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Summary of the work

In this Thesis, the first three introductory chapters are devoted to the review of literature on

contextual perception, its neural basis and network modeling of memory. In chapter 4, the first

two sections give the definition of our model; and the next two sections, 4.3 and 4.4, report the

original work of mine on retrieval properties of different network structures and network dynamics

underlying the response to ambiguous patterns, respectively. The reported work in chapter 5

has been done in collaboration with Prof Bharathi Jagadeesh in University of Washington, and

is already published in the journal ”Cerebral Cortex”. In this collaboration, Yan Liu, from

the group in Seattle, carried out the recording experiments and I did the data analysis and

network simulations. Chapter 6, which represents a network model for ”priming” and ”adaptation

aftereffect” is done by me. The works reported in 4.3, 4.5, and the whole chapter 6 are in

preparation for publication.
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From the tablet of my heart and soul, Thy image, ever– goeth not. From my recollection,

that proudly moving cypress ever– goeth not.

O true (beloved!) from my distraught brain, the image of thy cheek, By the sky’s violence

and time’s wrath,– goeth not.

In eternity without beginning, covenant with thy tress-tip, my heart established. Till

eternity without end, it draweth not forth its head; and, from the head of the covenant,–

goeth not.

In my heart and soul, my love for thee hath taken a place, such That (even) if my head

(life) goeth,-from my soul, my love for thee– goeth not.

Save the load of grief for thee, whatever is in my wretched heart, Goeth from my heart; but

from my heart that (grief’s load)– goeth not.

If for the pursuit of lovely ones, my heart goeth, ’tis excusable It hath (love’s) pain. What

may it do if, for remedy-sake, it– goeth not?

Whoever head-bewildered like Hafiz, wisheth not to become Giveth not his heart to lovely

ones; and, in pursuit of them,– goeth not.





Chapter 1

Introduction

Footfalls echo in the memory

Down the passage which we did not take

Towards the door we never opened

T.S. Eliot

1.1 General issues

1.1.1 Adaptation

Adaptation is a characteristic of systems as diverse as economics, plant and ant colonies, sense

organs and, of particular interest to us here, the brain. It is a fundamental property of neurons

in our brain, with moment to moment impact on our perception of the world. Spatial and

temporal context constantly shape our perception and the underlying neural responses in a way

that can be related to the statistical structure of the inputs (Schwartz et al. 2007). Perceptual

adaptation happens when a perceptual system changes its operating properties in response to

changes in its inputs. This adjustment can occur over a wide range of time scales. Some forms

of visual adaptation, such as the accommodation of lenses to viewing distance, or adjustments

of the eye to variations in intensity of light, are so rapid as to escape our notice. Other forms

of adaptation occur over seconds or minutes, and can produce dramatic aftereffects, such as the

1
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waterfall illusion, tilt aftereffect, and distortion in appearance of shapes, faces and objects. The

perceptual learning of a fine discrimination, on the other hand, tends to occur over days, weeks,

or years. The development of an individual human visual systems takes years. Finally, evolution

has been refining our vision for millions of years, through a process of adaptation through natural

selection. Despite their very different time frames, these changes can all be thought of as different

forms of adaptation which serve a common function: to harmonize the mind to the world. At

a computational level, of course, the mechanisms that produce this fit may be quite different in

each case. This thesis focuses on adaptation which produces reversible changes over the relatively

short time frames of seconds.

1.1.2 Ambiguous perception

Our brain receives only a restricted amount of information from the visual world mostly because

the 3D world is projected onto 2D retina. Each percept is thus the result of a constructive process,

starting already at the earliest steps of visual analysis, as demonstrated impressively by many

optical illusion studies (Kornmeier and Bach 2005). Although our eyes receive incomplete and

ambiguous information, our perceptual system is usually able to successfully construct a stable

and faithful representation of the world. However, sometimes our perceptual system fails to

produce a stable unambiguous percept, especially if the visual information is equally compatible

with different perceptual interpretations, as in the case of ambiguous figures.

Intrinsically ambiguous sensory information thus necessitates prior experience as a constraint

on perception to parse stimuli into well defined categories. Priming paradigms have been used

extensively in order to study the detailed features of such perceptual influences on relatively short

time scales. Priming is the phenomenon where the perception of a given stimulus, or the prime,

affects the perception of a succeeding stimulus, or the target, even when the target is presented

after a long delay or the prime is not explicitly perceived.

1.1.3 Memory-based prediction

Understanding how the brain translates sensory inputs into useful information about objects is a

difficult problem already on theoretical grounds alone. The difficulty of visual perception arises

because natural images are both complex and objectively ambiguous.

In the book ”On Intelligence”, Hawkins offers us a picture of how an intelligent agent does
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perceive and with that survives in an ambiguous world. Hawkins’ basic idea is that the brain is a

machine to predict the future (Hawkins and Blakeslee 2005). Specifically, hierarchically organized

regions of cortex are designed to predict their future input sequences. Perhaps not always far in

the future, but far enough to be of real use to an organism. The memory-prediction framework

concerns the role of the mammalian neocortex and its associations with the hippocampus and

the thalamus in matching sensory inputs to stored memory patterns, and how this process leads

to predictions of what will happen in the future. Memory seems to have a direct top-down effect

that continuously modulates the incoming sensory data and changes basic sensations (Henson et

al 2006).

Linking memory and perception Theoretical models of cognition usually address processes

that are said to occur after the perceptual system has completed its work. According to such

views, output from a putative perceptual system merely provides the initial information that is

fodder for subsequent cognitive operations. This approach is common in the human cognitive

psychology literature, in which a set of primitive elements usually taken to be the building blocks

of cognition (Biederman 1987; Julesz 1981; Treisman and Gelade 1980). Many researchers in

animal associative learning theory have adopted a similar paradigm by assuming that any event

that can be learned will correspond to a static perceptual representation that is always fully

activated in the presence of the stimulus. This division of behaviour into serial stages reflects the

sense-think-act paradigm that is also common in the fields of artificial intelligence and robotics.

The strength of this approach is that it separates the processes contributing to behaviour, thereby

parsing a complex system into a form that may be more easily understood.

The assumption upon which the above approach is based holds if perceptual representations are

static. If perceptual organization changes as a result of experience, however, this should have

a direct impact on cognitive processes. For example, the discriminability of a stimulus could

increase or decrease over time, leading to changes in the learning rate as learning proceeds.

Many alternatives to the sense-think-act theory have been suggested; one approach is to assume

that perceptual representations are not fixed or finite but adapt to the requirements of the task for

which they are employed. Gibson, an early proponent of this view, suggested that the perceptual

interpretation of an event depends on the observer’s history, training, and acculturation (Gibson

1969). No set of primitives exists because the perceptual building blocks themselves are adaptable.

Rather than providing an immutable substrate for cognition, representations might instead adapt

flexibly to the requirements of cognitive tasks. So, although cognitive processes involved in,

for example, learning, might alter perception, the alteration is beneficial because, as a result,

perception becomes better tuned to the task at hand.
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1.1.4 Neocortex as an autoassociative memory

Any adaptive, memory guided perception should be implemented in (sub)cortical structures. It is

a widespread assumption that the substantial anatomical self-similarity of neocortical structure

underlies a set of elementary operations that are carried out, on different incoming inputs, by

different patches of cortex (Marr 1970; Braitenberg 1978; Abeles 1991). In other words, the local

neocortical circuits are characterized by stereotypical physiological and structural features that

subserve generic computational operations. A combination of neuronal connectivity, intrinsic

cellular and synaptic properties give rise to these basic computations of the cortical microcircuit.

It is still a question how to translate such hypothetical universal processing in simple concep-

tual terms (O’Kane and Treves 1992; Puccini et al. 2007; Rolls et al. 2001). In this context,

considerable theoretical and experimental evidence supports the notion that cortical networks

have been specialized in evolution to serve a memory function. The system of local, or intrinsic,

connections among pyramidal cells has often been thought, for example by David Marr, to imple-

ment an autoassociative memory function. A (presumed) Hebb-like synaptic plasticity of these

connections may enable them to store a set of local activity patterns. Later, afferent activity

containing a fraction of the information associated with one such pattern-which would, by itself,

elicit a distorted or partial version of the pattern may trigger recurrent interactions through the

local connections, resulting in the original activity pattern, or a very close version of it, with most

of its information content, being relayed on for the next stage of processing.

1.2 This Thesis: specific questions

In this thesis, we aim to better understand the dynamical process of memory storage and retrieval

in the cortex, and how it affects the perception of ambiguous stimuli, via realistic neural modeling.

We would like to assess verious computational abilities that can emerge from a generic network

model, considering different structural, temporal or biophysical options. There are three questions

that we would like to address here, namely (i) the storage capacity of different network structures,

(ii) network dynamics underlying response to morphed patterns, and (iii) the possible mechanism

responsible for complex behavioral phenomena like priming and adaptation aftereffects, which may

emerge from attractor dynamics in cortical networks. The next two chapters are devoted to a

literature review of some experimental and theoretical studies, concerning visual memory in the
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cortex and in the model. The rest of the thesis is organized in 3 more chapters, the contexts of

which summarize here:

1.2.1 The storage capacity in different network architectures

Once the two neural activity configurations that are stored in a pattern associative memory, are

not orthogonal, interference may occur. The influence of such crosstalk can be controlled in part

with sparse encoding of the stored patterns, effectively by setting high threshold for the firing of

output units. In other words, the original vectors need not to be orthogonal, but if they are too

similar, some interference will still be likely to occur. In general, the fact that interference is a

property of neural network pattern associator memories is of interest, because interference is a

major property of human memory. It is one of the fundamental cognitive neuroscience questions,

how the brain copes with interference (Rolls and Deco 2002). If patterns are too similar to be

stored in associative memories, then one solution that the brain seems to use repeatedly is to

expand the encoding to a form in which the different stimuli are less correlated, that is, more

orthogonal, before they are presented as final patterns to a memory storehouse to be stored. In

autoassociative networks, the problem raised by interference is related to the correlation between

the attractors that formed by changing the synaptic weights in order to store patterns. Later

on, during the retrieval phase, this interference affects the reading out process. Quantitatively,

in chapter 4, we aim to compare the retrieval properties, in particular the storage capacity, of

different network structures which differ in architecture, pattern statistics, and pattern generation.

We will explore the effect of diluted connectivity, fast-noise, and the number of stored patterns

on the retrieval process of different types of patterns in different network structures.

1.2.2 The response to morphed patterns in analog networks

Can we see retrieval dynamics by probing a local cortical network? In network

models of associative memory, in which information is supposedly carried with temporally coarse

resolution by rates of emission of action potentials, units have been chosen in which a single

output variable (often even binary) represented some short-time average of neuronal spiking rate.

The focus then has been on studying the steady-state behaviour, i.e. the attractor state, with the

dynamics either neglected altogether or artificially defined (for example, in terms of ”updatings”)

merely in order to fully specify the model (Amit et al. 1987).
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There have been few studies trying to understand the collective properties of large networks,

with more realistic description of the relevant biophysical processes, to address questions like:

over what time scales can a local firing pattem -elicited by an incoming stimulus- reach a steady-

state distribution? Which of the biophysical parameters at the single unit level contributes to

set those time scales? (Treves 1993; Matsumoto et al. 2005) Yet the need to obtain an analyti-

cal grasp of the dynamics of large networks, endowed with specific synaptic weights, coding for

different memory patterns, is apparent, as new experimental data is beginning to throw light on

the temporal course of information processing, e.g. in neocortical association areas of primates

(Tovee et al. 1993; Rolls and Tovee 1994; Sugase et al. 1999; Rainer and Miller 2002; Akrami et

al. 2009; Woloszyn and Sheinberg 2009).

In chapter 4, after the discussion about storage capacity of different network structures, we

extend an analytical approach and simulation to study the transient dynamics of networks of

threshold-linear model neurons that include, as a necessary ingredient of the relevant computa-

tional mechanism, a simple feature of pyramidal cell biophysics: firing rate adaptation. Such

analysis yields the attractor states of the network and the full spectrum of time constants of

the transients associated with different steady states (Treves 1993). We provide the analytic

solution for the dynamics with which the network model responds to an ambiguous pattern,

that is ”equally” correlated with two stored patterns. We then generalize the model to probe

the response to the other morph levels with numerical simulations. In general, studying these

transients, in response to external inputs that are morphed between two stored patterns, and are

influenced by previous activity of the network, may shed light on the possible contribution of

attractor dynamics to perceptual boundary shifts. We leave this issue to be further discussed in

chapter 6.

1.2.2.1 The response to morphed patterns in IT Cortex, relevance of attractor

dynamics

Electrophysiological evidence for attractor dynamics? Later, in Chapter 5, we present

a piece of experimental data, collected in a paradigm in which the animal has to judge about an

ambiguous stimulus. We recorded from individual neurons in IT cortex while monkeys performed

a classification task on morphed visual images. We report here a population of IT neurons whose

responses evolve gradually over the course of a trial, first representing parametrically the morphed

image and later converging to represent one of the 2 ”categories”, corresponding to the 2 images.

Then we discuss the results in the context of the attractor network simulations, which highlight

key features of IT dynamics and provide insights into the local network properties that might
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underlie them.

The convergence of IT activity from a stimulus-based representation to a category-based rep-

resentation was asymmetric, in that only responses to the morphed images that resemble the

effective stimulus for an individual cell converge, whereas responses to morphed images that re-

semble the ineffective stimulus remain segregated by morph level. An asymmetric convergence

may result from multiple mechanisms, of course. We have tried to assess 2 possible underlying

mechanisms, a gradual decay of the response over time, due to the firing rate adaptation, and

attractor dynamics in the local recurrent networks. With our first simulation, we could rule out

the possibility that the convergence was the result of simple linear decay of neural responses. A

linear decay of responses had an equivalent effect at each individual morph level, and did not

produce a change from the linear dependence visible at stimulus onset, whereas the operation

of a simple attractor network produced qualitatively similar convergence to that observed in the

neural data, allowing a more detailed interpretation of the observations.

1.2.3 Experience-dependent dynamics of attractor networks in response to

morphed patterns

Can local attractor dynamics help us understand the effect of recent experience?

In chapter 6, we aim to see whether a generic model that in chapter 5 could replicate the

neurophysiologycal observations, can be used to model more complicated neural and behavioural

phenomena, including ”priming” and ”adaptation aftereffects”. Puzzled by the complexity, even

controversy, in experimental results of priming paradigms, we hypothesized that this complexity

may stem from the unfolding in time of the same basic mechanisms, and we asked what deter-

mines the direction and magnitude of the effects in priming experiments simulated in an attractor

network model.

We postulated that the notion of local attractor networks, subject to adaptation and distributed

over multiple cortical patches (O’Kane and Treves, 1992; Treves 2005), may provide a conceptual

framework, accessible to neurophysiological investigation, with behavioral predictions, for ana-

lyzing the expression of the effects of recent experience on a particular class of visual stimuli.

In chapter 6, the behavior of the system beyond the various bifurcation lines is studied both

through numerical integration of coupled nonlinear differential equations and through numeri-

cal simulations of the model. This allows us to characterize the phase diagrams of networks of

sparsely connected excitatory units endowed with global inhibition and firing rate adaptation.
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They show a very rich behavior. Depending on the values and temporal characteristics of adap-

tation, the strength of external input, the time duration of the presentation of the prime or target

and the time lag between these two, we found different emergent behaviors of the network - a

complexity which might correspond to the complexity of the psychophysical findings.



Chapter 2

Visual Adaptation

2.1 Repetition: perceptual consequences

When stimuli are repeated, neural activity is usually reduced. This neural repetition effect

has been reported at multiple spatial scales, from the level of individual cortical neurons in

monkeys (Li et al. 1993;Sobotka and Ringo 1996; Liu et al. 2009) to the level of hemodynamic

changes (measuring the pooled activation of millions of neurons) in humans using functional

magnetic resonance imaging (e.g. fMRI (Demb et al. 1995; Buckner et al. 1995)). Repetition-

related reductions also occur at multiple temporal scales, both in their longevity from milliseconds

(Sobotka and Ringo 1996) to minutes (Henson et al. 2000) and days (van Turennout 2000) and

in the latency of their expression (Henson et al. 2004). The phenomenon also occurs in multiple

brain regions, and across an impressively large number of experimental conditions. All of these

changes in neural activities are normally accompanied with behavioral manifestations.

In this chapter, we review experimental data describing how single cells, BOLD signals, and

perceptions are affected by recent experience and repetition, and describe models that link these

two datasets. We end by discussing some of the many gaps in the data and in our theoretical

understanding of contextual effects.

9
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2.1.1 Perceptual priming

The classical definition of priming stands for the behavioral phenomenon of improved processing

of a stimulus following prior exposure to that stimulus (Schacter and Buckner 1998; Tulving and

Schacter 1990). Behaviorally, priming typically manifests as increased accuracy and/or faster

speed in making judgments on a stimulus that has been previously encountered. It is thought to

reflect an implicit form of memory and learning, as it does not involve explicit memory of the

prior experience (Grill-Spector 2008; Schacter and Buckner 1998; Tulving and Schacter 1990).

In a typical priming experiment, subjects are shown an initial stimulus (prime) and are required

to make a decision (e.g., categorize the stimulus) or produce a response (generate a word) on a

subsequent stimulus (test) that is identical or related to the initial stimulus (e.g., the same object

in different views, or a new object that is related perceptually, conceptually, or semantically to

the prime). The priming effect (i.e., improvement in performance) is largest when the repeated

stimulus is identical to the initial stimulus (prime). In some behavioral paradigms of priming,

many intervening stimuli occur between the test and the prime. However, in other paradigms,

the test immediately follows the prime. Priming, could be evident also in producing a shift in

categorical boundary, in classification tasks, in which the subject is asked to judge about the

similarity of a morphed stimulus with two target stimuli (Van Rijsbergen et al. 2008 ; Furl et al.

2007; Daelli and Treves, accepted)

One particular striking aspect of priming is that it can be manifested after a single exposure to

an object and is preserved in timescales ranging from seconds to even an year (Cave 1997).

The level of priming is modulated by several factors such as the number of stimulus repetitions,

the number of intervening stimuli, and the time between repeats. The magnitude of response

time (RT) priming increases with the number of stimulus repetitions both in short timescales

(seconds/minutes) and in longer timescales (days and weeks), and this advantage remains over

weeklong delays compared to single exposures of stimuli (Brown et al. 1996). Similarly, RT

priming is largest when there are no intervening stimuli between the prime and the test stimulus

and when the temporal interval between them is shortest. Thus, immediate repetitions produce

a larger priming effect compared to when repetitions occur after several minutes or days (van

Turennout et al. 2000 ; Sayres and Grill-Spector 2006).
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2.1.1.1 Priming as a memory phenomenon

Foremost is the interest in priming as an example of ”implicit memory”. Implicit memory rep-

resents an effect of prior experience on behaviour, in the absence of conscious awareness of the

past (Graf et al. 1984). This term arose from studies of amnesiac patients with damage to me-

dial temporal lobe structures, who can show priming even though they appear unaware of any

prior exposure to the primed stimulus (i.e. lack ”explicit” memory). Warrington and Weiskrantz

(1974), for example, showed that amnesiacs were impaired relative to controls on the ”direct”

memory tests of recall and recognition for previously studied words. On indirect tests however,

in which the participants simply tried to identify degraded versions of words, amnesiacs showed

an advantage for studied words that was equivalent to that in controls.

Findings like these led to the proposal that priming reflects the operation of ”non-declarative”

memory systems supported by regions outside the medial temporal lobe, as distinct from the

”declarative” memory system that is impaired following medial temporal damage (Squire and

Cohen 1984. This proposal has been bolstered by reports of a few patients with more posterior

cortical lesions, who show intact performance on direct memory tests but impaired performance

on certain indirect tests (Gabrieli et al. 1995; Keane et al. 1995). Priming is usually distinguished

from other types of implicit memory that are intact in amnesia, such as skill-learning (Milner et

al. 1968), because it can occur after a single stimulus presentation, rather than requiring repeated

trials (Hauptmann and Karni 2002), and because it is normally specific to a particular stimulus

or process, unlike a generalised skill (see Gabrieli 1998; Schacter and Tulving 1994 for reviews).

The association of priming with implicit memory is further supported by data from healthy indi-

viduals, such as functional dissociations between direct and indirect tests as a function of study

task (Jacoby and Dallas 1981) or retention interval (Tulving et al. 1982), and reports of intact

priming when the prime is subliminal (Forster and Davis, 1984) or shows no evidence of explicit

memory (Stark and McClelland, 2000).

Nonetheless, demonstrations that priming can occur in the absence of explicit memory do not

imply that priming effects measured under normal conditions are a pure reflection of implicit

memory. Even though an indirect memory test does not refer participants to previous encoun-

ters with stimuli, participants may voluntarily, or involuntarily, recollect such encounters. As a

consequence, considerable effort has been devoted to developing methods that dissociate implicit

and explicit contributions to memory tasks (e.g. Hayman and Tulving 1989; Jacoby et al. 1993;

Richardson-Klavehn and Gardiner 1995; Schacter et al. 1989).
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2.1.2 Adaptation aftereffect

In some conditions, experiencing the adapter subsequently distorts perception of particular stim-

ulus attributes, typically biasing perception towards the opposite of the adapting stimulus. This

phenomenon, termed an adaptational aftereffect can affect the perception of various stimulus

attributes and is often linked directly to diminished responses of feature-selective neurons in the

visual cortex (Blakemore and Campbell 1969; Coltheart 1971; Tolhurst and Thompson 1975; Bar-

low 1990; Bednar and Mukkulainen 2000). Historically, stimuli demonstrating such aftereffects

are impoverished, containing little information other than the relevant adapting feature, such as

a particular colour or direction of motion.

Many diverse stimuli are effective in adaptation, and the resulting aftereffects, though they im-

pact on different aspects of perception, have much in common. For example, most aftereffects

display interocular transfer if the adapting and test eye are different (Gibson 1937; Wade et al.

1993), exhibit storage across blank periods (Spigel 1960; Thompson and Movshon 1978), and are

restricted to confined spatial zones in the visual field (Gibson 1937; Anstis and Gregory 1965).

Also, aftereffects have a finite duration that depends upon adaptor strength and exposure time

(Gibson and Radner 1937; Wolfe 1984; Magnussen and Greenlee 1987; Hershenson 1989).

But how does adaptation to a stimulus predispose the brain towards perceiving its opposite It

is alluring to ascribe aftereffects to the aberrant functioning of sensory neurons that have been

previously overstimulated. Orientation aftereffects would then derive from an imbalance among

orientation-selective neurons in the primary cortical area V1, and motion aftereffects might simi-

larly arise from direction-selective neurons in the motion-selective middle temporal (MT) cortex,

or adapting to a tilted line causes a subsequently presented vertical line to appear tilted in the

direction opposite of the adaptation line. These observations are thought to tap into competing

populations of orientation tuned neurons in the visual cortex (Coltheart 1971; Clifford et al 2000;

Jin et al 2005; Liu et al. 2007). But while there is little doubt that such feature-selective neurons

contribute to the expression of aftereffects, their precise role is difficult to pinpoint. The fact that

very different stimuli cause similar aftereffects poses a challenge for any theory of adaptation tied

to a particular functional architecture (van der Zwan and Wenderoth 1995; Clifford 2002; for a

review see Leopold and Bondar 2005). Within the domain of orientation, for example, adapta-

tion to luminance-defined bars, known to activate V1 neurons, or to more complicated stimuli

unlikely to activate V1 neurons, causes aftereffects with very similar properties ( van der Zwan

and Wenderoth 1995; Paradiso et al. 1989; Joung et al. 2000).
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2.1.3 Stereotypical dynamic properties for different adaptation aftereffect

Face-identity aftereffect has stereotypic dynamic properties that resemble those described previ-

ously for traditional aftereffects. In testing the effects of adapting and test duration using the

method of constant stimuli, Leopold et al (2005) found that, as with traditional aftereffects (tilt

aftereffect Magnussen and Johnsen 1986 or motion aftereffect), the face identity aftereffect grew

stronger as a function of adaptation time, and weaker as a function of test duration. Clearly, some

aftereffects bear a signature of early processing (e.g. retinotopically restricted adaptation fields)

and others of late processing (e.g. invariance to scale and position). But it may be that the other

shared aspects of their phenomenology, such as their temporal dynamics, can be attributed to a

stereotypical activation of the entire visual cortex that is independent of the specific stimulus.

These results underscore the difficulty in pinpointing the neural locus of aftereffects in general.

Given their positional invariance, face aftereffects are unlikely to derive exclusively from circuits

in the primary visual cortex. At the same time, their dynamics suggest a high degree of mecha-

nistic overlap with simpler aftereffects, which are often considered to have their origins in early

retinotopic processing. The question therefore arises, how is it possible that such diverse afteref-

fects, apparently resulting from adaptation of distinct populations of neurons in the visual cortex,

share temporal properties to such a degree?

One possibility is that the wiring among visual neurons throughout the brain is sufficiently stereo-

typed that the same dynamics arise wherever competing groups of neurons become differentially

adapted. This notion might allow for the present results to fit into a scheme not so different

from traditional accounts of simple aftereffects (Coltheart 1971). Such notions normally invoke

antagonistic connectivity between a pair of alternative stimulus representations, which could be

orientation-selective neurons in V1 or face-selective neurons in the inferotemporal cortex, with the

circuit dynamics generated locally in each case. While this may be a parsimonious explanation

for the observed results, there is little evidence for it.

A second possibility might be that aftereffects are, by nature, a product of interactions between

different processing stages in the brain. With respect to the cortical hierarchy, a perceptual

aftereffect might never be accurately described as purely ”low-level” or ”high-level”, since very

different visual stimuli adapt the same, multiple processing stages, albeit in different ways. While

the evidence for this hypothesis is also minimal, recent neuroimaging studies do verify that large-

scale networks in the brain, at different cortical processing stages, are affected by periods of

prolonged stimulus adaptation (Taylor et al. 2000; Tolias et al. 2001).
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2.1.4 Switch between adaptation aftereffect and priming

Recent experience with clear, prototypical stimuli may however induce complex effects on the

subsequent perception of ambiguous ones, ranging from attraction (priming) to repulsion (adap-

tation aftereffects).

In experiments with binocular rivalry, Pearson and Clifford 2005 argued that unambiguous stimuli

produce aftereffects, whereas ambiguous stimuli produce priming. Although in this study they

mainly used a different type of bistable stimuli (i.e., ambiguous motion), the results suggest that

the difference between ambiguous and unambiguous primes may not be qualitative, but could

be a quantitative difference in the temporal pattern of the priming effect following an exposure

to ambiguous and unambiguous stimuli. Kanai and Verstraten (2005) found that adaptation

to unambiguous motion leads to both aftereffect and priming depending on the adaptation-test

interval. With short ISIs, unambiguous motion indeed produces an aftereffect, but later the ef-

fect of adaptation switches to priming. A number of studies in the past consistently revealed

that a brief exposure produces a priming effect, whereas prolonged viewing of the same stimulus

produces an opposite effect (Huber and O’Reilly 2003; Kanai and Verstraten 2005; Long et al.

1992 and Pinkus and Pantles 1997). In the study by Pearson and Clifford, the blank interval

was relatively short (1 s), where a predominant negative bias is expected to occur after adapting

to an unambiguous prime. Thus, it is plausible that an unambiguous prime turns to a positive

bias with a longer inter-stimulus interval. Parsimoniously, this would obviate the need to assert

the existence of two categorically distinct priming or adapting mechanisms depending on the

ambiguousness of the priming stimulus.

In a very recent study in our group, Valentina Daelli, applied a well-established aftereffects

paradigm to test how recent experience influences perception of complex, everyday, non-face ob-

jects. She used morphing software to create continua between paired images of animals, plants or

artifacts, and then tested how the discrimination of an ambiguous image is affected by previous

adaptation to one of the end-points of the morphing continuum (Fig. 2.1). Based on the simple

hypothesis of common but distributed local mechanisms, which just summate their effects, she in-

tended to experimentally isolate distinct factors: (a) the contribution of early, low-level processes;

(b) the time scale and direction of perceptual shift; (c) the role of semantic, post-perceptual pro-

cesses; and (d) the influence of intervening distractors.

Interestingly, she found a basic shift from aftereffects to priming effects as the delay lengthens

between experiencing a prototype and seeing the ambiguous stimulus(2.2). On the other hand,
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Figure 2.1: Schematic view of the behavioral paradigm, adapted in our group

she observed the replacement of negative (aftereffect) with positive (priming) bias, given the

adapter is chosen from one of the intermediate morphed patterns that has high similarity with

both of the two end points. On top of this main finding, she describes a pattern of aftereffect

modulation by the perceptual and semantic similarity to the prototype that does not appear to

match any simplistic box model. These results provide a challenge to the development of mech-

anistic neuronal models of ecologically relevant visual perception.

Overall, this evidence suggests the hypothesis that the same fundamental mechanisms may un-

derlie aftereffects across low- and high-level stimulus dimensions, although expressed by different

neural populations and subject to different influences. Indeed, within a simplified network model

of a single (local) neural population, ”aftereffects” result simply from the presence of firing rate

adaptation (Menghini et al 2007), a ubiquitous property of cortical neurons. Their temporal

dynamics, moreover, and whether they can turn into priming effects, may strongly influenced,

in the model, by the structure of attractors, whether the patterns of activity corresponding to

unambiguous stimuli have been previously stored as local attractor states.
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Figure 2.2: Behavioral result, summarized in terms of ”category shift”. Exp1: The
adapter is one of the end points (Full adapter), long delay. Exp2: Full adapter, short delay. Exp3:

The adapter is one of the ambiguous morphs.

2.2 Masking

Firing of neurons within a cortical area normally continues to a visual stimulus for several hundred

milliseconds. Over this long period of time different factors will influence the firing of neurons

in a given cortical area. Initially the firing will be based mainly on incoming information from

the preceding cortical area (feed-forward information), but at varying temporal intervals different

feed-back mechanisms will play a modulating role.

In masking paradigms, a stimulus is rendered invisible through the presentation of a second

stimulus shortly after the first. Over the years, authors have typically explained masking by

postulating some early disruption process. In these feedforward type explanations, the mask

somehow ”catches up” with the target stimulus, disrupting its processing either through lateral

or interchannel inhibition. However, studies from recent years indicate that visual perception and
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most notably visual awareness itself may depend strongly on cortico-cortical feedback connections

from higher to lower visual areas (Fenske et al. 2006). This has led some researchers to propose

that masking derives its effectiveness from selectively interrupting these reentrant processes. In

an EEG experiment, Fahrenfort et al used electroencephalogram measurements to determine

what happens in the human visual cortex during detection of a texture defined square under

non-masked (seen) and masked (unseen) conditions. Electroencephalogram derivatives that are

typically associated with reentrant processing turn out to be absent in the masked condition.

Moreover, extrastriate visual areas are still activated early on by both seen and unseen stimuli,

as shown by scalp surface Laplacian current source-density maps. This conclusively shows that

feedforward processing is preserved, even when subject performance is at chance as determined by

objective measures. From these results, one can conclude that masking derives its effectiveness, at

least partly, from disrupting reentrant processing, thereby interfering with the neural mechanisms

of figure-ground segmentation and visual awareness itself.

Rolls and Tovee 1995 run an experiment to investigate the duration of the time for which cortical

neurons respond when the identification of a visual stimulus is just possible. In this study, authors

presented a test face stimulus for 16 ms, and followed it at different intervals by a masking stimulus

(either an N-O pattern or a face) while recording from single neurons in the temporal visual cortex

of macaques. When there was no mask the cells responded to the 16 ms of the test stimulus for

200-300 ms, far longer than the presentation time. The authors suggest that this reflects the

operation of a short-term memory system implemented in cortical circuitry. If the mask was a

stimulus which did not stimulate the cells (either a non-face pattern or a face which was a non-

effective stimulus for that cell), then, as the interval between the onset of the test stimulus and

the onset of the mask stimulus (the stimulus onset asynchrony) was reduced, the length of time

for which the cells fired in response to the test stimulus was reduced. It is suggested that this

is due to the mask stimulating adjacent cells in the cortex which by lateral inhibition reduce the

responses of the cells activated by the test stimulus. When the stimulus onset asynchrony was

20 ms, face-selective neurons in the inferior temporal cortex of macaques responded for a period

of 20-30 ms before their firing was interrupted by the mask. With the same test-mask stimulus

onset asynchrony of 20 ms, humans could just identify which of six faces was shown.

In conclusion, the effect of the mask is to reduce the total information available for the cell, the

size of the information peak, and the length of time it is signaling information. It is notable that

the information in the no-mask condition did outlast until the end of the stimulus by as much

as 200 to 300 msec, indicating some short-term memory trace property of the neuronal circuitry

which can be interpreted as visual memory, perhaps implemented by the recurrent collateral

connections, made between nearby pyramidal cells in the cerebral cortex.
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2.3 Neural substrates for perceptual priming

As with other cognitive tasks, priming is likely to involve a sequence of more or less distinct

processes, such as stimulus identification, memory retrieval and response preparation and exe-

cution (for a review, see Meyer et al. 1988). Although reaction time measures of accelerated

identification have provided important insights into cognitive variables that affect priming, it is

long recognized that the neural architecture of the underlying brain processes are not deductible

solely from the timing of overt responses.

It has become evident, that at least two mechanisms can be characterized, one is improved stim-

ulus identification through implicit learning in perceptual and conceptual representational brain

regions (Tulving and Schacter 1990; Wiggs and Martin 1998), and the other is facilitated expres-

sion of the overt response as a result of learning in fronto-striatal networks (Bayley et al. 2005;

Dobbins et al. 2004; Maccotta and Buckner 2004; Poldrack and Gabrieli 2001; Wig et al. 2005).

Psychophysical evidence for contextual effects is particularly widespread in vision (Clifford and

Rhodes 2006), including motion (Wohlgemuth 1911; Kanai and Verstraten 2005), brightness(Adelson

1999; Eagleman et al. 2004), orientation (Gibson 1937), blur(Webster et al. 2002), faces(Webster

et al. 2004; Leopold et al. 2005; Furl et al. 2007; Van Rijsbergen et al. 2008), and objects (Daelli

and Treves, accepted). Contextual influences also extend to other modalities, such as audition

(Oxenham 2001) and somatosensory processing(Wallace 2004). However, Neurophysiological evi-

dence for contextual influences is most extensive in the early visual processing of orientation and

motion, and in the whisking activity in the rodent somatosensory cortex; but context is also likely

to influence the neural processing of many other attributes, including color and border ownership.

In the following section we bring, at first, a general review of temporal dynamics of neural re-

sponses manipulated by the context, and then later, we continue with reported neural processes

correlated with perceptual phenomena.

2.3.1 Timecourse of information processing in visual cortex

Experimental studies on humans provide a rich phenomenology of behavioral effects, but it is

hard to infer from these data the mechanisms underlying such phenomena at the neuronal or net-

work levels. There have been several experimental studies trying to shed light on the temporal

course of information processing in different brain areas, but mostly those that are involved in

more abstract representation of external world, e.g. prefrontal or inferotemporal cortex (Tovee

et al. 1993; Sugase et al. 1999). Recent electrophysiological experiments on behaving monkeys
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provide invaluable information on the dynamics at the neuronal level underlying priming-like

effects. Pair associate tasks used to probe neuronal correlates of learning of associations between

stimuli present striking similarities with human priming protocols. In such tasks, the monkey

learns associations between arbitrary visual stimuli (Erickson and Desimone 1999; Rainer et al.

1999; Liu et Jagadeesh 2008; McMahon and Olson 2007).

Rainer and Miller studied the timecourse of neural activity in the primate prefrontal (PF) cor-

tex during an object delayed-matching-to-sample (DMS) task, to assess the effects of experience

on this timecourse. They have conducted the task using both novel and highly familiar ob-

jects(Rainer and Miller 2002. In addition, noise patterns containing no task-relevant information

were used as samples on some trials. Comparison of average prefrontal ensemble activity relative

to baseline activity generated by objects and noise patterns revealed three distinct activity peri-

ods. (i) Sample onset elicited a transient sensory visual response. In this sensory period, novel

objects elicited stronger average ensemble activity than both familiar objects and noise patterns.

(ii) An intermediate period of elevated activity followed, which began before sample offset, and

continued well into the delay period. In the intermediate period, activity was elevated for noise

patterns and novel objects, but near baseline for familiar objects. (iii) Finally, after average

ensemble activity reached baseline activity at the end of the intermediate period, a reactivation

period occurred late in the delay. Experience had little effect during reactivation, where activity

was elevated for both novel and familiar objects compared to noise patterns. They show that the

ensemble average resembles the activity timecourse of many single prefrontal neurons. These re-

sults suggest that PF delay activity does not merely maintain recent sensory input, but is subject

to more complex experience-dependent dynamics. This has implications for how delay activity is

generated and maintained.

Sugase et al. (1999) found that global information is represented at the initial transient firing

of a single face-responsive neuron in inferior-temporal (IT) cortex, and that finer information is

represented at the subsequent sustained firing. A feed-forward model and an attractor network

was suggested by Matsumoto et al. (2005) to reproduce this dynamics. The attractor network,

specifically an associative memory model, is employed to elucidate the neuronal mechanisms

producing the dynamics. The results obtained by computer simulations show that a state of

neuronal population initially approaches to a mean state of similar memory patterns, and that

it finally converges to a memory pattern. This dynamics qualitatively coincides with that of

face-responsive neurons. The dynamics of a single neuron in the model also coincides with that

of a single face-responsive neuron.
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2.3.2 Repetition: average network effects

Using the haemodynamic techniques of functional magnetic resonance imaging (fMRI) and positron

emission tomography (PET), priming-related effects have been observed in numerous regions of

the human brain, with the specific regions depending on the type of stimulus and the manner

in which it is processed. The most common finding is a decreased haemodynamic response for

primed versus unprimed stimuli, though priming-related response increases have been observed.

2.3.2.1 Repetition adaptation in single neurons

Neural responses throughout the sensory system are affected by stimulus history. In the infer-

otemporal cortex (IT) an area important for processing information about object shapes, there

is a substantially reduced response to the second presentation of an image. Understanding the

mechanisms underlying repetition suppression may provide important insights into the circuitry

that generates responses in IT. In addition, repetition suppression may have important percep-

tual consequences. The characteristics of repetition suppression in IT are poorly understood,

and the details, including the interaction between the content of the first and second stimulus

and the time course of suppression, are not clear. There have been several studies, looking at

different aspects of the effects produced by repetition in IT (Liu et al. 2009;Sawamura et al.

2006;; Woloszyn and Sheinberg 2009; McMohan and Olson 2007;).

Stimulus-specific repetition-related reductions in firing rates have been found in physiological

recordings of neurons in macaque inferior temporal (IT) cortex (Miller et al. 1993; Sobotka and

Ringo 1995; Sobotka and Ringo 1994. These repetition effects have been reported for awake

behaving animals performing various visual tasks (e.g. match to sample (Miller et al 1993, recog-

nition memory (Brown, and Xiang 1998)), as well as in anesthetized animals (Miller and Desimone

1993), and occur for both behaviorally relevant and irrelevant stimuli. RS effects are stimulus

specific in the sense that they do not appear to reflect a global reduction in the firing of a popula-

tion of neurons to all subsequent stimuli (Miller et al 1993). Nonetheless, the precise definition of

a ”stimulus” is important, because neural RS can exhibit invariance to some changes in stimulus

dimensions (such as the size or position of an object (Lueschow et al. 1994). The degree of RS

depends on several factors, although the precise effect of each factor can vary with brain region.

RS persists despite many intervening stimuli, particularly in more anterior regions of IT cortex

(Miller et al. 1993; Xiang and Brown 1998). RS increases with more repetitions of the same stim-

ulus, such that firing rates resemble an exponentially decreasing function of presentation number
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(Li et al 1993). This reduction in firing rates occurs primarily for visually excited neurons, and

the greatest reduction tends to occur for neurons that were most active on the first presentation

(Li et al. 199). Importantly, several studies indicate that RS onsets rapidly, as fast as 70-80 ms in

some perirhinal neurons (Xiang and Brown 1998) and with a mean population latency of around

150 ms in IT (Ringo 1996). Indeed, Xiang and Brown (Xiang and Brown 1998) suggested that

these effects are too fast for ”top-down” influences.

Liu et al. (2009) examined the time course of suppression in IT by varying both the duration

and stimulus content of two stimuli presented in sequence. The data show that the degree of

suppression does not depend directly on the response evoked by the first stimulus in the recorded

neuron. Repetition suppression was also limited in duration, peaking at approx 200 ms after

the onset of the second (test) image and disappearing before the end of the response. Neural

selectivity to a continuum of related images was enhanced if the first stimulus produced a weak

response in the cell. The dynamics of the response suggests that different parts of the input

and recurrent circuitry that gives rise to neural responses in IT are differentially modulated

by repetition suppression. The selectivity of the sustained response was preserved in spite of

substantial suppression of the early part of the response. The data suggest that suppression in IT

is a property of the input and recurrent circuitry in IT and is not directly related to the degree

of response in the recorded neuron itself.

2.3.2.2 Match enhancement

One should discuss the difference between ”match enhancement” and ”match suppression” (Baylis

and Rolls 1987; Eskandar et al. 1992; Miller et al. 1993; Miller and Desimone 1994). Even though

many single cells show suppression of responses to repetition, some show enhancement. In a recent

study, for instance, responses to repetition were suppressed, enhanced or unaffected in approxi-

mately equal proportions in macaque IT (Eifuku et al. 2004). Functional imaging studies show a

similarly mixed range of effects across areas. Zago et al. 2005 demonstrated repetition suppres-

sion for everyday objects in most ventral areas, but several parietal and occipital areas showed

significant repetition enhancement.

Previous single-cell studies of PFC reported a variety of repetition effects ranging from suppres-

sion (Kubota et al. 1980; Rainer et al. 1999; Zaksas and Pasternak 2006) to enhancement (Rainer

et al., 1999) of the responses to a repeated stimulus.
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Woloszyn and Sheinberg 2009 explored neural dynamics in IT cortex during a visual working

memory task. From the collection of match analyses, they conclude that the population of ITC

cells retained enough information about the encoded sample to initially respond more strong-

ly/quickly and to later dampen its response to a matching comparison stimulus. Crucially, this

memory trace persisted through the presentation of intervening sensory information.

In fact, the emergence of match suppression lagged visual selectivity by, on average, 35.37 ms,

consistent with recent ITC studies exploring the dynamics of repetition suppression (Sawamura

et al. 2006; McMahon and Olson 2007; Liu et al. 2009). This suggests to us that match sup-

pression could be a marker of finished cortical processing, which occurs faster for the matching

compared with the nonmatching stimuli. The earliest significant differences (in this case match

enhancement) always arose in the single-unit activity. This finding supports the conclusion that

the observed match enhancement is the result of neural processes local to ITC.

Match enhancement has been hypothesized previously to reflect the augmentation of task-relevant

visual representations (Miller and Desimone 1994; Miller et al. 1996. In agreement with the orig-

inal proposal (Desimone and Duncan 1995; Miller and Cohen 2001), can be postulated that, by

biasing information flow in posterior visual areas, feedback from PFC and/or PRh, as well as

intrinsic ITC circuitry, allows ITC neurons to respond more strongly and/or more quickly to the

remembered stimulus. The work by Woloszyn and Sheinberg 2009 has clarified the nature of this

augmentation by showing that it specifically targets those neurons essential for the representation

of the stimulus, because nonpreferred stimuli did not elicit an enhanced response. Furthermore,

it has been shown it to be more evident in ITC than previously thought, likely a result of the

selectivity of the sample of neurons.

2.3.2.3 Repetition suppression in fMRI signals

Repetition suppression (RS) is a reduction of neural response that is often observed when stim-

uli are presented more than once. Many functional magnetic resonance imaging (fMRI) studies

have exploited RS to probe the sensitivity of cortical regions to variations in different stimulus

dimensions; however, the neural mechanisms underlying fMRI-RS are not fully understood.

Epstein et al. 2008 tested the hypothesis that long-interval (between-trial) and short-interval

(within-trial) repetition suppression effects are caused by distinct and independent neural mech-

anisms. Subjects were scanned while viewing visual scenes that were repeated over both long

and short intervals. Within the parahippocampal place area (PPA) and other brain regions, sup-

pression effects relating to both long- and short-interval repetition were observed. Critically, two
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sources of evidence indicated that these effects were engendered by different underlying mecha-

nisms. First, long- and short-interval repetition suppression effects were entirely noninteractive

even although they were measured within the same set of trials during which subjects performed

a constant behavioral task, thus fulfilling the formal requirements for a process dissociation.

Second, long- and short-interval RS were differentially sensitive to viewpoint: short-interval repe-

tition suppression was only significant when scenes were repeated from the same viewpoint while

long-interval RS less viewpoint-dependent. Taken together, these results indicate that long- and

short-interval fMRI-RS are mediated by different neural mechanisms that independently modu-

late the overall fMRI signal. These findings have important implications for understanding the

results of studies that use fMRI-RS to explore representational spaces.

Repetition lag In (Henson et al. 2003), the modulation of repetition effects by the lag between

first and second presentations of a visual object during a speeded semantic judgment task was

examined using both scalp event-related potentials (ERPs) and event-related functional magnetic

resonance imaging (efMRI). Four levels of lag were used within a single session, from zero to one,

to tens of intervening stimuli, and which allowed partial separation of the effects of interference

from the effects of time. Reaction times (RTs) showed that the magnitude of repetition priming

decreased as lag increased. The ERP data showed two distinct effects of repetition, one between

150 and 300 ms post stimulus and another between 400 and 600 ms. The magnitude of both effects,

particularly the earlier one, decreased as lag increased. The fMRI data showed a decrease in the

haemodynamic response associated with repetition in several inferior occipitotemporal regions,

the magnitude of which also typically decreased as lag increased. In general, and contrary to

expectations, lag appeared to have mainly quantitative effects on the three types of dependent

variable: there was little evidence for qualitative differences in the neural correlates of repetition

effects at different lags.

2.3.3 Is repetition suppression related to behaviour?

The priming of a stimulus by another has become an important tool for exploring the neural

underpinnings of conceptual representations. However, priming effects can derive from many dif-

ferent types of relationships and it is important to distinguish between them in order to be able

to develop theoretical accounts of the representation of conceptual knowledge.

One way to examine the correlation between fMRI-adaptation and visual repetition priming is to
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dissociate behavioral performance from neural activity. For example, Henson et al. 2000 used fa-

miliar and unfamiliar stimuli to manipulate stimulus familiarity. They found attenuated responses

to the repetition of familiar stimuli but enhanced responses to the repetition of unfamiliar stimuli,

which excludes a simple one-to-one correspondence between adaptation and repetition priming.

Xu et al. (2007) reports a full dissociation between adaptation and repetition priming in the

scene-specific region in the ventral visual cortex, the parahippocampal place area (PPA). Ob-

servers viewed pairs of very similar and less similar scene photographs. Two tasks were used

to induce opposite behavioral patterns to identical stimuli. In the scene task, observers judged

whether two photographs originated from the same scene and, thus, needed to attend to the

photos as a whole. As such, behavioral responses were faster and more accurate when the two

photographs were very similar than when they were less similar. In the image task, observers

judged whether the two photographs were identical pixel by pixel and, thus, needed to focus on

feature analysis. This, however, resulted in faster and more accurate behavioral responses when

the two photographs were less similar than when they were very similar. Because overall reaction

time and accuracy showed no difference between the two tasks, processing load was matched.

This was further supported by the lack of difference in peak amplitude and latency of the PPA

responses between the two tasks. Although observers might use different strategies and displayed

different eye movement patterns, these parameter did not seem to affect neural and behavioral

responses. Most interestingly, the significant interaction between stimulus similarity and task

observed in the behavioral performance was not reflected in the responses in PPA. Rather, PPA

responses were greater for the less similar image pairs than for the very similar image pairs,

independent of stimulus processing time. This suggests that attenuation in ventral visual ar-

eas is stimulus-specific rather than processing load-specific. Using a whole-brain random-effects

analysis, rather than region-of-interest (ROI) analysis to localize the PPA, the authors identi-

fied two regions that mirrored the behavioral performance, the anterior cingulate cortex (ACC)

and left insula. Both regions are involved in decision making (Wig et al., 2005). As such, both

task-independent and task dependent fMRI responses were identified in ventral visual cortex and

prefrontal cortex, respectively.

The strength of this study is the manipulation of task difficulty while keeping the stimuli identical,

thus providing evidence that fMRI-adaptation is stimulus specific. However, given the limitations

of fMRI, single-cell level evidence is necessary to fully demonstrate the stimulus specificity of

fMRI-adaptation. For example, mon-keys exhibit repetition suppression and repetition priming,

but such correlation disappeared with trial-by-trial analysis (McMahon and Olson 2007). A com-

bination of imaging and single-cell recordings with closely matched paradigms would help resolve

whether dissociation between fMRI-adaptation and behavioral performance can be observed in

monkey single-unit responses across trials.
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Semantic priming While it is well known that repetition priming (the repeated presentation

of the same stimulus) is associated with a reduced neural response, called repetition suppression

(RS), the neural correlates of semantic priming (when two stimuli are related in meaning but

not identical) are not so well established. Raposo et al (2006) compared the neural correlates

of repetition and semantic priming using written words, independently manipulating form and

meaning. In an fMRI study, subjects saw single words and made a concrete abstract decision.

Two consecutive words were identical (town-town) or varied along a continuum of semantic re-

latedness, from highly related (cord-string) to unrelated (face-sail). The authors found distinct

patterns of activation for repetition and semantic priming. Repetition priming was associated

with repetition suppression in left inferior frontal gyrus (LIFG), bilateral parahippocampal gyrus

and right fusiform gyrus. The authors also observed increased activation for word repetition in

the right middle frontal gyrus (RMFG) and ight middle temporal gyrus (RMTG), which may

reflect recognition of item’s earlier presentation. There was no evidence of suppression for seman-

tic relatedness. Semantic priming was associated with enhanced activation in multiple bilateral

fronto-temporal areas, i.e. semantic enhancement. The results suggest that repetition and se-

mantic priming in visual word recognition depend on distinct cognitive processes and neural

substrates.

2.4 Review of the current models

All the experiments described in the previous sections have revealed a rich phenomenology on how

reaction times, or perceptual boundaries, depend on various factors such as strength and nature of

associations between memory items, time intervals between stimulus presentations, and so forth.

Interestingly, experimental protocols on humans present striking similarities with pair associa-

tion task experiments in monkeys. In several animal experiments, electrophysiological recordings

of cortical neurons in such behavioral tasks have found two types of task-related activity, ”ret-

rospective” (related to a previously shown stimulus), and ”prospective” (related to a stimulus

that the monkey expects to appear, due to learned association between both stimuli) (Sakai and

Miyashita 1991). Mathematical models of cortical networks allow theorists to understand the

link between the physiology of single neurons and synapses, and network behavior giving rise

to retrospective and/or prospective activity. Equally common, are mathematical/connectionist

models, more abstract in their level of representation, that have been used to account for the

variety of priming effects reported in humans.

In the following, we try to review some of the existing models on contexual perception.
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• Models of semantic priming In modeling contextual perception, there have been sev-

eral lines of studies. Some works were focused on semantic priming. According to the

association-based view of priming, semantic memory is assumed to be organized as a se-

mantic network where concepts and features are encoded in a localist way by single nodes

(Anderson 1983; Collins and Loftus 1975). In localist networks, direct and indirect strengths

would lead to priming effects through automatic spreading of activation from node to node.

According to the feature-based view of priming, semantically related concepts would share

common semantic features (Cree et al. 2003)in distributed networks (McRae 2004; Randall

et al. 2004; Becker et al. 1997 Bullinaria 1995; Masson 1995; Plaut 1995; Moss et al. 1994)

based on attractor network architectures (Hopfield, 1982). In distributed networks, recall

of a given concept in memory corresponds to convergence of the network to an attractor

state, that is, a stable distributed pattern of activation or inhibition of units coding for

features in a localist way (Akrami et al. 2009). The level of overlap between prime and

target features then leads to priming effects through activation/inhibition of features units,

without direct associations between concepts but with direct associations between features.

Another group of theorists has used more biologically realistic models of cerebral cortex to

account for the monkey neurophysiological data (Brunel 2009; Amit 1995). These models

account both for retrospective activity in working memory (Amit et al. 2003; Haarmann

and Usher 2001; Renart et al. 2001; Wang 2001; Amit and Brunel 1997) and prospective

activity in paired associate tasks (Lavigne 2004; Mongillo et al. 2001). However, the wide

variety of semantic priming effects in human challenges cortical network models of biophys-

ically realistic neurons.

There have been also several studies on semantic priming in which the authors investigated

how priming effects depend on the type of relationships between prime and target (direct vs.

indirect), and on the association strength (estimated in production norms as the percentage

of production of targets associated to a given prime word among several subjects; McRae

et al. 2005; Cree and McRae 2003; McRae et al. 1997; Battig and Montague 1969; Shapiro

and Palermo 1968). Below, we discuss further two of such models, ”Long-term repetition

priming” and ”similarity-based priming.

– Long-term repetition priming One of the earliest accounts of long-term repetition

priming was based on Morton’s (1969) logogen model of word recognition. Morton pro-

posed that long-term priming is the result of a word-detector unit’s threshold being

lowered as a result of previous suprathreshold activation of that word unit. Bavelier

and Jordan (1992) proposed a similar account of long-term repetition priming in a
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multilayered connectionist model. McClelland and Rumelhart (1986) proposed an al-

ternative mechanism for long-term repetition priming in neural networks with recurrent

connections. They postulated that exposure to each pattern involves some incremen-

tal learning. Later, Becker et al (1997) adapted the model proposed by McClelland

and Rumelhart and refer to this postulate as the ”incremental learning hypothesis.”

It predicts that all of the connections in the network that are involved in processing a

pattern, not just the thresholds of units, should undergo some incremental learning as

a result of priming. In McClelland and Rumelhart’s model, each learning step involves

a large initial change in each weight, which rapidly decays down to a permanent or very

slowly decaying smaller change. Thus, priming is thought to reflect the normal course

of learning. When a network is exposed to a previously primed pattern, it should settle

to a stable response more quickly because the connections involved in producing the

response have been reinforced.

– Similarity-based priming The threshold lowering and incremental learning hypothe-

ses both can account for long-term repetition priming, in which responses to the same

input pattern are faster or more accurate on repeated presentations. However, when

the prime and target stimuli are not identical but related, the threshold account pre-

dicts no long-term effect. The incremental learning account makes no specific predic-

tion about how long-term priming would depend on the level of similarity between

primes and targets, although McCleUand and Rumelhart (1986) did make the general

argument that long-term priming should generalize from primes to similar targets on

the basis of the amount of overlap in their representations. For example, in form-based

priming (Forster 1987), the prime and the target are similar in that they share per-

ceptual features but are otherwise unrelated, whereas in semantic priming the prime

and the target are semantically similar or are semantic or contextual associates. Any

theory capable of making specific predictions about these cases must make stronger

assumptions about the nature of the representation, the processing of stimuli, or both.

In a recent memory-based model (Brunel and Lavigne 2008), different types of semantic

priming (restricted to positive priming) were studied. However, this model lacks enough

ingredients possibly underlying the dynamics producing adaptation aftereffect, namely firing

rate adaptation.

• Source confusion account Huber and O’Reilly (2003) hypothesized that the constant

integration of perceptual information over time implies the possibility that we may incor-

rectly blend together one face and the next as our eyes scan across positions, or as the crowd
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moves. Yet we do not suffer greatly from such source confusion between successive faces.

To explain this and other results that involve the immediate effect of successively presented

stimuli, they suggest that the perceptual system includes a discounting mechanism that

appropriately reduces the response to a previously presented face, and this reduction serves

to offset the effect of source confusion. They proposed that neural habituation is the basic

mechanism behind temporal discounting, which automatically parses the stream of per-

ceptual events. This theory initially was developed to explain priming effects with words,

but recently was generalized to examine immediate face repetition priming in a threshold

identification task as a function of prime duration and face inversion (Huber 2008). In this

study, the behavioral priming effect, which is faster or slower reaction time to the target

after presenting with a short or long duration prime, respectively, is modeled by means of

the conflicting acts of lingering activation from the prime and accumulating depletion of

synaptic resources. This study is limited to the role of prime duration, and how its prolon-

gation makes any positive priming disappear. They have not discussed negative priming

(adaptation aftereffect in their model).

• Models of adaptation aftereffect in face perception Some other studies looked at the

interaction between local shunting adaptation and a near-threshold neural baseline (Noest

et al. 2007). This neural model explains the observed behavior, without invoking any

”high-level” decision making or memory process. However, it has been shown that also

high-level, complex processes such as face perception are subject to aftereffects, which can-

not be explained based on a combination of adaptation to low-level features (Webster and

MacLin 1999).

Several recent demonstrations using visual adaptation have revealed high-level aftereffects

for complex patterns including faces. While traditional aftereffects involve perceptual dis-

tortion of simple attributes such as orientation or color that are processed early in the

visual cortical hierarchy, face adaptation affects perceived identity and expression, which

are thought to be products of higher-order processing. And, unlike most simple aftereffects,

those involving faces are robust to changes in scale, position and orientation between the

adapting and test stimuli.

• Models of bi-stable perception Settling down in one or the other competing percept,

can be viewed also in a general framework of ambiguous perception: Certain visual displays

are not perceived in a stable way but, from time to time and seemingly spontaneously, their

phenomenal appearance wavers and settles in a distinctly different form. This phenomenon

is called bistable perception and occurs with a variety of ambiguous visual displays. The
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most extensively studied instance is binocular rivalry (Wheatstone 1838; Blake and Lo-

gothetis 2002), where the phenomenal experience of an observer alternates between two

images that are continuously presented to the left and right eye, respectively. In spite of

the somewhat ”unnatural” method of stimulus delivery, there is good evidence that binoc-

ular rivalry shares the typical properties of other instances of bistable perception (Andrews

and Purves 1997). Another classical example is the phenomenan in which during prolonged

observation of an ambiguous figure, sudden perceptual reversals occur, while the stimulus

itself stays unchanged.

Almost two centuries of research on the phenomena of perceptual instability culminated

in two explanatory approaches: The bottom-up approach assumes passive, automatic and

locally adaptable mechanisms during early visual processing as underlying perceptual re-

versals (e.g. Toppino and Long 1987). In apparent contradiction, the top-down approach

assumes that active, volitional processes near perceptual awareness cause reversals (e.g.

Horlitz and O’Leary 1993; Leopold Logothetis 1999; Rock et al. 1994). Both approaches

are based on numerous experimental evidence (for a review see Long and Toppino, 2004)

and although several authors suggest that both bottom-up factors and top-down factors

play an important role for perceptual reversals (Blake and Logothetis 2002; Kornmeier and

Bach 2005, Kornmeier and Bach 2006; Long and Toppino 2004;), a theory integrating all

empirical findings is still missing to date.

There have been several proposed models focusing on neural mechanisms underlying spon-

taneous percept switching under steady viewing of an ambiguous stimulus (Noest et al.

2005) most of them mainly relying on the rule of adaptation and/or noise in causing a form

of instability in response of the neural assembly which codes for one percept, followed by

a transition to the other competing percept. Bistable perception, and binocular rivalry in

particular, are often modeled mechanistically using reciprocal inhibition architecture, as

shown schematically in Fig. 2.3 (left). There are two neuronal populations whose activi-

ties represent the two competing interpretations of the stimulus. The dominant population

exerts a strong inhibitory influence on the competing one, so that the latter is suppressed,

and only one stimulus is being perceived at a time, a scenario known as mutual exclusivity

in most models. The switching in dominance between the two populations is realized by an

adaptation mechanism, such as spike frequency adaptation and/or synaptic depression. The

adaptation process weakens the inhibition either by decreasing the activity of the dominant

population or by decreasing the strength of inhibitory connection between the populations,

thus allowing the suppressed population to become active. The resulting activity of such

system are deterministic continuous anti-phase oscillations of the firing rates of the two pop-

ulations, and corresponding switches of two percepts. These general principles have been
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Figure 2.3: Bistable perception, Binocular rivalry and bistable perception are often
modeled using reciprocal inhibition mechanism, as shown schematically on left. There are
two neuronal populations whose activities represent the two competing interpretations of
the stimulus (u1 and u2). Each population receives a deterministic input of equal strength
Ii and independent noise ni. Lines with circles represent inhibitory connections of the
strength β between the two competing populations. The dominant population exerts a
strong inhibitory influence on the competing one, so that the latter is suppressed, and only
one stimulus is being perceived at a time. (Right) Schematic representation of the extreme
versions of the model, either noise only or adaptation only. This two figures are adapted

from Shpiro et al. 2009

incorporated in many mathematical models of binocular rivalry (Lehky 1988; Kalarickal

and Marshall 2000; Lago-Fernandez and Deco 2002; Laing and Chow 2002; Stollenwerk and

Bode 2003; Shpiro et al. 2007). These models can be termed oscillator models and they do

not rely on noise.

On the other hand, there is another set of neural competition models, in which, different

percepts are represented by multiple stable states (attractors) of the system (Hertz et al.

1991; Haken 1994; Salinas 2003; Riani and simonotto 1994; Kim et al. 2006; Moreno-Bote

et al. 2007;freeman 2005). Noise is responsible for the switches between the states, so that

in the absence of noise no alternations are possible. These are the noise-driven attractor

models (Moreno-Bote et al. 2007).

Recently, Shpiro et al have shown that these two types of models, can be realized within a

single theoretical framework (Shpiro et al. 2009). They show that oscillator and attractor

behavior can be the two regimes of a single neuronal competition model that includes both
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noise and adaptation processes (Figure 2.3). In the oscillator regime, adaptation causes the

populations to alternate in dominance, while noise is only the source of the irregularity in

the switching times. In the attractor regime, noise is the primary cause of the switches.

While the adaptation process is still present, it is not strong enough to cause alternations

on its own. In the absence of noise, the model in the attractor regime would not switch.

However, still in this model, the two percepts are reduced to two homogenous neural popu-

lations, reciprocally inhibiting each other. Although the attractor dynamics emerges from

this reduced model, its relevance to ”memory” and all phenomena attached to it, is not clear.

Is bistable perception a memory-less phenomena? Whereas bistable perception

was long considered a memoryless process (Fox and Hermann 1967; Borsellino et al. 1972),

it has become clear that phenomenal appearance can be influenced by past perceptual

states. For example, when the presentation of an ambiguous display is interrupted and

later resumed, the dominant appearance often remains the same (Maier et al. 2003. This

persistence of the dominant appearance stabilizes perception considerably, slowing or even

arresting perceptual reversals for intermittently presented displays. The ”memory” in ques-

tion reflects a longer history of dominance periods, not merely the last dominance period

before the stimulus interruption (Brascamp et al. 2008; Pastukhov and Braun 2008).

2.4.1 Concluding remarks

We have reviewed some of the studies, from behavioral and neuronal point of view, related to

contextual recall of different sensory inputs. These studies reveal a rich phenomenology on

how in terms of reaction times or category boundary, the performance may change. In parallel,

there have been several theoretical themes that modeled various pieces of such phenomenology.

However, it remained a challenge whether a generic cortical model is able to unify together

different aspects of contextual recall.
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Associative Memory Networks

In this chapter, we start with a review of memory representations in the cortex and of the possible

neural substrates of the storage of visual memories and of their retrieval later on, conditioned on

different sensory input.

Then, in section 2, we discuss the contribution of different modeling approaches to study memory

related phenomena in the brain.

3.1 Memory in the cortex

Memory is the record of experience represented in the brain. There are multiple forms of memory

supported by distinct brain systems. Specific forms of memory are characterized by whether they

last a short or long period(Dobbin et al. 2002), by whether they involve unique experiences or

accumulated knowledge(Squire et al. 2007; Eichenbaum et al. 2007), and by whether memory is

expressed explicitly by conscious remembering or implicitly through changes in the speed or bias

of performance in particular tasks(Schacter 1992). All forms of memory are based on changes in

synaptic connections within neural circuits of each memory system. The strength of memory is

modulated by emotional arousal and declines in aging.

Memory about episodes in life (episodic memory), about facts of common knowledge (semantic

memory) and acquired skills are best examples of long-term memory, the first two of which are

usually called declarative memory, whereas the last one can be considered as non-declarative.

33
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Memory about the immediate past, for instance keeping track of the previous words in this sen-

tence, which is necessary in order to understand the meaning of the whole sentence, is an example

of working/short-term memory. Long-term memory is commonly hypothesised to be implemented

via changes in synaptic efficacies and working memory in many cases is considered to be on-going

neuronal activity, that can be related to a previously learned long-term memory pattern.

According to most neuroscientists, the cortex and the structures inside the medial temporal lobe

form the neural system of declarative memory. The hippocampus is important during the for-

mation of long-term memories and the neo-cortex serves as thr storehouse where memories are

consolidated after being temporarily maintained in the hippocampus.

A major breakthrough in understanding memory systems and their underlying brain mechanisms

began with the study of a patient known by his initials H.M. (HM Patient; Scoville and Milner

1957). This case involved an experimental surgical treatment for epilepsy in which the medial

temporal lobe was removed. The surgery largely ameliorated the seizures but unexpectedly left

H.M. with a severe amnesia which allows him to remember a limited amount of information for a

short time (up to a few minutes). Despite his inability to remember new information, H.M. has

considerable intact memories from his childhood and information obtained up to a few years before

his surgery. From these observations researchers concluded that the parts of the medial temporal

lobe that were removed in H.M, including the hippocampus and adjacent parahippocampal re-

gion, play a critical role in converting a short-term memory to a long-term, permanent memory

store. Furthermore, the fact that H.M. retains memories for events that occurred remotely prior

to his surgery indicated that these brain areas are not the site of permanent storage but instead

play a role in the organization and permanent storage of memories elsewhere in the brain through

the process known as memory consolidation.

The evidence for the involvement of the cortex in long-term memory also primarily came from

neuropsychology. Patients with anterior temporal lobectomy were impaired in task, which in-

volved recognition of visual stimuli regardless of the level of the hippocampal lesion (Milner

2003). Animals with ablation of the prehinal cortex showed deficit in delayed matching to sample

tasks (Buckley and Gaffan 1998). Neurophysiological evidence for the role of cortex in mem-

ory, from monkey IT cortex and prefrontal cortices support this position(Funahashi et al. 1989;

Romo et al. 1999; Akrami et al. 2009. In what follows we review some of these evidence from

electrophysiology of monkey temporal cortex.
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3.1.1 Synaptic plasticity and memory

The cellular basis of memory involves activity dependent plasticity in synaptic connections. An

important model in the study of the cellular basis of memory is the phenomenon of long-term

potentiation (LTP), a long-lasting increase in the strength of a synaptic response following stim-

ulation (Bliss and Collingridge, 2007). LTP is prominent in the hippocampus, as well as in the

cerebral cortex and other brain areas that are involved in different forms of memory. LTP is

typically induced by the co-occurrence of excitatory input and intracellular depolarization at

the so-called Hebbian synapse, involving N-methyl-d-aspartate (NMDA) receptors that allow the

entry of Ca++ into the synapse, which activates cyclic adenosine monophosphate (cAMP). Subse-

quently, cAMP activates several kinases, some of which increase the number of synaptic receptors.

In addition, cAMP activates cAMP-response element binding protein (CREB), which operates

within the nucleus to activate a class of genes called immediate early genes, which, in turn, ac-

tivate other genes that direct protein synthesis. Among the proteins produced is neurotrophin,

which activates growth of the synapse. Thus, a series of molecular reactions plays a vital role in

fixating the changes in synaptic function that occur in LTP.

Evidence that the permanent fixation of memories depends on this molecular and cellular cascade

of events comes from studies showing that memory fixation can be halted by interference with

the molecules in this cascade. Many studies have shown that drugs that block NMDA receptors,

cAMP, CREB, or other molecules involved in protein synthesis block memory. These treatments

are effective when given before or within minutes after learning, and but are not effective if they

are delayed, indicating that the molecular cascade leading to protein synthesis is not essential to

initial learning or to maintaining short-term memory, but is essential for permanent memory fix-

ation. In addition, studies using genetically modified mice have shown that alterations in specific

genes for these molecules can dramatically affect the capacities for LTP and memory fixation.

In addition to LTP, there is also mechanism that diminishes the strength of connections at in-

frequently used synapses called long term depression (LTD). LTD involves the same molecular

substrates as LTP but occurs with different timing rules of activity at synapses. The combination

LTP and LTD allow for a sophisticated reorganization of circuits that create neural representa-

tions of information. LTP and LTD occur among all brain structures that are known to participate

in different kinds of memory. These cellular and molecular events occur on a time scale of seconds

and minutes, are essential for the transition from short-term storage to long-term memory, and

occur in every brain structure that participates in memory.
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3.2 Visual memory and object representation in cortex

Object recognition can be thought of as the process of matching the image of an object to its

representation stored in memory. Because different viewing, illumination and context conditions

generate different retinal images, understanding the nature of the stored representation and the

process by which sensory input is normalized is one of the greatest challenges in research on visual

object recognition. It is well known that familiar objects are recognized regardless of viewing an-

gle, scale or position in the visual field. How is such perceptual object constancy accomplished?

Does the brain transform the sensory or stored representation to discard the image variability

resulting from different viewing conditions, or does generalization occur as a consequence of per-

ceptual learning, that is, of being acquainted with different instances of any given object?

Most theories which postulate that transformations of an image representation precede match-

ing assume either a complete three-dimensional description of an object (Ullman 1989), or a

structural description of the image that specifies the relationships among viewpoint-invariant

volumetric primitives (Marr 1982; Biederman 1987). In such theories, the locations are specified

in a coordinate system defined by the viewed object. In contrast, theories assuming perceptual

learning are viewer-centered, postulating that three-dimensional objects are modeled as a set of

familiar two-dimensional views, or aspects, and that recognition consists of matching image fea-

tures against the views held in this set.

An important question for understanding brain function is whether a particular object (or face)

is represented in the brain by the firing of one or a few (gnostic or ”grandmother”) cells (Barlow

1972), or whether instead the firing of a group or ensemble of cells each with different profiles

of responsiveness to the stimuli provides the representation. A grandmother cell representation

is a code which is very sparse, in that each neuron responds to only one object or stimulus. A

very large number of neurons would be required, since each neuron responds to only one stim-

ulus. This encoding is described as local, in that all the information that a particular object is

present is carried by one neuron. In contrast, ensemble encoding is described as distributed, in

that the information that a particular stimulus was shown is distributed across a population of

neurons. Many more stimuli can potentially be represented by a distributed code, as each object

is represented by a combination of different neurons firing, and this type of code can have many

other advantages, as described below. The actual representation found is distributed. Baylis et

al. 1985 showed this with the responses of temporal cortical neurons that typically responded

to several members of a set of 5 faces, with each neuron having a different profile of responses

to each face (Baylis et al. 1985). In a more recent study using 23 faces and 45 nonface natural

images, a distributed representation was found again (Rolls and Tovee, 1995), with the average
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sparseness being 0.65.

Edmund Rolls has discussed the advantages of the distributed encoding actually found are as

follows (Rolls 2000).

Exponentially high coding capacity This property arises from two factors: (1) the encoding

is sufficiently close to independent by the different neurons (i.e., factorial), and (2) the encoding

is sufficiently distributed. Part of the biological significance of the exponential encoding capacity

is that a receiving neuron or neurons can obtain information about which one of a very large

number of stimuli is present by receiving the activity of relatively small numbers of inputs (in

the order of hundreds) from each of the neuronal populations from which it receives.

Ease with which the code can be read by receiving neurons For a code to be plausible,

it is a requirement that neurons should be able to read the code. This is why when we have

estimated the information from populations of neurons, we have used in addition to a probability

estimating measure (PE, optimal, in the Bayesian sense) also a dot product (DP) measure, which

is a way of specifying that all that is required of decoding neurons would be the property of adding

up postsynaptic potentials produced through each synapse as a result of the activity of each

incoming axon (Abbott et al. 1996; Rolls et al. 1997). It was found that with such a neuronally

plausible decoding algorithm (the DP algorithm), the same generic results were obtained, with

only a 40% reduction of information compared to the more efficient (PE) algorithm.

Generalization, completion, graceful degradation, and higher resistance to noise

Because the decoding of a distributed representation involves assessing the activity of a whole

population of neurons, and computing a DP or correlation between the set (or vector) of inputs

and the synaptic weights, a distributed representation provides more resistance to variation in

individual components than does a local encoding scheme, and this provides for higher resistance

to noise (Panzeri et al. 1996) and for graceful (in that it is gradual) degradation of performance

when synapses or input axons are lost.

Speed of readout of the information The information available in a distributed repre-

sentation can be decoded by an analyzer more quickly than can the information from a local

representation, given comparable firing rates. Within a fraction of an interspike interval, with a
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distributed representation, much information can be extracted (Treves 1993; Rolls et al. 1997;

Treves et al. 1997). In effect, spikes from many different neurons can contribute to calculating the

angle between a neuronal population and a synaptic weight vector within an interspike interval.

With local encoding, the speed of information readout depends on the exact model considered,

but if the rate of firing needs to be taken into account, this will necessarily take time, because of

the time needed for several spikes to accumulate in order to estimate the firing rate.

Invariance in the neuronal representation of stimuli One of the major problems that

must be solved by a visual system is the building of a representation of visual information that

allows recognition to occur relatively independently of size, contrast, spatial frequency, position

on the retina, angle of view, etc. This is required so that if the receiving regions such as the

amygdala, orbitofrontal cortex, and hippocampus learn about one view, position, or size of the

object, the animal generalizes correctly to other positions, views, and sizes of the object. The

majority of face-selective neurons in the inferior temporal cortex have responses that are relatively

invariant with respect to the size of the stimulus (Rolls and Baylis 1986).

3.2.1 Role of IT

Indeed, early lesion studies had suggested that IT contributes to the retention of visual infor-

mation (Mishkin, 1982) and single-cell recordings in IT in subjects performing delayed response

tasks showed visually selective delay period activity (Fuster and Jervey 1982; Miyashita and

Chang 1988. Despite these initial reports, additional work revealed the selective delay period

activity in IT to be susceptible to the presence of intervening sensory information (Miller et al.

1993); concomitantly, it was shown that PF neurons were resistant to such interference (Miller

et al. 1996). Nonetheless, the acknowledged involvement of IT in visual working memory ex-

tends beyond mere encoding and into the memory epoch as it has been shown recently that a

population of IT neurons does regain category selectivity toward the latter stages of the delay

interval (Meyers et al. 2008; Akrami et al. 2009). In addition, IT is involved in the matching

phase of visual working memory because some IT neurons respond more strongly to a stimulus if

it matches the on actively held in mind or more weakly if a stimulus simply repeats itself, effects

commonly referred to as match enhancement and match suppression, respectively (Baylis and

Rolls 1987; Eskandar et al. 1992; Miller et al. 1993; Miller and Desimone 1994). In fact, match

enhancement is hypothesized to reflect the biasing of visual activity in IT by PF feedback (Miller

and Desimone 1994; Miller et al. 1996). The precise cortical origins and circuitry underlying
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match effects, however, remain elusive.

Woloszyn and Sheinberg (2009) examined the temporal evolution of the single-cell responses,

individually and jointly as a population, during the various phases of visual working memory.

They conclude that IT is an integral component of the working memory system for visual ob-

jects. Importantly, by comparing single-cell activity with local field potential (LFP) dynamics,

they show that match enhancement is likely a consequence of neural processing occurring within

IT, supporting the view that it plays a central role not only in object perception but also in the

matching component of visual working memory. Their results support the view that IT activity

depends on both the physical visual world and memory demands for objects within that world.

3.2.1.1 Representation of familiar and novel objects in IT

Long-term familiarity facilitates recognition of visual stimuli. IT neurons show modulations of

their responses to novel and familiar images. Li et al. (1993) screened for visual activity with

familiar visual stimuli and then tested monkeys’ abilities to report repeated presentations of

novel stimuli when there were variable numbers of intervening familiar image presentations. In

general, there was a declining neuronal response to novel images with repetition. Using a serial

recognition task, Xiang and Brown (1998) found that 40 percent of the visually responsive neurons

in macaque temporal cortex showed a decrease in spike magnitude with stimulus familiarity.

They also reported ”novelty” cells that responded to first presentations of new stimuli, but not

familiar stimuli. Kobatake et al. (1998) measured the response of IT neurons to complex shapes

in 5 monkeys with different levels of familiarity with those shapes. Two monkeys trained to

discriminate the shapes showed a higher proportion of neurons with robust responses to shapes

within the training set compared with the 3 naive animals. More recently, Freedman et al. (2006)

studied the response of IT neurons to rotated versions of familiar images and between novel and

familiar images. In general, they found that neurons showed greater stimulus selectivity for

familiar items. For rotated versions of familiar items, stimulus selectivity was typically greatest

at the familiar, learned orientation. In addition, however, the average spiking response was

less to familiar stimuli than novel stimuli due to a greater sustained firing of IT neurons to

novel stimuli in the phasic period after the initial transient response (approx. 150-600 ms). In

the perirhinal portion of IT, Holscher et al. (2003) found that the response of single neurons

increased gradually over a few weeks of experience training, and that this effect could combine

with short term response reductions observed within a session.

Anderson et al. (2008) measured the local field potential (LFP) and multiunit spiking activity

(MUA) from the inferior temporal (IT) lobe of behaving monkeys in response to novel and familiar
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images. In general, familiar images evoked larger amplitude LFPs whereas MUA responses were

greater for novel images. Familiarity effects were attenuated by image rotations in the picture

plane of 45 degrees. Decreasing image contrast led to more pronounced decreases in LFP response

magnitude for novel, compared with familiar images, and resulted in more selective MUA response

profiles for familiar images. The shape of individual LFP traces could be used for stimulus

classification, and classification performance was better for the familiar image category. Recording

the visual and auditory evoked LFP at multiple depths showed significant alterations in LFP

morphology with distance changes of 2 mm. In summary, IT cortex shows local processing

differences for familiar and novel images at a time scale and in a manner consistent with the

observed behavioral advantage for classifying familiar images and rapidly detecting novel stimuli.

3.2.1.2 Delay period and contribution of IT, prefrontal cortex and prihinal coretx

For more than three decades, it has been known that neurons in prefrontal cortex exhibit per-

sistent activity during the delay periods of working memory tasks (Fuster and Alexander, 1971).

The view that this activity is the neural correlate of short-term storage has come under close

scrutiny recently (Rushworth et al. 1997; Rowe et al. 2000; Lebedev et al. 2004), with some

proposing that the major role of PF in visual working memory maintenance is not storage per se

but rather the reactivation of the appropriate visual representations (Ranganath and D’Esposito

2005). In this latter framework, activity in both the PF and IT is necessary to accurately recall

visual memories, but the actual memory reinstatement occurs within IT. Woloszyn and Shein-

berg (2009) showed that the reliability with which individual IT neurons signal stimulus identity

increased toward the latter stages of the delay period, suggesting that the relevant memory was

reactivated just before the subject was to be faced with a same/different decision. This rise in

stimulus selectivity was also apparent when the activities of multiple neurons were combined,

consistent with a previous population analysis showing the same phenomenon but with regard to

category instead of stimulus identity information (Meyers et al. 2008). It is appealing to specu-

late that feedback projections from PF, known from anatomical studies to be abundant (Pandya

and Yeterian 1990), were responsible for reinstating stimulus-specific neural activity within IT.

This conjecture is further supported by studies showing anticipatory delay period activity within

PF itself (Rainer et al. 1999; Rainer and Miller 2002). This would be consistent with the notion

that, when bottom-up input and short-term memory meet in IT, bottom-up input dominates,

allowing for a more veridical representation of the sensory environment. Another possible source

of feedback to IT is the medially adjacent perirhinal cortex (PRh). Although both IT and PRh

have the ability to respond robustly to a non-optimal stimulus if it signals the presentation of the
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preferred stimulus, this retrieval signal appears first in the PRh and only later in IT, suggesting

that it flows backward from PRh to IT (Sakai and Miyashita 1991; Naya et al. 1996 and 2001).

Most germane to this discussion is the observation that delay period selectivity in both PRh and

IT persists through distractors only for the sought after target and not for the stimulus that

cued the retrieval of that target (Takeda et al. 2005). Assuming that the rise in delay period

selectivity is target related and PRh neurons have the ability to retrieve the same item that

served as the cue, then it is possible that PRh neurons participate in reinstating working memory

contents in IT Other medial temporal lobe structures, for example, the entorhinal cortex (Suzuki

et al., 1997), could also contribute to this process, but their relevance to visual object retrieval

specifically is less well understood.

3.2.1.3 Silent delay activity

During the recording from cells in extrastriat cortex, the lack of firing by a neuron does not

mean that the cell does not contribute to storing the contents of working memory. For example,

recent computational work by Mongillo et al. (2008) has shown that synaptic calcium kinetics

in a recurrent network of neurons can be used to store traces of past spiking activity. Additional

modeling work by Sugase-Miyamoto et al. (2008) has focused on the ability of IT neurons to store

past visual inputs by ”remembering” specific patterns of synaptic activity that occur at the time of

encoding. Both of these models hypothesize that memory traces are implicitly stored in synapses

and only explicitly read out in spiking form at the time of a memory recall signal and/or new

visual input. Such quiescent storage models are compatible with the evidence presented in a recent

paper by Woloszyn and Sheinberg (2009), wherein individual neurons during the complex occluder

condition do not show widespread delay period selectivity but do exhibit match enhancement that

occurs essentially simultaneously with the arrival of new visual information. In other words, it

could be the case that, if IT spiking delay selectivity is washed out by interfering visual input, an

implicit synaptic memory trace persists that manifests itself in the form of match enhancement

at the time of recall. In fact, delay period selectivity itself could be reflecting synaptically stored

memories, which would suggest a tight link between the neural processes underlying delay period

selectivity and match enhancement.
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3.3 Simple models of memory storage and memory retrieval

All regional anatomical explorations implicate this postulate: a common functional identity [is de-

termined by] the same type of structure and connections, whatever the mammal examined. Cajal

1922

A century and a decade after Cajal wrote these words, many of the enduring questions of cortical

neurobiology that he helped identify remain unanswered. One such question is the degree to

which computations in different cortical regions of different species can be encapsulated in a sin-

gle canonical microcircuit: a kind of basic wiring diagram which, although embellished, remains

fundamentally unaltered from mouse to man and across all cortical regions.

3.3.1 A canonical microcircuit for neocortex

The uniformity of the mammalian neocortex (Hubel and Wiesel 1974; Rockel et al. 1980) has

given rise to the proposition that there is a fundamental neuronal circuit (Creutzfeldt 1977; Brait-

enberg and Schuz 1998) repeated many times in each cortical area. The anatomical organization

that has emerged from studies (Gilbert and Wiesel l979; Douglas and Martin 1991) of neuronal

morphology and immunochemistry is one of stereotyped connections between different cell types:

pyramidal cells connect principally to other pyramidal cells, and the smooth cells connect princi-

pally to pyramidal cells. Pyramidal cells are excitatory; smooth cells are GABAergic and thought

to be inhibitory. Some neurons of both types are driven directly by thalamic input and others

indirectly (3.1).

The implication of this anatomical uniformity is that the computations performed by different ar-

eas of neocortex may also be uniform, or at the very least, highly similar. Thus although there are

undoubtedly some anatomical variations across areas (e.g. Ding et al. 2009 for perihinal cortex,

Lund 1988 for primary visual cortex), an argument can be made that functionally, the similari-

ties outweigh these differences (Creutzfeldt 1977, Phillips et al. 1984). Given this computational

uniformity, many have hypothesized that differences in the inputs to and the representations in

a network may be sufficient to generate the broad functionality associated with the neocortex.

In the following we briefly present the properties of excitatory and inhibitory neurons. Then, we

continue with a review of exciting models of memory in cortex.
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Figure 3.1: The Canonical Cortical Microcircuit, circa 1989

excitatory connections The middle layer IV, which in primary cortical areas appears as a

thick layer of granule cells, is the main termination site for the thalamic afferents to the cortex.

In secondary and association cortices, this layer contains pyramical cells which are smaller than

those in superficial and deep layers. Layer IV neurons send glutamergic project to layer II and

III and receive input also from deep layers. It is interesting that even though the main thalamic

afferents to the cortex terminate on dendrites of layer IV neurons, they form no more than 20

% of the synapses in this layer (this number has been estimated to be 5 % in cat primary visual

cortex(Ahmed et al. 1994;)).

The superficial layers II/III appears later in development than the deep layers and might have

originated as result of an extension of the neurogenic period in mammals.

Inhibitory interneurons and their connections Inhibitory interneurons are GABAergic

neurons and comprise 20 % of neurons in the cortex. Inhibitory neurons lack dendritic spines and

hence are also called smooth neurons. Their major output is to spiny neurons, but they do not

form than 15 % of the targets of the spiny neurons. There are various types of inhibitory neurons

in the cortex, among which the basket cellsare the most salient ones and amount to 20% of the

GABAergic cells in the brain(Kisvarday 1992). Basket cells form connections with pyramidal

cells in layers both below and above the payers where their cell bodies are located. However, in
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the middle layers they project mostly within the layer of their cell bodies. Their major targets

are spines, dendritic shafts, and to lesser extent somata of pyramidal and spiny stellate cells.

Double banquet cells form another major class of inhibitory interneurons. Their somata are

mainly located in layers II/III and their axons run in layers II-V. They receive inhibitory inputs

from other interneurons and contact presumably the apical dendrites of pyramidal cells, thus

forming a double inhibitory circuit.

Chandelier cells are found in the superficial layers and in layer IV, and form contacts with

the initial parts of the axons of pyramidal cells (mainly in layers II/III).

Martinotti cells form another type of inhibitory neurons whose somata are located in deep

layers, and whose axons arborize in layer I. GABAergic sparsely spiny non-pyramidal cells are

also a source of feedback inhibitory currents to pyramidal cells.

The exact role of the above-mentioned interneurons is not clear and it is not known why there

are so many morphologicallly different types of interneurons. Nevertheless, one may speculate

about the dunctional significance of these cells, from their peculiarities. For instance, axoaxonal

double bouquet cells may emphasize activity within a narrow cortical column.

It must be added that current view of the role of GABAergic interneurones in cortical-network

function has shifted from one of merely dampening neuronal activity to that of an active role

in information processing. Paulsen and Moser 1998 explored a potential role of hippocampal

GABAergic interneurones in providing spatial and temporal conditions for modifications of synap-

tic weights during hippocampus dependent memory processes (Paulsen and Moser 1998).

3.3.2 Attractor neural networks: the Hopfield model and its variants

The variety of theoretical approaches to the modeling of memory is as wide as the variety of

experimental approaches. Modelers explore many different levels, from molecular and single cell

models to very high level models (Fuster 1995). In an intermediate family of models, can be

built with more or less complex ”formal neurons”, from the binary neuron of the Hopfield model

(Hopfield 1982) to spiking neurons like the integrate-and-fire neuron (Amit et al, 1994). These

networks were classically developed to model working memory but in turn can be used as building
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blocks for models with more complex functions (Dehaene and Changeux 1997).

Attractor neural networks belong to such category in which ”memory states” are formed during

learning. A stimulus, when shown to the neural network (assembly), elicits a configuration of ac-

tivity specific to that stimulus. This configuration of activity is then learned via Hebbian synaptic

modifications. These synaptic modifications in turn enable the neural assembly to sustain an ac-

tive representation of the stimulus (i.e. the ensemble of neural activities specific to that stimulus),

in the absence of it: a ”memory state”. It was Hopfield who introduced the general concept of

attractor neural network, in which this behaviour is generically observed. More specifically, in his

paper of 1982 he defines an associative memory model based on formal neurons which represents

the first full mathematical formalization of Hebb ideas and proposals on the neural assembly, the

learning rule, the role of the connectivity in the assembly and the neural dynamics.

Most associative memory models are based on Hebbian learning rules. In fact, after the basic

proposals of Stent and Hebb, remarkable progresses have been made in both the experimental

studies of synaptic plasticity (see talks given at this symposium) and the theoretical analysis of

Hebbian type learning rules. In many cases the so called covariance rule (Sejnowski 1977) and

other closely related rules (such as the BCM rule) are compatible with experimental data, and

on the theoretical side these rules can be shown to be efficient in models of formal neurons (in

particular the Hopfield model uses a covariance rule).

3.3.2.1 The basic formalism of the Hopfield model

Donald Hebb proposed that if a neuron often contributes to the firing of another neuron the

synapse from the first neuron to the second one becomes stronger. He proposed that this leads

to the formation of cells assemblies which underlie memory storage in the brain (Hebb, 1949).

Following Hebb, the theoretical analysis of the formation of attractors corresponding to memory

patterns through recurrent connections has been put forward from the 1970s (Amari 1971; An-

derson et al. 1977, Little and Shaw 1978, and Nakano 1972).

Hopfield (1982) presented an autoassociative memory model based on a network of highly in-

terconnected two-state threshold units (’neurons’). He showed how to store randomly chosen

patterns of OS and 1s in the network by using a Hebbian learning algorithm. He was also able

to show that for symmetrical connections between the units, the dynamics of this network is

governed by an energy function that is equivalent to the energy function of an Ising model spin

glass (Kirkpatrick and Sherrington 1978).
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Probably, the most influential work in this area was the work of Amit, Gutfreund and Sompolin-

sky (1985), that used the replica method to solve the Hopfield attractor network. They were able

to calculate analytically the number of patterns that can be stored in a fully connected network

of spin neurons. The model was defined as follows.

Consider a network of N neurons each of which represented by a spin variable vi = +1,−1, i =

1...N . At any time each neuron receives an input from other neurons that is equal to:

hi(t) =
∑

j 6=i

Jijvj(t)

which Jij is the weight of the synapse from neurons jto i. Furthermore, consider p = αN randomly

generated patterns {ηµ
i }, µ = 1...p, which each ηµ

i is equal to 1 or -1 with equal probabilities and

α is the storage load. Amit et al (1985) showed that if the synaptice weights take the form of

Jij =
1

N

p
∑

µ=1

ηµ
i ηµ

j (3.1)

and at each time step one of the units (say unit k) is updated according to

Pr(vk(t + 1) = 1) =
eβhk(t)

e−βhk(t) + eβhk(t)
, (3.2)

then there exists a critical storage load αc(β) so that for α < αc(β)the network would be able

to retrieve the stored patterns after being provided with a partial cue. Here β = 1
T

is the inverse

temperature. The main idea for solving this model was that the dynamics of the network can be

described by the following Hamiltonian:

H = −1

2

∑

i6=j

JijviVj (3.3)

Using this Hamiltonian, one can calculate the free energy of the system and average it over the

quenched noise using the replica trick (Mezard, Parisi, Virasoro 1987). This will lead to the

following replica symmetric mean-field equations:

m = 〈η
∫ +∞

−∞

dz√
2π

e−
z2

2 tanh(β(mη +
√

αrz))〉 (3.4)

q = 〈
∫ +∞

−∞
tanh2(β(mη +

√
αrz)) (3.5)

r =
q

(1 − β + βq)2
(3.6)
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Figure 3.2: Storage capacity α versus temperature T . In the inset the region of replica
symmetry breaking (below TR) is shown

where m is the order parameter which measures the overlap between the activity of the network

and that of the stored pattern and 〈〉 represents the average over Pr(η). Non-zero solution for

m mean the existence of a retrieval state (of course one should check the stability of the solution

too). The phase diagram of the system is shown in Fig 3.2. The Hopfield neural-network model

is attractive for its simplicity and its ability to function as a massively parallel, autoassociative

memory. Nevertheless, a number of limitations of the Hopfield model have been pointed out.

First of all, the storage capacity (the number of memory patterns that can be stored in the

network) is limited to a fraction of the number of processing elements (McEliece et al. 1986).

Second, the standard Hopfield model is unsuccessful at storing temporal sequences of memory

patterns (Hopfield, 1982). Third, as a model of the brain, it is unrealistic, due to the requirement

of symmetrical connections between the units. Finally, it is quite limited in its ability to store

sets of correlated patterns. After the work of Amit, Gutfreund and Sompolinsky (1985), many

others worked on various modification of the same system.

3.3.2.2 Simple models meet psychology, not neurophysiology

Short term memory models (Nadal et al 1986), obtained as simple variants of the original Hopfield

model, allow for a comparison with psychological data. These models reproduce basic properties

of human working memory as studied by psychologists - forgetting of old memories which are

erased by new ones, but also more elaborate phenomena, such as primacy effects and proactive

interference (Nadal et al 1986). It is not clear, however, whether such simple models can account

for more complex phenomena as described by Baddeley 1988. Another successful domain is the

modeling of the effect of lesions in the cortex. In particular, a phenomenon similar to prosopag-

nosia is generically observed in neural networks (Virasoro 1988; Kropff and Treves 2007; Ruppin,

Reggia 1998): information relative to individual memories is lost before the information which

characterizes the class.

But what about insights that ”models” could possibly offer us in electrophysiological experi-

ments? From the very definition of the first Hopfield type models, it was obvious that no direct

comparison with data at the neurophysiological level could be possible. Quite recently, it has

been understood how to build a new generation of models (Amit et al 1994), as a compromise

between the need for preserving simple systems, exhibiting the same collective properties as in



Chapter 3. Associative memory networks 48

the Hopfield model, and the need for incorporating more realistic details which would allow for

a direct comparison with the phenomenology of recordings during memory tasks. Very encour-

aging results have been obtained: the self-sustaining selective neural activity exhibited in these

models is in nice correspondence with the phenomenology of single unit recordings in monkeys

during delayed response tasks, for example in inferior temporal (IT) cortex (Miyashita 1988) or

in prefrontal (PF) cortex (Fuster 1995).

Towards a test of the attractor neural network paradigm An attractor network has sev-

eral preferred activity states, such that relevant external inputs cause network activity to change

dynamically and approach one of these preferred states, usually the one most closely correlated

with some aspects of the inputs. An interesting development of such models concerns learning of

temporal context. The hypothesis is that when two stimuli are often shown one after the other,

synaptic modifications will occur in such a way as, when one of the stimuli is shown, neurons

selective to the other also tend to be activated. Thus memory states corresponding to two stimuli

which often appear one after the other become correlated. Models implementing such type of

learning (Amit et al 1994) have been shown to reproduce quantitatively the results of the exper-

iment of Miyashita, in which precisely these correlations were measured in IT cortex(Miyashita

1988). The availability of a detailed learning dynamics (Brunel 1996) enables to predict these

correlations as a function of the temporal correlations existing in the sequence of stimuli. The

ability of these models to analyse experimental data and to make new predictions has made pos-

sible a collaboration between physicists and neurobiologists, in order to set experiments which

will test these predictions. As a result, many attractor networks have been proposed to account

for numerous cerebral functions with discrete end values, including spatial orientation, sensory

pattern recognition, categorical perceptual judgments, and execution of movement trajectories

(Lukashin et al. 1996; Wyttenbach et al. 1996; Bartlett and Sejnowski 1998; Gala et al. 2004;

Wills et al. 2005; Wong and Wang 2006).

Given the properties of a specific cortical region, Inferotemporal cortex that is believed to be the

storehouse of the visual memories, we have hypothesized a possible detectable role, played by

attractor dynamics which will be explained fully in Chapter 5.
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3.4 Dynamics of large, more realistic associative networks

The focus of many analytical studies of the collective properties of neural networks, has been on

studying the steady-state behaviour, i.e. the attractor structure. If any, the typical dynamics

of symbolic neural units considered in earlier, statistical flavoured models, and in models form

the Connectionist school, and even implemented in simulations is Glauber dynamics, or some

more or less close relative. In this class of artificially defined dynamics, at each discrete time

step, the activity value of each unit is modified according to some update rule. The algorithm is

asynchronous in the sense that each unit is updated according to its own clock, as in distributed

systems for parallel processing, or it is asynchronous in the sense that only one randomly chosen

unit is updated at each step, as in Monte Carlo algorithms. The somewhat tricky point is now

to identify to which time scale a discrete time step is correspond to, if sensible conclusions about

the collective phenomena time scales are to be drown. The inter-spike interval, or the synaptic

conductances and dendritic integration time constants seemed to be viable choices.

Starting with the assumption that Glauber-type, discrete time dynamics are not enough to real-

istically describe dynamics of neural assemblies, many researcher adapted a model of Integrate-

and-Fire spiking neurons (Treves 1993; Abbott and Vreeswijk 1993; Battaglia and Treves 1998;

Brunel and Hakim 1998; Brunel 2000. IF formal models are capable of representing with a degree

of accuracy what happens at the level of single spikes; they are simple enough to give some hope

for an analytical treatment; And last, single IF neurons have been shown in many cases to provide

a good approximation to the dynamics of more complex model neurons (e.g.,Bernander et al.,

1991).

Here, we briefly review some of these works and in the next session, will discuss the possible ways

to define dynamics in a rate-model network, ignoring the very time fast time scales of membrane

voltage dynamics.

3.4.1 Dynamics of sparsely connected spiking neurons

The simplest suitable model is the integrate-and-fire neuron with conductance-based synaptic

transmission (Eccles, 1964) This latter feature amounts to assuming that an action potential

event in the pre-synaptic cell causes a conductance change in the post-synaptic cell. The synaptic

conductance successively follows its own dynamics, typically inactivating, or decaying, for example

with an exponential time behavior. Treves (1993) analysed this family of models with analytical

tools and yielded an analytical formula for the time constants of the exponentially decaying
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transients modes, through which firing activity in the network approaches the firing at steady

state. We bring here a summarized review of Treves 1993.

The time evolution of the membrane Vi of cell i during an interspike interval follows the RC

equation

Ci
dVi(t)

dt
= g0

i (V
0
i − V

(
i t)) + gK

i (t)(V K
i − V K

i ) +
∑

α

gα(t)(V α − Vi(t)) + Ii(t) (3.1)

where Ci is the capacity of the cell membrane, g0
i its passive conductance, V o

i the resting poten-

tial, gk
i an active potassium conductance producing firing rate adaptation, V K

i the corresponding

equilibrium potential, and gα and V α the conductance and equilibrium potential of each input

synapse, α. Ii(t) is an external current injected into the cell, condirered here solely in order to

illustrate, the way the model would mimic in vitro data on the response characteristics of neor-

cortical cells.

The process of spike emission is faster than the time scales of interest, and hence it is not mod-

eled in detail; rather, as the potential reaches a threshold value, a spike is added to the spike

count, and the potential itself is reset to a hyperpolarization potential, from which the evolution

resumes as in Eq. (3.1). 3 In Eq. (3.1) is introduced an intrinsic potassium conductance in order

to produce a simplified version of the phenomenon of rate adaptation. Its dynamics is simply

described by assuming it to decay exponentially in between spikes and to be incremented by a

fixed amount during each spike emission

dgK(t)

dt
= −gK(t)

τK
+ ∆gK

∑

k

δ(t − tk,i) (3.2)

Synapses Synaptic conductances, both intrinsic and on afferents, are modeled by a conven-

tional exponentially decaying behaviour. A spike emitted at time tk,jα
by a presynaptic cell jα

activates, after a short interval ∆t summarizing axonal and synaptic delays, a conductance on

the postsynaptic membrane which then follows the equation

dgα(t)

dt
= −gα(t)

τα
+ ∆gα

∑

k

δ(t − ∆t − tk,jα
) (3.3)

The three above equation, together with the prescription concerning spikes, form a closed system,

once the architecture of the network, the incoming afferents and all the various parameters are

specified.
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It is convenient to express all characteristic potentials in terms of the variable

x =
V − V ahp

F

V thr
F − V ahp

F

measuring the excursion of the membrane potential between spikes, for the cells in class F . The

simple assumption concerning the connectivity and the synaptic efficacies are reflected in the

fact that the inputs to any cell in the network are determined by globally defined quantities,

namely the mean fields. These measure, as a function of time, the effective fraction of synaptic

conductances (in units of ∆ g) opened on the membrane of any cell of a given class (say, F) by

the action of all presynaptic cells of another given class (G):

ZG
F =

1

NG

∑

α∈G

gα(t)

∆gG
G

(3.4)

Mean-field analysis A mean-field description is obtained by summing up the equations de-

scribing the dynamics of individual units to get (fewer) equations that describe collective be-

haviour. Thus grouping Eqs. 3.1 results in Nc functional equations describing the evolution in

time of the fraction of cells of a particular class that at a given instant have a given membrane

potential, while grouping Eqs. 3.4 results in NcinNc equations describing the dynamics of the

summed conductance opened on the membrane of a cell of a particular class by all the cells of

another given class.

For the moment, we assume a dynamic in absence of firing rate adaptation. The mean-field

equations governing the dynamic of the system are of the form

ẋi(t) = AF (t) − xi(t)BF (t) (3.5)

AF (t) = x0
F ω0

F + xE
F ωE

F zE
F (t) + xI

F ωI
F zI

F (t) + xE
S ωS

F SF (t) (3.6)

ρF (x, t) =
1

N

∑

i

δ(x − xi(t)) (3.7)

ρ̇F (x, t) = BF (t)ρF (x, t) − [AF 9t) − xBF (t)]
∂

∂x
ρF (x, t) (3.8)

+ δ(x)AF (t)[ρF (0+, t) − ρF (0−, t)] (3.9)

− δ(x − 1)[AF (t) − BF (t)W ]ρF (1−, t) (3.10)

żF
G(t) = − 1

τF
G

zF
G(t) + [AF (t − ∆t) − BF (t − ∆t)]ρF (1−, t − ∆t) (3.11)

where, w0
F denotes the inverse of the time constant for passive membrane leakage in cells of class

F , WG
F is in fact NG

∆
gG
F

CF
that measures, in units of frequency, the total synaptic strengths of cells
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of class G (of which there are NG) onto a cell of class F .

The density function ρ(x, t) should be completed by setting the boundary condition as below:

[AF (t) − BF (t)]ρF (1−, t) = AF (t)9ρF (0+, t) − ρF (0+, t)] (3.12)

This system of mean-field equations has stationary solutions characterized by a constant firing

rate for each cell class. As the neuronal current-to-frequency transfer function under stationary

conditions is rather similar to a threshold-linear function, while each synaptic conductance is

constant in time, the stationary solutions are essentially the same as can be obtained using much

simpler, non-dynamical methods with threshold-linear units. The advantage of the dynamical

treatment, however, is that one can describe the approach to the asymptotic solutions, charac-

terized by transient modes that decay with an exponential time dependence eλt. By linearizing

the dynamical equations near a stable stationary solution and manipulating them algebraically,

as explained in detail in, one obtains Eq. (3.13) yielding all the possible values of λ (they must

all have a negative real part for the solution to be stable).

Different time scales For any possible stationary asymptotic firing behaviour of the network

of formal neurons before, there is an infinite set of transient modes, each associated with a complex

time constant λ. The full λ spectrum for a given stationary state is obtained as the set of solutions

of the complex equation

|Q(λ) − eλ∆t1| = 0 (3.13)

where Eq. 3.13 denotes the determinant of a matrix of rank Nc (the number of classes), composed

of the matrix Q(k) and the identity matrix 1. The form of Q(λ) is determined by the description

chosen to model single units, i.e. neurons and synapses. Once that description, and all the pa-

rameters that accompany it, are specified, one has to solve Eq. (3.13) to find the time constants

that govern the collective behaviour of the network. This last step may involve a straightforward

numerical procedure, if Nc is small, or further analytical manipulation followed by numerical

evaluation, if Nc is large or, in particular, tends to infinity. In either case, the set of k values

obtained reflects the parameters describing cells and synapses, and thus explicitly links the single

unit dynamics (the level at which the model attempts to capture relevant biophysical features)

with network dynamics (where contact with neurophysiological experiment can be made).

The dependence of the spectrum on the underlying parameters is in general very complicated,

but may be characterized as follows. The spectrum, plotted on the complex plane Re(λ), Im(λ),

where both axes are measured in Hz, presents a gross, a fine and a hyperfine structure (see Fig.

2). The gross structure consists of those λ values which satisfy Eq. (3.13), whose real part is in
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Figure 3.3: Time constant spectrum. Schematic representation of the spectrum of time
constants characterizing collective dynamics, representing the dependence on the main model

parameters, as found by numerically solving Eq. (3.13.

the kHz range and beyond. These values correspond thus to fast time scales, and are determined

by fast time parameters (e.g. 1 ms) such as the delay At. They are also very sensitive to global

conditions like the detailed balance of excitation and inhibition, and in fact an instability associ-

ated with an imbalance of this sort may show up as one or more of the λs of the gross structure

acquiring a positive real part. There are two reasons, however, for not focusing one’s attention

on the gross structure of the spectrum. One is that, inasmuch as fast phenomena characterizing

the real neural system have either been omitted altogether from the model (such as the Hodgkin-

Huxley details of spike emission) or crudely simplified (such as unifying all axonal and synaptic

delays into a unique delay parameter At), the model itself is not likely to be very informative

about the fast dynamics of the real system.

Second, in the presence of a stable stationary solution and of transients (those associated

with the fine and hyperfine structures) lasting longer than, say 5ms, the faster transients are

not very significant anyway. The fine and hyperfine structures both consist of orderly series of λ

values satisfying Eq. (3.13), whose real parts are similar (within a series), while the imaginary

parts take discrete values ranging from zero all the way to infinity, with approximate periodicity

2Im(λ) = 2πv, where v is the firing rate of a particular group of cells. The (negative) real

parts are complicated functions of all the parameters, but in broad terms they are determined by
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(and similar in value to) the inverse of the conductance time constants. The fine and hyperfine

structures differ in the magnitude of their real parts, i.e. in their time constants, in that relatively

fast inactivating conductances (e.g., those associated with excitatory transmission via AMPA

receptors) produce the fine structure, while slower conductances (e.g. the intrinsic ones underlying

firing-rate adaptation (Brown et al. 1983), or GABAB inhibitory ones (Connors et al. 1988))

produce the hyperfine structure. The fine structure, which therefore corresponds to time scales

intermediate between those of the gross and hyperfine structures, is perhaps the most interesting,

as it covers the range in which the formal model best represents dynamical features of real neuronal

networks.

Summary In this analysis the phenomena relying on synchronicity can not survive. Instead, in

discussing transients towards stationary asynchronous solutions, therefore in situations in which

it is a good approximation to consider those solutions as both relevant and stable, and external

inputs as fixed in time after onset, the method already yields a way of relating the transient

time scales to the biophysical parameters introduced in the model. Fast time parameters, such as

axonal conduction times and synaptic delays, may have an important effect on stability but, within

a stable solution, only result in externally rapid transients (the gross structure of the spectrum).

Conductance inactivation times have been shown to play the main role; those corresponding

to synaptic conductances in determining the relatively fast transients of the fine structure, and

that of the intrinsic (adapting) potassium conductance in determining the slow transients of the

hyperfine structure.

This finding that the time of relaxation to stationary state can be of the order 5 ms, indicates that

recurrent networks of spiking neurons can be very fast and is in fact relevant to the experimental

data showing that about 60% of the information about visual stimuli in the IT is transmitted by

the firing rate of neurons in the first 20 − 50ms after response onset.

3.4.1.1 Realistic time course of synaptic conductance

The type of synaptice conductance dynamics used in Treves 1993 was meant as a representation

of the summed dynamics of many individual channels, and was an approximation of the more

accurate α-function representation.

Abbott and Vreeswijk (1993) adapted the same mean-field approach to analyse the stability of the

asynchronous state in a population of all-to-all, pulse-coupled, nonlinear neurons or oscillators.

Moreover, they have considered an α-function type dynamics for the variable E characterising
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the input coming from one oscillator to the population (here we keep the original notations of).

The state of an oscillator xi is described

dxi

dt
= F (xi) + G(xi)E(t) (3.14)

where F is an arbitrary positive-definite function that characterizes the behavior of the neuron

in the absence of coupling; G determines the dependence og the coupling on xi (where xi runs

between zero and one), and E(t) is a dynamical variable modeling the inputs coming from the

other units. If oscillator i reaches xi = 1 at time t0, xiis reset to zero and E(t) is incremented by

an amount

E(t) → E(t) +
α1α2

(α2 − α1)N
(eα1(t0−t) − eα2(t0−t) (3.15)

with α1 and α2 arbitrary constants except that α2 > α1. In the limit α2 → α1 = α this becomes

the familiar α-function respone

E(t) → E(t) +
α2

N
(t − t0)e

α(t0−t) (3.16)

If we assume that the oscillators pulse at a constant, single oscillator rate R (or, equivalently,

a rate NR for the total population), then, form Eq. 3.16, we have an expression for E0, the

steady-state, single unit firing rate:

E(t) = E0 =

∫ t

−∞
dt

′ α1α2R

(α1 − α2)
(eα1(t−t

′

) − eα2(t−t
′

)) = R (3.17)

To analyse the asynchronous state, it is convenient to make a change of variables, replacing xi

by yi:

yi =

∫ xi

0

E0dx

F (x) + E0G(x)

Then, to describe the state of the full population, they use a density function ρ, and flux J

(similar to Treves, 1993 ) defined by

ρ(y, t) =
1

N

N
∑

i=1

δ(y − yi(t)) (3.18)

J(y, t) = [E0 + Γ(y)ǫ(t)]ρ(y, t) (3.19)

(3.20)
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where

dyi

dt
= E0 + Γ(yi)ǫ(t) (3.21)

ǫ(t) = E(t) − E0 (3.22)

Γ(y) =
E0G(x)

F (x) + E0G(x)
(3.23)

In the range 0 < y < 1, these satisfy the continuity equation ∂ρ
∂t

= −∂J
∂t

, and at the end points, te

boundary condition J(0, t) = J(1, t). They have determined the conditions that must be satisfied

by the time constants and phase dependence characterising the coupling between the oscillators

in order for the asynchronous state to be stable.

The eigenvalues of such oscillators are highly dependent on the form of coupling Γ. For zero

coupling, one can find the exact solution of both imaginary part and real part of the eigenval-

ues. Then, the eigenvalues obtained for zero coupling can be used to construct a weak-coupling

perturbation expansion for the case of small Γ(y). The zero coupling case is marginally stable

with the imaginary eigenvalues λ = 2πinE0. Small coupling adds a real part to these eigenvalues

determining the stability or instability of the asynchronous state. The real part of the eigenvalues

for large n is proportional to −1/n2.

3.4.2 Dynamics in rate-models

The most direct way to model neural systems is to gather data on the currents expressed by

individual neurons (Connors et al 1982; McCormick et al. 1985) and to use this information to

compute the voltages of each neuron in the network. However, the resulting model could be very

difficult to analyze and understand. Instead, most work on modeling neural network uses an

approach that describes neural activity solely in terms of the rate of action potential firing. The

advantages of using a firing-rate model are simplicity and ease of analysis and simulation. Firing

rate models have been developed and derived many times in the literature(Wilson and Cowan

1972, 1973;; Hopfield (1984). In classical neural network models, the input current is generally

taken to be linear function of the total excitatory and inhibitory input firing rates. However,

most of these rate models were dealing with solely stationary state-state of a network.

In the previous section, we discussed different approaches to describe the dynamics of a local

network of spiking neurons. At this point, it begs the question, how to define the dynamics in a

rate-based model in which the information is coded in coarse time averaged of spiking activities.

It is interesting to see whether the asynchronous state, analyzed in (Treves 1993; Abbott and
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Vreeswijk 1993) can be described by a firing rate model. One can use the result to compare the

behaviour of transients about the asynchronous state in the full model using the density ρ(y, t)

to describe the population and in a simpler model where the population is described solely by

the average firing rate R(t) = J(1, t) and the detailed distribution over y is ignored. Under what

conditions is this valid?

To construct a firing-rate model, once can first determine the single oscillator firing rate as

function of the coupling variable E(t) in the static case when E(t) is a constant, say R0(E). In

the simplest models, the dynamic firing rate R(t) is determined by the equation

dR

dt
= α0[R0(E) − R] (3.24)

where α0 is a constant. E is given by equations similar to those of the spiking model except that

R(t) replaces J(1, t)
dE

dt
= −α1E + H (3.25)

with
dH

dt
= −α2H + α1α2R (3.26)

by construction R0(E0) = E0 so the firing-rate model has an asynchronous solution identical to

that of the full model.

What about the transients about this solution? The full description has an infinite

number of transient models while the firing-rate model has only three with eigenvalues given by

(λ + α0)(λ + α1)(λ + α2) = α0α1α2R
′

0(E0) (3.27)

where R
′

0 is the derivative of R0. The best strategy might be to match these eigenvalues to the

longest lasting models of the full model ignoring the more rapidly dying transients. Clearly this

will only work for parameter values allowing a stable asynchronous state but even so there is a

complication. In fact, as n increases the ral part of the eigenvalue tends to become less negative.

Indeed, as was mentioned before, the real part of the eigenvalues for large n, in pulse model, was

proportional to −1/n2. Therefore, one cannot simply match the eigenvalues of the firing rate

model to the modes of the full model with the least negative real parts.
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• in summary

We can argue that the firing-rate model provides a coarse-grained description so that transients

of ρ(y, t) with rapid variations in y are irrelevant. In this case one would match the eigenvalues

of the firing-rate model to the longest wavelength models of the full model. However, one might

still worry about the effect of the higher models since they are not damped quickly. To apply the

firing-rate description one must be assured either that these hight n modes will not be excited or

that they will have no important effects. It is possible to think of two remedies for such conflict:

1 The situation is much less murky when noise is present. Noise makes the real parts of the

high-n modes more negative. If the noise level is high enough, a situation can arise, where the

n = 1 mode is the longest lasting mode. In this case, the justification of a firing-rate description

is more straightforward.

2 Taking insight from Treves 1993 and Treves, Rolls and Simmen 1997, one can think of this

higher modes as the gross structure of the eigenvalue spectrum. Thus, the model itself is not

likely to be very informative about the fast dynamics of the real system -those relating to single

action potentials or axonal delay. However, it can be safely used to study the phenomena that

are dependent on synaptic conductance time constant.

3.5 Spike frequency adaptation

Spike-frequency adaptation, a gradual reduction of the firing frequency in response to a con-

stant input(Kandel et al. 2000; Wilson 1999), is a prominent feature of several types of neurons

that generate action potentials, and it is observed in pyramidal cells in cortical slice prepara-

tions (Barkai and Hasselmo, 1994; Connors et al. 1982; Lorenzon and Foehring 1992; Mason

and Larkman 1990), or in vivo intracellular recordings (Ahmed B et al., 1998). The biophys-

ical mechanisms of spike-frequency adaptation have been extensively studied in vertebrate and

invertebrate systems and often involve calcium-dependent potassium conductances (Meech RW

1978; Sah 1996). However, little is known about its computational role in processing behaviorally

relevant natural stimuli, beyond filtering out slow changes in stimulus intensity. Recent stud-

ies have sought to attach computational significance to this ubiquitous phenomenon in cortical
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circuits. Spike-frequency adaptation is thought to be important for functions as diverse as short-

term memory (Wilson 1999), contrast adaptation (Sanchez-Vives et al. 2000), neuronal plasticity

(Koch 1999), attention (Wilson et al. 2000), and the extraction of high-frequency signals from

complicated input stimuli (Benda et al. 2005). It has been suggested that adaptation might be

a determining factor in setting the oscillation frequency of cortical circuits (Crook et al. 1998;

Fuhrmann et al. 2002; van Vreeswijk and Hansel 2001) for the temporal decorrelation of the in-

puts (Goldman et al. 2002; Wang et al, 2003), for rate-of-change and anticipation computations

in cortical circuits (Puccini, Sanchez-Vivesa, and Compte 2007), and in balancing coding and

prediction (Treves 2004). Adaptation may also provide the mechanism which drives alternations

between dominant and suppressed states of perception such as those found perceptual bistabiliy

(Lehky 1988; Wilson et al. 2000; Shpiro et al 2009).

3.5.1 Prediction through adaptation

In (Treves 2004), the author speculates that a small quantitative change in connectivity, followed

by special intrinsic feature of granual cells, namely firing rate adaptatin, would be enough to

produce a phase transition to an entirely novel computational faculty. Simulating simple for-

mal models, Treves quantifies the evolution of cortical networks in terms of their computations

(Treves 2004a). They all dwell on the interrelationship between qualitative and quantitative

change. However, they all include, as a necessary ingredient of the relevant computational mech-

anism, a simple feature of pyramidal cell biophysics: firing rate adaptation. Adaptation thus

effectively separates out in time, two information processing operations that occur in different

spaces: the retrieval of memories in the abstract space of attractors, and the accurate relay of

stimulus position in the physical space of the cortical surface. This simple mechanism of firing

frequency adaptation in pyramidal cells was found to be sufficient for prediction, with the de-

gree of adaptation as the crucial parameter balancing retrieval with prediction (Treves 2004b).

The key role of adaptation in switching one percept to another in classical bi-stable perceptual

paradigms has been explored by many researchers (Shpiro et al. 2009;
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3.5.2 Possible mechanisms underlying spike-rate adaptation

In presence of spike-rate adaptation, a stimulated neuron fires at a high rate for some characteristic

period of time-generally tens of milliseconds to several seconds-before the neuron adapts to the

stimulus, and the firing rate decreases to a steady value. In many cases the mechanisms underlying

adaptation are driven by the spiking activity of the neuron itself, leading to a negative feedback on

the firing rate (Benda and Herz 2003; Gollisch and Herz 2004). On a cellular or microscopic level,

the spiking activity of a neuron depends on various ionic currents which influence spike generation.

Negative feedback is generally associated with ionic currents that hyperpolarize a cell membrane,

inhibiting further spike generation and decreasing the firing rate (Gollisch and Herz 2004). Three

main types of such adaptation currents are known: M-type currents, which are caused by voltage-

dependent, high threshold potassium channels (Brown and Adams 1980); after-hyperpolarizing

(AHP)-type currents, mediated by calcium-dependent potassium channels (Madison and Nicoll

1984); and slow recovery from inactivation of the fast sodium channel (Fleidervish et al. 1996).

One type of AHP-type current, is sodium activated potassium current found in mammalian

neocortical neurons (Lorenzon and Foehring 1992), which can be observed also in vivo (Sanchez-

Vives et al. 2000). While different modeling studies have focused on the effects of specific

adaptation currents, Benda and Herz derived a universal model for the firing-frequency dynamics

of an adapting neuron that is independent of the biophysical processes underlying adaptation

(Benda and Herz, 2003).

3.6 Gain modulation

An f-I curve, defined as the mean firing rate in response to a stationary mean current input, is

one of the simplest ways to characterize how a neuron transforms a stimulus into a spike train

output as a function of the magnitude of a single stimulus parameter. The firing rate gain of

neurons, defined as the slope of the relation between input to a neuron and its firing rate, has

received considerable attention in the past few years. This has been largely motivated by the may

experimental demonstrations of behaviour related gain changes in a variety of neural circuits of

the CNS.

To what extend modulation of firing rate gain is important in the moment-to-moment operation

of the nervous system in its various functions such as attention, sensory processing and motor

control remains to be elucidated. To our knowledge, there is no direct evidence that firing rate
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gain is casual to a class neural processing operation, rather than simply being a consequence of

these operations; i.e. gain modulation does not imply purposeful gain control. Clearly, however,

many examples in which gain control may be important have been described. For example, in

weak electric fish, there is no mechanism for controlling the sensitivity of the electro-receptor for

afferents or their synaptic efect. These afferents synapse directly on E-cells of the first sensory

relay nucleus. It has been shown that the gain through this nucleus is modified without a signif-

icant change of the baseline spontaneous activity of the output E-cells of this nucleus (Bastian

1986). In the motor system, gain control of reflex pathways appear to be important for proper

motor performance (Lisberger 1996; Prochazka 1989). More complex gain modulation have been

reported in neocortical neurons. For example, the firing rate of posterior parietal neurons is a

function of retinal location.

There have been several proposals put forward to model gain regulation in neural circuits. A

long-standing and widely cited candidate mechanism for gain control is shunting inhibition (Ec-

cles 1964; Blomfield 1974) such as that mediated by GABA-gated Cl− conductance, which de-

creases input resistance with little direct effect on membrane potential (Vm). Shunting inhibition

is thought to decrease the gain between neural input and output, and thus is proposed to act

divisively on the gain of neural output (Blomfield 1974) and has been invoked in models of re-

ceptive field transformations during sensory processing (Torre and Poggio 1978; Carandini and

Heeger 1994).

It is well established that mixtures of postsynaptic excitatory and inhibitory inputs into the soma

have little, if any, effect on firing rate gain. Based on a single numerical study of a complicated

model neuron, Holt and Koch concluded that dendritic shunting inhibition also does not change

the firing rate gain; i.e. the divisive impact of shunting inhibition applies only to subthreshold

voltages (Holt and Koch, 1997). In response to these results, several groups have investifated

more elaborate single cell mechanism for gain control. For instance, Ulrich (2003) showed that

shunting conductances act divisively on subthreshold voltages but subtractively on spike rates,

in agreement with theoretical predictions (Blomfield, 1974; Holt and Koch 1997). Most of these

mechanisms have in common that they rely on stochastic membrane potential fluctuations, re-

ferred to as noise, to effect a change in gain. There is disagreement on the nature of gain control

by membrane noise. Chance et el. (2002) proposed that excitatory and inhibitory inputs acting

in the background control gain, whilst added excitatory inputs produce firing. This gain control

mechanism assumes excitatory and inhibitory inputs be balanced so as not to affect the resting

membrane potential. It is not clear how this balance, or other noise parameters, may be con-

trolled by neural circuits. Mitchell and Silver (2003) proposed that gain control may be achieved

in a simpler way with tonic background inhibition and noisy excitatory inputs. Yet another

mechanism was proposed by Prescott and De Koninck (2003), who suggested that noise itself has
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a relatively small influence in firing gain, but coupled to a process termed dendritic saturation,

gain modulation is considerably enhanced for inputs on dendrite.

One remarkable feature of the model studied in Prescott and De Koninck (2003) us uts similar-

ity to the original work by Holt and Koch (1997), which indicated that in a very similar model

inhibitory inputs, arriving at the dendrite doeas not lead to a c change in gain. Therefore, we

have a situation in which two numerical studies suggest opposite results for dendritic shunting

inhibition. What is needed to disambiguate the situation is an understanding of the possible

mechanism that may lead to a change in gain through dendritic shunting inhibition. Capaday

and Vreeswijk (2006) has suggested a simple two compartment integrate-and-fire model in which

this issue can be studied analytically, and the mechanism can be understood. The main new

finding in this report is that dendritic inhibition leads to a direct change of a neuron’s firing rate

gain for excitatory inputs that arrive at the dendrite, but not for inputs arriving at the soma.

The gain change is due to attenuation of current flowing from dendrite to soma, by shunting

dendritic inhibition.

Functional differentiation of GABAa and GABAb The main inhibitory neurotransmitter

in the mammalian forebrain is α-amino butyric acid (GABA), which acts through A and B type

receptors. α-Aminobutyric acid (GABA) type A receptors are mainly permeable to chloride ions

(Bormann et al. 1987) and the chloride reversal potential in cortical pyramidal cells is close to

the membrane resting potential (Owen et al. 1996). In the presence of a negligible driving force,

GABAergic inhibition is mediated by increasing membrane conductance, i.e. by introducing a

membrane shunt. Douglas et al. (1989) reported that intracellular recording combined with

ionophoresis of y-aminobutyric acid (GABA) agonists and antagonists showed that intracortical

inhibition is mediated by GABAa and GABAb receptors. The GABAa component occurs in the

early phase of the impulse response. It is reflected in the strong hyperpolarization that follows

the excitatory response and lasts about 50 ms. The GABAa component occurs in the late phase

of the response, and is reflected in a sustained hyperpolarization that lasts some 200-300 ms.

Both components are seen in all cortical pyramidal neurons. However, the GABAa component

appears more powerful in deep layer pyramids than superficial layer pyramids.
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Figure 3.4: A comparison of divisive and subtractive inhibition. (A) Divisive inhibition
changes the slope of the input-output relationship. (B) Subtractive inhibition shifts the curves

by subtracting a current.

3.7 Concluding remarks

We have discussed the existing theoretical models that could be applied to study the

effects of recent experience on memory retrieval. However, they have not been really applied

yet, and before they are, a number of basic issues have to be addressed (in chapter 4).





Chapter 4

Theoretical basis of the model

This chapter has four sections:

• In the first section we define the structure of the model network; its type of unit activ-

ity, coupling between units, different dynamical terms i.e. gain, threshold and firing rate

adaptation, and the order parameters which will be used later.

• Then, in section 4.2 we provide a simulation setting, which is used in sections 4.3 and 4.4,

and also later, in chapter 5 and 6, will be used to model IT data and ”priming” experiments.

These two first sections include the theoretical and its corresponding simulation basis for

firing rate adaptation, as well. However, we will not explore its function in this chapter

and we leave it for chapters 5 and 6, to study the influence of firing rate adaptation in

associative networks.

• In section 3, the retrieval properties of various network structures which differ in architecture

and input pattern statistics will be compared and discussed. In this section, the storage

capacity is studied in models with no firing-rate adaptation.

• Finally, in the last section we study the dynamics of an attractor network which receives

ambiguous inputs that are partially correlated with two stored patterns, i.e. morphed

inputs. We develop an analytical framework to study how an associated network retrieves

a morphed pattern. The analytical solution is given for a zero-adaptation network, which is

followed by numerical simulations including non-zero firing rate adaptation values, as well.

65
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4.1 Structure of the model

The major motivation for our model comes from neural structures such as the CA3 region in

the mammalian hippocampus or high visual cortical areas. Two aspects of such systems are: (1)

the sparseness of connectivity which leads to asymmetry in excitatory connections (Braitenberg

and Schuz 1991; Treves and Rolls 1992); (2) the relative rarity of inhibitory interneurons, which

implies that large numbers of excitatory cells are inhibited by the same interneuron. However, in

Section 3 of these chapter, we will discuss possible relevance of connectivity dilution on retrieval

quality of different associative networks. The second aspect allows us to adapt a global inhibition

mechanism that applies equally to all units.

4.1.1 General parameters and analytical approach

The input to each unit. We have assumed a simple type of neuron model, the threshold-

linear description, in which the geometry of the neuron is reduced to a point that maps the

presynaptic input to an amplified level in the output stage, once it crosses the threshold to fire.

We considered a network of N units, in which the level of activity of unit i is represented by a

variable ri ≥ 0. This variable can be taken to represent the firing rate of the neuron averaged over

a short time window. This assumption enables the units to assume real continuously variable

firing rates, similar to what is found in the brain (Rolls and Treves 1998). In our model, we

assume that the input current to each neuron i, is composed of the synaptic currents that enter

the cell through the excitatory recurrent synapses, the external input and the adaptation current

(due to potassium conductances). The local field (or input current) takes the following form:

Hi =
∑

j 6=i

wijrj + Ii
in − Iai (4.1)

where the first term is the sum of recurrent input from the other N neurons in the network, which

is assumed to be proportional to the firing rate of the presynaptic neuron, weighted by a synaptic

efficacy Jij . The second term is the afferent input. In general, the vector Iin can be designed to

be correlated with either one or several stored patterns, and therefore can signal a ”morphed”

input (between a set of patterns). In section 3, in which we study the issue of storage capacity,

Iin, represents a full or partial cue that is correlated only with one of the stored patterns, but

in section 4, this term represents a morphed pattern. The third term, finally, is the adaptation
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inducing current. Later, in section 4.1.2, we explain how this term can be realized through the

time-varying potassium conductances.

Stored memory patterns We assume that the network has ”learned”, i.e. stored, p different

patterns of activity. Each pattern of activity is represented by a vector ξµ = (ξµ
1 , ξµ

2 , . . . , ξµ
N ), µ =

1, . . . , p, in which ξµ
i represents the level of activity of neuron i in pattern µ. This implies that

synaptic weights wij have undergone plastic modifications such that the dynamical attractors

of the network include these predefined patterns. In a limit case, such patterns are the only

attractors of the network, but this is not always true, and there may well be other attractors

which do not correspond to any single memory pattern.

Synaptic weights. We consider a diluted asymmetric version in which each unit is connected,

on average, with C other units in the network. One functional form for the synaptic weights

which has been widely used in the literature is a sparsely coded version of the ”covariance hebbian

learning rule” which assumes a linear summation of contributions from the storage of each pattern

wij =
1

Ca(1 − a)

p
∑

ν=1

cijξ
ν
i (ξν

j − a) (4.2)

where ξν
i represents the activity of unit i in memory pattern ν and cij ∈ 0, 1 is an independent

identically distributed random variables (IIDRV) with probability Pr(cij = 1) = C
N

< 1. Thus,

cij is equal to 1 if there is a connection running from neuron j to neuron i, and 0 otherwise.

Each ξν
i is taken to be a ”quenched variable”, i.e. a given parameter, drawn independently from

a distribution p(ξ), with the constraints ξ ≥ 0 , 〈ξ〉 = 〈ξ2〉 = a , where 〈 〉 stands for the average

over the distribution p(ξ), and a is the level of sparseness.

Temporal evolution of the firing rates. As we discussed in the previous chapter, we can

reduce a spiking model to a rate model by keeping only the most relevant time constant which

is synaptic conductance one. In our model, the activity of each neuron (firing rate) at time t

is assumed to be related to the input current it receives at time t (h(t))through the threshold

input-output function

r(h(t)) = g(h(t) − Tr)Θ(h(t) − Tr) (4.3)

where Tr is the threshold current, g is the gain and Θ is the heaviside function, vanishing for

negative values of its argument.
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Equation 4.3 is the first step in the construction of a firing-rate model. The second step is

to determine the temporal evolution of local field hi (or dendritic current). We assume that

transients that correspond to fluctuations away from the static steady state value of the current,

decay exponentially, with time constant τh, which relates to synaptic conductance; so that

τh
dh(t)

dt
= −h(t) + H(r, Iin, Ia) (4.4)

where H is the instantaneous current entering the unit. Equation 4.4 and 4.3 give a complete

description of the firing-rate once the static local (dendritic current) H(r, I, Ia) is known. r is

the excitatory synaptic input, Iin is the external input and Ia is the adaptive current. We can

simply write down H as the superposition of different synaptic contributions, as in Eq. 4.1.

Hi =
∑

wijrj + Ii
in − Iai

=
∑

gwij [hj − Tr]+ + Ii
in − Iai

(4.5)

Thus, the final equation for the current will be

τh
dhi(t)

dt
= −hi(t) +

∑

gwij [hj(t) − Tr]+ + Ii
in(t) − Iai(t) (4.6)

Overlap The relevant order parameters measuring the quality of retrieval are the overlap of

the microscopic state of the network and the νth pattern, ”local overlap” with pattern ν, i.e. mν ,

defined as

mν
i (t) =

1

Ca(1 − a)

N
∑

j=1

cij(ξ
ν
j − a)rj(t) (4.7)

it is straightforward to show that by substituting (4.2) in (4.5) and using the definition of overlap

(4.7), we arrive to:

Hi(t) =

p
∑

ν=1

ξν
i mν

i (t) + Ii
in(t) − Iai(t) (4.8)

In general, a pattern ν is said to be retrieved if the retrieval overlap for that pattern pattern is

macroscopic, i.e. of order O(1) in the thermodynamic limit C, N → inf. The rest of the patterns

causes a residual noise at each time step of the dynamics. Thus, during the retrieval of one

pattern, the local field to each unit can be decomposed into two terms. One is the signal, which

is in the direction of keeping the network in a state with large overlap with the retrieved pattern.

The second term, which can be called noise, contributes random interference due to the other
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stored patterns in the network. Without loss of generality, we suppose that Iin is signaling the

morphed pattern between a and b (two patterns out of the total P patterns) and the retrieved

pattern is either a or b; meaning that the value of the overlap between the current state of the

network and the memory pattern for for either a and b is the highest, with respect to the other

patterns. Thus, we decompose the local field to each unit (due to the recurrent connections) to

three components:

Hi(t) = ξa
i ma

i (t) + ξb
i m

b
i(t) +

∑

ν 6=a,b

ξν
j mν

i (t) (4.9)

In equation (4.9) the signal is nothing but the first two terms in the sum on the rhs, whereas the

noise is the rest. At the end, replacing Hi in the previous dynamical equation for the current

(4.4)), with one in 4.9 gives us

τh
dhi(t)

dt
= −hi(t) + ξa

i ma
i (t) + ξb

i m
b
i(t) +

∑

ν 6=a,b

ξν
i mν

i (t) + Ii
in(t) − Iai(t) (4.10)

The noise term (crosstalk effect) We define Ri(t) as the noise term at each time. Should

be clarified here that the term ”noise” refers to the cross-talk between patterns and not stochastic

dynamical effects (like spike or synaptic noise). This term can be called ”quenched noise”, as

well, and is defined as:

Ri(t) =
∑

ν 6=a,b

ξν
i mν

i (t) (4.11)

Assuming ξν
i and ξν

j as two independent variables, it could be concluded, based on central limit

theorem, that for big p, the value of Ri(t) tends to have a Gaussian distribution. Then we need

to calculate the mean and the variance of this Gaussian distribution. It is easy to show that

〈Ri〉ξ =
1

Ca(1 − a)

〈

N
∑

j=1

cijrj

∑

ν 6=a,b

(ξν
i (ξν

j − a))

〉

=
1

Ca(1 − a)

N
∑

j=1

cijrj(p − 2)(a2 − a2)

= 0
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And for variance, we have:

〈R2
i 〉ξ =

1

C2a2(1 − a)2

〈

N
∑

j,k

cijcikrjrk

p
∑

ν,µ 6=a,b

(ξν
i ξµ

i (ξν
j − a)(ξµ

j − a))

〉

At the end, the variance will be 〈R2〉 =
Aη

(1−a)q; where

q(t) =
N

∑

j

r2
j

Aη =
1

C2
(p − 2)

The details of the calculation is fully reported in the Appendix.

Going back to the definition of local field, the noise term is presented as a random variable η,

with normal distribution of mean zero and standard deviation
√

Aη

(1−a)q. Having such formalism

for the noise term, the general equation for the current hi(t) will be

τh
dhi(t)

dt
= −hi(t) + ξa

i ma(t) + ξb
i m

b(t) +

√

Aη

(1 − a)
qη + Ii

in(t) − Iai(t) (4.12)

Firing rate probability, as a function of the signal. As it was described in the previous

section, the local field of each unit, hi, at each time, can break down in two parts i.e. h̄i, the signal

(averaged over noise across all units) and ηi, the noise. Thus, each ri, the output of threshold

function (ri = [hi − Tr]+), is dependent on a certain level of noise,
√

α
(1−a)qiη, which is itself a

Gaussian variable, and thus gives us the ability to model ri as a Gaussian distribution with mean

r̄i and variance of σi, when hi > Tr. If hi < Tr ⇒ ri = 0. At this point, we should calculate

the probability of finding hi < Tr. For the moment, we consider a case without adaptation i.e.

Iai = 0.

P (hi < Tr) = P
(

h̄i + ηi < Tr
)

= P (ηi < Tr − Hi)

=

Tr−Hi
∫

−∞

1√
2πσi

e
−

(ηi−η̄i)

2σi
2 dη

= φ(
Tr − Hi − η̄i

σi
)
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where

Φ(x) ≡
x

∫

−∞

dz√
2π

e
z2

2

and finally, we have such description for the probability of firing rate ri:

P (ri) =
1√
2πσi

r
−

(ri−r̄i)

2σi
2 Θ(ri) + δ(ri)Φ(−Tr − Hi − η̄i

σi
)

here, σi is the amplitude of the noise which is
√

α
(1−a)q, and r̄i is the mean firing rate of unit i

that crosses the threshold:

r̄i = 〈[Hi + ηi − Tr]〉η = (Hi − Tr)

However, r̄i is not equal to 〈ri〉. This is due to the zero values of ri for negative fields which is

reflected in the second term in rhs of the P (ri). Now that we have the probability distribution

of ri, the mean firing rate 〈ri〉 and the second moment 〈ri
2〉 can be found:

〈ri〉 = σiρΦ(ρ) + σiΨ(ρ) (4.13)

〈ri
2〉 = σi

2(1 + ρ2)Φ(ρ) + σi
2ρΨ(ρ) (4.14)

where

ρ =
r̄

σi
(4.15)

Φ(ρ) =

ρ
∫

−∞

e−
z2

2

√
2π

dz (4.16)

Ψ(ρ) =
1√
2π

e
−ρ2

2 (4.17)

It should be noted that as ρ → ∞, Φ(ρ) → 1 and Ψ(ρ) → 0, and thus, 〈ri〉 → σρ = r̄ and

〈ri
2〉 → σ2ρ2 = r̄2

4.1.2 Modeling the adaptation current

In the previous chapter, we have discussed the nature and implication of firing rate adaptation in

different brain structures. Here, we develop a dynamic equation for adaptive current contributing
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to the local field of each unit, which will be also recruited later in the simulation.

Spiking neuron A spiking neuron in a standard Integrate and Fire model can be endowed with

an extra (adaptive) input current, Ia, which can be assumed sodium dependent potassium current

that follows an α-function dynamics. This adaptive current is proportional to the instantaneous

calcium concentration through a (potassium) conductance g. This type of conductance dynamics

is meant as a representation of the summed dynamics of many individual channels, each following

a simple dynamics as below:

dgj(t)

dt
= −gj(t)

τj
+ ∆gj

∑

k

δ(t − tk,j) (4.18)

gj is potassium conductance that undergoes an upward jump ∆gj upon spike emission, after

which it decays with a characteristic time τj , a conductance time constant. tk,j is the time of

emission of the kth spike by the same unit j. At tk,j the value of conductance increases with the

value of ∆gj and during the inter-spike-interval, it decreases exponentially with time constance τj .

To produce an adaptive conductance with α-shape, it is enough considering two input synapses

with such dynamics.

dg1(t)

dt
= −g1(t)

τ1
+ ∆g1

∑

k

δ(t − tk)

dg2(t)

dt
= −g2(t)

τ2
+ ∆g2

∑

k

δ(t − tk)

where τ1 < τ2. Without loss of generality we assume that ∆g1 and ∆g2 are equal to one.

The final adaptation current contributing to the input current of each neuron, is the difference of

g2 and g1. We define Ia = αa
τ2−τ2
τ2τ2

(g2 − g1). Notice that Ia is not anymore conductance, but has

the dimension of current. αa determines the strength of adaptation and time constants τ1 and τ2

are giving the speed of adaptation. One can derive the dynamic time course of Ia:

d(g2 − g1)

dt
= − 1

τ2
g2 +

1

τ1
g1

and using the definition of Ia, one can get

dIa

dt
= − 1

τ2
Ia + αa

(τ2 − τ1)
2

τ2
1 τ2

2

g1
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if we calculate the second derivation of equation above, we find

d2Ia

dt2
= − 1

τ2

dIa

dt
+ αa

(τ2 − τ1)
2

τ2
1 τ2

2

dg1

dt

= − 1

τ2

dIa

dt
+ αa

(τ2 − τ1)
2

τ2
1 τ2

2

(− 1

τ1
g1 +

∑

K

δ(t − tk))

= − 1

τ2

dIa

dt
− 1

τ1

dIa

dt
− 1

τ1τ2
Ia + αa

(τ2 − τ1)
2

τ2
1 τ2

2

∑

K

δ(t − tk)

if τ1 → τ2 ⇒
d2Ia

dt2
= −2

τ

dIa

dt
− 1

τ2
Ia + αa

(τ2 − τ1)
2

τ2
1 τ2

2

∑

K

δ(t − tk) (4.19)

Rate model Now we should go one step further and derive a phenomenological model for

the firing frequency of an adapting neuron, whose parameters are independent of the specific

adaptation process. To achieve this goal, one can replace the adaptation gating variable g as well

as the adaptation current Ia by suitable time averages. All the dependencies on the membrane

potential can then be replaced by functions depending on the firing frequency r. In this way, it

is possible to absorb the adaptive currents in the r − I curve of firing rate neuron type (Benda

and Herz 2003).

r = r0(I − A(1 + β(r)) (4.20)

τa(1 + ǫ(r))
A

dt
= A(∞) − A (4.21)

(4.22)

The adaptation state a generalizes the averaged adaptation gating variable g and relaxes exponen-

tially, with the adaptation time constant τa, towards a possibly voltage dependent steady-state

adaptation strength A∞. The input adaptive current, A[1 + β(r)] depends linearly on A and

may be influenced by f through β(r). The term ǫ(r) covers a potential dependence of adaptation

time constant τa on firing rate. We assume ǫ(r) = 0 for the rest of this chapter, unless otherwise

stated.
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4.1.3 Mean activity, sparseness, and setting threshold and gain

In every neural network, the necessity of an activity control system, which tries to keep the

activity of the network in the retrieval process the same as the one for the memorized patterns,

has been emphasized vastly (Amit et al. 1987; Amari 1989). Sparseness and mean activity are

usually two indices by which the level of network activity is measured. In the following, we will

briefly explain each of them and at the end suggest a possible network implementation to regulate

these two factors.

Mean activity In classical models of attractor neural network, there usually is a uniform

input to each unit which is a function of the mean activity of the network and is unrelated to the

memory patterns. This term, with an appropriate functional form, can regulate the activity of the

network, so that, for example, at any moment in time the mean activity 1
N

∑

i ri may be main-

tained constant, avoiding the run-away of excitatory reverberation. This term can be thought of

as modeling the effect of inhibitory interneurons. While it can take an explicit functional form

in the simulations, its exact form is not important for our purpose, in that it is irrelevant to

determine fixed-point attractors. This is because its effect is constant across units, when the

fixed-point equations are satisfied and 1
N

∑

i ri = const., and it can therefore be absorbed in the

threshold. In other words, one may assume that by changing the threshold the mean activity

of the network is regulated, and that the threshold is effectively modulated by inhibitory neurons.

Sparseness The sparseness a of the representation can be measured, by extending the binary

notion of the proportion of neurons that are firing, as

a =

(

∑N
i

ri

N

)2

∑N
i

ri
2

N

The memory pattern with small coding level a is called a sparse pattern. Sparsely coded models

have attracted a lot of attention in the development of neural networks, not only because the

sparse coding is believed to be biologically plausible (Miyashita 1988; Baddeley et al. 1997),

but also it is well-known that they have a large storage capacity, which behaves as 1/(alna) for

a small. However, it is clear that the basins of attraction, e.g., should not become too small

because then sparse coding is, in fact, useless. An activity control mechanism is requisite for
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stable retrieval in the sparse coding scheme (Okada, 1996).

In our model, we keep the mean activity and sparseness constant, during learning and retrieval

phases. More explicitly, we want to have 〈ri〉 = 〈r2
i 〉 = a. One way to find a proper temporal

dynamics for g and Tr is to define a minimizing function L to find the optimum values for g and

Tr to satisfy the conditions above.

L = (〈ri〉 − a)2 + K(〈ri
2〉 − a)2

Another approach to set g and Tr is to model these two parameters according to divisive and

subtractive gain modulation, respectively, which in a neural system are usually implemented

through the mechanisms of fast and slow GABA modulatory system.

Here, we introduce another equation for adjusting ”gain”, modeling the action of neuromodulator

GABAa which at this time, fixes the mean activity of whole network. As we have reviewed in

Chapter 2, we know that the GABAA and GABAB neurotransmitters, behave differentially in

regulating excitatory activity. GABAA component occurs in the early phase of the impulse

response. It is reflected in the strong hyperpolarization that follows the excitatory response

and lasts about 50 ms. In this sense, GABAA plays the role of divisive gain modulation. In

contrary, the GABAB component occurs in the late phase of the response, and is reflected in a

sustained hyperpolarization that lasts some 200-300 ms, and affects the activity in a subtractive

way(Douglas et al. 1989). We adapt these two mechanism in to the dynamics of Ig and Tr

τg
dIg(t)

dt
= −Ig(t) +

< r >

a

τt
dTr(t)

dt
=

(〈r〉)2
Ig

2 − a
〈r2〉
Ig

2

where Ig is 1
g
, inverse of the gain.

Under certain condition, we can assume that the mechanism for setting threshold is much slower

with respect to the time scale of gain modulation and change in currents. So, we assume a fixed

value for the threshold throughout the whole process.
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4.2 Simulation setting

”There is an underlying assumption that the observations express activity of large groups of

similarly acting neurons that is the result of a bottom-up scenario in which individual cells, via

their synaptic interactions, lead to the large scale phenomena. The connection between the levels

must be provided by theory, which must also provide the relevant variables for observation. It

is suggested that between the experiment and the full theory there is a creative, mixed role for

simulation: both experimental and theoretical. A simulation presents complex dynamics and

hence is an empirical board for testing theoretical tools, yet its controlled behaviour can make

predictions about the biological system” (Amit 1998).

In this section, we describe the general characteristics of the simulated network.

4.2.1 General characteristics of the simulated network

As we aim to model specific data from monkey IT cortex, and also some visual psychophysics

(”priming” and ”adaptation aftereffect”) which are believed to rely mainly on extrastriat struc-

tures, we set the basis of the simulated network, in line with previous work of modeling IT

(Inferior Temporal) networks (see e.g. Parga and Rolls 1998; Roudi and Treves 2008). We have

considered a simple autoassociative network model comprised of two layers, shown schematically

in Fig. 4.1, which simulates a cortical patch as a local recurrent network. The first layer functions

as an input stage that projects afferent inputs to the second layer; this layer is analogous to the

input from earlier visual areas to the second, recurrent layer. Units in the second layer receive

inputs both from the first layer, as well as from units in the same layer, and provide outputs

to one another (recurrent connections). The second layer is analogous to the cortical patch con-

taining the neurons recorded in this study (neurons recorded from inferotemporal cortex, IT). In

our simulation, we consider the dynamics of local interconnected networks in IT, and thus the

simulation is focused on the second, output, layer of units with recurrent connections. The units

in the network are labeled with an index i, i = 1...N , but the connectivity between the units, or

the probability that two units are connected, does not depend on their indexes. In our model,

units receive feedforward projections from an input layer of another N = 1000 units. Each unit in

the (output) patch receives Cff feed-forward connections from the input array, and Crc recurrent

collateral connections from other units in the patch. Both sets of connections are assigned to

each receiving unit at random. Weights are originally set at a uniform constant value, to which

is added a random component of similar mean square amplitude, to generate an approximately
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Figure 4.1: Schematic view of the simulated network. The network includes an input
layer, which projects its activity to an output layer (recurrent connections) through sparse FF
connections. Different units in first layer receive input, generated using a common truncated
logarithmic distribution, with durations drawn at random from a logarithmic distribution; one
example is shown in circle at bottom. The units in this layer are active at a certain level for a

specific duration, with a gradual transition to zero (example shown in circle at top).

exponential distribution of initial weights onto each unit. Once a pattern is imposed on the input

layer, the activity circulates in the network for 80 simulation time steps. Each updating of unit i

amounts to summing all excitatory inputs

hi =
∑

k

wff
ik rinput

k + M
∑

j

wrc
ij rrc

j + b
1

N

∑

k

rrc
k

The first two terms enable the memories encoded in the weights to determine the dynamics; the

third term is unrelated to the memory patterns, but is designed to regulate the activity of the

network, so that at any moment in time, 1
N

∑

k rk and 1
N

∑

k rk
2 both approach the prescribed

value a (the pattern sparseness mentioned above).

Like the theoretical basis, the simulation assumes a threshold-linear activation function for each

unit.

ri = g(hi − Th)Θ(hi − Th)
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where Th is a threshold below which the input elicits no output and g is a gain parameter.

Dynamics The simulation implements the model defined in section 1, but with slightly different

dynamics: cells are updated in parallel according to

h(t + ∆t) = (1 − ∆t)h(t) + Θ[h(t) − Th)]g(h(t) − Th)∆t

This is a forward Euler integration scheme for the differential equation 4.12. We can rewrite this

equation to

h(t + ∆t) − h(t)

∆t
= −h(t) + Θ[h(t) − Th)]g(h(t) − Th)∆t

In this way, it is easy to make a correspondence with the dynamical equations in our theoretical

model, Eq.4.4. Therefore, ∆t is indeed in terms of τh, synaptic time constant. Thus, in our

simulations, with parallel updating, ∆t has value of 1 and it means that each time step can be

taken to correspond to ca 12.5ms (Treves 2004).

Input patterns Each ξν is the projection to the second layer of the input signal from the first

layer,ξν
in , which is drawn independently from a fixed distribution, with the constraints ξ > 0,

〈ξ〉 = ∠ξ2〉 = a, where 〈〉 stands for the average over the distribution. p uncorrelated patterns were

generated using a common truncated logarithmic distribution (Fig. 4.2, middle panel) obtained

by setting for each input unit

ξin = − 1

N
log(1 − x

a
)

if x < a, and ξ = 0 if x > a, where x is a random value with a uniform distribution between zero

and one.

Weights Feedforward connections, playing the role of afferent signals to IT, are set once, as

mentioned above, and kept fixed during the simulation. Recurrent connections, which are the

storage site for the memory patterns, have their baseline weight modified according to a model

”Hebbian” rule. The specific covariance ”Hebbian” learning rule we consider prescribes that the
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Figure 4.2: distribution of input firing rates p uncorrelated patterns were generated using
a common truncated logarithmic distribution as is shown.

synaptic weight between units i and j, wij, be given as:

wij =
1

Ca(1 − a)

p
∑

ν=1

cijξ
ν
i (ξν

j − ξ̄)

where ξν
i represents the activity of unit i in memory pattern ν, and cij is a binary variable equal

to 1 if there is a connection running from neuron j to neuron i, and 0 otherwise. ξ̄ is the mean

activity of unit j over all memory patterns.

Recurrent collaterals do not add signal during the storage In Eq. 4.2.1, M can be any

value between 0 and 1, and corresponds to the proportional contribution of collaterals in driving

the activity of each unit. But, as previously shown (Menghini et al. 2007; Treves 2004) the best

performance is obtained when collaterals are suppressed during pattern storage, in line with the

Hasselmo argument about the role of cholinergic modulation of recurrent connections (Barkai

and Hasselmo, 1994). The suppression of collaterals during training provides a mechanism for

ensuring that during storage, the firing rate of output units, ri, follows external inputs relayed by

afferents to the network. Without this suppression, afferent inputs are represented less accurately

in the pattern to be stored in the network, which ends up largely reflecting the previously stored
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patterns. Therefore, in this simulation, M = 0 during storage and M = 1 during testing,

corresponding to suppression of collaterals during ”training”, and to allowing their full influence

during testing.

Active process to regulate threshold and gain (fixed level of sparseness In the simu-

lations, induced activity in each unit is followed by a competitive algorithm that normalizes the

mean activity of the (output) units, and also sets their sparseness to a constant a = 0.2 (Treves

and Rolls, 1991). It is quite arbitrary to choose the level of sparseness. It is ideal to infer the value

of a from electrophysiological data from visual cortex, and more specifically, IT cortex. However,

pyramidal neurons in IT, due to their hight firing rate (with respect to hippocampal neurons)

are in general very difficult to be distinguished from interneurons. On the other hand, due to the

limitations of experimental paradigms, it has been almost impossible to monitor a population of

neurons (in IT) in response to daily life stimuli. In laboratory adapted experiments, usually, a

set of stimuli are shown to the animal while recording from (single) neurons. These set of stimuli

can not be a representative of external world. However, there are a few number of studies in

which the investigators tried to give an estimate of the neural sparseness in IT cortex (Rolls and

Tovee 1995; Franco et al. 2007). Rolls and Tovee (1995) have estimated the sparsity in macaque

IT cortex, by measuring the neural responses to a set of 68 visual stimuli during a visual fixation

task . The have found that the sparseness of the representation of those 68 stimuli by each neuron

(averaged over all neurons) is around 0.68. However, if the spontaneous (baseline) firing rate is

subtracted from neuron’s response to each stimulus, therefore only the changes of firing rate,

i.e. the responses of the neurons, are used in the calculation of sparseness, then the value of the

sparseness has a lower value, with a mean of 0.33 for the population of neurons. Since in our

simulations we do not model spontaneous activity, the lower value of sparseness is more biologi-

cally relevant. So, referring to the existing body of literature in brain electrophysiology, it is quite

difficult and vague how to adapt any biological plausible value for network sparseness. However,

we know from theoretically driven hypotheses about the role of sparseness we know the relevance

of sparseness for the storage capacity of associative networks (Treves and Rolls 1993), and it has

been discussed that the lower levels of sparseness lead to higher storage capacity. Therefor, we

have used a = 0.2 in our model.

The algorithm that we used to set the mean activity and sparseness, represents a combination

of subtractive and divisive feedback inhibition, and operates by iteratively adjusting the gain g

and threshold Th of the threshold-linear transfer function.
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Implementation of adaptation as firing rate decay In our model, we introduce firing rate

adaptation only to the second layer units, i.e. only the output units are prone to get adapted.

The derived equation for Ia in section 4.1.2, to be applied in a computer simulation, should be

modified from a continuous function in time, to a discrete function.

dg(t)

dt
= −g(t)

τ
+

∑

K

δ(t − tk)

g(t + ∆t) − g(t)

∆t
= −g(t)

τ
+

∑

K

δ(t − tk)

⇒ g(t + ∆t) = −g(t)

τ
∆t + g(t) + ∆t

∑

K

δ(t − tk)

= g(t)(1 − ∆t

τ
) + ∆t

∑

K

δ(t − tk)

≈ g(t) exp−∆t

τ
+ u(t)

where u(t) is the number of spikes in ∆t.

for ∆t = 1 ⇒

g1(t + 1) = g1(t)e
− 1

τ1 + e(t)

g2(t + 1) = g2(t)e
− 1

τ2 + e(t)

Where ri(t) is the activity of unit i at time t. We implemented adaptation by subtracting from

the input activation of each unit the difference of g1 and g2, which is a term proportional to the

recent activation of the unit.

ri(t + 1) = g(hi(t + 1) − αa(g2(t) − g1(t))Θ(hi(t + 1) − α(g2(t) − g1(t));

hi(t) is the summed input to the unit at time t. α sets the strength of adaptation. The input

to each unit is then affected by its firing rate at all previous time steps. The exponential decay

makes its activity at the last time step more influential than the others. The difference of the two

exponentials means that the effect of adaptation appears only after the second iteration. Note

that this formulation reduces the effectiveness of adaptation when t is small.

The default parameters used in the simulations are listed in table 1, unless otherwise specified.
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Size, Sparseness and Time Constants

Input array Nin = 1000
Output array Nout = 1000
(time step) 12.5 ms
FF connections Cff = 350
Recurrent connections Crc = 300
Initial neuronal gain g = 1
Output sparseness aout = 0.2
Initial neuronal threshold Th = 0.05
Input sparseness aout = 0.5
Adaptation time constant τ1 = 4
Adaptation time constant τ2 = 8
Adaptation strength αa = 5 × 10−3

Table 4.1: Default values of network parameters

4.3 Result: Retrieval in different network structures

Now that we have defined the network structure and its corresponding simulation setup, we

analyze retrieval properties of such network.

Background Memory is retrieved from the network when neural activities, stimulated with a

partial cue, evolve into a pattern strongly correlated with one of those which have been stored.

How smoothly can such an operation proceed, and how wide are the basins of attraction of the p

memory states, depend critically on whether other attractors exist, that could hinder or obstruct

retrieval. In general, the characteristic features of the network during the retrieval process results

from a mixed contribution of different factors in storage and retrieval phases. What determines

storage specificity, has been studied extensively (see e.g.). All these studies focus on trained

networks with desired memories stored as fixed points and recoverable from partial cues in a few

time steps. The main issues in studying the retrieval properties of such associative networks are

the speed and quality of recall, the required size for cues, and the storage capacity. Considering

each of these factors, the relevance of several different concepts such as pattern statistics of the

original quenched patterns and the contribution of network architecture on changing the original

distributions, and introducing new properties in storage phases, can be studied.
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Dilution in connectivity and storage capacity One of the well known terms in determin-

ing the storage properties of associative networks is the level of connectivity. In a classic Hopfield

model the connectivity is complete, which means every unit in the network receives input from all

other units (Hopfield 1982). The connectivity can be sparse, but still independent of the index, as

in (Sompolinsky 1986) or in the highly diluted limit considered by (Derrida et al. 1987). Sparse,

asymmetric connectivity has been well documented in brain regions such as the CA3 (Amaral et

al. 1990; Ishizuka et al. 1990). On the other hand, it was the imposition of symmetry on the

synaptic connections (coupling constants) which led to a great clarification of the properties of

neural networks (Hopfield 1982 and 1984, Amit et a1 1985 and 1987; Hertz et al. 1991;). But

once an initial clarity was obtained, attention turned to the effects of asymmetry and different

pressures have acted in this direction to go beyond this simplifying but non-biological assump-

tion; from biological plausibility to questions about the robustness of the results, given that no

basic principle enforces symmetry, to a possible cognitive role for asymmetry. Several researchers

have studied the dilution of fully connected networks (Derrida and Pomeau 1986; Sompolinsky

and Kanter 1986; Derrida et al. 1987; Kree and Zippelius 1991). As some researchers have also

pointed out (Crisanti and Sompolinsky 1987; Gutfreund et al. 1988), asymmetrically connected

networks have the potential for rich and robust dynamical behavior that might be very useful in

modeling complex cognitive processes, especially in their temporal aspect.

This type of model has been thoroughly analyzed in terms of its storage capacity, yielding a rela-

tion between the maximum number pc of patterns that can be turned into dynamical attractors,

i.e. that can be associatively retrieved, and the number C of connections per receiving unit.

Typically the relationship includes, as the only other crucial parameter, the sparseness of firing

a, and for sparsely coded patterns (values of a close to 0) it takes the form (Treves and Rolls

1991)

pc = k
C

a
log (

1

a
)

where k is a numerical factor of order 0.1 − 0.2.

Noise Reverberations It is commonly believed that the essential difference introduced by

the sparse (i.e. diluted) connectivity is that noise has less of an opportunity to reverberate along

closed loops. In fact the signal, which during retrieval is simply contributed by the ”condensed”

patterns, propagates coherently and proportionally to C, independently of the density of feedback

loops in the network. The fluctuations in the overlaps with the uncondensed patterns, which in

low fast noise (T → 0) represent the sole source of noise, propagate coherently along feedback
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loops, giving rise to a decrease in signal to noise ratio for the fully connected case. On the other

hand, extreme dilution is a special limit in which only specific kinds of feedback can still exist.

For a given load (fixed α), diluted connectivity reduces therefore the influence of this ”static”

noise, and performance is better than in the fully connected case with C = N − 1. However, in

the contrary, exactly the same function of recurrent loop may end up to reduce the quenched

disorder and sharpen the boundary between retrieved patterns which means a decrease in the

number of collapsing patterns.

Although, there have been several studies of asymmetrically diluted networks for associative

memory, they were focused on storage capacity in the limit of strong dilution, c = O(1/N),

(Kree and Zippelius, 1987) or on the stability to a single spin flip in a binary network (Treves

and Amit 1988), or on the stability of mixture states in a fully connected continuous network

(Roudi and Treves 2003). However, it has remained an open question that how the number of

retrieved patterns scales with the level of dilution in a graded-response model, and how a change

in connectivity produces a collapse between several patterns with finite levels of correlation.

Here we try to interpolate between the fully recurrent and symmetric attractor network

studied by Amit et al (1987), the highly diluted model of Derrida et al (1987) and the strictly

feed-forward attractor network studied by Domany et al (1986). To have a quantitative

assessment, we measure the effect of dilution, adding the fast-noise and increasing the load

in different network structures.

Three comparisons Given our perspective, we have studied a simple but broad class of sparse,

asymmetric random networks in which all specific connections are excitatory and inhibition is

provided by a single interneuron that receives firing information from all primary neurons and

inhibits them all equally at the next time step.

In the rest of this section, first we will discuss how sparseness sets the correlation level between

different quenched patterns. Then, we will use the simulated autoassociative network, described

in the previous section, to make three comparisons (as is sketched in table 4.3), based on

• Pattern Statistics: Binary Distribution (BP) vs. a Continuous Distribution (CP).

• Pattern Generation:a Self-Organized network (SO) vs. a network with Quenched As-

signed (QA) pattern.
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Figure 4.3: Comparison between different structures

• Architecture: a 1-layered network (1L) vs. a 2-layered network (2L), which receives the

external input via feedforward afferents

to see whether the capacity for storage and retrieval with non-negligible basins of attraction vary

or not for each comparison. To quantify these differences, we examine the effect of connectivity

dilution and fast-noise in limiting storage capacity in each comparison. At the end, we explore the

effect of connectivity on the statistical properties of stored and consequently retrieved patterns,

in a two layered autoassociative network.

4.3.1 General points: sparseness and cross correlation

Input patterns In each pattern each cell i is taken to code for independent information, i.e.

its firing rate during learning ηµ
i is assigned as a random number, where ηµ

i represents the activity

of unit i in pattern ηµ. Each ηµ
i is taken to be a quenched variable, drawn independently, for all
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i and µ, from a probability distribution Pη(η).

In our model, once the input pattern is drawn from an original distribution, it may propagate

through different stages, before being stored in the synaptic weights of the recurrent connections.

Indeed, it is assumed that p final patterns (labeled ξ = 1...p), that may be different from the

original ones are embedded with equal strength in the synaptic efficacies. Thus, we need to

distinguish the original input patterns from the final transformed patterns which then will be

stored in the network through Hebbian learning. We adapt the notation ηµ and ξµ to represent

the original pattern and the to-be-stored patterns, respectively.

Parameters of the quenched patterns To study how the different behaviour of the network

depends on the macroscopic features of the statistical distribution of patterns, one has to vary

the parameters characterizing Pη. As η is a firing rate, Pη(η) ≥ 0 only for η ≥ 0, and Pη(η) = 0,

otherwise. Moreover,
∫

Pηdη = 1. Within these constrains, the first free parameter is the average

firing rate

a =

∫

Pη(η)ηdη ≡ 〈η〉η (4.1)

where 〈.〉η denotes averages over Pη. This average pattern activity does not, however, affect mem-

ory encoding in the model, as the contribution of each pattern to the efficacies J is normalized, in

units of a itself. Nor it does affect retrieval, because with a threshold-linear transfer function, the

information retrieved does not depend on the absolute scale of the neuronal outputs. Therefore,

the average firing activity of the encoded patterns is irrelevant in determining the performance of

the network, and the first relevant parameter is the average square activity. Imposing that also

a =

∫

Pη(η)η2dη (4.2)

turns a into a parameter giving the ratio
〈η〉2η
〈η2〉η

, which in fact is a measure of the sparseness of

the coding scheme. The sparseness of the coding scheme turns out to be the most crucial factor

on which the performance of the models considered depends (Rolls and Treves 1991). The pa-

rameter a measures the sparseness of the stored representation, the one used to code information

in the learning phase. A different representation, whose degree of sparseness need not be the

same, is generated by the retrieval process. As the response of neuron i during retrieval is Vi,

the sparseness of the retrieved representation can be quantified by ar = 〈V 〉2

〈V 2〉
where now the aver-

age 〈.〉 is both over the random assignment of patterns and over the dynamical process of retrieval.
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Figure 4.4: Sparseness and pairwise correlation. Each plot shows the histogram of pairwise
correlation between stored pattern, for different levels of sparseness.

Different distributions with the same sparseness. The remaining features of Pη (the

structure of the code) also affect the performance as was fully discussed in, for three different

forms of pattern distribution, binary, trinary, and logarithmic. The maximum of the number of

patterns that can be encoded on the synaptic strength and individually retrieved (pc) can be

derived for different pattern distributions (Treves and Rolls 1991).

One can consider various forms of Pη, all parameterized in terms of a. In the following we will

consider one that is consistent with some experimental data ([3]), which is a distribution with

exponentially scare high rates Pη(η) = (1− 2a)δ(η) + 4ae−2η. This example on the one hand will

demonstrate that autoassociative memories can function perfectly well with pattern distributions

that are not bimodal or n-modal (Abeles 1991; Treves and Rolls 1991), and on the other will offer

quantitative insight into some of the effects of a continuous distribution.

Result: sparseness sets correlation In our model, by assuming a fixed level of sparseness

during storage and retrieval, for the output layer, (which is satisfied by regulating gain and

threshold), we change the level of sparseness in the input patterns ηµ and measure the correlation

between different patterns. In figure 4.4, it is shown that how the cross correlation distribution

depends on the level of sparseness. It is trivial to see how for independent patterns, correlation

is equal to the sparseness. However, we emphasize on this concept mainly because later, we want

to compare ability of different network structures (i.e. self-organized networks versus imposed

networks) to change the correlation between stored patterns.

4.3.2 Three comparisons: binary vs. continuous, quenched assigned vs. self

organized, and 1-layer vs. 2-layer.

All the network simulations in this section, are done with fixing the level of sparseness at a = 0.2.
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Introducing dilution in our model Introducing the factor γ = C/N , as dilution, first we

measure the storage capacity of each network, when the size of the network is fixed (N = 1000).

In this case, increasing γ, is equivalent to increase in the number of connections per unit.

Introducing fast noise – The ability to retrieve distorted patterns One should note

that although the network may successfully retrieve a pattern, once given a full cue as the input, it

may fail to evolve to the right configuration if the initial input is only partially correlated with the

stored pattern. That is, depending on the size of basin of attraction, the network may or may not

be able to complete a distorted pattern. Thus, the ability of the network in completing and not

only retrieving can be tested, with different levels of connectivity. To do this, we have presented

the network with noisy version of initial patterns. We call this noise ”fast-noise”, opposite to the

”quenched noise” that is contributed through synaptic weights that code the other patterns. We

introduce fast-noise, basically by substituting a portion of the original input vector by random

values. Therefore, in the following figures, the fast-noise has a value between 0 and 1, showing

the distorted proportion. Putting these two parameters (fast-noise, and connectivity) together,

one can study the thermodynamic properties that can be presented by means of (storage capacity

versus fast-noise, connectivity, and number of stored patterns) phase diagrams.

1st comparison: binary vs. continuous pattern We have stored several Quenched As-

signed (QA) patterns in the network. Figure 4.5, the top panel shows the phase-diagram for

storage capacity versus fast-noise and connectivity for a network with p = 40 stored patterns

(left: binary, right: continuous). The lower panel shows storage capacity versus storage load and

connectivity (tested in zero noise limit). It can be concluded that

• In general, increase in connectivity enhances the storage capacity.

• Continuous pattern is highly fragile to noise

• In zero noise limit, with the same level of connectivity, γ, a network with continuous

pattern has a higher storage capacity compared to a network with binary patterns.
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• In the binary case, the storage capacity enhances by increase in connectivity, whereas

in the case with continuous patterns, this enhancement is limited only to the diluted

networks.

2nd comparison: self-organized vs. quenched assigned In this part, the input pattern

is drawn from a logarithmic distribution like in 4.7. We test i) a 1-layer Hopfield like network,

in which the inputs are directly imposed to the collateral layer (QA) and ii) a similar network,

except that before setting the hebbian weights, the network is allowed to reverberate activity

through its recurrent connections, and hens regulate the gain and threshold (SO).

We measure the same quantities as in Comparison 1 and the results are reported in figure

4.6.

• The same continuous patterns that had high fragility to the fast noise, in a network

with imposed patterns (QA, left) become way more robust against the addition of noise

if the patterns are instead self organized (SO, right).

• However, in zero noise limit, the storage capacity of the network with imposed patterns,

is as good as the self organized network.

Two-layered network with continuous patterns In this model, we restrict our study to a

self-organized network with continuous patterns (2L-SO-CP). Due to two main factors we avoid

the two other possibilities in the 2-layer network: 1) We will not study the Quenched Patterns

in this architecture, because: we only change the recurrent weights in the second layer and the

feedforward weights are set randomly (and kept fixed during the simulation). The addition of

this first layer introduces a Gaussian noise and the logarithmic distribution of the input patterns,

after they project to the second layer, will not be preserved (it’s instead a Gaussian distribution).

Using such Gaussian patterns as the Quenched patterns, although is an interesting topic, is out
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of our goals here. 2) We do not study Binary patterns, again due to such random feedforward

weights that changes the values of output units from being binary. Still, one can ”binarize” the

input patterns after their projection to the second layer. But, it is beyond our concerns for the

moment.

In the 2-layer network, on one hand the feedforward layer plays the role of a decorrelator and

on the other hand the recurrent synapses, modified based on Hebb-rule, forms properly distinct

attractor structures. In Figure 4.7 we have plotted the distribution of pairwise correlation between

40 pairs of original patterns drown from the exponentially distribution in Eq. 4.7 (a), immediately

after being projected to the recurrent layer (b) and after 10 iterations of propagating through the

recurrent connections (c). Comparing these three stages of pattern generation, one can detect the

influence of each step, and can understand how the recurrent collaterals, together with feedforward

afferents can change the ”correlation”. In this figure, different rows show correlation values when

the initial level of sparseness in producing the original patterns, before projecting to the second

layer, is different; either bigger or equal or smaller than the sparseness in the recurrent layer. The

third column of this figure depicts the distribution of correlation between configurations that will

be stored in the recurrent weights through the Hebbian learning. For the rest of the simulation

studies in this section we set the level of input sparseness to a = 0.2, unless otherwise stated.

3rd comparison: 1-layer vs. 2-layer . We apply the same quantitative comparison to

contrast the features introduced by an additional layer (Fig 4.8).

• In low connectivity region, the 1-layer network is more robust to noise compared to the

2-layer network

• Whereas in high connectivity region, the slope of the storage capacity (versus noise and

connectivity), is almost the same for both networks

• In zero noise region, the 1-layer network has higher storage capacity compared to the

2-layer network

Number of connectivity, versus number of units Based on the results up-to now, one

can conclude that the recurrent connections and therefore the number of closed loops are more of
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an advantage in reducing the quenched noise. This is, however, an issue of definition because in

a different region in which the ratio of recurrent inputs to each unit does change by varying the

number of total units, instead of varying the number of connectivity, different mechanism could

lead to an opposite effect. Namely, as it was discussed in Treves and Rolls 1991, for different

levels of sparseness and different size of the network, either C or N could play the main role in

defining the storage capacity of the network.

Thus, we rerun the same simulations as before (2L-SO-CP), with one difference: this time we

kept number of connection per unit as a fixed parameter C = 700 and instead we have varied

the size of the network N . The result is shown in figure 4.9. The left panels show the percent of

successfully retrieved patterns in a network with fixed number of connections per unit (C = 700)

and of different size, whereas the right panels show the result of a network with fixed number

of units (N = 1000) and varying number of connections per unit. Different rows of this figures

relate to different level of sparseness.

4.3.3 Time course of retrieval

Before finding an explanation for what the degree of connectivity does in terms of changing the

statistical properties of stored patterns, we would like to point at another relevant issue, related

to the time course of retrieval process.

Autocorrelation during retrieval – The ratio of the external input currents to the

recurrent collateral currents To assess the quality of the retrieval process, we measure

autocorrelation values, which are simply defined as the cosine between the two population vectors

ξ, the to-be-stored pattern, and ζ, the retrieved pattern.

In every type of network architecture the configurational state of the network at each time, is a

function of the input current that enters each unit, which itself is resulting from the contribution

of both feedforward (external) input, and recurrent connections with different weights. The

competition between these two type of input (feedforward vs. recurrent inputs) is a crucial

factor in determining the network trajectory in its phase-space: to fall into a basin of attraction

relevant to the signal contributed by recurrent collaterals, or to stay in a configuration close to

the one dictated by the external input. This issue has been also been explored by Parga and

Rolls (1998) in developing a network model for view invariant recognition. They have shown that

different synaptic values (between different views of an object, or within each view) can lead to

different state configurations, either coding the identity (ignoring the view) or the identity plus
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the viewpoint. In our model, an interesting finding is that although at long time, the basin of

attraction of some of stored patterns may shrink and several patterns collapse into a very few

number of stable attractors, there is a time after input removal at which almost for all patterns

the network approaches a configuration near the stored pattern. However, the exact time of

retrieval and the quality of retrieval, in this phase, depends on how strong are the attractor

states to overcome the external input. The ratio of successfully retrieved patterns at each time

steps, for different strength of recurrent connections, is plotted in figure (4.10, for 2L-SO-CP).

Interestingly, during the early times, a network with larger synaptic factors evolves faster to its

final asymptotic state. This asymptotic state, when the external input is totally washed out, is

the same for any finite value of recurrent strength, above 0.01, not only in terms of number of

uncollapsed patterns, but also in the exact distribution of retrieved patterns. In the next analysis,

we set the reference time for capacity measures at time 40 and studied the effect of connectivity

dilution and fast noise on storage capacity, at each comparison.

4.3.4 Why increasing the number of connectivity improves the storage capac-

ity?

At this stage it begs the question that under which mechanisms an increase in the number of

recurrent connections results in an increase in the number of stable attractors. We limit our

investigation only to 2L-SO-CP model. To tackle this issue, we first looked at the pair-wise

correlation between stored patterns and retrieved ones. One could expect that the higher the

correlation between the stored patterns, the higher the probability of collapsing together during

retrieval.

• Correlation between stored patterns can not predict the level of correlation among the

retrieved patterns in low-connectivity region.

Stable versus Unstable patterns Figure 4.11, top panel shows the final autocorrelation

between the same 40 patterns after 120 time steps of iteration, when the network is asymptotically

stable. This graph shows that while some of the patterns have been retrieved successfully, the

network has failed to correctly retrieve part of the stored patterns. Setting a threshold for the

value of autocorrelation at ρ = 0.8, we then divided the set of 40 patterns into two groups the

stable and unstable patterns. The middle panel in figure 4.11 shows the distribution of pairwise
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correlation between stable patterns (in red) and between unstable patterns (in blue). Clearly,

the mean of the distribution for unstable patterns has a positive shift with respect to the other

distribution. This reflects that on average a bigger proportion of unstable patterns, with respect

to stable ones, have been attracted to a similar configuration. From the bottom panel which

shows the pairwise correlation between the stable and unstable, it can be understood that several

unstable patterns indeed have been collapsed onto a stable one.

Retrieval correlation versus Stored correlation Does this separation between the distri-

bution of stable and unstable patterns reflect a correlation inherited from the original patterns?

In the other words, given the two final retrieved configurations, ζi and ζj , which are on average

more correlated if the patterns are unstable, one can speculate that perhaps the two original

patterns ξi and ξj are also more correlated, on average, than stable pattern. However, figure 4.12

clearly shows that this is not the case.

• Increase in connectivity, γ, reduces the influence of less-correlated patterns

The raster plot for retrieved correlation versus stored correlation is shown in figure 4.13, for

different levels of γ. Interestingly, while for low γ, the retrieved correlation for originally low-

correlated pairs of patterns is as high as those that are highly correlated, for high values of γ,

the retrieved correlation is mostly close to one, only for those pair of patterns that are a pri-

ori more correlated than the others. This could suggest that increasing the number of recurrent

connections plays a role in averaging out the quenched noise, in favour of the ”condensed” pattern.

Quenched noise The quenched noise due to the storage of several patterns in the network,

using the Hebbian learning, gives rise to overlapping synaptic weights that at the end causes the

collapse of some patterns that could not form a well separated basin of attraction. These patterns

although they have the same level of correlation, a priori, as the final stable ones, probably receive

more of such quenched noise through the recurrent connections.

The next step is to actually measure the quenched noise for different values of γ. To better

understand the function of noise on the stability of different patterns, we separately study patterns
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that a) are stable for any value of connectivity; b) are never stable for any values of connectivity;

c) are stable, and do not attract any of the other patterns; d) are unstable for low values of γ,

but stable for larger γ.

Then, for each pattern in any of the four groups we have calculated

Ri(t) =
∑

ν 6=a

ξν
i mν

i (t) (4.3)

We found that the noise term for patterns depends highly on the level of connectivity. e.g. for

those patterns the stability of which changes with the number of connections.

In the next section, we develop a theoretical framework to monitor the dynamics of an at-

tractor network in response to morphed patterns.

4.3.5 Summary and conclusion

The main issue we aimed to explore was to see the effect of different network structure

and pattern statistics on retrieval of morphed patterns. These three comparisons in fact,

puts forward three steps in making the network modelings, in general, more realistic; i.e. i)

replacing a binary representation with a graded distribution of activity, ii) allowing the input

patterns to self organize in the output layer, before the storage in the recurrent weights, and

iii) inserting additional layers. We found that

• Almost in every structure, the storage capacity increases by the number of connectivity

(as it was well known already)

• The ability of the network to retrieve distorted patterns is higher if patterns are binary.

• In zero noise limit, network with graded patterns has higher storage capacity.

• Binary patterns gain more from the increase in connectivity, compared to graded pat-

terns.

• The same continuous patterns that had high fragility to the fast noise, in a network

with imposed patterns become more robust against the addition of noise if the patterns

are instead self organized.
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• The addition of and input layer only changes the function of the network from the

quantitative point of view (unless for the highly diluted case, that in fact can be a finite

size effect rather).
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Figure 4.5: Storage capacity, Binary vs. Continuous. The stored patterns that are
imposed to the recurrent collaterals (quenched assigned, QA) are drawn from either a binary (a,
and c) or a continuous distribution (b, and d). The top panel shows the phase-diagram for storage
capacity versus fast-noise and connectivity, with p − 40 stored patterns. The level of fast-noise,
shown by a number between 0 and 1, means the proportion of the original input pattern that is set
to random values. The lower panel shows storage capacity versus storage load and connectivity
in zero noise limit. Red (blue) is adapted for storage capacity above (below) 0.5. Black curves

show storage capacity equal to 0.5
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Figure 4.6: Storage capacity, Self organized vs. Quenched Assigned A set of continuous
patterns (drawn from a logarithmic distribution) are either imposed to the recurrent collaterals
(quenched assigned, QA, left) or are reverberated through the recurrents while the level of mean
activity and sparseness are regulated (self organized SO, right). The top panel shows the phase-
diagram for storage capacity versus fast-noise and connectivity, with p− 40 stored patterns. The

lower panel shows storage capacity versus storage load and connectivity in zero noise limit



Chapter 4. Theoretical basis of the model 98

0 0.2 0.4 0.6
0

50

100
Original

Correlation
0.7 0.8 0.9 1 1.1
0

200

400

600
Projected

Correlation
0 0.2 0.4 0.6

0

50

100
Sparsity Set

Correlation

0 0.2 0.4 0.6
0

50

100
Original

Correlation
0.7 0.8 0.9 1 1.1
0

200

400

600
Projected

Correlation
0 0.2 0.4 0.6

0

20

40

60

80
Sparsity Set

Correlation

0 0.2 0.4 0.6
0

50

100

150
Original

Correlation
0.7 0.8 0.9 1 1.1
0

200

400

600

800
Projected

Correlation
0 0.2 0.4 0.6

0

50

100

150
Sparsity Set

Correlation

Figure 4.7: Self organized network regulates mean activity and sparseness Distribution
of pairwise correlation for 25 random patterns that are drawn from the logarithmic distribution
as in ) (patterns η, left), then are projected through the random feedforward connections to
the second layer (middle), and then are propagated through the recurrent connections while the
mean activity and the sparseness of the network is regulated (patterns ξ, right). The difference
between rows comes from the initial level of sparseness in the input layer(top,a = 0.1; middle

1 = 0.2,bottom a = 0.3
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Figure 4.8: Storage capacity, 1-layer vs. 2-layer network The same quantitative mea-
surements as in Fig. 4.5 and 4.6 have been applied to compare the role of an additional layer
that send feedforward connections to the second layer. (1-layer on left, 2-layer on right). The top
panel shows the phase-diagram for storage capacity versus fast-noise and connectivity, with p−40
stored patterns. The lower panel shows storage capacity versus storage load and connectivity in

zero noise limit
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Figure 4.9: Number of units vs. number of connectivity. Number of retrieved patterns
(PC) as a function of γ when the number of connectivity is fixed (C = 700) and the total number
of units changes (left), or when the size is fixed (N = 1000) and the number of connectivity

changes (right). Top: storage capacity in very spars limit a = 0.05; Bottom: a = 0.2

Figure 4.10: Time course of retrieval Time course of percent retrieved patterns when the
initial input is a full (top) or partial cue (bottom). P = 40, C = 300, a = 0.2
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Figure 4.11: Autocorrelation distribution for stable vs. unstable patternsTop: Auto-
correlation values between stored and retrieved patterns, Middle: pairwise correlation distribution
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Figure 4.12: Statistics of stable vs. unstable patterns The distribution of pairwise corre-
lation for the group of stable stored patterns, in red, and unstable stored patterns, in blue.
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4.4 Network dynamics in response to ambiguous patterns

In the previous sections, we discussed different properties of pattern statistics and their effect

on memory retrieval in an associative network. The input to the network was a full or partially

distorted version of a stored pattern. Here, we study network dynamics, when the input is an

ambiguous pattern, correlated with more than one of the stored patterns, namely a ”morphed”

pattern. We would like to see the retrieval of morphed patterns (between a pair of stored pattern),

that are drown from either of the two extreme of pattern distribution; binary and continuous dis-

tribution. We limit our analytical treatment to study the situation where the external input to

the network is equally correlated with two of the stored patterns. The question is what determines

the final state of the network given such external input? There is a large body of literature on

noise/adaptation induced alternations in networks without quenched memory patterns (Moreno-

Bote et al. 2007). We have already reviewed the general characteristics of such memory-less

models in the first chapter of the Thesis. Studying the dynamics of a network endowed with

memory that is encoded in asymmetric synaptic couplings is not trivial due to lack of a time-

dependent Hamiltonian description. In general, the switch from one attractor to another is an

non-perturbative phenomena and thus to do the perturbation, one should study a system at the

edge between the two attractors, instead of a system that is already settled into the bottom of

the attractor. On the other hand, under such condition, the usual signal to noise analysis, is not

effective because at the edge between two attractors the signal is too small. Thus, one can adapt

the perturbation theory at the edge, which is an unstable steady-state and use the signal to noise

analysis only at the final steady state, once the system is close enough to an attractor state.

4.4.1 Rationale for an approximate description

Conceptually, we can draw an abstract framework for dynamics governing the evolution of the

network trajectory after the onset of a specific stimulus. Although in our network, several vari-

ables affects the dynamics, for the sake of the argument we can assume that the vector field of the

system can be depicted in a two dimensional space with only two nullcline whose intersections

determine the equilibrium states of the network, either stable or unstable (figure 4.14). The main

question becomes what determines the fate of trajectories in this space. The middle cross-section

is an unstable point, however, it is instructive to consider small perturbations of this, which then

determine the fate of their trajectories as shown in figure 4.14. The fate depends only on whether
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Figure 4.14: Network trajectory An abstract schematic view of the dynamics underlying
convergence of the network state into an attractor state

the initial state (at onset of the ambiguous input) is below or above the diagonal. In this chapter,

we rather use a simple model to study the time evolution of an attractor network, for which we

will find the minimal system of differential equation that describes the dynamics of input currents

and output currents. We consider a network at steady-state (a configuration partially correlated

with two attractors of the network) and will find the condition under which this steady state

un-stabilized an moves toward the bottom of an attractor. We define the ”default” network, as a

network with P number of patterns stored in its recurrent weights, which receives external input

from time 0 upto toff . At time toff , external input starts to decrease exponentially. This external

input is resembling one of the ”morphed” patterns between a and b. At the first approximate, the

”default” network does not include firing rate adaptation. We assume that this network arrives

at a steady-state before the external input starts to fade away. We aim to look at the stability

of such a system, around its steady-state, under the perturbation that happens at the time of

removing the external input. The question is whether such a perturbation is able to produce a

bifurcation, and how.
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6 groups of units

G1 ξa = 1 ξb = 1 Iµab

in = 1
G2 ξa = 0 ξb = 0 Iµab

in = 0
G3 ξa = 1 ξb = 0 Iµab

in = 1
G4 ξa = 1 ξb = 0 Iµab

in = 0
G5 ξa = 0 ξb = 1 Iµab

in = 1
G6 ξa = 0 ξb = 1 Iµab

in = 0

Table 4.2:

4.4.2 Storing binary patterns

In dealing with large networks, once the temporal dynamics of each unit is derived, a mean-field

description can be obtained by summing up the equations describing the dynamics of individual

units to get (fewer) equations that describe collective behaviour (Frolov and Medvedev 1986). One

type of network in which cells are grouped into a large number of classes (possibly as large as N

the number of cells) on the basis of the strengths of their mutual connections is an autoassociative

memory with graded response units coding graded value patterns. Thus grouping Eq. 4.12 results

in N functional equations describing the evolution in time of the fraction of cells of a particular

class that at a given instant have a given firing rate. However, at the same time, if one allow

the patterns presented to the network to have only binary values, (while the units are kept of

threshold-linear type), the number of actual groups reduces from N , total number of units, to

only 6.

6 groups of neurons encoding pattern a, b and ab Assuming binary patterns, units

can be divided into 6 distinct groups, based on their response to binary patterns a, b and ab, a

morphed pattern between these two.

then the local field to each group will be (for i = 1 . . . 6):

τh
dhi(t)

dt
= −hi(t) +

α

Ca(1 − a)
ξa
i

Ng
∑

k=1

nk(ξ
a
k − a)rk +

α

Ca(1 − a)
ξb
i

Ng
∑

k=1

nk(ξ
b
k − a)rk +

√

αη

(1 − a)
qη + Ii

in − Iai
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nk and r̄k are the normalized number of units belonging to group k, and their mean activity,

respectively (n1 + n3 + n4 = n1 + n5 + n6 = Ca).

Since the different contributions to the local field of each of the two neurons i and j, that belong

to the same group k, is the same, then r̄k is similar to ri = rj . For simplicity we can replace r̄k

with rk.

The final set of differential equations for our 6 groups will be

τh
dh1(t)

dt
= −h1(t) + ma + mb + I1

in +

√

αη

(1 − a)
qη − Ia1

τh
dh2(t)

dt
= −h2(t) +

√

αη

(1 − a)
qη − Ia2

τh
dh3(t)

dt
= −h3(t) + ma + I3

in +

√

αη

(1 − a)
qη − Ia3

τh
dh4(t)

dt
= −h4(t) + ma +

√

αη

(1 − a)
qη − Ia4

τh
dh5(t)

dt
= −h5(t) + mb + I5

in +

√

αη

(1 − a)
qη − Ia5

τh
dh6(t)

dt
= −h6(t) + mb +

√

αη

(1 − a)
qη − Ia6

(4.1)

Moreover, in addition to these 6 equations, the equations for gain and threshold should be taken

into account, as well, as it was discussed in the previous section (4.23).

τg
dIg(t)

dt
= −Ig(t) +

∑

k nk < [hk − Tr]+ >

Na
(4.2)

τt
dTr(t)

dt
=

(
∑

k nk〈rk〉)2
N2

− a

∑

k nk〈rk〉2
N

(4.3)

(4.4)

Up to now, We have defined a set of differential equations, describing the firing rate output

of 6 cell assemblies, together with their gain and threshold, that can be implemented through

inhibitory GABAergic synapses. At this point, these 8 differential equations should be numerically

integrated to give us the full picture of temporal change in each group’s firing rate. This system

of equations, once solved, can be used to define the time evolution of overlap between network

state and memory state for patterns a and b which is one of the most relevant order parameters

for our purpose. In the following sections, we are going to first find the mean firing rate of each

cell assembly at its steady-state, and then analyze the stability of such steady-state perturbed by

different relevant factors.
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4.4.3 Steady-state response

From the system of differential equation (Eq.4.1) , developed in section 4.4.2, the output firing

rate of each group, when the adaptive current is zero, at steady state will be:

h1 = τeg[ma + mb + I1
in +

√

Aη

(1 − a)
qη − Tr]+

h2 = τeg[

√

Aη

(1 − a)
qη − Tr]+

h3 = τeg[ma + I3
in +

√

Aη

(1 − a)
qη − Tr]+

h4 = τeg[ma +

√

Aη

(1 − a)
qη − Tr]+

h5 = τeg[mb + I5
in +

√

Aη

(1 − a)
qη − Tr]+

h6 = τeg[mb +

√

Aη

(1 − a)
qη − Tr]+

in which

ma =
ω

Ca(1 − a)
(
n1

<
r1 > +

n3

<
r3 > +

n4

<
r4 > −a

∑

k

nk

<
rk >)

mb =
ω

Ca(1 − a)
(
n1

<
r1 > +

n5

<
r5 > +

n6

<
r6 > −a

∑

k

nk

<
rk >)

and n1 +n3 +n4 = n1 +n5 +n6 = Ca. The ω factor is a parameter to scale the recurrent weights

to a desired proportion of feedforward weights. (By absorbing this factor into the definition of

overlaps ma and mb, they are no longer span from −1 to 1, but instead mν∃[−αα]).

Statistics for mean firing rate of each group In the first section, once we did consider

the effect of quenched noise as a Gaussian variable on changing the firing probability of different

units. Here, we use the same concept once more, to resume the variability of firing rate within

each group. We assume a Gaussian distribution for the values of hi in each group. The probability
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of the group to fire above the threshold is equal to

Pr(ri > 0) = Pr(hi > Tr) =

∞
∫

Tr

1√
2πσi

e
−

(hi−h̄i)

2σi
2 dh

Based on such property, we can estimate 〈ri〉 and 〈e2〉 as

〈ri〉 = σiρΦ(ρ) + σiΨ(ρ) (4.5)

〈ri
2〉 = σi

2(1 + ρ2)Φ(ρ) + σi
2ρΨ(ρ) (4.6)

where ρi = hi−Tr
σi

, and σi is the standard deviation of the current hi of each group. The definition

of functions Φ(ρ) and Ψ(ρ) are given in the first Section of this chapter. In figure 4.15 we have

plotted the distribution of hk (on the left) and rk (on the right) for 6 different groups. The

vertical red line depicts the threshold.
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Figure 4.15: Distribution of activity in 6 Binary groups Input current (left) and output
firing rate (right) distribution for different groups, in the presence of external input. The vertical

red line shows the threshold.
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4.4.4 Minimal system of differential equation

For simplicity, we start from a situation in which the external input signals a configuration almost

equally correlated with a and b, with a slight deviation toward a. Once considering the network

in such equilibrium state, in the presence of an external input, one can assume that only groups

1, 3 and 5 are active and the other groups are still silent. In other words, the currents that enter

groups 2, 4 and 6 are below the threshold and thus insufficient to make them fire. Therefore,

we can limit our probe only to the activity of these groups from the moment that the external

input start to fade away, until the moment that group 4 (and perhaps 6) start to build up an

activity and the stability of such steady-state is destroyed and following that the system runs into

a trajectory toward the most attractive state close by. In such reduced model, it is an acceptable

assumption to replace 〈ri〉 with hi−Tr, for i = 1, 3, 5. In figure 4.15 the distribution of the current

and its corresponding firing rate is plotted for 6 different groups, using the simulated network,

when the external input is fixed. Clearly the simulation result confirms the above assumption.

However, reducing the external input gives rise to a positive shift in the distribution of h4 and

h6, due to an increase in the gain of the system g = 1
Ig

. Thus, for these two groups, we estimate

the mean firing rate of the group using only the tail of the Gaussian distribution (which is above

threshold), whereas for groups 1, 3 and 5 we use the linear dependency on input current (h−Tr).

The difference h35 and h46 Considering this reduced model, we define the variable h35 as

the difference between the current entering group 3 and group 5, i.e. h3 − h5. Similarly, can be

defined h46. Now, the steady-state can be found not anymore using all the 8 variables, but only

based on the two new variables h35 and h466. The time evolution of them is like

dh35

dt
=

dh3

dt
− dh5

dt
= −h35 + mab + I35 + QN

dh46

dt
=

dh4

dt
− dh6

dt
= −h46 + mab + QN

where mab = ma − mb = β
1 (n1r1(1 − a) + n3r3(1 − 2a) + n5r5(1 − 2a) and I35 is the differential

input to group 3 and 5. At the steady state, when dh35
dt

= 0, the overlap of the system with

pattern a and b does not change anymore (figure 4.16).
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Figure 4.16: The time course of mab, h35, and dh35

dt
A. the overlap with a and b is plotted.

At time t = 10 the external input starts to fade away exponentially. The yellow line depicts dh35

dt
.

Before the input starts to change, dh35

dt
has touched the zero line

Critical value of gain At this point, by linearizing the equation for h35 one can find the critical

condition under which dh35
dt

grows starts to exponentially. This is the moment that the network

leaves the unstable steady-state midway between the two attractor states and the difference

ma − mb grows exponentially, as well. Linearizing equation 4.7 gives a Jacobian of dimension 1

as

Jh35 = −1 + βgn3 (4.7)

This gives us the critical value of the gain g above which the network state becomes unstable

(we call the term βgn3, critical gain, gc for the rest of the discussion). Now, we should find the

value of gc at the steady state which is a function of external input.
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Steady-state equation as a function of the external input. The minimal steady-state

equations, which are two, can be derived from a linear relation between h1, h3 and h4, which is

h3 =
h1 + Iin

2

h4 =
h1 − Iin

2

and the equations for gain and sparseness

g =
aN

n1(h1 − Tr) + 2n3(h3 − Tr) + 2 < r4 >

a =
(n1(h1 − Tr) + 2n3(h3 − Tr) + 2 < r4 >)2

N(n1((h1 − Tr)2 + σ3
2) + 2n3((h3 − Tr)2 + σ3

2) + 2 < r4
2 >)

we remain with two equations for h1 and sparseness in which there is also a non-algebraic ex-

pression for < r4 > and < r4
2 > (the gain can be absorbed into the equations, with two free

parameters h1 and Tr).

Eq1: −gα(1 − 2a)(2n1 + n3)(h1 + Tr) + h1 + (gαn3 − 1)Iin + n4 < r4 > (1 − 2a) = 0

Eq2: ((n1 + n3)(h1 − Tr) − n3Iin + 2n4 < r4 >)2 =

Na(n1((h1 − Tr)2 + σ2
1) + 2n3((h3 − Tr)2 + σ2

3) + 2n4 < r2
4 >)

Figure 4.18 shows the numerical solution of Eq2, in violet, and Eq1 in brown, for different

values of input (at different times). Out of several solutions, only one is relevant to our network

dynamics (the other gives a negative gain).

In figure 4.17, considering an exponentially decreasing form for the external input Iin, the values of

the threshold and gain are plotted, for the simulation results (in black dashed line) and analytical

calculation (in black solid line).

Different input time course - simulation results We have tested the network with different

time scales of the external input. In figure 4.19, the top panel shows the time evolution of external

input with 4 different exponentially decaying time course. The dots, superimposed on each curve,

depict the moment at which gc crosses zero (from negative values to positive). In the lower panel
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Figure 4.18: Steady-state solutions. The numerical solution of Eq2, in violet, and Eq1 in
brown, for three different values of input (at three different times). Out of the two possible

solutions, at each time, only one is relevant for us

the overlap with patterns a and b is shown (again the time for crossing to zero of gc is marked).

The predictive criterion based on equation 4.7 is well matched with the instant of bifurcation in

the overlap values.
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Figure 4.19: Different input time scale. The top panel shows the time course of external
input with four different time constant. Each curve is marked with moment at which the gc crosses
the threshold for stability. The lower panel shows the difference overlap mab again marked with

the critical time of gc.

4.4.4.1 Including firing rate adaptation

To find the solution for the input dependent steady-state equations, we have ignored the firing

rate adaptation. However, as long as the time course of firing rate adaptation is much slower

than the time scale for transition to zero of the external input, this solution of the steady-state

is valid. In this view, what adaptation does is to determine the state of the network after the

external input subsides.

It should be noted that the network is subject to possible switches between the two attractors

of a and b, before the external input subsides. This does depend on duration of input onset, its

strength, and the time course of adaptation. We rather leave this subject open for the feature

studies and thus will not discuss it more here.
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4.4.4.2 Jacobian matrix of 8 x 8 system of differential equation

It is possible also to study the full system of 8 differential equations. In the appendix, we first

linearized the system around the steady-state and then studied the properties of the Jacobian

matrix to find the critical eigenvalues, whose real part can change sign depending on the level of

external input. Out of all 8 eigenvalues, there are 4 λ1 = λ2 = λ3 = λ4 = −1 and one of the

other three eigenvalues, λ6 = −1 + C3 + C4, depends on the values of system parameters at the

steady-state, and thus is function of external input.

Vanishing External Input: Change in the sign of λ1 Here, we find the region in which

all eigenvalues remain negative. Out of 8 eigenvalues, only the last three may change sign.

λ6 = −1 + C3 + C4

For stability, we need to have −1 + C3 + C4 > 0. where

C3 = N
Ca

Φ(ρ3
∗)

δIg

c̄3

C4 = N
Ca

Φ(ρ4
∗)

δIg

c̄4

and

c̄1 + c̄3 + c̄4 = c̄1 + c̄5 + c̄6 = a
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These steady-states are a function of external input. Thus, one can find directly the depen-

dency of each λ on the level of external input, either analytically or numerically. Comparing the

temporal evolution of firing rate for each of the 6 cell assemblies, with the temporal evolution of

λ6 gives the same critical value for the external input.

4.4.5 Different initial steady-states and different input values - simulation

results

We have shown how a balanced steady-state -in which the network state is equally correlated with

two attractors- can become unstable, due to a change in the level of external input. However,

this analytical result is limited to one specific steady-state, and also to binary patterns. Thus,

we run a network simulation to first verify the analytical result, and then see how stability of

different steady-states are subject to changes in external input which can be either drown from

a continuous or binary distribution. In the following simulations, whose properties are set as

described in Section 3, first the two patterns a and b are stored in the recurrent weights of

the second layer, according to the Hebbian learning rule. Afterward, during the test phase, the

network receives intermediate morphs. The original patterns were combined into pairs, and 9

”morphed” intermediate versions of each pair of patterns were set by gradually changing their

correlation level with the two original patterns. This was achieved simply by taking one of the

original patterns and setting the firing rate of a randomly chosen 10%, 20%, 90% of the input

units to their firing rate in the second original pattern.

We hypothesized that in a system of interest which has been stable in a state with overlap ma

with pattern a, and mb with pattern b (in an ideal case mb = 1−ma), the external input signals

a specific morph level (between a and b), with a particular strength with respect to recurrent

inputs. Based on the type and the strength of external input, the network will either experience

a bifurcation or stay in the same state, depending on the starting steady-states.

To simulate different steady-states, we set the initial condition of the network at different inter-

mediate morphs, and then probed it by a fixed input, signaling the desired morphed pattern, for

100 time steps. In Fig. 4.20, different insets show the simulation results of such network probed

by different morphed patterns, while each of them depicts the basin of attraction in the space

of external input and initial condition; i.e. the abscissa is external input and ordinate shows

different initial condition, measured in the level of overlap with pattern A (0 means ma = 1 and

1 means mb = 1), and the contour plot shows the difference in the overlap with pattern a at

time-step 100 and the initial overlap with pattern a, ma(t = 100)−ma(t = 0). We have repeated
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the same simulation, this time for binary patterns imposed to a one-layer recurrent network. The

general outcome is similar to the simulation with graded patterns in a self-organized network,

however, the basins of attractions are sharper.

4.5 Concluding remarks

The initial motivation in studying such model was to ascertain its dynamic behaviour, be-

cause the conditions under which a starting configuration evolves to a specific pattern define

how such network may contribute in producing priming/aftereffect effects. Although the

assumption of the initial steady-state at the edge between the two attractors is a simplified

version of what is happening in a real experimental setup, since the model can be analyzed (at

least in the zero-noise limit), it could serve as a convenient future playground for calculating

stationary state properties of non-symmetric initial states, including fast adaptation as well.
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Figure 4.20: Portrait of basin of attraction. Different insets show the simulation results
of the network probed by different morphed patterns: (a) more correlated with a than with b,
(b) equally correlated with a and b, (c) more correlated with a than with a. In each plot, the
abscissa is external input and the ordinate shows different initial condition, measured in the level
of overlap with pattern a (0 means mb = 1 and 1 means ma = 1), and the contour plot shows
the difference in the overlap with pattern a at time-step 100 and the initial overlap with pattern
a, ma(t = 100)−ma(t = 0). The red codes for any positive shift toward pattern a, whereas blue

stands for the negative shifts.



Chapter 5

Attractor dynamics and Long Term

Memory

In this chapter, we present an experimental study which was carried out in collaboration with Prof.

Bharathi Jagadeesh and Yan Liu in the University of Washington, Seattle. In this experiment,

aiming to explore the neural basis of attractor dynamics in visual cortex, we have recorded from

IT cortex in two monkeys while the animal was presented with morphed stimuli. The neural data

is suggestive of a possible contribution of attractor dynamics in producing categorical boundaries.

This hypothesis, together with another alternative one (firing rate adaptation) was then tested, by

simulating a simple autoassociative network model, and found to be consistent with observations.

The recording experiment was carried out by Yan Liu, and I did the data analysis and network

simulation.

5.1 Experiment: convergence in neuroal activity of IT cortex, in

response to morphed images

The inferior temporal (IT) cortex is thought to play an important role in visual categorization

(Wilson and DeBauche 1981; Afraz et al. 2006). IT neurons can be selective for complex visual

stimuli including people, places, and objects (Desimone et al. 1984; Allred et al. 2005). In some

119
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cases this selectivity corresponds more strongly to exemplar-specific than to category-specific in-

formation (Vogels 1999; Rolls et al. 1977; Freedman et al. 2003). However, IT neurons can also

be sensitive to the features that distinguish categories and are influenced by experience (Sigala

and Logothetis 2002). At the population level, neural responses may reflect performance in be-

havioral classification tasks (Vogels 1999; Allred and Jagadeesh 2007. Single IT neurons encode

different kinds of information about visual stimuli in their temporal firing pattern, suggesting

that the dynamics of visual responses may reflect different kinds of processing of a visual image

(Sugase et al. 1999; Matsumoto et al. 2005). These results suggest that IT can represent both

stimulus-specific information and categories. To further understand this dual representation, we

recorded IT activity in monkeys performing a visual categorization task and examined the dy-

namic conversion of incoming information from complex visual stimuli into categories.

One way to extract relatively stable features from the flow of sensory information to form asso-

ciations and categorize information is through the operation of attractor-based neural networks.

In Chapter 3 and 4, we extensivly discussed the dynamics of an attractor network. In princi-

ple, attractor dynamics might also be expressed in IT cortex, where associative long-term visual

memories are stored, to extract visual category information. However, it is unclear which aspects

of IT activity might represent category boundaries and whether these boundary representations

are interpretable in terms of the basins of an IT attractor network (Sakai and Miyashita 1991;

Amit et al. 1997). Here, we present evidence of converging neural activity in macaque IT cortex

representing the conversion of graded visual information into a category. We then simulate a

local neural network to assess the possible relevance of attractor states and spike-rate adaptation

to the observed neural dynamics. These simulations support a contribution by distributed local

attractor networks, modulated by firing rate adaptation, to drive neural response convergence to

reflect perceptually relevant categories.

5.1.1 Experimental procedure

The data in this study was recorded from two male adult monkeys (Macacca Mulatta). Neural

recordings were targeted near the center of their recording chamber (Monkey L: 17 L, 17.5 A;

Monkey G: 16 L, 17.5 A), in between the perirhinal sulcus and the anterior middle temporal

sulcus. The sites might include cells from both TE and perirhinal cortex. However, the selection

criterion for recording locations was the presence of cells that responded selectively to one of

the 12 image pairs used in this study, and recording locations were altered until such selectivity
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was found. The experimenter usually found an apparently selective neuron (one included in the

population presented in this report) after sampling one to three sites in a session. Recording

procedures can be found in detail, in Appendix.

5.1.1.1 Stimuli

Images consisted of photographs of people, animals, natural and man-made scenes, and objects

(Supplementary Fig. 1). All images were 90x90 pixels, and were drawn from a variety of sources,

including the World Wide Web, image databases, and personal photo libraries. Image pairs were

organized prior to recording sessions into 12 pairs of stimuli. From these predefined lists of image

pairs, selective neurons were found (see Recording Procedures) for a total of 12 unique image

pairs used in the analysis. At the viewing distance used, stimuli were presented on a computer

monitor with 800x600 resolution (refresh rate 100Hz), and images subtended 4◦. Cells selective

for each of the 12 image pairs were found.

5.1.1.2 Effective and Ineffective images

Based on the average response over trials during the sample presentation epoch, offset by a latency

(i.e., over the 75- to 375-ms period) we assigned the image in the pair that provided a stronger

response to be the ”Eff” image, whereas the other was deemed the ”Ineff” image. Because we

recorded from multiple neurons with the same stimulus sets, either of the 2 images in a pair could

serve as the Eff image during a particular recording session. Across the sample included in the

study, each image in the pair was the Eff image in approximately half the sessions using that pair.

5.1.1.3 Image morphing and ranking

Each of the 12 pairs of images was morphed using MorphX, a freeware, open source program for

morphing between 2 photographic images. We constructed 9 intermediate images in between the

2 original images, as described in Liu and Jagadeesh (2008); the images and their morph variants

are presented in Figure 2 of Liu and Jagadeesh (2008). These 9 intermediate images, along with
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the 2 images in the pair were used as samples in the 2AFC-DMS task described above. The

particular pair used in a recording session depended on observing selectivity for one of the images

in the pair.

The morphing algorithm used by MorphX cannot be presumed to be linear; nevertheless we as-

signed a level to each morph variant corresponding to the ordering of each morph variant between

the 2 original images from which they were morphed; There are 11 possible sample images (the

2 original images and 9 morph variants). The original image that produced a weaker response in

the cell in a particular session (Ineff, as defined above) was assigned morph level 0; the original

image that produced a stronger response in the experiment (Eff, as defined above) was assigned

morph level 10. The 9 intermediate morph variants were assigned levels 1-9. Of these, morph

variants 1-4 were closer to the Ineff image, and therefore, images 0-4 are collectively referred

to as the Ineff morphs. Morph variants 6-9 were closer to the Eff image, and therefore, images

6-10 are considered Eff morphs. Morph variant level 5 was a priori defined as the midpoint of

the morph continuum between the 2 images. These designations matched the behavioral reward

contingencies, described below.

5.1.2 Behavioral tasks

5.1.2.1 Two-Alternative-Forced-Choice Delayed-Match-to-Sample

On each day, the monkey performed the 2AFC-DMS task (Liu and Jagadeesh 2008) with 2 sample

images and 9 morph variants of those images. In each trial, one sample image (or one of its morph

variants) was presented, followed by a delay and then followed by a pair of choice images (”choice

array”). The monkey’s task was to saccade to the image in the choice that most resembled the

sample image. An example image pair and associated trials are illustrated in Figure 1. In each

trial a red fixation spot (0.3◦x0.3◦) appeared at the center of the monitor, and was the cue for

the trial to begin. After the monkey acquired fixation, there was a variable delay (250-500 ms)

before the onset of the sample image. The sample was presented for 320 ms. After a delay

period (700-1100 ms), the choice array (which consisted of both sample images from which the

morph variants were created, the Eff and Ineff image) was presented. The choice images were

presented 5◦ up (or down) and to the left of the fixation spot. Location of individual choice images

was randomized between the 2 positions (up and down), so the monkey could not determine the

location of correct saccade before choice array onset. The different morph variants were presented
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as samples in random order, until 5-17 trials were recorded for each image.

When the original image pairs were presented as the sample, the monkey’s task was to pick

the identical sample image from the choice array (Fig. 5.1.a). When the morph variants were

presented, the monkey’s task was to classify the morphed sample as one image in the choice

pair by judging the similarity between the morphed image and the original images (which were

presented as choices). The monkey was rewarded for picking image 0 (the Ineff) image when

morph variants 0-4 were presented as the sample image and the monkey was rewarded for picking

image 10 (the Eff) when morph variants 6-10 were presented. For morph variant 5, the monkey

was rewarded randomly, resulting in 50 % reward for either choice.

The monkeys were trained over apperiod of 6 months before the recording sessions began, with

the 12 pairs of images and their morphed exemplars, as described in Liu and Jagadeesh (2008), so

that both the morphed images and image pairs were not novel to the animal before the beginning

of the recording session.

5.1.3 Analysis of neural data

Neurons were included in the population for analysis based on post hoc analysis of selectivity for

the image pair selected during the recording session (averaged responses over the sample presen-

tation period to the effective image, Eff, are to be at least 110% of those to Ineff), yielding a

neural population of 132 experiments. Four experimental sessions were also discarded because of

poor performance by the monkey, resulting in a neural population of 128 experiments. Choosing

different populations of cells (all 154) or only cells which pass a selectivity criterion (P value be-

tween the 2 original images < 0.01) does not change the results shown in the neural data figures.

Average spike rates were calculated by aligning action potentials to the onset of the sample stimu-

lus presentation, and analyzing the data from 100 ms before the onset of the image to the period

1000 ms after the onset of the image. The peristimulus time histogram (PSTH) for each cell

was calculated by averaging the rate functions across the repeated trials of presentation of the

same stimulus. The population PSTH was calculated by averaging the PSTHs across the set of

128 selective cells. All completed trials were included in the analyses; trials were excluded if the

monkey did not make a choice from the 2 possible choice stimuli. Both correct and incorrect

trials were included.

All the tests of significance were performed on firing rate functions FR(t). FR(t) was calculated

for each neuron, for each sample image, by averaging firing rate across multiple presentations of
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each sample in overlapping time bins (also called epochs) of 100 ms, shifted in time steps of 10

ms (Zoccolan et al. 2007). This procedure smoothes the data. The average FR(t) was plotted

at the middle of the 100-ms bin. Therefore, average responses at time 0 consist of the average

of responses from -50 to 50 ms after stimulus onset. To calculate the dependence of the neural

responses on morph level, we performed a regression analysis for each cell for each epoch. We

regressed the spike rate in an epoch against the morph level, separately for Eff and Ineff images

(Fig. 5.4). To compare the response to Eff with its 4 variants and also Ineff with the other 4

ineffective variants (Fig. 5.5), we applied an unbalanced 2-way ANOVA. In this ANOVA, we

treated the cell as one factor (128 level), and stimulus as the second factor (2 level: Eff vs. 9,

Eff vs. 8, Eff vs. 7, Eff vs. 6, Ineff vs. 1, Ineff vs. 2, Ineff vs. 3, Ineff vs. 4). Morphs 2 levels

apart were also compared using an unbalanced one-way ANOVA, considering again ”stimulus”

and ”cell” as 2 factors with 2 levels (2 vs. image Ineff, 4 vs. 2, 6 vs. 4, 8 vs. 6 and Eff vs. 8) and

128 levels, respectively (Fig. 5.5).

5.1.4 Experimental results: convergence in neural activity in response to Eff

stimuli

We recorded the responses of 154 IT cells in 2 macaque monkeys while the monkeys performed

a 2AFC-DMS task. In a previous report, we compared the discrimination capacity of single

neurons calculated in a fixed response epoch for morphed photographic images to behavior with

those same images during the sessions in which the neurons were recorded (Liu and Jagadeesh

2008). In this report, we examined the changing dynamics of neural responses during a fixed

presentation of a static images morphed between 2 exemplars. The subset of cells in which one

of the 2 choice images produced a response at least 10% greater than the other (n = 128) are

presented in this analysis. Data are combined for the 2 monkeys, and no detectable differences

between the 2 monkeys were found.

The behavior in the task was linear for intermediate morphs but essentially categorical for the

morphs most similar to the choice images. Figure 5.1 shows the proportion of trials in which

the monkey chose the effective image (Eff) by making a saccade to it, across all sessions and

all stimuli. The trend is linear in the central region, morph levels 2 to 8, but levels off at the

extremes and their nearest neighbors, morph levels Ineff and 1 and morph levels 9 and Eff. The

central region can in fact be fitted by a 1-parameter sigmoid (df = 6, chi2 = 0.43) but is even

better fit by a straight line (df = 6, chi2 = 0.33). Is a similar pattern evident in the responses of
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individual IT units?

Most cells were also modulated by the degree of morph. Immediately after stimulus onset (100 -

200 ms after stimulus onset) the response of 93/128 cells decreased as the response was morphed

away form the Eff image, and the response of 100/128 cells increased as the response was morphed

away from the Ineff image, as tested by the slope of the linear regression of the responses for each

cell. The pattern of modulation differed among individual neurons, however. Six example cells

are shown in Figure 5.2.a,b. By definition, the average response to the Eff stimulus (solid line)

was greater than the average response to the Ineff stimulus (dashed line) (Fig. 5.2.a). Most cells

responses increased systematically between the Eff and Ineff image with the mean response to

the mid-morph stimulus lying somewhere between the 2 extremes (Fig. 5.2.b). Eff images were

defined on the basis of the response during the stimulus epoch (75 - 375 ms after stimulus onset).

Immediately after stimulus onset (100 - 200 ms), 124/128 cells had bigger responses to the Eff

image (level 10) than the Ineff image (level 0), replicating the response difference based on the

longer epoch in which the Eff and Ineff image were defined. In the epoch immediately after the

stimulus onset, 99/128 cells had smaller responses to the middle morph image (level 5) than to

the Eff image (level 10); 106/124 cells had bigger responses to the middle morph image (level 5)

than to the Ineff image (level 0) The responses of a smaller number (n = 35) of individual cells to

the intermediate morphs, on the other hand, did not vary linearly along the morphing dimensions

and did not increase monotonically with morph level (Fig. 5.2a,b, bottom right). The range of

firing rates across the morphs and the time course of the responses was also variable, from 1020

Hz for some cells, and up to 120 Hz for others.

Classification ability and neural response Classification ability depended linearly on

morph level for intermediate morph levels but not morph levels close to either familiar images,

which were classified nearly perfectly (Fig. 5.1.b). A hallmark of this behavior might be reflected

in the neural responses, if neural responses were also linearly dependent on morph level, except

for those morph exemplars that were similar to the Eff or Ineff image. Some neurons did appear

to follow this pattern, whereas others did not. One cell shown in Figure 5.2.b produced responses

that roughly follow the pattern seen in the behavior (Fig. 5.2.b, top left), whereas others pro-

duced linear responses for all morph levels (Fig. 5.2.b, top right, bottom left and middle).



Chapter 5. Attractor dynamics and Long Term Memory 126

Symmetry in firing rate differences but not in firing rate values In order to further

examine the relationship between these neural responses and the morph level of the stimulus, we

calculated population averages across the neurons (n = 128). Because the behavioral response is

symmetric around morph level 5 (Fig. 5.1.b), we initially took such symmetry for granted and

compared average responses to morphed images ”equidistant” to morph level 5 by calculating the

difference between them (Kreiman et al. 2000; Allred and Jagadeesh 2007; Liu and Jagadeesh

2008). However, averaged across the population, firing rate differences did not replicate the

plateaus shown in the behavior for morph levels close to the Eff or Ineff images (Fig. 5.3.a). In-

stead, average firing rate differences decreased smoothly, almost linearly, with decreasing distance

along the morph continuum, throughout the response to the sample stimulus (morph level main

factor, 50 - 550 ms (P < 0.02), nonparametric 2-way ANOVA (Friedman test)).

Symmetry in responses to Eff and Ineff morphs is not preordained, however: subtracting the

response to Ineff images from the response to Eff images might obscure the time course of the

separate responses to Eff and to Ineff images. If either the Eff or Ineff responses were strongly

dependent on morph level, the difference between the firing rates might mask the lack of depen-

dence on morph level of the other images. Image Eff, moreover, had been selected from the pool

of image pairs for being visibly effective for that particular cell, across thee group of images used,

all of which were generically effective for some IT cells; although the ”ineffective” image, Ineff,

produced a smaller response, but was not necessarily ineffective in driving the cell. Frequently,

cells responded to ”ineffective” images producing responses substantially higher than the baseline

response. Therefore, the apparent linear trend in Figure 5.3a could result from a strong quasi-

linear dependence of either the Eff or Ineff images on morph level, masking the other half of the

dependence.

Asymmetric convergence in neural activity The asymmetry between responses to Eff

morphs and Ineff morphs is visible when responses to each individual morph level are plotted

separately (Fig. 5.3c). The Ineff morph responses were linearly dependent on the morph level

throughout and after the sample presentation nearly until the responses return to baseline. The

Eff morph responses, in contrast, are linearly scaled as a function of morph level only for a brief

time at the first peak of the response, centered around 120-ms poststimulus onset. By 200 ms post-

stimulus (average response in the 150- to 250-ms epoch) the dependence of Eff morph responses

was decreasing, and in the linear regression as a function of morph level, the slope decreases

more rapidly than the one describing the dependence of Ineff morph responses on morph level.

There is a second, lower response peak around 270 ms, where levels Eff, 9 and 8 are together but
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significantly above levels 7 and 6, and at 320 ms, at the end of the sample presentation time, all

morph levels 6 to 10 are within the 95% confidence interval of each other. The response to morph

level 5, which was not consistently classified as either stimulus choice and was randomly rewarded

is different from the response to both the Ineff and Eff variants until 700-ms poststimulus, late

in the delay period. There are 3 behaviorally defined groups in the morph continuum, the Ineff

group, which must be classified as the Ineff choice, the Eff group, which must be classified as the

Eff choice, and the image corresponding to morph level 5, which belongs to neither Eff nor Ineff

group, and can be classified as either Eff or Ineff, with random reward for each possible choice.

These 3 groups remain distinct until at least 700 ms after stimulus onset; the Eff group of stimuli,

the morph level 5 (middle morph stimulus), and the Ineff group of stimuli, even as the responses

to the individual images in the Eff group become indistinguishable.

The flattening of the linear relationship with respect to stimulus morph level can be seen in Figure

5.3.d, where the average firing rates to the 11 morph variants are shown, over 4, 100-ms time

periods. The data for Eff and Ineff morphs are fit with separate lines. The slope of the linear

fit for the Eff morphs gradually drops off compared with the slope for Ineff images. For the first

2 time windows (100 - 200 ms and 200-300 ms) the slopes are not significantly different from

each other (P = 0.85 and P = 0.20, for the 2 windows respectively), but are both significantly

different from zero (Eff: t-test, P = 0.02 and P = 0.01, Ineff 0.02 and 0.01, for the 2 time windows,

respectively). During the later epoch (400 - 500 ms) the slope of the linear fit for the Eff morphs

was not significantly different from zero (ttest, P = 0.34 400 - 500 ms) and is significantly different

from the slopes for Ineff morphs (P = 0.01). Thus across the entire population of neural data,

unlike the behavioral data, the response ”plateau” appears to extend over the whole Eff range,

and does not extend over the Ineff range. Note, however, that the notion of a response plateau is

an oversimplification, which does not really describe the response of individual cells (see below).

Morph level is a main factor affecting the Eff responses from 70 - 220 ms after stimulus onset

(unbalanced one-way ANOVA shows that for Eff stimuli, the P < 0.05), whereas the Ineff morphs

responses remain significantly different from each other for the entire sample presentation and

into the delay period (70- to 590-ms poststimulus onset, P < 0.05). Responses to the Eff images,

as a group, remain significantly above those to Ineff images (2-way ANOVA, P < 0.05) until 900

ms, when responses to both Eff and Ineff images are back at spontaneous level. The similarity

of the firing rates for the Eff image and its 4 nearing morphs could be a hallmark of the morphs

having been attracted to the basin of attraction of image Eff. These data show that subtracting

the response to Eff images, in Figure 5.3.a, had obscured the time course of the convergence

among responses to Eff images. This can be interpreted, presumably, as an indication that there

is no convergence of neural responses to Ineff images, at least on average across the cells in our

dataset, whereas there is, on average, a convergence of neural responses to Eff images.
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Is the population average a faithful reperesentation of most cells? In going from single

neurons to the population average, it is important to take into account the potential differences

among responses of individual cells (Fig. 5.2). Is the population average a faithful representation

of most cells or does it reflect the behavior of a few highly active cells? To address this concern,

we applied the same analysis used for the population average in Figure 5.3.d to each individual

cell. We fit with a line the firing rate of individual neural response as a function of morph level

for 4 different response epochs of 100-200 ms, 200 - 300 ms, 300 - 400 ms, and 400-500 ms.

In each epoch the linear regression was applied separately for Eff and Ineff images, giving a fit

slope for the 2 subgroups of stimuli. Slope is expressed in units of spikes/second/morph level

and reports how well the response to the Eff and Ineff images was modulated as a function of

morph level. Figure 5.4 shows scatter plots of the slopes in the late time window (400 - 500 ms)

with respect to the early one (100 - 200 ms), for Eff (Fig. 5.4.a) and Ineff (Fig. 5.4.b) morphs,

respectively, for each individual cell in the population. Across the population of neurons, the

slope is significantly higher in the early epoch than in the late epoch (sign test, P < 0.0001)

for the Eff images (Fig. 5.4.a). Most of the points lie below the diagonal line indicating equal

slopes. This effect is not found for Ineff morphs, for which individual neurons are uniformly

distributed around the diagonal (Fig. 5.4.b, sign test, P = 0.1329). Furthermore, slopes for both

the Eff and Ineff morphs are significantly different from zero in the early time window (sign test,

P < 0.0001, population significance), whereas in the late time window, only slopes for the Ineff

morphs are significantly greater than 0 (sign test, P < 0.0001). Figure 5.4.c shows time course

of averaged slope (over all cells) for Eff (red curve) and Ineff (blue curve) morph stimuli. In the

time bin 380 - 480 ms after stimulus onset, Eff responses no longer depend on the morph level of

the individual stimulus (t-test, difference from 0, P > 0.05). At those same time periods, Ineff

responses still depend significantly on the morph level (t-test, difference from 0, P < 0.0001) and

Eff and Ineff response slopes are different from each other (paired t-test, P < 0.01). Ineff slopes

remain significantly different from zero until the 700- to 800-ms time bin, when they are no longer

significantly different from 0 (t-test, difference from 0, P > 0.05). Thus, the pattern of response

dynamics seen in the population average in Figure 5.3.c,d is present in the individual cells (Fig.

5.4.a-c). Both the individual cells responses and the average population show that response to

the Eff morphs and the Ineff morphs depends on morph level in the period immediately following

the onset of the stimulus. Over time, however, the responses evolve so that neural responses

to different Eff images all converge to similar values. The responses to Ineff variants remain
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separated, however, and the response remains dependent on the morph level.

Regression analysis only for middle morphs The response to the Eff and Ineff images

(morph levels 0 and 10) were used to classify the 2 images, raising the possibility that these

images might skew the regression analysis. Therefore, we performed the linear regression shown

in Figure 5.4 for each cell, after first eliminating the Eff and Ineff images from the regression

(i.e., morph levels 0 and 10). The analysis on this limited data set confirms the analysis shown

in Figure 5.4. In the time bin 430530 ms after stimulus onset, the responses to Eff morphs no

longer depend on the morph level of the individual stimulus (t-test, difference from 0, P > 0.05).

At those same time periods, the responses to Ineff morphs still depend significantly on the morph

level (t-test, difference from 0, P < 0.0001). The Ineff slopes remain significantly different from

zero until the 660- to 770-ms time bin, when they are no longer significantly different from 0

(t-test, difference from 0, P > 0.05).

The simple regressions used in this analysis do not completely represent the patterns seen in

individual cells. Among several alternative analyses, one may fit regression lines only to parts

of the entire morph range. The behavioral data raises the expectation that convergence might

be expected only for morph levels 8-10 (the original, and the 2 variants close to it), suggesting

the possibility that only some of the stimuli for which a particular behavioral classification was

required consistently converge to the same node. Stimuli closer to the response boundary may

not always converge to the same node (different stimuli may behave differently, and the same

stimuli may behavior differently in different trials or different sessions). To address this ques-

tion, linear regression can be performed with data for morphs 0 - 2 and 8 - 10, corresponding to

the ”plateaus” seen in the behavioral data, corresponding to stimuli for which the behavior was

roughly similarly (each was classified consistently, respectively, as the Ineff or Eff image). This

regression analysis changes the time course of dependence on morph level for the Eff and Ineff

images. Eff responses converge faster, resulting in zero slopes sooner after the onset of the image.

In addition, the Eff slopes actually turn negative, with greater morph levels resulting in a slightly

smaller response at response onsets. Ineff slopes remain significantly different from zero until late

in the delay period, with the difference between Eff and Ineff slopes increasing.

Part of the variability among cells may be due to the diversity of image pairs used in the exper-

iment, but the significant trends shown in Figure 5.4 are replicated for individual images, with

the similarity to the population increasing with the number of recorded units for each image.
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”Gradual” convergence Neural responses evolve, or change dynamically over the course of

the presentation of the constant, unchanging stimulus to show convergence to different response

levels. Does the dynamics of this response evolution depend on the morph level? To address this

question, we performed an analysis of variance to examine how separated responses to different

morphed images remained as a function of time (Fig. 5.5). The times of convergence to the Eff

(or Ineff) stimulus for each morph variant are shown in Figure 5.5a. This graph shows the time

at which the responses to the morph variants were no longer significantly different form the Eff

(or Ineff) stimulus (P value of ANOVA < 0.01 Supplementary Fig. 5.5.a,b). The response to

the Ineff variants remains different from the Ineff until long after the stimulus presentation, until

approximately 600 ms after stimulus onset. Eff variants, on the other hand, take progressively

shorter times to converge to the Eff response as the morph level increases (indicating higher

similarity to the Eff stimulus).

Figure 5.5.a illustrates the timing of convergence of the response to each morph toward that to

the Eff or Ineff image. We can also assess convergence between pairs of other morph levels. The

analysis comparing how quickly different pairs of morph levels converge is shown in Figure 5.5.b,

using the same analysis of variance used in Figure 5.6.a, but comparing other pairs of morphed

stimuli (Fig. 5.5.c). We compared the response to morphs 20% apart, by running an unbalanced

one-way ANOVA analysis for responses to morphs 2 versus image Ineff, 4 versus 2, 6 versus

4, 8 versus 6 and Eff versus 8. The data in Figure 5.6.b shows that the Ineff morphs remained

separated for durations longer than the presentation of the sample stimulus (greater than 500 ms)

(Fig. 5.6.b, left 2 points). The pair of morphed stimuli that lie across the behaviorally defined

classification border (morphs 4 and 6, remain separated for over 700 ms). The Eff morphs, on

the other hand, converged to one another at durations close to sample duration, or even shorter

(Fig. 5.5.b, right 2 points).

Improvement in behavioral performance, in correlation with change in degree of

convergence Although the monkeys were trained before the beginning of the recording session,

improvements can be seen in behavioral performance over the course of the multiple recording

sessions in the study. Behavioral performance was significantly better during the second half of the

recording sessions compared with the first indicating that the monkeys performance continued to

improve over the course of the sessions (Fig. 5.7.a, paired ttest, P < 0.01 for morph levels 1 - 4 and

6 - 9). Performance for the 2 original images was stable over the course of the recording sessions

(P = 0.52). An improvement in behavioral performance might suggest that neural representations

were also changing over the course of the study. To examine whether the dynamics of the response
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as shown in Figure 5.4 changed over the course of the study, we separately examined the neural

response dependence on morph level (shown for the entire data set in Fig. 5.4.c) for the first and

second half of the sessions (Fig. 5.7.b,c). The results suggest that the dynamics of the response

convergence (the pattern of results shown in Fig. 5.4) changed over the course of the recording

sessions. The difference in slope for Eff stimuli at stimulus onset compared with stimulus offset

was significant only during the 2nd half of the sessions (n = 62 first half, n = 66 second half, Eff

slope at 100-200 ms compared with slope at 400-500 ms, P = 0.0160, early sessions, P = 0.0959).

Furthermore, the difference between slopes for Eff and Ineff images was significantly different

only in the second half of the sessions (slope at 400-500 ms, compare Eff vs. Ineff slopes, P =

0.0105, early sessions P = 0.2374). The trends were compatible with storage of the patterns (as

described in the network model) improving over sessions.

5.2 Theory: simulation results of an autoassociative memory

model

What is the neural mechanism underlying this convergence? Can the observed convergence ex-

press the outcome of visual signal processing within IT cortex, or must it be driven by afferent

inputs that have already converged before reaching IT, or top-down, by signals from more ad-

vanced processing stages (Bar et al. 2006)? If the convergence can result from local processing

within IT, what is the contribution of network interactions, that is, of dynamical attractor states

determined by the structure of recurrent connections in IT? Or, could the convergence reflect,

in part, simple firing rate decay of individual IT neurons, expressed as a gradual decay, rather

than network dynamics? Firing rate adaptation effects are conceptually quite different from

those arising out of genuine network interactions, but may in practice be difficult to distinguish.

If firing rate adaptation progressively suppresses the responses to Eff and to its closest morphs

9, 8, ... effectively squashing them onto each other, the functional consequences may resemble

the convergence posited to result, in network models that do not include firing rate adaptation,

from synaptically mediated attractor dynamics. We addressed these possibilities by simulating a

simple local network model of cortical activity, with and without firing rate decay, to assess the

relative contribution of attractor dynamics and of adaptation. Note that this simulation does

not rule out all forms of adaptation, and a sufficiently complicated form might replicate response

dynamics in this individual data set, even if the simple form does not.
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Our model simulates a single hypothetical local network within the IT cortex. The network in-

cludes an input station, simulating afferent inputs from earlier visual areas, which projects its

activity to an output layer, simulating an IT patch, through sparse FF connections. The units

in the output layer receive both FF and recurrent connections at random, with unstructured

baseline weights (see Fig. 5.8.a and the initial section of this chapter).

When aout = 0.2, theoretical calculations indicate that the storage capacity of the model is around

0.2-0.4 times the number Crc of recurrent connections per neuron (in our simulations Crc varies

between 200 to 999), Thus, although finite size effects make the notion of storage capacity less

well defined for a network that is small, it is expected to be able to retrieve on the order of 100 -

200 patterns.To assess the storage capacity of our model, for each value of p we gave the trained

network a full cue, corresponding to one of the stored patterns, and after 80 synchronous updates

we measured the final overlap of the network state with the presented pattern. If the final overlap

is larger than 0.8, retrieval was deemed successful. Repeating this process for 4 different seeds

of the random number generator and p different patterns, the maximum value of p at which

success still reaches 50% is around 250 patterns, higher than but consistent with the theoretical

expectation.

We ran simulations in which we stored 20 or 160 patterns, which correspond to conditions where

the network is far below its storage capacity and near its storage capacity.

Different units in the first layer receive inputs of variable duration, drawn at random, for each

unit from a logarithmic distribution. Inputs were not removed sharply, but gradually, with a

linear decay to zero. The distribution of input offset latency is shown in Fig. 5.8.b (top right

panel). The output of units in this layer is a step-like function, active at a certain level for a

specific duration (Fig. 5.8.b-top left), with a gradual transition to zero. The average activity

across all input units, for one pattern, is shown in Fig. 5.8.a (top left panel).

Once either p = 20 or 160 original patterns had been stored, the network was tested with inter-

mediate morphs. Original patterns were then combined into pairs, and 9 ”morphed” intermediate

versions of each pair of patterns were set by gradually changing their correlation level with the

two original patterns. This was achieved simply by taking one of the original patterns and setting

the firing rate of a randomly chosen 10%, 20%, 90% of the input units to their firing rate in the

second original pattern. To simulate experimental procedures, for each output unit we assign

a pair of patterns to which the unit has a different response during stimulus onset (a pair of

”effective” and ”ineffective” stimuli). In some simulations, intermediate morphs were produced

not between two stored patterns, but between one pattern that was stored and one other pattern

which was not stored in the network.

To test the network, we measured the time evolution of all output units, over 80 time steps, after

presenting a morphed pattern (or the original images from which the patterns were morphed) in
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the input layer.

5.2.1 Adaptation alone can not replicate experimental results - simulation 1

In simulation 1 we assessed the effect of firing frequency adaptation on responses, modeled as a

decay term, a linear decay as a function of the recent activity of the cell. Can convergence result

from such firing rate adaptation over time?

The simulated network is a simple approximation of inputs and recurrent connections to a patch

of cortex. It consists of 2500 units that receive FF projections from an input layer containing

another 2500 units (Fig. 5.8.a). Each unit in the (output) patch receives approximately 750 FF

connections from the input layer, and 500 recurrent connections from other units in the output

patch (Fig. 5.8.a). The connections are assigned at random and, because there is no storage of

activity patterns in this first version of simulation, weights are not modified to reflect memory

storage. The weights are instead set to a random value and then normalized to generate an

approximately exponential distribution of initial weights onto each unit (see Chapter 4). Once

a pattern is imposed on the input layer, the activity circulates in the network for 80 simulation

time steps, each corresponding to ca 12.5 ms (in total ca 1 s. Fig. 5.8.b top left panel) (Treves

2004). The details of the network, including signals receiving by each unit and their activity

functions, together with the default values for parameters used in the model are reported in the

first section of Chapter 4.

The input patterns simulate the hypothetical input produced by 20 unrelated visual images, and

morph variants of them. Inputs consisted of 20 uncorrelated input patterns combined into pairs.

Nine ”morphed” intermediate versions of each pair of patterns were set by gradually changing the

correlation of one original pattern with the other pattern. To simulate experimental procedures,

for each output unit we assign a pair of patterns to which the unit has a different response during

stimulus onset (a pair of ”Eff” and ”Ineff” stimuli). Then, the response of individual output units

to these selected patterns and to their morphs was monitored. The duration of the inputs was

variable, to simulate the potentially variable duration of different input streams. Input offset

time for each unit is driven from a sharp logarithmic distribution, peaked at time ca. 300 ms

(Fig. 5.8.b top right panel).

In the first simulation, we examined the effect of firing rate decay. Firing rate decay was modeled

(see Chapter 4, section 1) by subtracting from the sum of FF inputs and recurrent connections

to each output unit a fraction of its own recent output activity. The trace of its ”recent” activity

is calculated with a convolution kernel, expressed as a difference of 2 exponentials, with inverse
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time constants β1 = 2β2 = 0.2 (time steps)-1. This form of firing rate decay applies to all output

units from the second time step, for all the succeeding 100 time steps.

The average network dynamics shows that linear decay of responses over time produced by adap-

tation does not produce a response convergence similar to that observed (Fig. 5.8.c). In the early

phase of the simulated neural response, during which the network is mostly driven by afferent

inputs, average network responses to all morphing levels are well separated. Then, as the afferents

are gradually removed, the population response to all the morph levels decrease, but there is no

tendency for the Eff responses to group or squeeze together (Fig. 5.3.b).

Convergence might require ”memories” to be stored within the network. Unlike the simple local

network above, with no stored patterns, in autoassociative networks memories can be stored as

stable network activity states, called attractors (Hopfield 1982; Treves and Rolls 1992; Amit 1994;

Brunel 1996). A stored pattern, may be then be retrieved when a noisy or occluded version of it

(a partial cue) is provided as input. This ability is due to the formation of dynamical attractors

that capture network activity, if an input is sufficiently close to one of the patterns stored. The

formation of the attractor landscape is achieved by creating overlapping patterns of synaptic

modifications adhering to the Hebbian paradigm (Hebb 1949) such that each synapse is involved

in the storage of multiple related memories. Inevitably, this common synaptic representation

implies interactions between memories stored in the same network. The putative presence of

long-term memories in IT and the observation of increasing stimulus selectivity, through learn-

ing, in individual neurons (Sakai and Miyashita 1991) suggest that attractor dynamics may be

plausibly expressed in IT cortex, where visual object memories are likely stored, and may drive

the extraction of visual category information. Therefore, in our next simulation, we considered

an autoassociative network, with memory patterns stored in RC connections through a realistic

synaptic modification mechanism.

5.2.2 Attractor dynamics, a potential mechanism underlying behavioral cat-

egorization - simulation 2 and 3

Does the addition of stored patterns produce convergence in the network? The properties of

the network were identical to those used in simulation 2; the only addition is that in simulation

2 the recurrent weights are modified to store memory patterns before testing the response of

the network to patterns and their morphs. First we produced 200 uncorrelated patterns, using

a common truncated logarithmic distribution, from which the firing rate of each unit is driven
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independently (see Chapter 4, section 1). Then we stored in the network P = 160 of these

patterns, by modifying the RC weights of the output layer with a ”Hebbian” learning rule (see

Chapter 4, section 1). Either 2 stored patterns or a stored pattern and a novel one, from other

40 unused patterns, are then combined into pairs, and 9 ”morphed” intermediate versions of each

pair of patterns are presented as the input. As indicated in the Chapter 4 (first section), this

results in a network that is below its storage capacity.

Simulation 2 - morph between two stored patterns In the first simulation with stored

representations, we analyzed network activity in response to stimuli obtained by morphing be-

tween 20 sets of 2 stored patterns (40 out of 160 stored patterns). Single units show a variety of

behaviors in response to morphs (Fig. 5.9.a), resembling the diversity observed with real cells.

Averaged population activity qualitatively mirrors the convergence seen in the population aver-

age of IT neural responses, for Eff morphs (Fig. 5.3.c). Figure 9b shows the mean responses in

the simulation, after averaging over all units. In the first phase, whereas sufficiently many units

in the network still receive afferent inputs, all the morphs are well separated. Rather abruptly,

as the average ratio of RC to FF activation increases beyond a critical level, network activity

was determined by the attractors embedded in the RCs. The responses to the Eff morphs are

all attracted to the full memory pattern Eff. However, in this simulation, unlike in the data, the

responses to the Ineff morphs are also attracted to a basin of attraction for the Ineff morphs, a

feature not seen in the data (Fig. 5.3.c). Adding adaptation to this simulation (as described for

the first simulation), does not produce the lack of convergence for Ineff morphs seen in the neural

data (Fig. 5.9.c).

Simulation 3 - morph between one stored and one non-stored pattern Testing with

morphs between 2 stored patterns corresponds to the assumption that both images used in the

real experiment had memory representations in the local network that includes the particular

unit being recorded from. The experimental procedure for picking image pairs for each cell, on

the other hand, might introduce a bias, where the Eff image is more likely to be represented by

a ”neural assembly” to which the unit belongs, than the Ineff image, which might have its own

representation elsewhere over IT (Haxby et al. 2001; Kiani et al. 2007). To model this situation,

we tested network activity in response to morphs obtained between an (Eff) stored pattern and

one that had not been stored. Figure 9d shows that the convergence of the mean responses, again
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averaged over all units, is now limited to the Eff patterns. We found that the morph level, above

which responses converge, is strongly dependent on the storage load. With low load (Fig. 5.10,

20 stored patterns), all morphs converge to the stored pattern Eff, whereas when many patterns

are stored (Fig. 5.9.d, 160 stored patterns), the basin of attraction effectively shrinks, and only

the morphs closer to the Eff pattern showed convergence.

We then combined stored attractors with firing rate decay over time. In this version of simulation,

we used the same network as in Simulation 2, with 160 stored patterns, and applied firing rate

adaptation, modeled as in simulation 1. We again monitored the firing activity of output units

in response to intermediate morphs produced between one stored pattern and one novel pattern.

In this way we could assess the effect of response decay on the simulation in Figure 5.9.d (or Fig.

5.9.b). Introducing this form of firing rate adaptation did not change the qualitative behavior of

the network (Fig. 5.9.e or Fig. 5.9.c): in the first phase of the response, when the network is

mostly driven by afferent inputs, different morphs are linearly separated; in the second, ”memory”

phase, when afferent inputs have been largely removed, the network activity converges to either

one or 2 attractor states, depending on whether both patterns are stored (Fig. 5.9.c) or only one

is stored (Fig. 5.9.e). Adaptation however introduces a third phase, in that after some time it

brings the network out of the current attractor state and makes single units fire in a somewhat

erratic manner to the different morphs and brings all responses close together. This disorderly

behavior imitates the population average of neural responses (Fig. 5.3.c). The simulation also

shows a crossover between the responses to Eff and to morphs 9, 8 and those to morphs 7, 6,

which is an effect of adaptation (Fig. 5.9.e,c). This crossover is also visible in the experimental

data, in that around 450-ms poststimulus onset the average firing rate of the response to stimulus

Eff drops below the responses to the rest of the Eff images (Fig. 5.3.c).

The simulations can thus replicate the linear dependence of the response on morph level at

stimulus onset (Fig. 5.3.c,d) for both Eff and Ineff images, and the selective convergence of the

Eff responses, whereas the Ineff morphs remain separated long after the stimulus has been turned

off. The simulation best matches the data if we assume that 1) many patterns are stored in the

network (close to storage capacity), that 2) the sampled cells belong to the representation of only

one of the 2 images that are morphed into one another, and if we add some degree of response

adaptation. Even with these characteristics, the simulation cannot replicate another feature of

the data: the gradual convergence over time among Eff responses (Fig. 5.3.c). In addition,

compared with the real data the onset transient is less peaked in the simulation, and the delay

activity returned to a common value for both sets of morph sooner (Fig. 5.9.e) than in the real

data (Fig. 5.3.c).
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5.3 Concluding remarks

In our model, the intermediate morph stimuli do not contribute to synaptic modifications during

learning. In other words, there is no attractor individually assigned to each morph level. In

this sense our model is different from those discussing ”attractor collapse”, in which each inter-

mediate morph patterns contribute equally to synaptic modification (Blumenfeld et al. 2006).

Stimuli and task demands, in other experimental studies, may also differ in many ways from our

experimental setting. In one particular study (Blumenfeld et al.), a fundamental difference is

that they used faces as visual stimuli, which allows them to generate a whole morphing stream

equally meaningful for the subjects of each individual morph image has a specific identity and is

perceptually recognizable as a face, and the subject should report whether each morph face is a

Friend or non-Friend. In our study, instead, the intermediate morph images are rather ambigu-

ous and nonmeaningful, and the monkey is not asked to recognize each morph independently. It

seems more justified to assume a synaptic plasticity effect for perceptually meaningful faces than

for nonmeaningful images, which in our experiment which must be classified in 2 groups by the

monkey, based on their similarity to either Eff or Ineff. Even if we take synaptic plasticity into

account for intermediate morphs and one could easily implement it in the current model, having

the morphs stored in the network by changing the weights with a β factor an order of magnitude

weaker than the original patternswe still believe that the storage of the 2 end point images (Eff

and Ineff) would dominate the ensuing attractor dynamics.

The simulations show that a very simple model of an IT patch, with memory attractors stored

on recurrent connections by associative plasticity, responds with a convergent dynamics similar

to that seen in the data. Furthermore, the simulations suggest that such local networks may

be loaded with memories close to their storage capacity, which would be consistent with the

expectation of an efficient utilization of the available memory resources in the synaptic weights

(Braitenburg and Schuz 1998).

Although the network simulation suggests that attractor dynamics could explain the dynamics

of the responses seen in IT, the simulation cannot address the question of whether this attrac-

tor network plays out in IT itself, or if it is inherited from another visual area with all of the

dynamics preserved. For example, some simulations of learned categories suggest that an interac-

tive feedback between IT and prefrontal cortex might provide initial information separating the

categories. Over time, this feedback information changes synaptic weights in IT, enhancing the

representation of features that differentiate between the categories (Sigala and Logothetis 2002;

Sigala 2004; Szabo et al. 2006). Alternatively stimulus frequency has been proposed as a method

for adjusting synaptic weights to produce categorical boundaries (Rosenthal et al. 2001). These
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computations could play a role in the dynamics reproduced here with attractor networks, and

could precede the attractor dynamics demonstrated here.

5.3.1 Summary

IT We recorded from individual neurons in IT cortex while monkeys performed a classi-

fication task on morphed visual images. We report here a population of IT neurons whose

responses evolve gradually over the course of a trial,

• first representing parametrically the morphed image,

• and later converging to represent one of the 2 categories.

• The convergence of IT activity from a stimulus-based representation to a category-

based representation was asymmetric, in that only responses to the morphed images

that resemble the effective stimulus for an individual cell converge, whereas responses

to morphed images that resemble the ineffective stimulus remain segregated by morph

level.

Model network An asymmetric convergence may result from multiple mechanisms, of

course. We have tried to assess 2 possible underlying mechanisms:

• A gradual decay of the response over time, With our first simulation, we could rule

out the possibility that the convergence was the result of simple linear decay of neural

responses. A linear decay of responses had an equivalent effect at each individual morph

level, and did not produce a change from the linear dependence visible at stimulus onset

(simulation 1, Fig. 5.8.c)

• Attractor dynamics in the local recurrent networks. the operation of a simple attractor

network produced qualitatively similar convergence to that observed in the neural data,

allowing a more detailed interpretation of the observations.
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Figure 5.1: Behavioral paradigm (a) Classification task. After the monkey achieved fixation
on a fixation point, a sample, chosen at random among the 9 morphed images or the pair of
photographs from which the morphs were made, was presented for 320 ms. Then, after a delay,
the photographs appeared together as possible choices (targets). The monkey’s task was to pick
the target choice that more closely resembled the sample, and make a saccade to it. (b) Behavioral
performance. The data are plotted as the proportion of times the monkey chose one of the images
(the ”effective” image for the cell (see section 5.1.1), or Eff) of the 2 original photographs, as
a function of the different samples. The trend is linear in the central region between morphs 2
and 8, but performance levels off at the extremes and their nearest neighbors, images Ineff (0)
to 2 and 8 to Eff (10). The data are fit with a sigmoid (blue line) and a line (black line). Error
bars are standard errors of the mean across different sessions. Images are examples used in one

session, where the giraffe was the Ineff image, and the horse the Eff image.
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Figure 5.2: Single cell activity Single cells show a variety of neural responses to different
morphed images. (a) Response time course of 6 different cells to the 2 end point images Eff
(black) and Ineff (black dashed) and to the midlevel morph (blue dashed). (b) Firing rates to the
Eff and Ineff and 9 morph variants computed over time period 100-200 ms. The black horizontal

line shows the period of sample presentation (320 ms).
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Figure 5.3: Time course of population responses to morphed images. (a) Time course
of average differences between the responses to images Eff and Ineff (black) and to morphs suc-
cessively different from the images (Eff and Ineff) between which they were morphed, averaged
across the population of cells n=128. In both panels, as in Figure 5.2 spike counts are binned into
100 ms bins, which slide every 10 ms from stimulus onset, and are averaged across 1520 trials per
unit and morph step. (b) Mean response difference between Eff and Ineff morphs in successive
100 ms epochs after sample onset. (c) Time course of firing rate to Eff and Ineff, and each morph
variant, as in (a). (d) Mean response to Eff and Ineff image and morph variants in successive 100

ms epochs as a function of morph level.
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Figure 5.4: Linear regression for individual neurons. (a, b) Scatter plots of slope of linear
regression (in Spikes/Second/Morph Level) in late versus early epoch (100-200 ms vs. 400 - 500
ms after sample onset) for each individual cell in the population. Histograms are the distributions
of slopes for individual cells in early and late epochs. n = 128 experiments. (a) Slope of Eff image
and Eff morphs (Eff, 6 - 9), (b) slope of Ineff image, and Ineff morphs (Ineff, 1 - 4). (c) Time
course of slope (across population) as a function of time. One hundred millisecond bins, stepped

10 ms.
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Figure 5.5: Within-category vs. cross-category p-values of an unbalanced one-way
ANOVA, in logarithmic scale, comparing the mean of responses to a) image Ineff with its four
neighbor morphs, b) image Eff with 4 ineffective morphs, and c) variants that are 2 morph levels
apart, Eff vs. 8, 8 vs. 6, 6 vs. 4, 4 vs. 2 and 2 vs. Ineff. Gray dashed line presents the significance

level 0.01.
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Figure 5.6: Gradual convergence (a) The times of convergence to the Eff (or Ineff) response
for each morph variant. This graph shows the time at which the responses to the morph variants
were first no longer significantly different form those to Eff (or Ineff) stimulus (taken from the
ANOVA, when P > 0.01). (b) The same ANOVA-based analysis as in a, but comparing the
response to morphs 2 level apart, that is, to morph 2 versus Ineff, 4 versus 2, 6 versus 4, 8 versus

6, and Eff versus 8.
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Figure 5.7: Behavioral improvement, correlated with degree of convergence and a)
Proportion correct responses for Eff and Ineff images in early sessions (n=62) and in late sessions
(n=66). Performance is significantly different for the filled points. Error bars, over sessions, are
smaller than the points. Behavior at four different morph levels showed significant increases in
performance (filled triangles, t-test, p¡0.05). b-c) Slope of linear regression to Eff and Ineff images
as a function of time. Eff images (images 6-10), red line; Ineff images (images 1-4), blue lines.
Error bars are the standard error of the mean acorss sessions. Black horizontal line is the stimulus

duration. a) Early sessions, n=62 b)late sessions, n=66.
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Figure 5.8: Simulation setup (a) Schematic view of the simulated network, including an
input layer, which projects its activity to an output layer (recurrent connections) through sparse
FF connections. Different units in first layer receive input, generated using a common truncated
logarithmic distribution (b, bottom middle), with durations drawn at random from a logarithmic
distribution (b, top right); one example is shown in circle at bottom. The units in this layer
are active at a certain level for a specific duration, with a gradual transition to zero (example
shown in circle at top). (b) Simulated input activity pattern: the average activity across all of the
input units, for one pattern, is shown in top left; distribution of input offset times in top right,
and firing rates in bottom middle. (c) Average network activity, in response to morphs obtained
between 2 nonstored patterns, including a linear decay of firing frequency. Because there are no

stored patterns, no attractors appear in this simulation.
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Figure 5.9: Sample of single unit activities in the simulated network (a) Sample of
single units from the model; Eff: solid, Ineff: dashed, mid-morph: dashed-dots (b) Simulation:
160 stored patterns, tested with morphs between stored patterns, no adaptation. (c) Simulation:
160 stored patterns, tested with morphs between stored patterns, adaptation. (d) Simulation: 160
stored patterns, tested with morphs between one stored and one unstored pattern, no adaptation.
(e) Simulation: 160 stored patterns, tested with morphs between one stored and one unstored

pattern, adaptation.
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Figure 5.10: Simulation results Output of simulation with 20 stored patterns rather than
160, as in Figure 3.9 a) tested with morphs between stored patterns, no adaptation. b) tested
with morphs between stored patterns, adaptation. c) tested with morphs between one stored and
one unstored pattern, no adaptation. d) tested with morphs between one stored and one unstored

pattern, adaptation



Chapter 6

How Attractor Dynamics could shed

light on short term effects of visual

experience

In chapters 4 and 5 we dealt with a situation in which the ”memory faculty”, either in the simple

simulated network, or in the animal, has to retrieve the relevant memory once presented with the

ambiguous stimulus (target), without being influenced by the preceding experience of an adapter

(prime). However, in more ecological cases, no sensory stimulus is isolated; rather, it can only be

properly interpreted in light of the stimuli that surround it in space and time. The perception of,

and neurophysiological responses to, a target input depend strongly on both its spatial context

(what surrounds a given object or feature) and its temporal context (what has been observed

in the recent past) (Schwartz et al. 2007). Perceptual history (events that have been recently

experienced), builds up expectations and can help resolve the interpretation of ambiguous or

degraded visual stimuli (Dolan et al. 1997).

Here, we would like to extend the model and see whether a generic model that once could

replicate the electrophysiologycal observation, can be used to model more complicated behavioural

phenomena like ”priming” and ”adaptation aftereffectss”. We try to show that elaborations of

such models that have been successful in reproducing the electrophysiological data in monkeys

can also reproduce many types of behavioral findings on priming experiments in humans.

149
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Main questions The main issue we would like to explore is to understand the required prop-

erties of an associative network that can produce either priming or adaptation aftereffectss, and

in particular the observed shift from one to another.

6.1 Modified autoassociative memory network to model priming

Regarding the dynamics of a perceptual process, a theoretical framework is used that provides

us with proper tools to fully pin down the contribution of possible dynamical factors. A novel

analytical approach allows studying the dynamics of networks of threshold-linear model neurons,

reciprocally connected through synaptically activated conductances. This model includes, as a

necessary ingredient of the relevant computational mechanism, a simple feature of pyramidal

cell biophysics: firing rate adaptation. Analysis of such model yields the attractor states of the

network and the full spectrum of time constants of the transients associated with different steady

stated. Studying the transient dynamics, affected by previous activity of the network, could

shed light on the possible contribution of attractor dynamics to perceptual boundary shifts. The

results that will be discussed in this chapter show that firing rate adaptation plays the main

role to produce adaptation aftereffects in our network, without which one could only get priming

effect, if any. Moreover, the observed shift from adaptation aftereffects to priming in human

psychophysics (Daelli and Treves 2009, accepted), is only possible in a network endowed with

attractor states. The relative duration of target length and adaptation time scale is one of the

crucial terms determining the dynamics. The strength of recurrent connection with respect to

feedforward inputs is another relevant parameter. In the following sections, we study the effect of

short term memory in different associative networks that vary based on a) the number of stored

pattern (zero, two, or several); b) the degree of firing rate adaptation; and c) the type of the

”adapter”, whether it is one of the two end points of the morph continuum, (Full-adapter), or

one of the intermediate morphed patterns (Morph-adapter). We study the effect of adapter

length (Ta), delay duration (Td), and target length (Tt).

6.1.1 Is ”Attractor Dynamics” necessary?

Do aftereffectss need attractor formation? It has always been debated whether adaptation-

aftereffects/priming tap into low-level (say, memory-independent) processes or they rely on some

sort of long-term memory. Several recent demonstrations using visual adaptation have revealed
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high-level aftereffectss for complex patterns including faces. While traditional aftereffectss involve

perceptual distortion of simple attributes such as orientation or color that are processed early in

the visual cortical hierarchy, face adaptation affects perceived identity and expression, which are

thought to be products of higher-order processing (Webster and MacLin 1999). And, unlike most

simple aftereffectss, those involving faces are robust to changes in scale, position and orientation

between the adapting and test stimuli. These results can not simply be explained based on a

combination of adaptation to low-level features.

Here we would like to test our model of autoassociative network with zero-stored patterns to see

whether a memory-less network, with distributed patterns over the units that are endowed with

firing rate decay can show either a positive or negative bias in responding to a target morphed

pattern, after the network has experienced an adapter stimulus.

We test the ”with” adapter conditions when the network is presented with morphs generated

by two unlearned patterns. With mid values of adaptation there is a minimal tendency toward

adaptation aftereffects, mostly during the delay between the adapter and the target. If the de-

lay is short enough, the effect extends over the target, as well. Increasing the amplitude of the

adaptive current, produces a larger effect (Fig. 6.1). From figure 6.1, one can conclude that

• Adaptation aftereffects, in a memory less network, need a very strong firing rate adap-

tation magnitude.

• A network primed with A, shows suppressed overlap with A, without any increase in

overlap with B.

• Under any choice of ”adapter”, ”delay”, and ”target” length, the network did not show

any positive bias toward the adapter (priming).

6.1.2 Attractor dynamics and priming vs. adaptation-aftereffects

In chapter 4, we have analyzed the network dynamics underlying the time evolution of trajectory

toward an attractor state, due to a change in external input. Here, we would are interested in

understanding the effect of short term memory, induced by our adapter shown before presenting

the local memory network with an ambiguous target. From what we found in Chapter 4, it can
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be hypothesized that what is important, in the response to an ambiguous target, is the network

state at the moment that the external input is about to subside below a critical value. Given

the initial state of the network and the external input, the network trajectory in the basin of

attraction can be predicted.

Initial state and ”adapter”. Whether this initial state, in the moment at which the ”target”

fades away, is closer to A or B depends on type of the ”adapter” input and possibly on events

occurring between the ”adapter” and the ”target”, and during the ”target” itself. In our model,

there are two possible mechanisms by which the presence of an ”adapter” similar to A could lead

to the final attraction of the morphed target to the attractor A (priming):

• Type A: Perceptual bias. After presenting the network with adapter A, the network

settles down in the attractor A and keeps the same configuration till the external input sig-

nals the intermediate ”target” partially correlated with A. At this moment, if the external

input is not too strong to move the network out of the basin of attraction of A, the network

will be attracted again to A after the target subside –if the target duration is short with

respect to the time scale of firing rate changes (Fig. 6.2.a). We discuss the relevance of

adaptation and target duration later.

• Type B: ”Double (or multiple) to an aftereffects. In another scenario, the final shift

of the network state in favor of the attractor related to the adapter, may come from multiple

switches from one attractor to another, due to the presence of firing rate adaptation.

In the next part we elaborate on these two mechanisms and discuss the portion of parameter

space in which any of these two may unfold.

6.1.2.1 Type A priming: perceptual bias

In this scenario, the initial state of the network at the time of target presentation directly reflects

the bias acquired with the experience of the ”adapter”.
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Low adaptation - low noise region. In a network, in which the mean firing rate is kept

fixed, once the network is settled into stable fixed point attractor, if adaptation is weak, then

it will remain there, unless the external input does signal a configuration different from that

attractor state (Fig. 6.2.a). Thus, with weak adaptation, the priming effect emerges roughly

independent of the delay length between the ”adapter” and the ”target”, and with zero firing

rate adaptation, is incapable of producing adaptation aftereffects. One should notice that if the

updating is asynchronous (and the network has several attractor states), or at each time step of

updating there is strong enough fast-noise, then, the probability that the network is pulled out

of the initial attractor is no longer negligible.

The ratio of the external input to the recurrent collateral inputs Here again the

balance between the feedforward inputs and the recurrent currents plays an important role in

determining the network trajectory in its phase space, in response to an external input (Section

4.3.3; Parga and Rolls 1998). One of the conditions under which this type of priming has the

possibility to occur, is when the ratio of the recurrent collateral inputs to the external input is

too high, to let the network to be derived by external feedforward inputs. In other words, if we

decrease this ratio (and thus weaken the attractor state), then during the target presentation

the network state is moved toward a configuration very close to the one that is signaled by the

external input (the ambiguous state). In conclusion, if external input is much more stronger

than the recurrent inputs, then this type of priming will not happen. This issue asks for future

quantitative study to find the parameter region in which type A priming is possible.

The effect of a ”mask” As we have discussed in the first chapter, many electrophysiological

studies have suggested that backward masking influences neural processing either by stopping

neurons in IT cortex from receiving feedforward signals, or by disrupting reentrant processing

within recurrent connections. The aim of the simulation is to investigate the effect of backward

masking, expressed as a combination of these two mechanisms, in the formation of basins of

attraction. In chapter 4 we have discussed the condition under which a network, at its steady-

state and in the presence of external input, leaves the current state and follows a trajectory toward

the nearest attractor state. We derived threshold value for the external input, below which such

steady-state becomes unstable. This critical value of the input is also relevant for studying the

effect of backward masking: i.e. if a mask appears before that critical value is reached, the

convergence to the basin of attraction is prevented, by the change in initial condition. This

simulation result suggests that backward masking, if the mask is presented before the recurrent



Chapter 6. Short-term effects of visual experience – model 154

connections dominate the dynamics, can stop the network from settling down into the attractor

state close to the adapter. The model then indicates that in a network with sufficient firing rate

adaptation, in the presence of a mask, indeed, the only memory of the past, is through firing rate

adaptation and thus a) no place is left for type A priming, and b) adaptation aftereffects become

possible. In the text below, we further describe these different possibilities.

• The adaptation-less network only shows priming effect

• But adaptation opens the door to richer behaviour

6.1.2.2 Type B Priming: adapting to an aftereffects

We saw that in very low adaptation regime it is only possible to observe a positive shift toward the

adapter and adaptation aftereffects cannot emerge from the network dynamics, and on the other

hand, in the presence of a mask, even this positive shift can be eliminated. With a stronger firing

rate adaptation, however, such a picture changes: not only adaptation aftereffects are possible

(6.2.b), but also priming can occur with an additional mechanism: multiple transitions between

A and B due to ongoing firing rate adaptation (6.2.c).

To discuss these effects, it is useful to consider the influence of firing rate adaption on the

network state during a) the ”adapter, Ta b) the delay between the adapter and target, Td and c)

the target, Tt. We start with an investigation of the delay period.

Spontaneous transitions during the delay period. One of the features, emerging from an

associative network with multiple stored patterns, is the sequential transitions between correlated

attractors, when firing rate adaptation is strong enough. We further discuss this particular

phenomenon later (in section 6.1.4). What interests us here is the time course of the network

overlap with the two patterns A and B, when the external input is actually removed i.e. during

the delay period. Figure 6.3 shows the time course of network overlap with patterns A and B,

in black and red, respectively, and with the other possible stored patterns in other colors. The
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external input (in gray) signals pattern A and gradually fades away. As one can see, in the case

with only two stored patterns, the network, after removal of the external input, is sequentially

alternating between A and B (with a frequency that depends on the adaptation time scale). This

happens, because in our model, the mean activity of the network is kept fixed (by regulating the

gain and the threshold; see section 4.1.3). Thus, starting from a situation in which the network

is in attractor A, gradually the units active in such state adapt and the network instead moves

toward its only other stable state, attractor B. This sequential retrieval of patterns A and B in

the absence of external input is an artifact, in fact, and we avoid it by storing several patterns in

the network (Fig. 6.3 b,c). In this way, the network has potentially several fixed point attractors

and during the delay period, the possibility that the network moves toward any of them is the

same.

The influence of varying ”adapter”, ”delay”, and ”target” duration. We first define

an index to measure the distance between two network states at any time: when the external

input as adapter is pattern A or pattern B:

R = ma
a(t) − ma

b (t);

which is the network overlap with pattern A when A is the adapter (ma
a(t)), minus the network

overlap with A when B is the adapter (ma
b (t)). Then, we can summarize the effects in a relevant

parameter space –adaptation, adapter duration, target duration, delay duration.

Increasing delay period In figure 6.4 we have simulated a network that receives the Full-

adapter for 10 time steps, and after a variable delay period, the external input signals the

middle morphed pattern between A and B, for Tt = 6 (left) or Tt = 20 (right). In this figure

the ”prime index”, defined in 6.1.2.2, is plotted at 5 time steps after the removal of the target

(ma
a(Ta + Td + Tt + 5) − ma

b (Ta + Td + Tt + 5)). Red shows a positive shift toward A (priming),

and blue shows the opposite (aftereffects). This simulation shows that in a portion of the phase

space:

• If the target does not last for a long time, increasing the delay priod produces Type B

priming; i.e. while short delays lead to a negative bias, increasing the delay allows the

network to make a second transition and therefore produces priming.
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• If the target last for long time, the network shows and opposite behaviour: short gaps

between the adapter and the target result in priming, whereas long ones produces

adaptation aftereffects.

Increasing target length In figure 6.5 we have simulated a network that receives the Full-

adapter for 10 times steps, and after either a short delay (Td = 2 left panel), or long delay

(Td = 20, right panel), the external input signals the middle morphed pattern between A and B.

Again, if firing rate adaptation is bigger than a threshold:

• If the delay is short, prolonging the target duration produces Type B priming; i.e. while

short target lengths result in adaptation aftereffect, longer targets produce priming.

• With a long gap between the adapter and the target, instead, the network shows the

opposite effect (only for strong enough adaptation values). For mid range of firing rate

adaptation, the network produces negative bias for short targets and an increase in

target duration abolishes any bias altogether.
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Figure 6.1: Memory-less network. Simulation results of a network with zero stored pattern,
tested with an intermediate morph pattern, equally correlated with pattern A and B. Red line
shows the time course of network overlap with pattern A, when the adapter is A (mb

a), and blue
shows the overlap with B (mb

a). (a) Ta = 10, Tt = 10 for two different delay durations, Td = 2
in the top panel, Td = 22 in the lower panel (adaptation magnitude = 0.39). (b)Ta = 10, Td = 4
for two different adapter length, Ta = 4 in the top panel, Ta = 20 in the lower panel (adaptation
magnitude = 0.39). (c) and (d) replicate the same simulations of (a) and (b), but with stronger

adaptation(adaptation magnitude = 0.39)
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Figure 6.2: ”Type A” and ”Type B” effects in an attractor neural network. In
this figure, red line shows difference between the network overlap with pattern A when A is the
adapter, minus the network overlap with A when B is the adapter (ma

a(t)−ma
b (t)) and blue shows

the opposite(mb
a(t)−mb

b(t)). (a) Type A priming: perceptual bias, (b) adaptation aftereffects (c)
Type B priming: double aftereffects due to the prolongation of the delay period (with respect to

(b))



Chapter 6. Short-term effects of visual experience – model 159

0 20 40 60 80 100 120
0

0.5

1

Time

O
ve

rla
p

(a)

0 20 40 60 80 100 120
0

0.5

1

Time

O
ve

rla
p

(b)

0 20 40 60 80 100 120
0

0.5

1

Time

O
ve

rla
p

(c)

Figure 6.3: Spontaneous transitions during the delay period. Time course of network
overlap with (a) 2 stored patterns, (b) 6 stored patterns, and (c) 15 stored patterns in (c). In each
graph the gray dashed line shows the time course of external input, the red and black depict the
network overlap with pattern A, and B, respectively; and the other colors show network overlap

with other stored patterns
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Figure 6.4: Increasing delay period. Phase diagram of prime index (R = ma
a(t1) − ma

b (t1))
for a network presented with Full-adapter for Ta = 10 time steps and varying delay periods,
where t1 = Ta +Td +Tt +5. Red codes for positive values of R (priming) and blue instead shows

adaptation aftereffects. (a) Tt = 10; (b) Tt = 20.
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6.1.3 Adapter: an intermediate morph between A and B

We have studied the network response to a morphed patterns, once presented with an ”adapter”

which is either of the two end points. However, as it was mentioned in the second chapter,

Valentina Daelli has observed the replacement of negative (aftereffects) with positive (priming)

bias when the adapter is chosen from one of the intermediate morphed patterns that has high

similarity with both of the two end points. Thus, we decided to explore the network response to

a morph adapter.

Morph-adapter: higher transition during the prolonged ”adapter” The first difference

that replacement of the Full-adapter with an intermediate pattern (Morph-adapter) brings

is an increased probability of having at least one transition during the presentation of adapter.

Response to the prolonged A vs. morph Figure 6.6 shows the P index, during the

presentation of a constant input that signals either full pattern A (a), or a morphed pattern (b,

and c).

A network that receives an external input which has high correlation with two attractors,

is more prone to show several transitions.

Increasing the adapter length, Morph-adapter vs. Full-adapter Now we test Morph-

adapter in our priming paradigm (Fig. 6.7.b). In particular, we examine the effect of the

adapter duration (Fig. 6.7). Here keep the target and the delay period fixed (Td = 2, Tt = 10)

and vary the length of the adapter. The network is tested with Full-adapter (left panel), or

Morph-adapter. We found that We found that

• If the adapter duration is long enough, then the Morph-adapter behaves differently

from the adapter that is highly correlated with either of the two patterns.

• In particular, for short delay durations, increasing
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Figure 6.6: Response to a constant input: A vs. morph shows the time course of difference
overlap, ma − mb, when the network is presented with a constant, prolonged (120 time steps)
input that signals pattern A in (a), an intermediate morph that shares 70% similarity with A

and 30% with B (b), or even more similar to both end points (60% A - 40% B), in (c)

6.1.4 Latching

Interestingly, with strong adaptation, one specific feature emerges in our network in which multi-

ple patterns are stored: after removing the external input, when the feedforward afferents subsides

below a particular value, and the dynamics is mainly driven by recurrent connections, sequential

transitions between different attractor occur. Latching dynamics emerges as a consequence of

incorporating two crucial elements: neuronal adaptation and correlation among attractors. In-

tuitively, latching may follow from the fact that all units active in the successful retrieval of a

pattern tend to adapt, leading to a drop in their activity and a consequent tendency of the corre-

sponding memory units to drift away from their local attractor state. At the same time, though,

the residual activity of several units can act as a cue for the retrieval of patterns correlated to

the current attractor. As usual with autoassociative memory networks, however, the retrieval of

a given pattern competes, through an effective inhibition mechanism, with the retrieval of other

patterns. One can then imagine a scenario in which two conditions are fulfilled simultaneously:

the activity associated with a decaying pattern is weak enough to release in part the inhibition

preventing convergence toward other attractors; but, as an effective cue, it is strong enough to

trigger the retrieval of a new, sufficiently correlated pattern. In such a regime of operation, after

the first, externally cued retrieval, the network state experiences the concatenation in time of

successive memory patterns, i.e. it latches from attractor to attractor.
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Figure 6.7: Increasing adapter duration, Full-adapter vs. Morph-adapter. The prime
index (P) for a network presented with Full-adapter for varying time steps. (a) Td = 2, Tt =

10; (b) Td = 2, Tt = 10

In figure 6.8, we have tested the network with nine morphed intermediate versions of the

pair of patterns A and B, plus the two original patterns. Each subplot shows the overlap with

6 stored pattern, for different morph level. It is interesting to see different sequences of latching

for different morph levels.

The frequency of oscillation and minimum adaptation value to drift the network in a latching

phase, as well as the sequential retrieval of different patterns, depend on the adaptation time

scale and on the correlation between the patterns.

The emergence of latching dynamics in ”Potts” models of cortical networks, has been treated,

quite extensively, as a simplified model of a recursive process (Russo et al. 2008; Kropff and

Treves 2007). It is interesting to see such a phenomenon repeated in a simple single associated

network as ours, though we did not aim to fully address it in our work.
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Figure 6.8: Latching. The network was tested with a pattern whose correlation with patterns
A and B gradually changes from top to the bottom. In each panel, the network overlap with all
the stored patterns (p = 6) is plotted. Red curves show the overlap with A, and black curves

show the overlap with B.
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6.2 Concluding remarks, and discussion

The theoretical aim of the present study was to provide evidence in support of the hypothesis that

memory mechanisms are not dissociated from perceptual mechanisms and involve shared neuronal

systems. Our network modeling puts forward two different possible mechanism underlying prim-

ing effect and at the same time is able to produce negative and positive bias in different region of

phase-space. We have discussed the possible contribution of firing rate adaptation in producing

different perceptual shifts along a morphing continuum, due to the short term experience of an

adapter. The relevance of attractor states was also clarified; it was shown that a network with

no memory states is not able to produce priming. Our results suggest that the minimal model

required to show this kind of effect (aftereffects) includes an explicit model of neural fatigue,

although it does not dictate the exact form of neural fatigue. Aftereffects do not strictly require,

then, attractor formation, however, their exact shape, and values, does depend on the formation

of attractors. In a network with stored memories, instead, both delay and target durations are

important to produce priming.

6.2.1 Predictions

Our model puts forward some immediate predictions, since in terms of temporal parameters of the

network, we have found that different combinations of the adapter, delay, and target duration can

produce different biases, through the Type B priming, which is double (or multiple) adaptation

aftereffects. Some of the findings of our model is in agreement with the previous behavioral

studies that show that the positive and negative priming occur in the same stimulus configuration,

producing opposite effects due to a slight change in temporal setting of the task:

• target and adapter duration There have been some classical aftereffect stdudies (for

motion aftereffect see Hershenson 1989 and Patterson et al. 2009; for tilt aftereffect see

Magnussen and Johnsen 1986), in which the relation between the aftereffect strength and

logarithm of the adaptation time is nearly linear. This logarithmic build-up has been

replicated for adaptation to faces, as well (Leopold et al. 2005). The face identity aftereffect

grew stronger as a function of adaptation time. Moreover, in Leopold et al. 2005 the effect

of target duration has been studied, as well. It was found that adaptation aftereffect

gets weaker as a function of target duration. This result is However, in none of these

studies reducing adaptation aftereffect ends in a positive shift in the direction of the adapter
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(priming effect). One possibility is that all of these experiments span the adapter and

target duration only in a limited time range: the adapter is always bigger 1 second and

the target lasts less than 2 seconds. We postulate that decreasing the duration of adapter

(or increasing the target length) could produce a positive shift. Indeed, there is one study

related to motion aftereffect (Kanai and Verstraten 2005), in which decreasing the adapters

to less than 150 ms (and a particular range of adapter-target gap), the perceptual effect

switches from negative to positive priming.

• delay duration In the same study, Kanai and Verstraten 2005, showed that while brief gap

durations between the adapter and the target results in adaptation aftereffect, increasing

the delay gradually shifts the effect from negative to positive. The same phenomena was

produced, in our group, with more complex visual stimuli in a morphing experiment in

which the category boundary shifts due to the recent experience of the adapter (Daelli and

Treves 2009, accepted).

• ambiguous prime Our model also predicts different network dynamics in response to a

Full-adapter or a Morph-adapter (Fig. 6.7). This result is in agreement with a bunch

of behavioral studies on bistable perception and binocular rivalry (Pearson and Clifford

2005). Also, Kanai and Verstraten (2005) in the same experiment showed that an am-

biguous adapter produces different bias in motion perception from a directional adapter

(Fig. 6.10.a). Daelli and Treves (2009) have found the similar effect in object aftereffect

paradigms. However, our model predicts the type of prime plays a role if long enough. In

motion and object aftereffect studies the tested adapter was presented for relatively long

time. The prediction of our model opens a new door to expand those behavioral studies

with manipulating adapter duration.

In addition, our model, based on the multiple switch phenomena, puts forward series of exper-

imentally testable predictions that have not been examined yet; e.g. Switch from priming to

adaption aftereffect, with increasing the delay duration, while the target is long, or

non-monotonic change in the bias by lengthening the target duration. In our model, an-

other portion of the phase-space depends on biophysical properties, such as firing rate adaptation

and its time scale that cannot be tested directly.
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Figure 6.9: Switch from Adaptation Aftereffect to Priming – different behavioral
studies. (a) Adaptation aftereffect index as a function of target and adapter duration, in a face
aftereffect study, by Leopold et al. 2005. Delay duration is 250 ms. (b) Proportion of trials in
which motion has been perceived in the same direction of the adapter, in a motion aftereffect
study, by Kanai and Verstraten 2005. Adapter duration and target duration were fixed at 320
ms. (c) Category boundary shift in an object aftereffect study, by Daelli and Treves 2009 (see
Chapter 2). Exp1: The adapter is one of the end points (Full adapter), long delay. Exp2: Full
adapter, short delay. (d) Summary of different experiments (blue and red stand for adaptation
aftereffect and priming, respectively): Increasing delay (with a fixed target duration), produces
a switch from adaptation aftereffect to priming; and increasing adapter duration decreases AA.



Chapter 6. Short-term effects of visual experience – model 169

6.2.2 Future developments

Silent delay activity We have discussed in chapter 2, the experimental and theoretical sug-

gestions that memory traces can implicitly be stored in synapses and only explicitly read out in

spiking form at the time of a memory recall signal or new visual input. It is also possible that

cortical mechanism underlying the contextual effects like priming recruit the same strategy to

store short term memory traces. In particular, in an ongoing priming experiment with monkeys,

which is running in Prof. Bharathi Jagadeesh lab in the University of Washington, the same

Delayed-Match-To-Sample paradigm that we have discussed in Chapter 5 is adapted to test the

effect of an additional adapter before the morphed image. They have observed priming results

(at least with short adapter durations). From the point of view of neuronal processing, out of

many interesting findings, one particular feature, that challenges the current model, is the ab-

sence of delay activity during the gap between the adapter and the target. i.e. on average the

neural population relaxes to the baseline firing rate level, although the response to the target is

enhanced.

Learning There have been several studies in which the priming effect was suggested to imply

some form of ”learning”. Therefore, a mechanism to allow the network to readjust its weights

during (and after) the presentation of the adapter can be integrated into the current model that

lacks any synaptic changes due to the presence of the adapter.

Multiple local networks We hypothesized that the complexity reported in different priming

paradigms may stem from the unfolding in time of the same basic mechanisms at multiple cor-

tical loci, and we asked what determines the direction and magnitude of the effects in priming

experiments using complex naturalistic images, which are putatively analyzed in advanced visual

cortices and under the influence of multi-modal semantic memories. However, in our current

modeling we have restricted ourselves to only one neural population. It remains a challenge for

the future expansion of the model to include several interconnecting local networks.

Summary
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• Weak adaptation-aftereffects in a memory-less network, with much stronger values of

firing rate adaptation (compared to a network with stored patterns),

• No priming was observed in the network with no stored memory (under any duration

of the adapter, the target and the gap between them),

• Adaptation aftereffct needs firing rate fatigue, whereas priming attractor dynamics,

• Switch from priming to adaptation aftereffects happens in a network endowed with

firing rate adaptation and attractor state.

• Depending on the exact choices of the temporal parameters (duration of the adapter,

target, and delay), the network produces different biases.

• Morph-adapter is different from Full-adapter, if long enough.
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Figure 6.10: Ambiguous adapter vs. directional adapter - motion perception. (a)
adapted from Daelli and Treves (2009) Exp1: The adapter is one of the end points (Full adapter),
long delay. Exp3: The adapter is one of the ambiguous morphs. (b) adapted from Kanai and

Verstraten (2005).
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Appendix

7.1 The noise term
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then
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So, for ν 6= µ and j 6= k, 〈R2
i 〉ξ = 0; and for ν = µ and j = k we have
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We now define a new variable q as the mean square of the firing rate

q(t) =
N

∑

j

e2
j

α =
1

C2
(p − 2)

In this way, we can set the variance as 〈R2〉 = α
(1−a)q.

7.2 dynamic equation for firing rate, instead of current

From equation 3 we find that

dF (t)

dt
=

dh

dt
[gΘ(h − Tr) + g(h − Tr)δ(h − Tr)] (7.1)

using 4 we find
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τ
dF (t)

dt
= [−h + h0(E, I, Ia)]Θ(h − Tr)

= g(−h + Tr − Tr + h0)Θ(h − Tr)

= −F + g[h0(E, I, Ia) − Tr]Θ(h − Tr)

If we replace the h inside the Θ-function with h0 and define

F0(E, I, Ia) = [h0(E, I, Ia) − Tr]Θ(h0 − Tr)

then, we can write and equation for the firing rate:

τe
dEi(t)

dt
= −Ei(t) + F0i

τe
dEi(t)

dt
= −Ei(t) + g(h0i − Tr)Θ(h0i − Tr) (7.2)
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7.3 Stability analysis near the steady-state for the system of 8

differential equations

We study the satability property for differential equations of the currents:

τh
dh1(t)

dt
= f1 = −h1(t) + ma + mb + I1

in +

√

αη

(1 − a)
qη − Ia1

τh
dh2(t)

dt
= f2 = −h2(t) +

√

αη

(1 − a)
qη − Ia2

τh
dh3(t)

dt
= f3 = −h3(t) + ma + I3

in +

√

αη

(1 − a)
qη − Ia3

τh
dh4(t)

dt
= f4 = −h4(t) + ma +

√

αη

(1 − a)
qη − Ia4

τh
dh5(t)

dt
= f5 = −h5(t) + mb + I5

in +

√

αη

(1 − a)
qη − Ia5

τh
dh6(t)

dt
= f6 = −h6(t) + mb +

√

αη

(1 − a)
qη − Ia6

τg
dIg(t)

dt
= f7 = −Ig(t) +

∑

k nk < ek >

Na

τt
dTr(t)

dt
= f8 =

(
∑

k nk〈ek〉)2
Ig

2n2
− a

∑

k nk
2〈ek〉2

Ig
2n

in which

ma =
1

Ca(1 − a)
(
n1

Ig
< e1 > +

n3

Ig
< e3 > +

n4

Ig
< e4 > −a

∑

k

nk

Ig
< ek >)

mb =
1

Ca(1 − a)
(
n1

Ig
< e1 > +

n5

Ig
< e5 > +

n6

Ig
< e6 > −a

∑

k

nk

Ig
< ek >)

and n1 + n3 + n4 = n1 + n5 + n6 = Ca.
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7.3.0.1 Jacobian Matrix

The steady-state solution can be described in terms of the variable hi, Ig, and Tr. To investigate

whether the steady-state is stable, we expand around this solution, writing

Ẋ = F (X) (7.1)

X = X̄ + Z(t) (7.2)

where X̄(h1, h2, h3, h4, h5, h6, Ig, T r) is a steady state solution for the system F (X̄) = 0. To

examine the stability to small fluctuations about the stable firing state, we expand F (X) to first

order in the quantities hi=1...6, Ig and Tr. Once linearized, the system reduces to Ż = JZ, in

which J(h1
∗, h2

∗, h3
∗, h4

∗, h5
∗, h6

∗, Ig
∗, T r∗)

is the jacobian matrix around the steady-state. This reduced system tells us whether the fluctu-

ations around the steady-state, vanish or grow exponentially with time. One way to study the

effect of such fluctuations is to derive the eigenvalues and (their corresponding eigenvectors) of

the linearized jacobian matrix. The condition for stability is satisfied by having negative values

for the real parts of all the eigenvalues. The stability limit is when some of the eigenvalues then

can change sign in their real part, due a change in one of the parameters of interest, e.g. value of

the external input, or the adaptation strength.

In general, the jacobian matrix is of the form:









∂f1

∂h1
· · · ∂f1

∂Ig

∂f1

∂Tr
...

. . .
...

...
∂f8

∂h1
· · · ∂f8

∂Ig

∂f8

∂Tr









In our model, the form of the Jacobian Matrix can be written:
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0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−1 + 2C1 − 2aC1 −2aC2 C3 − 2aC3 C4 − 2aC4 C5 − 2aC5 C6 − 2aC6 d1 t1

0 −1 0 0 0 0 0 0

C1 − aC1 −aC2 −1 + C3 − aC3 C4 − aC4 −aC5 −aC6 d3 t3

C1 − aC1 −aC2 C3 − aC3 −1 + C4 − aC4 −aC5 −aC6 d3 t3

C1 − aC1 −aC2 −aC3 −aC4 −1 + C5 − aC5 C6 − aC6 d5 t5

C1 − aC1 −aC2 −aC3 −aC4 C5 − aC5 −1 + C6 − aC6 d5 t5

u1 u2 u3 u4 u5 u6 u7 u8

l1 l2 l3 l4 l5 l6 l7 l8

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

where

Ci =
1

Ca(1 − a)

Φ(ρi
∗)

Ig

ni

d1 = − 1

Ca(1 − a)Ig
2
(

∑

i=1,..,6

〈ei〉ni + 〈e1〉n1 − 2a
∑

i=1,..,6

〈ei〉ni)

d3 = − 1

Ca(1 − a)Ig
2
(

∑

i=1,3,4

〈ei〉ni − a
∑

i=1,3,4

〈ei〉ni)

d5 = − 1

Ca(1 − a)Ig
2
(

∑

i=1,5,6

〈ei〉ni − a
∑

i=1,5,6

〈ei〉ni)

ui=1,..,6 =
niΦ(ρi

∗)

Nτga

u7 = − 1

τg

u8 = −
∑

i niφ(ρi)

τgNa

t1 =
1

Ca(1 − a)Ig

(−
∑

i

niφ(ρi) − n1φ(ρ1) + 2a
∑

i

niφ(ρi))

t3 =
1

Ca(1 − a)Ig

(−
∑

i=1,3,4

niφ(ρi) + a
∑

i=1,3,4

niφ(ρi))

t5 =
1

Ca(1 − a)Ig

(−
∑

i=1,5,6

niφ(ρi) + a
∑

i=1,5,6

niφ(ρi))

li=1,..,6 =
2

τtn2Ig
2
niφ(ρi)

∑

k

nk〈ek〉 −
2a

τtnIg
2
ni

2〈ei〉φ(ρi)

l7 = − 2

τtn2Ig
3
(
∑

k

nk〈ek〉)2 + 2a
2

τtn2Ig
3

∑

k

nk
2〈ek〉2

l8 = − 2

τtn2Ig
2

∑

i

niφ(ρi)
∑

i

ni〈ei〉 +
2a

τtnIg
2

∑

i

ni
2〈ei〉φ(ρi)

ρi
∗ is the steady-state value of ρi.
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7.3.1 Eigenvalues and Eigenvectors

To make the analysis simple, here we consider a situation in which the external input to the

system, the morphed pattern, is equally correlated with pattern A and pattern B. Under this

situation, holds the conditions C3 +C4 = C5 +C6 and φ(ρ3)+φ(ρ4) = φ(ρ3)+φ(ρ4) hold. These two

assumptions make the analytical treatment simple. Then, the stability analysis in such situation

finds the necessary condition for the stability of a steady-state; i.e. the condition under which

there is a balanced competition between attractor A and attractor B, that produces an equal

overlap with each of them. As was reported in the main text, we find that the negativity of

the real parts of the eigenvalues, and consequently the stability of the steady-state, depends on

the value of the firing rates at the steady-state, which itself is a function of the level of external

input. Thus, starting from a system stable at a specific firing rate value, if the external input

subsides a particular value, the system loses its stability and slides in to the basin of attraction

of one of the relevant attractor states. We tested these analytical result with network simulations.

In the following, we first find the eigenvalues of the system of differential equation in 4.1. The

jacobian matrix, found in the previous section, has 8 real eigenvalues.

Then, it is easy to see that for such a matrix, if an eigenvalue λ 6= −1, then a) the second

element of the eigenvector is zero, and b) the eigenvector has the form:

v =
(

α + β, 0, α, α, β, β, γ1, γ2

)

Moreover, if α 6= β, then λ is equal to −1+C3+C4. Moreover, the matrix has 4 eigenvalues equal

to −1. Their corresponding eigenvectors are of no interest, as their corresponding fluctuations

decay slowly. The other 4 eigenvalues, due to their dependence on steady-state firing rates, can

change sign in their real part, and so are of potential interest to study the stability of the system.
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7.4 Experimental Method

Surgery on each animal was performed to implant a head restraint, a cylinder to allow neural

recording, and a scleral search coil to monitor eye position(Fuchs and Robinson 1966; Judge et

al. 1980). Materials for these procedures were obtained from Crist Instruments (Hagerstown,

MD) or produced in-house at the University of Washington. Responses of single IT neurons were

collected while monkeys performed a delayed-match to sample task (Liu and Jagadeesh 2008Go).

Spikes were recorded using the Alpha-Omega spike sorter (Nazareth: Israel). Coded spikes were

stored on a PC at a rate of 1000Hz using CORTEX, a program for neural data collection and

analysis developed at the National Institutes of Health (Bethesda, MD). Eye movements were

monitored and recorded (at 500 Hz) using an eye coil based system from DNI (Newark, DE).

All animal handling, care, and surgical procedures were performed in accordance with guidelines

established by the National Institutes of Health and approved by the Institutional Animal Care

and Use Committee at the University of Washington.

Chamber Placement The chambers were placed over the right hemisphere, using stereotaxic

coordinates. Neural recordings were targeted near the center of the chamber (Monkey L: 17L,

17.5 A; G: 16 L, 17.5A); this location is in between the perirhinal sulcus and the anterior mid-

dle temporal sulcus, in reference to reconstructions from the structural MRI. Recording depths

ranged from 27 to 32 mm for Monkey L and 30 to 33 mm for Monkey G. Depth measurements

are from the dural surface, measured during an early recording session. The recording locations

are identical to those in Liu and Jagadeesh (2008).

Recording Procedures To isolate neurons, we moved the electrode while monkeys performed

the passive fixation task with a set of 24 images arranged in 12 pairs (Supplementary Fig. 1).

When the experimenter judged that a neuron responded better to one of the 2 images in the 12

pairs of images, she recorded from that neuron while the monkey performed the 2-alternative-

forced-choice delayed-match-to-sample (2AFC − DMS) task with that stimulus pair.
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We repeatedly sampled a single location until we could no longer isolate cells with selectivity

for one of the 12 pairs used in the experiment. We moved the electrode location only when

selectivity was not detectable over 2-3 days of recording, and moved only slightly across the sur-

face (less than 1 mm). The range of sampled cites spanned a 4 mm diameter circle centered on

the stereotaxis locations above. Using this procedure, we found potential selectivity for the 12

image pairs in 75% of the attempted sessions; thus, the cells included in this sample were found

frequently. The recorded neurons might include samples from both TE and perirhinal cortex. No

anatomical confirmation of recording sites is available from these monkeys because the monkeys

continue to be used in other experiments.
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