli space
MH is the quotient A2\ (0,0)/C* = P'. There are two points of MH that are stabilized
by the action of uy and pg respectively. These are classes of curves whose Weierstrass
representations can be chosen respectively as:

Cyq = {yzz =x3 +xz%} C P?,

Ceg = {yzz =x3 423} c P2
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Now, M > is the universal curve over M; 1, so My ; = [X/C* x C*] and M ; = X/C* x C*.
In order to determine the singularities of M; ; we have to analyze carefully the action
C*xC* X

Since M , is a smooth Deligne-Mumford stack the coarse moduli space M » will have finite
quotient singularities at the places where the automorphism groups jump. Let (C,p) be a
elliptic curve over C, it is well known that

- |Aut(C,p)l = 2if j(C) #£0,1728,
- |Aut(C,p)l =4 if j(C) = 1728,
- |Aut(C,p)| = 6if j(C) #0.

Adding a marked point will kill some automorphisms. We expect that points of type (C,p, q)
with | Aut(C, p)| = 2 will have trivial automorphism group. Automorphisms will jump on the
points (C,p, q) with | Aut(C,p)| = 4,6. To understand the behavior of the boundary 0M;
we have to observe the following possible degenerations.

- The divisor Ai,, whose general point is a curve with dual graph

and so automorphisms free.

- The divisor Ag >, whose general point is a curve with dual graph

and so with two automorphisms coming from the elliptic involution. Here we expect to
get two singular points when the number of automorphisms of the elliptic curve jumps
to 4 and 6.

- Two further degenerations in codimension two with the following dual graphs.

D=

Here the automorphism group remains of order two, so we do not expect to have
singularities.

Proposition 2.1.1. The moduli space M ; is a rational surface with four singular points. Two
singular points lie in My », and are:

- a singularity of type %(2, 3) representing an elliptic curve of Weierstrass representation C4 with
marked points [0:1:0] and [0:0:1];

- a singularity of type %(2,4) representing an elliptic curve of Weierstrass representation Cg with
marked points [0:1:0] and [0:1:1].

The remaining two singular points lie on the boundary divisor A , and are:

- a singularity of type %(2, 4) representing a reducible curve whose irreducible components are an
elliptic curve of type Cg and a smooth rational curve connected by a node;
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- a singularity of type %(2, 6) representing a reducible curve whose irreducible components are an
elliptic curve of type C4 and a smooth rational curve connected by a node.

Proof. The rationality of M, follows from the fact that the forgetful map Mj , — Mj 5
realizes MLZ as a ruled surface over PP'.

To compute the singularities we study the action on X. Note thaton X, z=0=x =0=1y #0.
So X is covered by the charts {z # 0} and {y # 0}.

Consider first the chart {z # 0}. On this chart X is given by Y2 =x>+ax+b}sob =
yz —x3 — ax. We can take (x,y,a) as coordinates, and the action of C* x C* is given by
(A x,y,a) — (A%x, A3y, A*a). The point (0,0,0) is stabilized by C* x C*, so does not produce
any singularity. Since (2,3) = (3,4) = 1 the points (x,y, a) such that xy # 0 or ya # 0 have
trivial stabilizer.

If y = 0 the action is given by (A, x, a) — (A2x,A*a). We distinguish two cases.

- If x = 0 then a # 0, the stabilizer is p4. So on the chart a # 0 we have a singularity
of type %(2,3). Note that x =y = 0 implies b = 0. The singular point corresponds
to a smooth elliptic curve of Weierstrass form C4 and whose second marked point is
0:0:1].

- If x # 0 then the stabilizer is p; and on this chart we find points of type %(1, 0) and
these are smooth points.

If y #0, then A3 = 1 and we get a singularity of type %(2,4), that is a A, singularity, in the
point a = x = 0. This is a curve of type Cs where we mark the point [0: 1: 1]. In M , the
singular point we found represents a smooth elliptic curve of Weierstrass form C¢ and whose
second marked pointis [0:1:1].

Consider now the locus {z = 0}. We can take y = 1 and X is given by {z = x3 4 axz? + bz3).
We are interested in a neighborhood of x =z = 0. Let f(x,z,a,b) =z — x3 — axz? — bz3 be
the polynomial defining X. Since % .—o 7 0 we can chose (x, a,b) as local coordinates. The

action is given by (A,x,a,b) — (A%x, A\*a, A°D). If x = 0 the stabilizer is trivial. If x = 0 and
ab # 0 the stabilizer is u, and does not produce any singularity. We get the following two
singular points.

- If a = 0,b # 0 then we have a singular point of type 15(2,4). In this case we get an
elliptic curve of type C¢ where we are taking the second marked point equal to the first
[0:1:0]. So this singular point is a point on the boundary divisor A ; representing a
reducible curve whose irreducible components are an elliptic curve of type Cs and a
smooth rational curve connected by a node.

- If a # 0,b = 0 we get a singular point of type 11(2, 6). We have an elliptic curve of type
C4 where the second marked point coincides with the first [0 : 1 : 0]. This singular
point is a point on the boundary divisor Ag; representing a reducible curve whose
irreducible components are an elliptic curve of type C4 and a smooth rational curve
connected by a node.

These two points are the only singularities on the divisor Ag . O

The rational Picard group of M , is freely generated by the two boundary divisors [Be,
Theorem 3.1.1]. The divisors Ai+ and Ap > are both smooth, rational curves. The boundary
divisor Ai;, has zero self intersection while Ap, has negative self intersection. In [Sm]
D.I. Smyth proves that on M , there exists a birational morphisms contracting A ;. In the
following we give a precise description of this contraction. Let us briefly recall the structure
of a weighted blow up.
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Remark 2.1.2. Let 7y, : Y — C? be the weighted blow up of C? at the origin with weight
w = (w7, wy), .
Y ={((xy), [u:v)) € C2 x Plws, w2) | (x,y) € hu: v}

Then Y is given by the equation x*'v —y“2u in C2 x P(w7,w>). The blow up surface Y is
covered by two chart.

- On the chart v =1 we have x*!" = y®2u and A“2 = 1. The action of C* is given by

A (y,u) = (A®2y, A%1u), so the point x =y = u = 0 is a cyclic quotient singularity of
type ulz (w1, wsz).

- On the chart u = 1 we have y®z = x®1v and A*" = 1. The action of C* is given by
A (x,v) = (A®1x,A%2v), so the point x =y = v = 0 is a cyclic quotient singularity of
type g (w1, w;).

The singular points of Y are cyclic quotient singularities located at the exceptional divisor.
Actually they coincide with the origins of the two charts.

Theorem 2.1.3. The moduli space My ; is isomorphic to a weighted blow up of the weighted projective
plane P(1,2,3) in its smooth point [1: 0 : O). In particular My ; is a toric variety.

Proof. Recall the description of M, given at the beginning of this section. On the chart
U := {z # 0} we define a morphism

fi, Uz = P(1,2,3), (x,y,z,a,b) — (x, azz,bZS).

Note that the action of C* x C* on this triple is given by (EAZ,E20% E30°), and fi, is indeed
a well defined morphism to IP(1,2, 3).

On the open set {z # 0} we can set z = 1 and ignore the action of &. If we forget y we can
derive it up to a sign and this corresponds to the action of A = —1.

Note that the morphism fy, maps the two singular point in M7 ; we found in Proposition
2.1.1 in the points [0 : 1 :0],[0 : 0 : 1] € IP(1,2,3), which are the only singularities of the
weighted projective plane and of the same type of the singularities on M ;.

On Uy := {y # 0} the equation of M , is z = x3 + axz? + bz3. So, as explained in the proof
of Proposition 2.1.1 x is a local parameter near z = 0. We can consider the morphism

2 2\ 2 2 2\ 3
X +az X+ az
= 1 _— _— .
fu, (x,y,z,a,b) ('a<1bzz) 'b(1bzz> >
From this formulation it is clear that fy, is defined even on the locus {x = 0} and the divisor
Ap,» = {x =z =0} is contracted in the smooth point [1:0:0] of IP(1,2,3).

2 2 .
On U, NUy we have Z = ’ﬁjbazzz and fy(, = fy,, so fi,, fy, glue to a morphism

fZMLZ — ]13(1,2,3).

Then f is a blow up of IP(1,2,3) in [1:0: 0] and A  is the corresponding exceptional divisor.
By Proposition 2.1.1 there are two singular points of type %(2,4), %(2,6) on Ap,, and by
Remark 2.1.2 the only way to obtain these two singularities is to perform a weighted blow up
in[1:0:0]. O

Remark 2.1.4. The weighted projective space IP(ay, ..., an ) is defined by

P(ag,...,an) =IP(S),
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where ay, ..., an, are positive integers and S is the graded polynomial ring k[xy, ..., xn], graded
by deg(xi) = aj.
Consider the set of vectors V = {eq, ...,en, g = —€1 — ... — en } in R™ and the fan whose cones
are generated by proper subset of V in the lattice generated by a%ei fori=0,..,n. The toric
variety associated to this fan is IP(ay, ..., an,). For what follows it is particularly interesting the
fan of IP(1,2,3):

(0,3) ‘
(6,0)

o —

Sl

Note that (6,0) + (0,3) =2(3,1) and (6,0) + (—2,—2) = 2(2,—1). These points correspond to
the two singular points of IP(1,2, 3). For a detailed toric description of the weighted projective
space see [Ji, Section 3].

2.2 AUTOMORPHISMS OF Mg n

Our aim is to proceed by induction on n. The first step of induction is Proposition 2.2.5.
In our argument the key fact is that the generic curve of genus g > 2 is automorphisms
free. This is no longer true if g = 2 since every genus 2 curve is hyperelliptic and has a
non trivial automorphism: the hyperelliptic involution. So we adopt a different strategy.
First we prove that any automorphism of M, ; preserves the boundary and then we apply a
famous theorem of H. L. Royden which implies that My} (the moduli space of smooth genus
g curves with unordered marked points) admits no non-trivial automorphisms or unramified
correspondences for 2g —2+n > 3 [Moc, Theorem 6.1]. In the case g = 1 the following
observations will be crucial.

Remark 2.2.1. Let [C,x1,x2] be a two pointed elliptic curve and let x; be the origin of the
group law on C. Let 1 : C — C be the translation mapping x; in x;, and let n be the
elliptic involution. Thennot: C — C is an automorphism of C switching x; and x,. Then
[C,X],Xz] = [C,Xz,X1] and mLz = mlﬁg

Lemma 2.2.2. Any automorphism of My 2 and My 3 preserves the divisor Ag 5.

Proof. By Theorem 2.1.3 the divisor Ag> C Mj 7 is the only contractible, smooth, rational
curve in My ;. Then it is stabilized by any automorphism.

By Ap2 C Mm we mean the divisor parametrizing reducible curve P! UE, where E is an
elliptic tail, with two marked points on the rational tail and the remaining point is free. Let ¢
be an automorphism of M 3 such that ¢(A2) € A > then composing ¢ with a morphism
forgetting a marked point and considering the associated commutative diagram

=

[0)
3*}

=

3

3
Tty

<

1,2 -~

<

1,2

we get an automorphism @ of My 2 which does not preserve Ag . O
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Lemma 2.2.3. [GKM, Corollary 0.12] Any automorphism of Mg preserves the boundary.

Proof. Let A be the Hodge class on Mg. It is known that A induces a birational morphism
f: Mg — X on a projective variety whose exceptional locus is the boundary 0My [Ru].
Assume that there exists an automorphism ¢ : Mg — Mg which does not preserve the
boundary. Then there is a point [C] € aﬂg such that ¢([C]) = [Cle My.

Now fo ¢ is a birational morphism whose exceptional locus is @] (amg), and by the
assumption on ¢ we have @] (aﬂg) N Mg # 0. So we construct a big line bundle on Mg
whose exceptional locus is not contained in the boundary and this contradicts Theorem
2.0.17. 0

Proposition 2.2.4. For any g > 2 the only automorphism of M is the identity.

Proof. Let ¢ be an automorphism of Mg. By Lemma 2.2.3 ¢ restricts to an automorphisms
M, of My. If g > 3 by Royden’s theorem [Moc, Theorem 6.1] Ve is the identity, then
If g = 2 the canonical divisor K¢ of a smooth genus 2 curve induces a degree 2 morphism on
IP! branched in 6 points. So we have a morphism

f:My = Mpog/Sg = Mg;g

and since from a 6-pointed smooth rational curve we can reconstruct the corresponding genus
2 curve f is indeed an isomorphism. Then ¢ induces an automorphism ¢ of My}, again by
[Moc, Theorem 6.1] we have ¢ = IdM};g and therefore ¢ = Idﬁz' O

Proposition 2.2.5. For any g > 2 the only automorphism of Mg is the identity. Furthermore
Aut(ng) = S3.

Proof. Let ¢ : Mg — Mg 1 be an automorphism. By Theorem 2.0.17 the fibration
7T1 © P :MW —>Mg

factors through a forgetful morphism which is necessarily 7r;. We have a commutative
diagram

Mg —> Mg
| [
My —— Mg

so the morphism ¢ maps the fiber of 711 over [C] to the fiber of 1y over [C 1= 9([C]). Now
we distinguish two cases.

- If g > 2 then 7r]’1 ([C]) is a smooth genus g curve, so it is automorphisms-free. Let
(C], [C/] € ﬂg be two general points, then 71?1 ([Ch=¢, 7'[1’1 ([C/]) =~ C" and

Pl T C—>=C

is an isomorphism. So c' = C, [C/] =9([C]) =[Cland ¢ = Idﬂg~ We are thus reduced
to a commutative triangle

Mg,1

AL
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and for any [C] € Mg the restriction of ¢ to the fiber of 711 defines an automorphism of
the fiber. Since g > 2 we conclude that ¢ is the identity on the general fiber of 71y so it
has to be the identity on Mg ;.

- Consider now the case g = 2. Let ¢ : Mz,l — MZJ be an automorphism. As usual we
have a commutative diagram

My % My,

ml lm

M, L’Mz

The boundary of M3 1 has two codimension one components parametrizing curves
whose dual graphs are

®

Similarly the boundary of M; has two irreducible components parametrizing curves

with dual graphs
(o

Clearly 71 (Airr,1) = Ay and 711 (Aq 1) = Aq. Suppose that ¢ maps either the class of a nodal
curve or the class of the union of two elliptic curves to the class of smooth genus 2 curve then
@ has to do the same, and this contradicts Lemma 2.2.3.

Then ¢ maps an open subset of 9M > to an open subset of M » and both these open sets
has to intersect the irreducible components of aﬂm. Now the continuity of ¢ is enough to
conclude that ¢ preserves the boundary of M3 ;.

Then ¢ restrict to an automorphism M; 1 — M3 1. By [Moc, Theorem 6.1] the only automor-
phism of M3 7 is the identity. Finally ¢z, , = Idm,, implies ¢ = Idﬂz,r

Consider now the case g = 1,n = 3. By Lemma 2.0.18 there exists a factorization m; 0 @' =

¢~ omj,, furthermore by Lemma 2.2.8 this factorization is unique. So we have a well defined
morphism

X :Aut(Mj3) = S3, @ = 0

where
op:{1,2,3} = {1,2,3}, i = ji.

Let @ be an automorphism of M 3 inducing the trivial permutation. Then ¢~
trivial permutation as well and we have three commutative diagrams

T induces the

<

3i>

—_

1,3

s

—

@
2— M

z A Z

—_

Let [C,x1,x2] GELZ be a general point. The fiber 71;1 ([C,x1,%x2]) intersects the boundary
divisors Ap 2 C My 3 in two points corresponding to curves with the following dual graph
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The two points in 7'5;1 ([C,x1,x2]) N Ap 2 can be identified with x1,x,. Now let [C,,x; ,x’z] be
the image of [C,x1,x;] via @. Similarly 71;1 ([C/,x; ,xlz]) NAy2 = {x/1 ,xlz}. By Lemma 2.2.2 we
have (p(7Tf1 ([Cx1,%x2]) NAp2) = 7'(?1 ([C/,x;,x/z]) NAp 2 and by Remark 2.2.1 [C/,x;,xlz] =
[C,x1,x2] and @ has to be identity.

So @ restrict to an automorphism of the elliptic curve n]’] ([C,x1,%x2]) = C mapping the set
{x1,x2} into itself. On the other hand ¢ restricts to an automorphism of the elliptic curve
7'[;] ([C,x1,x%2]) = C with the same property. Note that 7'[;] (IC,x1,%x21) N 7'(1_1 (IC,x1,%x2]) =
{x1}. The situation is resumed in the following picture:

7 ((C, %1, %2])

Combining these two facts we have that ¢ restricts to an automorphism of 7t1’] ([C,x1,x2]) = C
fixing x1 and x;. Since C is a general elliptic curve we have that @1 (1Cxy x2)) 1S the identity,

and since [C,x7,x2] € M 7 is general we conclude that ¢ = ldgg, 5 O

The arguments used in the cases g > 2 and g = 1,n > 3 completely fail in the case
g = 1,n = 2. However, Theorem 2.1.3 provides a very explicit description of Mj ; which
allows us to describe its automorphism group. Since M ; is a toric surface we know that
(C*)? C Aut(M; ,).

Remark 2.2.6. The automorphisms of IP(ay, ..., an) are the automorphisms of the graded

k-algebra S = k[x, ..., xn]. In particular the automorphisms of IP(1, 2, 3) are of the form

Xp — XoXo,
X1 oqx(z) + B1x1,
X2 = X3 + Baxoxy +Y2x2,

and the the automorphisms of IP(1, 2, 3) fixing [1: 0 : 0] are of the form
X0 — XpXQ,

X1 = B1x1,

X2 = B2xox1 +v2x2,

with xg, 31,72 € k* and B, € k. The composition law in this group is given by

(OCO/ B]/ BZ/YZ) * ((X‘OI B]/ BZ/YZ) = ((XOO‘O/ B] B],O(OB] BZ + BZYZ/YZVZ)'

This remark highlights why the automorphisms of the coarse moduli space Mg » in general
should be different from the automorphisms of the stack Mgn. It is well known that
Mm =~ P! and MH = P(4,6). Clearly P! = IP(4,6) as varieties, however they are not
isomorphic as stacks, indeed IP(4, 6) has two stacky points with stabilizers Z4 and Zs. These
two points are fixed by any automorphism of IP(4, 6) while they are indistinguishable from any
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other point on the coarse moduli space M 1. By the previous description the automorphisms
of My,1 = P(4,6) are of the form
X0 > X0X0,
X1 = Bixy,
with g, 7 € k*.
Proposition 2.2.7. The automorphism group of My ; is isomorphic to (C*)?.

Proof. By Theorem 2.1.3 My 5 is a weighted blow up of IP(1,2,3) in [1: 0 : 0]. Let @ be an
automorphism of M1 7. Then we have a commutative diagram

M2 =5 My 2

“‘l lm

Mg -5 M

and ¢ has to map fibers of 77 on fibers of 77. Let f : My 2 — P(1,2,3) be the contraction
described in Theorem 2.1.3. Let p4, pg € A2 be the two singular points on the exceptional
divisor, and let q4,qs € Mj, be the other two singular points. Since Ag; is the only
rational contractible curve in M 2 it has to be stabilized by ¢, furthermore ¢(p4) = p4 and
@(ps) = ps. Let Fg be the fiber of 17 trough pe, q¢ and let F4 be the fiber of 7 trough p4, q4.
Since ¢(q4) = q4 and @(qe) = qe we get @(F4) = F4 and @(Fs) = Fe.

We denote by Lg = f(Fg),Ls = f(F4) the images via f of Fg and F4 respectively. The
automorphism ¢ induces via f an automorphism ¢ of IP(1, 2, 3) fixing [1 : 0 : 0] and stabilizing
Le,Ls. Let G be the group

G:={g € Aut(IP(1,2,3)) |g([1:0:0))=[1:0:01], g(Lg) = L4, g(Le) = Lg},
and consider the morphism of groups
X :Aut(Mj2) — G, ¢ — .

Clearly ¥ is injective.

Let xo,x1,%2 be the coordinates on IP(1,2,3). Note that the fiber F¢ corresponding to the
Weierstrass curve Cg and the fiber F4 corresponding to the Weierstrass curve C4 are mapped
by f in the curves Lg = {x1 =0} and L4 = {x, = 0}. By Remark 2.2.6 the automorphisms of
IP(1,2,3) fixing [1:0: 0] are of the form

X0 > XpXo,
X1 = Bixq,
X2 = Paxox1 +y2x2,
and forcing an automorphism to stabilize L4 and Lg gives 3, = 0. Then the automorphisms
in G are of the form
Xo = XpXo,
X1 = Bixy,
X2 = Y2X2,
where xg, 81,72 € C*, 50 G = (C*)2. The automorphism @(xo,x1,%2) = (xoXo, B1X1,Y2%X2)
is X(@) where ¢ is the automorphism of M, acting as @(x,y,a,b) = (xox,B1a,v2b).

Consider the fibration M ; — M; ;. The automorphism ¢ acts on the couple (a,b) as an
automorphism of My 1 = P! and multiplying by &g on the fibers. So x is surjective. O
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In order to proceed by induction on n we need the following lemma.

Lemma 2.2.8. Let ¢ : Mgn — Mgn be an automorphism. For any j = 1,...,n there exists a
commutative diagram

— P p—
Mgfn Mgrn

I

[
Mg,n—1 - Mg,n—]

- The morphism @ is an automorphism of Mg n_1;
- the factorization of T; o @ is unique for any j =1,...,n.

Proof. The existence of such a diagram is ensured by Theorem 2.0.17 and Lemma 2.0.18. Let
[C,x1, ..y Xn—1] € MQ,TH be a point, the automorphism @ ! maps isomorphically the fiber
of mj over [C,x7, ..., xn—1] to a fiber F of m;, so mi(F) = [C/,x;,...,x:lf]] is a point. Define
P:Mgn1 = Mgn_1as P([C,x1,..., xn_1]) = [C/,x; , ...,x;_]]. Clearly 1 is the inverse of
Q.

Suppose that 7; o @ admits two factorizations @7 o 7ty and @ o 7, Then the equality
@1 0omi([C,x1, ..., xn]) = @2 0 ([C, X1, ..., xn]) for any [C, X1, ..., xn] € Mg implies

@1 ([Cry1/-"/yn—1]) = @2({C/y]r"'/yn—1])

for any [C,y1,...,yn—1] € MQ,TH. Now @1 = @, implies @1 o7y = @7 o 7, and since @7 is
an isomorphism we have m; = my,. O

At this point we can prove the general theorem by induction on n.

Theorem 2.2.9. The automorphism group of Mg is isomorphic to the symmetric group on n
elements Sy,
Aut(Mgn) = Sy

for any g, such that 2g —2+n > 3.

Proof. Proposition 2.2.5 gives the cases g > 2,n = 1 and g = 1,n = 3. We proceed by
induction on n. Let ¢ be an automorphism of Mg n,, consider the composition 7; o ¢~ 1. By
Theorem 2.0.17 there exists a factorization i o @' = @~ 1 o 7i;,, furthermore by Lemma 2.2.8

this factorization is unique. So we have a well defined map
X:Aut(Mgn) — Sn, ¢ — 0

where
oo :{1,..n}—={1,..,n}, i

In order to prove that o, is actually a permutation we prove that it is injective. Suppose to
have 0 (i) =j; = 0 (h). This means that ¢! defines an isomorphism between the fibers of
7t;, and 71y, but also between the fibers of 7r;, and 7ty,. This forces 7ty = ..

We now prove that the map x is a morphism of groups. Let ¢, € Mgn be two auto-
morphisms. The fibration 7; 0 ~! factorizes through 7;, and similarly 71;, o @~ factorizes
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though 7y, . By uniqueness of the factorization 7; o (W1 o @~ factorizes through 7y, also.
The situation is resumed in the following commutative diagram

- —1
— © — —
Mgr“ MQ:“ Mg/“
”hil lnji lﬂ:i
_ T __ P __

Mg,n—1 ’ Mg,n—l i Mg/n—1
\_/

(pop)~!

This means that oy, (i) = ji, 0p(ji) = hi and ogoy (i) = hi. Then oyoy (i) = 0e(ji) =
0 (oy (1)), thatis x(@ o) = x(¢) o x (). o

Since any permutation of the marked points induces an automorphism of Mg , the morphism
X is surjective. Now we compute its kernel.

Let ¢ € Aut(mg,n) be an automorphism such that x(¢) is the identity, that is for any
i=1,...,n the fibration 7t; o @', and the fibration 7t; o ¢ as well, factor through m; and we
have n commutative diagrams

— L — . [ —
Mg,n Mgzn MQ,TL MQ/T"

L I R

Mg,n—1 a’ Mg,n—]

Mg,n71 — Mg,n71
Pn

By Lemma 2.2.8 the morphisms @; are automorphisms of Mg ,,_1 and by induction hypothe-
sis ®1,...,®n act on Mgy , 1 as permutations.

The action of @; on the marked points x1,...,X{_1,Xi+1, ..., Xxn_has to lift to the same auto-
morphism ¢ for any i =1,...,n. So the actions of @1, ..., o, have to be compatible and this
implies @; = Idmg,n—] for any i = 1,...,n. We distinguish two cases.

- Assume g > 3. It is enough to observe that ¢ restricts to an automorphism of the fibers
of 711. Then ¢ restricts to the identity on the general fiber of 711, so ¢ = Idﬂg g

- Assume g = 1,2. Note that ¢ restricts to an automorphism of the fibers of 71y and
7. So @ defines an automorphism of the fiber of 71y with at least two fixed points in
the case g = 1,n > 3 and one fixed point in the case g = 2,1 > 2. Since the general
2-pointed genus 1 curve and the general 1-pointed genus 2 curves have no non trivial
automorphisms we conclude as before that ¢ restricts to the identity on the general
fiber of 711, s0 @ = Idﬁg,n'

This proves that x is injective and defines an isomorphism between Aut(Mgn) and Sn,. O

We want to use the techniques developed in this section to recover [BM2, Theorem 4.3].
The moduli spaces M 4 is isomorphic to the projective line P! while My 5 is the blow-up
of IP? in four points in general position. The following is well known but we want to give a
proof following the argument used in Proposition 2.2.5.

Proposition 2.2.10. The automorphism group of M 5 is isomorphic to Ss.

Proof. 1t is well known that any fibration Mo 5 — My 4 factorizes through a forgetful mor-
phism, see for instance [BM2]. This yields a surjective morphism of groups

X : Aut(ﬂo,5) — Sg
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exactly as in Theorem 2.2.9. Let ¢ be an automorphism of My 5 inducing the trivial per-
mutation. Then @~ induces the trivial permutation as well and we get five commutative
diagrams

Mos 2 Mos

w o | m

N i —
Mo,s — Mo

fori=1,..,5. The fiber of 7t; on [C,x1,...,x4] € My 4 intersects the boundary dMj 4 in four
. . . / / / —

points corresponding to x1, ..., x4. Consider [C,x{, ..., X4] := @i(C x;,..x,1([C, X1, ..., Xa]). The
points in 7'[{1 (IC, x1, .., x4]) NOM 4 and in 71;1 ([C/,x; Ve X;,]) NdMy 4 lie on (—1)-curves, so
the automorphism ¢ maps the fiber of 7t; over [C, x1, ..., x4] to the fiber of 7t; over [C |, x; S s x}‘]
sending the set {x1, ..., x4} to the set {x; , ...,x;}. Then @7, ..., @5 act as permutations of the
marking and since they come from the same automorphism ¢ they have to be compatible.
This forces @1 = ... = @5 = Idﬂo,zx‘

Let [C,xq,...,x4] € M 4 be a general point. The automorphism ¢ restricts to an automorphism
of the fiber nf] (IC,x1, ..., x4]) = P! stabilizing the subscheme {x1, ..., x4} C 7'[?1 (IC, %1, ..., x4]).
Since x1, ..., x4 are general points of C they have a cross-ratio different from the cross-ratio of
each permutation. This means that @|c is an automorphism of P! fixing four points. So ¢
restricts to the identity on the general fiber of 71y and this forces ¢ = ldxg, - O

Remark 2.2.11. The moduli space Mg 5 is isomorphic to a Del Pezzo surface of degree 5, by
Proposition 2.2.10 we recover that the automorphism group of such a surface is Ss. For a
direct proof of this classical fact which does not use the theory of moduli spaces see [DI,
Section 3].

Now with the same argument of Theorem 2.2.9 we can prove the following:

Theorem 2.2.12. The automorphism group of Moy, is isomorphic to the symmetric group on n
elements Sy,
AUt(mo,n) =S

forany n > 5.

Proof. The step zero of the induction is Proposition 2.2.10. As usual we have a surjective
morphism of groups
X:Mon — Sn.

Proceeding as in the proof of Theorem 2.2.9 we get that an automorphism ¢ inducing the
trivial permutation has to restrict to an automorphism of the fiber of 7; : Mo, = Mon—1
fixing k > 4 points. So it has to be the identity on the general fiber of 7t;, and therefore also
on Mo p,. O

In [GKM, Corollary o.12] Gibney, Keel and Morrison proved that any automorphism of Mg
must preserve the boundary.
From Theorem 2.2.9 follows immediately that the boundary of Mg, has a good behavior
under the action of Aut(Mgn). The result is even stronger than the preservation of the
boundary.

Corollary 2.2.13. If 29 —2+n > 3 any automorphism of Mg must preserve all strata of the
boundary.
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Proof. Since any automorphism is a permutation the class of a pointed curve [C, X1, ..., Xn]
!/ / !/

is mapped by an automorphism in a class [C , x, ..., X,,] representing a pointed curve of the

same topological type of the pointed curve C. O

2.3 AUTOMORPHISMS OF Mgn

Let X be an algebraic stack over C. A coarse moduli space for X over C is a morphism
m: X — X, where X is an algebraic space over C such that

- the morphism 7 is universal for morphisms to algebraic spaces,

- minduces a bijection between |X| and the closed points of X, where |X| denotes the set
of isomorphism classes in X.

Remark 2.3.1. If XX admits a coarse moduli space 7t: X — X then this is unique up to unique
isomorphism.

A separated algebraic stack has a coarse moduli space which is a separated algebraic space
[KM, Corollary 1.3].

Let X be a separated stack admitting a scheme X as coarse moduli space 7t: X — X. The map
7 is universal for morphisms in schemes, that is for any morphism f: X — Y, with Y scheme,
there exists a unique morphisms of schemes g : X — Y such that the diagram

commutes. Now, let ¢ : X — X be an automorphism of the stack X, and consider mo ¢ : X — X.
Then these exists a unique ¢ such that the diagram

A
Re—&K
Xe——&K

A

commutes. By uniqueness we have (@) ' = (p~—1. So ¢ is an automorphisms of X, and we
get a morphism of groups
Aut(X) — Aut(X), @ — @.

Remark 2.3.2. Even if X is a Deligne-Mumford stack with trivial generic stabilizer the above
morphism of groups is not necessarily injective. As instance in [ACV, Proposition 7.1.1] D.
Abramovich, A. Corti and A. Vistoli consider a twisted curve C over an algebraically closed
field and its coarse moduli space C. They prove that for any node x € C the stabilizer of a
geometric point of € over x contributes to the automorphism group of € over C.

However since ﬁg,n is a normal, Deligne-Mumford stack, as soon as its general point has
trivial stabilizer, the morphism

Aut(ﬁg,n) — Aut(mg,n)

is injective. Our next goal is to prove this last statement.
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Lemma 2.3.3. Let f: X — Y be a finite morphism from a scheme X to an irreducible normal variety
Y, let U C Y be an open dense subscheme of Y, and let s : U — X be a section of f over U. Then
s: U — Xextends toa sections:Y — X.

Proof. Consider the fiber product

72

Vi=U xy X X
ml Jf
u Y

and let Vs be the closure of (Idy x s)(U) in V. Now Idy xs: U — Vs and 71y, : Vs — U
are birational. Since 7r; is an open embedding we have that 7|y, is dominant. Let Z be
the closure of m;(Vs) in X. Then f|z : Z — Y is birational and quasi-finite. Since Y is an
irreducible normal variety the Zariski main theorem implies that f| is an isomorphism. The

inverse (f) 7)7 ! is the section 5 we were looking for. O

Proposition 2.3.4. [FMN, Proposition A.1] Let X, be Deligne-Mumford stacks, let f1,f; : X — Y
be morphisms of stacks, and let i : U — X be a dominant open immersion. Assume X normal and Y
separated. If there is a 2-arrow « : f1 o1 == f; o1 then there exists a unique 2-arrow & : f1 = f,
such that & * Id; = o

Proof. Since X is a normal Deligne-Mumford stack there exists an affine étale chart of X which
is a disjoint union of affine irreducible normal schemes. So we can assume that X is an affine
irreducible normal scheme X. We denote by U the dense open subscheme U in X.

Now consider the morphism (f; x f2) : X = Y x Y, the diagonal morphism Ay : Y — Y x Y
and their fiber product:

z— 2y

o
f1xf)

X———9YxY

note that since Y is separated Ay is proper, then Ay is finite and Z is a scheme. Similarly we
can consider the fiber product of 711 : Z — X, i: U < X and summing up the situation in the
following diagram.

u Xz i

\% z Y
ldy ml Idx\’l lAg
u 1 X f1><f2

YxY

Now recall that we have a 2-arrow o« : f; oi = ¢ o1, by the universal property of the
fiber product there exists a morphism F : U — V. The existence of a 2-arrow & : f; = f,
such that & * Id; = « is now equivalent to the existence of a morphism G : X — Z such that
my0oG=1Idx and Goi=pyoF.

Since Ay is finite and Z is a scheme we have that 71y : Z — X is finite and ppoF: U — Z
is a section of 7t over U. Now X is an irreducible normal scheme and by Lemma 2.3.3 the
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section pp o F: U — Z can be extended uniquely to a section G : X — X which is exactly the
morphism we were looking for.

It remains to prove the uniqueness. Assume that X is a scheme X and Y is a global quotient
[Z/G] where G is a separated group scheme. The morphism f; : X — [Z/G] is given by a
G-principal bundle 7t; : Py — X and a G-equivariant morphism P; — Z for i = 1,2. Suppose
that o, 3 : Py — P, are morphisms such that Xt (1) = E’Inz*‘ (u) Since G is separated we
have that 7; is separated, so o = 3.

Now remove the assumption that X is a scheme but still consider the case Y = [Z/G]. Let X
be an étale atlas of X. By the first part of the proof we have that «x = f3x, since Mor(fy, f2)
is a sheaf on X we have that o = f3.

Finally if Y is not a global quotient we cover it by global quotients and conclude using the
fact that Mor(fq,f,) is a sheaf on X. O

Proposition 2.3.5. The morphism of groups

Aut(Mgn) — Aut(Mgn)
is injective as soon as the general n-pointed genus g curve has no non trivial automorphisms.

Proof. In Proposition 2.3.4 take X =Y = Mg . Since we consider the case when the general
n-pointed genus g curve has no non trivial automorphisms there is a dense open subscheme
U C Mg,n where the canonical map Mgn — Mg n is an isomorphism. Note that Mg, is an
irreducible normal and separated Deligne-Mumford stack, so the hypothesis of Proposition
2.3.4 are satisfied.

Let f: Mgn — Mgn be an automorphism inducing the identity on the coarse moduli space
Mg n, then there is a 2-arrow « : fj; = Idy. By Proposition 2.3.4 there exists a unique
2-arrow & : f = Idﬁg,n extending «. We conclude that  is an isomorphism and f is

isomorphic to the identity of Mg . O

Theorem 2.3.6. The automorphism group of the stack Mg, is isomorphic to the symmetric group on
n elements Sy,

Aut(Mgn) = Sn

for any g, such that 29 — 2 +n > 3. Furthermore Aut(Mg) is trivial for any g > 2.

Proof. For any g,n in our range the general point of Mg has trivial automorphism group.
So by Proposition 3.2.18 the morphism of groups

Aut(ﬁg,n) — Aut(mg,n)

is injective. By Theorem 2.2.9 and [BM2, Theorem 4.3] we know that Aut(mg,n) = S, for
the values of g and n we are considering. Since any permutation of the marked points in an
automorphism of My, we conclude that

Aut(Mgn) = Aut(Mgn) = Sn.

Since the general curve of genus g > 3 is automorphisms free the morphism

Aut(Mg) — Aut(Mg)

is injective. We conclude by Proposition 2.2.4. In the case g = 2 consider the fiber product

_ — v
M1 X5g, M2 =Mz, 1 ——— My

l m

M © M
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where @ € Aut(M;). Since @ is an automorphism 1 also is an automorphism. By the previous
part of the proof we know that Aut(M; 1) = Aut(Mj 1) is trivial. So p = Idﬁz] and therefore
@ = Tdyg,- ' O

As we saw in Proposition 2.2.7 the case g = 1,n = 2 is pathological from the point
of view of the automorphisms. Since Aut(M; ;) = (C *)2 the injectivity of the morphism
Aut(M; 2) — Aut(M; 7) does not say to much on Aut(M; ). Since all the automorphisms
of M, are toric we expect them to disappear on the stack. In the following proposition we
prove that Aut(Mj ) is trivial exploiting the particular form of its canonical divisor.

Proposition 2.3.7. The only automorphism of the moduli stack M , is the identity.

Proof. An application of the Grothendieck-Riemann-Roch theorem [HM, Section 3E] gives the
following formula for the canonical class of M

Kmhz =13A—-204+0V € PiCQ(ﬁ],z).

The Picard group Pico(M; 2) is freely generated by A and the boundary classes, furthermore
the following relations hold [AC, Theorem 2.2]:

dirr = 12A, P = 2A 4+ 200 2.

We can write the canonical class in terms of the boundary divisors as

13
KMLZ = —; —261141« — 250,2 =+

2 3
12 irr 75&1‘ + 260,2 = _Zéirr-

12

Note that 8;, is a fiber of the forgetful morphism 77 : M; 2 — My 1. Any automorphism ¢
of M; 2 preserves the canonical bundle, that is (p*KM 2 KM in Picg (M, 2). Since KM
is a multiple of the fiber 8, the fibration 71y o ¢ factorizes through 11 (recall that by Remark
2.2.1 on M ; the forgetful morphisms induce the same fibration). So we have the following
commutative diagram:

ﬁ1,2 = MLZ

“‘l B lm

My == M

Let [C,p] € ﬁl,l be a general point and let [C/,p/] = @([C,pl) be its image. Then « :=
Pl (1C,p]) defines an isomorphism between C and C'. If ¢’ = «(p) then there exists an

automorph1sm T of c’' mapping q top. Sot o 1s an isomorphism between C and
c' mapping p to p’. This means that [C,p] = [C,p], ¥ is the identity and ¢ restricts
to an automorphism of the fiber of 77, furthermore by Lemma 2.2.2 has to preserve the
boundary divisor 8 >. The general fiber of 711 is a general elliptic curve, so it has only two
automorphisms. Clearly both these automorphisms act trivially on Mj 2, so ¢ = Idﬂm' O
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HASSETT’S MODULI SPACES

We work over an algebraically closed field of characteristic zero. We introduce Hassett’s
moduli spaces and their relations with the Kapranov’s realizations of My ,. Let S be a
Noetherian scheme and g, n two non-negative integers. A family of nodal curves of genus g
with n marked points over S consists of a flat proper morphism 7t: C — S whose geometric
fibers are nodal connected curves of arithmetic genus g, and sections sy,...,sn of m. A
collection of input data (g, A) := (g, aj, ..., an) consists of an integer g > 0 and the weight
data: an element (aq,...,an) € Q" suchthat0 < a; < 1fori=1,..,n, and

n
29—2+Zai>0.

i=1

Definition 3.0.8. A family of nodal curves with marked points 7t: (C, s1,...,sn) — S is stable
of type (g, A) if

- the sections s7, ..., sn lie in the smooth locus of 7, and for any subset {si,, ..., si,} with
non-empty intersection we have ai, +...+ai, <1,

- Kr+ Y i—q aisi is m-relatively ample.

B. Hassett in [Has, Theorem 2.1] proved that given a collection (g, A) of input data, there
exists a connected Deligne-Mumford stack My A ), smooth and proper over Z, representing
the moduli problem of pointed stable curves of type (g, A). The corresponding coarse moduli
scheme Mg A ] is projective over Z.

Furthermore by [Has, Theorem 3.8] a weighted pointed stable curve admits no infinitesimal
automorphisms and its infinitesimal deformation space is unobstructed of dimension 3g —
3 +mn. Then ﬁg, A[n] is a smooth Deligne-Mumford stack of dimension 3g — 3 + n.

Remark 3.0.9. Since ﬂg, A[n] is smooth as a Deligne-Mumford stack the coarse moduli space
Mg am has finite quotient singularities, that is %ﬂe locally it is isomorphic to a quotient of a
smooth scheme by a finite group. In particular Mg A [,) is normal.

Fixed g,n, consider two collections of weight data A[n], B[n] such that a; > b; for any
i=1,..,n. Then there exists a birational reduction morphism

PBmI,AM] I Mg Am] = Mg B

associating to a curve [C, s1,...,sn] € MQ,AM the curve pgm) An)([C, 51, ..., sn]) obtained by
collapsing components of C along which K¢ +bysy + ... + bn sy, fails to be ample.
Furthermore, for any g consider a collection of weight data Aln] = (ajy, ..., an) and a subset
Alr] := (ay,,.., a;,) C A such that 29 —2+ ai, + ... + a;, > 0. Then there exists a forgetful
morphism

TAmLAL] Mg am) = Mg apr
associating to a curve [C, s, ..., sn] € MQ,A[H] the curve 7a ) A ([C, 51, ..., sn]) obtained by
collapsing components of C along which K¢ + ay, si, + ... + ay, s, fails to be ample.
For the details see [Has, Section 4].
In the following we will be especially interested in the boundary of Mg a ). The boundary
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of Mg any, as for Mg n, has a stratification whose loci, called strata, parametrize curves of a
certain topological type and with a fixed configuration of the marked points.

We denote by Ay, the locus in Mg ] parametrizing irreducible nodal curves with n marked
points, and by A; p the locus of curves w1th a node which divides the curve into a component
of genus i containing the points indexed by P and a component of genus g — i containing the
remaining points.

Kapranov’s blow-up constructions

We follow [Ka]. Let (C,x1,...,xn) be a genus zero n-pointed stable curve. The dualizing
sheaf wc of C is invertible, see [Kn]. By [Kn, Corollaries 1.10 and 1.11] the sheaf wc(x7 +
... +Xn) is very ample and has n — 1 independent sections. Then it defines an embedding
@:C— P2 In particular if C = P! then deg(wc(x1 +...+xn)) =n—2, welx) +...+
Xn) = @ Opn-2(1) = Op1(n—2), and ¢(C) is a degree n — 2 rational normal curve in Pn—2,
By [Ka, Lemma 1.4] if (C,X1,...,xn) is stable the points p; = @(x;) are in linear general
position in P™2.

This fact combined with a careful analysis of limits in Mo, of 1-parameter families in Mg ,,
led M. Kapranov to prove the following theorem:

Theorem 3.0.10. [Ka, Theorem o0.1] Let p1, ..., pn € P2 pen points in linear general position, and
let Vo(p1, ..., pn) be the scheme parametrizing rational normal curves through p1, ..., pn. Consider
Vo(p1, ..., pn) as a subscheme of the Hilbert scheme 3 parametrizing subschemes of P™~2. Then

- vO(p]r-"/pn) = MO,n-
- Let V(p1, ..., pn) be the closure of Vo(p1, ..., pn) in H. Then V(p1,...,pn) = Mo n.

Kapranov’s construction allows to translate many issues of M ,, into statements on linear
systems on P 3. Consider a general line L; C P2 through p;. There is a unique rational
normal curve Cp, through py, ..., pn and with tangent direction L; in p;. Let [C,x1,...,xn] €
Mo,n be a stable curve and let I' € Vy(p1, ..., pn) be the corresponding curve. Since p; € I is
a smooth point considering the tangent line T, ', with some work [Ka], we get a morphism

fi_ :morn — ]Pnisl [C/X] /A XTL] = Tplr

Furthermore f; is birational and it defines an isomorphism on Mg ,,. The birational maps
fi o f.*1
) i

/fof_\

,,,,,,,,, > ]1)713

are standard Cremona transformations of P ~3 [Ka, Proposition 2.12]. For any i =1,..,n
the class ¥; is the line bundle on Mo,n whose fiber on [C, X1, ..., xn] is the tangent line
Tp, C. From the previous description we see that the line bundle ¥; induces the birational
morphism f; : Mom — P" 3, thatis ¥; = fiOpn-3(1). In [Ka] Kapranov proved that ¥; is
big and globally generated, and that the birational morphism f; is an iterated blow-up of the
projections from p; of the points p1, ..., Pi, ...pn and of all strict transforms of the linear spaces
they generate, in order of increasing dimension.

Construction 3.0.11. [Ka] More precisely, fixed (n — 1)-points p1, ..., pn—1 € P™—3 in linear
general position:
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(1) Blow-up the points p1, ..., pn—2, then the lines <pi,p]~> fori,j=1,.,n—2,.., the (n—5)-
planes spanned by n —4 of these points.

(2) Blow-up pn_1, the lines spanned by pairs of points including p, 1 but not pn,_2,...,
the (n — 5)-planes spanned by n —4 of these points including pr,—1 but not p,,_>.

(r) Blow-up the linear spaces spanned by subsets {pn—1, Pn—2, -, Pn—r+1} S0 that the order
of the blow-ups in compatible by the partial order on the subsets given by inclusion, the
(r—1)-planes spanned by r of these points including pn_1,Pn—2,..., Pn—r+1 but not
Pn—r,.-., the (n—>5)-planes spanned by n —4 of these points including pn—1, Pn—2, - Prn—r-+1
but not pn_-.

(n — 3) Blow-up the linear spaces spanned by subsets {pn_1,Ppn—2, ..., Pa}.

The composition of these blow-ups is the morphism fy, : Mo, — P™~3 induced by the psi-
class V. Identifying Mg , with V(p1, ..., pn), and fixing a general (n — 3)-plane H C Pn—2,
the morphism f;, associates to a curve C € V(pq, ..., pn) the point T, CNH.

We denote by W, s[n] the variety obtained at the r-th step once we finish blowing-up the
subspaces spanned by subsets S with |S| < s + 1 — 2, and by W;[n] the variety produced at
the r-th step. In particular Wy [n] = P" 3 and W,,_3[n] = mo,n.

In [Has, Section 6.1] Hassett interprets the intermediate steps of Construction 3.0.11 as
moduli spaces of weighted rational curves. Consider the weight data

Arsinl:=(1/n—7r—-1),.,1/m—r—1),s/(n—1—1),1,...,1)

(n—r—1) times T times

forr=1,.,n—3ands=1,.,n—1r—2. Then W; s[n] = MO,AT .[n]- and the Kapranov’s map
fn : Mo, — IP™3 factorizes as a composition of reduction morphisms

PA, o 1 Arsn i Moa, ] = Moa,, il S =2 n—T=2,
PAL 2 A 1] P MoA, il = Moa, il

Remark 3.0.12. The Hassett’s space M Ain_3n), thatis P™—3 blown-up at all the linear spaces
of codimension at least two spanned by subsets of n — 2 points in linear general position,
is the Losev-Manin’s moduli space L,, , introduced by A. Losev and Y. Manin in [LM], see
[Has, Section 6.4]. The space L,, _, parametrizes (n — 2)-pointed chains of projective lines
(C,%0,Xo00s X1, -y Xn—2) Where:

- C is a chain of smooth rational curves with two fixed points xp, X« on the extremal
components,

- X1,...,Xn—2 are smooth marked points different from x¢, xo but non necessarily distinct,

- there is at least one marked point on each component.

By [LM, Theorem 2.2] there exists a smooth, separated, irreducible, proper scheme represent-
ing this moduli problem. Note that after the choice of two marked points in M , playing the
role of x(, Xeo We get a birational morphism Mo, — L,,_2 which is nothing but a reduction
morphism.

For example L7 is a point parametrizing a IP! with two fixed points and a free point, L, = P',
and T3 is IP? blown-up at three points in general position, that is a Del Pezzo surface of
degree six, see [Has, Section 6.4] for further generalizations.
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We develop in some details the simplest case in genus zero.

Example 3.0.13. Let n =5, and fix py,...,p4 € IP? points in general position. The first step
consists in blowing-up p1,p2,p3, and in the second step we blow up p4.

The Kapranov’s map fs : Mg 5 — P2 is the projection from ps € P3. Atthestepr=1,5 =1
we get W1 1[5] = IP? and the weights are

A],] [5] = (]/3/1/3/1/3/]/3/1)
While for r = 2,s = 1 we get W5 1[5] = W1 [n] = My 5, indeed in this case the weight data are
Ay106)=1(1/2,1/2,1/2,1,1).

Note that as long as all the weights are strictly greater than 1/3, the Hassett’s space is
isomorphic to My ,, because at most two points can collide, so the only components that get
contracted are rational tail components with exactly two marked points. Since these have
exactly three special points they have no moduli and contracting them does not affect the
coarse moduli space even though it does change the universal curve, see also [Has, Corollary
4.7]. In our case Mg A, (5] = Mo,5.

We have only one intermediate step, namely r = 1,s = 2. The moduli space W ,[5] =
My, A1, (5] parametrizes weighted pointed curves with weight data

A1,205):=1(1/3,1/3,1/3,2/3,1).
This means that the point ps is allowed to collide with p1,p2, p3 but not with p4 which has

not yet been blown-up. The Kapranov’s map fs : My 5 — IP? factorizes as

Mos = mo,AZJ (5]

fs 0,A1,(5]

P2 = Mo A, (5]

where pq, p; are the corresponding reduction morphisms. Let us analyze these two mor-
phisms.
- Given (C,sq,...,85) € MO,AN[S] the curve pq(C,sy,...,s5) is obtained by collapsing

components of C along which K¢ + %51 + %sz + %53 + %54 + s5 fails to be ample. So it
contracts the 2-pointed components of the following curves:

along which K¢ + %51 + %sz + %53 + %54 + s5 is anti-ample, and the 2-pointed compo-
nents of the following curves:
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along which K¢ + %S] + %sz + %33 + %34 + s5 is nef but not ample. However all the
contracted components have exactly three special points, and therefore they does not
have moduli. This affects only the universal curve but not the coarse moduli space.
Finally K¢ + %31 + %sz + %33 + %34 + s5 is nef but not ample on the 3-pointed compo-
nent of the curve

In fact this corresponds to the contraction of the divisor E5 4 = fgl (pa).

- The morphism p; contracts the 3-pointed components of the curves

along which K¢ + %51 + %sz + %s 3+ %54 + s5 has degree zero. This corresponds to the
contractions of the divisors E5 3 = f? (p3), E52 = fg1 (p2)and E5 1 = fg‘ (p1).

There are many other factorizations of the morphisms f; : My ;, — P2 as compositions
of reduction morphisms. Another example is the following construction due to Kapranov
[Ka].

Construction 3.0.14. Fixed (n —1)-points py, ..., pn_1 € P 3 in linear general position:
(1) Blow-up the points py,..., pn—_1,

(2) Blow-up the strict transforms of the lines (p;,,pi,), i1,i2 =1,..,n—1,

(k) Blow-up the strict transforms of the (k —1)-planes (ps,, ..., pi, ), 11, ik =1,..,n—1,

(n —4) Blow-up the strict transforms of the (n —5)-planes (pi,, ..., Pi, 4), 11,-vin—a=1,.,n—
1.

Now, consider the Hassett’s spaces Xy[n] := M(), Am] for k=1,..,n—4, such that
-ai+anp>1fori=1,.,n—1,
- aj, +...+ai, <1foreach{iy, ..., in} C{l,.,n—T}withr <n—-k-2,
- ai, +..+ay, > 1foreach{iy,.., in} C{l,..,n—=1}withr>n—-k—-2.

Then Xy [n] is isomorphic to the variety obtained at the step k of the blow-up construction,
see [Has, Section 6.2] for the details.
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3.1 FIBRATIONS OF Mg o)

This section is devoted to study fiber type morphisms of Hassett’s moduli spaces. The
results are based on and generalize Bruno-Mella type argument [BM2] for genus zero, and
[GKM, Theorem 0.9] on fibrations of Mg,n.

Let us start with the genus zero case. In what follows we adapt the proofs and results of
[BM2] to this generalized setting. For this purpose we restrict ourselves to the Hassett’s
spaces satisfying the following definition.

Definition 3.1.1. We say that a Hassett’s moduli space Mg A (] factors Kapranov if there exists
a morphism p; that makes the following diagram commutative

MO,n
i
1
— P2
Mo, A n] pn—3

where f; is a Kapranov’s map and p; is a reduction. We call such a p, a Kapranov factorization.
Note that if a Hassett’s moduli space M A ] factors a Kapranov’s map f; then it factors any
other Kapranov’s map fj.

Remark 3.1.2. There are Hassett’s spaces that do not factor Kapranov. For instance consider
the Hassett’s spaces appearing in [Has, Section 6.3]. The space M A (5] with

AB] =(1—-2¢,1—2¢,1—2¢,¢,¢€)

where ¢ is an arbitrarily small positive rational number, is isomorphic to P! x P'. Therefore
Mo, a[5) does not admit any birational morphism on IP2. Note that the forgetful morphisms
forgetting the fourth and the fifth point correspond to the natural projections from P! x PP'.
Let us stress that these are the only morphisms of these moduli spaces and no birational
reduction is allowed.

Furthermore, note that the Hassett’s spaces appearing in Constructions 3.0.11 and 3.0.14 factor
Kapranov by construction.

Lemma 3.1.3. Let Mg A [n] be a Hassett’s space that factors Kapranov and 717]{][ I Mo A —
Mo, [y be a forgetful morphism, where Alr] is the weight data associated to the indexes {1,...,n}\

{i1,..,in—r} Then MO, A[r] factors Kapranov as well.

Proof. Consider the following diagram

mo n MO T

’
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where 7, ;. . is the forgetful morphism on Mo n corresponding to HE . f]; is the
Kapranov’s map corresponding to fi with k ¢ {i1, ..., in—r}, and 7y is the projection from the

linear space H = (py1, ..., pn—r) induced by T[{_]lp--/infr' Furthermore, let X be the blow-up of
Ppn—3 along H. We want to define p; and p/2

The birational morphism p] is simply the reduction morphlsm induced by p; on Mg ;. Now,
consider a section si;,__ i, . MO Alr] — Mo An] of 71 1 in , with j # k, associating to
[C,x1,...,xs] the isomorphism class of the stable Curve obtained by adding at x; a smooth
rational curve with n —r + 1 marked points, labeled by x;, x;,, ..., xi,_,. Since j # k the image
of si,,..in_,,j is NOt contained in the exceptional locus of , and we have a birational morphism

p/2 ‘=VoWosi, i, ,; Clearly f{( = p/2 o p;. O

Proposition 3.1.4. Assume that MO A[n] factors Kapranov. Then any dominant morphism with
connected fibers f: Mo an) — Moa = ]P1 factors through a forgetful map.

Proof. Let f: Mg an] — Moa = P! be a dominant morphism and p; : My, — Mo An]
a reduction morphism. The composition fopq : Mo,n — P! is a dominant morphism
with connected fibers. By [BM2, Theorem 3.7] f o p; factorizes through a forgetful map
and by hypothesis we may choose a Kapranov’s map f; yielding a factorization

= Tti] ~~~~~ in-4a
as follows
fj
P2
Mo ———— pn—3
|
-
17T
|
JR— (P JR— ~ A
Mog4g ——— Moy = Pl e— I

where ¢ € Aut(IP') and 7 is a linear projection from a codimension two linear space. This
yields that the base locus of 7t is resolved by the morphism p;. So the forgetful map = is
defined also on Mg A [} and gives rise to the following diagram

N N~ pl

Mo 4 Mos4 =P
where it := 711*] ina® On Mg A[n) the fibration f coincides with ¢ o 71}*1 ia’ and since
Mo,A ] is an open dense subset of Mg a[n) We have f = oml . . O
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Assume that M A ) factors Kapranov. Then a forgetful morphism 7y, i, . : MoAm] —
MO,A (] induces a hnear projection 7 : P™ 3 5 P™3, where H = (‘p1,...,pn,r> is the

span of p1, ..., pn—r in the Kapranov’s description of M ,. We want to prove that a sort of
converse is also true.

Proposition 3.1.5. Assume that Mg A ) factors Kapranov. Let f: Mg ) — X be a surjective
morphism on a projective variety. Let D € Pic(X) be a base point free divisor and Li = p«(f*(D)),
where pr, : Mg A — P73 is a reduction morphism. If multy, £; = deg Ly for some j then f
factors through the forgetful map 7; : Mo A — Mo, Am—11

Assume that Mg gy factors Kapranov. Let f Mo An] — Mo,g(r) be a surjective morphism and
P3P 3 the induced map on the projective spaces. We have the following commutative
diagram

Mo Am] Mo Br]
Pn Pr
]Pn—37777777[ 77777 >1Pr—3

where py, and py are Kapranov factorizations. Let £i = pn+(f* (o5 (0(1)))) and assume

L1:|0Pn73(1)®j<p Pi >|/
iprePis

then s = n— v and f factorizes via the forgetful map 7, i . Mo Am] = Mo Afr)-

Proof. If 7t : Mg A[n] — Mo,A[n_1) is a forgetful morphism, then the fibers of 71; are mapped
by a reduction morphism pn : Mg A[n] — P2 to lines through p;. The general element
in the linear system |{i| restricts on a line through p; to a divisor of degree deg{; —
multy; £;. Since multy,; £; = deg £; we have that £; is numerically trivial on lines through
Pj- Then f*(D) is base point free and numerically trivial on every fiber of 7t;. Furthermore
Pic(Mo, A n)/Mo Am—17) = Num(Mg A[n]/Mo A1), then £*(D) is 7ij-trivial. We conclude
that f contracts fibers of ;.

Consider the morphism s; 1 : Mg Afn—1] = Mo am) mapping [(C,x1,...,%j, ..., xn)] to the
isomorphism class of the n-pointed stable curve obtained by attaching at x; a P! marked
with two points with labels x; and xy,. Then s; 1, is a section of 7tj, the morphism g :=fos;
makes the diagram

Mo A

Lo

commutative, and f factorizes through ;.
Now, assume £; = [Opn-3(1) ®TJ< . >|. For any pi; we have multp._ L; = degl;. By
'L-| sPig

MOAn 1

the first statement f factors through m;, for any k € {i;, .. 15} The generic fiber of f has
dimension n —r, therefore s = n —r and f factors through i, i, . : Mg aAn) = Moapp. O

The following is the statement we were looking for in the genus zero case.
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Theorem 3.1.6. Assume that My A ] and Mo gy factor Kapranov. Let f: My ] — Mo [r) be
a dominant morphism with connected fibers. Then f factors through a forgetful map m : Mo A [n] —

MO,A r]-

Proof. We proceed by induction on dimﬂolgm. Let pr : MO,BM — P 3 bea Kapranov
factorization, and consider a forgetful map 7,1 : Mg g(r] — Mo,g[r_1). We denote by E;
the image of the section s; ; : MO/B[T_” — MO,B[r]/ note that E; j is the divisor parametrizing
reducible curves C; U C, where C; is a smooth rational curve with r — 2 marked points, and
C; is a smooth rational curve with two marked points labeled by x;, x;.

The first induction step is Proposition 3.1.4. By Lemma 3.1.3 the space Mg g(,_1) factors
Kapranov. So we may consider a Kapranov factorization p,_1 : Mo g(,_1] — P™~%, and the
linear projection 7t : P2 --» P"~* induced by |Opr 3(1) ® Jp, ,|. The morphism 7, 1 o f is
dominant and with connected fibers, hence we may apply the induction hypothesis to it. So
we can choose a Kapranov factorization p, : MO, Aln] — P™—3 such that

pne((pr o )i (10pr—3(1) @ Tp, 1)) C [Opn-3(1)]. (3.1.1)

We may assume, without loss of generality, that p; Tpeq) = E;+_1. Let us summarize the
situation in the following commutative diagram

R f _ 711‘71 N
Mo am] —— Mo —— Mo B[r—1]

where 3 = profo pTﬂ ,and o = 7to 3 is a linear projection. By Proposition 3.1.5 to conclude
it is enough to show that pn«((pr o f)*(Opr—3(1))) C |Opn-3(1)|. Hence, by equation (3.1.1), it
is enough to show that f*(E, ._1) is contracted by pn.

Let £ be the line bundle on P™~2 inducing the map

—1
X =pr_j0mr_j0fop, .

By induction hypothesis we may assume £ = |Opn-3(1) ® Jp|, where P = (pr_1,..., pn—_1),
and «(pj) =pj, (p;) =pj forj<r—1. o
For any Ej, # Er—1, the map 7,_qjg; : Mogpr—1) = Mopp—1) is a forgetful map onto
Mo B[r—2]- Then for any E;, C Mg g[,j, with i < 7, we have

f*(Eir) = (Mr—1 0 )" (Eir—1) = Ein,

so f*(Ei ) is contracted by pn, for any i <r—1.

Fixed a reduction morphism pn : Mg A[n] — IP"—3, consider a forgetful morphism 7; :
Mogr] = Mogr—1] With i < r. To any such forgetful morphism we associate a Kapranov
factorization pq ; : MO, An] — P 3 such that f*(Ej,+) = Ej,i for i # j. However the divisor
Ei; is contracted to a point only by the Kapranov factorizations py i, pn, factoring fi, f;
respectively. Then the image of E; . via pn« o f* does not depend on the map 7;, 50 pny o f*
is a point for any forgetful morphism 7t; : Mg gy} = Mo p[r_1), and

05 (Opr—3(1)) = 5 (10pr—3 (1) @ Tp, 1) + Er_1 .1

Then, if € is the line bundle on P™~3 inducing «, we get

€ = pnx((pr o )" (Opr—3(1))) = prsl((pr o H)*(10pr—3(1) @ Ip, 1)) C Opn-s(T)L.
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So « is induced by a linear system of hyperplanes, that is « is a linear projection, and by
Proposition 3.1.5 we conclude. O

Next we concentrate on higher genera. If g > 1 then all forgetful morphisms are always
well defined. Therefore the following is just a simple adaptation of [GKM, Theorem 0.9].

Proposition 3.1.7. Let f: ﬂg, An] — X be a dominant morphism with connected fibers.

- If g > 2 either £ is of fiber type and factorizes through a forgetful morphism 1y : Mg an) —
Mg A, or f is birational and Exc(f) € 0Mg am)

- If g = 1 either f is of fiber type and factorizes through a product 7kl x 7tk : My Ay —

M AL XM, M A(n_i) for some subset S of the markings, or f is birational and Exc(f) C

aM],A [n]

1,Alm]

Proof. By [Has, Theorem 4.1] any Hassett’s moduli space ﬂg, A[n] receives a birational reduc-
tion morphism pn : Mgn — Mg A restricting to the identity on Mg . The composition
fopn:Mgn — X gives a fibration of Mg, to a projective variety.

If f is of fiber type by [GKM, Theorem 0.9] the morphism f o p, factorizes through a forgetful
map 7 : Mgn — Mg;, with 1 < n, and a morphism « : Mg; — X. Considering the
corresponding forgetful map 7!t : Mg Am] = Mg ari) on the Hassett’s spaces, and another
birational morphism p; : Mg; — Mg Ay restricting to the identity on M ;, we get the
following commutative diagram:

T —

mgm Mg i
Pn Pi
L S
g,An] ? g,Ali]
\H)
f X

Note that p; o7ty and 7I o pn are defined on Mg n and coincide on Mg . Smce Mg n is
separated we have p; o 7'[1 = 7r opn. Lets: Mg ALl — Mg A 1 be a section of 7[ . We define

o= fos. Clearly ot C01r1c:1des with @ on Mg 4], and atonl =1

Now, assume that f is birational. If Exc(f) NOMg (] 7 0 then Exc(fo pn) NOMgn # . This
contradicts [GKM, Theorem 0.9]. So Exc(f) C Mg, Aln]-

Let us consider the case g = 1. If f is of fiber type, by the second part of [GKM, Theorem
0.9], the fibration f o pn, factors through 7y x mrc. Our aim is the define a morphism o
completing the following commutative diagram

7Ty X TT1c
Mjn ———— Mis Xz, | Migse
Pnl | pixpic
7-cIH><7rI*£ — —

m],A[n]

MUAR XM p g MILAI-]

. . ! . .
As before we consider two sections s,s of mi! and 7}l respectively and define o' :=

fo(sxs).
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If f is birational and Exc(f) N OMj A[n] # 0 then Exc(fo pn) NOM, # 0. Again this
contradicts the second part of [GKM, Theorem 0.9]. So Exc(f) € My A[n]- O

The case g = 1 is not as neat as the others. Luckily enough in the special case we are
interested in something better can be said. If we consider the fibrations of the type

B
>
2
Je
=
>
2

|
z

1,An—1]

where ¢ is an automorphism of M A [}, thanks to the second part of Proposition 3.1.7 we
can prove the following lemma.

Lemma 3.1.8. Let ¢ be an automorphism of My an). Any fibration of the type T o ¢ factorizes
through a forgetful morphism 7t : My An] — M1 An_1]-

Proof. By the second part of Theorem 3.1.7 the fibration 7; o ¢ factorizes through a product

of forgetful morphisms 7ge X s : My A — My Aji) XMy ) M An—i) and we have a

commutative diagram

Mj A M A

Tlge X 7Tg Tt

_ _ . —
M1 AL XM, o ML A= —— My A1)
JALT]

The fibers of 7y and 7tse x 7g are both 1-dimensional. Furthermore ¢ maps the fiber of
mise X 75 over ([C,xay, ., Xail, [C, Xy, ey Xp, ;1) tO TE:] (@([C,xay, - xa ], [C xpy s e X, 1))
Take a point [C, X1, ..., xn_1] € Mm[n,”, the fiber 7'[{1 ([C,x1, ..., xn—1]) is mapped isomor-
phically to a fiber I' of 7sc x mg which is contracted to a point y = (nge x mg)(I'). The
map

Y My a1 = Miag X3, a0 M1Am—i [Cx1 e Xnal =y,

1Al
is the inverse of @ which defines a bijective morphism between M A i) XM A M1 An_i]

and My A [n_1), since by Remark 3.0.9 My a1 is normal @ is an isomorphism. This forces
S={j}, s¢ =11, ...,f, ...,}. So we reduce to the commutative diagram

M1 Am]
Ttsc ><7'[j s

My Al XM, 2 MIAIM=1] —— M1 An—1]
1,A[1]

and 7; o @ factorizes through the forgetful morphism ;. O

3.2 AUTOMORPHISMS OF Mg’A[n] AND ﬁg’A[n]

Let ¢ : Mg am] — Mg am) be an automorphism and 7ty : Mg Am) — Mg am—_1] a
forgetful morphism. We stress that in the case g = 0 we consider only the Hassett’s spaces
of Definition 3.1.1, so by Lemma 3.1.3 if M A ] factors Kapranov then M A 1] factors
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Kapranov as well, and we can apply Theorem 3.1.6. Then, by Theorem 3.1.6, Proposition 3.1.7
and Lemma 3.1.8, we have the following diagram

—1
_ ol —
Mg A —— Mg Am]

] I

mg,A[n—l] - Mg,A[n—H

kS

where 71, is again forgetful map. This allows us to associate to an automorphism a permuta-
tion in S;, where r is the number of well defined forgetful maps, and to define a morphism of

group o
X Aut(Mg an)) = Sy, @ = 0

where
op {1, —={1,.,7} 1=

! instead of ¢. This

Note that in order to have a morphism of groups we have to consider ¢~
section is devoted to study the image and the kernel of x.

First we consider the genus zero case and in particular the spaces that naturally appears as
factorizations of the Kapranov’s construction of Mo,n. Recall that the weights of the Hassett’s

space appearing at the step (r,s) of Construction 3.0.11 are given by:

Arsil =01/ n—r—-1),...,1/ n—r—1),s/(n—1r—1),1,...,1)

(n—r—1) times T times

forr=1,.,n—3and s =1,..,n—71—2. In particular, if r = T we have

1/n—-2),..,1/(n—2),s/(n—2),1).

(n—2)—times

Since 2g — 2+ 2=2 + —$5 < 0and 2g — 2+ 2=Z + 1 = 0, by [Has, Theorem 4.3] the forgetful

n
maps 7t and 7,1 are not well defined.
If r > 2 we have 2g —2 + 2:::} ———7 + (r—1) > 0 and by [Has, Theorem 4.3] all the

forgetful morphisms are well defined. This means that we have a morphism of groups from
Aut(Mo A, (n]) to Sp_2if r=1,and to Sy, if r > 2.
We describe in detail the case n =5 and the case n = 6 where all issues appear.

Proposition 3.2.1. The automorphism group of Mg a, , (5] is isomorphic to (C*)? x S3 x S5.

Proof. Recall that at the step v = 1, s = 2 only three points has been blown-up. We have only
three forgetful morphisms. By the factorization property in Theorem 3.1.6 we get a surjective
morphism of groups

X: AUt(MO,ALZ[S}) — S3.

Now, consider an automorphism ¢ of My A, ,[5) inducing the trivial permutation. Then ¢

induces a birational transformation @g¢ : P% --» P2 fixing p1,p2, p3 and stabilizing the lines
through pi,i=1,2,3.
Let |H| C |Op2(d)| be the linear system associated to @g¢. If L; is a line through p; we have

deg(@gc(Li)) = d—multp, H =1,

So multy, H = d — 1. Since the linear system |J{| does not have fixed component the inequality
2(d—1) < d holds, and we get d < 2.
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If d =1 the birational map @ is an automorphism of P2 fixing p1,p2,p3. These correspond
to diagonal, non-singular matrices.

If d = 2 then |H] is the linear system of conics with three base points and ¢4 is the standard
Cremona transformation of P2.

Therefore ker(x) = (C*)? x S, and from the splitting exact sequence of groups

0 (C*)2 x S; — Aut(Mg A, ,(51) = S3 + O.

we get Aut(Mo A, ,(5)) = (C*)2 x S3 x S5. O
Now, let us consider the case n = 6. Construction 3.0.11 is as follows:
-r=1,5s=1, gives P3,

-1 =1,s5 =2, we blow-up the points p1, ..., ps € IP3 and get the Hassett’s space with
weights A (6] := (1/4,1/4,1/4,1/4,1/2,1),

- 7=1,s =3, we blow-up the lines (p;, pj), i,j = 1,...,4, and get the Hassett’s space with
weights Ay 3[6] := (1/4,1/4,1/4,1/4,3/4,1),

-1 =2, s = 1, we blow-up the point ps5, and get the Hassett’s space with weights
Azalel:=(1/3,1/3,1/3,1/3,1,1),

- v =2, s =2, we blow-up the lines (pi, ps), i,j = 1,...,3, and get the Hassett’s space with
weights A; »[6] :==(1/3,1/3,1/3,2/3,1,1),

-1 =3,s =1, we blow-up the line (p4,ps) and get the Hassett’s space with weights
A3 6l :=(1/2,1/2,1/2,1,1,1), that is MO’@

Proposition 3.2.2. If n = 6 the automorphism groups of the Hassett’s spaces appearing in Construc-
tion 3.0.11 are given by

- Aut(Mg A, 6]) = (C*)? x Sy, ifr=1,T<s<3,
- Aut(Mg a, 6]) = (C*)3 xSy x Sp, ifr=1,5=3,
- Aut(Mg A, (6)) = Se, ifr > 2.

Proof. If v = 1, we have a surjective morphism of groups

X: Aut(mor,\m [6]) — 54.

An automorphism ¢ of M, Arsl6] Whose image in Sy is the identity induces a birational
transformation @g¢ : P3 --» P3 fixing p1,P2,P3, P4 and stabilizing the lines through pj,
i=1,2,3,4. Let |H]| C |Op3(d)| be the linear system associated to @q. If L; is a line through
pi we have

deg(@gc(Li)) = d—multy, H = 1.

This yields
mult,, H=d—1, mult<pi,pj> H>d-—2,and mult(pi,pj,pk) H>d4d-3. (3.2.1)

The linear system H does not have fixed components therefore d < 3 and in equation (3.2.1)
all inequalities are equalities. If d = 1 then @4¢ is an automorphism of P3 fixing p1,P2,P3, Pa-
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These correspond to diagonal, non-singular matrices.
If d # 1, again by Theorem 3.1.6, we have the following commutative diagram

1
. . -
Mo An] —— Mo, A

G192 l lﬂi] A

PR (’() PR
Mo, An—2] — Mo An—2]

Therefore @4¢ induces a Cremona transformation on the general plane containing the line
(p1,P2). So on such a general plane the linear system H needs a third base point, outside
(p1,p2). This means that in P a codimension two linear space has to be blown-up. So
s = d = 3 and g is the standard Cremona transformation of IP3. We conclude that
ker(x) = (C*)3 if s < 3, and ker(x) = (C*)3 x S, if s = 3.

When r > 2 the fifth point p5 has been blown-up. We have all the forgetful morphisms and a
surjective morphism of groups

X: Aut(MO,Ar,S [6]) — S6~

An automorphism corresponding to the trivial permutation induces a birational transforma-
tion @q¢ of P3 fixing p1, ..., ps, stabilizing the lines through pi, i =1, ...,5, but now it has the
additional constraint to stabilize the twisted cubics C through p1, ..., p5. By the equality

deg(¢g¢(C)) =3d —mult,, H =3d—-5(d—1) =3,

we conclude that d = 1 and @4 is an automorphism of IP3 fixing five points in linear general
position, so it is forced to be the identity. O

Now, let us consider the general case. The following lemma generalizes the ideas in the
proof of Proposition 3.2.2 and leads us to control the degree and type of linear systems
involved in the computation of the automorphisms of the spaces appearing in Construction
3.0.11.

Lemma 3.2.3. Let 3 C [Opn-3(d)| be a linear system and {p1,...,pa} C P™—3 4 collection of
points. Assume that mult,, H =d—1,fori=1,...,a. Let Ly, i, = (Pi;,---,Pi,) e the linear
span of h points in {p1,...,pa}, then

multLi]” H>d—h.

ih

Assume further that H does not have fixed components, a = n — 2 and the rational map, say @,
induced by 3 lifts to an automorphism of MA]/S (n] that preserves the forgetful maps onto M Aqsn—1]-
Then

mul’q_i],“_,‘lh H=d—h,

s =d =n—3, and @q¢ is the standard Cremona transformation centered at {p1,...,pn—2}.

Proof. The first statement is meaningful only for h < d. We prove it by a double induction on
d and h. The initial case d = 2 and a = 1 is immediate. Let us consider TT := Lp.11 Py, and
Ly = (pi/--- ,f)ij, .., Pi,,) the linear span of h — 1 points in {ps,...,pn}. Then by induction
hypothesis

multL]. j‘f“—[ >d— (h— ]),

and L; is a divisor in IT. By assumption d > h hence d(h —1) > h(h—1) and

h(d—(h—1)) > d.
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This yields TT C BIJ. Let A be a general linear space of dimension h containing T1. Then we
may decompose H5 = T+ Hy with 3y C |O(d —T1)| and

multl_j Hy>z2d—1—(h—-1). (3.2.2)

Arguing as above this forces IT C H; as long as h(d—1—(h—1)) >d—1, thatisd—1>h,
and recursively gives the first statement.

Assume that the map @4 lifts to an automorphism that preserves the forgetful maps onto
MA]/S n—1]- This forces some immediate consequences:

i) a =n —2 and the points p; are in general position,
ii) the scheme theoretic base locus of H is the span of all subsets of at most s — 1 points.
Since Lpt, ,...pis € BI(H) equation (3.2.2) yields
s>d. (3.2.3)

Furthermore the hyperplane H = (pi,, ..., pi, ;) contains (n —3) codimension two linear
spaces of the form L;, each of multiplicity d — (n —4) for the linear system H. The linear
system H does not have fixed components hence (n —3)(d —n+4) < d and we get

d<n-3.
Claim 1. BIH 2 Ly, i,

Proof. Assume that BIH D Ly, . i, then the restriction J{\Li] » contains a fixed divisor

=td+1
of degree d+1 and Ly, i,,, C BIH. A recursive argument then shows that BIH has to
contain all the linear spaces spanned by the n — 2 points yielding a contradiction. O

The claim together with ii) and equation (3.2.3) yield
s=4d,

and

mult, o H=d—(d=1)=1.
Then, recursively this forces the equality in equation (3.2.2) for any value of h. To conclude

let us consider the commutative diagram

_ o —
Ma, ) —— Ma, ()

By Theorem 3.1.6 we know that ¢ composed with a forgetful map onto M Aj[n—2] is again a
forgetful map. This forces the map @4 to induce a Cremona transformation on the general
plane containing {pi,,pi,}. Let TT be a general plane containing {pi,,pi,}. Then the mobile
part of J{fy is a linear system of conics with two simple base points in p;, and pj,. This
forces the presence of a further base point to produce a Cremona transformation. Therefore a
codimension two linear space has to be blown-up. This shows that s = d =n — 3. To conclude
we observe that the linear system of forms of degree n — 3 in P™~3 having the assigned base
locus has dimension n — 2 and gives rise to the standard Cremona transformation. O
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Theorem 3.2.4. The automorphism groups of the Hassett's spaces appearing in Construction 3.0.11
are given by

- Aut(Mo o, n)) = (C)V3 xSy, ifr=1,1<s<n-3,
- Aut(mo,Arrs[n]) = (C) 3 xS, xSy, ifr=1,s=n—3,
- Aut(mo,Am [n]) =S, ifr> 2.

Proof. Consider the commutative diagram

_ o —
Ma, ) —— Ma, ()

T

where f is a Kapranov factorization. If r = 1 we have n — 2 forgetful morphisms and a
surjective morphism of groups

X : Aut(Mg A, (n)) = Sn—2.

Let @ be an automorphism of ﬂo, Arsnl such that x(¢) is the identity. Then ¢ preserves
the forgetful maps onto M s, 1] and the birational map ¢g¢ induced by ¢ stabilizes lines

through p1, ..., pn—2.
Let |H| C |Opn-—3(d)| be the linear system associated to @q. If L; is a line through p; we have

deg(@gc(Li)) = d —multp, H =1.

So mult,, H=d—1.

If s <n—3, by Lemma 3.2.3, the linear system J{ is free from base points and d = 1. Then
the kernel of x consists of biregular automorphisms of P~ fixing n — 2 points in general
position, so ker(x) = (C*)"3 and Aut(mo,AL5 m]) = (C*)"3 x S s,

If s = n—3, by Lemma 3.2.3, the only linear system with base points is associated to
the standard Cremona transformation of P™ 3. This gives ker(x) = (C*)"3 x S, and
Aut(Mg A, ) = (C)" 3 xS 2 x Sa.

When r > 2 the last point p,,_1 has been blown-up and again by Lemma 3.1.3 we have a
surjective morphism of groups

X: Aut(mor,\m [n]) — Sh.

Any automorphism ¢ preserving the forgetful maps onto M A,s[n—1] preserves the lines L;
through p; and the rational normal curves C through p1, ..., pn—1. The equalities

deg(@g¢(Li)) = d—mult,, H =1,

. (3.2.4)

deg(@gc(C)) = (n—3)d—3 ;=7 multy, H=n—-3.
yield d = 1. So @g¢ is an automorphism of P™~3 fixing n — 1 points in general position, this
forces @g¢ = Id. Then x is injective and Aut(Mg A, ;m) = Sn. O

Remark 3.2.5. The Hassett’s space M, A1 5] is the blow-up of IP? in three points in general
position, that is a Del Pezzo surface 8¢ of degree 6. By Theorem 3.2.4 we recover the classical
result on its automorphism group Aut(Sg) = (C*)? x S3 x S;. For a proof not using the
theory of moduli of curves see [DI, Section 6].

70



Furthermore, note that we are allowed to permute the points labeled by 1,2, 3 and to exchange
the marked points 4,5. However any permutation mapping 1,2 or 3 to 4 or 5 contracts a
boundary divisor isomorphic to P! to the point p1(Es.4), so it does not induce an automor-
phism. Furthermore the Cremona transformation lift to the automorphism of M, A1 (5]
corresponding to the transposition 4 < 5.

Remark 3.2.6. In Remark 3.0.12 we identified the step r = 1,s = n — 3 of Construction 3.0.11
with the Losev-Manin’s space L. This space is a toric variety of dimension n —3. By
Theorem 3.2.4 we recover (C*)" 3 ¢ Aut(L,_,). The automorphisms in S, _, x S, reflect
on the toric setting as automorphisms of the fan of L,,_5.

For example consider the Del Pezzo surface of degree six M, Aq,l5] = L3 = 8¢. Let us say

that 8¢ is the blow-up of IP? at the coordinate points p7,p;,p3 with exceptional divisors
e1,e2,e3 and let us denote by ; = <p]~,pk>, i#j,k,1=1,2,3, the three lines generated by
P1,P2,P3-

Such a surface can be realized as the complete intersection in IP? x IPZ cut out by the equations
xoYo = x1Yy1 = x2Y2. The six lines are given by e; = {x; = xx = 0}, l; = {y; = yx = 0} for
1#j,k,i1=1,2,3. The torus T = (C*)3/C* acts on P2 x P2 by

(Ao, A1, A2) - (Ixo s %1 :x2], [yo Y1 1 y2l) = (oxo : Ax1 s Aaxal, g 'yo : AT Ty 2 A5 Tya)).

This torus action stabilizes 8. Furthermore S; acts on 84 by the transpositions x; <+ yi, and
S3 acts on 8¢ by permuting the two sets of homogeneous coordinates separately. The action
of S3 corresponds to the permutations of the three points of IP? we are blowing-up, while
the S;-action is the switch of roles of exceptional divisors between the sets of lines {e, ez, e3}
and {ly, 1, 13}. These six lines are arranged in a hexagon inside 8¢

which is stabilized by the action of S3 x S,. The fan of 8¢ is the following

where the six T-dimensional cones correspond to the toric divisors e, 13, ez,17,e3 and 1,. It
is clear from the picture that the fan has many symmetries given by permuting {e1, ez, e3},
{l1,12,13} and switching e; with 1; fori=1,2,3.

Remark 3.2.7. From the description of L, given in Remark 3.0.12 it is clear that S, gives
the permutations of x1, ..., xn_2 while S, corresponds to the transposition x¢ <> Xoo.
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The Hassett’s spaces of Construction 3.0.14 are more symmetric and simpler from the
automorphisms viewpoint.

Theorem 3.2.8. The automorphism groups of the Hassett’s spaces appearing in Construction 3.0.14
are given by
Aut(Xy[n]) = Sy

foranyk=1,.,n—4.

Proof. We use the same notations of Theorem 3.2.4. Since step k = 1 we have blown-up n — 1
points, so we have n forgetful morphisms and a surjective morphism of groups

X : Aut(Xy[n]) — Sy.

As in Theorem 3.2.4 any automorphism fixing all the forgetful morphisms preserves the lines
L; through p; and the rational normal curves C through py, ..., pn—_1. By the equalities 3.2.4
we get d =1 and @g¢ = Id. O

Higher genera

Now, we switch to curves of positive genus. First observe that My (1) = My ;1 = P! for
any weight data. Therefore we can restrict to the cases g=1,n>2and g>2,n> 1.

Lemma 3.2.9. If g = 1,n > 2 0r g > 2,n > 1 then all the forgetful morphisms Mg an] —
mg, An—1] are well defined morphisms.

Proof. If g=1then2g—2+4+a;+..+an_1=a;+..+an_7 >0beingn > 2. If g =2 we
have2g—2+aj+..+an_1 22+a7+..+an_7 > 0foranyn > 1. To conclude it is enough
to apply [Has, Theorem 4.3]. O

Since by Lemma 3.2.9 all the forgetful morphism are well defined we get a morphism of
groups o
X Aut(Mg am)) = Sn, @ = 0

where
oo :{1,..n}—={1,..,n}, i

In the case of Mg n, this morphism is clearly surjective and turns out to be injective as soon
as 2g —2+n > 3, see Theorem 2.2.9 of Chapter 2. However in the more general setting
of Hassett’s spaces the image of x depends on the weight data. We are wondering which
permutations actually induce automorphisms of Mg A ). To better understand this issue let
us consider the following example.

Example 3.2.10. In MZ, A[4) With weights (1,1/3,1/3,1/3) consider the divisor parametrizing
reducible curves Cy U C;, where C; has genus zero and markings (1,1/3,1/3), and C; has
genus two and marking 1/3.
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After the transposition 1 <+ 4 the genus zero component has markings (1/3,1/3,1/3), so it is
contracted. This means that the transposition induces a birational map

contracting a divisor on a codimension two subscheme of le A4]- Consider the locus of
curves C; UC, with C; = P!, x; =x3 =x4 € Cy and x7 € C,. Since aj 4+ a> + a3 > 1 the
birational map induced by 1 <+ 4 is not defined on such locus.

This example suggests us that troubles come from rational tails with at least three marked
points and leads us to the following definition.

Definition 3.2.11. A transposition i <+ j of two marked points is admissible if and only if for
any hy,..,. hy €{1,...,n}, withr > 2,

T T
aH—Zahkg] — aj+Zahk<1.
k=1 k=1

We need the following lemma which, in the complex setting, in nothing but an immediate
consequence of Hartog’s extension theorem.

Lemma 3.2.12. Let ¢ : X — Y be a continuous map of separated schemes defining a morphism in
codimension at least two. If X is S then @ is a morphism.

Proof. Let U C X be an open set, whose complementary have codimension at least two, where
@ is a morphism. Let f be a regular function on Y, then f o @3 € Ox(U) is a regular function
on U. Since X is S fo @y extends to a regular function on X. So we get a morphism of
sheaves Oy — ¢.0x and ¢ : X — Y is a morphism of schemes. O

Any transposition i ¢ j in Sy, defines a birational map @y : Mg an] --* Mg afm)- We aim
to understand when this map is an automorphism, our main tool is the following proposition.

Proposition 3.2.13. The following are equivalent:

(a) i< jis admissible,

(b) @, is an automorphism,

(c) ﬂg,Ai[n_” =~ ﬂg,A], (n—1], Where Ay ={ay, ..., ay,..., an}and A; ={ay, ..., 4j, ..., an}.
Proof. (a) = (b) By [Has, Theorem 4.1] we have a birational reduction morphism

p: ﬂg,n — mg’A[n}.

Let @i € Aut(mg,n) be the automorphism induced by the transposition i <> j. Then we have
a commutative diagram

_ @i
Mgn Mgn
"J l"
— Pij
Mg Am] ----* Mg am]

where a priori @5 ; is just a birational map. By [Has, Proposition 4.5] p contracts the divisors
A1; whose general points correspond to curves with two irreducible components, a genus
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zero smooth curve with I ={iy, ..., i;} as marking set and a genus g curve with marking set
J=1{1,-in—r} such that a;, +..+a;, <Tand 2 <1 <n. Apriori ¢;; is defined just on
the open subset of Mg A [n) parametrizing curves where x;, x;j coincide at most with another
marked point. Let U C Mg A be the open subset parametrizing such curves.

Let us consider a curve [C, X1, ..., Xi, -, Xj, o0, Xn] With x§ = %, = .. = x4, 2 <7 <n—1.
By Definition 3.0.8 we have a; + aj, +...+a;, < 1. Then p! ([C, X1, oo X4y ey Xy weey Xm])
lies on a divisor of type Ayj. By Definition 3.2.11 we have a; +aj, +...+a;, < 1. So
(Po@i o p~N([C,x1, s Xig e X e Xn]) = [C X, 0, X5, 0, Xy o, X With x5 = x4, = 0 = x4,
We consider the same construction for curves [C, X1, ..., X, ..., Xj, ..., Xn] With X = x4, = ... = x4,
2 <r<n—1and extend @;; as a continuous map by

@15 ([Cx1, ey X4y ey X, oo Xn]) 1= [C, X1, o X4, ey Xy vy X ]
j j j

The continuous map @i j : Mg Am) = Mg a[n] is an isomorphism between two open subsets
U, V whose complementary have codimension at least two. This is enough to conclude, by
Remark 3.0.9 and Lemma 3.2.12, that @; ; is an isomorphism.

(b) = (c) By Proposition 3.1.7 and Lemma 3.1.8 in the cases g > 2 and g = 1 respectively we
produce a commutative diagram

-1

Mg,A[n] Mg,A (n]
| I
— Pij —
Mg A;n—1] Mg,/\j (n—1]

where @; ; is invertible and hence an isomorphism.

(c) = (a) We may assume that a; > aj. Then, by [Has, Proposition 4.5], the reduction
morphism pa, m—1],Ajn—1] Mg,Aj n—1] = Mg A [n—1] is an isomorphism. Therefore, again
by [Has, Proposition 4.5], a; + 3 1 _; an, < Tand aj+ Y 1_; an, > 1is possible only if r < 1.
This shows that i <+ j is admissible. O

Let us consider the subgroup Aa ] € Sn generated by admissible transpositions and the
morphism

X: Aut(Mg’A[n]) — Snh.
Clearly A ] € Im(x). In what follows we aim to study the image and the kernel of x.
Lemma 3.2.14. For any g > 1 and n such that 2g —2+n > 3 we have Im(x) = Aa [n]-

Proof. Let 0 = x(¢) be the permutation induced by ¢ € Aut(Mg a[n)). Up to taking its
decomposition as a product of disjoint cycles we can assume o, to be a cycle (i7...i;). Let us
consider its decomposition

(11..1) = (i) (B ir—1)e(113) (1112)

as product of transpositions. We want to prove that (iiy) is admissible for any h =2,..., 1.
We proceed by induction on the length r of the cycle. If r = 2 then (i;i,) is admissible by
Proposition 3.2.13.

Now, note that the cycle (iy...i;) maps i, to i;. This means that 7;, o ¢! factors through 7,
and the following commutative diagram

M LA v
g,An] g,An]
7'[1'_] l Tliy

()
ng,Ai1 m—1] ——— Mg,A- [n—1]

ir
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guaranties that Mg o, m—1) = Mg, A;, n—1) Then, by Proposition 3.2.13, the transposition

(i1iy) is admissible and (i1i+) = X(@y,,i,) with @y, 1, € Aut(Mg,A[n]). We have x(¢) =
x(@4,,1,)(11,1r—1)...(11,12) and

X(@o @yl )= (i1t 1)(iriz) = (i 7).
Since @ o @;]ir € Aut(mg, An]), by induction hypothesis, we have that (i;iy) is admissible

for any h 2,2,...,1‘ — 1. We conclude that (ijiy) is admissible for any h = 2,...,r, and
0p € Aam)- 0

Proposition 3.2.15. For any g > 2 the only automorphism of Mg a1 is the identity. Furthermore
Aut(M1 ,A[”) = PGL(Z), Aut(mLA[z}) = (C*)Z and Aut(M],AB]) = ‘AAB} = 83.

Proof. 1f n < 2, by [Has, Corollary 4.7], the reduction morphism p : Mg n — Mg a[n is an
isomorphism and we conclude by Propositions 2.2.5 and 2.2.7 of Chapter 2.
Consider now the case g = 1,n = 3. By Lemma 3.2.14 we have a surjective morphism

X: Aut(ﬂLAB]) — ‘AA[3]'

1

Let ¢ be an automorphism of M; (3} inducing the trivial permutation. Then ¢~ induces

the trivial permutation as well and we have three commutative diagrams

m1,A[3] — m],AB]

| B |

[0)
My Azl —— My a2

Let [C,x1,%x2] € ML A[2] be a general point. The fiber 71?1 ([C,x1,%x2]) intersects the boundary
divisors Ag» C Mj a[3] in two points corresponding to curves of the following type

g=1

The two points in 71;1 ([C,x1,%2]) N Ap 2 can be identified with x1,x2. Now let [C/,x;,x/z]
be the image of [C,x1,x;] via @. Similarly 71;1 ([C/,x;,x/z]) NApy = {x;,xlz}. We have
(p(ni_1 ([C,x1,x2]) N Ay 2) = “1_1 ([C,,X;,xlz]) NAy2, [C,,X;,xlz] = [C,x1,%x2] and @ has to be
the identity.

So ¢ restricts to an automorphism of the elliptic curve 7'[1’1 ([C,x1,%2]) = C mapping
the set {x1,x;} into itself. On the other hand ¢ restricts to an automorphism of the
elliptic curve 7'[21 ([C,x1,%2]) = C with the same property. Note that 7'[5] (IC,x1,%x2]) N
n]’] ([C,x1,%x2]) = {x1}. Combining these two facts we have that ¢ restricts to an automor-
phism of 7[1’] ([C,x1,%x2]) = C fixing x1 and x,. Since C is a general elliptic curve we have
that P 1 (1C x1,%2]) is the identity, and since [C,x1,x2] € M A[2] is general we conclude that
¢ = Idmm[s]' The isomorphism A 5 37 = S3 is immediate from Definition 3.2.11. O
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Theorem 3.2.16. The automorphism group of Mg apm) is isomorphic to the group of admissible
permutations

Aut(Mg,A[n]) EAA[n]
forany g > 1,n such that 2g —2+n > 3.

Proof. We proceed by induction on n. Proposition 3.2.15 gives the cases g > 2,n = 1 and
g = 1,n = 3. By Lemma 3.2.14 we know that the morphism ¥ is surjective on A ;] € Sn.
Let us compute its kernel.

Let ¢ € Aut(mg, An]) be an automorphism such that x(¢) is the identity, that is for any
i=1,..,n the fibration 7t; o ¢ !, and the fibration 7t; o @ as well, factor through m; and we

have n commutative diagrams

_ 0 — _ 0 —
Mg,A[n] - Mg,A[n] Mg,A[n} - Mg,A[n}
] I ] I

Ewi D1 v Pn

Mgam-11 — Mgam-11  Mgam-—11 — Mgam-1]

The morphisms @; are automorphisms of Mg, An—1] and by induction hypothesis @71, ..., on
act on Mg, A[n—1] as permutations.

The action of @; on the marked points x1, ..., X{—1,Xi+1, ..., Xn_has to lift to the same auto-
morphism ¢ for any i = 1,...,n. So the actions of @1, ..., o, have to be compatible and this

implies @; = Idﬂg A1) for any i = 1,...,n. We distinguish two cases.

- Assume g > 3. It is enough to observe that ¢ restricts to an automorphism on the fibers
of 7t1. Then @ restricts to the identity on the general fiber of 711, so ¢ = Idy; A’
g, n

- Assume g = 1,2. Note that ¢ restricts to an automorphism on the fibers of 717 and
7. So @ defines an automorphism of the fiber of 71y with at least two fixed points in
the case g = 1,n > 3 and at least one fixed point in the case g = 2,n > 2. Since the
general 2-pointed genus 1 curve and the general T-pointed genus 2 curves do not have
non trivial automorphisms we conclude as before that ¢ restricts to the identity on the
general fiber of 77, so ¢ = Idmg//-\[n]'

This proves that x is injective and defines an isomorphism between Aut(Mgn) and A, O

Example 3.2.17. Consider MQ,AM] with g > 1 and weight data (1,1/3,1/3,1/3). The transpo-
sitions 1 <+ 2, 1 <+ 3 and 1 <+ 4 induce just birational maps. The group A 4 [4] is generated by
the zﬁmissible transpositions 2 <+ 3,2 <+ 4 and 3 < 4.

For Mg a(4) with g > 1 and weight data (1/12,2/3,1/4,1/3) the automorphism group Aa (4]
is generated by the two admissible transpositions 1 <+ 3 and 2 < 4.

Automorphisms of Mg a ]

7Let us consider the Hassett’s moduli stack ﬂg, A[n] and the natural morphism 7 : ﬁg, An] —

Mg A[n) On its coarse moduli space. Since 7 is universal for morphism to schemes for any

oNS Aut(ﬁgr/\ m]) there exists an unique ¢ € Aut(mgr/\[n]) such that to @ = @ o7. So we
get a morphism of groups

X: Aut(Mg,A[n]) — AUt(Mg,A[n})-

Proposition 3.2.18. If 2g — 2 +n > 3 then the morphism ¥ is injective.
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Proof. For the values of g and n we are considering Mg ] is a normal Deligne-Mumford
stack with trivial generic stabilizer. To conclude it is enough to apply Proposition 2.3.4 of
Chapter 2. O

By Proposition 3.2.18 for any g > 1,1 such that 2g —2+n > 3 the group Aut(Mg A[n) is a
subgroup of A ;). Note that an admissible transposition i « j defines an automorphism
of My An)- Indeed the contraction of a rational tail with three special points does not affect
neither the coarse moduli space nor the stack because it is a bijection on points and preserves
the automorphism groups of the objects. However, it may induce a non trivial transformation
on the universal curve.

Theorem 3.2.19. The automorphism group of the stack Mg,A[n] is isomorphic to the group of
admissible permutations

Aut(Mg am)) = Aam

for any g > 1,n such that 2g — 2 +mn > 3. Furthermore Aut(My a[17) = C* while Aut(My A[27) is
trivial.

Proof. By Proposition 3.2.18 the surjective morphism

X: AUt(Mg,A[n]) — AA[n]

is an isomorphism. The isomorphism Aut(M; (1) = C* derives from My A[7] = My 1 =
IP(4,6). Since a rational tail with three special points in automorphisms-free the reduction
morphism

p: M2 = My ap

is a bijection on points and preserves the automorphism groups of the objects. The stacks
My 2 and My () are isomorphic. We conclude by Proposition 2.3.7 of Chapter 2. O
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KONTSEVICH’S MODULI SPACES: SOME CONJECTURES

Let X be a projective variety, 3 € H(X,Z) be a homology class, and Z1, ..., Z, C X cycles
in general position. We want to study the following set of curves

{C € Xof genus g, homology B, and CNZ; # 0 for any i}. (4.0.1)

In [Kh] M. Kontsevich observed that the curve C C X should be replaced by a pointed curve
(C, (x1,...,xn)) and a holomorphic map f : C — X such that f(x;) € Z; forany i =1,..,n. The
key idea, in order to give an algebraic definition of Gromov-Witten classes and invariants, is to
introduce a suitable compactification done by stable maps of the space of curves 4.0.1.

Definition 4.0.20. An n-pointed, genus g, quasi-stable curve [C, (x1,...,xn)] is a projective,
connected, reduced, at most nodal curve of arithmetic genus g, with n distinct, and smooth
marked points.

A family of n-pointed genus g quasi-stable curves parametrized by a scheme S over C is a
flat, projective morphism 7 : ¢ — S, with n-sections x1,...,xn : S = C, such that the fiber
[Cs, (x1(s), ..., xn(s))] is a n-pointed, genus g, quasi-stable curve, for any geometric point
s €S.

Let X be a scheme over C. A family of maps over S to X is a collection
(m:C—=S,(x1,...,xn),x: C—X)
such that

- (m: € =S, (x1,...,xn)), is a family of n-pointed genus g quasi-stable curves parametrized
by S.

- oo: € — Xis a morphism.

The families (7t: € — S, (x1,...,Xn ), &) and (71/ e =S, (x;,..., x;), oc’) are isomorphic if there
is an isomorphism of schemes ¢ : € — € such that m=7 o ©, x{ =@oxiforanyi=1,..,n,
and x = &' o ©.

Let (C, (x1,...,xn), ) be a map from an n-pointed genus g curve to X, the special points of an
irreducible component E C C are the marked points of C on E and the points in ENC\ E.

Definition 4.0.21. A map (C, (x1,...,Xn), ®) from an n-pointed genus g quasi-stable curve to
X is stable if:

- any component E = P! of C contracted by & contains at least three special points,

- any component E C C of arithmetic genus 1 contracted by « contains at least one special
point.

A family (t: € — S, (x1,...,xn), &) is stable if each geometric fiber is stable.

Remark 4.0.22. In the case X = PN the map (7t: € =S, (x1,...,xn), «) is stable if and only if
we/s(x1 + o+ xn) @ o (Opn (3)) is T-ample.
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Let X be a scheme over C, and let 3 € A;X. To any scheme S over C we associate the
set of isomorphism classes of stable families (7: € — S, (x1, ..., xn ), ®) parametrized by S of
n-pointed genus g curves to X such that o, (Cs) = [B], where [B] denotes the fundamental
class of (3. In this way we get a controvariant functor

Mgn(X,B): Schemes — Sets.

If X is a projective scheme over C then there exists a projective scheme Mg (X, B) coarsely
representing the functor ﬁg,n (X, B), [FP, Theorem 1]. The spaces Mg,n (X, B) are called moduli
spaces of stable maps, or Kontsevich’s moduli spaces.

Recall that a smooth variety X is said to be convex if H'(P!, x*Tx) = 0 for any morphism
o: Pt =X

Remark 4.0.23. The tangent bundle of an homogeneous variety is generated by global section,
so it is convex. On the other hand to be convex for an uniruled variety is a strong condition,
for instance the blow-up of a convex variety is not convex.

Let X be a projective, nonsingular, convex variety, then Mo (X, B) is a normal, projective
variety of pure dimension

dim(X) +J c1(Tx) +n—3.
B

Furthermore Mg ,, (X, B) is locally a quotient of a nonsingular variety by a finite group, that is
Mo n (X, B) has at most finite quotient singularities, [FP, Theorem 2].

In the special case X = PN we have B ~ d[line] for some integer d and the scheme
Mon (PN, d) is irreducible.

Examples

In the following we give a list of examples in which moduli of stable maps have a clear
geometric description.

- The moduli space of stable maps to a point is isomorphic to the moduli space of curves
Mg (IP°,0) = Mgn.
For the space of degree zero stable maps we have

Mgn(X,0) =Mgn x X.

- The moduli space of degree one maps to PN is the Grassmannian
Moo (PN, 1) = G(1,N),

and similarly the moduli space of degree one maps to a smooth quadric hypersurface
Qc PN, with N > 3, is the orthogonal Grassmannian

Mo,0(Q,1) = OG(1,N).

- The Kontsevich moduli space M o(IP?,2) is isomorphic to the space of complete conics
that is to the blow up of the P> parametrizing conics in IP? along the Veronese surface
V of double lines

Mo,0(IP?,2) = BlyP°.
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- Consider now m],o (P2, 3). Smooth plane cubic are parametrized by an open subset of
P? = P(k[xg,x1,%2]3). On the other hand we have maps from a reducible curve with
a component of genus zero and a component of genus one, contracting the genus one
component and of degree three on the genus zero component.

For any curve of genus one we have a 1-dimensional choice for the genus zero com-
ponent, namely the connecting node. So we get a component of dimension 10 of
Mj o (P2, 3). Finally we have a curve with three components: an elliptic curve and two
rational tails. The map contracts the elliptic curve and maps the rational tails to a line
and a conic.

Here we have a 2-dimensional choice for the two nodes on the elliptic curve, a 2-
dimensional choice for the line, and a 5-dimensional choice for the conic. We conclude
that MLO(]PZJ) has three irreducible components: two of dimension ¢ and one of
dimension 10.

- Let X C P’ be a smooth degree seven hypersurface containing a IP3. Writing down an
explicit equation for X one can see that Mg (X, 2) has two irreducible components: one
component is 5-dimensional and covers X, the second component parametrizes conics
in the IP? and so has dimension 5 + 3 = 8.

Generalizing this construction one can show that Mg ¢(X,2) can have a component of
dimension arbitrary larger than the dimension of the main component even if X is a
Fano hypersurface in P™.

Natural maps

Kontsevich’s moduli spaces, as moduli spaces of curves, admit natural morphisms.

- Forgetful morphisms o o
Ty - Mg,n(X/ B) — Mg,nfj(xr B),

forgetting the the points marked by iy, ..., 1; for j <n.

- Evaluation morphisms
evi : Mgn(X,B) = X,

mapping (C,{x1, ..., xn, &}) to x(xi).
- If 2g+n —3 > 0 we have morphisms forgetting the map «,
p: mg,n(xr B)— mg,n-
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41 THE STACK Mgn(x,B)

In this section we follow the clear and detailed discussion worked out by F. Poma in [Po].
The construction of the moduli of stable maps can be transposed into the realm of algebraic
stacks. Let k be a field. Consider the functor

F : Gchemes ;. — Groupoids,

associating to a scheme S the groupoids F(S) of flat projective families w: C — S of nodal
curves of genus g,

c—%.x
(|
S

where s; are disjoint smooth sections of 7, o[Cs] = B for any fiber Cs = 7 1(s), and
Aut(C, o, 71, s1) is finite over S.

Theorem 4.1.1. (Abramovich-Oort ‘01) There exists a proper algebraic stack Mgn (X, B) of finite
type over k which represents F.

Theorem 4.1.2. (Kontsevich 95, Behrend-Fantechi '97) If chk = 0, then Mg,n(x, f3) is of Deligne-
Mumford type.

Recall that a Dedekind domain D is an integral domain which is not a field, satisfying one of
the following equivalent conditions:

D is noetherian, and the localization at each maximal ideal is a Discrete Valuation Ring.

- D is an integrally closed, noetherian domain with Krull dimension one.

Every nonzero proper ideal of D factors into primes ideals.
- Every fractional ideal of D is invertible.

Example 4.1.3. Let C be an affine smooth curve over a field k. The coordinate ring A(C)
of C is a finitely generated k-algebra, and so noetherian, it has dimension one since C is a
curve. Furthermore, since C is smooth and so normal A(C) is integrally closed. So A(C) is a
Dedekind domain.

Consider now the functor
Ip : Gchemes ;p — Broupoids,
exactly defined as J but from the category of schemes over a Dedekind domain D.

Theorem 4.1.4. (Abramovich-Oort ‘01) There exists a proper algebraic stack Mgn (X, B) of finite
type over D which represents Fp.

In the case chk =p,in general Mg,n(x, () is a proper Artin stack. As instance consider the
element (P!, x) € Moro(ll’],p) given by

1 1
x:P' =P, [xo,x1] = [x§,xV].
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Then Aut(P!, x) = up = Speckl[&]/(EP — 1) = Speck[&]/(& —L)P, which is not reduced over
Speck. However even in the characteristic p case the stack Mg (X, ) is a global quotient

stack and the functor o
0: Mgn(X,B) = Mg n

is representable. This led A. Kresch to define an intersection theory for Artin stacks over a
field [Kr].

Recall that a ring of mixed characteristic is a commutative ring R having characteristic zero,
having an ideal I such that R/I has positive characteristic. For instance the ring of integers Z
has characteristic zero, and for any prime number p, Z/(p) is a finite field of characteristic p.
Recently F. Poma in [Po] extended the construction of the virtual fundamental class of
Mg,n(x, ) in [BF] to schemes in positive and mixed characteristic. This leads to a rigorous
definition of Gromov-Witten invariants for these classes of schemes.

4.2 VIRTUAL DIMENSION

If X is a homogeneous variety then it is smooth and its tangent bundle is generated by
global sections, in particular X is convex. In this case Mg (X, B) is a normal, projective variety
of pure dimension. Furthermore if X = PN then MO,HUPN, d) is irreducible. On the other
hand when g > 1, and even when g = 0 for most schemes X # PN the space Mg n (X, B) may
have many components of dimension greater than the expected dimension. To overcome this
gap and to give a rigorous definition of Gromov-Witten invariants we have to introduce the
notions of virtual fundamental class and virtual dimension.

The normal cone

In this section we follow [BF]. Let E be a rank r vector bundle on a smooth variety Y,
s € HO(E) a section, and Z = Z(s) C Y the zero scheme of s. As s varies Z can become
reducible or even of non pure dimension. Let J be the ideal sheaf of Z in Y, the normal cone of
Zin Y is the affine cone over Z defined by

oo

CzY = Spec(@ g /gy,
k=0
Note that the CzY has pure dimension n = dim Y. Multiplication by s induces a surjective
map
B sym*(0(E*/70(E*))) = @ I*/I*H],
k k

and applying Spec we get an embedding
CzY — EIZ'

The normal cone gives a class [CzY] € An(E|z), so we have s*[CzY] € An_+(Z).
Let M be a Deligne-Mumford stack. Since M admits an étale open cover by schemes we can
consider a scheme U and take an embedding U — W, where W is a smooth scheme. Now,
consider the ideal sheaf J of U in W, and form the normal cone CyW. The differentiation
map
Pk -y, o df
k
induces a map
P/ — @ sym*(Qy,/104,),
k k
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finally applying Spec we get a map

Twiu = Spec(ED Sym*(Qyy, /9Q4,)) — CuW.
k

The intrinsic normal cone Cy is defined as the stack quotient [Cy W/ Ty ul. Now, given an
étale open cover {U;} of M the intrinsic normal cones Cyy; glue to give the intrinsic normal
cone Cy¢ of M.

If L} is the cotangent complex of M, an obstruction theory for M is a complex of sheaves €® on
M with a morphism €°* — L%, which is an isomorphism on h® and a surjection on h~'.
Given an arbitrary complex £* we define h! /h®(€£®) to be the quotient stack of the kernel of
&1 — &2 by the cokernel of £~ — £°.

By the definition of perfect obstruction theory the intrinsic normal cone €Cj; embeds in
h!/no((ee)").

Let C be the fiber product of (E~1)* with @y over h! /hO((&%)*), where O(E~ ') = &~ 1. This
is a cone contained in the vector bundle (E~")*. The virtual fundamental class is defined to be
the intersection of C with the zero section of (E~1)*.

In this part we mainly follow [De] and [Po]. Let X be a smooth connected projective scheme,
Mgn the Artin stack parametrizing pre-stable n-pointed genus g connected nodal curves,
and C its universal curve. We define an algebraic stack Mor(C, X) as follows:

- for any scheme S objects in Mor(C, X)(S) are pre-stable curves (Cs — S, si) over S with
a morphism fg : Cs — X,

- for any scheme S a morphism from (Cs — S, s;) to (C/S — S, sé) is an isomorphism o of
pre-stable curves such that f/s ox =fs.

There is a natural functor 0 : Mor(C,X) — Mg forgetting the map to X, furthermore
Mgn(X,B) is an open substack of Mor(C,X). The fiber product € XMy Mor(C,X) is a
universal family for Mor(C, X) and we have the following commutative diagram

where € = C X por(c,x) Mgn (X, B) is the universal stable map.

It turns out that considering the complex F* = (RTt P Ty )* we get a vector bundle stack
h!/hO(F®). Similarly E® = (R, p*Tx)* gives a perfect obstruction theory for 6, and so a
virtual fundamental class for Mg,n(x, B).

In what follows we try to understand more concretely the tangent and the obstruction
spaces to Mor(Y, X), where X, Y are projective varieties over a field. The scheme Mor(Y, X),
parametrizing morphisms Y — X, is a locally noetherian scheme having countably many com-
ponents. However fixing an ample divisor H on X we can consider the scheme Mor(P)(Y, X)
parametrizing morphisms Y — X with fixed Hilbert polynomial P(m) = x(Y, mf*H). This is a
quasi-projective scheme.
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The tangent space T;;yMor(Y, X) in a point [f] € Mot (Y, X) parametrizes morphisms Speck[e]/( e?) =
Mor(Y, X), and hence k[e]/(ez)—morphisms

fe:Yx Speck[e]/(ez) — X % Speck[e}/(ez),
which should be interpreted as first order deformations of f.

Proposition 4.2.1. Let X,Y be projective varieties. The tangent space to Mor(Y, X) in a point [f] is
given by
T Mor(Y, X) = HO (Y, Hom(f*Qx, Oy)).

Proof. Assume X = Spec(A),Y = Spec(B) to be affine, where A,B are finitely generated
k-algebras. Let f* : A — B be the morphism induced by f. We are looking for k[e]/(e?)-
algebras homomorphisms fﬁe : Ale] — Ble] of the type fﬁe (a) = f¥(a) + eg(a). Notice that the
since fue(aa/) = fi(a)fi(a/) we get eg(aa/) = (ff(a) + eg(a))(fﬁ(a/) + eg(a/)) —fi(a)ff(a) =
e(fﬁ(a)g(a/) + fﬁ(a/)g(a)). Then fi(aa/) = fﬁe(a)fié(a/) is equivalent to

glaa) = f¥(a)g(a’) + ¥ (a')g(a),

that is g : A — B is a k-derivation of the A-module B and then it has to factorize as g : A —
QA — B. Such extensions are therefore parametrized by Homa (QA,B) = Homp(Qa ®Aa
B, B).

Now, let us cover X by open affine U; = Spec(A;) and Y by open affine V; = Spec(B;)
such that f(V;) C U;. By the previous part of the proof first order deformations of f}y, are
parametrized by h; € Hompg, (Qa, ®a, By, Bi) = HO(V;, Hom(f*Qx, Oy)). To glue these
together we need the compatibility condition hyjy,; = h;}v,; which means that the collection
{hi} defines a global section on Y. O

Notice that when X is smooth along the image of f we have
T Mor(Y, X) = HO(Y, £*Tx).

Furthermore when Y is smooth H°(Y, Ty) is the tangent space to the automorphism group
of Y at the identity, its elements are called infinitesimal automorphisms. The image of the
morphism HO(Y, Ty) — HO(Y, f*Tx) parametrizes deformation of f by reparametrizations.

Let 0 = I -+ R — R/I — 0 be a semi-small extension in the category of local Artinian
k-algebras. Thatis I C 9t and IO = 0, where 91 is the maximal ideal of R. Let f: Y — X
be a morphism. Assume as before X, Y affine. Since X is smooth along the image of f and
12 = 0 by the infinitesimal lifting property [Ha, Exercise 8.6 - Chap 2], there exists a lifting of
f%/l : A®x R/I = B ®g R/I to a morphism f% : A®x R — B®xk R, and two different liftings
differ by an R-derivation A ® R — B ®y [, that is by an element of HO(Y, f*Tx) ®x L

In the general case we need to glue two extensions hy, hj on each V; NVj. These two exten-
sions differ by an element vi; € HO(V; N Vj, £*Tx) @k I. We have vy; hi\Vij = hj\Vij' On the
triple intersection V; N'V; N Vi we have vji vi; hiIVijk = ijhjlvijk = hklvijk = Vikhuvi]-k- So
Vik = VjkVij and the collection {v;} € C TV, P Tx @ 1) s a cocycle. We have a global
lifting if and only if vi; = 0, and the obstruction space is H (Y, *Tx) ® L.

Locally around a point [f] € Mor(Y,X) the space Mor(Y,X) can be defined by a set of

polynomial {P;} in some affine space AN The rank r of the Jacobian J(P;) is the codimension
of the Zariski tangent space T;yMor(Y,X) C kN. Let V be a variety defined by T equations
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among the P; for which the corresponding rows in the Jacobian have rank r, then V is
smooth at [f] and has the same Zariski tangent space of Mor(Y,X). By 6.3.1 the variety V has
dimension h°(Y, f*Tx) in [f]. We want to show that in the regular local ring R = Oy, [ the
ideal I of regular functions vanishing on Mor(Y,X) can be generated by h' (Y, f*Tx) elements.
Since the Zariski tangent spaces are the same the ideal I is contained in the square of the
maximal ideal 90t of R. Furthermore by Nakayama’s lemma it is enough to show that the
k-vector space I/91 has dimension at most h'.

The morphism Spec(R/I) — Mor(Y, X) corresponds to an extension fg /1 : Y x Spec(R/I) —
X x Spec(R/I) of f. We know that the obstruction to lift this extension to an extension
fryomr Y x Spec(R/9MI) — X x Spec(R/IMNI) lies in

HY(Y, £ Tx) @k 1/ML

Let ZI‘; aj ® b be the obstruction, where b; € I. Since the obstruction vanishes modulo
the ideal (by, ..., by 1) the morphism Spec(R/I) — Mot (Y, X) lifts to a morphism Spec(R/9I +
(b1,..,by1)) = Mor(Y,X). In other words the identity R/I — R/I factors through the
projection as R/I — R/9MI+ (by,...,by,1) — R/I. Then I = MI+ (by, ..., by,1), which means
that I/901 is generated by the classes of by, ..., b}1.

Remark 4.2.2. Locally around [f] the space Mor(Y, X) can be defined by at most h(Y, f*Tx)
equations in a smooth variety of dimension h®(Y, f*Tx). In particular any irreducible compo-
nent of Mor(Y, X) through [f] has dimension at least

hO(Y, F*Tx) — R (Y, f* Tx).

The equations defining Mor(Y,X) locally around [f] can intersect badly so that the actual
dimension is not the expected one. My naive way of understanding the deformation to the
normal cone and the virtual fundamental class is to imagine a deformation of these equations
that make the intersection transverse. If there is such a deformation, which formally means
that there exists a perfect obstruction theory, then the object we obtain would be a virtual
fundamental class.

Theorem 4.2.3. Let X be a smooth projective variety. The virtual dimension of the moduli space

Mg (X, B) is given by

virdim(Mgn (X, B)) = (1 — g)(dim(X) —3) — JB wx +mn.

Proof. Consider the stable map (C,{x1, ..., xn}, &}) € Mg,n(x, B). Let Def(C,{x1,...,xn}, «}) be
the space of first order deformations of (C,{x1, ..., xn}, o), and let Def«(C,{x1, ..., xn}, &}) be
the space of first order deformations with C held rigid. There is an exact sequence

0+ Def(C,{x1,...,xn}) — Def(C,{x1,.... xn}, &}) — Defs(C,{x1, ..., xn}, &}) — 0.

Note that since (C,{x1, ..., xn}, &}) is stable it does not have infinitesimal automorphisms, and
this gives the injectivity of the map on the left.

- First we compute the dimension of Def(C,{x1,...,xn}). The curve C is a stable nodal
curve. By the spectral sequence of Ext functors we have

0— H'(C,Hom(Qc,O¢)) = Ext' (Qc,O0¢) — HO(C, éxt (Qc, O¢)) — 0,
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there being no H? on a curve. We denote by & the number of nodes in C. Since the
sheaf Q¢ is locally free on the smooth locus of C, the sheaf ext(Qc,0¢)) is just k at
each node, then dim(H°(C, &xt' (Qc, O¢))) = 6. The curve C is L.c.i, then the dualizing
sheaf wc is an invertible sheaf, and since wc = Q¢ on the open set of regular points,
we have an injective morphism w — Hom(Qc¢, O¢), and an exact sequence

0 we — Hom(Qc,0c) = Oz — 0,

where Z = Sing(C). Since C is stable h®(Hom(Qc¢,O¢)) =0, by the cohomology exact
sequence we get h®(w) =0, and

0 H(C,02) = H'(C,we) = H! (Fom(Q¢, O¢)) +— 0.

By Riemann-Roch for singular curves we get h!( wvc) =3g—3,and since h°(0z7) =5
we get h! (Hom(Qc,Oc)) = 3g—3 — 8. Finally

dim(Ext'(Qc,0¢)) = h!(Te) + hO(Ext' (Qc,O0¢)) =3g—3—6+6=3g—3.

and
dim Def(C,{x1,...,xn}) =3g—3+n.

- By Remark 4.2.2 the expected dimension of Defy(C,{x1,...,xn}, «}) is hO(o*Tx) —
h!(«*T¢). By Riemann-Roch theorem we get

expdim Defy (C,{x1,.... xn}, &}) = x(a* Tc) = —Kx - a4 C + (1 — g) dim(X).
We conclude that
expdim Def(C,{x1, ..., xn}, &}) = —Kx - 0, C+ (1 — g) dim(X) +3g—3 +n,

and the virtual dimension of Mg (X, B) is given by

—Kx - axC+ (1 —g)dim(X)+3g—3+n = (1 —g)(dim(X)fS)fJ wx +n.
B

4.3 CONJECTURES

Let us consider the space Mo (PN, d). This is an irreducible projective variety with at
most finite quotient singularities and of dimension

dim(Mp (X, B)) =N(d+1)+d+n—3.
The symmetric group Sy, and the automorphism groups Aut(P™) act on My ,, (PN, d).

- The action of Sy, is given by

Sn x Mon (PN, d) = Mo (PN, d), (0,[C, (X1, xn), &) = [C, (X (1), s X (), -

- The action of Aut(IPN) is given by
Aut(PN) x Mo (PN, d) = Mo (PN, d), (f,[C, (X1, ..., xn), &) = [C, (x1, ... Xn), fo &

Clearly the two actions commute.
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The groups S, and Aut(PN) induce automorphisms of moln(IPN, d).

Proposition 4.3.1. The automorphisms of M o (P2, 2) are exactly the ones induced by automorphisms
of P2, that is
Aut(Mg o(P%,2)) = PGL(3).

Proof. Tt is well known that the space M o(IP?,2) is isomorphic to the space of complete
conics, that is the blow up of IP° along the Veronese surface V C P> parametrizing double
lines:

Mo,0(IP?,2) = BlyP°.

Then the automorphisms of M ¢ (IP?,2) are induced by automorphisms of P> stabilizing V =
IP2. On the other hand these are exactly the automorphisms of IP°> induced by automorphisms
of P2, O

Let Mg , (IP™ 2,1 —2) be the Kontsevich moduli space parametrizing stable maps of degree
n — 2 from n-pointed genus zero curves to P™~2. In [Ka, Theorem o0.1] M. Kapranov considers
the subscheme V(p1, ..., pn) of the Hilbert scheme J of P2, parametrizing rational normal
curves in P2 through n points py, ..., pn in linear general position. Kapranov proves that
the closure V(p1, ..., pn) in H of Vo(p1, ..., pn) is indeed isomorphic to Mg .
Let p: Mg (P"2,n—2) — Mo, be the natural morphism forgetting the map C — P™~2,
and let ev; : mo,n(]l’“_z,n —2) — PP™" 2 be the evaluation on the i-th marked point. [Ka,
Theorem o.1] implies that the morphism

DX evy X .. X evn : Mon (P2, n—2) = Mon x P2 x ... x P2

is an isomorphism on the open subset of P™ 2 x ... x P"~2 parametrizing points in general
position. The projection on P2 x ... x P™~2

pXevyX..xevn

Mo (P"2,n—2) Mo x P2 x ... x P12

— "

P2 x .. x P2

gives a fibration 7 of morn(ﬂ’“fz, n —2) whose general fiber is isomorphic to Mom.

Conjecture 4.3.2. Let ¢ € Aut(moln(H’“*Z,n —2)) be an automorphism. If n > 5 there exists an
automorphism o of P™~2 x ... x P™=2 such that the diagram

mo,n(]l—)nizl n— 2) L) mo,n(]l—)nizr n-— 2)

I I

o
P2 x. . xPVv2——Pn2yx  xPn2

is commutative.
The Conjecture 4.3.2 implies the following theorem.

Theorem 4.3.3. The automorphisms of Mo n (P™~2,n — 2) are the ones induced by automorphisms
of P2 and permutations for any n > 5. More precisely

Aut(Mo (P"2,n—2)) =PGL(n—1) x Sy,

for any n. > 5.
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Proof. Let ¢ € Aut(moln(ll’“_z,n —2)) be an automorphism. Consider a general point
(P1, . pn) € P2 x .. x P2 and the fiber 7' (p1,..., pn) = Mo,n. By Conjecture 4.3.2 the
automorphism ¢ maps ! (P1,...,pn) onto another fiber, say ! ((q1, - qn))-

Since the points {p1,...,pn} and {q1, ..., gn} are in general position in P2 there exists an
unique automorphism o € Aut(IP™2) such that o(p;) = q; for anyi=1,..,n.

So, up to an automorphism of ]P“*Z, we can assume

Pl (prowpn) ST (P1 s Pr) = (1, P,

and consider @1 (,, . as an automorphism of Mg ..

Since n > 5, by [BM2, Theorem 4.3] ¢ |—1(p, »,.) IS @ permutation of the marked points.

Summing up, the automorphism @ € Aut(Mo, (P™2,n—2)), up to a unique automorphism
of P™"~2, induces a permutation of the markings on the general fiber of 7t. This permutation
necessarily comes from the automorphism of Mg (P™~2,n — 2) acting as the permutation
itself. In other words we have the following exact sequence of groups:

0 = Aut(P™2) = Aut(Mg  (P™2,n—2)) — S 0.
Clearly there is a section S, — Aut(mo,n(]l’“_z,n —2)) and
Aut(Mo,, (P™2,n—2)) = Aut(P™2) x Sy,
is a semi-direct product. Furthermore, since
Aut(Mo (P"2,n—2))/ Aut(P™2) = S,

is a group, Aut(P™2) g Aut(morn(ll’“*z,n —2)) is a normal subgroup. It is enough to
observe that Aut(P™"2) NS, = {Id}, and that the actions of the two subgroups commute, to
conclude that Aut(ﬂo,n(]l’“_z, n —2)) is the direct product of Aut(P™2) and S,. O

Now, let Mg 5, (P™~2, 1 —2) be the Deligne-Mumford moduli stack parametrizing n-pointed,
genus zero, stable maps; and let

X: Mo (P %,n—2) - Mon(P™2,n—2),
be the natural map on the coarse moduli space.
Proposition 4.3.4. The automorphism group of Mo n (P™~2,n — 2) is given by
Aut(Mg  (P™2,n—2)) = PGL(n—1) x Sy,
foranyn > 5.
Proof. The map x induces a surjective morphism of groups
X : Aut(Mg (P2, 1 —2)) — Aut(Mo  (P™2,n —2)).

Foranyn >5 the general stable map in Moln(IP“_z,n — 2) is automorphisms-free. Since
Mo/n(]l’“_z,n —2) is a normal stack, by Proposition 2.3.4 of Chapter 2 the morphism ¥ is
injective. We conclude by Theorem 4.3.3. O

These arguments give enough evidence to believe in the following conjecture.
Conjecture 4.3.5. For any n > 5 we have

Aut(Mo, (PN, d)) = Aut(Mo (PN, d)) = Sy, x PGL(N +1).
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Part 11

VSP - VARIETIES OF SUMS OF POWERS






BIRATIONAL ASPECTS OF THE GEOMETRY OF VARIETIES OF
SUMS OF POWERS

We work over the complex field. We mainly follow notation and definitions of [Do]. The
set of all decomposition {Ly, ..., Ly} of a general polynomial F € k[xo, ..., xnlq is denoted by
VSP(F, h)°. Via this construction it is easy to embed VSP(F, h)° into Hilby, ((IP™)*).

Definition 5.0.6. The closure
VSP(F, h) := VSP(F, h)° C Hilby, ((P™)*)
is the Variety of Sums of Powers of F.

Using the smoothness of Hilby, ((IP™)*), when n = 1,2, one gets the following classical
result, see for instance [Do].

Proposition 5.0.7. In the cases n = 1,2 for a general polynomial F € klxo, ..., xnla the variety
VSP(F, h) is either empty or a smooth variety of dimension

dim(VSP(F,h)) = h(n+1) — ("+9).

It is important to notice that an additive decomposition of F induces an additive decompo-
sition of its partial derivatives.

Remark 5.0.8 (Partial Derivatives). Let {[L{], ..., [L,]} be a decomposition of a homogeneous
polynomial F € k[x, ..., xn]q. We write

F=L1¢+.. +Ld.

The partial derivatives of F are homogeneous polynomials of degree d — 1 decomposed in h
linear factors

gf_l = oy, dL?_] + ..+ ocihdl_ﬁ_1 ,foranyi=0,..,n.

Hence, as long as h < (df] ™), VSP(F,h)° C VSP(£2E, h)°, and taking closures we have

n oxi’

VSP(F,h) C VSP(2E nh).

aXi_’

The polynomial F has (nfl) partial derivatives of order 1. Clearly these derivatives are

homogeneous polynomials of degree d —1 decomposed in h-linear factors. Then, when
h < (475 ™), we have VSP(F, h) C vsp(ﬁ,m, where g+ ... + 1y = L.
&2,y Ly

As remarked in the introduction we are interested in a different compactification of additive
decompositions. Consider the span of an additive decomposition in the Veronese embedding.
We can associate to a decomposition of F an (h — 1)-plane h-secant to the Veronese variety
Van C PN. Note that by the generalized trisecant lemma, [CC, Proposition 2.6], when
h < N —n+1 the general h-secant linear space intersects transversely the Veronese variety in
exactly h points. Hence we may embed a non empty open set U C VSP(F, h) into G(h—1,N),
where G(k, n) is the Grassmannian variety of k-linear spaces of IP"™. To make this observation
more useful we start recalling definitions and results concerning secant varieties.
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Let X C PN be an irreducible and reduced non degenerate variety,
MX)Cc Xx..xXxGh—1,N),
the reduced closure of the graph of
a: XX ..xX-->G(h—1,N),

taking h general points to their linear span (x1, ..., xp ). Observe that ', (X) is irreducible and
reduced of dimension hn. Let 7, : T (X) — G(h — 1, N) be the natural projection. Denote by

Sh(X) :==ma(Th(X)) € G(h—1,N).
Again 8y,(X) is irreducible and reduced of dimension hn. Finally let
In ={(x, A)Ix € A}C PN xG(h—1,N),

with natural projections my, and 1V, onto the factors. Furthermore observe that Py, : I, —
G(h—1,N)is a P" '-bundle on G(h—1,N).

Definition 5.0.9. Let X C PN be an irreducible and reduced, non degenerate variety. The
abstract h-Secant variety is the irreducible and reduced variety

Secp, (X) := (W)~ (Sh(X)) C Tn.
While the h-Secant variety is
Secn (X) := mn(Secn (X)) c PN,

It is immediate that Secy (X) is a (hn + h — 1)-dimensional variety with a Ph1-bundle
structure on 8y, (X). One says that X is h-defective if

dim Secy, (X) < min{dim Secy, (X), N}

In what follows we need to extend this classical notion to a relative set-up. Let S be a
noetherian scheme, and let X — S be a scheme over S such that there exists a coherent sheaf
E on S with a closed embedding of X into IP(E) := PSym, (E) over S. Equivalently we may
assume that there exists a relatively ample line bundle L on X over S.

There exists a scheme Grass(h, E) finely parametrizing locally free sub-sheaves of rank h of E.
Furthermore Grass(h, E) is projective over S.

Now suppose E to be a rank N + 1 vector bundle, the fiber of the morphism Grass(h,E) — S
over a closed point s € S is the Grassmannian Grass(h, Es) = G(h, N), where E; is the fiber
of E over s € S. There is a well defined rational map over S

X Xg..xgX --%_, Grass(h, E)
S

mapping (xi,...,xp) to the linear span (xp,...,xn). Note that being « a map over S we are
taking x; € Xs C P(Eg) = PN for some s € S. Take I} (X) to be the reduced closure of the
graph of ain X xs ... xg X x g Grass(h, E), then Fg (X) is irreducible and reduced of dimension
hn over S.

Letr: F}f (X) — Grass(h, E) be the projection, denote by

83 (X) == m(I3 (X)) C Grass(h, E).
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Again Sfl(X) is irreducible and reduced of dimension hn over S, where n = dimg(X). Now,
consider the incidence correspondence

Jﬁ :={(z,F) |z € F} CP(E) xg Grass(h, E)
TN
IP(E)

Grass(h, E)
L

Definition 5.0.10. Let X — S be an irreducible and reduced scheme over S, together with a
closed embedding into IP(E). The abstract relative h-secant variety of X over S is

Secp, (X) =y, ' ($7.(X)) € 73,
while the relative h-secant variety of X over S is
Sec} (X) := 7t (Secy (X)) C P(E).

Remark 5.0.11. The scheme Secj (X) naturally comes with a morphism Sec} (X) — S whose
fiber over a closed point s € S is the h-secant variety Secn, (Xs) C P(Es) = PN of the fiber X;
of X -+ SoverseS.

The scheme Secﬁ(X) has dimension hn +h — 1 over S. Next we introduce the new com-
pactification we want to study.

Definition 5.0.12. Let X C PN be an irreducible non degenerate variety of dimension n, and
pePNa general point. For h +n < N + 1 consider the h-secant map 7y, : Sec, (X) — PN
and define

VSPE(h)p ==, ' (p).

We may omit X or p or both and set
VSPG(h) := VSPE (h) := VSPE (h)y,

if no confusion is likely to arise. For the Veronese variety we also use the notation

VSPG (F, h) := VSPL4™ (h) .
Remark 5.0.13. We already observed that VSPg(F, h) is birational to VSP(F, h). On the other
hand the variety VSPg(F, h) contains limits of h-secant planes. We expect, in general, that
there are no morphisms between VSPg(F, h) and VSP(F, h). Indeed not all degree h zero
dimensional subschemes of the Veronese variety span a linear space of dimension h —1 and
not all limits of h-secant planes cut a zero dimensional scheme. Both directions are clearly
true when n = 1 and in this case we have VSP(F, h) = VSPg(F, h).
The bound on h in the definition is harmless. Our usual approach is to study a special value
of h satisfying this bound and then derive conclusions on bigger h via the chain construction
in Section 5.1.

As a closing remark note the following improvement of the partial derivative Remark 5.0.8.

Remark 5.0.14 (Partial Derivatives II). The partial derivatives Remark 5.0.8 can be strength-
ened as follows. Let [F] € PN be a general point. The partial derivatives of F span a linear
space, say Hp, in the corresponding projective space IPN’. Remark 5.0.8 tell us that linear
spaces associated to a general decomposition have to contain Hp.
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We recall the definitions and properties we need about rational connected varieties. The
main reference is Kollar’s book [Ko].

Definition 5.0.15. [Ko, Definition IV.3.2] Let X be a variety. We say that X is rationally chain
connected if there is a family of proper and connected algebraic curves g : U — Y whose
geometric fibers have only rational components with cycle morphism u : U — X such that

ul? . u Xy U — X x X is dominant,

where the image of u(2) consist of pairs (x1,x2) € X such that x7,x; € u(Uy) for somey €.
We say that X is rationally connected if there is a family of proper and connected algebraic
curves g : U — Y whose geometric fibers are irreducible rational curves with cycle morphism
uw: U — X such that u(?) is dominant.

It is clear that the cone over a variety Z is rationally chain connected, but it is not rationally
connected, unless Z is. For smooth proper varieties in characteristic zero, this does not
happen.

Theorem 5.0.16. [Ko, Theorem 1V.3.10] Let X be a smooth proper variety over an algebraically closed
field of zero characteristic. Then X is rationally chain connected if and only if it is rationally connected.

We conclude recalling the following result of Graber-Harris-Starr.
Theorem 5.0.17. [GHS, Corollary 1.3] Let f : X — Y be any dominant morphism of complex varieties.

If Y and the general fiber of f are rationally connected, then X is rationally connected.

5.1 CHAINS IN VSP(f, h)

Let F € k[xo,...,xnlq be a general homogeneous polynomial of degree d. Consider a
general additive decomposition

h
F=> L
1
Let p € VSP(F, h) the corresponding point. In this set up also the polynomial
F—L§

is general and we can identify VSP(F—L¢,h—1) as a subvariety of VSP(F, h) passing through
P- More generally we can identify a flag of subvarieties

T
VSP(F,h) D VSP(F—L$,h—1)>...D VSP(F—ZLf,h—r) S5p,
1

that is we can cover any variety of sums of powers via VSP with less addends. Under suitable
numerical assumption we may also connect two very general points of VSP(F, h) with chains
of VSP(e,h —1). Before stating it explicitly we adopt a convention.

Convention 1. When working with a general decomposition, say Z? L4, we will always tacitly
consider the irreducible component of VSP(F, h)° containing this general decomposition and
keep denoting its compactifications VSP(F, h), and VSPg(F, h).
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Theorem 5.1.1. Let F € k[xo,...,xnlgq be a general polynomial of degree d. Assume that h >
n+d
(ni1) + 2, or equivalently that dim VSP(F, h—1) > n+ 1. Then two very general points p1,p; of an

irreducible component of VSP(F, h) are joined by a chain (of length at most three) of VSP(e, (h—1)).

Let WP be the elements of this chain, then W{'"P> "WP'P2 intersects the smooth locus of

VSP(F, h). Assume moreover that any irreducible component of VSP (e, h — 1) is rationally connected

and dim VSP(e,h — 1) > n then any irreducible component of VSP(F, h) is rationally connected.
Proof. We have

dimVSP(FFh—1)=n(h—1)+h—2— (ngd) +1=(h—-1)(n+1)— (nzd).
Hence the numerical assumption yields
dimVSP(F,h—1)—(n+1) = (n+1)(h—2) — (“Z d) >0. (5.1.1)

Let py and p; be two points in VSP(F, h) with associated decompositions, respectively,

h h
Z L and Z G4
1 1

Along the proof we will always consider VSP(e, h — 1) as irreducible subvarieties of VSP(F, h),
keep in mind Convention 1. Let q € VSP(F — L4, h—1) c VSP(F,h) be a general point with
associated decomposition

h
Lf+) BL
2
Let v: Z — VSP(F, h) be a resolution of singularities. Assume that

(*) v 1(VSP(F— L?,h— 1)) and v (VSP(F — Gﬁi,h— 1)) belong to the same irreducible
component of Hilb(Z), and v is an isomorphism in a neighborhood of q.

The Hilbert scheme of Z has countably many irreducible components hence the points
satisfying assumption (x) are very general.
The construction yields

qeVSP(F—L%, h—1)NVSP(F—BY,h—1).
As soon as dim VSP(e,h — 1) > 0 we have
codimysp(rp) VSP(F—L{,h—1) =n+1.
Hence by equations (5.1.1), and assumption (x) we conclude that
VSP(F— G, h—1)NVSP(F—BS, h—1) #0.

To conclude observe that g, a point in the intersection of two elements of the chain, is a
general point in VSP(F—L§,h—1), hence

WPIP2 A WPIP2 7 Sing(VSP(F, h)).

To have the better bound in the rational connected case, we want to produce a higher
dimensional rational connected variety starting from VSP(F,h —1). Let p € VSP(F,h) be a
point associated to a decomposition

Ad 4. +Ad
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and consider

Vp = JVSP(F—AA{, h—1) € VSP(F, h).
A

Then V,, has a natural map onto P! with rationally connected fibers. Hence, via Theorem
5.0.17, we conclude that V,, is a rationally connected variety of dimension n+ 1. Now
substitute VSP(F — L{, h — 1) with V,, in the above argument. Then for a pair of points, p;
and p;, satisfying the () condition, the general q € V}, is such that Vq NV, # 0 fori=1,2.
In particular VSP(F, h) is rationally chain connected by irreducible rational curves intersecting
in smooth points. This is enough, by Theorem 5.0.16, to conclude that VSP(F, h) is rationally
connected. O

Theorem 5.1.1 allows us to describe birational properties of VSP(F, h) starting from those of
VSP(e,h —1). The following is our best tool to study rational connectedness of VSPg(F, h).

Proposition 5.1.2. For any triple of integers (a,b,c), with 0 < ¢ < n, there is an irreducible and
reduced rationally connected variety W7 . C Hilb(IP™) with the following properties:

a,b,c

- a general point in Wg . represents a rational subvariety of P™ of codimension c;

- forany Z C P* \{(xo = ... = xn—c = 0)} reduced zero dimensional scheme of length < b,
there is a rationally connected subvariety Wz . C Wiy ., of dimension at least a, whose general

element [Y] € Wy . represents a rational subvariety of P™ of codimension ¢ containing Z.

Proof. We prove the statement by induction on c. Assume ¢ = 1, and consider an equation of
the form
Y= (XTLA(XOI ceerXn—1 )d*] + B(XOI ceerXn—1 )d = 0)/

then, for A and B generic, Y is a rational hypersurface of degree d with a unique singular
point of multiplicity d — 1 at the point [0,...,0,1].

Fix d > ab and let Wi, ; C P(k[xo,...,xnlq) be the linear span of these hypersurfaces.
For any triple (a,b,1) and a subset Z C P™\{[0,...,0,1]} consider Wz 1 C W;w as the
sublinear system of hypersurfaces containing Z.

Assume, by induction, that ngb,i_1 C Hilb(P™ ! ) exists for any n and b. Define, for
i>2,

Vioi=Wop x Wiyt 4 C Hilb(IP™) x Hilb(P™ 7).

Let [X] be a general point in Wg ;. By construction X has a point of multiplicity d — 1
at the point [0,...,0,1] € P™. Then the projection 7y o1y : P™ --» P! restricts to a
birational map @x : X --» P 1. Hence we may associate the general element ([X], [Y]) €
{IX]} x W:ll;ji_] to the codimension i subvariety (p;(] (Y) c P™. This, see for instance [Ko,
Proposition 1.6.6.1], yields a rational map

X : Wiy -—» Hilb(IP™).
Let Wiy, i == X(V\/Qb ;) C Hilb(IP™). For any Z we may then define

WZ,i = WZ,] X W7T[1,O,...,O](Z)ri*]’

and as above Wz ; = x(Wz,4). O
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5.2 RATIONALITY RESULTS

In this section we prove some rationality result for VSP’s. The first interesting case is that
of P!, namely polynomials in two variables. This is probably known but we where not able
to find an appropriate reference.

Theorem 5.2.1. Let h > 1 be a fixed integer. For any integer d such that
h<d<2h-1,
we have VSP(F, h) = P2h—d-1,
Proof. We already noticed, see Remark 5.0.13, that in this case
VSP(F, h) = VSPg(F, h).

Let F be a homogeneous polynomial of degree d and let {[L], ..., [Ly,]} be a decomposition of
F, then
F=L1{+.. +Lf.

We consider the partial derivatives of order d —h > 0 of F. This partial derivatives are

(N =d-h+1<nh

homogeneous polynomials of degree h.
Let X be the rational normal curve of degree h in IP™". The partial derivatives span a (d — h)-
plane Hy C P™. The general choice of F ensures that Hy N X = ). By Remark 5.0.14 the points
[L];‘}, . [Lm € X span a hyperplane containing Hj.

The hyperplanes of P™* containing Hp are parametrized by P24~ and any hyperplane
containing Hp intersects X in a zero dimensional scheme of length h. This gives rise to an
injective morphism

@ :P2h=d=1 L, VSP(F,h), TT— TTNX.
The varieties VSP(F, h) and P2~ 4= are both smooth by Proposition 5.0.7 and
dim(VSP(F,h)) =2h— (4}) =2h—d 1.
Hence the injective morphism ¢ is an isomorphism. O

The next rationality result is for quadratic polynomials, this is known to experts but we
could not find a reference. Our proof is based on the simultaneous diagonalization of two
general quadrics.

Theorem 5.2.2. Let F € k[xg,...,xnl2 be a general homogeneous polynomial of degree two. Then
VSP(F,n+ 1) is rational.

Proof. Up to an automorphism of P™ we may assume that F is given by
2 2
F=x§+..+x5.

Let TT be a general (N —n)-plane in PN = P(k[xg,...,Xn)2), and [G] € TTa general point.
The quadrics F and G are general. Then we may assume that the pencil they generate
contains exactly n+ 1 distinct singular quadric cones, say Co, ..., Cn. Let vi € IP™ the vertex of
the cone C; for i =0,...,n. Via the Veronese embedding v, : P™ — PN we find n + 1 points
v2(vi) on the Veronese variety V, , C PN,
Let A be the matrix of G. Then the cones in the pencil AF — G are determined by the values
of A such that det(AI — A) = 0. In other words the cones C; correspond to the eigenvalues of
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A and the singular points v; are given by the eigenvectors of A. In particular v;’s are linearly
independent and in the basis {vy, ..., vn } the matrix A is diagonal

Ao - O
0 - An
We may further assume that {vy, ..., vn } is an orthonormal base. Therefore after the automor-
phism induced by this change of variables we have that F is still represented by the identity
and G is diagonal.

Any automorphism of IP™ induces an automorphism on PN that stabilizes V ¢ IPN. Hence
after the needed automorphisms we have

va(vi) =v2([0,...,0,1,0,...,0]) = [x7].

2] 2

Therefore the linear space ([x3], ..., [x7]) contains both [F] and [G]. This construction gives a

map
P:TT--» VSP(F,n+1),[G] = {vo,..., v }-

The birationality of 1 is immediate once remembered that T is a codimension n linear space,
and dim(VSP(F,n+1)) =N—n. O

For conics a bit improvement is at hand.

Theorem 5.2.3. Let F € k[xo,x1,%x2]2 be a general homogeneous polynomial of degree two. Then
VSP(F,4) is birational to the Grassmannian G(1,4), and hence rational.

Proof. The map is quite simple. The 3-planes passing through [F] € IP° are parametrized by
G(1,4) and a general linear space cuts exactly 4 points on the Veronese surface V, > C IP°. To
conclude it is enough to check that dim VSP(F,4) = dim G(1,4) = 6. O

We are not able to prove rationality for arbitrary n and h. Nonetheless the proof of Theorem
5.2.2 allows us to prove the following unirationality statement.

Theorem 5.2.4. Let F € k[xg,...,xnl2 be a general homogeneous polynomial of degree two. Then
VSP(F, h) is unirational.

Proof. We have to prove the statement for h > n + 1. Let T C PN be a codimension n linear
space and q € IT a point. The proof of Theorem 5.2.2 shows that for a general [F] € PN there
is a well defined decomposition associated to q. This can be seen as a rational section

oq PN -5 Secn (Vo).

We proved that the general fiber of the map 7, : Secn(V2,,) — PV is rational. Hence we
have a well defined birational map

X : PN x PNT™ s Secy (Vo ).

This means that given a general quadratic polynomial, say q, and a point in PN~™ it is well
defined an additive decomposition of q into h factors. This allows us to define the following
map, forh >n+1

Yp PN (Vo x PR, vSPG(F h)
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given by

h—(n+1)
+x(F= ) ML)

i=1

The map 1, is clearly generically finite, of degree (ntt] ), and dominant. This is enough to
show that VSPg(F, h) is unirational for h > n +1. O

5.3 RATIONAL CONNECTEDNESS

In this section we prove the result on rational connectedness taking advantage of the
preparatory work of the previous sections.
In higher degrees one cannot expect a result like the one of quadratic polynomials . It is
enough to think of either Mukai Theorem [Muz1], where is proven that VSP(F,10) is a K3
surface for F € k[xp, X1, x2]¢ general, or lliev and Ranestad example of a symplectic VSP, [IR1].

On the other hand we found a nice behavior for infinitely many degrees and number of
n+d
variables. Keep in mind that VSP(F, h) are not empty only for h > (")

n+1 -

d+ny_
Theorem 5.3.1. Assume that for some positive integer 0 < k < n the number (ﬁT is an integer.

Then the irreducible components of VSP(F, h) are rationally connected for F € K[xo, ..., xnlq general
(n+d)_1
and h >

n

k+1

To prove the Theorem we use [Me2, Remark 4.6].

Proposition 5.3.2. Let V5, C PN be a Veronese embedding, for & > 4. Assume that codim Secy, (V) >
n+ 1. Then through a general point of Secy, (V) there is a unique (h — 1)-linear space h-secant to V.

Proof. Let z € Secy, (V) be a general point. Assume that (py,...,pn) dzand z € (q1,...,qn)
for h-tuple of points in V. Then Terracini Lemma, [CC, Theorem 1.1], yields

ToSech (V) = (Tq,V, ..., Tq V) = (Tp, V, oo, Tpy V).

Therefore the general hyperplane section HN'V singular at {py,...,pn}is singularat{qy,..., qn}
as well. On the other hand, by [Me2, Corollary 4.5], V is not h-weakly defective. Then by [CC,
Theorem 1.4] the general hyperplane section HN'V tangent at h-general points {p1,...,pn},
of V is singular only at those points. This gives {p1,...,pn} =1{q1,..., qn} and proves the
proposition. O

Proof of Theorem 5.3.1. Without loss of generality, to simplify notation, we may assume that
n+d) 1

VSPs(F, h) is irreducible. Fix h = (IZT = ki“, and assume that [Ay], [Ay] € VSPg(F, h)
are two general points, with Ay = (x1,...xp) and Ay = (y1,...Yn).

In the notation of Proposition 5.1.2, let W7 := W7',, |, for a > 0. Let [X] € Wj be a
general element. o

Claim 2. We may assume the following properties of Secy, (X):
i) Secp(X) € PN is a hypersurface of degree, say «,

ii) through the general point of Secy,(X) C PN there is a unique h-secant linear space and
Sech (X),
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iii) Secy, (X) is singular in codimension 1.

Proof. Let d’ > h and Vg4/,, C PM the associated Veronese variety. For any element
D C |Opn(d’ — d)| we have a birational projection 7p : PM --5 PN such that TV,

is an isomorphism onto Vg, C PN. Let Y := vg/(X) C Va/ n be the embedding of X
in this Veronese variety. We may assume that (Y) = PM. The bound d’ > h yields
Sech(Y)NVgrn = Y and Secy(Vyr ) € PM. In particular by Proposition 5.3.2 there is a
unique h-secant linear space through the general point of Secy, (V4 ). Hence the latter is
true for Secy, (Y) and

dimSecp(Y) =h(k+1)—1=N-1.

To prove (i) and (ii) in the claim it is enough to show that Secy, (X) is a birational projection of
Secy, (Y). Assume that the projection of Secy, (Y) is not birational. The variety X is a birational
projection of Y hence, as already noticed in the proof of Proposition 5.3.2, by Terracini’s
Lemma and [CC, Theorem 1.4], our assumption forces X to be h-weakly defective. In other
words a hyperplane of PM containing (D) and tangent to Y at the points {xq,...,xp} is
tangent along a positive dimensional subvariety Z C Y containing the points x;. On the other
hand for a > 0 the proof of Proposition 5.1.2 shows that, in a neighborhood of {x1,...xn},
the elements in W tangent to Y at the points {x1,...,xy} intersect only at the points x;. This
contradiction proves i) and ii).

To conclude iii) note that, for a general D we have

(D) 2 (Secn(Y) N (D)).

This shows that mp can be factored via a linear projection 1y : PM ——» PN*1 followed
by a projection m; : PN+T __5 PN from a point p & m1(Secn(Y)). We already know
that Sec, (77 (Sech (Y))) = PN*! hence the singular locus of mp(Secy (Y)) has dimension
2IN=1)4+1—=(N+1)=N-2. O

Then Remark 5.0.11 allows us to define a rational map as follows
(N W] - ]P(k[XO/ oo rXN]CX)

defined sending X to its h-secant.
Claim 3. The map ¢ is generically injective.

Proof. Let [X] € Wy be a general point and [Z] € ¢ (([X]))\ [X]. Let V := V5, c PM
be the Veronese variety and Ax, Az C PM two linear spaces that project V onto X and Z,
respectively. This yields two projection maps px : Sech (V) --+ S, pz : Sech (V) --» S onto
Secy,(Z) = Sech(X) := S. The composition x :=px o p? induces a birational self map on S.
Let QO C S be the locus of singularities, then, by Claim 2, Q is codimension 1. Hence ¥ is
defined on the general point of Q. If w € Q is a general point and x,y € PE] (w) is a pair
points then px(x) = px(y) =W’ € W. In particular the line ry y, := (x,y) intersects both Ax
and Az. Then there is at least a codimension 1 set V C Q such that for px(x) =px(y) € V
we have Ax N1xy = Az N1y,y. This is enough to conclude recursively that Ax = Az. O

Let SW7 = @(W7) and Hp C P(klxo,...,xn]«) be the hyperplane parametrizing the
hypersurfaces passing through [F]. We are interested in the intersection SW7 N Hg that
parametrizes secant varieties through the point [F]. Let SWj ) be an irreducible component
of maximal dimension of SWy N Hp.

By Claim 2 there is a unique h-secant linear space to X through a general point of Sect, (X).

102



We may then define a rational map
P : SWqg --» VSPg(F,h) c G(h—1,N) (5.3.1)

sending a general secant in SWyr; to the unique h-secant linear space passing through
[Fl e PN,

Claim 4. The map 1 is dominant.

Proof. The variety Wy, see Proposition 5.1.2, is such that for any zero dimensional scheme
Z C Vg n of length at most 2h there is a rationally connected subvariety in W4 parametrizing
rational varieties through Z. In particular a h-secant linear space to Vg4 , is h-secant to some
X" C Vgn with [X'] € Wy. O

In the notation of Proposition 5.1.2 we have

Il)i] ([/\X}) :_) (p(W{X],...Xh},TI—k)I

Ibi] ([Ay]) 2 (P(W{y1,...,yh},n—k)/

and

11)7] ([/\x]) ﬁll)i] ([Ay]) 2 (p(W{xl,...,xh,y1,...,yh},nfk)‘

The subvarieties Wi, x,}n—k and Wiy, ) n_k are rationally connected. Therefore
SW/ g is rationally chain connected by two rational curves intersecting in a general point of
(P(W{x1,...,xh,yh...,yh},nfk)-

We aim to prove that the variety SWy (g is rationally connected. The variety SW; C
P(k[xp,...,xNn]«) parametrizes divisors in PN. By Claim 2 a general point [T] € SW;
represents a hypersurface singular in codimension 1, with T = Secy,(X). Assume that a
general point of Sing(T) is of multiplicity m. That is, by Proposition 5.3.2, for t € Sing(T)
general point there are m linear spaces h-secant to X passing through t, with m > 2. In
particular [T] € (W2, 2, wi,...wnn—k) for some {z1,...,zp, }, .., {wr, ..., Wi}

Let L) € SWq () be the subvariety parametrizing secant varieties with more than one
(h — 1)-linear space h-secant passing through [F].

Claim 5. codimgyy, i ZF = 1.

Proof. We already observed that for [T] € SW; the hypersurface T is singular along a codi-
mension 1 set. Therefore the set of hypersurfaces singular at a general point [F] € PN is in
codimension 2 in SWj,

COdimSW] Z[F] =2.

All these hypersurfaces are clearly contained in SWp, therefore we conclude that
COdimSW] (F] Z[F] =1
O

Our construction shows that SWy ) is rationally chain connected by chains of rational
curves passing through general points of L.
Let v: Z — SWy() be the normalization.

Claim 6. The variety Z is rationally chain connected by chains of rational curves passing
through general points of the strict transform of Z ;.
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Proof. Fix two general decompositions and let

S{XL}{y]} = (p(W{X.],...,Xh},Tlfk) ﬁ (p(W{yh...,yh},TL*k)

be the intersection. By construction dim Sy, 3y} > a. Let us consider 2 ) with its complex

topology. Let Zs := v~ 'L be the preimage of the locus we are interested in and vy :=
V|z, the restricted morphism. Then the morphism vs is a finite étale covering outside a
codimension 1 set, say K. For any point s € Zr; \ K there is an open neighborhood (in the
complex topology), say Bs, such that vy, 1 (g, is finite and étale. The set K is closed and
of measure zero. That is for any e > 0 there is an open V C L) such that V > K and V has
measure bounded by €. The set V¢ is compact and we may cover it with finitely many open
sets {Bs, }i=1,... m as above.

The map vy, -1 (g,) is étale hence the general choice of the decompositions, the irreducibility
of SWj and the finite number of the {Bs, } allow us to conclude that

dim V;_] (@(W{x1,...,xh},n—k)) N VE] ((P(W{y1,...,yh},n—k)) >0,
and prove the claim. O

The variety Z is rationally chain connected by chains of curves intersecting in smooth points.
Hence, by Theorem 5.0.16, it is rationally connected. Then SWy; and VSPg(F, h), via the

("2
1

map 1 of equation (5.3.1), are rationally connected. To conclude the proof for h > 2~ it is
then enough to apply Theorem 5.1.1. O

For special values a more precise statement con be obtained.
Theorem 5.3.3. The variety VSP(F, h) is rationally connected in the following cases:
a) F € klxo,x1,%2]4 and h > 6,
c) Feklxg,...,xql3and h > 8,
b) Fekixg,...,x3l3and h > 6,
d) Feklxg,x1,%x2]3 and h > 4,
The variety VSP(F, h) is uniruled for F € k[xo,...,x4]3 and h > 7.

Proof. In cases a) and b) we know that VSP(F, 6), [Muz1], and VSP(F, 8), [RS], respectively are
rational of dimension n + 1. Then to conclude it is enough to apply Theorem 5.1.1.

In case c) observe that there is a twisted cubic in IP® through 6 points. Then Theorem 5.2.1
produces a chain of P? through very general points of VSP(F,6). Then we apply Theorem
5.1.1 to conclude for arbitrary h > 7. In case d) we have P2 = VSP(F,4) and we conclude
again by Theorem 5.1.1.

Finally observe that there is a rational quartic in P# through 7 points. Then Theorem 5.2.1
produce a P! through a general point of VSP(F, h), for h > 7. O

Remark 5.3.4. Theorem 5.3.1 is sharp. In [IR1] A. Illiev and K. Ranestad proves that VSP(F,10)
with d = 3 and n = 5 is a Hyperkéhler manifold deformation equivalent to the Hilbert square
of a K3 surface of genus 8. In particular VSP(F, 10) can not be rationally connected. In this
case we have ("4) —1=55,s0 k+ 1 =5, and Theorem 5.3.1 holds for h > 11.

Finally we show how the existence of a canonical decomposition yields the unirationality
of VSP(F, h).
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Proposition 5.3.5. Let F € k[xo,x1,%x2,%3]3 be a general homogeneous polynomial. For any h > 5
the variety VSP(F, h) is unirational.

Proof. If h =5 then VSP(F,5) is a single point. If h > 6 consider the incidence variety

I={(l1,..,lh=5,G) | G € (F,13,...,13_5)} C (P3)"> xP?
RN

(P33 P'?

The map ¢ is dominant and its general fiber is a linear subspace of dimension h—5 in IP'7.
Then J is a rational variety of dimension 3(h —5) + h—5 =4h —20.

Let (11,...,ln—5,G) € J be a general point. By Sylvester pentahedral theorem the polynomial
G admits a unique decomposition G = L3 + ... + L2 as sum of five cubes of linear forms. Since
G e (F, 1‘;’, . 1%175) we have L? + ..+ Lg =oF+ Z{l;S ?\ilf, and

1 h—>5

1 A
F=—134+.. +-132— 3.
et 13 ;(X

We get a generically finite rational map
x:J--» VSP(F, h), (1], weer b5, G) — {L] Y I_5, l1, ..., 1]1,5}.

Since dim(VSP(F, h)) = 4h — 20 = dim(J) the map X is dominant and VSP(F, h) is unirational.
O

Remark 5.3.6. Consider a general homogeneous polynomial F € k[xo,x1,%2]5. By Hilbert
theorem F admits a unique decomposition as sum of seven 5-powers of linear forms. The

argument used in Proposition 5.3.5 in this case shows that VSP(F, h) is unirational for any
h>7.
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GENERALIZED VARIETIES OF SUMS OF POWERS

In Definition 5.0.12 we used the map 7y, : Sec, (X) — PN to define varieties of sums of powers
for an irreducible variety X C PN. Now, let us consider the following more general definition.

Definition 6.0.7. Let X C PN be an irreducible variety, and let py,...,px € PN be k < h
general points. We define

VSPE(h, k) := ()~ ({p1, - Px)) C Secn(X).

Using the Hilbert scheme Hilby, (X) parametrizing length h zero-dimensional subschemes
of X we can define

VSPf_(l(h, k)° :={{x1, ... xn} € Hilb1,(X) | P1, ..., Pk € (X1, ..., xn)} C Hilby, (X),
then we can consider a compactification taking its closure in Hilby, (X),
VSPX (h, k) := VSPX (R, k)°.
We will write VSPE (h) := VSPE(h, 1) and VSP{(h) := VSP{(h, 1).

Remark 6.0.8. The variety VSP{ (h, k) parametrizes (h — 1)-linear spaces h-secant to X and
containing (p1, ..., px). Clearly there is a dominant rational map

T: VSPR (R, k) —=» VSPE (M, K), (X1, o0y X} = (X7, 000y X1 )

Furthermore if n + h—1 < N the general (h — 1)-linear space parametrized by VSP>G( (h, k)
intersects X in subscheme consisting of h distinct points, so T : VSPﬁ(h, k) --» VSP>G< (h,k) is
birational.

Proposition 6.0.9. Assume the general (k — 1)-linear space A C PN to be contained in a (h—1)-
linear space h-secant to X. Then the variety VSP,>_<[ (h, k) has dimension

dim(VSP{ (h, k)) = h(n + k) —kN —k.

Furthermore if n = 2 and X is a smooth surface then for A\ varying in an open Zariski subset of
G(k —1,N) the varieties VSP])fl (h, k) are smooth and irreducible.

Proof. Consider the incidence variety

J={(Z,{p1,..,px)) € Hilbn(X) x G(k—1,N) | Z € VSP{ (h,k)}

RN
Hilby, (X) G(k—1,N)

The morphism ¢ is surjective and there exists and open subset U C Hilby (X) such that
for any Z € U the fiber EVART isomorphic to the Grassmannian G(k —1,h—1), so
dim(¢@~'(Z)) = k(h — k). The fibers of 1\ are the varieties VSPﬁ (h, k). Under our hypothesis
the morphism 1 is dominant and

dim(VSP{ (h, k) = dim(9) = k(N —k + 1) = h(n+k) — kN — k.
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If n = 2 and X is a smooth surface then Hilby, (X) is smooth. The fibers of ¢ over U are
open Zariski subset of Grassmannians. So J is smooth and irreducible. Since the varieties
VSPX (h, k) are the fibers of 1 we conclude that for the linear space (p1, ..., px) varying in an
open Zariski subset of G(k — 1, N) the varieties VSPﬁ (h, k) are smooth and irreducible. O

Remark 6.0.10. In the case k = 1 our assumption on the morphism 1} means Secy, (X) = PN.

6.1 VARIETIES OF MINIMAL DEGREE

Let k be an algebraically closed field of any characteristic, and X C P} be an irreducible
and reduced variety over k. There is a lower bound on the degree of X.

Proposition 6.1.1. If X C PY is a nondegenerate variety, then deg(X) > codim(X) + 1.

Proof. If codim(X) = 1, being X nondegenerate we have deg(X) > 2 = codim(X) + 1. We
proceed by induction on codim(X). Let x € X be a general point, and

PN -5 PN

be the projection from x. The variety Y = 71, (X) € PN~ has degree deg(Y) = deg(X) —1,
and codimension codim(Y) = codim(X) — 1. By induction hypothesis we have deg(Y) >
codim(Y) + 1, which implies deg(X) > codim(X) + 1. O

Definition 6.1.2. We say that a nondegenerate variety X C PN is a variety of minimal degree if
deg(X) = codim(X) + 1.

If codim(X) = 1 then X is a quadric hypersurface, and then classified by its dimension and
its singular locus. In higher codimension the following result holds.

Theorem 6.1.3. If X C PN is a variety of minimal degree, then X is a cone over a smooth such variety.
If X is smooth and codim(X) > 2, then X is either a rational normal scroll or the Veronese surface
VZ C PS.

For a very nice survey on varieties of minimal degree see [EH].

Proposition 6.1.4. Let X C PN be a variety of minimal degree d and dimension dim(X) =n. Then
VSPY (h) is rational if h = d, and rationally connected for any h > d.

Proof. Let p € PN be a general point. Since dim(X) + (d —1) = N —codim(X) +d—1=Na
general (d — 1)-plane A through p intersects X in d distinct points ANX = {x1,...,xq}. Clearly
pEA=(x1,.,xq), and Secq(X) = PN. The (d— 1)-plane in PN passing through p are
parametrized by the Grassmannian G(N —d, N — 1). We have a generically injective rational
map

X:G(N—d,N—1) - VSPX(d), A = ANX.

Now, it is enough to observe that dim(G(N—d,N—1)) = (N—d+1)(d—1) =n(d—1) =
dn+1)—N-1= dim(VSPﬁ(d)) to conclude that VSPﬁ(d) is rational.
Now, let p € PN be a general point. For h > d consider the incidence variety

Y = {((x1,A1), ey (Xn—a, An—a ), A) | p = Z 8 Aixg € A} C (X x PT) 4 x G(deg(X) — 1,N)
RN
G(d

(X x P1)h—d —1,N)
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The morphism ¢ : Y — (X x P-4 s surjective and its fibers are isomorphic to the
Grassmannian G(N — d, N — 1), that is Y is a G(N — d, N — 1)-bundle over (X x P')h 4. Note
that (X x IP1)"~¢ is rational being X of minimal degree and hence rational. By Theorem 5.0.17

the variety Y is rationally connected. Since  is birational, for ((x1,A1),..., (Xh—a,Ah—a), A) €
h—d
i=1

Y general the intersection ANX = {&1,...,,%4} determines a decomposition p — >
Z)fi:1 Aj%;. The map
oY -=» VSPE(R), ((x1,A1), o (Xh—d, An—a), A) = {X1, o0 Xh—d, K1, s Ra )

is a generically finite, rational map, of degree (hE 4)- Now, it is enough to observe that

dim(Y) = (n+1)(h—d)+(N—=d+1)(d—1) =h(n+1) =N -1 =dim(VSP(h))

to conclude that « is dominant. The variety VSP{(h) is dominated by a rationally connected
variety, then it is rationally connected as well. O

Example 6.1.5. Let Q C IP3 be a smooth quadric. Since any line through a general point
p € P3 cuts on Q a length two zero-dimensional subscheme, in this case the morphism

x: P2 = VSPR(2)
is an injective regular morphism. Moreover VSPS (2) is a smooth surface, so x is an isomor-
phism and VSPR(2) = IP2.

6.2 STRATIFICATION OF VSPY(h, k)

Assume VSPﬁ(h, k) # 0, and let {x1,...,xn} € VSPﬁ(h,k) be a general point. Then there
exist p1,...,px € PN general points such that

h h
E 1 E k
P1 = Aixi/"'/pk = )\ixi-
i=1 i=1

The points p; — ?\% x1 are general for any i = 1,..., k, and we get a generically injective rational
map
VSPE(h—1,k) --» VSPX (h, k).

This construction yield a stratification
VSPN(h—1,k) C VSP{(h—7+1,k) C ... € VSP{(h—1,k) C VSP{(h, k).

Convention 2. When we refer to a general decomposition we always consider the irreducible
component of VSPﬁ(h,k)" containing this general decomposition, and we still denote by
VS Pﬁ (h, k) its compactification.

Proposition 6.2.1. Let X C PN be a non-degenerate variety such that the general (k — 1)-linear
space A C PN to be contained in a (h— 1)-linear space h-secant to X. If

_ k(IN+T)

2
n+k +

then two very general points of VSP{ (h, k) are joined by a chain, of at most length three, of VSP (h—
1,k). If V; are the elements of this chain and q € Vi N'V; is a general points, then we can assume q to
be a smooth point in Vi, V; and VSPffl(h,k).

109



Proof. Let x ={xi},y ={yi} € VSPﬁ (h, k) be two very general points, and write

ho ho
= Z?\{Xi = ZY]iyi
im1 im1

Letz e VSPﬁ(pj — )\J:, x1,h—1,k) be a general point associated to the decomposition

— )\J xX] = Z 04 Z5.

Letv:Z — VSPf_(l(h, k) be a resolution of singularities. Since x and y are two very general
point we can assume that

(1) v! (VSP{_(l(pj — ?\% x1,h—1,k)) and v_! (VSPﬁ (p; fyjﬂn ,h—1,k)) belong to the same
irreducible component of Hilb(Z).

(ii) v is an isomorphism in a neighborhood of q.
Since z € VSPﬁ(h,k) is associated to p; = A1x1 + Z?:z «;z; we have
2 € VSPX(p; —Njx1,h—1,k) N VSPX (pj — abza, h —1,Kk).
Under our numerical hypothesis we have
dim(VSP (pj — ahz2, h —1,K)) > codimygpx (1 1) (VSPR (pj — ohz2, h = 1,K)),
and by (i) and (ii) we conclude that
VSPX(pj — oz, h—1,k) N VSPX (p; — Viy1, h—1,k) #0,

moreover the general point of this intersection is a smooth point of VSPX (pj — cxzzz, h—1,k),
VSPX(p; —vjy1, h—1,k) and VSP{(h, k). O

In particular Theorem 6.2.1 tells us that we can join two general points of VSP(h) by a
chain of length at most three of VSP}>_<[ (h—1).

63 RATIONAL CONNECTEDNESS RESULTS

In this section we generalize Theorem 5.3.1 substituting the Veronese varieties with arbitrary
unirational varieties. Then first step is the following generalization of Proposition 5.1.2.

Proposition 6.3.1. Let X be an irreducible, unirational variety. For any triple of integers (a,b,c),

with 0 < ¢ < m, there is a rationally connected variety Vi, . C Hilb(X) with the following properties:

- a general point in Vi, . represents a rational subvariety of X of codimension c;

- for a general Z C X reduced zero dimensional scheme of length 1 < b, there is a rationally

connected subvariety Vz,. C Vg y, ., of dimension at least a, whose general element [Y] € Vz ¢

represents a rational subvariety of X of codimension ¢ containing Z.
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Proof. Since X is unirational there is a generically finite, dominant map ¢ : P™ --+ X. For any
Hilbert polynomial P € Q[z] the map ¢ induces a generically finite rational map

x : Hilbp (P™) --» Hilbg (X), Z — ¢(Z).

We prove the statement by induction on c¢. Assume ¢ = 1, and consider an equation of the
form

Y = (xnA(X0, ..., Xn—1)a—1 +BX0,...,xn-1)a =0),
then, for A and B general, Y C P™ is a rational hypersurface of degree d with a unique
singular point of multiplicity d —1 at the point [0,...,0,1]. Take A and B general. Let
Y := @(Y) be the closure of the image of Y in X. If § € Y is a general point the fiber o (@)
intersects Y in a point, that is ¢y : Y — Y is birational.
Fix d > ab and let W(Tl‘,b,1 C P(Clxp,...,xnlq) be the linear span of these hypersurfaces. We
take V:{b/] = )((W('l",b,1 ). Let Z ={x1,...,x1} C X be a zero dimensional subscheme of length
1<b,and take p; € ' (x;) fori=1,.., 1L
For any triple (a,b,1) consider Wz,; C Wg ; as the sublinear system of hypersurfaces
containing {p1, ..., p1}. Now take Vz 1 := x(Wz 1). Then on a general point [Y] € Wz ; the
map ¢ restricts to a birational map and a general point of Vz ; parametrizes a rational
subvariety of codimension 1 in X containing Z.
Assume, by induction, that ngri_1 C Hilb(P™ ) exist for any n and b. Define, for i > 2,

Vi i =Wop x Wil | C Hilb(P™) x Hilb(P™ ).

a,b,i a,b,i—
Let [Y] be a general point in W¢,, ;. By construction Y has a point of multiplicity d — 1
at the point [0,...,0,1] € P™. Then the projection 7ty o) : P™ --» P~ restricts to a
birational map @y : Y --» P"~!. Hence we may associate the general element ([Y], [S]) €
{[Y]} x WE,E,]iq to the codimension i subvariety (p§1 (S) € IP™. This, see for instance [Ko,
Proposition 1.6.6.1], yields a rational map

o: Wiy o ——» Hilb(P™), (Y], [S]) = [@y ' (S)].

a,b,i

Let Wl . = “(Wg,b,i) C Hilb(IP™). For any Z we may then define

a,b,i

Wz =Wz x Wﬂ[ww’o](z),if],

and as above W7 ; = a«(Wz ).

By construction a general point of W7

a,b,c
codimension ¢ — 1 in P! via the projection from the singular point of a general rational
hypersurface in WI,_ ;. Then on the general subvariety parametrized by W, . and Wz .

is the inverse image of a rational subvariety of

a,b,c
the map ¢ restricts to a birational map. We take V' . == x(W} .) and Vz . = x(Wz.).
The varieties V(! . and Vz . are dominated by rationally connected varieties, so they are
rationally connected as well. O

Remark 6.3.2. Let X C PN be a rational, nondegenerate variety of dimension n, and let
@ :IP™ --» X be a birational map. Let B C IP™ be the indeterminacy locus of ¢, then B has
codimension at least two in IP™. The linear system J{ = @*Opn (1) is a sub-system of Opn(d)
for some integer d. We can embed IP™ via the Veronese embedding v 4 ,, in PNan. The variety
X is a birational projection

v

n L V. PNan
P N s5m C

~
~

7T

!
!
~1 3

X c PN
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of V4 n. This means that a rational variety can be seen as a birational projection of a suitable
Veronese variety.

Thanks to Remark 6.3.2, with minor changes in the proof of Theorem 5.3.1 we get the
following Theorem.

Theorem 6.3.3. Let X C PN be a unirational variety. Assume that for some positive integer k < n
the number klﬁ is an integer. Then the irreducible components of VSPY (h) are rationally connected

forh> oy

64 RATIONAL HOMOGENEOUS VARIETIES

The most interesting varieties from the viewpoint of the decomposition of symmetric,
antisymmetric and mixed tensors are Veronese varieties, Grassmannians, and Segre-Veronese
varieties. We recall some basic facts about homogeneous varieties.

Definition 6.4.1. An algebraic group is an abstract group G with a structure of algebraic
variety such that the map G x G — G, (g1,92) — g1 921 is a morphism of algebraic varieties.
An algebraic subgroup is a subgroup H of G which is a closed subset of G. A projective
irreducible algebraic group is called an abelian variety.

The group G acts transitively on itself. By considering this action it is immediate that an
algebraic group is smooth as variety. As a generalization of this fact we introduce the notion
of homogeneous variety.

Definition 6.4.2. An algebraic variety X endowed with the action of an algebraic group G is
called a G-variety. When G acts transitively X is said to be homogeneous. Finally, X is said to
be quasi-homogeneous if it is the closure of the orbit of some x € X.

Clearly, as for algebraic groups, any homogeneous variety is smooth. The basic results on
the topic are the following:

- (C. Chevalley) A projective algebraic group is an abelian variety.

- (A. Borel, R. Remmert) A homogeneous projective variety is isomorphic to a product
A x X, where A is an abelian variety and X is a rational homogeneous variety. More
generally a homogeneous compact Kahler manifold is isomorphic to a product T x X,
where T = C™ /A is a complex torus and X is rational homogeneous.

- (A. Borel, R. Remmert) A rational homogeneous variety is isomorphic to a product
G1/P1 x ... x G /Py, where thr G; are simple groups and the P; are parabolic subgroups.

In what follows we work out some numbers which make Theorem 6.3.3 working.

Grassmannians

It is well known that the Grassmannian G(r,n) parametrizing r-linear subspaces of P™ is a
rational homogeneous variety of dimension (v + 1)(n —r), and has a natural embedding

G(r,n) — PN,

with N = (2111) —1, called the Pliicker embedding. Furthermore the Grassmannian of lines

G(1,n) is 1-defective of defect 4.
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r | n | dim(G(r,n)) N k h

114 9 23
1|5 14 23
2|6 12 34 1| =17
217 15 55 | 10 | =5
3|8 20 125 | 4 | =25

Segre-Veronese Varieties

Combining the Segre and the Veronese embeddings we can define the Segre-Veronese
embedding

PP x P™ — PN,

with N = (¢F™) (b;m) — 1, using the sheaf Opn (a) on P™ and the sheaf Opm (b) on P™. Let
SV =p(P™ x P™) be the Segre-Veronese variety.
A hé)mogeneous polynomial of degree v on SVEI’Q,n corresponds to a bihomogeneous poly-
nomial of bidegree (ar,br) on P™ x P™. Then the Hilbert polynomial of SV:’I')n is given
by

v () = () (747) = S

We have that dim(SV(Tll,’;l) =n+mand deg(SVE,’f;‘) — [ndm)! npym _ ("™ ane™.

n!m!

n|m|a|b|dimSViy")| N |k h
23|13 5 39 | 2| >13
4| 4 |2|3 8 524 | 3 | 2131
414133 8 1224 | 3 | > 153
5/5(3|3 10 3135 | 4 | =627
5151314 10 7055 | 4 | > 1411
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POLYNOMIALS DECOMPOSITION AS SUMS OF POWERS

We work over an algebraically closed field of characteristic zero. We mainly follow notations
and definitions of [Do]. Let V be a vector space of dimension n + 1 and let P(V) = P™ be the
corresponding projective space. For any finite set of points {p1,...,pn} C P™ we consider the
linear space of homogeneous forms F of degree d on IP™ such that Z(F) contains the points
P1,.-, Ph, and we denote it by

La(p1, .., pn) ={F € k[x0, ... xnla |pi € Z(F) V1 <i< h}

Definition 7.0.3. An unordered set of points {[L1], ..., [Ly]} € PV* is a polar h-polyhedron of
F € k[xg, ..., xnlq if

F=ML{+...+A,L4,

for some nonzero scalars Aq,...,A, € k and moreover the L{i are linearly independent in
k[XQ, ) Xn] d-

Apolarity

We briefly introduce the concept of Apolar form to a given homogeneous form to state
the connection between the set of h-polyhedra of F and the space of apolar forms of F. This
correspondence will be very important to reconstruct the h-polyhedra of F.

We fix a system of coordinates {xg, ..., xn} on V and the dual coordinates {&y, ..., En} on V*.
Let @ = (&, ...,&n) be a homogeneous polynomial of degree t on V*. We consider the
differential operator

Dy = ¢(do, .., Bn), with 3; = 52-.

This operator acts on ¢ substituting the variable &; with the partial derivative 0; = a?« . For
any F € k[xo, ..., xn]q we write

<@, F>=Dg(F).

We call this pairing the apolarity pairing.
In general ¢ is of the form @(&o, ..., &n) = 2 i 4 41, =t Xig,..,in E...&x and F is of the form

_ io .
F(XO/ ---/XTL) - Zj0+~~~+jn:d fio ..... inxé X%{L Then

Dop(F) = (Tightinot Xigin 0001 ) (F).

We see that F is derived ip + ... + in =t times. So we obtain a homogeneous polynomial of
degree d —t on V.
Once fixed F € k[xg, ..., xnl4 we have the map

ap}:: . k[aO/ ceer EvTL]t — k[XQ, ey X‘ﬂ.] d—t, ¢ — D(P (F)
The map ap;‘E is linear and we can consider the subspace Ker(ap}‘;) of k[&p, ..., Enlt.

Definition 7.0.4. A homogeneous form ¢ € k[&p, ..., En]¢ is called apolar to a homogeneous
form F € k[xq,...,xnlq if Dy (F) =0, in other words if ¢ € Ker(ap%). The vector subspace of
k[&o, ..., Enlt of apolar forms of degree t to F is denoted by AP(F).
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Lemma 7.0.5. [Do, Lemma 3.1] The set P ={[L1], ..., [Ln]} is a polar h-polyhedron of F if and only if
La(lLy], ..., [Ln]) € AP4(F),
and the inclusion is not true if we delete any [L;] from P.

Proof. Let ¢ € SV be a homogeneous polynomial of degree d and let L; € Vx be a linear
form on V. We have < ¢, L >= 0. if ar}d only if (3 ; 4+ i, -k @iy, in 000 ) (LY) = 0 if
and only if (3_; 4 i —k Xig,..in Lgo...LRT) = 0 if and only if ¢([L;]) = 0. Therefore

1
(L5, 1) ={p €89V < @, 1¢ >= 0} = {p € SV | @([Li)) = 0} = La(PV, [L1], ., [Ln]).
If the conditions of the lemma are satisfied we have

FeAPa(F): CLa(PV, [Ly], ..., L)) = (L4, ., 1)

and F is a linear combination of the L&. If the L¢, ..., L4 are linearly dependent there exists a
proper subset Q of P such that (Q) = (P), we can suppose Q ={[L{], ..., [Lh_1]}. Then

APg(F)* C La(PV,p1, ... pr)*t = (Q).

We have (Q)J‘ =L4q(PV,[L4],..., [Lh]) € AP4(F) contradicting the hypothesis. This proves that
P is a polar polyhedron of F.

Now suppose that P is a polar polyhedron of F. Then F € (P) and Lq4(PPV, [L;],..., [Ln]) =
(P)= C (F)" = AP4(F).

Suppose that L4 (PV, [Ly], ..., [Lh]) € AP4(F). Then F € AP4(F)L+ C La(PV,[Lq],..., [Lh)+ =
(LY, .., L& ). So we can write

F=ML{ 4+ A AL = gL 4o o gL .

This implies
A — Lﬁi FooF (A1 — )Lﬂ71 + }\hL% =0

in contradiction with the linear independence of L¢, ..., L{. O

7.1 THE CASE Secy(V}) =PN

In this section we consider cases in which the secant varieties of the Veronese varieties fill
PN. We present a way to rebuild decomposition under some special hypothesis.

Construction 7.1.1. Let F € k[xg, ..., xnlq be an homogeneous polynomial and let FY, .., Fbl €

k[x0, ., xnla_1 be the partial derivatives of order 1, with Dy = (";'!). We denote by P! the
projective space parametrizing the homogeneous polynomials of degree d — 1 and consider
the hyperplanes APdfl(F% ), ey APd*I(FbL) c PN,

Let h € Z be a positive integer such that h —1 < Ny and let {[l1], ..., [l4]} be an h-polar
polyhedron of F. Then by remark 5.0.8 and lemma 7.0.5 we know that

La 1(l1, . ) € N2 APATYEL) = HA-L = pNi—Du,

Since for a general h-polar polyhedron {[l4], ..., [ls]} we have dim(Lq_1(ly,...,ln)) =Ny —h,
we get the rational map

© VSP(F,]’L) -=2 G(Nl —h,Nl — Dl)r {[l]}, ey [lh]} — Ldfl(l],..., lh)-
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Suppose that the general (h — 1)-plane containing (AP9~1)* intersects the corresponding
Veronese variety in at least h points, so that the map ¢ is dominant.

In this case a general (N] —h)-plane contained in H4~! represents a linear system of the type
La—1(l1,...,ln). If the intersection of n elements of this linear system consists of (d —1)™ =t
points p1, ..., pt, if h < t then choosing h points from the p; we get an h-polar polyhedron of
F.

If Lg—1(ly, ..., ln) has a base locus B of positive dimension we can construct an h-polar
polyhedron of F simply by choosing h points on B.

This construction gives a method to find the h-polyhedra of F under the required hypothesis.

For instance in the case d = 3,n = 2,h = 4 I. V. Dolgachev and V. Kanev proved that
VSP(F,4) = P2 [DK]. We give a simple proof of this result based on classical constructions of
projective geometry.

Theorem 7.1.2. Let F € k[x,y, z|3 be a general homogeneous polynomial. Then VSP(F,4) = P2.

Proof. The partial derivatives of F are three general homogeneous polynomials Fy, Fy,F, €
klx,y,zl>. Let Hy := (Fx, Fy, Fz) be the plane in P(k[x,y,zl;) = P> spanned by the partial
derivatives. Any decomposition {Lj,...,L4} of F induces a decomposition of the partial
derivatives, and the 3-plane <L2, ey Lﬁ> contains Hp. Since the 3-planes containing Hp are
parametrized by IP? we get a morphism

©: VSP(F,4) = P2, {Ly,.., L4} <L2,..., L§>.

Now, since deg(V3) = 4 any 3-plane containing Hj intersects V3 in a subscheme of dimension
zero and length four. We conclude that ¢ is an injective morphism between two smooth
varieties of the same dimension. So it is an isomorphism. O

In the following example we explicitly reconstruct a decomposition for a cubic polynomial.
Example 7.1.3. Consider the cubic polynomial
F=x3 +x2y +xzz—|—xy2 +xyz+xzz +y3 +yzz—|—yzz +23.
The operator D, is given by

2 aZ aZ aZ aZ aZ
Dy = Qo ~s + 01— + 02— .
o =gt Mg T TGty e T MG T % ayez

We are in the situation of construction 7.1.1, an the spaces of apolar forms are the following
AP2(8E) = Z (60 + 2001 + 2002 + 203 4+ 204 + &5);

APy (55) = Z(2000 + 6001 + 2002 + 203 + x4 + 20x5);

‘cu o)o)cu‘
- e ®

APy (§1) = Z(2xp + 201 + 602 + &3 + 204 + 2x5).

Q)

z
Now we choose a line on the plane determined by these three equations, for instance

intersecting with the hyperplane Hyp = Z(op). Choosing two conics in this pencil and
computing the base locus we get the following decomposition for F.

L = (—0.005006 —10.278616)x + (—0.008344 — 10.464361 )y + (—0.012516 — 10.696541)z,
L, = (0.438881 —10.986000)x,

L3 = (—0.579402 —10.878415)y,

Ly = (—0.027303 —10.199112)x + (—0.081910 — 10.597338)y + (—0.081910 — 10.597338)z.
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7.1.1  Uniqueness of the decomposition

When the secant varieties of the Veronese embedding fills the projective space there are few
cases in which we have the uniqueness of the decomposition. The cases examined here are
two of these. In this context we recall the following theorem.

Theorem 7.1.4. [Me2, Theorem 1] Fix integers d > n > 1and h > 1 such that (h+1)(n+1) =
(“:d), Then the generic homogeneous polynomial of degree d in n + 1 variables can be expressed as a
sum of h+ 1 d-th powers of linear forms in a unique way if and only if d =5 and n = 2.

Polynomials on P!

We consider the decomposition of a polynomial F € k[x,yl,h_1 as sum of h linear forms.
More generally if F € k[x,ylgq then VSP(F, h) = P?"=4=1_ When h > dTH we have infinitely
many decompositions which can be reconstructed by construction 7.1.1.

Theorem 7.1.5. (Sylvester) Let F be a generic homogeneous polynomial of degree 2h — 1 in two
variables. There exists a unique decomposition of F as sum of h linear forms.

Proof. : Let X be the rational normal curve of degree 2h — 1 in P2h—1 Since dim(Secp (X)) =
h+ (h—1) = 2h — 1 there exists a decomposition of F.

Suppose that {11, ..., I} and {Ly, ..., Lp } are two distinct decompositions of F. Let Ay and A be
the two (h — 1)-planes generated by the decompositions. The point F>1,_7 belongs to Ay N A
so the linear space I' = (A, Ar) has dimension

dim(I) < (h—1)+(h—1) =2h—2.

If Ay\NAL ={F}, then dim(T") = (h—1)+ (h—1) =2h—2. So T is a hyperplane in Pp2h-T
and I'- X > 2h. A contradiction because deg(X) =2h —1.

If Ay and Ap have k common points, then Ay and Ap intersect in k + 1 points Q1, ..., Qx, F.
In this case Ay N A} is a P* and dim(T") = 2h — 2 — k. We choose k points P1,..., Py on X in
general position so H = (T, Py, ..., Py) is a hyperplane such that H- X > 2h—k+k = 2h, a
contradiction. We conclude that the decomposition of F in h linear factors is unique. O

In order to reconstruct the decomposition we consider the following construction.

Construction 7.1.6. The partial derivatives of order h —2 of F are (h_%H) = h—1 homo-
geneous polynomials of degree h+1. Let vy, : P! — P"*! be the (h+ 1)-Veronese
embedding and let X = vy 4 (P') be the corresponding rational normal curve. Consider the
projection

: P\ Hy — P?

from the (h — 2)-plane Hy spanned by the partial derivatives. Since the decomposition
{Ly,...,Ln} of F is unique, the projection X = 7t(X) will have a unique singular point p; =
7'[((1.2‘” S s LEH )) of multiplicity h. Now to find the decomposition we have to compute the
intersection H - X = {L?Jr1 Ve LEH}, where H = (Hp, pr).

Example 7.1.7. We consider the polynomial
F=x3+x%y —xy? +1y° € klx, yls.
i.e. the point [F] = [1:1:1:1] € P3. The projection from [F] to the plane (X = 0) = P? is

given by
P3P XY Z: W= [Y—X:X+Z:W—X].
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Using Script 1 we compute the projection C = 7(X) of the twisted cubic curve X, and by Script
2 we compute the singular point of C,

p =Sing(C)=1[4:10:9].
The line L = (p, [F]) is given by the following equations
3X—-5Y—-2Z2=0,
5—9Y+4W =0.

We compute the intersection X - L, where X is the twisted cubic curve, using Script 3 we find
L? = [0.0515957 : 0.4157801 : 1.1168439 : 1] and L3 = [155.0515957 : 86.5842198 : 16.1168439 :
1]. These points correspond to the linear forms

Ly =—-0.3722812x +y and L, = 5.3722813x +y.
Indeed we have

F=0.99322 - (—0.3722812x +y)> + 0.00678 - (5.3722813x 4+ y)>.

Hilbert and Sylvester Theorems

We consider the cases d =5, n =2, h =7 (Hilbert), and d = 3, n = 3, h =5 (Sylvester). Our
aim is to provide a method by which explicitly reconstructing the decompositions in these
two cases. We begin with thecase d =5, n=2, h=7.

Theorem 7.1.8. (Hilbert) Let F € k[x,y, z]5 be a general homogeneous polynomial of degree five in
three variables. Then F can be decomposed as sum of seven linear forms

F=13+..+03
Furthermore the decomposition is unique.

Proof. A computation, together with [AH] main result, shows that dim VSP(F,7) = 0. Assume
that F admits two different decompositions, say {[L1], ..., [L7]} and {[l1], ..., [l7]}. Consider the
second partial derivatives of F. Those are six general homogeneous polynomials of degree
three. Let Hp C P? be the linear space they generate. Then, by Remark 5.0.8, we have

Hp = ([L3], ..., [L3]) D H C (13],..., [13]) = H,

The general choice of F ensures that both H; and H, intersect the Veronese surface Vg c P’
at 7 distinct points.
Let
w: P --s P3

be the projection from Hp, and V = nt(V). Then V is a surface of degree deg(V) = 9 with
seven points corresponding to n(Hp ) and nt(H;). This shows that the 7-dimensional linear
space H := (H, H;) intersect V along a curve, say I'. The construction of T" yields

degl <#HLNV)=7.

On the other hand deg " = 3j therefore we end up with the following possibilities.

119



Case 1 (deg " = 3). Then T is a twisted cubic curve contained in H and
Hy-T'=H{-T=3

We may assume that Hy N T" = {[l?], [13], [lg]} and Hy NT = {[L%], [Li], [Lg]}. Let A be the pencil
of hyperplanes containing H, and v3 : P? — V the Veronese embedding. The linear system
v3(Av) is a pencil of conics and therefore #(BIA}y/) < 4.

To conclude observe that BIAjy, D HN'V. This forces

{IL3), [L3), [L3), (L3} = {13), (03], (3], 1303,
and consequently the impossible Hy = H;.

Case 2 (deg ' = 6). Then
Hi-T=H;-T=6

We may assume that I' O {[Lﬂ, e, [Lg]} U {[l‘;’], eery [lg}}. Let A be the pencil of hyperplanes
containing H. Let v3 : P2 — V be the Veronese embedding. The linear system Vi(Apy)isa
pencil of lines and therefore #(Bl /\W) < 1. This forces

[L3] = [13],

and consequently the impossible Hy = Hj.
O

The following construction is inspired by the proof of Theorem 7.1.8, and provides a method
to reconstruct the decomposition starting from the polynomial.

Construction 7.1.9. If {[L4], ..., [L]} is a decomposition of F, then it is also a decomposition for
its partial derivatives of any order. In particular F has six partial derivatives of order 2 that are
homogeneous polynomials of degree three in x,y, z. We consider these derivatives as points
in the projective space P? = P(kl[x,y, zl3), parametrizing the homogeneous polynomials of
degree three in three variables. We denote by Hy C IP? the 5-plane spanned by the derivatives,
and with V the Veronese variety V = v(IP?), where v : P> — P? is the Veronese embedding
of degree 3.

Since all the derivatives can be decomposed as sum of 3., L% the 5-plane Hj is contained in
the 6-plane 7-secant to the the Veronese variety V C IP?, given by Hy = (L3, ..., L3). Consider
now the projection

n:P? -5 P

from the linear space Hp. The image of the Veronese variety n(V) = V is a surface of degree 9
in IP3, furthermore it has a point p; of multiplicity 7, which comes from the contraction of
Hy . This is the unique point of multiplicity 7 on V by the uniqueness of the decomposition.
From this discussion we derive an algorithm to find the decomposition divided into the
following steps.

1. Compute the partial derivative of order 2 of F.

2. Compute the equation of the 5-plane Ha spanned by the derivatives.
3. Project the Veronese variety V in IP3 from Hp.

4. Compute the point py of multiplicity 7 on V.

5. Compute the 6-plane H = (Hp, p1) spanned by Hj and the point py.
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6. Compute the intersection V- H = (L3, .., L37’}.

Example 7.1.10. Consider the polynomial F € k[x,y, z]5 given by

F=x2+xMy? —x2y3 —y° +2° +x322 +x223 —x*y +xz—4x3yz + 6x2y?z — 6xPyz? +xyt —
dxy3z + 6xy?z? —dxyzd + xz* +ytz —2y322 + 29223 —yzt

On P’ = P(k[x,y, zl3) we fix homogeneous coordinates [Xp : ... : Xo] corresponding respec-
tively to the monomials {x3, xzy, x?%z, XYz, xyz, xzz,y3 ,yzz,yzz, z2}. In these coordinates the
linear space Hp spanned by the second partial derivatives is given by the following equations.

—1701Xg — 4455X7 + 567X5 — 4455X3 — 567X5 — 1458X¢ + 81X7 = 0,
—4536Xy — 13392X7 — 13392X5 — 4455Xg + 216X5 — 567X,

216X7 +216X3 + 216X3 — 216X5 + 81X + 81Xo = 0,

13392X4 — 26784Xg = 0.

We project on the linear space {Xo = X1 =X; = X3 =X4 = X5 =0} = IP3. The projection
7:P? \ Hy — IP3 has equations

(Xo, ... Xo) = [—(42Xp + 110X; — 14X3 + 110X3 + X4 + 14X5 + 36Xg) : —18(X4 + 2X7)
18(X4 —2Xg) : (42X + 14X7 — 110X, + 14X3 + X4 + 110X5 — 36X0)].

We compute the projection of the Veronese variety V by Script 3. In this way we obtain
the equation of V = Z(F) where F = F(X,Y,Z, W) is a homogeneous polynomial of degree
9 = deg(V). Now we use Script 4 to compute the point of multiplicity 7 on V. The singular
point is pp = [-5.0632364198314 : 0 : 0 : 35.442654938835]. By Script 4 we compute the
intersection V- H = {L3, ..., L%} and we obtain the linear forms

Ly =0.98274177184x — 0.12482457140y,

L, = —0.65071281231x + 0.65071281231y,

L3 =0.12482457140x — 0.98274177184y,

L4 = (0.18975376061 — 10.33683479696)x + (0.83442021400 — 10.082003524422)z,
Ls = (0.04447250903 — 10.38403953709)x — (0.62685967129 +10.556802140865)z,
Lg = (—0.12154672768 4 10.37408236279)x + (0.18089826609 — 10.55674761546)z,
L; =0.72477966367x — 0.72477966495y + 0.72477965837 z.

These forms give the unique decomposition of our polynomial.

Now we consider the case d = 3, n = 3, h = 5. Sylvester pentahedral Theorem can be
proved following the proof of Theorem 7.1.8 with a slightly more convoluted argument. G.
Ottaviani informed me of a very nice and neat proof using apolarity.

Theorem 7.1.11. (Sylvester) Let F € k[x,y,z, Wiz be a generic homogeneous polynomial of degree
three in four variables. Then F can be decomposed as sum of seven linear forms

F=13+..+L13
Furthermore the decomposition is unique.

Proof. Let F = F3 € IPY be a homogeneous form of degree three. We know that a 5-polar
polyhedron of F exists. The polar form of Fin a point & = [§p : &1 : & 1 &3] € P3 is the
quadric

PeF=tod+a1dE + 822 + 838

0x) ox3 "
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Let {Ly,...,Ls} be a 5-polar polyhedron of F, then F = L? +..+ Lg. The polar form is of the
type
PeF =Y 0 g EMl?

and it has rank 2 on the points & € IP3 on which three of the linear form L' vanish simultane-
ously. These points are (3) = 10.

Now we consider the subvariety X, of IP? parametrizing the quadrics of rank 2. A quadric Q
of rank 2 is the union of two planes, then dim(X;) = 6. To find the degree of X, we have to
intersect with a 3-plane, that is intersection of 6 hyperplanes. So the degree of X, is equal to
the number of quadrics of rank 2 passing through 6 general points of IP3. If we choose three
points then the plane through these points is determined, and the quadric is also determined.
Then these quadrics are %(g) = 10. We have seen that dim(X;) = 6 and deg(X;) = 10.

Now the linear space

M={PeFlEe PP} CP?

is clearly a 3-plane in P?.

Then 'NX; ={P¢F| rk(PgF) = 2} is a set of 10 points. These points have to be the 10 points
we have found in the first part of the proof. Then the decomposition of F in five linear factors
is unique. O

The argument used in the proof suggests us an algorithm to reconstruct the decomposition.
Construction 7.1.12. Consider F and its first partial derivatives.
1. Compute the 3-plane I' spanned by the partial derivatives of F.

2. Compute the intersection I' - X;, where X; is the variety parametrizing the rank 2
quadrics in P3.

3. Consider the 10 points in the intersection. By construction on each plane we are looking
for there are 6 of these points, furthermore on each plane there are 4 triples of collinear

10
(é)ir) 5 = 5 planes. These
planes gives the decomposition of F. Note that a priori we have (]60) = 210 choices, but
we are interested in combinations of six points {P;,, ..., Pj .} which lie on the same plane.
We know that there are exactly five of these. To find the five combinations we use Script
5 which constructs a matrix A whose lines are the ten points and then computes the

6 x 4 submatrices of rank 3 of A.

points. Then with these 10 points we can construct exactly

Example 7.1.13. Consider the polynomial

F=x3 —|—xzy +xzz+x2w+xy2 +xyz+xyw+xzz + xzw 4 xw? +y3 —i—yzz—i—yzw—i—yzz +
yzw +yw? + 23 + 22w+ zw? + wi.

We compute the equations of the linear space I', the equations of the variety X, and verify that
their intersection is a subscheme of dimension zero and length 10. In the IP? parametrizing
the quadrics on IP3 we fix homogeneous coordinates [X : ... : Xo, corresponding to the
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monomials {x2, XY, Xz, xw,yz,yz,yw, 22, 2zw, w?}. Check what we have said using the Script 6.

In these coordinates the 3-plane spanned by the partial derivatives has equations

X7 —2Xg+ X9 =0,
X5 —Xg—Xg+Xo =0,
X4 —2X6+ X9 =0,
X2 —X3—Xg+Xo =0,
X1 —=X3—Xg+Xo =0,
Xo —2X3+Xo =0.

Script 7 allows us to calculate the intersection of Hy with the variety X, parametrizing the
quadrics of rank 2.
We find 10 = deg(X;) points on Hp that corresponds to the following points in P3.

= [—0.0538 — 0.00891 : —0.0538 — 0.00891 : —0.0538 — 0.008%1 : 0.2692 + 0.04471],
Pz =[0.9291 +0.11271: 0 — 0.9291 — 0.1127i: 0],

=[0:0:—-0.3198 —0.0488i:0.3198 4 0.04881],
P4 =[0:0.4297 +0.75021 : —0.4297 — 0.75021 : 0],
P5 =1[0:—0.3850 + 0.08341: 0 : 0.3850 — 0.083441],

= [0.4850 — 0.87361 : —0.4850 + 0.87361: 0: 0],

= [—0.4873 —0.08251:0: 0:0.4873 4 0.08251],
Pg = [0.7990 4 0.12751 : —0.1598 — 0.02551 : —0.1598 — 0.02551 : —0.1598 — 0.0255i],
Py =[2.3960 — 1.85051 : 2.3960 — 1.85051 : —11.9800 + 9.25231 : 2.3960 — 1.85051],
P1o = [—0.0652 — 0.12731: 0.3260 + 0.63641 : —0.0652 — 0.12731 : —0.0652 — 0.12731].

Thanks to Script 5 we can compute the five combinations of six coplanar points, and then the
linear forms.

L; = (0.0149652+ 0.00697381)x + (0.0449377 + 0.0209961)y
+(0.0149652 + 0.00697381)z + (0.0149652 + 0.00697381)w

L, = (0.00927286+ 0.04487051)x + (0.00310162 + 0.01493271)y
+(0.00310162 + 0.01493271)z + (0.00310162 + .01493271)w

L3 = (0.0278039 —0.0573066i)x + (0.0278039 — 0.05730661)y
+(0.0834118 — 0.171921)z + (0.02780390.05730661)w

Ly = (—0.0642594 —0.2537481)x + (—0.0642594 — 0.2537481)y
+(—0.0642594 — 0.2537481)z + (—0.06425940.2537481)w

Ls = (—0.0312783—0.127146i)x + (—0.0312783 — 0.127146i)y

+(—0.0312783 — 0.1271461)z + (—0.0938348 — 0.3814371)w

7.2 THE CASE Secp(V}) £ PN

Let v : P™ — PNd be the d-Veronese embedding, and let V} = v(IP™) be its image. Let
[F] € PN = P(klxo, ..., xnlq) be a degree d homogeneous polynomial. Fixed a positive integer
h such that Sec, (V}) # PN we want to determine whether [F] € Sec, (V]). We begin with
the following simple observation:
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Remark 7.2.1. If F=Y ' | ALY then its partial derivatives of order 1 lie in the linear space
<L?’l, .y Lﬂ’l> foranyl=1,..,d—1.

The partial derivatives of order 1 are (nfl) homogeneous polynomials of degree d —1,
so the previous observation is meaningful when h < ("!) and h < (" }*™). The latter

condition ensures that (L?’l, e Lﬁ’l> is a proper subspace of the projective space PNa-t
parametrizing homogeneous polynomials of degree d — 1.
Consider the partial derivatives F} = laé and the incidence variety

Lo ln aXOO’n_,aX}’Ln

""" N
PN G(h—1,Ng1)

where 5, Vg | € G(h—1,Ng_1) is the abstract h-secant variety of Vi_,. Note that when
h < (“1“) the map 77 is generically injective. Let Xi, = 71 (Jyn) C PN be its image, note
that Xy j, is irreducible. By remark 7.2.1 we get Secp (V3) C Xy n. By construction Xy y, is not
too difficult to describe, so we want to find cases when the equality holds in order to get a
simple criterion to establish whether [F] € Secy, (V}).

Remark 7.2.2. The equality holds trivially when d = 2. Let F € k[xy, ..., xn]2 be a polynomial
and let M the matrix of the quadratic symmetric form associated to F. Then F € Secy, (V3') if
and only if rk(M¢) < h. But the rows of M are exactly the partial derivatives of F.

Consider the partial derivatives Fy, ..., F;n € k[xp,...,xn]lqg—1 of order 1 of F. Let ¢ : P™ x
PNa-t — PM be the Segre-Veronese embedding induced by O d—1,1), and let
Za—1,1 be its image.

]I’“X]I’Nd—l(

Proposition 7.2.3. If the partial derivatives Fy, ..., Fiy lie in a (h—1)-plane H C PNa-t which is
h-secant to the Veronese variety V3, C PNa-t, withh—1 < Ng_1, then [F] € Sech(Zgq—1,1)-

Proof. By assumption F{Or---,ln = Z?:I )\}O""’ln Lid_l. Recursively applying Euler formula we

getF =P, L?il +..+ PthlL’1 where P; € k[xg, ..., xn]1, and this means that [F] € Secp (Zq_1,1).
O

Remark 7.2.4. Suppose that Fy,,..., Fx,, € klxo,...,xn]Ja—1 are the partial derivatives of a
homogeneous polynomial F € k[xo, ..., xn]4. Furthermore suppose that Fy, € <L§1’1 S ey Lﬁ’1)
for any i. By Euler formula we get

F=PiL¢ ! 4 4Pl T,

where the P;’s are linear forms, i.e. F € Sec,(£4_1,1). Since F € PN by hypothesis we have
FeSech(Zga—1,1)N PN. Consider the following two statements

(i) Secn(Zg—1,1) NPN =Sec, (V});
(i) Fx, € (L971, .., L3971 for any i =0, ..., n, implies [F] € Secy, (V}).

From the above discussion we deduce that (i) implies (ii).
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The Case n = 1

We begin with the simplest case n = 1. We denote by Cq4 C P? the degree d rational
normal curve, in this case Secy, (Cq) # P4 if and only if h < %.

Lemma 7.255. Let F = } ;5 4 cxi,jxéij € klxo,x1]q be a homogeneous polynomial, and let
¢ = c(o,j) be the coefficient of XY in the partial derivative %, withh > 1. Thenc = C-og_s,
where C is a constant.

Proof. Since the only monomial of F producing c is ngsx? the assertion follows. O

Theorem 7.2.6. Forany h < % we have Sect (Cq) = Xq—n n. Consequently if the partial derivatives
of order d — h of a homogeneous polynomial F € k[xo,x11q lie in a hyperplane of P™ then [F] lies in
Sech(Cd).

Proof. The partial derivatives of order d —h of F are d —h + 1 homogeneous polynomials
of degree h. If F = 2?21 MLE the partial derivatives lie in (L, ..., L") which is a hy-
perplane h-secant to Cy, but deg(Cy) = h and the latter condition is irrelevant. Let H
be a general hyperplane in IP", forcing the partial derivatives of a degree d polynomial
G=2iij—a oq,jx})xj] € klxo,x1]q to lie in H gives d —h + 1 linear equations in the coeffi-
cients of G. Without loss of generality we can suppose H to be the defined by the vanishing
of the first homogeneous coordinate on IP™, then by 7.2.5 the fiber of 7, is the linear subspace
of PN defined by
5 (H) ={og_ss =0, ¥s=0,..,d—h}.

The equations of 71;1 (H) are independent so
dim(m; '(H)) =d—(d—h+1)=h-1,
and the dimension of X4_p 1 is
dim(Xg—hn) =dim(Jg_nphn) =h—1+h=2h—1.
Finally dim(Secp(Cq)) =h+h—1=2h—1 yields Secn(Cq) = Xq—n h. O

Remark 7.2.7. The partial derivatives of order d —h of a homogeneous polynomial F €
klxo,x1]q depend on d + 1 parameters. We consider the matrix Mq4 1, whose lines are the
partial derivatives. From 7.2.6 we get equations for Secy, (Cq) imposing rk(Mg ) < h, that is
the classical determinantal description of Sect, (Cgq).

Proposition 7.2.8. If [F] € Secy,(Cq) is general then its decomposition in powers of linear forms is
unique.

Proof. Let Hy C P be the hyperplane spanned by the partial derivatives of order d — h of
F. Since deg(Cy,) = h and F is general we have Hp - Cy, = rh, ..., LR}. Then {Lq, ..., Ly} is the

unique h-polyhedron of F. O

Theorem 7.2.6 and proposition 77.2.8 immediately suggest an algorithm.
Construction 7.2.9. Given F € k[xp,x1]q to establish if F admits a decomposition in h < %
linear forms, and eventually to find it we proceed as explained in the following diagram.

{Compute dim(Hpa)} dim(Hy)—h—1
I
dim(Hp)=h {F admits a h — polyhedron}
T

{F does not admit a h — polyhedron} {ComputeHy - Cy}
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Then Hp - Cp, ={L}, .., LM and F= Y1, A L8
Example 7.2.10. Consider the case d =4,h =2 and write F =} ; i _4 oq,jx})xj]. Forcing
d%F <a2F d%F

axodnr € (ox27 oxz) e get

Secy(Cy) = {540@1 op,4 — 1803 102 20¢1 3 — 14404 0002 2 X0 4 + 40(%,2 + 544 “%,3 =0}
Now consider the polynomial
F=9(x§ +x3x1 +x§x1 +x0x3) +4x7.
The second partial derivatives of F lie in the line
Ha = {Xo —3X7 +3X2 =0} C P(k[xo,x1]2).

Now we have to compute the intersection Hp - C», where C; = {X% —4XyX, = 0} is the conic
parametrizing squares of linear forms, we have

Hy-Co ={15+6V6:6+2V6:1],[15—6V6:6—2V6: 1]
Finally we compute the linear forms giving the decomposition

L; = 5.44948x0 +x7 and Ly = 0.55051x0 -+ x1.

The Caseh < n

Now we consider the variety X4q_1 1. The partial derivatives of order d — 1 of F are linear
forms i.e. points in (IP™)*, so we restrict our attention on the case h < n to have significant
constraints. First we compute the dimension of the general fiber of 7, : Jg_1 1 = G(h—1,1).

Theorem 7.2.11. The fiber of 3 : Jg—_1n = G(h—1,n) on a general (h—1)-plane H € G(h—1,n)
is a linear subspace of P™ of dimension

dim(r ' (M) = (‘”2_]) '

Furthermore the dimension of Xq_1 is given by

d+h—1
dim(Xa_1p) = h{n—h+1) + ( i ) .
Proof. We can suppose H = {Xp = ... = X;,_n = 0}, where {Xo, ..., Xn} are homogeneous
coordinates on IP™. We write a general polynomial [F] € PN in the form
F= Z OCiO,___,inX})O...X}{l.

ip+..+in=d

The fiber 7r2_1 (H) is the linear subspace of PN defined by the vanishing of the coefficients
of xg, ..., xn—n in the derivatives of F. Many of these equations are redundant, the difficulty

is in counting the exact number of independent equations. We prove that this number is
(47 + (T — (4 by induction on n— h. If n —h = 0 then H is an hyperplane
and the condition on the derivatives are all independent, so the number of conditions is

exactly the number of derivatives ( dgl_ﬁn). Furthermore our formula for n —h = 0 gives

(4 + () — (1) = (44T, and the case n— h = 0 is verified. Consider now
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the general case, let H = {Xo = ... = X, _1,_1 = 0}, let C,_,_7 the number of independent
conditions obtained forcing the partial derivatives to lie in H. Adding the condition {X;, _, =
0} gives new equations coming from the coefficients of the form ao,._ 0,1, 1,in 1i1ins With
in—n # 0. These correspond to monomials of degree d in the variables x,,_p, ..., xn that
contain the variable x,,_. Now the monomials of degree d not containing x,,_y, are the
monomials of degree d in xn_p41,...,Xn. So in the final step we are adding

(-1

conditions. Then the number if independent equations is C,_p = Cn_n_1 + (d+h)
(4*71), by induction hypothesis

c _(d+n—1 n d+n—1)\ d+n—(n—h—-1)—1

B N d d ‘

d 1 d+n—1 d+n—(n—h—1)—1 d+h d+h—1 d+n—1

So Cnn = (T407) + (VR = (O 4 (45 = (R = () +
(4n- 1) (“*7=1). Finally we have dim(Xq_1n) = dim(G(h —1,n)) +dim(r; ' (H)) =
hn—h+1)+ (4FhT) -1 O

Remark 7.2.12. Consider the case d = 2. By Alexander-Hirshowitz theorem [AH], Secy, (V3') #
PN if and only if h < n. By theorem 7.2.11 and remark 7.2.2 we recover the effective dimension
of Secp (V}),

2nh—h? +3h -2

dim(Secy (V34)) = 7 ,
and consequently the formula for the h-secant defect of V3',
h(h—1
vy = 20D,

2

At this point we have a complete description for polynomials of arbitrary degree in two
variables and for polynomials of degree two in any number of variables. So we concentrate
on the casen > 2 and d > 3.

Theorem 7.2.13. Let n > 2,d > 3,h < n be positive integers. Then Secy, (VY) is a subvariety of
Xd—1,n of codimension

. d+h-—1
codimgec, (vy)(Xa—1,n) = ( d ) —h?.

Proof. Since n > 2, d > 3, and h < n, by Alexander-Hirshowitz theorem the effective
dimension of Secy, (V) is the expected one

dim(Secy (VY)) = minfhn+ (h—1),Ng}.
Furthermoren > 2, d > 3, h < nimplies hn+ (h—1) < Ng. So
dim(Sec, (V})) =hn+ (h—1).
Finally COdimSech(VE)(deLh) =hnh—h+1)+ (d+gf1) —1—hn—(h—-1) = (d+2—1) _
h2. O

Corollary 7.2.14. If d = 3 then Secy(V3') = X3 for any n > 2. Consequently if the second
partial derivatives of a homogeneous polynomial F € K([xo, ..., xn]3 lie in a line of P™ then [F] lies in
Sec; (V3.

Proof. For h =2,d = 3 we have (d+271) —h? = 0. We conclude by theorem 7.2.13. O
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7.2.1  The variety Xi n

Let’s look closer at the variety Xy . This variety parametrizes polynomials F € k[xo, ..., xn]a
whose partial derivatives of order | span a (h—1)-plane. Let My, be the (“T.l) x ("EAh
matrix whose lines are the 1-th derivatives of F = } ; obrtin=d ocio,__.,inxéo...x}l". Then X 1
is the determinantal variety defined in PN by rk(My) < h, where the «;,, i, are the

n

homogeneous coordinates on PN. Let PM be the projective space parametrizing (“fl) X

(ngi;l) matrices, and let My, C PM be the variety of matrices of rank less or equal than h.

Then My, is an irreducible variety of dimension M — ((“IH) — h) : ((“gﬂ;l) — h). Clearly

the variety Xy y, is a special linear section of My,.
Lemma 7.2.15. The varieties X1, and Xq_1,n are isomorphic.

Proof. The matrix My_1n whose lines are the (d — l)-th partial derivatives of F is the
(ME9Y x (MY matrix given by

Ma—th =M,
where M{ h is the transposed matrix of Mgq_y n. Then the assertion follows. O
Proposition 7.2.16. Consider the case h < n. The variety Xy y is irreducible.

Proof. By Lemma 7.2.15 it is equivalent to prove that X4_1 j is irreducible. Consider the map
m :Jg—1,n = G(h—1,n). By Theorem 7.2.11 the general fiber of 7, is a linear subspace of
PN of dimension dim(ﬂ£1 (H) = (d“(;_]) —1 and m; is surjective on G(h—1,m), 50 Xq_1 1
is irreducible. O

In the cases d = 2 and d = 3, h = 2 we have that dim(Xj ) = dim(Sec, (V)), since X 1, is
irreducible we get Secy, (V§) = X1 1. So if the first partial derivatives of a polynomial F span
a linear space of dimension h — 1 then F can be decomposed into a sum of h powers of linear
forms.

Example 7.2.17. Consider a polynomial of degree three in three variables

F = aox® + a1x%y + axx?z + azxy? 4+ agxyz + asxz® + agy® + azy?z + agyz? + aoz>.

The variety X ; is defined by

FX 3(10 2(11 2(12 as ag as
k[ Fy [=rk| a7 2a3 a4 3a6 2a7; ag <2
F, a a4 2a5 a7y 2ag 3a¢

Consider the projective space IP'” of 3 x 6 matrix with homogeneous coordinates
X0,07 s X0,5,X1,0, s X1,5,X2,0/ s X2,5-

The determinantal variety M, defined by

Xoo Xo1 Xoz Xoz Xoa Xos
k| Xi0 X1 Xi2 Xi3 X9 Xi5 | <2
X20 X210 X2 X23 X4 Xo5

’
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is irreducible of dimension 17 —4 = 13. The linear space

2X1,0 —Xo,1 =0,
2X2,0 —Xo,2 =0,
2Xo,3—X1,1 =0,
Xoa —X1,2=0,

2Xo,5 —X2,2 =0,
2X33—Xq1,4 =0,
2X34—X15 =0,
Xo,4 —X3,1 =0.

cuts out on M, the variety Xy », which is irreducible of dimension 5 = dim(Sec(V32)).

Remark 7.2.18. Considering a polynomial F € k[x,y, z]4 and proceeding as in example 7.2.17
one gets dim(Xy 7) =6, so
8602 (VA%) ; X1,2'

Proposition 7.2.19. Let d = 2k be an even integer such that (“’{k) > Ng_y, where Ng_y =

(475N 1. The variety Xy N, is an irreducible hypersurface of degree (™*) in PN.

Proof. The map 713 : TNy — G(Ng—x —1,Ng_y) = PNd—« is dominant, so TNy, and
Xx,Ng_, are irreducible. The assertion follows observing that Xy n, , is defined by the

vanishing of the determinant of a (n]irk) X (nzk) matrix. O

Let us look at some consequences of the previous proposition.

Example 7.2.20. Consider a polynomial

F = aox* + a1x3y + axx3z 4 azx?y? + agx?yz + asx?z? + agxy> + arxy?z + agxyz?

+aoxz® + a1oy* + a11ydz+ a12y%2% + a13yz® + ajaz’.

The map 7, : J24 — G(3,5) is dominant, so X3 4 is irreducible. Let Zy,Z1,25,23,24,Z5
be homogeneous coordinates on P> corresponding to x?,xy, xz, y2,yz, z> respectively. To
compute the dimension of the general fiber of 7, we can take the 3 —plane H = {Zy =
Z3 = 0} which intersect V3 in a subscheme of dimension zero. Computing the second partial
derivatives of F it turns out that

' (H)={ap=a; =a; =a3 =a4 =as = ag = ay = ajp = aj = a2 = O}.
So clim(7t§1 (H)) =14—11 =3 and dim(X;4) =348 = 11. Since dim(SeC4Vf) =11 we get

S€C4V4% = X2/4.

Consider now 7 : Jp5 — P>. This map is dominant, so X; 5 is irreducible. We have
dim(r; ' (H)) = 14 — 6 = 8, where H = {Z( = 0}. So dim(X2,5) = 13 and

5665\/2 = X2,5

is an hypersurface of degree 6 in P'4.
Consider now the case d = 4,n = 3,h = 9 and the second partial derivatives. The map
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my:J20 — IP? is dominant and X3,9 is irreducible. The general fiber of 7, has dimension 24.
Then dim(X;9) =244+ 9 =33 and
Sec9vj? = X2’9

is an hypersurface of degree 10 in P34
Finally in the case d = 4,n = 4,h = 14 as before one can verify that X3 14 is irreducible of
dimension 68, so

Sec14V{ = X214

is an hypersurface of degree 15 in IP®7.

Example 7.2.21. Consider now a polynomial F € k[x,y, zl¢ and the partial derivative of order
3. For h = 8,9 the map 7, is dominant, so X3 g and X3 ¢ are irreducible. First let us take
h = 8. Proceeding as before we get dim(rcz_1 (H)) =27 —19 = 8 and dim(X33) = 24. So
Secsvg C X3 g is a divisor.

In the case h = 9 we have dim(rc;‘ (H)) =27—-10=17 and dim(X3,9) = 1749 = 26. So

S€C9V62 = X3’9

is an hypersurface of degree 10 in IP%7.

7.2.2  The first secant variety of V}

We focus on the case h = 2. Without any assumptions on d and n we obtain set-theoretical
equations for the first secant variety of V3. In the proof we use all the time the equality

2 (%50

which can be easily proved by induction on n. In [Kan] V. Kanev, adopting a different
approach, proved that the same equations cut out the ideal of Sec, (V}).

Theorem 7.2.22. If h = 2 for the first secant variety of VI we have
Seca(Vg) =Xz,a-2
foranynand d > 3.

Proof. Consider the diagram

..... m/ \nz
PN G

(1,N32)

clearly 5, V3' C Im(m,). Let F € k[xg, ..., xnlq be a polynomial whose partial derivatives of
order d —2 lie on a line H  PN2. The derivatives of order d — 3 of F are cubic polynomials
whose first partial derivatives are collinear. By 7.2.14 X3 1 = X3, = Sec, V3!, so if we denote
by G a partial derivative of order d —3 of F we get a decomposition G = L3 + L3. Then
Gxg/ - Gxy (Which are partial derivatives of order d — 2 of F) lie on the line <L%, L%), and so
the line containing the partial derivative of order d — 2 of F is exactly the secant line to V3
given by (L,13). This means that

S V3 = Im(my).
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Since the fibers of m, are linear spaces we conclude that J, 4, and X; 4 are irreducible.
We compute now the dimension of the fiber of 71,. We fix on PN2 homogeneous coordinates
VA PVANR corresponding to the monomials in lexicographic order xé, XOX1, een x%v and con-
sider the line H ={Zy = Z1 = ... = Zny,—2 = 0}.

First consider monomials containing xy. Forcing the derivatives to lie in {Zy = 0} we get
(dfffn) conditions (the monomials containing x3, whose number is equal to the number of
degree d —2 monomials in Xy, ..., Xn ). Imposing {Z; = 0} we get (d_ﬁf?_]) conditions (the
monomials containing xpx7, whose number is equal to the number of degree d — 2 mono-
mials in x1, ..., Xy ). Proceeding in this way when we force {Z,, = 0} we get (dfit?f“) =1
condition (the monomials containing xopxn, whose number is equal to the number of degree
d — 2 monomials in x). Up to now we have

i (d—]Z(Jrk) _ (d;]_—:n)

k=0
conditions.
Consider now the monomials containing x1. Forcing {Z,, 1 = 0} we get ( d_it?q) condi-
tions (the monomials containing x?, whose number is equal to the number of degree d —2

monomials in x1, ..., xn). Imposing {Z,, ;> = 0} we get (dfrzigfz) conditions (the monomi-

als containing x1x,, whose number is equal to the number of degree d — 2 monomials in
X2,...,Xn). Proceeding in this way we get

“i (d—2+k) B (d—1 +n—1>
=\« d—1

conditions.
Proceeding in this way at the step x,,_, we have

é(d—i—i—k) _ (dgltz)

more conditions. At the step x,_7 we have only to force {Zn,_, = 0}, and we get (dTl) =
d — 1 conditions.
Summing up the fiber 7121 (H) is a linear subspace of P defined by

n n

d—T1+k d—T1+k d+n
E (d—1 )er]—g <d—1 >1d+d1—( d )2.
k=2 k=0

So the fiber has dimension

dim(m, T(H) = N — <d£“> +2=1,

recalling that N = (ng“) — 1. Finally we look at the map 7, : J3 -2 — 5,V3', since 7, is
dominant we have
dim(erd,z) = dim(led,z) =2n+1.

Since dim(Sec; Vy) = 2n + 1 the assertion follows. O
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723 Thecasen=2,h=4

In the same spirit of Theorem 7.2.22 we obtain the following result.

Theorem 7.2.23. If n = 2, h = 4 for the variety of 4-secant 3-planes of V'3 we have
2y
S€C4(Vd) = X4r\_%]
for any d positive integer.

Proof. The case d = 4 is the Example 7.2.20. Consider now the case d = 5. The map
1, : J43 = G(3,5) is dominant, so X4 3 and hence X4, are irreducible. Let F € k[x,y, z]5 be a
polynomial, looking at the proof of theorem 7.2.22 we get that forcing the partial derivatives
of order 3 of F to lie in {Zp = Z3 = 0} gives

(5 B ; * 2) + <5 B ; - 2) — #{monomials containing x*y*} =20 —3 = 17

conditions. Since dim(Xy2) = dim(X43) = 20— 17+ dim(G(3,5)) = 11 we conclude
SeC4(V52) = X4,2.

Consider the case d = 6 and the partial derivative of order 3. If the 3-th derivatives of F lie in
a 3-plane then the first partial derivative of F are degree 5 polynomials whose second partial
derivatives lie in a 3-plane. By the same trick of Theorem 7.2.22 we prove that the 3-plane
containing the 3-th partial derivative has to be 4-secant to V2. So X4 3 is irreducible, and as
usual by counting dimension we get the equality

S€C4 (VGZJ = X4,3.

Now we treat the general case by induction on d. Let F € k[x,y,zlq be a polynomial
whose | $]-th derivative lies in a 3-plane. Then the first partial derivative of F are poly-
nomials of degree d —1 whose L%J—th derivatives lie in a 3-plane. So Fy,Fy,F, can be
decomposed as sums of four powers of linear forms. As before we conclude that the map
T J 4,14 — G(3,N a4 J) is dominant, so X 414 is irreducible. We conclude, by combinato-

rial computations similar to the previous one, computing dim(X, 14 J) = dim(Sec;;(Vé)). O

Remark 7.2.24. In a completely analogous way one can show that Secs(V3) is defined by size
6 minors of the matrix of partial derivatives of order L%J ford=4and d > 6.

7.2.4 Reconstructing decompositions
First, we report part of a table in [LO] summarizing the known cases in which a secant of

a Veronese variety coincides at least set theoretically with a catalecticant variety. Indeed in
these cases the equations of catalecticants cut scheme theoretically the secant variety and in
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some cases even the ideal. We denote by M; the matrix whose lines are the partial derivatives
of order 1 of a homogeneous polynomial F € k[xy, ..., xnlq.

Secant Catalecticant Reference

Secy, V3 h+ 1 minors of M; Classical

SechVJ1 h + 1 minors of My_y, | Iarrobino — Kanev and Th 7.2.6
Sec, Vi 3 minors of My_, Kanev and Th 7.2.22
SeC4VC21 5 minors of MLQJ Schreier and Th 7.2.23
SecSchl, d=4, d > 6 | 6 minors of MLQJ Th 3.2.1 [BCS]
Secsvczl, d>6 7 minors of MLQJ Th 3.2.1 [CG]

Sec«;Vé determinant of M Ex 7.2.21

The following proposition gives conditions under which a simultaneous decomposition of
the derivatives lifts to a decomposition of the polynomial and is very useful in reconstructing
decompositions.

Proposition 7.2.25. Let F € k[xo, ..., xnla be a homogeneous polynomial. Suppose that its partial
derivatives admit a decomposition

h
§ Oy d—1 E d—1
o L ’: Xn = (X?Li 7
i=1

in h linear forms Ly = A?xo + ...+ Al'xn such that L?_z, . Lﬂ_z are independent in K[xo, ..., Xnlga—2.
Then there are the following relations between the coefficients

otAf =ofAL, ts=0,.,n i=1,..h
These relations force the decomposition of the partial derivatives to be of the following form

h h
O d— n d—1 nyd—1,.0 n d—1
Z o A{ (%0 4 oo 4+ ol )T, L Frs :Zoci AT (o xo e xn ),
i=1 i=1
AL

where \y = & = .. = 2%1 Furthermore the decomposition lifts to a decomposition of the polynomial

i=1 i

Proof. The 1-form Fy dxg + ... + Fx, dxn is exact on IP™ so it is closed, then Fy,x, = Fx x;
for any t,s = 0,..,,n. Since L?_z, . Lﬁ_z are independent these equalities forces ocfl‘Af =
AL t,s=0,..,m 1= 1,...,h.

Then A‘ = oc1 A SAD =
Ld 2 (A0x0+ A AMX )d 2wege’t

A9 n
(x—é =.= /:f‘ for any i =1, ..., h. Substituting

Li = A2 (adx0 + .o + oa'xn)472, i=1,.,h

Then the expressions for the partial derivatives become

h h
Z O?\d T xo+...+oc{‘xn)d_],...,Fxn:Zoc{‘Af_l(oc?xo—k...—l—cx{‘xn)d_].
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To lift the decomposition on F consider the Euler formula F = } ' ; x;Fy,. Substituting the

above expressions for the partial derivatives and by straightforward computations we get

F=YyM Jlid O
i=1 Ay -1

Remark 7.2.26. Clearly Proposition 7.2.25 can be easily generalized replacing the first partial
derivatives with derivatives of any order.

In the following we consider the case h < n+ 1 in order to make meaningful the constraints
on the derivatives. To check whether a polynomial F admits a decomposition into a given
number of factors and, if it is so, to compute the linear form, we implement the following
algorithm:

Construction 7.2.27. The starting data is a homogeneous polynomial F € k[xy, ..., xn]q and
we look for a decomposition in h linear forms. We proceed with the following steps:

1. Compute the partial derivatives of F and let Hy be their linear span. Now we have three
possibilities:
1A The derivatives generated a linear span of dimension bigger than h — 1. In this case
the decomposition does not exist.

1B dim(Hp) = h—1but Hy N V3 _; contains less than h points. So the decomposition
does not exist.

1c dim(Hp) = h—1 and Ha NV} _; contains more than h points. In this case we
proceed.
2. Compute the intersection X = Ha - V_;.
2A If X does not span Hp the decomposition does not exist.
28 If X span Hp choose h-independent points L?_1 yor Lﬁ_1 € X. By Proposition 7.2.25

the linear forms Ly, ..., L, give a decomposition of F.

Example 7.2.28. The partial derivatives of the polynomial F = x> + x?z + xz% + z3 lie on the
line H={Z1 =23 =24 =72y —2Z; + Z5 = 0}. By Theorem 7.2.22 we know that F admits a
decomposition as sum of two linear forms. To compute the intersection H - V2 we have to
solve the following system

72 -47375 =0,
Z,Z4—27175 =0,
27,73 — 2124 =0,
7247075 =0,
212y —27Z0Z4 =0,
72 —4Z07Z5 =0,
Z1=2723=124=0,
Zo—2Z,+27Z5=0.

We found that the decomposition of F is given by the linear forms Ly = (2 + v/3)x +z and
L, = (2—\/§)X—|—Z.

Example 7.2.29. The partial derivatives of the polynomial

2 2 2
F= §x3 +x2z+xz% + 523 +x%y +xy? + §y3 +y’z+yz?
span a plane 3-secant to the Veronese surface Vf at the points (x + 2)?, (x+1y)?, (y + 2)2.
A priori this is not a meaningful condition. However proposition 7.2.25 ensures that the

decomposition lifts and we have F = Aq (x +2)3 +A2(x +y)3 + Az (y + z)3.
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SCRIPTS

In this appendix we report the scripts used in the work. Scripts 1, 3, 6 are realized with
MacAulay2 [Mcz2], Scripts 2, 4, 7 with Bertini [Be], finally Script 5 with MatLab.

Script 1. Macaulay2, versionl.3.1

il : P3 = QQ[X,Y,Z,W]

ol = P3

0l : PolynomialRing

i2 : Pl = QQ[s,t]

02 =Pl

02 : PolynomialRing

i3 : TC = map(P1l, P3, s>, 3s?t, 3st?, t3)
03 = map(P1, P3, s3, 3s?t, 3st?, t3)

03 : RingMap P1 < P3

i4 : ITC = kernelTC

04 = ideal(Z%-3YW, YZ-9XW, Y2-3XZ)

04 : Idealof P3

i5 : RTC = P3/ITC

05 = RTC

05 : AQuotientRing

i6 : P2 = QQ[A,B,C]

06 = P2

06 : PolynomialRing

i7 : projmap = map(RTC, P2, Y-X, X+Z, W-X)
o7 = map(RTC, P2, -X+Y, X+Z, -X+W)

o7 : RingMap RTC < P2

i8 : I = kernelprojmap

08 = ideal(14A3+15A%B+15AB?-13B3-18A%C+45ABC-18B2C+54AC?)
08 : Ideal of P2

Script 2. CONFIG

END;

INPUT

homvariablegroup A,B,C;
function f1, f2, 3, f4;

f1 = 14A3+15A2B+15AB2-13B3-18A2C+45ABC- 18B2C+54AC2) ;
f2 = (42(A%))+(30AB)+(45CB) - (36CA)+(15(B2))+(54(C%));
f3 = (15(A%))+(30AB)+(45AC) - (39(B?2)) - (36%B*C) ;

f4 = (45AB)+(108AC)-(18(A%))-(18(B?));

END;

Script3. Macaulay2, version 1.3.1

il @ P2 = QQ[x,y,z]

ol = P2

ol : PolynomialRing

i2 ¢ P9 = QQ[Xpo,X7,X2,X3,X4,X5,X6,X7,Xg,Xo1

02 = P9

02 : PolynomialRing

i3 : VerMap = map(P2,P9,x3,3x2y,3x%z,6xyz,3xy?,3xz2,y3,3y%z,3yz?, 23)
03 map(P2,P9,x3,3x2y,3x22,6xyz,3xy2,3x22,y3,3y22,3y22,23)
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03 : RingMap P2 <-- P9

i4 : 1IVer = kernel VerMap
04 : Ideal of P9

i5 : RVer = P9/IVer

05 RVer

05 : QuotientRing

i6 : P3 = QQ[X,Y,Z,W]

06 = P3
06 : PolynomialRing
i7 : Projection = map(RVer,P3,"Equations of the Projection")

o7 = map(RVer,P3,"Equations of the Projection")
o7 : RingMap RVer <-- P3

i8 : IProjVer = kernel Projection

08 : Ideal of P3

Script 4. CONFIG
TRACKTOLBEFOREEG: 1le-8;
TRACKTOLDURINGEG: 1le-11;
FINALTOL: le-14;

MPTYPE: 1;

PRECISION: 128;

END;

INPUT

homvariablegroup X,Y,Z,W;
function f1, f2, f3, f4, f5;

fl =F;

f2 = g;g;
f3 = O,
f4 = gﬁ%;
f5 = 2L
END;

Script 5. P1 = input(’Point 1:');

P10 = input(’'Point 10:');

g = input(’Precision:’);

A = [P1;P2;P3;P4;P5;P6;P7;P8;P9;P10];
t=1;

B=11;

for a=1:5,

for b=a+l:6,

for c=b+1:7,

for d=c+1:8,

for f=d+1:9,

for g=f+1:10,

M = [A(a,:);A(b,:);A(c,:);A(d, ) ;A(T,:);A(g,:)];
disp(t);

t = t+1;

v=1[];

for al = 1:3,
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for a2 = al+l:4,

for a3 = a2+1:5,

for a4 = a3+1:6,

v = [v,det([M(al,:);M(a2,:);M(a3,:);M(a4,:)1)];

end; end; end; end;

if abs(v(1l))<q,abs(v(2))<q,abs(v(3))<q,abs(v(4))<qg,abs(v(5))<q,
abs(v(6))<qg,abs(v(7))<q,abs(v(8))<q,abs(v(9))<q,abs(v(10))<q,
abs(v(1ll))<q,abs(v(12))<q,abs(v(13))<q,abs(v(14))<q,abs(v(15))<q,
B = [B M];

end; end; end; end; end; end; end;

[n,m] = size(B);

s =1;

for r=1:4:m-3,

disp('Matrix’), disp(s),

s = s+1;
B(:,r:r+3),
end;

Script 6. Macaulay2, version 1.3.1

il @ P9 = QQ[Xo,X7,X2,X3,X4,X5,X6,X7,Xg,Xo1

ol = P9

ol : PolynomialRing

i2 : MDer = matrix {{Xo,X7,X2,X3,X4,X5,Xs,X7,Xg,X0},{3,2,2,2,1,1,1,1,1,1},
{1,2,1,1,3,2,2,1,1,1},4{1,1,2,1,1,2,1,3,2,1},{1,1,1,2,1,1,2,1,2,3}}

02 : Matrix P9 <-- P9

i3 : 1IDer = minors(5,MDer)

03 : Ideal of P9

i4 : MQuad = matrix {{Xop,X1/2,X2/2,X3/2},{X1/2,X4,X5/2,X6/2},{X2/2,X5/2,X7,Xg/2},
{X3/2,X6/2,X8/2,X9}}

04 : Matrix P9 <-- P9

i5 : IRTQuad = minors(3,MQuad)

o5 : Ideal of P9

i6 : X2 = variety IRTQuad

06 = X2

06 : ProjectiveVariety

i7 : DerSpace = variety IDer
o7 = DerSpace

07 : ProjectiveVariety

i8 : IdInt = IDer+IRTQuad
08 : Ideal of P9
i9 : Int = variety IdInt

09 = Int

09 : ProjectiveVariety
i10 : dim Int

0l = 0

ill : degree Int

oll = 10

Script 7. CONFIG
END;
INPUT
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homvariablegroup Xo,X7,X2,X3,X4,X5,X6,X7,Xg,Xo;
function f1,f2,f3,f4,f5,f6,f7,...,22;

fl = X7-2X8+X9;

f2 = X5-Xg-Xg+Xo;

3 = X4-2Xg+Xo;
f4 = X3-X3-Xg+Xo;
f5 = X71-X3-Xg+Xo;
6 = Xo-2X3+Xo;
f7 = ....;

22 = ...;

END;
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RANK OF MATRIX MULTIPLICATION

Let V, W be two complex vector spaces of dimension n and m. The contraction morphism

V* @ W — Hom(V,W)
T:Zi,j fi @Wj Lt ’
where Lt (v) = Zi,j fi(v)wj, defines an isomorphism between V* ® W and the space of linear
maps from V to W.
Then, given three vector spaces A, B, C of dimension a,b and ¢, we can identify A* ® B with
the space of linear maps A — B, and A* ® B* ® C with the space of bilinear maps A x B — C.

Let T: A* x B* — C be a bilinear map. Then T induces a linear map A* ® B* — C and may
also be interpreted as:

- an element of (A* ®@B*)* C=A®B®C,

- a linear map A* - B® C.

Segre varieties and their secant varieties
Let A, B and C be complex vector spaces. The three factor Segre map is defined as
01,11 :P(A)xP(B)xP(C) - PA®B®C)
(la], [b], [c]) = la®b®c],

where [a] denotes the class in IP(A) of the vector a € A. The notation o7 7 1 is justified by the
fact that the Segre map is induced by the line bundle O(1,1,1) on P(A) x IP(B) x IP(C). The
two factor Segre map

01,1 :P(B)xP(C) - P(B®C)

is defined in a similar way. The Segre varieties are defined as the images of the Segre maps:
111 =011,1(P(A) xP(B) x P(C)), £1,1 = 01,1(IP(B) x P(C)). For each integer r > 0 we
define the open secant variety and the secant variety of X1 7 7 respectively as

Secr(£11,1)° = U (x1,...,%041),  Secr(Z1,1,1) = Secr(Z1,1,1)°.

X1, Xr 1€ X710

In the above formulas (x1,...,%X4+1) denotes the linear space generated by the points x; and
Secr(X1,1,1) is the closure of Sec(Z7,1,1)° with respect to the Zariski topology. Let us notice
that with the above definition Seco(Z1,1,1) =Z1,1,1.

Rank and border rank of a bilinear map

The rank of a bilinear map T : A* x B* — C is the smallest natural number r :=rk(T) € N
such that there exist ay,..,ar € A, by,...,br € Band ¢y, ...,cy € C decomposing T(e, 3) as

T(e, B) = ) ai(a)bi(B)es
i

for any o € A* and 3 € B*. The number rk(T) has also two additional interpretations.
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- Considering T as an element of A ® B ® C the rank r is the smallest number of rank one
tensors in A ® B ® C needed to span a linear space containing the point T. Equivalently,
rk(T) is the smallest number of points ty,...,tr € Xy 11 such that [T] € (t,...,ts).
In the language of secant varieties this means that [T] € Sec,_1(Z1,1,1)° but [T] ¢
Secy_2(Z1,1,1)°.

- Similarly, if we consider T as a linear map A* — B ® C then rk(T) is the smallest number
of rank one tensors in B ® C need to span a linear space containing the linear space
T(A*). As before we have a geometric counterpart. In fact rk(T) is the smallest number
of points ty, ..., ty € Z1,7 such that P(T(A*)) C (t3,..., t;).

The border rank of a bilinear map T : A* x B* — C is the smallest natural number r := rk(T)
such that T is the limit of bilinear maps of rank r but is not a limit of tensors of rank s for
any s < r. There is a geometric interpretation also for this notion: T has border rank r if
[T € Sec, 1 (£1,1,1) but [T & Sec, (£1,1,1). Clearly rk(T) > rk(T).

Matrix Multiplication

Now, let us consider a special tensor. Given three vector spaces L = C', M = C™ and
N=C"wedefine A=N®L*, B=L®M"* and C = N* ® M. We have a matrix multiplication
map

Mpim:A*xB* = C

As atensor M1 = ldy@ldy®ldr € (N*@L) @ (LaM* )@ (N*®@M) = A®B®C,
where Idn € N* @ N is the identity map. If n = 1 the choice of a linear map o® : N — L
of maximal rank allows us to identify N = L. Then the multiplication map Mnn,m €
(N®N*) @ (N® M*) @ (N*® M) induces a linear map N* @ N — (N* @ M) @ (N* @ M)*
which is an inclusion of Lie algebras

Ma : gl(N) — gl(B),

where gl[(N) = N* ® N is the algebra of linear endomorphisms of N. In particular, the rank of
the commutator [Ma ('), Ma («?)] of nm x nm matrices is equal to m times the rank of the
commutator [«!, a?] of n x n matrices. This equality reflects a general philosophy, that is to
translate expressions in commutators of gl,,> into expressions in commutators in gl,,.

Matrix Equalities

The following lemmas are classical in linear algebra. However, for completeness, we give a
proof.

Lemma 8.0.30. The determinant of a 2 x 2 block matrix is given by
det (X V) = det(X) det(w — zxy),
Z W

where X is an invertible n x n matrix, Y is a n x m matrix, Z is a m X n matrix, and Wisa m x m
matrix.

Proof. The statement follows from the equality

X YY) (=X Idn\ 0 X
Z W Idm O w-zx-'v z)’

140



Lemma 8.0.31. Let A be an n x n invertible matrix and U,V any n x m matrices. Then

det (A +UVY) = det (A) det (Id+ VEATTU),

nxn nxn mXxXm
where V' is the transpose of V.

Proof. It follows from the equality
A 0)\(ld -ATUu Id 0\ [A+uvt —u
vt 1d) \0 Id+V'A—'u) \-vt 1d 0 d)

8.1 LANDSBERG - OTTAVIANI EQUATIONS

In [LO] J.M. Landsberg and G. Ottaviani generalized Strassen’s equations as introduced by V.
Strassen in [S1]. We follow the exposition of [La1, Section 2].
Let T € A® B® C be a tensor, and assume b = c. Let us consider T as a linear map
A* — B ® C, and assume that there exists & € A* such that T(«) : B* — C is of maximal rank
b. Via T(«) we can identify B = C, and consider T(A*) C B* ® B as a subspace of the space
of linear endomorphisms of B.
In [S1] Strassen considered the case a = 3. Let °, o', o be a basis of A*. Assume that T(«°)
has maximal rank and that T(«'), T(«?) are diagonalizable, commuting endomorphisms.
Then T(«!'), T(«?) are simultaneously diagonalizable and it is not difficult to prove that in
this case rk(T) = b. In general, T(«'), T(e?) are not commuting. The idea of Strassen was to
consider their commutator [T(«'), T(«?)] to obtain results on the border rank of T. In fact,
Strassen proved that, if T(x9) is of maximal rank, then rk(T) > b + rank[T(«'), T(a?)]/2 and
tk(T) = b if and only if [T(«'), T(e?)] = 0.
Now let us consider the case a = 3,b = c. Fix a basis ag, aj,a, of a A, and let a®, a’', a?
be the dual basis of A*. Choose bases of B and C, so that elements of B ® C can be written
as matrices. Then we can write T = ag ® Xo — a1 ® X1 + a2 ® X3, where the X; are b x b
matrices. Consider T®lda e ARBRICRA*RA=A*RBRARARC,

Tolda =(ap®Xo—a1 X1 +a29X2)® (a®°®ag+a' ®a; +a?®ay)

and its skew-symmetrization in the A factor T} € A* @B ® NA®C, given by

T[l = (11Xo((10/\(11)+ (lZXo((lo/\(lz) —(lOX] ((1] /\(10) —(IZX] ((1] /\(lz) —|—(10X2((12/\(10)+
a1X2(a2/\a1)

where ain (a5 A\ay) = at® Xj ® (a5 A\ ay). It can also be considered as a linear map
2
TA:A®B - ANAwC

In the basis ag,aj, a2 of A and ap A\ aj,ap AN az,a; Aay of /\2 A the matrix of T)\ is the
following

X; X 0
Mat(TA) =[x, 0 =X,
0 Xo X
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Assume Xy is invertible and change bases such that it is the identity matrix. By Lemma 8.0.30,
on the matrix obtained by reversing the order of the rows of Mat(T} ), with

0 X —X
X = Cloy={"N) 2= (xi —xp), w=0
Xo O X,

we get
det(Mat(T}))

=det(X1 X2 —X2X7)

= det([X;, X2]).

Now we want to generalize this construction as done in [LO]. We consider the case a =2p +1,

Teldypy € A@BRCOAPA*@APA = (APA*@B)®

symmetrization

Note that dim(AP A @ B*) =dim(AP ' A® C) =

of A we can write T = Zfﬁo(—

Ap—1,- Qpy1 AN ANagp of AP A and ag Ao A ay, ...,

Mat(T]) = (g g)

where the matrix is blocked (( +])b (

by

and Q is a matrix having blocks X1, ...

2p
P

)1 x ((

p+1
TR /\A@B* - N AsC

(APYTA®C), and its skew-

(ZpH)b After choosing a basis ao, ..., azp

2p
p+1

P

1)'a; ® X;. The matrix of T with respect the basis ag A\ ... A
ap A.../\Nazp of AP Ais of the form

(8.1.1)

)b, (37)b), the lower left block is given

,X2p and zero, while Q is the block transpose of Q

except that if an index is even, the block is multiplied by —1. We derive below the expression
(8.1.1) in the case p = 2; the general case can be developed similarly, see [La1, Section 3].

Example 8.1.1. Consider the case p = 2. The matrix of T% is

TAa
2Aa

2 _ 2
Tx =

3

o/\az

3

3

(a 1 Xo(ap ANaj Aay
(a Xolap Nax ANaz)+
(a )

(a2 AN a3)

(a®Aa)X,
(a' Aa?)Xa(ax Aay Aaz
(@®Aa")X3(a3 AagAa;
(a' Aa?)X;3

(a® Aah)Xy

(a' Aat)Xy

( )+ (
( )+ (
Xi(as ANagAaz)—(
Xi(ag ANazAaz)—(
(a2 NaoAag)+(
( )+ (a
( )—(
(a3 ANay ANaz)—(
( )+ (
( )+ (

ag Nap/Nay)+
ag Nay Naz)+

—(a® A a?
a' Aa?
a® A a?
a' Na3

a' Aa?
a? A a?
a® A a3
a? A a?
a®Aad?

X
Xo

X
X
X
X
X
X

)
)
)
)
)
TAa*)
)
)
)
)
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2
2
3
3
4
4

ol
(
(
(
(
(
(
(
(
(

(10/\(1] /\(13
aoAaz/\a4

X] a1/\a0/\a3
Xi(ag ANazx N ag

(12/\(10/\(13
azAa1 /\04
ag/\ao/\az
azANaj Nay
(14/\(10/\(12
04/\(11 /\03

)+
)+
) —
) —
)+
)+
) —
) —
)+
)+

a' Aa*)Xol )
a? Aa*)Xo( )
ONat)Xq(a; AagAag)—
a3 Aah)Xy (a3 Aaz Aag)
a® Aah)Xs(ax Aag Aag)+

( )
( )
( )
( )
( )

( )Xo(ap AN ar Aag)+
( )

(a )

( )

( )
(a3 Aa*)X
(a )

( )

( )

( )

X
X aoAag/\a4 —

+

2
2 azAag/\a4 —
O/\Cl4 X3 C13/\C10/\C14 —
a2 ANah)Xz(laz Aax Aag)+
a®Aad Xg(ag Nag /N az)+
4

a2 Aa3)Xg(as ANax Aaz



The matrix of T/z\ is

X, X3 X4 0 0 0 0 0 0 0
X; 0 0 -X3 X4 O 0 0 0 0
0 X3 0 —X2 0 X4 0 0 0 0
0 0 Xy 0 X2 X3 0 0 0 0
Mat(2) = | X0 0 0 0 0 0 -X3 Xa4 0 0
0 Xo 0 0 0 X2 0 X4 O
0 0 Xo 0 0 0 0 —X» X3 0
0 0 0 Xo 0 Xy 0 0 X4
0 0 0 Xo 0 0 —X; 0 X;
0 0 0 0 Xo 0 0 —X; X

If Xo is the identity by Lemma 8.0.30 on R = Id, Q and Q the determinant of Mat(T}) is
equal to the determinant of

0 (X1,X2] X1, X3] Xy, X4]
—[X1,X2] 0 X2, X3l X2, X4]
—[X1,X3]  —[Xz2,X3] 0 (X3, X4]

—[X1, X4l =Xz, X4] —[X3,X4] 0

In general the determinant of Mat(T} ) is equal to the determinant of the 2pb x 2pb matrix
of commutators

0 X1,2 X1,3 X1,4 e X12p1 X1,2p
—X1,2 0 X2,3 X2,4 cee X22p1 X2,2p
—X1,3 —X2,3 0 X3,4 v X32p1 X3,2p
—X1,4 —X2,4 —X3,4 0 cee Xg2p1 Xa,2p

—X1,2p—1 —X22p-1 —X32p-1 —X42p-1 .- 0 X2p—1,2p
—X1,2p —X2,2p —X3,2p —Xa2p oo —X2p_12p 0

where X ; denotes the commutator matrix [X;, Xj] = X X; — X;X;.

8.2 KEY LEMMA

We use the same notation of [La1] throughout the text.

Lemma 8.2.1. [La2, Lemma 11.5.0.2] Let V be a n-dimensional vector space and let P € SAV*\ {0} be
a polynomial of degree d < n—1on V. For any basis {v1, ..., vn} of V there exists a subset {vi,, ..., vi }
of cardinality s < d such that P|<v~ o > is not identically zero.

iy Vig

Proof. Letx =Y I ; xivi be an element of U and consider P(x) as a polynomial in x1, ..., Xn.
For instance take the first non-zero monomial appearing in P(x). Since it can involve at most
d of the x;’s the polynomial P restricted to the span of the corresponding v;’s is not identically
Zero. O
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Lemma 8.2.1 says, for instance, that a quadric surface in IP? can not contain six lines whose
pairwise intersections span IP3. Note that as stated Lemma 8.2.1 is sharp in the sense that
under the same hypothesis the bound s < d can not be improved. For example the polynomial
P(x,y,z,w) = xy vanishes on the four points [1:0:0:0],..,[0:0:0:1] € P3.

Lemma 8.2.2. Let A = N* ® L, where 1 =n. Given any basis of A, there exists a subset of at least
n?— (2p + 3)n basis vectors, and elements o, al, ..., %P of A*, such that

- o is of maximal rank, and thus may be used to identify L ~ N and A as a space of endomor-
phisms. (Le. in bases of is the identity matrix.)

- Choosing a basis of L, so the o become 1 x 1 matrices, the size 2pn block matrix whose (i,j)-th
block is [, o] has non-zero determinant, and

- The subset of n?— (2p + 3)n basis vectors annihilate ol ol ... %P,

Proof. Let B be a basis of A, and consider the polynomial Py = det,,. By Lemma 8.2.1 we
get a subset Sy of at most n elements of B and «® € Sy with det, (x®) # 0. Now, via the
isomorphism « : L — N we are allowed to identify A = gl(L) as an algebra with identity
element «°. So, from now on, we work with s[(L) = gl(L)/ <oc°> instead of gl(L).

Following the proof of [La1, Lemma 4.3], let vy o, ..., v2p,0 € sl(L) be linearly independent
and not equal to any of the given basis vectors, and let us work locally on an affine open
neighborhood V C G(2p,sl(L)) of Eg = (vi0,...,V2p,0). We extend v1,...,vap o to a basis
V1,074 V2p,0, W1 ooy Wr2 oy g of sl(L), and take local coordinates (f§) with 1 < s < 2p,

2
T<p<n?—2p—1,0nV,sothat vy =vg o+ Zﬁgzr’f] fEwy.

We denote vi j; = [vi,v;] and let us define

0 Vi,it1
Aii1 = ( '
—Viit1 0

fori=1,...,2p and let A be the following diagonal block matrix

A =diag(A1,2,A3,4,.--,A2p-32p—2,1d2nx2n)

which is a squared matrix of order 4pn. Consider the 4pn x 4pn matrix

0 V1,2 V1,3 V14 cee o VI2p—1 Vi,2p
—V1,2 0 V2,3 V2,4 cee V22p1 v2,2p
V13 —V23 0 V3,4 cee V32p1 V3,2p
M= V14 V2,4 —V3,4 0 cee V42p—1 V4,29
—V12p-1 —V22p-1 —V32p-1 ~—Va2p-1 --- 0 V2p—1,2p
—V1,2p —V2,2p —V3,2p —V42p --e —V2p_1.2p 0
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The polynomial detspn x4pn (M) is not identically zero on G(2p, sl(L)), so it is not identically
zero on V. Furthermore we can write M = A + Uld4pn x4pn, Where

0 0 V1,3 V14 cee V12p—1 Vi,.2p

0 0 V2,3 V2,4 cee V22p1 V2,2p

*V1/3 *V2,3 0 0 e V3,2p,1 V3,2p

u= —V1 4 —V2,4 0 0 . V4,2p,] V4,2p
—V12p—1 —V22p—1 ~—V32p—1 ~—V42p-1 ... —ldnxn V2p_12p
—V1,2p —V2,2p —V3,2p —V42p eee V2p_12p —ldnxn

By Lemma 8.0.31 we have
det(M) = det(A) det(Id + A~ 'U) = det([v1,v2])?. .. det([v2p_3,v2p_2])* det(Id + A~ 'U).

The entries of the n x n matrices [vy, Vi 1] are quadratic in the f§’s, so the polynomials
det([vk, vik+1]) have degree 2n, and

Py = det([vq,v2])? ... det(vap—_3,vap—2])* = (det([vy,v2]) ... det([vap_3,v2p—2]))?

is a polynomial of degree 4n(p — 1). Since P; is a square, we can consider the polynomial
§1 = det([vy,v2])...det([v2p_3,v2p_2]) which has degree 2n(p —1). Applying Lemma 8.2.1
to 51 we find a subset S; of at most 2n(p — 1) elements of our basis such that 51 , and hence
P1, is not identically zero on (Sy).

Now, let us fix some particular value of the coordinates f} such that on the corresponding
matrices V1, ..., V2p 2 the matrix A is invertible. For these values the expression det(Id +
A~ TU) makes sense. Let us consider the matrix

Id 0 *VT’;\Jz,g *V]_,;VZA eee fv]_’;VZ,Zp,] *V]_,;VZ,Zp
0 1d V;;V]g, VT,}\”A ... VT,;\)LZP_] VT,;\H,ZP
V;Jﬂ’] 4 \1;3‘\12,4 Id 0 . —\)3:21\)4,2]9,] —V;A\q,zp
Id+AU= —vg,lv1/3 —v;lvzlg 0 Id - V;AVS,sz v;z]‘v&zp
—V12p-1 —V22p-1 ~—V32p-1 ~—Va2p-1 --- 0 V2p—1,2p
—V1,2p —V2,2p —V32p —V42p .-+ —V2p_172p 0

By Lemma 8.0.30 on Id + A~ U with

—1 —1 —1 —1

X — (Id 0 ) Y — (_"1,2"2,3 —Vi2V24 .- TVy5V22p-1 _"1,2"2,210)

B S —1 —1 —1 —1 ’

0 Id ViaV1i3  VipVi4 o ... VipVi2p—1 VioVi2p
vilv vilv 1d 0 —vilv —v3ilv
34V1,4 3,4V24 oo 3,4V4,2p—1 3,4V4.2p
—1 —1 —1 —1
—V3,4V1,3 —V3,4V2/3 0 1d e V3,4V3,2p,1 V3,4\)3/2p
Z= : : , W=

—V12p—-1 —V2.2p-1 —V3,2p—-1 —V42p—-1 .- 0 V2p—1,2p

—V1,2p —V2,2p —V3,.2p —V42p .-+ —V2p_12p 0
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we get det(Id + A~TU) = det(W — ZY). Note that the coordinates f% appear in the terms
indexed by 2p — 1 and 2p, while all the other terms are constant once we fixed vy, ..., V2 2.
Then P, = det(W — ZY) is a polynomial of degree 4n. By Lemma 8.2.1 we find a subset S, of
at most 4n elements of the basis B such that P is not identically zero on (S;).

Summing up we found a subset S of at most n+2n(p —1) +4n = (2p + 3)n elements of B
such that det(M) is not identically zero on (S). O

Remark 8.2.3. In [La1, Lemma 4.3] the author proved the analogous statement for n? — (4p +
n.

We are ready to prove our main Theorem following the proof of [La1, Theorem 1.2].

Theorem 8.2.4. Let p < 5 be a natural number. Then

rk(Mnnm) = (1+ pL_H)nm—i— n?— (2p+3)n. (8.2.1)

For example, when /% € Z, taking p = /5 — 1, we get

rk(Mn,n,m) >2nm+ n - Zﬁnm% —n.

When n = m we obtain

1
rk(Mpnn) > (3— pT])nZ —(2p+3)n. (8.2.2)

This bound is maximized when p = [\/5F — 1] or p = |\/F — 1], hence when /5 € Z we have

rk(Mpnn) > 3n? — Zﬁn% —n.

In general we have the following bound

rk(Mnnn) = 3n? — 2\/271% —3n. (8.2.3)

Proof. Let ¢ be a decomposition of the matrix multiplication tensor My n,;m as sum of
T = rk(Mn n,m) rank one tensors. Recall that the left kernel of a bilinear map f: Vx U — W
is defined as Lker(f) ={v € V|[f(v,u) =0Vu € U}. Since Lker(Mn n,m) =0, that is for any
« € A*\ {0}, there exists 3 € B* such that M m (&, B) # 0 we can write ¢ = @1 + @2 with
k(1) =n?2, tk(92) = r—n? and Lker(¢;) = 0.

The n? elements of A* appearing in ¢ form a basis of A*. By Lemma 8.2.2 there exists a
subset of n? — (2p 4 3)n of them annihilating a maximal rank element «® and some o', ..., aZP
such that, choosing bases, the determinant of the matrix ([, &J]) is non-zero.

Let {1 be the sum of all monomials in @7 whose terms in A* annihilate o, ..., «?P. By Lemma
8.2.2 there are at least n? — (2p + 3)n of them. Then rk(1{»7) > n? — (2p + 3)n. Furthermore
consider P, = @1 —11 + @2 so that ¢ =11 +1, and the terms appearing in 1}, does not
annihilate «°, ..., a%P.

Let A’ = <oc0,..., 0621:’) C A*. Again by Lemma 8.2.2 the determinant of the linear map

:APA @B* — /\er1 A’ ® C is non-zero. Then rk(¢,) > nmZ2tl =

Mn,n,m\A/®B*®C* p+1

dim(AP A’ @ B*). We conclude that

2p+1

rk(p) = rk(¢1) + k(@) >n2—(2p+3)n+nmp P

e (1 +p7+])nm+n27(2p+3)n.

This concludes the proof of (8.2.1).
To prove the other assertions, let us consider the function f : Ry¢ — R defined by f(p) =
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b J_ 1 )n? — (2p + 3)n. The first derivative is ' (p) = ﬁnz — 2n, which vanishes in

p = /% — 1. Moreover " (p) = 1 f”3n2 < 0, hence p = /5 — 1 is the maximum of f.
P

Then the bound (8.2.2) is maximized for p = [/5 —1] or p = [\/5 — 1], depending on the

value of n.

If (VF—1)— /5 —1] > J we may consider p = [/F —1]. In this case \/F —1 < p <
T- 2,andwe get f([ E‘ 1) > [f](n) == 3n? —2V2n3 —2n.

If (VT-1)—[/5—1] <] we con51derp_L\F—1J Then\f 3<p</F—1and

we have f([/5 —1]) > [f](n) :=(3— anﬁ n2—2ni —

Finally to prove (8.2.3) it is enough to observe that both [f] (n) and |f](n) are greater than
3n2—2v2n? —3n. O

(3—

The bound (8.2.3) improves Bléser’s one, gn —3n, for n > 32. Nevertheless, when p = 2,
the bound in (8.2.2) becomes Sn — 7n, which improves Blédser’s one for every n > 24.

Compared with Landsberg’s bound 3n? —4n3 —n, our bound (8.2.3) is better for n > 3.
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