
Protein Physics by Advanced Computational
Techniques: Conformational Sampling and

Folded State Discrimination

by

Pilar Cossio Tejada

Ph.D. Thesis

Supervisors

Prof. Alessandro Laio

Prof. Flavio Seno

Dr. Antonio Trovato

12th October 2011





Contents

1 Introduction 5

1.1 Why Proteins? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Some Open Problems in Protein Physics . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 The protein folding problem . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 The universe of protein structures . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Protein design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Protein - protein interactions . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 How to address these problems by simulation? . . . . . . . . . . . . . . . . . 12

1.3.1 Accuracy of the physical interactions . . . . . . . . . . . . . . . . . . . 12

1.3.2 Conformational space search . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Theoretical Background 19

2.1 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Rare Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Metastability and dimensional reduction . . . . . . . . . . . . . . . . . 21

2.2.2 Methods for computing free energy . . . . . . . . . . . . . . . . . . . . 22

2.3 Metadynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Bias Exchange Metadynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.1 Choice of the collective variables . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Choice of the BE parameters . . . . . . . . . . . . . . . . . . . . . . . 32

i



3 Exploring the conformational space of a protein 37

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 A library of 30,000 folds . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 How many independent structures? . . . . . . . . . . . . . . . . . . . . 45

3.3.3 The majority of natural folds between 40 − 75 a.a. are reproduced . . 46

3.3.4 The universe of possible folds is much larger than the PDB . . . . . . 49

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 BACH: Bayesian Analysis Conformational Hunt 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.1 Development of BACH . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.2 Training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Decoy sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.1 Discriminating the native conformation . . . . . . . . . . . . . . . . . 68

4.3.2 Comparison with other knowledge based potentials . . . . . . . . . . . 70

4.3.3 The performance of BACH on traditional decoy sets . . . . . . . . . . 76

4.3.4 Fluctuations are essential for scoring a structure . . . . . . . . . . . . 77

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Conclusions 83

ii



Acknowledgments

I believe that these four years at SISSA have been the best of my life. During my Ph.D., I

have learned how to think: how to understand difficult problems and how to solve them. I

have seen the world of biophysics, which has fascinated and enchanted me with its mysteries.

I have learned how to use computers and simulations as fundamental tools in science. I have

met incredible researchers and professors which have taught me a lot. Fortunately, there are

a lot of people that I have to acknowledge.

First of all, I would like to thank SISSA for giving me the possibility of pursuing my Ph.D.,

and for believing in young foreign scientists. I would like to thank the Sector of Statistical and

Biological Physics, its directors and members. Which have fully supported and encouraged

me, with conferences, seminars and lectures, to continue my research. I feel very proud to be

‘scientifically born’ in this Italian institution of science, and very honored to be of such great

lineage of thought. The people that have constructed this school have inspired and secretly

challenged me to follow their examples.

I have no words to express my gratitude towards Prof. Alessandro Laio, my guide and ex-

cellent supervisor at SISSA. He is an outstanding professor, with his inteligence and curiosity

for science, he has brought always knowledge, joy, and enthusiasm to my carrier. With his

pragmatism and brilliant way of thinking, he has taught me how to find different perspectives

in solving a problem. With his experience, knowing which are the relevant issues that are

worth thinking about (and which are not), he has helped me to maturate my own thoughts

and ideas. I have to say that it is not only because of his great intellect but also because of

his humanity that I have been so happy following my Ph.D. I feel very fortunate, because I

1



have not only found in Prof. Laio an excellent scientific colleague but also a friend for life.

I want to thank Prof. Flavio Seno and Dr. Antonio Trovato from the University of Padova,

Italy. They have been my supervisors outside SISSA, and have provided me with the proper

theoretical background that I needed in biophysics. With their clear and robust knowledge,

they have been an excellent complement to our computational work. None of the research

that we have done would of been possible without their help and support. It has been a great

pleasure for me to work with them, they are not only great researchers but also great people.

I want to thank Dr. Fabio Pietrucci, which was a postdoc in the SBP group during the

first two years of my Ph.D.. Fabio, patiently, taught me how to program, use computers to

their maximum potential and solve the problems of biology with a physicist’s perspective.

After he left SISSA, I visited him several times in EPFL, Switzerland and we have done

some very interesting research collaborations. I believe that postdocs are essential for guiding

Ph.D. students. I have learned a lot form Fabio, and I feel very lucky to have had him as a

guide with my work.

I would like to acknowledge all the people at SISSA that in one way or another have

helped me with my research. In particular, Dr. Fabrizio Marinelli, Dr. Xevi Biarnes, Dr.

Rolando Hong, Dr. Giulia Rossetti, Prof. Paolo Carloni, Fahimeh Baftizadeh and Danielle

Granata.

I thank my former university, Universidad de Antioquia, and my physics professors. Which

taught me all the scientific basis that I needed, in order to abroad the research problems that

I faced in my PhD. I feel that my academic background has been excellent. Moreover, they

have always motivated and supported me in pursuing my scientific carrier.

I have to say that, these four years in Trieste, have not only been good because of the

scientific quality of SISSA, but also because of the amazing people that I have met through

the years. I thank my friends for bringing me the pleasure of enjoying life. Moreover, I thank

Gareth Bland for the unconditional love and support he has given me. Without them my life

would have been very dull.

Lastly, I would like to thank my country, Colombia, land of beauty and contradictions,

giving me my heritage and making me what I am. I thank my wonderful parents Jorge Cossio

2
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Chapter 1

Introduction

1.1 Why Proteins?

Proteins are essential parts of organisms and participate in virtually every process within cells.

Many proteins are enzymes that catalyze biochemical reactions and are vital to metabolism.

Proteins also have structural or mechanical functions, such as actin and myosin in muscle that

are in charge of motion and locomotion of cells and organisms. Others proteins are impor-

tant for transporting materials, cell signaling, immune response, and several other functions.

Proteins are the main building blocks of life.

A protein is a polymer chain of amino acids whose sequence is defined in a gene: three

nucleo type basis specify one out of the 20 natural amino acids. All amino acids possess

common structural features. They have an α-carbon to which an amino group, a carboxyl

group, a hydrogen atom and a variable side chain are attached. In a protein, the amino acids

are linked together by peptide bonds between the carboxyl and amino groups of adjacent

residues. The side chains of the standard amino acids, have a great variety of chemical

structures and properties. It is the combined effect of all the amino acids in the sequence and

their interactions with the environment that determines the stable structure of the protein

(or native state). The stable tridimensional structure, in almost all cases, determines the

functionality of a protein.
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Biochemists often refer to four distinct aspects of a protein’s structure: the primary struc-

ture is the amino acid sequence, the secondary structure are the regularly repeating structures

stabilized by hydrogen bonds (i.e. α helix, β sheets and turns), the tertiary structure is the

overall shape of a single protein molecule, and the quaternary structure is the structure formed

by several proteins, which function as a single protein complex. In figure 1.1 an example of

a prototypical protein structure is shown.

Figure 1.1: Example of a protein structure rich in α and β secondary structure. PDB code:
3D7L.pdb.

Discovering the tertiary structure of a protein, or the quaternary structure of its com-

plexes, can provide important clues about how the protein performs its function, with which

other proteins it interacts, and information about the biological mechanisms in which it is

involved. Moreover, the knowledge of the structures, complexes and interactions between

proteins involved in deadly pathologies will help designing drugs and curing diseases, such as

cancer, neurodegenerative diseases (Alzheimer, Huntington, etc), virus infections, and much

more. That is why finding out a protein’s structure and functionality is one of the most

important challenges in Biophysics.
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1.2 Some Open Problems in Protein Physics

Most proteins are biomolecular machines essential for cell life, but some of them can also

play crucial roles in lethal diseases. During the last century, biologists have made huge

progress in understanding the role and function of different proteins, and the biomolecular

mechanism that they pursue. Different pathologies have been understood and new drugs for

their cures have been created. Much progress in the experimental part has been made, but

these techniques are expensive and time consuming. Nowadays, it is also possible to study

proteins with the aid of computer simulations, accurate methodologies are currently used to

study diverse biological phenomena.

Currently, there are still several fundamental questions in protein physics, that still wait

for a quantitative theory. In this section, we will list some of their questions together with

the theoretical methods one can use to address them. We will present just a few examples of

open problems in protein physics. Other important examples, like how to understand protein

aggregation [1, 2], or protein DNA/RNA interactions [3, 4], will not be described.

1.2.1 The protein folding problem

Each protein exists as an unfolded polypeptide when translated from a sequence of mRNA

to a linear chain of amino acids. At this first stage the polypeptide lacks any developed

tridimensional structure. Due to the physical forces, amino acids interact with each other to

produce some well-defined stable conformations. The physical process by which a polypeptide

chain folds from a random coil into a functional tertiary structure is called protein folding. The

correct tridimensional structure is essential for function, although some parts of functional

proteins may remain unfolded. Failure to fold into the native structure produces inactive

proteins that are usually toxic and lethal.

Decades of experimental work have led to a deep understanding of the folding process,

and a large number of structures have been resolved with atomic resolution by using X-ray

crystallography [5] or Nuclear Magnetic Resonance (NMR) [6]. Even though these methods

are quite successful, they are expensive and time consuming. Out of millions of different active

proteins sequences, from all the different species, only 70,000 structures have been solved
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experimentally [7]. It is also important to observe that in these cases, protein structures are

measured in specific experimental conditions, like an unphysical tight packing in the crystal.

Moreover, X-ray crystallography does not give much insight on how the proteins respond

to the environment. Nor do they provide realible information to which are the metastable

conformations of the system nor which is the folding mechanism.

Nowadays, for theoreticians it is still a huge challenge to determine the protein’s tertiary

structure from only the simple knowledge of the amino acid sequence. Progress has been made

with bioinformatics, that uses comparative protein modelling with experimental structures

as templates, in order to predict the native conformation. There are mainly two types of

methodologies: homology modeling [8, 9] which is based on the assumption that two proteins

of homologous primary sequence will share similar structures, and protein threading [10, 11]

that scans the amino acid sequence of an unknown structure against a database of solved

structures. These methods are well developed, and have been quite successful if the sequence

of the protein has a high similarity with an existing sequence in the PDB.

Sometimes this is not the case or one needs information about the metastable states of

the system. If this is the case, a Hamiltonian is needed to describe the system and the laws

of Physics must be used. Solving the equations of motion exactly is the first thing that comes

to mind, but since a protein is composed of thousands of atoms, this task is far from trivial

[12]. During the last four decades, scientist have used computers to solve Newton’s equations

numerically in order to observe protein folding. In 1971 it was possible to simulate, for the

first time, water in liquid form [13]. Four decades after, some small and fast folding peptides

have been studied using computational techniques. A milestone in this field was the work by

Duan and Kollman, in which the villin headpiece (a 36-mer) was folded in explicit solvent

using a super-parallel computer [14]. With the help of worldwide-distributed computing, this

small protein was also folded by Pande and co-workers [15, 12] using implicit and explicit

solvent within a total simulation time of 300 µs, and 500 µs, respectively. Recently, with the

use of super-computers Shaw et al [16] did a 1ms simulation of a WW protein domain that

captured multiple folding and unfolding events.

Unfortunately, it is still very difficult to deal with the huge complexity of the confor-
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mational space of peptides whilst treating with good accuracy the physical interactions in

the system (see Section 1.3). Studying by computer simulation the folding process of large

proteins (L > 80) or slow folders are problems that remain to be fully addressed.

1.2.2 The universe of protein structures

Understanding the universe of all the possible protein folds is of fundamental and practical

importance. Defining a fold as the tertiary structures adopted by protein domains, a number

of key questions must be addressed. How many different folds are there? Is it essentially

infinite, or is it a limited repertoire of single-domain topologies such that at some point, the

library of solved protein structures in the Protein Data Bank (PDB) would be sufficiently

complete that the likelihood of finding a new fold is minimal? These questions mainly arise

from the fact that while the number of experimentally solved protein sequences grows linearly

every year, in the last years, very few (almost none) new protein folds have been found [7].

Then, if the number of folds is finite, how complete is the current PDB library? That is, how

likely is it that a given protein, whose structure is currently unknown, will have an already-

solved structural analogue? More generally, can the set of existing protein folds and its degree

of completeness be understood on the basis of general physical chemical principles? The

answer to these questions is not only of theoretical importance, but has practical applications

in structural genomic target selection strategies [17].

These issues have been addressed in many manners, most commonly with the aid of

computational techniques. The first contribution in this direction was achieved in 1992 by

Head-Gordon et al [18], who demonstrated that tertiray protein structures are stable even

if all their side chains are replaced by alanine. In 2004, Hoang et al [19] demonstrated

that all the secondary structure elements of proteins could be obtained by using a simple

Hamiltonian with a tube-like model. In 2006, by studying the completeness of a library of

compact homopolypeptides, that contain a protein-like distribution, Skolnick et at [20] have

shown that the resulting set of computer-generated structures can be found in the PDB and

viceversa, i.e. the PDB is complete. This idea is currently the most accepted one in the

scientific community. Even though it seems convincing, it is still debated, for at least three
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reasons: i) Due to the large dimensionality of the conformational space, one expects that

the number of possible protein-like conformations that a peptide can take is huge. ii) The

number of distinct protein sequences which have been experimentally solved is tiny compared

to the amount of genome-wide protein sequences that exist [21, 22]. Thus maybe it is the

experimental techniques that limit the current existing library of folds. iii) Recently some

experimental groups have been able to design, with computational methods, new folds, not

previously observed in nature [23].

1.2.3 Protein design

As we mentioned there is a large but finite number of protein folds observed so far in nature,

and it is not clear whether the structures not yet observed are physically unrealizable or have

simply not yet been sampled by the evolutionary process. Methods for ‘de novo’ design of

novel protein structures provide a route to solving this question and, perhaps more important,

a possible route to design protein machines and therapeutics.

Creating a new protein from scratch is a very difficult problem. Given a structure, the

objective is to find the amino acid sequence that has this structure as native conformation.

The difficulties are in the fact that the space of possible sequences that one has to explore

is huge (e.g. if one wants to design a 30 amino acid structure one would have to explore

3020 possibilities). Moreover, it is not even known whether the target backbone is really

designable. Due to these difficulties the computational design of novel protein structures is

incredibly expensive and is a sever test of current force fields and optimization methodology.

A pioneering work in this direction, was the complete design of a zinc finger protein by

Mayo and co-workers [24]. Another important work was done in 2003, by Baker et al [23]

that introduced a computational strategy that iterates between sequence design and structure

prediction to design a 93-residue α/β protein with a novel sequence and topology.

However, due to the vast size and ruggedness of the conformational space to be searched

and the limited accuracy of current potential functions, protein design is still an open problem.

Knowing the universe of possible protein structures can be of great for designing new proteins.

This problem is fundamental because its understanding could bring mayor progress in protein
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therapeutics and designing the molecular machines of the future.

1.2.4 Protein - protein interactions

Protein-protein interactions occur when two or more proteins bind together to carry out their

biological function. Many of the most important molecular processes in the cell, such as

DNA replication, are carried out by large molecular machines that are built from a large

number of protein components organized by protein-protein interactions. Indeed, protein-

protein interactions are at the core of the machinery on which cells are based. Proteins might

interact for a long time to form part of a protein complex, a protein may carry another protein

(for example, from cytoplasm to nucleus or viceversa), or a protein may interact briefly with

another protein just to modify it (for example, a protein kinase will add a phosphate to a

target protein). Information about these interactions improves our understanding of diseases

and can provide the basis for new therapeutic approaches [25].

In this context, the two most important questions are the following: i) understanding if two

proteins interact, ii) finding out which is the quaternary conformation that two proteins have

when they interact. The first issue has been studied from the perspectives of biochemistry,

quantum chemistry, signal transduction and metabolic or genetic/epigenetic networks [26]. As

complementary ways, various bioinformatics methods have been developed to cope with this

problem, ranging from the sequence homology-based to the genomic-context based [25]. These

methods for example, integrate the data from different methods to build the protein-protein

interaction network, and to predict the protein function from the analysis of the network

structure [26, 27]. These techniques have revealed the existence of hundreds of multiprotein

complexes. Due to the huge space of conformations and possible binding positions, finding

the quaternary conformation has been much more difficult. Some progress has been made

with tools like docking [28]. However, much more work is needed to provide a quantitative

picture of the binding interaction sites and affinities that two or more proteins can have.

In this section, we have listed some fundamental issues that need to be addressed in protein

physics. We believe that new computational techniques and methodologies will not only help

addressing these problems, but can become a fundamental tool for understanding biological
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systems and for designing new cures for pathologies.

1.3 How to address these problems by simulation?

Not only protein folding, but also the great majority of the relevant biological processes start

at the macromolecular level. Examples are enzymatic reactions, protein-protein interactions,

nucleic acid packaging and membrane formation. Such phenomena take place on time scales

ranging from pico seconds to seconds, and are strongly coupled to atomistic dynamics (e.g.

fluctuations in side chain and backbone atom conformations, etc). In order to study and

understand these phenomena, computational models have been often used. The quality of

these models depends on the accuracy with which two issues are addressed, the description

of the interactions and the sampling of the configurations of the system [29].

1.3.1 Accuracy of the physical interactions

The methods used to evaluate the interactions in the system are several, differing by the

resolution level. Nowadays, purely ’ab-initio’ simulations, where both the nuclei and electrons

are treated with quantum mechanics can be afforded only for small molecules. Commonly,

the Born-Oppenheimer approximation is used assuming that the electrons relax much faster

than the atomic nuclei. Thus, at any time, the Schrodinger equation for the electron system

is solved by considering the external field generated by the atomic nuclei as frozen, and

one is left with a nuclear-configuration dependent set of energy eigenvalues that define the

ground and excited states of the system. Unfortunately, also this ‘simplified’ approach is

computationally quite expensive, limiting its usefulness only for studying phenomena that

involve tens of atoms and that occur in time scales of the order of few tens of picoseconds.

In order to study larger systems, one must abandon the quantum mechanics (QM) ap-

proach in favor of an empirical description of the interatomic forces, also called the molec-

ular mechanics (MM) scheme. The elimination of the electronic degrees of freedom enables

enormous savings of computational cost, allowing the simulation of fully hydrated biological

systems. In passing from QM to MM, one has to choose an empirical form of the potential
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energy surface, that is normally approximated with a sum of analytical terms describing the

chemical bonds, the van der Waals and the electrostatics interactions, globally called the force

field (FF). The FF parameters are often fitted on the potential energy surface evaluated with

QM approaches in small molecules representing parts of the system. The first macromolec-

ular simulation of a protein, done in 1977, was a 9.2ps long molecular dynamics simulation

of a bovine pancreatic trypsine inhibitor with only 500 atoms [30]. Nowadays one can reach,

with the aid of super computers, at most the milliseconds in time scale [16] for systems of

several thousands of atoms. As was mentioned in Section 1.2, by using pure molecular dy-

namics some small protein structures have been predicted, and their folding mechanism has

been understood [12, 14, 16]. Moreover, phenomena like transitions of ions through channels

[31], enzymatic reactions [32], and many others have been studied with all atom molecular

dynamics simulations.

If one wants to analyze the biomolecular structure formation or self-assembly of supramolec-

ular complexes that involve hundred of thousands of atoms and time scales larger than the

millisecond, pure all atom molecular dynamics cannot yet provide a truly quantitative and

statistically reliable description of the system.

In order to cope with the huge size of the systems, coarse-grained (CG) force fields have

been developed. The idea of coarse-graining, is condensing groups of atoms into single in-

teracting sites. Very different levels of CG have been considered, ranging from the ‘united

atoms’ approach [33], where the atoms in an amino acid are represented as one or two beads,

to mesoscale models with interacting sites representing whole proteins [29]. A critical issue

here is the combination of accuracy and predictive power in the CG model. One can gener-

ally recognize three different parametrization methodologies: i) structure based [34, 35], ii)

statistical/empirical potentials [36, 37, 38], or iii) force (or free energy) matching [39, 40].

In method (i), the equilibrium values of the FF terms are based on a single (experimental)

structure that is by construction an equilibrium one. The few free parameters are fitted on

experimental data (amplitude of thermal fluctuations, specific heat of a transition, relative

equilibrium concentrations, etc). In this class, a number of popular models fall, such as the

elastic network models [41]. These approaches are successful when analyzing the slow mo-
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tions near the native conformation. Transferability and predictability is improved in class

(ii), where a statistical set of structures is used to fit FF parameters with procedures based

on the Boltzmann inversion [42] often integrated including empirical or experimental data.

This method generates models that are thermodynamically consistent with the data set.

Some popular and successful approaches, such as the CG potential generated by Bahar and

Jernigan [43] belong to this class. Statistical mechanical consistency is inherent to method

(iii), which consists of fitting the CG forces on those obtained from sets of trajectories from

all-atom molecular dynamics simulations [44].

In conclusion, the choice of the potential energy function will depend dramatically on the

size and time scales of the phenomena one is interested to study. The chosen accuracy level

of the physical interactions, allows to cope with the computational cost of simulation whilst

providing a reliable physical description of the system.

Up to now, we have described different levels of accuracy of the interactions in simula-

tions of biological systems. But another problem in these simulations is the sampling of the

conformational space. If one has a good Hamiltonian, but one cannot sample all physically

relevant conformations, the simulation will not be able to provide any statistically reliable

information about the process one is interested in studying. In the following section, we will

describe methods that deal with this issue.

1.3.2 Conformational space search

The computational cost, in all atom molecular dynamics simulations that perform an extensive

conformational space search is still very significant. Nowadays, it is possible, with the aid of

super computers, to simulate thousands of atoms for several microseconds. But what if one

is interested in simulating the system, with the same level of accuracy, for a longer time?

A possible manner of coping with this problem is to rely on some methodology for ac-

celerating rare events, i.e. conformational changes that involve the crossing of large free

energy barriers. Using these approaches, notable success has been achieved in several fields,

ranging from solid state physics to biophysics and quantum chemistry [45]. Broadly speaking

these methods can be classified in a few categories, according to their scope and range of
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applicability: i) Methods aimed at reconstructing the probability distribution or enhancing

the sampling as a function of one or a few predefined collective variables (CVs). Examples

of these methods include thermodynamic integration [46], free energy perturbation [47], um-

brella sampling [48], and weighted histogram techniques [49]. These approaches are very

powerful but require a careful choice of the CVs that must provide a satisfactory description

of the reaction coordinate. If an important variable is forgotten they suffer hysteresis and lack

of convergence. ii) Methods aimed at exploring the transition mechanism and constructing

reactive trajectories, such as finite-temperature string method [50], transition path sampling

[51] or transition interface sampling [52]. These approaches are extremely powerful but they

can be applied only if one knows in advance the initial and final states of the process that

has to be simulated. This is not the case, in several problems of biophysical interest. iii)

Methods in which the phase space is explored simultaneously at different values of the tem-

perature, such as parallel tempering [53] and replica exchange [54]. These method are very

successful, and have been used together with potentials of various accuracies, to fold small

globular proteins [33, 55, 56]. However, these methods require a great number of replicas,

and work only if the temperature distribution is carefully chosen [53]. This has so far limited

the scope of this otherwise extremely powerful methodologies.

An alternative to the traditional equilibrium approaches is provided by a class of recently

developed methods in which the free energy is obtained from non-equilibrium simulations:

Wang-Landau sampling [57], adaptive force bias [58] and metadynamics [59]. In the latter

approach, the dynamics of the system is biased by a history-dependent potential constructed

as sum of Gaussians centered on the trajectory of a selected set of collective variables. After

a transient time, the Gaussian potential compensates the free energy, allowing the system to

efficiently explore the space defined by the CVs. This method allows an accurate free energy

reconstruction in several variables, but its performance deteriorates with the number of CVs

[60], limiting its usefulness for studying biological problems that occur in an intrinsically high

dimension.

More recently, a method based on ideas from metadynamics and replica exchange, called

bias-exchange metadynamics [61] was introduced. In this method, a large set of collective
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variables is chosen and several metadynamics simulations are performed in parallel, biasing

each replica with a time-dependent potential acting on just one or two of the collective

variables. Exchanges between the bias potentials in the different variables are periodically

allowed according to a replica exchange scheme [54]. Due to the efficacy multidimensional

nature of the bias, the method allows exploring complex free energy landscapes with great

efficiency. This methodology has been proved to be quite efficient for studying complex

processes like protein folding, ligand-binging, amyloid formation, and ion channeling [62],

these applications demonstrate the potential of BE for studying protein related phenomena.

1.4 Outlook

We have seen that there are two major issues that govern the computational study of protein

systems: sampling of the conformational space and the accuracy of the potential that describes

the interactions. In this thesis, we will present two main results, one related to the sampling

issue, another to the optimal choice of an interaction potential for protein folding.

First, we will use bias-exchange metadynamics in order to explore the conformational space

of a peptide and to find how many different protein-like structures it can take. This will give

new insights in the questions described in Section 1.2.2. We show that by using molecular

dynamics together with bias-exchange metadynamics it is possible to generate a database

of around 30,000 compact folds with at least 30% of secondary structure corresponding to

local minima of the potential energy. This ensemble could plausibly represent the universe of

protein folds of similar length; indeed, all the known folds from the PDB are represented in

the set with good accuracy. However, we show that nature exploits a relatively small corner

of the protein fold universe, where the known folds form a small subset which cannot be

reproduced by choosing random structures in the database. Natural folds are indistinguishable

in terms of secondary content and compactness from non-natural folds. But we find that

natural and possible folds differ by the contact order [63], on average significantly smaller

in the former. One can argue that, due to a higher beta content, structures with large

contact order could have a higher tendency to aggregate. Another possible explanation relies

on kinetic accessibility, as the contact order is known to correlate with the folding time of
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two-state globular proteins [63]. Evolution might have selected the known folds under the

guidance of a simple principle: reducing the entanglement in the bundle formed by the protein

in its folded state. Bundles with shorter loops might be preferable, as they are explored

more easily starting from a random coil. This suggests the presence of an evolutionary

bias, possibly related to kinetic accessibility, towards structures with shorter loops between

contacting residues.

The availability of this new library of structures opens a range of practical applications

including the identification and design of novel folds. Motivated by this, we find the necessity

of developing a potential function which is efficient and accurate for estimating if a given

structure is stable with a certain amino acid composition. The second part of this thesis, will

be related to the development of a new knowledge based potential for native state protein

discrimination. We will test it by measuring its ability to discriminate the native state over a

set of decoy structures (different structures with the same sequence), and its performance will

be compared with other state-of-the-art potentials. Mainly, our potential aims at reproducing

the average propensity for pair residues of forming contacts, or forming secondary structure

elements, or the propensity of a residue to be exposed to the solvent. Its parameters are not

obtained by training the potential on any decoy set. Instead, they are learned on a relatively

small set of experimental folded structures. Moreover, and possibly more importantly, the

potential depends on a much smaller number of parameters than the competitors, making its

evaluation extremely computationally efficient. We find that our potential achieves excellent

results when tested both on traditional decoy sets, decoys generated by molecular dynamics

and on the CASP decoy sets [64]. Not only it is the best in assigning to the native structure

the lowest energy value, but it also gives the largest gap between the energy of the native

and the mean of the set. We for see that due to its simplicity and efficiency, this semi-

empirical potential will have a lot of practical applications in protein structure prediction,

protein design, and protein-protein interaction.
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Chapter 2

Theoretical Background

Computer simulations of biological systems offer the possibility of investigating the most

basic mechanisms of life, but pose a formidable challenge for theoreticians, due to the level of

complexity that arises from both the dimension of biomolecules and their heterogeneity. As

a result, computer simulations are nowadays predictive only for phenomena that take place

on a relatively short time scale or in a limited region of space. Major conformational changes

that involve very complex free energy landscapes, like gating in ion channels, protein-protein

interaction, and protein folding, are still very difficult to study with direct all atom molecular

dynamics (MD) simulation. Normally, what happens is that the system gets trapped in a local

free energy minimum and there are not enough computational resources to allow the system

to explore all of its conformational space. This is a significant limitation of MD, because in

the majority of cases the objective of simulations is to find the most probable conformation

of a system, i.e., the structure with lowest free energy. An alternative, to brute-force MD, is

to rely on some methodology that is capable to accelerate rare events and that allows a faster

exploration of the conformational space. In the following an introduction to MD simulations

will be given, and the concepts of free energy and rare events will be introduced. Moreover,

two enhanced sampling techniques: metadynamics and bias exchange metadynamics (BE),

will be fully described. At the end of this chapter the collective variables, and optimal set of

BE parameters to study protein systems will be presented.
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2.1 Molecular Dynamics

Molecular dynamics is a form of computer simulation in which atoms and molecules are

evolved, for a period of time, under the action of a potential that provides approximations

of known physics. Because molecular systems generally consist of a vast number of particles,

it is impossible to find the properties of such complex systems analytically. MD simulation

circumvents this problem by using numerical methods.

The forces over a particle in MD, are approximated with a sum of analytical terms describ-

ing the chemical bonds, the van der Waals, the electrostatics interactions, etc., globally called

the force field (FF). The FF parameters are fitted on the potential energy surface evaluated

with QM approaches in small molecules representing parts of the system or are derived from

experimental data. During the last two decades, a lot of effort has been dedicated for the FF

parameter optimization. AMBER [65] and CHARMM [66] are most commonly used. Even

though these FF have been quite successful in reproducing a lot of experimental systems, we

note that they still have important limitations [67].

In a normal MD simulation, given a certain force field U and the positions and velocities

of the particles at time t as ~r(t), ~v(t), respectively, the accelerations over the particles are

computed using ~a = −~∇U/m, and then the equations of motion are integrated at a certain

time step (∆t) as to find the final positions ~r(t+∆t) and final velocities ~v(t+∆t). The most

commonly used integrator is the Velocity Verlet [68] that calculates the final coordinates as

follows:

~r(t + ∆t) = ~r(t) + ~v(t)∆t +
1

2
~a(t)∆t2, (2.1)

~v(t + ∆t) = ~v(t) +
~a(t) + ~a(t + ∆t)

2
∆t. (2.2)

This procedure is done iteratively and the system is evolved in time. What is important here

is the value of the time step ∆t. If it is too large the results will not be realistic and the

simulation will crash. The appropriate ∆t for atomistic simulations is usually of the order of

1fs.

Most of the MD simulations are done within the canonical ensemble, where the number

of particles (N), volume (V) and temperature (T) are conserved. In NVT ensemble, the
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energy of endothermic and exothermic processes is exchanged with a thermostat. A variety

of thermostat methods are available to add and remove energy from a system in a more or

less realistic way. Popular techniques to control temperature include velocity rescaling, the

Nosé-Hoover thermostat [69], and the Berendsen thermostat [70].

The result of a MD simulation will depend crucially on the FF, system size, thermostat

choice, thermostat parameters, time step and integrator. During the last decades, MD simu-

lations have been optimized properly in order to obtain an accurate and reasonable picture of

biological systems in agreement with experimental results. But, as was mentioned previously,

the major problem with MD is that it is a daunting task to study phenomena, like protein

folding, protein aggregation, ion channeling, etc, that happen in time scales on average much

larger than ∆t. For example, if one would like to simulate a process that occurs every 1µs

one would at least have to integrate the equations of motion 109 times, and even this would

not provide a statistically reliable sampling of the phenomena. Thus, if one wants to study

these systems, with the same level of accuracy one is forced to rely on others methodologies

that can accelerate conformational transitions and rare events.

2.2 Rare Events

2.2.1 Metastability and dimensional reduction

Let us consider a system of particles of coordinates x, in space Ω, where x can include the

normal coordinates (~r) but also generalized coordinates such as the box edge in Parrinello

Rahman [71] or the volume. The system evolves under the influence of a potential V (x) and

is coupled to a thermostat bath of temperature T . According to the laws of thermodynamics,

the system evolves following the canonical equilibrium distribution

P (x) =
1

Z
e−βV (x), (2.3)

where β is the inverse temperature and Z =
∫

dxe−βV (x) is the partition function of the

system.
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In normal biological systems, like proteins, there are of the order of 104 atoms. Thus

P (x) has an incredibly large dimensionality. In order to describe the phenomena in more

simple terms, what is done is to consider the reduced probability distributions in terms of

some collective variables or reaction coordinates s(x). Namely, instead of monitoring the full

trajectory x(t) of the system, a reduced trajectory s(t) = s(x(t)) is analyzed. For an infinitely

long trajectory the probability distribution P (s) is given by the histogram of s:

P (s) = limt→∞

1

t

∫

dtδ(s − s(t)), (2.4)

in real applications P (s) is estimated as

P (s) ≈
1

n∆s

n
∑

t=1

χs(s(t)), (2.5)

where χs(x) = 1 if x ∈ [s, s + ∆s] and zero otherwise. If the system is ergodic and the

dynamics allows an equilibrium distribution at an inverse temperature β, the knowledge of

P (s) allows to define the free energy of the system in terms of s:

F (s) = −
1

β
ln(P (s)). (2.6)

Qualitatively, a system will display metastability if the probability P (s) is large in a set

of disconnected regions separated by regions in which the probability is low. A system is

to be considered metastable if F (s) has a characteristic shape with wells and barriers and

if it presents more than one sharp minimum in its free energy profile (see Figure 2.1). A

metastable system resides for the big majority of time in disconnected regions of the space

and it will take the system a long time to go from one minimum to another.

2.2.2 Methods for computing free energy

The free energy as a function of a relevant and smartly chosen set of variables provides very

important insight on the equilibrium and metastability properties of the system. For instance,

the minima in a free energy surface corresponds approximately to the metastable sets of a
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Figure 2.1: Free Energy profile of a metastable system.

system: the system spends by definition a lot of time in the minima and only rarely it visits

the barrier regions in between. The free energy profiles can be used to estimate the transition

time between two metastable states and can give accurate estimations of interaction energies.

For instance, in chemistry one can estimate the free energy needed to break a bond in a

chemical reaction by using, as a collective variable, the distance between two atoms and

studying its free energy profile. In the past decades, different methods for computing free

energy profiles have been developed. In the following, some of the methods will be explained.

Umbrella sampling [48] is a commonly used method in which the normal dynamics of the

system is biased by a suitably chosen bias potential V B(s(x)) that depends on x only via

s(x). The new biased probability distribution is

PB(x) =
1

ZB
e−β(V B(s(x))+V (x)), (2.7)

where ZB is the canonical partition function for the potential V (x) + V B(x). So, measuring

a probability distribution in the presence of a bias V B(s(x)) will provide a measure for the
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unbiased free energy and for the unbiased probability distribution. It can be shown [48] that

the optimal efficiency is obtained when the biased potential is V B(s(x)) = −F (s), but in real

systems F (s) is not known, so the main problem that arises is how to construct V B(s(x))

without a detailed knowledge of the system.

In order to solve this problem, an efficient strategy to apply is the weighted histogram

method (WHAM) [49], in which several histograms, constructed with different umbrellas

V Bi(s(x)), are combined in order to reconstruct a single estimate of F (s). A typical bias

potential would be of the form V Bi(s) = 1
2k(s − si)

2. The principal problem with this

method is that the number of biasing potentials, that one has to use, scales exponentially

with the dimensionality, so the computational price becomes expensive in d > 2.

These methodologies are based on studying the properties of the system in equilibrium.

Lately, some new algorithms have been generated to exploit non equilibrium dynamics in

order to compute equilibrium observables. One of these methods makes use of Jarzynski’s

equality [72]

< e−βWt >= e−β∆F , (2.8)

where Wt is the work performed on the system in a trajectory of time duration t. This

equation provides an explicit expression for the free energy of the system in terms of the

average of the exponential of the work performed on it. The main problem of this method is

that the average value of e−βW is dominated by the rare trajectories for which W is small and

thus e−βW is large. This hinders accuracy especially if the time duration of the trajectory is

short.

In the next section we will explain a powerful methodology called metadynamics [59], in

which the dynamics of the system is biased with a history-dependent potential that brings

the system out of equilibrium but provides a full description of the system’s free energy.

2.3 Metadynamics

In metadynamics, the dynamics in the space of the chosen CVs is driven by the free energy

of the system and is biased by a history-dependent potential, FG(s, t) constructed as a sum

24



of Gaussians centered along the trajectory followed by the collective variables up to time t.

This history-dependent potential is expressed as

FG(s(x), t) =
w

τG

∫ t

0

e−
(s(x)−s(x(t′)))2

2δs2 dt′, (2.9)

where τG is the rate at which the Gaussians are introduced and w, δs represent the height

and width of the Gaussian, respectively. In real simulations it can be calculated as

FG(s(x), t) = w
∑

t′<t

e−
(s(x)−s(x(t′)))2

2δs2 . (2.10)

In the Monte Carlo or molecular dynamics simulation this bias is added to the normal poten-

tial of the system. The force generated by this biasing potential will discourage the system

from revisiting the same spot and encourage an efficient exploration of the free energy surface

(FES). Since the history-dependent potential iteratively compensates the underlying free en-

ergy, a system evolving with metadynamics will tend to escape from any free energy minimum

through the lowest free energy saddle point. As the system diffuses on the FES, the Gaussian

potentials accumulate and fill the FES wells, which permits the system to migrate, in a short

time, from well to well. An example of a free energy profile filled by this biasing potential is

shown in Figure 2.2.

After a while, the sum of the Gaussian terms will almost exactly compensate the under-

lying FES. So, for long t,

limt→∞FG(s(x), t) ≈ −F (s), (2.11)

this property does not derive from any ordinary thermodynamic identity, since the meta-

dynamics is a non-equilibrium process. The problem of working with history-dependent

dynamics is that the forces (or the transition probabilities) on the system depend explicitly

on its history. Hence it is not a priori clear if, and in which sense, the system can reach a

stationary state under the action of this dynamics. In ref. [73], the validity of metadynamics

was demonstrated rigorously by introducing a mapping of the history-dependent evolution

into a Markovian process, in the original variable and in an auxiliary field that keeps track
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Figure 2.2: Free Energy profile filled by the biasing metadynamics potential.

of the configurations visited. For Langevian dynamics, it was shown that the average over

several independent simulations of the metadynamics biasing potential is exactly equal to the

negative of the free energy (Eq. 2.11), and an explicit expression for the standard deviation

was found.

What makes metadynamics a flexible tool is that it can be used not only for efficiently

computing the free energy but also for exploring new reaction pathways and accelerating rare

events. Even though its efficacy has been proven in very different areas like condensed matter

physics, chemistry, and biophysics [60], the method has some problems: i) Its efficiency scales

badly with the dimensionality, since filling the free energy wells in high dimensions can be

very expensive; ii) If a relevant variable is forgotten the algorithm is inaccurate. If the

system performs a transition in the hidden degrees of freedom, the thermodynamic forces

become inconsistent with the Gaussian potential and hysteresis will be present. To resolve

the first issue, a new method that combines two different techniques, replica exchange and

metadynamics, was proposed [61]. It is called bias exchange metadynamics, and it will be

explained in the next section. To address the second issue a clear systematic strategy has not
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been yet proposed.

2.4 Bias Exchange Metadynamics

As it has been shown, ordinary metadynamics is an algorithm that can be exploited for

both efficiently computing the free energy and exploring new reaction pathways, i.e., for

accelerating rare events. It is performed in the space defined by a few collective variables

s(x), where the dynamics is biased by a history-dependent potential constructed as a sum

of Gaussians centered along the trajectory of the collective variables. Qualitatively, as long

as the CVs are uncorrelated, the time required to reconstruct a free energy surface scales

exponentially with the number of CVs [60]. Therefore, the performance of the algorithm

rapidly deteriorates as the dimensionality of the CV space increases. This makes an accurate

calculation of the free energy prohibitive when the dimensionality of the space is larger than

three. This is often the case for protein related problems, where it is very difficult to select a

priori a limited number of variables that describe the process.

To overcome these difficulties a new method called bias exchange metadynamics (BE) was

proposed by S. Piana and A. Laio [61]. BE is a combination of replica exchange (REMD)

[54] and metadynamics [59], in which multiple metadynamics simulations of the system at

the same temperature are performed. Each replica is biased with a time-dependent potential

acting on a different collective variable. Exchanges between the bias potentials in the different

variables are periodically allowed according to a replica exchange scheme. If the exchange

move is accepted, the trajectory that was previously biased in the direction of the first variable

continues its evolution biased by the second and viceversa. In this manner, a large number

of different variables can be biased, and a high-dimensional space can be explored after a

sufficient number of exchanges. The result of the simulation is not however a free-energy

hypersurface in several dimensions, but several (less informative) low-dimensional projections

of the free energy surface along each of the CVs. The high-dimensional hypersurface can still

be reconstructed using a weighted histogram approach described in Ref. [74].

In more details, let us consider NR non correlated replicas of the system, all at the same

temperature T , and each biased along a different collective variable, sα(x) with α = 1, ..., NR.
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Each replica accumulates a history-dependent metadynamics potential as

V α
G (x, t) = VG(sα(x), t). (2.12)

The replicas are allowed to exchange their configurations, like in conventional REMD and

in the approach introduced in [73]. The exchange move consists on swapping the atomic

coordinates xa and xb of two replicas a and b (evolved under the action of two different

history-dependent potentials), selected at random among the NR available. The move is

accepted with a probability:

Pab = min(1, eβ(V a
G(xa,t)+V b

G(xb,t)−V a
G(xb,t)−V b

G(xa,t))) . (2.13)

The normal potential energy of the system cancels out exactly for this kind of move. If the

move is accepted, the CVs of replica a perform a jump from sa(xa) to sa(xb), and for replica

b from sb(xb) to sb(xa). The exchange moves introduce a jump process on top of the ordinary

metadynamics evolution. This greatly increases the diffusivity of each replica in the whole

CV space. The working principle of the approach is better illustrated in a simple example.

Consider a dynamics on a two-dimensional potential like the one in Figure 2.3. If one performs

simple metadynamics biasing x, one obtains an estimate of the free energy affected by large

errors: indeed, the system jumps between the two wells at the bottom and only rarely jumps

to the two wells at the top (due to rare thermal fluctuations). Obtaining the correct free

energy would require taking the average over several transitions along y. In practice, the free

energy profile will not converge.

In Fig. 2.4 we show the result of a simulation consisting of two metadynamics on two

replicas, one biasing x, the other y. From time to time, we allow the two replicas to exchange

configurations, accepting the exchange according to Eq. 2.13. Even if the computational

cost has only doubled with respect to the simulation above, one observes a very significant

reduction of the hysteresis: now the metadynamics potential almost exactly compensates the

free energy, both as a function of x and y, indeed, the profiles are practically flat lines. This

shows that the hysteresis is much reduced, and that, like in ordinary metadynamics, in BE
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Figure 2.3: A) Example of an intrinsically two dimensional free energy surface. B) Not
converged free energy profile, if only one collective variable is biased.

the Gaussian potential converges to the negative of the free energy.

2.4.1 Choice of the collective variables

Similar to the other methods that reconstruct the free energy as a function of a set of gener-

alized coordinates, in BE the choice of the CVs, s(x), plays an essential role in determining

the convergence and efficiency of the free-energy calculation. If the chosen set of CVs does

not distinguish different metastable states of the system, the simulation will be affected by

hysteresis as not all of the important regions of the conformational space will be explored.

Unfortunately, there is no a priori recipe for finding the correct set of CVs, and in many cases

it is necessary to proceed by trial and error. To choose the proper set, one needs to exploit

some basic knowledge on the topological, chemical, and physical properties of the system. In

the case of proteins, that are chains of amino acids with well-defined topological features, the

commonly used CVs are:
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A)

B)

Figure 2.4: Converged free energy profiles, of the system shown in Fig. 2.3-A, when the two
collective variables (x, y) are biased with BE.

• The coordination number : this is probably the most used CV. It is defined as:

CN =
∑

i,j

Cij

with

Cij =
1 − (

rij

r0
)n

1 − (
rij

r0
)m

(2.14)

(or an analogous smooth function of rij) where rij is the distance between atoms or

groups i and j, and m, n are exponents that allow to tune the smoothness of the

function. This CV can be used to count the number of contacts, e.g., chemical bonds,

hydrogen bonds, or hydrophobic contacts, between selected sets of atoms or groups in

the protein.

• Dihedral distance: it measures the number of dihedrals φi (involving the backbone
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atoms C-N-Cα-C) that are similar to a reference φ0:

ND =
∑

i

1

2
[1 + cos(φi − φ0)]. (2.15)

It can be efficiently used to count how many residues belong to an α-helix. In principle,

it can also count the number of residues belonging to a β-sheet. We use only the diheral

φ because it provides a clear discrimination between structures in α-helix (φ0 = −45◦)

with those in β-sheet conformations (φ0 = 135◦). However, in this case, controlling the

dihedrals is normally not sufficient to drive the system towards the correct configuration,

a β-bridge, which requires the formation of the correct hydrogen bonds between residues

that are at a large sequence separation [75].

• Dihedral correlation: it measures the similarity between adjacent dihedral angles of the

protein backbone:

DC =
∑

i

1

2
[1 + cos(φi − φi−1)]. (2.16)

Since secondary structure elements α-helices or β-sheets have a correlation between

successive dihedrals, also this CV can be used to detect the presence of secondary

structure elements.

• Beta-rmsd : In Ref. [75] it was noticed that despite the impressive variety of beta-

structures observed in proteins, they are composed of 3+3 residue blocks which are

remarkably similar. Regardless of the amino acid composition, all 3+3 beta blocks are

within 0.08nm of RMSD. This fact allowed the definition of an ideal (i.e., average) ‘beta

block’. With this, it is possible to define a CV which counts how many fragments of

3+3 residues in the protein chain belong to a β-sheet secondary structure, by computing

their RMSD with respect to the ideal beta conformation [75]:

S =
∑

α

n
[

RMSD
(

{Ri}i∈Ωα
,

{

R0
})]

, (2.17)

n (RMSD) =
1 − (RMSD/0.1)

8

1 − (RMSD/0.1)
12 , (2.18)
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where n is a function switching smoothly between 0 and 1, the RMSD is measured in

nm, and {Ri}i∈Ωα
are the atomic coordinates of a set Ωα of six residues of the protein,

while
{

R0
}

are the corresponding atomic positions of the ideal beta conformation. In

the case of antiparallel beta, all sets Ωα of residues of the form (i, i+1, i+2; i+h+2,

i+h+1, i+h) are summed over in Eq. 2.17. For parallel beta, sets (i, i+1, i+2; i+h,

i+h+1, i+h+2) are instead considered. For each residue, only backbone N, Cα, C, O

and Cβ atoms are included in the RMSD calculation.

The same procedure can be also applied to define the ideal alpha helix block formed

by six consecutive residues, in order to define a CV measuring the amount of alpha

secondary structure. In this case the sum in Eq. 2.17 runs over all possible sets Ωα of

six consecutive protein residues (i, i+1, i+2, i+3, i+4, i+5), and
{

R0
}

are the atomic

positions of the ideal alpha block.

The first three types of CV were successfully used to fold with BE some small proteins such

as Advillin [76], Tryptophan Cage [74], Insulin [77]. But in the case of larger and more

complex proteins the alpha/betarmsd CVs may prove more efficient, as it has been shown by

simulations on GB1 and SH3, which are about 60 amino acids long and have a large content of

secondary structure [75]. In the following chapter, we will use alpha/betarmsd CVs in order

to enhance the exploration of the possible protein-like conformations that a peptide can take.

2.4.2 Choice of the BE parameters

In this section we discuss how to choose the parameters that are specific to BE simulations

with protein related problems. Part of the analysis presented here is based on Ref. [78],

where extensive benchmarks were performed using a coarse-grained force field, UNRES [33],

and comparing BE with standard REMD. The authors considered 1E0G, a 48-residue-long

α/β protein that folds with UNRES into the experimental native state.

Frequency of exchange moves

In BE exchanges between the bias potentials in the different variables are attempted every

exchange time (τexch). Normal metadynamics is recovered taking τexch = ∞, and the ca-
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pability of the method of exploring a high dimensional CV space derives from choosing an

appropriate exchange frequency (namely, from choosing a finite τexch). In REMD it is known

that it is marginally better to exchange as often as possible, as exchanges always enhance

decorrelation. The exact role of τexch in BE is less clear: in order to be effective and lead to

genuine transitions from different free energy minima, a bias along a specific CV has to be

active for the time required to diffuse across the free energy well. In other words, if the direc-

tion of the bias changes very frequently (small τexch), the system could have the tendency to

remain close to the free energy minima and not to overcome the barriers. Extensive folding

simulations of 1E0G indicate that very frequent or very rare exchanges (τexch → ∞) make

BE marginally less efficient (see Fig. 2.5). For this system, it was found that the optimal

exchange time is τexch = 120 ps, which gives the system enough time to explore the local free-

energy wells before a change in the direction of bias. If the exchanges are not performed at all

(τexch = ∞), folding is observed within an average time that is ∼ 5 times larger. This shows

that using BE (with practically any finite τexch = 120) leads to a significant improvement of

the capability of the system in exploring the configuration space.
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Figure 2.5: BE folding simulations on 1E0G at T = 280 K with different τexch. The Gaussian
height is held fixed w = 0.012kcal/mol, and a set of 8 CVs has been used (see Ref. [78] for
details). The average folding times are shown. Error bars are obtained by averaging over 20
independent simulations.
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Effect of the temperature

In standard REMD the replicas span a wide temperature range and their number has to be

increased if the system is large [79]. Instead, in BE all the replicas can have the same T ,

because the enhanced sampling does not rely on temperature jumps but on the effect of the

bias. This is an advantage, if the protein is modeled with an explicit solvent Hamiltonian,

since the large increase in the number of degrees of freedom, due to the addition of the solvent

molecules, does not require an increase in the number of replicas. As shown for 1E0G in Fig.

2.6, with increasing temperature the system is able to find faster the folded state of the

protein, with best performance between T = 315 and 350K. Comparing this with the results

reported by Ref. [80] for the specific heat of the system, the temperature which optimizes the

performance of BE is close to the peak of the specific heat. This is an expected result due

to the temperature dependence of the Boltzmann probability of conformational transitions

e−∆E/kβT : sampling is enhanced by a high T , but if T is higher than the critical temperature,

the system will mostly explore unfolded structures reducing the efficiency in localizing the

folded state.
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Figure 2.6: Effect of temperature on BE folding simulations of 1E0G. τexch = 20 ps, w = 0.012
kcal/mol, and a set of 4 CVs has been used (see Ref. [78] for details). The average folding
times are shown. Error bars are obtained by averaging over 20 independent simulations.
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Dimensionality of the bias potentials

The efficiency of standard metadynamics degrades with increasing dimensionality of the Gaus-

sian hills, as it takes more time to fill with Gaussians a high dimensional space than a low-

dimensional one. On the other hand, if the free-energy landscape of the system is intrinsically

high dimensional and one uses only a one-dimensional bias, the metadynamics estimate of

the free energy is affected by large errors. BE provides, at least in principle, a solution to

this problem, as one can explore high dimensional free energy landscape by using several

low-dimensional biases. Benchmarks indicate that using one-dimensional Gaussians increases

the efficiency of the method by a factor of ≈ 2 compared with two-dimensional Gaussians [78]

(see Fig. 2.7).
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Figure 2.7: Effect of the dimensionality of the bias potential on BE folding simulations of
1E0G. Average folding times for the simulations that use one or two dimensional hills with
different number of replicas. (see Ref. [78] for details). Error bars are obtained by averaging
over 20 independent simulations.

Comparison with replica exchange

In Ref. [78], the performance of BE was compared to that of REMD by calculating the folding

times of protein 1E0G with diverse simulation setups. When using the optimal BE setup for

this system: six one-dimensional CVs (see Ref. [78] for details), T = 315 − 370K, Gaus-

sian height > 0.02kcal/mol, and τexch = 20 − 120ps, 1E0G was found to fold systematically

within ∼ 20 ns of total simulation time. It was also found that the time required to fold

the same system with replica exchange was more than an order of magnitude higher (∼ 390
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ns). Remarkably, even if the BE setup is not optimal, the performance of the method re-

mains adequate (∼ 100 ns for most of the setups). This makes the approach a viable candidate

for attempting to fold average size proteins by an accurate all-atom explicit solvent force field.

All this theoretical background will be used in the following chapter as necessary tools to

explore extensively the conformational space of a protein, and clarify issues related to how

big is the universe of protein structures, and how many different protein-like conformations

can a single peptide take.
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Chapter 3

Exploring the conformational

space of a protein

3.1 Introduction

The total number of different protein folds (or topologies) that exist in the protein data

bank (PDB) is much less than the number of protein sequences that have been solved (see

Fig. 3.1). Indeed, folds are evolutionarily more conserved than sequences and the same fold

can house proteins performing different biological functions [81, 82]. Thus a fundamental

question concerns the extension of the library of protein folds: are the observed structures

a small fraction of the whole fold universe? If so, then is it because evolution has not yet

run enough to explore it or rather a selection principle is what has slowed down/stopped the

search for alternatives?

Addressing these issues on the basis of the principles of physics and chemistry is currently

at the center of intense investigation. For a few proteins, native backbone geometries were

shown to be closely mimicked by local energy minima of poly-alanine chains [18]. More re-

cently, a unified approach to the origin of protein folds was proposed in which the inherent

anisotropy of a chain molecule, the geometrical and energetic constraints placed by hydro-

gen bonds, steric hindrance and hydrophobicity yield a free energy landscape with minima
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Figure 3.1: A) Number of protein sequences (Blue: per year, Pink: Total) solved experimen-
tally in the PDB. B) Number of different protein folds (or topologies) in the PDB.

resembling protein structures [19, 83, 84]. One of the predictions is that a limited library

of folds exists. Likewise based on a coarse grained model, Zhang et al proposed [20] that

there is a one-to-one correspondence between the Protein Data Bank (PDB) library and the

structures that one can obtain with a homopolymer from the requirement of “having compact

arrangements of hydrogen-bonded, secondary structure elements and nothing more” [20].

Recent advanced sampling methods, described in Chapter 2, allow us to address these

issues by accurate atomistic simulations. In this chapter we describe the results of a 50 µs

molecular dynamics simulation of a 60-residue polypeptide chain performed with an accurate

all-atom interaction potential and a setup specifically designed in order to extensively explore

the configuration space. In the simulation we visit practically all the ∼ 300 folds observed

in nature for proteins of comparable length. At variance with what found in [20], we find

that natural folds are only a small fraction of the structures that are explored. Many of

the structures found in our simulation resemble real proteins (in terms of secondary content,

stability and compactness) but have not been observed in nature. This finding immediately
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rises a question on the nature and meaning of these novel folds: why are they not exploited

in real proteins? Do natural folds have something ‘special’ or have they simply been selected

at random?

3.2 Simulation setup

By using bias exchange metadynamics (BE) [61] an enhanced sampling technique described

in Chapter 2, we simulate a 60 amino acid polyvaline (VAL60) described by an all-atom

potential energy function. MD simulations are performed using the AMBER03 [85] force field

and the molecular dynamics package GROMACS [86]. Simulations are mainly performed in

vacuum, but tests have been performed also in water solution (see below). The temperature

is controlled by the Nose-Hoover thermostat, and the integration time step is 2 fs.

In order to explore the conformational space we use BE with 6 replicas. The CVs are

described in detail in Section 2.4.1 [75] and are designed in order to evaluate by a differentiable

function of the coordinates the fraction of a secondary structure element (α helix, parallel β

sheet and antiparallel β sheet). For instance, for the antiparallel β sheet the variable counts

how many pairs of 3-residue fragments in a given protein structure adopt the correct beta

conformation, measured by the RMSD from an ideal block of antiparallel beta formed by a

pair of three residues. We here use six CVs, defined with:

S =
∑

α

n
[

RMSD
(

{Ri}i∈Ωα
,

{

R0
})]

, (3.1)

n (RMSD) =
1 − (RMSD/0.1)

8

1 − (RMSD/0.1)
12 , (3.2)

where n is a function switching smoothly between 0 and 1, the RMSD is measured in nm, and

{Ri}i∈Ωα
are the atomic coordinates of a set Ωα of six residues of the protein, while

{

R0
}

are the corresponding atomic positions of the ideal alpha or beta conformation. Three CVs

use an alpha
{

R0
}

template, where their sum in Eq. 3.1 runs over one third of the protein,

respectively. One CV uses an anti-parallel beta template, and two CVs use a parallel beta

template, with the sum in Eq. 3.1 running over the whole protein. The Gaussians entering
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in the metadynamics potential are added every 10ps. Their height and width are 5kcal/mol

and 0.3. Exchanges between the biasing potentials are allowed every 25ps. The exchanges

greatly enhance the capability of the dynamics of exploring new structures [61, 87]. These

parameters have been optimized according to the criteria described in Section 2.4.2.

The main scope of this work is exploring exhaustively the conformational space of an

average length polypeptide described by a realistic potential energy function. The final choice

of simulating VAL60 in vacuum with εr = 80 at 400 K, and then optimizing the configurations

with εr = 1 was taken after considering several alternatives. We first considered performing

the simulation on a 60-alanine in vacuum (ALA60), as alanine is used in Ref. [18]. This system

was evolved using the BE setup described above for 1.5µs generating ∼1200 structures with

a high secondary content.

Figure 3.2: Distribution of the radius of gyration for the VAL60, VAL60+H20,

ALA60 and CATH 55-65 sets of structures.

However, the structures generated in this manner are too compact to be comparable with

experimental structures. Indeed, the histogram of the radius of gyration for ALA60 is peaked

approximately 1 Å too low with respect to what observed for real proteins of similar length

(see Fig. 3.2). This is due to the relatively low steric hindrance of the side chain of ALA.

The same histogram computed for VAL60 is instead fully consistent with the distribution

observed in real proteins. We also performed test simulations of VAL60 solvated in TIP3P

water at 350K. This system was evolved for 0,8µs with the same BE setup. In this case

∼ 1400 structures with a high secondary content are found, but most of these structures
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are not independent, as the correlation time in water is much larger than in vacuum. More

importantly, the structures generated in water have on average a large radius of gyration

(see Fig. 3.2). This is an indication that at 350 K the system explores mainly non-compact

structures. Of course, one could perform the simulation at lower temperature, but this would

lead to an even larger correlation time, making an exhaustive exploration of the configuration

space too time consuming with existing computational resources. Performing the exploration

with εr = 80 is not strictly necessary, as test simulations performed with εr = 1 are also

able to explore structures with a high secondary content. However, VAL60 with εr = 1 has a

relatively high preference for β structures (see Fig. 3.11). With εr = 80, α and β structures

become approximately isoenergectic for VAL60, removing a possible bias in the exploration.

3.3 Results

3.3.1 A library of 30,000 folds

With the optimal setup for BE, we simulate VAL60, in vacuum, at 400K, and εr = 80, for 50

µs. This allowed creating ∼ 30,000 structures characterized by a significant secondary content

and a small radius of gyration. From the trajectory, one sees that exploration proceeds mostly

by local reorganization of secondary structure elements. From time to time the system unfolds

completely, exploring a totally independent topology. A selection of the 30,000 structures is

represented in Figure 3.3-A and a repository, with their all-atom configuration, is available

in http://www.ploscompbiol.org/. This is our first major result: it is possible to generate by

molecular dynamics at an all-atom level a library of tens of thousands of folds.

One wonders if the structures that are explored in this manner have protein-like topologies

only because of the bias, and would fall apart in normal conditions. In order to address this

issue, for all the structures generated by molecular dynamics we performed a steepest decent

(SD) simulation with εr =1, aimed at localizing the closest potential energy surface minimum.

For the last configuration the Cα RMSD was calculated with respect to the initial structure.

The distribution of this quantity is shown in Figure 3.4. Most of the structures do not

drift significantly apart from the initial configuration, and the Cα RMSD remains relatively
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Figure 3.3: Gallery of representative VAL60 structures generated by molecular dynamics(A): A

selection of 260 out of the 30,000 structures generated by MD, visualized by VMD [88]. The structures were

selected from the 50 µs molecular dynamics trajectory if they satisfied the following conditions: (i) have more

than 30% of secondary content according to DSSP [89] (ii) have a gyration radius smaller than 15 Å; (iii) be

separated more than 50 ps in simulation time. The structures obtained in this manner are further optimized by

steepest decent with ǫr = 1 until a local potential energy minimum is reached (see Methods). (B): Examples

of successful alignments. The CATH structure is represented together with its VAL60 equivalent for three

cases.

small, within 2 Å in most cases. Thus, we conclude that the VAL60 structures generated by

molecular dynamics are close to local energy minima. The set of structures generated in this

manner form the database on which we perform the analysis.

We also checked if the structures that are generated in this manner are stable if the

homopolymer chain is formed by another amino acid. At this purpose, ∼ 1500 VAL60 struc-

tures were chosen randomly. For each of these structure the valines were replaced by alanines

(ALA60). Following the same procedure described above, a SD simulation was run until the

closest local minimum is reached. The Cα RMSD from the initial ALA60 configuration was
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calculated. The distribution of this quantity is shown in Figure 3.4. Quite remarkably, even

if one changes the amino acid sequence from VAL60 to ALA60 the structures do not change

significantly, remaining within 2− 3 Å of Cα RMSD from the initial structure. This confirms

the prediction of Ref. [18]. These checks demonstrate that in normal conditions the VAL60

structures are at least marginally stable.
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Figure 3.4: Cα RMSD distributions for the 30,000 VAL60 and the ∼1500 ALA60

minimized through SD. The RMSD is measured with respect to the initial configuration.

Even though these structures correspond to local minima, one still wonders if their struc-

tural quality is good and if they resemble real proteins. In order to address this issue, we

monitored several structural quantities on our dataset. In Figure 3.5-A we show the Ra-

machandran plot of the VAL60 structures. One can see that the dihedrals populate the

allowed regions. The relative height of the various peaks is determined by the probability to

observe the different secondary structural elements and the random coil in the full dataset.

The ‘stereochemical quality’ of the VAL60 set was also assessed using PROCHECK [90]. This

program provides an overall quality measure, called G-factor, which takes into account di-

hedrals, bond lengths and angles, as compared with stereochemical parameters derived from

well-refined, high-resolution structures. If the G-factor is higher than -1.0 the structure is

considered to be ‘normal’. In Figure 3.5-B the G-factor distribution is shown for the VAL60.

For a comparison, we computed the same distribution also for the structures of length smaller

than 75 amino acids belonging to the CATH database [91].

We also used PROCHECK to estimate the average hydrogen bond energy. The distribu-
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Figure 3.5: Structural quality assessment for the VAL60 set. (A) Ramachandran plot
for the VAL60 structures. (B) G-factor [90] distribution and (C) H-bond energy distributions
[90] for the VAL60 and CATH (40 < L < 75) sets. (D) Minimum RMSD distribution for
a set of 150000 5 amino acids long fragments of the VAL60 set, and 1000 fragments of the
CATH set. Inset: an example of an alignment between two fragments with a RMSD of 0.7Å.

tions of this quantity for VAL60 and CATH is shown in Figure 3.5-C and compared (dash

line) with its ideal mean and standard deviation [90]. For the VAL60 set the G-factor and the

H-bond energy, though not as good as for CATH, are in accordance with what is expected

for realistic proteins. Lastly, in order to check if medium size structures generated by our

sampling procedure are representative of the PDB, the VAL60 structures were fragmented

in small 5 amino acids long structures and were compared by backbone RMSD [92] to all

the fragments of the same length found in CATH. The minimum RMSD value was obtained

for each small fragment. The distribution of this quantity is shown in Figure 3.5-D. It is

found that the VAL60 fragments have on average at least one CATH structure within 0.6Å
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of RMSD. All the structural descriptors we considered demonstrate that our structures are

protein-like. The distributions are similar but not identical to the one of real proteins, due

to the fact that in our simulation we considered an homopolymer formed by only one amino

acid, valine.

3.3.2 How many independent structures?

In order to understand how many independent structures are actually explored, and if the

set contains all the known folds, a measure of the degree of similarity between two protein

structures is needed.

We used the TM-align approach [93]. This method, regardless of the primary sequence

of the two proteins, attempts to align their secondary structure elements allowing insertions

and deletions of residues. The fraction of aligned residues is called coverage, and is the first

measure of similarity. Afterward, the algorithm finds the rotation and translation that mini-

mizes the relative distance between pairs of aligned residues (RMSD). The optimal coverage

and RMSD are then combined into a single similarity measure, the TM-score. It is defined as

TM − score = max

[

1

Ltarget

Lali
∑

i

1

1 + (di/d0(Ltarget))2

]

, (3.3)

where Ltarget is the length of target protein that other PDB structures are aligned to; Lali is

the number of aligned residues; di is the distance between the ith pair of aligned residues, and

d0(Ltarget) = 1.24(Ltarget − 15)1/3 − 1.8 is a distance parameter that normalizes the distance

so that the average TM-score is not dependent on the protein size for random structure

pairs. The original version of the TM-align algorithm has been modified in order to assign

the secondary structure elements with more accuracy. Instead of considering only the Cα

coordinates as in Ref. [93], our modified version reads for each protein the secondary structure

assignment given by DSSP [89]. When the proteins have different lengths, the length of the

target protein is used in the TM-score definition [93]. The TM-score is equal to one for

two identical structures. Two structures are considered to represent the same fold if their

TM-score is greater than 0.45, while for two randomly chosen structures the TM-score is
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approximately equal to 0.25.

In order to find the independent structures we proceeded as follows: first we selected the

structure with the largest number of neighbors, namely with the largest number of structures

at a TM-score larger than 0.45. We assign it as the first independent structure and remove it,

together with all its neighbors, from the list of structures. We iterate this procedure until the

list is empty. In Figure 3.6 we plot the number of independent structures found as a function

of the number of structures explored by MD. This data can be accurately reproduced with a

double exponential fit (RMS = 0.0128), which allows estimating as ∼ 10,000 the number of

independent structures that would be explored in an infinitely long MD run.
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Figure 3.6: Number of independent VAL60 structures as a function of the number

of structures obtained in the MD trajectory. Data fitted with a double exponential

function of the form 9630(1 − e
−x

33948 ) + 619(1 − e
−x
1387 ).

3.3.3 The majority of natural folds between 40 − 75 a.a. are repro-

duced

By using the tests previously reported, we find, that at first sight, the VAL60 structures

cannot be distinguished from folds adopted by proteins. Following Ref. [20], we checked if

the set of structures generated by molecular dynamics reproduces all the known folds in the

PDB.

For comparing the VAL60 structures with the existing folds in nature four different
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databases were considered: PDBSelect [94], TOP500 [95], CATH [91] and all the indepen-

dent single domain proteins from the PDB (SD-PDB), as obtained searching the keywords:

protein, one chain, and no ligands in the pdb repository. Each set was filtered by selecting

only the proteins that had length L between 40 and 75 amino acids, had more than 30% of

secondary structure, had no gaps and a gyration radius smaller than 15 Å. In order to find

the independent structures, each set was further screened using the procedure described in

the previous section. After applying all these screens, the number of independent folds in

PDBSelect, TOP500 and SD-PDB is smaller than 100. Instead the CATH set still contains

265 folds. For this reason, we choose CATH as our reference library of folds. The names of

the CATH structures used in this work are given in the Appendix.

For each structure in the CATH database, we searched, in the set of the 30,000 structures

of VAL60 generated by molecular dynamics, for its most similar structure as quantified by the

TM-score. In Fig. 3.3-B, three CATH structures with their respective VAL60 equivalent are

shown. As shown in Fig. 3.7, for almost every CATH structure it is possible to find a VAL60

structure that is very similar. For CATH structures of length between 55 and 65 amino

acids the average coverage is 75%, and the average RMSD is of only 2.8 Å. The VAL60 set

reproduces, with even greater success, CATH structures of shorter length. Instead, structures

of 65 or more amino acids are reproduced less accurately, as the maximum coverage that can

be attained is, by definition, smaller than their length. However, even in these cases, the

RMSD restricted to the aligned residues is small, of 3 Å or less. Comparison of the VAL60

set with even longer chains is not considered here: the long chains can contain extra secondary

structure elements that do not significantly affect the quality of the alignment but change the

topological details of the fold.

The excellent capability of the VAL60 set of reproducing the known folds is confirmed

by monitoring the progress of exploration as a function of the number of structures found

during the simulation. At this purpose, we assumed that a CATH structure is ‘found’ when

molecular dynamics explores a VAL60 structure whose TM-score (with respect to the CATH

structure) is higher than 0.45. Visual inspection reveals that two structures of similar length

and of relative TM-score larger than 0.45 are structurally and topologically similar. In Figure
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Figure 3.7: Similarity between the VAL60 set and the PDB structures from the

CATH database. (a) Coverage vs RMSD for the CATH proteins divided in different length
classes with respect to their most similar VAL60 structure. (b) Percentage of CATH structures
that are reproduced by a structure in the VAL60 set (TM-score > 0.45) as a function of the
number of the VAL60 structures obtained in the simulation.

3.7-b we plot, for different length classes, the fraction of CATH structures that are found

as a function of the number of VAL60 structures (which is approximately proportional to

simulation time). At the end of the simulation, for length L=55-65 the fraction of found

structures is 86% (85% for L=40-55 and 78% for L=65-75). 100 % of the structures of length

L=40-65 are reproduced within a TM-score of 0.4. This shows that the computational setup

used in this work allows us to explore the majority of the folds in nature, at least within the

limited range of lengths considered.
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3.3.4 The universe of possible folds is much larger than the PDB

The exploration of VAL60 structures by molecular dynamics proceeds in an almost random

manner, with no obvious preference for a specific class of folds or secondary structure element.

Indeed we checked that it is, on average, equally likely to find a specific CATH structure as

finding a VAL60 structure for the second time. For this, we consider a small fraction of the

MD trajectory used for generating the VAL60 dataset. In this fraction of the trajectory ∼

2000 independent structures are generated. Using the rest of the trajectory, we compute the

number of times n that each of these structures is observed (namely, the number of times a

structure with relative TM-score larger than 0.45 is visited). The histogram of n is calculated

for 20 different sets, each including 100 VAL60 structures.
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Figure 3.8: Probability of finding n times a CATH structure and a VAL60 struc-

ture.

Its average and standard deviation (error bars) are plotted in Fig. 3.8. This is compared

to the same histogram computed for the CATH set with 55 < L < 65 (∼80 structures).

Strikingly, the two histograms are very similar, indicating that the probability of finding a

CATH structure in this length range is similar to the probability of finding a VAL60 structure a

second time. In other words, in our sampling strategy there is no particular bias for generating

a structure observed in nature. However, one realizes that the two sets of structures, CATH

and VAL60, cannot be fully equivalent. Indeed, according to a clustering procedure done in

Section 3.3.2, in 50 µs the simulation explores ∼7,000 independent structures, much more
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than the structures in CATH (∼ 300 in a length range between 40 and 75).

One could argue that finding or not a one-to-one correspondence might just depend on the

chosen similarity threshold [96]. In order to quantitatively investigate this issue, we addressed

the following question: Do structural descriptors exist whose distributions are different be-

tween the two sets CATH and VAL60? If the answer is yes, a biased search mechanism

reflecting an evolutionary pressure may be envisaged. Otherwise a random search mechanism

in a continuous structure space may be enough to account for the choice of the observed folds

out of all possible structures. While at first sight structures belonging to the VAL60 and

CATH sets look indistinguishable, a more detailed analysis reveals that several VAL60 struc-

tures include a large fraction of parallel β-sheets. This secondary structure element is much

less common in the CATH set restricted to L<75. We quantify this observation by looking

at the distributions of normalized contact order and the contact locality. Two residues are

considered to be in contact, if at least one pair of their heavy atoms is found at a distance

smaller than 4.5Å and they are separated by at least three residues in sequence. Then, the

contact order (CO) [63] is defined as the average sequence separation between contacting

residues divided by the chain length. The contact locality (CL), is a structural descriptor

that counts the fraction of contacting residue pairs which are formed within the same half of

the chain [97]. The total number n of pairwise contacts is n = nN + nC + nNC , where nN

and nC are the contacts between residues both belonging to the half of the chain towards

the N-terminus and the C-terminus, respectively, and nNC are the contacts between residues

belonging to different halves of the chain. CL is then defined as CL = (nN + nC) /n.

In Figure 3.9-a the CO vs CL is plotted for the CATH set 40 <L< 75, and the VAL60 set.

The distribution of CATH is significantly restricted towards lower CO and higher CL values

with respect to VAL60, consistent with the observation that parallel β-sheets are found less

frequently in CATH.

We also checked that the CO distribution computed for the subset of VAL60 that are

recognized to be similar to CATH is largely overlapping with the CO distribution for the

CATH set (see Fig. 3.9-b). This demonstrates the consistency of the similarity measure

provided by the TM-score.
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Figure 3.9: Contact order and Contact Locality distributions of CATH and VAL60.

(a) CO vs CL represented for the CATH set of length 40 <L< 75, and the VAL60 set. (b)
CO distributions for the CATH set of length 55 <L< 65, VAL60 set and for the subset of
independent VAL60 structures that have TM-score > 0.45 with a structure in the same CATH
set. Independent structures are obtained as described in Methods.

Finally, we also analyzed the distribution of the CO restricted to the different structural

classes. The CO distributions was calculated for all-α structures and all-β structures of CATH

and VAL60. The results are shown in Figure 3.10. While the bias towards low CO is present

for all-β structures, for all-α structures it is not effective. It is also remarkable that the CO

distribution for β structures in the VAL60 set that are similar to a CATH structure is very

similar to the probability distribution for the all-β CATH structures.
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Figure 3.10: Contact Order for different structural classes The CATH and VAL60 sets
divided in two structural classes: all-α structures, or all-β structures.

3.4 Discussion

By using atomistic simulations and bias exchange metadynamics [61] we have generated a

database of ∼ 30000 structures corresponding to energy minima of a 60 amino acids polypep-

tide. Clearly, the length of 60 amino acids used in the simulation does not provide a complete

representation of the full protein universe, which includes a very large amount of much longer

proteins. However, our results indicate that, within the limited length range we considered,

the VAL60 set is indeed representative of the space inhabited by real proteins. In fact, this

set includes all the folds existing in nature for proteins of similar size, confirming that the ob-

served protein folds are selected based on geometry and not on the chemistry of the aminoacid

sequence [98, 99, 100, 18, 19, 83, 84, 20]. However, we find that the known folds form only a

small fraction of the full database. Natural folds are indistinguishable in terms of secondary
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content and compactness from non-natural folds, but are characterized by a relatively small

contact order and a relatively high contact locality. Why has nature made this choice? One

can argue that, due to a higher beta content, large CO structure could have a higher tendency

to aggregate. Another possible explanation relies on kinetic accessibility, as the contact order

is known to correlate with the folding time of two-state globular proteins [63]. Evolution

might have selected the folds under the guidance of a simple principle: reducing the entan-

glement in the bundle formed by the protein in its folded state. Bundles with shorter loops

might be preferable, as they are explored more easily starting from a random coil.

How has nature been able to select low contact order structures? In order to address this

issue, we investigated the role of specific amino acids in selecting a fold among the possible

structures. At this scope, we compared the correlation between potential energy and CO of

the structures obtained by energy minimization of VAL60 and ALA60 (see Section 3.3.1).

Figure 3.11: Correlation between potential energy and contact order for VAL60

and ALA60 structures. For a subset of ∼1500 structures from the VAL60 set we generated
a corresponding set of ALA60 structures by finding the local potential energy minima after
conversion of valine into alanine residues (see Methods). We then sorted all the structures
according to their CO. Each point in Figure 4 corresponds to a structure. We also represent
the running average of the energy over a window of 50 structures.
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Figure 3.11 vividly demonstrates that different low energy structures may be discrimi-

nated when different sequences are mounted on all the possible “presculpted” structures [19].

Whereas energetically VAL60 prefers structures with high CO and a large content of strands,

ALA60 promotes conformations with low CO and which are rich in helices. Evolution, possi-

bly also guided by the kinetic bias hypothesized above, can then proceed by using a repertoire

of 20 types of amino acids, to select and design the sequences which minimize the free energy

of a desired structure against other competing structures.

We have shown that generating a huge set of possible protein-like structures is feasible

with a computational analysis based only on physico-chemical information, with no need of

modeling or pre-determined protein structural knowledge. The protein-like character of these

structures is assessed via Ramachandran and G-factors, coordination number and contact

order which are, mostly by construction, well satisfied. However, these features might be too

general and perhaps there could be other structural descriptors that distinguish in a more

rigorous manner native-like folds from those that are not. As a final remark, we believe that

the VAL60 structures and the computational procedure to generate them, also with different

types of amino acids and with different lengths, may play a role in future developments. The

availability of a rich library of possible folds and realistic decoys could allow for advances

in the two main applicative challenges in protein physics: the prediction of the native state

of any given sequence and the design of the sequence folding into a desired fold. Moreover,

it provides an important test set on which to define native-likeness beyond most commonly

used features. The VAL60 structures might be also used to check predictions in synthetic

biology [101]. Furthermore the library could be exploited to obtain models of misfolded

protein structures related to neurodegenerative diseases [1].

Motivated with the huge number of new protein folds found in this work, our further

goal is to design a new non-existing protein topology. Due to the complexity of this prob-

lem (see section 1.2.3), we find ourselves in the necessity of constructing an efficient and

accurate knowledge based potential that gives an energy score to a tridimensional structure

with a certain amino acid composition. In the next chapter, by using Bayesian Analysis we

will construct this potential and compare its performance with other state-of-the-art scoring
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functions.
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Chapter 4

BACH: Bayesian Analysis

Conformational Hunt

4.1 Introduction

Knowledge based potentials are energy functions derived from databases of known proteins

that empirically capture aspects of the physical chemistry of protein structure and function.

These potentials are widely used in numerous applications because of their relative simplicity,

accuracy and computational efficiency. They have been used in protein design, in ‘ab-initio’

protein structure prediction, in the assessment of the stability of mutant proteins, in deci-

phering protein docking and protein-DNA interactions (see Section 1.3.1). They are also the

fundamental tools for protein structure analysis and in model quality assessment, namely in

recognizing the native state of a protein sequence within an ensemble of putative alternative

structures (decoys). Fold recognition is a problem of growing complexity since very accurate

sets of decoys, at atomistic level, can nowadays be rapidly and efficiently obtained through

very sophisticated templated based methods like ROSETTA [102] or TASSER [103], or even

through molecular dynamics simulations [104], as seen from the previous chapter. Being able

to recognize the folded state in these large sets is still considered extremely challenging.

In this chapter, we will introduce a statistical potential achieving an unprecedented level
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of accuracy in scoring the folded state in various decoy sets. This performance is not obtained

by training the potential on the decoy sets themselves. Instead, the parameters are learned

on a relatively small set of experimental folded structures. Moreover and possibly more

importantly, the potential depends on a much smaller number of parameters than other

potentials, making its evaluation extremely computationally efficient and its definition robust.

Knowledge based potentials rely on the thermodynamic hypothesis that the native struc-

ture has the lowest free energy of all states under native conditions. Consequently the aim is

to construct scoring functions whose global minimum corresponds to the known native struc-

tures of different sequences. In principle [105] it is possible to apply directly this requirement

and to extract, via learning algorithms, the free parameters by solving a set of inequalities

which impose that the native state of a protein is recognized as having an energy below other

conformations of the same length, that should represent excited states of the system. The

alternative conformations are either chosen by threading [106] or by using existing sets of

decoys. A major advantage of such a scheme is the possibility of verifying directly whether

the chosen parametrization of the energy is appropriate. In fact, if it is not possible to adjust

the parameters to satisfy all the inequalities, the scoring function will be inadequate, this is

typically the case [107]. However this approach depends crucially on the quality of the chosen

alternative structures and a single unphysical decoy may invalidate the full procedure.

Most often, statistical potentials are derived in order to reproduce the distributions of

different structural features obtained from a sample of native structures. The majority of

knowledge based potentials employ Boltzmann law [42] to convert into potentials the relative

observed frequencies of a structural event, as compared to the frequencies of the same event

on a reference state in absence of interactions. The theoretical basis of Boltzmann inversion

have been questioned [108, 109] and other ideas such as Bayesian analysis [110], linear and

quadratic programming [111] and information theory [112] have been invoked to justify the

approach.

Several forms of knowledge based potentials have been developed and explored in the

last decades. They can be categorized depending on how proteins are modeled, on how in-

teractions are defined, and on how the reference state is chosen. Both residue and atomic
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level potentials have been proposed. Interactions are weighted with either distance dependent

[113] or independent pairwise potentials [114, 115] or even keeping into account the chemi-

cal distance between residues [116]. Knowledge based potentials have also been derived for

complex structural features such as many body interactions, torsion angles and solvent ac-

cessibility. The reference state typically results from an hypothetical system and it has been

estimated for example by using quasi-chemical approximations [114], isotropic reference states

[116, 117] and on the basis of reshuffled systems [118, 119]. Recently, composite scoring func-

tions, obtained with the combination of different potentials, have been introduced to boost

the performances of the single contributions. One of the most successful methods of this type,

QMEAN6 [113] uses four statistical potentials terms covering the major structural features

of proteins and two additional terms describing the agreement of predicted and calculated

secondary structure and solvent accessibility. The relative weight of different contributions

are chosen by optimizing the performance on a set of decoys.

To benchmark the potentials several decoy sets have been released, generated by various

methods of de novo prediction, by using comparative modeling molecular dynamic simulations

and loop modeling [120, 121, 122, 123]. Very recently [124] it has been argued that some of

the most popular decoy sets are deficient, since obvious differences between the native state

and the decoys are present which make the discrimination trivial. It is now believed that

decoy sets composed by models submitted during the biennal CASP (Critical Assessment in

Structure Prediction) [64] competition are not affected by such a problem. Since CASP7 a

separate fold recognition section (model quality assessment program) has been introduced,

so that the blind comparison of methods on CASP models is now part of the competition.

Given the set of decoys, several criteria have been proposed to assess the performances of

various potentials, such as the ability to distinguish the native structure or near native struc-

tures, the correlation coefficient between the energy of the models and a similarity coordinate

(such as RMSD or GDT [125]) and the Z-score. It emerges that consensus based methods

perform significantly better than those accepting single models. However, these approaches

take the consensus of different quality assessment programs based on the idea that, if they

are independent of each other, the probability of a correct prediction is higher than for the
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best single program. Thus, they are of little use in practical applications. Among the knowl-

edge based potentials, all atom distance dependent statistical potentials like QMEAN6 [113],

ROSETTA [102], and RF CB SRS OD [119] produced the best performances (see Ref. [119]

for a detailed description of the different performances). Available potentials require a num-

ber of parameters that may reach the order of hundred of thousands. This large number of

parameters is unpleasant, since one expects that the general physical chemical laws that rule

the folding process should be captured in a relatively simpler way. Moreover, the necessity

of using and optimizing too many details may affect the robustness of the potentials and the

possibility to use them for different purposes than fold recognition: indeed, the most efficient

statistical potentials are normally not used for protein-protein interaction [126].

We developed a new potential aimed at reproducing the average propensity for pair

residues of forming contacts, or forming secondary structure elements, or the propensity

of a residue to be exposed to the solvent. The ideas at the basis of its construction are the

following:

• In order to decide if two residues are in contact or not, we consider the full atomic

configuration of the system, assigning a contact only if two of their side chain atoms

form a true physical contact, e.g. a hydrophobic contact or a hydrogen bond.

• We say that two residues form a contact involved in a secondary structure element if

they form the correct backbone-backbone hydrogen bonds, according to DSSP [89].

• In order to decide if a residue is solvent exposed or not, we compute explicitly its solvent

accessible surface, that, in turn, depends on the full atomic configuration of the system.

• Residues that are not seen in the PDB structure, even if they are part of the sequence

expressed by the crystallographer, are considered as disordered residues and are included

in the countings.

• Finally, we take into account both the possibility of having or not having (negative

event) a structural feature (contact with another residue or with the solvent or hydrogen

bonds). This turned out to be one of the key ideas for boosting the performance of the

potential.
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This manner of constructing the potential makes it a rather complex function of the coor-

dinates, in which, however, the specific chemical nature of the different residues enters only

via a relatively small number of parameters, of the order of 1000. When tested on various

set of decoys our potentials performs clearly better than all the others in discriminating the

native state and slightly better as regarding correlation coefficients and Z-score. The results

are particularly good for the recently released models of CASP9. We term our statistical

energy function BACH (Bayesian Analysis Conformation Hunt) since it is simple, elegant

and complete.

4.2 Methods

In the following, we will describe in detail the development of BACH, and we will present the

procedure we have done in order to check the robustness of its parameters calculated over

different training sets. We will also describe the various decoy sets that we have used for

assessing the quality of BACH.

4.2.1 Development of BACH

The BACH energy function is based on two terms

EBach = pEpair + Esol, (4.1)

where Epair and Esol are statistical potentials learned from a training set of native PDB

structures (see Section 4.2.2). The two terms take respectively into account the effective

pairwise residue-residue interactions and the single residue solvation terms. p is a parameter

that fixes the relative units of the two energy terms. It is chosen in such a way that the

energy per residue has approximately the same standard deviation, over the training set. For

all what follows, we use p = 0.3.
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Pairwise Term

The pairwise statistical potential Epair is based on classifying all residue pairs within a protein

structure in five different structural classes, that we label by means of index x: the two residues

may form a α-helical hydrogen bond / bridge (x = 1), or may form an anti-parallel β-bridge

(x = 2), or may form a parallel β-bridge (x = 3), or may be in contact with each other

through side chain atoms (x = 4), or may not realize any of the previous four conditions

(x = 5). First, α- and β-bridges are assigned by using a slightly modified version of the DSSP

algorithm [89] that employs a more stringent threshold (-1 Kcal/mol in place of the original

-0.5 Kcal/mol, as already done in [127]) of the partial electrostatic energy used in DSSP to

check the formation of each of the two hydrogen bonds that compose a bridge. A residue

pair is then assigned to the side chain - side chain contact class (x = 4) if it has not already

assigned to any of the hydrogen bonded classes (x < 4) and if an inter-residue pair of the side

chain heavy atoms is found at a distance lower than 4.5Å. If none of the above conditions

are verified, the pair of residues is assigned to the no-interaction class (x = 5). The pairwise

statistical potential Epair then requires five distinct 20 × 20 symmetric interaction matrices

ǫx
ab, one for each of the classes defined above, where a and b vary among the 20 amino acid

types. Overall 5 × 210 = 1050 independent parameters:

Epair =
∑

i<j

ǫxij
aiaj

, (4.2)

where i, j are indexes labeling residue positions along the chain, ai is the amino acid type of

residue at position i, and xij is the structural class to which the residue pair at positions i

and j is assigned.

The five interaction matrices ǫx
ab are determined from a training set of native protein

structures (see Section 4.2.2) employing the ensemble of all residue pairs from the training

set as the reference state [110]:

ǫx
ab = − ln





nx
ab

P

x nx
ab

P

ab nx
ab

P

x

P

ab nx
ab



 , (4.3)

where nx
ab is the total number of residue pairs of type a and b found in the structural class
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x within the training set. Residues that are not seen in the PDB structure, even if they are

part of the sequence expressed by the crystallographer, are considered as disordered ones and

included in the countings, so that any pair involving a disordered residue is classified in the

‘no-interaction’ class (x = 5).

Solvation Term

The solvation statistical potential Esol is based on classifying all residues in two different

environmental classes, either buried (b) or solvent exposed (s). The environmental class is

defined based on the evaluation of the solvent accessible surface area (SASA) according to

Connolly [?]: the surface that can be accessed by the center of a solvent probe sphere. Its

calculation is performed by the SURF [128] tool of VMD graphic software [88]. The SASA

is computed by SURF for all heavy atoms of the protein chain by trying to roll a probe

sphere (representing a water molecule) on the surface of the set of spheres centered at heavy

atom coordinates. We input to SURF the same value (1.8Å) for both the radii of all atom

types and the radius of the probe sphere. The latter is higher than what employed in VMD

(1.4Å) because we want to avoid considering internal cavities as exposing surface area to the

solvent. The output of SURF is the number of triangle vertices, associated to each atom

of the protein chain, that are used in the triangulated representation of the protein surface

employed by VMD. By summing over all atoms of a given residue, we finally obtain the

number of vertices t associated to that residue, which is proportional to its SASA. The area

associated with each vertex is ∼ 0.15Å2. The distributions of the values of t observed in

the training set for alanine, valine and arginine residues are shown in Fig. 4.1, the observed

behavior is typical of all residue types. The presence of a sharp peak at t = 0, well separated

by a broader peak at larger values of t, allows a clearcut definition of residue environment as

either buried (t ≤ t∗) or solvent exposed (t > t∗), using the same threshold t∗ = 10 for all

residues.

The single residue statistical potential Esol requires two separate sets of 20 parameters λe
a,

for each of the environment classes defined above, where a varies among the 20 amino acid
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Figure 4.1: Logarithm of the probability distribution for the values of the number of vertices
t observed, according to SURF [128], in the training set Top500 [95] for the alanine, valine
and arginine residues.

types.

Esol =
∑

i

λei
ai

, (4.4)

where the index i labels residue position along the chain, ai is the amino acid type of residue

at position i, and ei is the environmental class to which the residue at position i is assigned.

The two parameter sets λe
a (for overall 40 parameters) are determined from the training

set of native protein structures (see Section 4.2.2) employing the ensemble of all residues from

the training set as the reference state [110]:

λe
a = − ln





me
a

P

e me
a

P

a me
a

P

e

P

a me
a



 , (4.5)

where me
a is the total number of residues of type a found in the environment class e within

the training set. Residues that are not seen in the PDB structure, even if they are part of the

sequence expressed by the crystallographer, are included in the counting as solvent exposed

(e = s).
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4.2.2 Training set

The BACH parameters have been learned using the TOP500 database as the training set

[95]. This set includes 500 non redundant single domain protein conformations, extracted

from both monomeric and multimeric PDB protein structures, between 30-840 amino acids

long, which have been solved with resolution better than 1.8Ȧ by X-ray crystallography (no

NMR). The structures in the set include disordered and not resolved regions. We count the

contributions of these amino acids as non-interacting ones (see above). The BACH parameters

learned over the TOP500 dataset are presented in the Appendix.

We have checked that the choice of the fold library does not affect the BACH parame-

ters. In Fig. 4.2 the correlation between the BACH pairwise parameters calculated for 8000

structures of the CATH [91] and for the Top500 databases, is presented. Correlation is excel-

lent especially for parameters corresponding to favourable interactions, that are by definition

highly represented in the datasets. A similar correlation is obtained for the solvation param-

eters. These results are also consistent when learning the parameters on the PDBselect [94]

library of folds.

We have also checked that the BACH energies, calculated for a set of structures using the

parameters obtained with two different training sets have an excellent correlation. In Fig.

4.3 we show the correlation between the BACH energies for the structures in the CASP8 -

T0397 decoy set, when the parameters are learned over the top500 and CATH databases.

4.2.3 Decoy sets

An ensemble of structures with the same primary sequence are defined as decoys. They are

important because they provide a benchmark for checking the quality of different scoring

functions. In this section we will explain the decoy sets that we have used (or generated) in

order to further test BACH’s performance.

CASP decoy sets

The performance of BACH has been assessed on selected decoy sets from CASP 8/9 [129].

We have chosen these decoys because recently [124] it has been argued that they are the
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Figure 4.2: Correlation between the BACH pair-wise parameters learned with 8000 CATH
structures and with the Top500 dataset. For each class of BACH pairwise interactions we plot
in the x-axis the parameters learned over the top500 dataset, and in the y-axis the parameters
learned over the CATH dataset.

Figure 4.3: Correlation between the BACH energies for the structures in the T0397 (CASP)
decoy set, when learning the parameters over two different training sets (CATH and top500
datasets; x-axis, and y-axis, respectively).

most difficult ones for discriminating the native structure in the set. A decoy set was used

from CASP8/9 if the sequence of the crystalographic structure is the same as the predefined
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sequence given in the CASP competition, i.e. the decoy structures have the same sequence

as the native structure. The list of the decoy sets used is presented in the Appendix. A total

33 decoys sets were selected. The structures in each decoy set were used if they had the same

length and sequence as the native structure, and had all the side-chain and backbone atoms.

If for any reason a structure could not be analyzed by one of the scoring functions with whom

we compare the performance of BACH, the structure was taken out of the set.

Since the folded structure of proteins solved by NMR is given in the form of 20 different

models we defined as native, the pdb model that had the lowest energy (for each potential).

So, for two different scoring functions, the native structure could be a different model out of

the 20 presented in the NMR pdb file.

Decoy set generated by Molecular Dynamics

We also generated a decoy set using molecular dynamics in combination with bias-exchange

metadynamics [61] to produce realistic structures of the same protein (GB3, pdb code 2OED).

Following a procedure similar to the one described in Chapter 3. Three different simulations

were performed: i) a simple MD of 10 ns in explicit solvent at 330 K, ii) a simple MD of 10 ns

in implicit solvent at 330 K, and iii) a bias exchange metadynamics of 20 ns in implicit solvent

at 400 K, to enhance the conformational searching. This was done by using the GROMACS

package [86], and employing the AMBER99-ILDN force field [130] for the protein. For the

explicit solvent simulation the system has been solvated by 6524 water molecules in a 212

nm3 cubic periodic box, using TIP3P water model [131]. For the implicit solvent the OBC

model [132] was used. The particle-mesh Ewald method was used for long-range electrostatic

with a short-range cutoff of 1.2 nm. All bond lengths were constrained to their equilibrium

length with the LINCS algorithm [133]. The time step for the MD simulation has been set

at 2.0 fs and the Nosé-Hoover thermostat [69] with a relaxation time of 1ps was used. The

atomic coordinates and the energy were saved every 10 ps.

For the BE simulation, the PLUMED plugin [134] for Gromacs were used together with

a similar setup as that of the simulation in Chapter 3. Four replicas, each biased over a

different collective variable (described in detail in Section 2.4.1) have been chosen: Coordina-
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tion Number to change the number of contacts inside the protein, Alpharmsd, Parabetarmsd,

and Antibetarmsd which explore respectively the content in α-helix, parallel and anti-parallel

β-sheets. One-dimensional hills with a height of 0.2 kJ/mol were introduced every 2 ps, and

exchanges of the bias potentials between the replica were attempted every 20 ps. Analogously

as in Chapter 3, the structures generated in this manner are highly different in secondary

structure and tertiary contacts content.

4.3 Results

4.3.1 Discriminating the native conformation

The main goal of this work was to develop an efficient and simple knowledge based potential

that is able to discriminate the native conformation from a set of different structures with

the same primary sequence. We have calculated the BACH energy over various decoy sets,

and checked its ability of assigning the lowest energy value to the native conformation. As

a similarity measure between the decoys and the native, we use the GDT (‘Global distance

test’) [125], which is defined as

GDT =
F≤1 + F≤2 + F≤4 + F≤8

4
, (4.6)

where F≤X denotes the percent of residues under distance cutoff of XÅ after an optimal

superposition has been applied to the two proteins. This metric is considered to be a more

accurate measurement than the RMSD metric [92], which is sensitive to outlier regions cre-

ated by poor modelling of individual loop regions in a structure that is otherwise resonably

accurate. GDT measurements are used as a major assessment criteria in the analysis of results

in CASP.

In figure 4.4 we show the BACH energy versus the distance in GDT to the native structure

for four decoy sets of CASP8/9. One can see that, in these four cases, BACH is able to

discriminate the native structure from the other decoys, by assigning to it the lowest energy

value. Moreover, in almost all cases, the closer a decoy structure is to the native state (as
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Figure 4.4: BACH energy as a function of the GDT with respect to the native structure, for
four decoy sets of CASP8/9. FS: Folded state.

quantified by a large GDT), the lowest its BACH energy on average is. The BACH energy

versus GDT distribution show for the four cases a typical funneled-like distribution.

We have also tested BACH’s ability to discriminate the crystalographic conformation of

proten GB3, on a set of thousands of structures of generated by molecular dynamics and

bias exchange metadynamics. The details of the simulation are presented in Section 4.2.3.

In figure 4.5 we show the BACH energy as a function of the GDT for the decoy structures

generated with BE.

The structures generated in the BE simulation are very diverse in secondary and tertiary

content, and span a wide range of GDT distances with respect to the native. They can be

considered as analogous to the structures generated in Chapter 3. In this case, the native

conformation ranked #5 out of 13565 structures. A running average of the BACH energy of

all the structures is also shown in figure (red line in Fig. 4.5), suggesting also in this case the

presence of a funnel on the average BACH energy for large GDT.
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Figure 4.5: BACH as a function of the GDT to the native structure for different sets of
structures generated by bias exchange metadynamics. Red line: running average.

We have checked that a similar performance is observed for several different decoy sets,

including the sets, semfold [135], 4state [122], fisa [121], RosettAll [123], and the other decoy

sets of CASP. A quantitative measure of this ability is demonstrated in Section 4.3.2. For

the great majority of cases BACH is able to discriminate the native conformation. We find

that BACH works equally well for all protein classes: all-α, all-β or mixed α/β proteins, and

for proteins of different length (between 80-500 amino acids long). This is a first qualitative

indication that BACH is rather powerful for protein structure discrimination. In the following,

we will quantify this results and compare the performance of BACH with other knowledge

based potentials.

4.3.2 Comparison with other knowledge based potentials

We compare the performance of BACH with other three knowledge based potentials: QMEAN6

[113], ROSETTA [102] and RF CB SRS OD [119]. These potentials have been shown by Fiser

et al [119], to perform at the top level in decoy discrimination. The comparison is performed

on a subset of CASP8/9 targets (see Section 4.2.3), as it has been previously shown that
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these decoys are the most challenging [124].

Normalized Rank

The first quality assessment measurement that we use is the normalized rank, defined as the

rank of the native structure divided by the total number of structures in the decoy set. For

example, if the native structure has the lowest (resp. highest) possible energy among a set of

100 structures, its rank will be 0.01 (resp. 1). In figure 4.6-A we show the normalized rank

for the decoy sets in CASP 8/9 (see Section 4.2.3) for BACH, QMEAN6, RF CB SRS OD

and ROSETTA.

Strikingly, for almost all the decoy sets BACH has the lowest rank, namely the best

performance in discriminating the native structure from the decoys. BACH ranks the native

within the best 5% for 28 decoy sets, whilst QMEAN6 does it for 23, and ROSETTA for

19 out of a total of 33 sets. Moreover, for 19 sets BACH ranks the native structure as the

first, whilst QMEAN6 does this for 14 cases, RF CB SRS OD for 13 and ROSETTA only

for 3. These results show that BACH is able to discriminate accurately the native structure,

assigning to it in many cases the lowest energy value.

Z-score

Another standard measure to characterize the performance of a scoring function is the Z-score.

It is defined as

Z − score =
|Enat − µ|

σ
, (4.7)

where Enat is the energy of the native structure, µ is the mean and σ is the standard deviation

of the energy values. The Z-score measures how big the gap is between the energy value of the

native and the mean. The largest the Z-score, the better the potential is for discriminating

the native structure. In figure 4.6-B, the Z-scores for the decoy sets in CASP 8/9 are shown

for each potential. As one can see, BACH has, in almost all cases, the largest Z-score values.

This could be important when one wants to predict which is the native structure in a set, i.e.

if there are a lot of decoy structures that are close in energy to the native, this task would be

much more difficult.
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Figure 4.6: A) Normalized rank and B) Z-score sorted for the decoy sets in CASP 8/9, and
calculated for the BACH, QMEAN6, RF CB SRS OD and ROSETTA scoring functions.

It is to remark that even if BACH has a much more simple definition, and uses a lot less

parameters still its performance is outstanding in ranking the native structure and with a

large gap between its energy and the mean of the set. In both of the cases QMEAN6 has

the second best performance, closely followed by RF CB SRS OD, while ROSETTA performs

more poorly.
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Correlation Coefficient

Another standard quality performance measure is the Pearson correlation coefficient (ρ), a

measure of the linear dependence between two variables x and y. It measures how big are

the fluctuations of the points with respect to a linear fit of the data. It is defined as

ρx,y =

∑

i(xi − µx)(xy − µy)

σxσy
, (4.8)

where µx, µy and σx, σy are the mean and standard deviation over the x and y variables,

respectively. This measure varies in the interval [−1, 1]. The closer it is to one, the more

the data can be described with a linear fit. We calculated the Pearson coefficient between

the score of each potential (y) and the GDT (x) with respect to the native structure, which

has also been included in the computation. Its absolute value for the 33 decoy sets and for

the four potentials we considered is shown in Fig. 4.7. For this specific quantity, QMEAN6

performs better than BACH, namely it produces on average a more linear dependence of the

scoring function on GDT.
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Figure 4.7: Absolute value of the Pearson correlation coefficient for BACH, QMEAN6,
RF CB SRS OD and ROSETTA, sorted for the decoys in CASP 8/9.

However, the highest Pearson coefficient is observed in the decoy sets in which the native

state is poorly discriminated. This is shown in figure 4.8, where we plot the Pearson correlation

coefficient versus the Z-score for BACH and QMEAN6 for the 33 decoy sets of CASP 8/9. In
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almost all the cases in which the Pearson coefficient is higher than 0.8 the Z-score is below

1.5, indicating that the folded state is rather poorly discriminated. Apparently, a scoring

function producing a small standard deviation in the scoring versus GDT is normally less

capable of distinguishing the native state from a set of structures. This could indicate that

the profile of the energy score as a function of the GDT to the native, is not necessarily best

fitted to a linear curve, and fluctuations cannot be avoided. This is confirmed from the tests

performed on decoy sets generated by molecular dynamics (see below).
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Figure 4.8: Absolute value of the Pearson correlation coefficient (ρ) versus the Z-score for
BACH and QMEAN6 for the decoys in CASP 8/9.

Discriminating the most native-like conformation in a decoy set

One wonders how would BACH perform if it would be used in an iterative procedure to select

low energy conformations without knowing the folded state. Normally, global optimization

algorithms (for example genetic algorithms) schematically work in the following manner: i)

first, an ensemble of structures is generated; ii) then, one selects by a scoring function a

small subset of N low energy structures, iii) from this subset one creates a new ensemble of
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structures. This procedure is iterated until no new low-energy conformation can be found.

As any KBP is unavoidably affected by fluctuations (see Section 4.3.4), this procedure is not

statistically reliable if N=1, as a single small value can be the effect of a fluctuation. In other

words, if one would only take the best structure, there would be high chances of missing

a relevant ”branch” of good structures due to fluctuations. In the Appendix, we show the

value of the GDT of the closest structure to the native for each decoy set, we find that

this value changes significantly from set to set ranging from 30 to 90 in GDT. If the native

conformation is not present in the set, ideally the best potential should be able to provide

the smallest difference in GDT between the first ranked structure in energy and the closest

structure to the native.
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Figure 4.9: Difference in GDT between the closest structure to the native in the set and the
structure ranked within A) N=1, and B) N=10 with highest GDT for BACH, QMEAN6,
RF CB SRS OD and ROSETTA, sorted for the decoy sets of CASP8/9.

In Fig. 4.9-A we show, for each potential, the difference in GDT of the lowest-energy
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structure (N=1) and the structure in each set which is closest to the folded state. In order

to avoid effects of fluctuations, we take as representative of the ’lowest-energy structure’ the

decoy that is ranked within the first ten (N=10), according to each potential, and that has

the highest GDT. In Fig. 4.9-B we show, for each potential, the difference in GDT between

this representative (lowest-energy) structure and the structure in each set which is closest to

the folded state. It is clear that while for N=1 QMEAN and RF CB SRS OD perform better

than BACH, the situation is reversed for N=10. The performance of ROSETTA marginally

poorer performance in both cases.

In the Appendix, we present a table with the different quality assessments that measure

the performance of BACH over the decoy sets of CASP8/9.

4.3.3 The performance of BACH on traditional decoy sets

We also benchmarked the performance of BACH over decoy sets that are considered the

standard ones to test the scoring functions: semfold [135], 4state [122], fisa [121] and Roset-

tAll [123]. In figure 4.10-B, we have selected, from these sets, only the decoys that have a

monomeric single domain native structures with no ligands. In figure 4.10-A, we plot the

normalized ranking of each potential over all the sets, also those including target structures

that are polymeric, have ligands or are membrane proteins (at variance with the subset of

CASP8/9 targets we considered above).

Even if these decoy sets include proteins in which the native state is not monomeric, or

is a membrane protein, or is co-crystallized with large ligands or DNA, BACH still performs

rather well in discriminating the folded state. We also see that all the scoring functions and,

in particular ROSETTA, perform much better with these decoys than with the CASP decoy

sets. However, the performance of BACH remains marginally better than the one of the

competitors, also on these decoy sets. In particular, the normalized rank of BACH is smaller

than 0.2 for all the monomeric targets.

In the Appendix, the Z-score, Pearson correlation coeffiecient and GDT of the closest

structure ranked within the first ten (similarly as described above) are presented for BACH,

RF CB SRS OD and ROSETTA for all the decoy sets in these traditional decoy sets that
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Figure 4.10: Sorted normalized rank for the native structure, for A) all the decoy sets, B)
only single domain proteins in semfold, 4state,fisa, and RosettAll.

have a monomeric single domain native structures with no ligands. These quantities have

also a similar behavior as those found in Section 4.3.2 for the decoy sets of CASP8/9.

4.3.4 Fluctuations are essential for scoring a structure

As discussed in Section 4.3.1, some of the structures generated by using bias exchange meta-

dynamics (see Fig. 4.5) have a low BACH energy (lower than that of the crystallographic

structure), even if they are different in tertiary structure from the folded state. One wonders,

if these structures are signal of a flaw in the BACH potential, that is not able to recognize

them as misfolded states. In order to investigate this, we selected five of these structures
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(the five of lowest BACH energy and GDT smaller than 50) and we performed, for each of

these, 5ns of unbiased molecular dynamics in implicit solvent. For comparing with the native

conformation, we also performed 10 ns of molecular dynamics simulations for the folded state

in explicit solvent and in implicit solvent (see Section 4.2.3 for details).

Figure 4.11: BACH energy distributions for the structures in the molecular dynimcs simu-
lations of the folded state in explicit solvent (black line), the folded state in implicit solvent
(red line) and the BE structures with low BACH energy (blue line). Black point: Native
conformation; blue points: structures with lowest BACH energy obtained from BE.

In figure 4.11, we present the distributions of the BACH energies for the three sets of

structures: MD of i) the folded state in explicit solvent, ii) the folded state in implicit solvent

and iii) the structures generated by BE with lowest BACH energy. As shown in Figure, the

MD simulation in explicit solvent starting from the folded structure has high fluctuations in

BACH energy, of the order of 15. These fluctuations are due to the atomic motion at finite

temperature, as occurs for any observable that depends on the coordinates. Nevertheless,

these structures show the lowest BACH energies among all the sets, both in the average value

and in the minimum. This demonstrates that the low BACH energy structures found with

BE where just fluctuations in the dynamics, and do not correspond to meaningful low energy

conformations. Remarkably, the PDB structure is not the structure of lowest BACH energy,

possibly reflecting the presence of unavoidable (non systematic) errors in the experimental
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coordinates, which are also affected by fluctuations.

It is also interesting to observe that the MD simulation in implicit solvent produces struc-

tures of comparably high BACH energy (red line in Fig. 4.11). We have checked that this is

due to a slightly wrong packing of the hydrophobic core.

Figure 4.12: A) Distribution of the Cα distance between residues LEU 12 and ASN 37 of
protein GB3, in explicit (black line) and implicit (red line) solvent MD simulations. Subfigure:
Native conformation of protein GB3, red points: Cα atoms of residues LEU 12 and ASN 37.

This is illustrated in Fig. 4.12, where we show the distribution of the distance between the

Cα atoms of two residues: LEU 12 and ASN 37 (red atoms in the protein shown in Fig. 4.12)

for the structures in the explicit and implicit solvent simulations of the native conformation.

Whilst the simulation in explicit solvent remains compact with a distance distribution close

to the value of the crystallographic structure (8.5Å), the structures in the implicit solvent

simulation span a much large range, up to 18Å. This is a clear indication that there are

structural differences between the sets, and that the implicit solvent model brings structural

defects when simulating the folded state.

As we have seen (see Fig. 4.11) the BACH energy is able to capture these tiny structural

differences. We checked if other scoring functions are also able to do the same. In Fig. 4.13-A
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(B) we have plotted, respectively, the RF CB SRS OD and ROSETTA energy distributions

for the three MD ensembles.
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Figure 4.13: A) RF CB SRS OD and B) ROSETTA energy distributions for sets of structures
generated with molecular dynamics simulations of the folded state in explicit solvent (black
line), the folded state in implicit solvent (red line) and BE structures with low BACH energy
(blue line). Black point: Native conformation; blue points: structures with lowest BACH
energy obtained from BE.

First it is to note that also these scoring functions produce large fluctuations when eval-

uated over structures simulated at finite temperature (and basically corresponding to the

same structure). However, one can see that the distributions between the explicit and im-

plicit solvent simulations of the folded state are practically indistinguishable for both scoring

functions. The set from the MD simulations started from BE structures with lowest BACH

energy are sharply discriminated by ROSETTA, and less clearly by RF CB SRS OD. When

comparing the initial starting points of the simulations (black and blue points in Fig. 4.11

and Fig. 4.13) to the final distributions, we find that BACH creates a larger gap between
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the native and the low energy structures selected from BE. ROSETTA also slightly increases

the gap, while RF CB SRS OD reduces it substantially. There is also a different behavior

in how the native conformation is found within the distribution of the explicit solvent sim-

ulation: BACH has the native in the low energy tail quite far from the distribution center,

RF CB SRS OD has it closer to the center, while ROSETTA has it in the high energy tail.

This mirrors the hierarchy that we find in the ranking and Z-score results found on different

decoys sets (see Fig. 4.6 and Fig. 4.10).
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Figure 4.14: GDT distributions for sets of structures generated with molecular dynamics
simulations of the folded state in explicit solvent (black line), the folded state in implicit
solvent (red line) and BE structures with low BACH energy (blue line).

Lastly, in Fig.4.14 we show the GDT distributions for the structures of the different MD

simulations. This figure shows that the explicit and implicit solvent ensembles are very

similar when they are compared using a metric like the GDT. Nevertheless, there are still

structural differences between the sets as those shown in Fig. 4.12. The results presented in

Fig. 4.11 show that by computing the probability distribution of the BACH energy on a finite

temperature run it is even possible to discriminate sets with small structural differences, like

the ones described previously.
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4.4 Discussion

We have developed a simple but robust knowledge based potential, called BACH, for discrimi-

nating the native structure within a decoy set. BACH’s performance has been compared with

other state-of-the-art potentials. When tested over a lot of different decoy sets it achieves

the best results both on traditional decoy sets, and on the CASP8-9 decoy sets. Not only it

is the best in assigning to the native structure the lowest energy value, but it also gives the

largest gap between the energy of the native and the mean of the set. We find that BACH

is not the potential with best correlation between the energy value and the GDT. However,

we have also shown that a high linear correlation of the energy score with the GDT normally

corresponds to a relatively poor capability of discriminating the folded state. The quality

of BACH has also been assessed by analyzing tens of thousands of structures generated by

molecular dynamics. We have found that BACH is able to discriminate the native structure

ensemble, computed for a finite temperature run with an explicit solvent Hamiltonian, from

other sets of structures generated with implicit solvent or enhanced sampling techniques.

Moreover, we have found that the single BACH energy value is not very meaningful, as it is

affected by thermal fluctuations. These fluctuations are present also in experimental data, as

shown by the spread in BACH energy we observe in NMR models of the same protein. This is

an indication that a more reliable quality measure of a structure is the probability distribution

or the global minimum of the scoring function computed in a finite temperature run.

We for see that some symphonies in protein physics could be composed with the elegance

and completeness of BACH. Due to BACH’s simplicity, efficiency, and optimal performance

it could be useful in a broad range of applications. Some examples are protein-protein inter-

action discrimination, docking, protein design, peptide-ligand design, generation of decoys.

It can also be used in simulations for distinguishing the meta-stable conformations of the

system, and for checking the correct native conformations.
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Chapter 5

Conclusions

Proteins are the essential machinery on which cells are based. Discovering the tertiary struc-

ture of a protein, or the quaternary structure of the complexes they form, can provide im-

portant knowledge about how the protein perform its function, and information about the

biological mechanism in which it is involved. This is not only important in biology but can be

of great help in medicine by designing cures for pathologies. Much progress in understanding

the role and function of different proteins has been made with experimental techniques, but

nowadays, it is also possible to study proteins with the aid of computer simulations. Accurate

computational models and simulation methodologies are currently used to study phenomena

like protein folding [74, 16, 12], protein substrate binding [136], transitions of ions through

channels [31], enzymatic reactions [32] and many others. Nevertheless, there are still some

limitations in simulations. The major problem relies on the balance between the accuracy

of the physical interactions (resolution level), and the computational cost of exploring vastly

the system’s conformational space. In this thesis, we have tried to address these issues in

two manners: i) by showing that by using a suitable enhanced sampling technique one can

explore exhaustively the conformational space of a peptide, and ii) by developing an accurate

and efficient knowledge based potential for fold discrimination.

We have used bias exchange metadynamics [61], a powerful enhanced sampling technique,

to explore through molecular dynamics the conformational space of a 60 amino acids polyva-
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line chain. With a relatively low-computational cost, we have generated a database of over

30,000 structures with high secondary content and small radius of gyration. The structures

in the set correspond to metastable states of the system (local energy minima), and we have

checked that they are stable even if the homopolymer chain is formed by another amino acid.

We checked that these structures resemble real proteins by measuring the quality of several

structural descriptors (Ramachandran values, G-factor [90], H-bond energies, etc.). We have

found that the structures explored in this single simulation, can reproduce the great major-

ity of known folds in the PDB. For CATH structures of length between 55 and 65 amino

acids, the average coverage (aliened residues) is 75% and the average RMSD of the aligned

residues is only 2.8 Å. At the end of the simulation, the fraction of CATH structures that

we find in our dataset is 86%. The fact that a single peptide, which is biased only through

secondary structure conformations, can reproduce all the existing folds, confirms that the

observed protein topologies are selected based on geometry and not on the chemistry of the

aminoacid sequence. However, we discover that the folds observed in nature represent only a

tiny fraction of all the possible structures that a polypeptide can take, this fraction cannot be

reproduced by choosing random structures from the database. Indeed, we find that natural

folds are characterized by a small contact order, namely short loops in the bundle. This is

consistent with the observation that parallel β-sheets are found less frequently in the PDB

than in the dataset generated by us. One could argue that, due to a higher beta content, large

contact order structures could have a higher tendency to aggregate and are therefor avoided

by evolution. Another explanation of this effect can be that the contact order is known to

correlate with the folding time of two-state globular proteins [63]. Thus, evolution might

have selected the folds under the guidance of a simple principle: reducing the entanglement

in the bundle formed by the protein in its folded state. Bundles with shorter loops might be

preferable, as they are explored more easily starting from a random coil. Possibly, nature has

been able to select low contact order structures by using a repertoire of 20 types of amino

acids to select and design the sequences which minimizes the free energy of a desired (low

CO) structure against other competing structures.

The availability of the new structures generated by us, calls for an application in an
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important challenge in protein physics: the design of the sequence that stabilizes a desired

fold. Motivated by this, in the second part of the thesis, we have developed a simple but

robust statistical potential achieving an unprecedented capability of recognizing the folded

state in a decoy set, namely set of alternative conformations. We term our energy function

BACH: Bayesian Analysis Conformation Hunt, since it is developed using Bayasian inference.

Like other potentials, BACH aims at reproducing the average propensity for pair residues of

forming contacts, or forming secondary structure elements, or the propensity of a residue

to be exposed to the solvent. However, it depends only on ∼ 1000 parameters, making

its evaluation extremely efficient and its definition robust. The parameters are learned using

Bayesian analysis on a relatively small set of experimental folded structures. We compared the

performance of BACH with other knowledge based potentials: QMEAN6 [113], ROSETTA

[102] and RF CB SRS OD [119], which have been shown to perform extremely well in decoy

discrimination [119]. For the decoy sets of CASP8/9, BACH ranks the native within the best

5% for 28 decoy sets, whilst QMEAN6 does it for 23, and ROSETTA for 19 out of a total of

33 sets. When tested over several different decoy sets, not only BACH is the best in assigning

to the native structure the lowest energy value, but it also finds the largest gap between the

energy of the native and the mean of the set (highest Z-score). If we measure the Pearson

correlation coefficient, QMEAN6 performs marginally better than BACH, namely it produces

on average a more linear dependence of the scoring function on the GDT similarity measure.

However, the highest Pearson coefficient is observed in the decoy sets in which the native state

is poorly discriminated. The quality of BACH was also assessed by analyzing structures of

protein GB3 generated by an all-atom molecular dynamics simulation biased by bias exchange

metadynamics. Also in this case, BACH is able to discriminate the native structure in a very

large decoy set. However, we find that the BACH energy evaluated on a single configuration is

not very meaningful, as in a finite temperature molecular dynamics simulation the structures

are affected by significant fluctuations. Structures almost identical to the folded state can

have by chance a BACH energy higher than that of a completely different structure. These

fluctuations are not artifacts of the simulation, as fluctuations of similar amplitude are also

present among different models of the same protein obtained by NMR. Based on these results,
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we propose that a more reliable quality measure of a structure is the probability distribution

of the scoring function (for example BACH) computed in a finite temperature run, rather

than a single value. Because of its accuracy and computational efficiency, BACH could be

applied for protein design, protein structure prediction, in assessing the stability of mutant

proteins, in studying protein-protein interaction and much more.
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Appendix

CATH Structures

1aipC03 1ayjA00 1b9wA01 1ck7A02 1djxB01 1e8gA04 1e8rA00
1ektA00 1el6A01 1extA02 1fbnA01 1fuqA03 1gaxA04 1ha8A00
1hicA00 1hw7A02 1jeqA05 1jroA03 1k8bA00 1lm8V01 1mpgA03
1poiA02 1tvkB03 1uglA00 1x9bA00 1xrsB01 1zwvA00 2bm0A03
2hbaA00 2jrrA01 2oyoA01 1c0mA02 1deeG00 1ptqA00 1gjzA00
1nh2D01 1amlA00 1atxA00 1bazA00 1bbgA00 1bgwA01 1bhpA00
1biaA03 1bzkA00 1c55A00 1ck7A03 1cvuA01 1e0eA00 1e0gA00
1e3oC02 1e8pA00 1ed7A00 1ehsA00 1ekeB02 1ep3B03 1eptA00
1erdA00 1f5tA02 1fbrA01 1fd3A00 1fs1A00 1g29102 1go3F02
1gp8A00 1h1jS00 1h59B00 1h5wB03 1h6wA01 1inpA01 1ji8A01
1k1vA00 1lkoA02 1m1eB01 1mbmB03 1ncsA00 1nd9A00 1olgA00
1pnkA02 1qhkA00 1qo0D02 1twfI01 1uhaA02 1vpuA00 1w4eA00
1y1bA00 2cxnA03 2hjqA01 2otkE00 5reqB03 1a5tA02 1aapA00
1aipE03 1au7A02 1b4aA01 1ci3M02 1d2dA00 1dd9A03 1dxsA00
1e4eA02 1efaA01 1gcyA02 1h3nA03 1h9eA00 1hywA00 1k3rA02
1ly2A02 1pg5B02 1qxfA00 1qypA00 1rk6A03 1sqgA03 1t50A00
1tkeA03 1u94A02 1vq0A02 1vq8W02 2bayE00 2gycX00 2j8gA03
1a76A02 1aiwA00 1b04A03 1b3qA04 1bl0A02 1bunB00 1bxyA00
1cseI00 1dkgA02 1dqaD01 1dtdB00 1eakA01 1eejA01 1eh9A02
1ex7A01 1f94A00 1fjrA01 1g19A02 1gccA00 1go3F01 1hz6B00
1i2tA00 1i9gA01 1inlC02 1j7mA00 1ji8A02 1jlcB04 1kfwA02
1koyA00 1kvdA00 1kxpD05 1on2A02 1pceA00 1r69A00 1rq6A00
1syxB00 1tkeA01 1ucsA00 1umqA00 1wqjI00 1xjhA00 1yuaA01
2cc6A00 2ecsA00 2fj8A01 2gpfA01 2hg7A00 2jr6A01 2jrmA00
2nn4A00 3bulA04 1b3aA00 1b69A00 1b8tA01 1bbyA00 1bcoA02
1brwA03 1c7sA04 1c7vA00 1ccwB02 1d2nA02 1dvpA02 1ehiA03
1elvA03 1hp8A00 1j2zA02 1jajA02 1k0rA04 1khcA02 1ky9B04
1l6hA00 1lq7A00 1mhyG01 1mntA00 1mpxA02 1musA01 1qzpA00
1rrzA00 1tvfA02 1uxyA02 1v0eA01 1xakA00 1xccA02 2derA02
2hjjA00 2jn4A00 2nllA00 2proC01 1nh8A03 1ib8A02 1c4qA00
1cqqA01 1i6uA01 1qyrA02 1a79A02 1a9xA03 1apjA00 1au7A01
1b22A00 1b6rA01 1cfaA00 1cktA00 1dzfA02 1e8oA00 1eiaA02
1eijA00 1f3mA00 1fjgR00 1g8lA04 1gh9A00 1hc7B03 1ic8A02
1iq8A02 1iq8A03 1je3A01 1jw2A00 1kgqA01 1ku1A01 1mmsB00
1o54A01 1os6A00 1pgxA00 1pkpA01 1qsaA02 1r8eA02 1tolA02
1uj8A00 1vajA02 1vqqA03 1wj2A00 1zjaA02 2g2uB01 2jovA01
2nocA01 1aw0A00 1cidA02 1fx0A01 2px6A02 1dj7B00 2a3dA00
1a62A02 1axnA01 1b0xA00 1b24A02 1cpyA02 1fjgM01

Table 1: List of the names for CATH folds used in Chapter 3.
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BACH parameters

Residue CYS PHE LEU TRP VAL ILE MET HIS TYR ALA GLY PRO ASN THR SER ARG GLN ASP LYS GLU
CYS -0.211 -0.137 -0.361 0.9653 -0.008 -0.474 -0.161 0.4756 -0.021 -0.352 0.8958 1.4693 0.2773 0.8283 0.5880 0.5509 -0.022 0.0953 0.0152 -0.240
PHE -0.212 -0.353 -0.215 -0.014 -0.094 -0.499 0.0642 -0.096 -0.489 0.5817 1.3664 0.4203 0.3099 0.6839 -0.175 -0.248 0.5362 -0.221 -0.215
LEU -0.785 -0.377 -0.374 -0.653 -0.853 -0.005 -0.261 -0.690 0.3836 0.8334 0.0894 0.0590 -0.030 -0.494 -0.507 0.1905 -0.232 -0.390
TRP -0.517 -0.211 -0.344 -0.472 0.1454 -0.120 -0.456 0.7918 1.1273 0.1465 0.0134 0.2743 -0.201 -0.185 0.1895 -0.182 -0.479
VAL -0.084 -0.133 -0.474 -0.052 0.1423 -0.579 0.7519 0.7511 0.4796 0.2198 0.1857 -0.138 -0.033 0.4863 -0.110 -0.110
ILE -0.524 -0.576 0.0518 -0.134 -0.599 0.3400 0.8024 0.3714 0.2255 0.4348 -0.214 -0.506 0.1320 -0.135 -0.378
MET -0.677 -0.120 -0.323 -0.637 0.4061 1.0009 0.0851 -0.166 0.2274 -0.258 -0.250 -0.081 -0.153 -0.279
HIS -0.231 0.2498 -0.185 0.8595 1.9361 0.7015 0.2416 0.2972 0.0921 -0.080 0.8015 0.0089 -0.185
TYR -0.155 -0.219 1.0360 1.2343 0.2285 0.3337 0.2275 -0.089 -0.318 0.4476 0.1886 0.1291
ALA -0.785 0.4782 0.9565 0.0928 -0.042 0.0633 -0.627 -0.736 -0.033 -0.639 -0.705
GLY 1.6287 2.7539 1.1453 0.7776 1.0341 0.7897 0.5566 1.1858 0.6288 0.7273
PRO 6.9101 1.7354 1.3784 2.0046 0.9204 0.8964 1.6140 1.0029 1.0616
ASN 0.0763 0.4003 0.7676 0.0760 -0.109 0.5017 -0.014 0.0371
THR 0.4295 0.6391 -0.009 0.0413 0.5083 0.0844 0.1056
SER 0.7661 0.1889 0.1501 0.6987 0.1053 -0.042
ARG -0.221 -0.680 -0.278 -0.229 -0.897
GLN -0.726 -0.139 -0.642 -0.591
ASP 0.4482 -0.110 -0.127
LYS -0.034 -0.888
GLU -0.580

Table 2: Symetric matrix of the α-helical hydrogen bond/bridge (x = 1) BACH parameters.

Residue CYS PHE LEU TRP VAL ILE MET HIS TYR ALA GLY PRO ASN THR SER ARG GLN ASP LYS GLU
CYS -2.633 -1.091 -0.837 -0.723 -0.902 -0.644 -0.229 -0.483 -1.268 -0.079 -0.190 0.3405 0.7711 -0.081 0.2064 0.4028 0.7460 0.6755 -0.349 0.6359
PHE -1.276 -0.754 -0.726 -1.218 -1.189 -0.745 -0.274 -0.979 -0.336 -0.204 0.3117 0.7162 -0.224 -0.012 -0.039 -0.003 0.8264 0.1608 0.0259
LEU -0.553 -0.601 -0.883 -0.804 -0.325 0.1947 -0.684 0.1497 0.3668 0.8623 0.7910 0.0848 0.1773 0.3579 0.2744 1.0540 0.3536 0.6163
TRP -0.770 -0.684 -0.688 -0.263 -0.528 -1.063 -0.210 0.0904 0.3915 -0.037 0.3852 -0.343 -0.320 -0.515 0.5115 -0.593 0.2194
VAL -1.416 -1.457 -0.642 -0.474 -1.074 -0.501 -0.223 0.9063 0.5019 -0.657 -0.090 -0.331 -0.283 0.7719 -0.307 -0.118
ILE -1.189 -0.582 -0.403 -1.057 -0.525 0.1375 1.3264 0.6426 -0.308 -0.000 -0.244 -0.195 0.9002 0.1215 0.2034
MET -0.653 -0.128 -0.347 0.1584 0.5383 0.4699 0.4295 -0.223 0.1847 0.3056 0.7004 1.3286 0.0033 0.2943
HIS -0.785 -0.437 0.2665 -0.040 1.0949 0.4664 -0.398 0.1727 0.1553 -0.228 0.1651 0.0212 0.1452
TYR -0.967 -0.225 0.0440 0.0703 0.0477 -0.597 -0.303 -0.484 -0.345 0.4592 -0.548 -0.280
ALA 0.4967 0.6568 1.4868 1.3718 0.0511 0.8864 0.6333 0.8410 1.9158 0.8113 1.0997
GLY 0.6493 1.5072 1.0381 0.4770 0.7358 0.8210 0.8426 1.1395 1.4615 1.4415
PRO 2.3801 1.0278 0.7265 1.3710 1.2052 0.9242 3.2577 1.0527 1.4243
ASN 0.7611 0.0656 -0.037 0.3461 0.0548 1.3119 0.6349 0.7493
THR -1.125 -0.392 -0.336 -0.257 0.3056 -0.493 -0.257
SER -0.100 0.0519 0.0142 0.7673 0.1169 0.2799
ARG 0.3588 -0.024 0.0477 0.2391 -0.214
GLN 0.1516 0.6191 0.2591 0.4422
ASP 0.9541 0.0454 1.3823
LYS 0.1706 -0.607

Table 3: Symetric matrix of the anti-parallel β-bridge (x = 2) BACH parameters.
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Residue CYS PHE LEU TRP VAL ILE MET HIS TYR ALA GLY PRO ASN THR SER ARG GLN ASP LYS GLU
CYS -0.564 -0.921 -0.237 -0.927 -1.298 -1.364 -0.454 0.9496 -0.240 0.0034 1.0821 5.3445 5.3052 0.4756 0.1353 -0.024 1.3681 1.1640 5.4659 0.0258
PHE -1.514 -0.947 -0.146 -1.499 -1.513 -0.784 -0.100 -0.949 0.0688 -0.217 2.1124 0.4826 0.0107 0.0092 1.3656 0.5496 1.4484 1.4478 0.8021
LEU -1.041 -0.217 -1.732 -1.763 -0.916 -0.086 -0.648 -0.469 0.3079 2.4334 1.2635 -0.231 0.6303 0.9029 0.3211 1.0475 0.8336 0.7235
TRP -0.618 -0.861 -1.116 -0.468 1.1050 -0.185 0.0902 0.7124 1.8245 0.4506 -0.060 0.4607 1.7481 0.0009 2.0498 0.6478 1.9401
VAL -2.277 -2.061 -1.208 -0.586 -1.160 -0.843 -0.085 1.2406 0.3485 -0.749 -0.005 -0.110 0.2458 0.3643 0.5644 0.4226
ILE -2.167 -0.807 -0.611 -1.167 -0.774 0.1129 1.2553 0.6585 -0.431 0.3775 0.0459 -0.089 0.6750 0.8067 -0.060
MET -0.436 0.0235 -0.908 0.8546 0.4101 2.1035 0.2714 0.1913 0.1707 -0.090 0.6293 0.7466 1.3673 0.5715
HIS -0.674 -0.421 1.0427 0.6711 2.2765 0.3953 -0.470 -0.149 0.6148 0.2110 0.8824 0.1412 0.4571
TYR -0.603 -0.105 0.1007 1.2870 0.3195 0.4023 0.0774 0.6768 0.0476 0.2450 0.4479 0.5649
ALA 0.3610 0.5857 1.9463 1.1954 0.3400 0.7653 0.8676 0.6958 1.2257 1.0553 1.2518
GLY 1.5273 1.8416 1.1493 0.7126 1.1678 0.9041 0.5748 1.3096 1.3904 1.4245
PRO 5.9978 2.9026 1.5308 2.4786 2.2327 1.6263 3.1866 3.0611 6.8339
ASN -0.303 -0.298 0.7203 1.0482 0.9000 1.0466 1.2177 2.3829
THR 0.0562 -0.083 -0.237 0.5388 0.7174 -0.002 0.7310
SER 0.0209 0.5294 1.0176 0.3926 1.2890 0.9244
ARG 1.1350 0.5369 1.0541 1.6150 0.9347
GLN 0.7736 1.0741 0.6298 1.0251
ASP 1.3685 0.7560 1.4447
LYS 1.1604 0.0323
GLU 1.6279

Table 4: Symetric matrix of the parallel β-bridge (x = 3) BACH parameters

Residue CYS PHE LEU TRP VAL ILE MET HIS TYR ALA GLY PRO ASN THR SER ARG GLN ASP LYS GLU
CYS -2.277 -0.962 -0.456 -0.701 -0.409 -0.561 -0.549 -0.433 -0.678 0.3406 0.2723 -0.308 0.0511 0.0180 0.3085 0.1194 0.2484 0.5211 0.8494 0.6759
PHE -1.362 -1.143 -1.279 -0.903 -1.099 -1.112 -0.523 -0.973 -0.241 0.1876 -0.390 -0.017 -0.194 0.0914 -0.228 -0.088 0.2454 0.1856 0.1552
LEU -1.046 -1.023 -0.817 -1.031 -0.840 -0.140 -0.783 0.0439 0.6535 -0.022 0.3851 -0.046 0.4580 -0.047 0.1002 0.6746 0.4761 0.4500
TRP -1.403 -0.875 -0.984 -1.103 -0.791 -1.069 -0.269 -0.099 -0.688 -0.325 -0.330 -0.054 -0.615 -0.511 -0.150 -0.189 -0.295
VAL -0.731 -0.866 -0.639 -0.039 -0.529 0.0954 0.6518 0.0381 0.2675 0.0125 0.4440 0.1564 0.1985 0.6175 0.5462 0.5381
ILE -1.068 -0.875 -0.091 -0.795 -0.058 0.4841 -0.084 0.3514 -0.091 0.4071 -0.067 0.0772 0.4470 0.4366 0.4017
MET -0.901 -0.453 -0.921 0.0070 0.3841 -0.090 0.0894 0.0675 0.2391 0.0593 0.0786 0.5267 0.4271 0.3990
HIS -0.906 -0.647 0.5387 0.3969 -0.134 -0.114 -0.108 0.0103 -0.203 -0.071 -0.365 0.3051 -0.187
TYR -0.855 -0.089 0.0315 -0.653 -0.238 -0.167 -0.014 -0.591 -0.376 -0.187 -0.305 -0.219
ALA 0.8769 1.1266 0.5470 0.6923 0.6290 1.0166 0.7233 0.8765 0.9511 1.2496 1.0729
GLY 0.3092 0.5672 0.3900 0.3130 0.5543 0.3864 0.5461 0.4208 0.8880 0.8662
PRO 0.2738 0.0433 0.1811 0.3302 0.0364 0.0493 0.1955 0.4662 0.2091
ASN -0.071 0.0624 0.2858 -0.080 -0.061 -0.047 0.1968 0.1432
THR 0.0794 0.3184 0.0773 0.0614 0.0509 0.3771 0.1304
SER 0.4837 0.2357 0.2623 0.0632 0.5830 0.2578
ARG -0.006 -0.097 -0.607 0.6422 -0.548
GLN 0.0915 0.1430 0.2170 0.2196
ASP 0.4044 -0.338 0.5431
LYS 1.1657 -0.377
GLU 0.7590

Table 5: Symetric matrix of the side chain interaction (x = 4) BACH parameters.

Residue CYS PHE LEU TRP VAL ILE MET HIS TYR ALA GLY PRO ASN THR SER ARG GLN ASP LYS GLU
CYS 0.1183 0.0211 0.0079 0.0128 0.0074 0.0108 0.0093 0.0064 0.0128 -0.003 -0.003 0.0035 -0.001 -0.000 -0.003 -0.001 -0.003 -0.005 -0.007 -0.005
PHE 0.0382 0.0276 0.0328 0.0199 0.0266 0.0264 0.0085 0.0214 0.0038 -0.002 0.0050 -0.000 0.0025 -0.001 0.0030 0.0012 -0.003 -0.002 -0.001
LEU 0.0245 0.0227 0.0177 0.0248 0.0177 0.0018 0.0154 0.0002 -0.006 -0.000 -0.004 0.0005 -0.004 0.0007 -0.000 -0.006 -0.004 -0.004
TRP 0.0394 0.0181 0.0219 0.0257 0.0148 0.0244 0.0042 0.0007 0.0114 0.0045 0.0047 0.0005 0.0105 0.0085 0.0015 0.0028 0.0043
VAL 0.0168 0.0201 0.0124 0.0009 0.0097 -0.000 -0.006 -0.001 -0.003 0.0003 -0.004 -0.001 -0.002 -0.006 -0.005 -0.005
ILE 0.0271 0.0184 0.0015 0.0163 0.0018 -0.004 0.0002 -0.004 0.0012 -0.004 0.0010 -0.000 -0.004 -0.004 -0.003
MET 0.0192 0.0071 0.0195 0.0003 -0.004 0.0003 -0.001 -0.000 -0.002 -0.000 -0.001 -0.005 -0.004 -0.004
HIS 0.0190 0.0113 -0.005 -0.004 0.0007 0.0009 0.0015 -0.000 0.0025 0.0009 0.0048 -0.003 0.0025
TYR 0.0175 0.0014 -0.000 0.0106 0.0030 0.0021 0.0001 0.0100 0.0059 0.0021 0.0043 0.0029
ALA -0.006 -0.008 -0.006 -0.006 -0.005 -0.008 -0.005 -0.006 -0.007 -0.008 -0.007
GLY -0.004 -0.006 -0.004 -0.003 -0.005 -0.004 -0.005 -0.005 -0.007 -0.007
PRO -0.004 -0.001 -0.002 -0.004 -0.001 -0.001 -0.003 -0.005 -0.003
ASN 0.0007 -0.000 -0.003 0.0007 0.0006 -0.000 -0.002 -0.002
THR -0.000 -0.003 -0.000 -0.000 -0.001 -0.003 -0.001
SER -0.005 -0.002 -0.003 -0.001 -0.005 -0.002
ARG -0.000 0.0018 0.0103 -0.005 0.0099
GLN -0.000 -0.001 -0.001 -0.002
ASP -0.004 0.0048 -0.005
LYS -0.008 0.0068
GLU -0.006

Table 6: Symetric matrix of the no-interaction (x = 5) BACH parameters.
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Residue Exposed Burried
CYS 0.1946 -0.556
PHE 0.1424 -0.444
LEU 0.2156 -0.597
TRP -0.010 0.0445
VAL 0.2574 -0.670
ILE 0.2811 -0.709
MET 0.1643 -0.493
HIS -0.102 0.6098
TYR -0.058 0.2918
ALA 0.1454 -0.450
GLY 0.0469 -0.176
PRO -0.105 0.6283
ASN -0.124 0.8135
THR -0.041 0.1959
SER -0.048 0.2346
ARG -0.185 1.9501
GLN -0.152 1.1822
ASP -0.154 1.2076
LYS -0.204 3.1183
GLU -0.181 1.8223

Table 7: Solvation BACH parameters

Table 8: CASP decoy sets: Decoy sets used in Chapter 4, PDB code (name in CASP).
3PNX (T0517) 3NRD (T0522) 3NRE (T0526) 2L0B (T0539)
2L0D (T0541) 2L3W (T0544) 2KRX (T0562) 3ON7 (T0563)

2KYW (T0569) 3NRQ (T0575) 2KY9 (T0579) 3NI8 (T0594)
3NKH (T0623) 3O1L (T0626) 3NUW (T0628) 3CYN (T0388)
3D4R (T0397) 3D6W (T0415) 3CZX (T0425) 3D3Y (T0427)
3DAI (T0432) 3D7L (T0433) 2K3I (T0437) 3DCP (T0440)
3DAO (T0445) 3DO6 (T0447) 3DMC (T0451) 2K5W (T0468)
2K49 (T0472) 3DLC (T0485) 2VWR (T0488) 3DLM (T0504)
3E03 (T0511)
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Figure 1: GDT of closest decoy structure to the native conformation sorted for the CASP8/9
sets.
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Decoy Normalized GDT of GDT of Z-score Pearson Fraction
rank closet lowest rep. correlation enrichment

T0517 0.0596 67.925 67.925 1.579254 0.574054 0.102564
T0522 0.0179 94.590 93.284 1.581800 0.748505 0.037037
T0526 0.0023 73.707 73.707 2.968533 0.816630 0.048785
T0539 0.0070 67.593 62.654 1.842799 0.653000 0.222222
T0541 0.0037 79.717 79.717 3.445862 0.451770 0.115385
T0544 0.0128 37.037 32.778 1.963298 0.580524 0.266667
T0562 0.0383 39.024 31.301 1.919497 0.344515 0.186047
T0563 0.0036 69.176 62.993 2.651130 0.807046 0.222222
T0569 0.0162 72.785 56.013 2.035285 0.247451 0.041667
T0575 0.0038 60.880 60.880 4.012596 0.573708 0.200000
T0579 0.0022 43.750 38.306 2.789333 0.671428 0.511111
T0594 0.0062 85.000 82.143 1.627530 0.836722 0.361702
T0623 0.0071 62.955 62.955 2.258477 0.537891 0.185185
T0626 0.0032 89.399 89.399 1.381472 0.883960 0.166667
T0628 0.0023 41.186 41.186 2.468571 0.678618 0.619048
T0388 0.0049 89.080 87.644 1.784483 0.815177 0.210526
T0397 0.0118 33.000 33.000 2.501684 0.505609 0.343750
T0415 0.0028 74.312 69.954 2.028250 0.796711 0.205882
T0425 0.0027 69.199 68.094 1.687010 0.754283 0.142857
T0427 0.0027 55.213 50.059 3.491227 0.753991 0.111111
T0432 0.0036 89.808 87.500 1.475357 0.726069 0.148148
T0433 0.0038 79.523 78.141 4.292572 0.554694 0.320000
T0437 0.1301 65.909 65.909 0.902215 0.675388 0.323529
T0440 0.0059 73.909 70.545 1.841253 0.729208 0.312500
T0445 0.0032 79.167 59.470 3.205908 0.654367 0.066667
T0447 0.0045 89.161 88.423 1.679495 0.913411 0.095231
T0451 0.0028 70.489 69.173 3.076912 0.361207 0.147059
T0468 0.1399 41.743 33.257 0.991921 0.476634 0.210526
T0472 0.0629 61.818 41.591 0.096790 0.389156 0.020430
T0485 0.0045 64.106 64.106 3.295974 0.695964 0.428571
T0488 0.1532 86.053 81.316 0.951732 0.681223 0.041667
T0504 0.0055 23.317 17.548 3.079031 0.179162 0.103760
T0511 0.0047 65.590 64.391 2.601460 0.659879 0.249700

Table 9: BACH’s performance over the CASP8/9 decoy sets: decoy, Normalized
rank, GDT of closest structure in the set, GDT of closest structure ranked within
the best ten, Z-score, Pearson correlation coefficient, Fraction enrichment (the
percentage of the top 10% lowest GDT structures that are found also in the top
10% best scoring ones).
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Set Decoy BACH RF CB SRS OD ROSETTA
semfold 1e68 3.612236 1.736280 1.245337
semfold 1khm 1.448607 3.298707 0.390097
semfold 1nkl 2.572452 3.253590 0.406699
semfold 1pgb 2.994818 2.465525 0.751449
4state 1r69 5.187321 2.530143 2.680363
4state 3icb 2.964012 1.763384 0.407856
4state 4pti 3.504422 2.089870 4.232069

RosettaAll 1aa2 6.333942 3.307967 2.111359
RosettaAll 1acf 6.225436 5.634524 1.772874
RosettaAll 1btb 5.705780 0.713018 1.649231
RosettaAll 1fbr 1.652924 1.132950 1.381048
RosettaAll 1gpt 2.030183 1.739186 1.382646
RosettaAll 1kte 5.977196 2.801269 2.591239
RosettaAll 1r69 3.828340 1.243447 1.984405
RosettaAll 2ezk 3.073327 2.378920 1.806570
RosettaAll 2ncm 2.857415 3.228812 1.892090
RosettaAll 5pti 1.046373 2.846518 1.643483

fisa 2cro 3.293369 1.185396 0.204062
fisa 4icb 6.656486 1.813432 1.293061

Table 10: Z-score for BACH, RF CB SRS OD and ROSETTA calculated over standard
decoy sets semfold, 4state, RosettaAll and fisa with single domain proteins.
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Set Decoy BACH RF CB SRS OD ROSETTA
semfold 1e68 0.275461 0.326351 0.007737
semfold 1khm 0.036879 0.079506 0.006546
semfold 1nkl 0.165764 0.228080 0.064933
semfold 1pgb 0.179924 0.188029 0.043189
4state 1r69 0.555645 0.622371 0.667629
4state 3icb 0.740209 0.759393 0.599443
4state 4pti 0.390731 0.487051 0.439148

RosettaAll 1aa2 0.231899 0.131486 0.025757
RosettaAll 1acf 0.175405 0.243301 0.012026
RosettaAll 1btb 0.195562 0.048517 0.030545
RosettaAll 1fbr 0.026616 0.052667 0.005185
RosettaAll 1gpt 0.100968 0.026099 0.030198
RosettaAll 1kte 0.261196 0.176756 0.028333
RosettaAll 1r69 0.237291 0.328273 0.041139
RosettaAll 2ezk 0.122587 0.198930 0.006688
RosettaAll 2ncm 0.090495 0.102257 0.059923
RosettaAll 5pti 0.090056 0.079878 0.009134

fisa 2cro 0.300151 0.360885 0.007331
fisa 4icb 0.362096 0.254032 0.234098

Table 11: Pearson Correlation Coefficient for BACH, RF CB SRS OD and ROSETTA
calculated over standard decoy sets semfold, 4state, RosettaAll and fisa with single domain
proteins.
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Set Decoy Closest BACH RF CB SRS OD ROSETTA
semfold 1e68 62.143 53.214 50.357 33.214
semfold 1khm 55.479 33.562 44.863 34.932
semfold 1nkl 52.885 26.923 38.462 25.962
semfold 1pgb 55.357 30.804 27.679 39.732
4state 1r69 93.254 87.698 82.937 93.254
4state 3icb 94.333 94.333 91.333 93.000
4state 4pti 83.190 71.552 81.897 79.310

RosettaAll 1aa2 30.952 28.571 20.238 17.619
RosettaAll 1acf 29.472 20.528 23.577 19.309
RosettaAll 1btb 32.303 25.843 23.596 25.843
RosettaAll 1fbr 31.989 18.817 24.731 31.989
RosettaAll 1gpt 52.660 36.702 33.511 32.447
RosettaAll 1kte 38.000 26.750 24.750 21.250
RosettaAll 1r69 69.262 53.689 67.213 44.262
RosettaAll 2ezk 48.118 30.376 37.366 29.301
RosettaAll 5pti 49.091 31.818 28.182 26.818

fisa 2cro 52.692 41.154 44.231 30.769
fisa 4icb 50.329 39.474 39.803 38.158

Table 12: GDT of closest structure in set. GDT of the closest structure ranked within the
best ten for BACH, RF CB SRS OD and ROSETTA over the standard decoy sets semfold,
4state, RosettaAll and fisa with single domain proteins.
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