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“Among other things, you'll find that you're not the 
first person who was ever confused and frightened and 
even sickened by human behavior. You're by no means 
alone on that score, you'll be excited and stimulated to 
know. Many, many men have been just as troubled 
morally and spiritually as you are right now. Happily, 
some of them kept records of their troubles. You'll learn 
from them - if you want to. Just as someday, if you 
have something to offer, someone will learn something 
from you. It's a beautiful reciprocal arrangement. And 
it isn't education. It's history. It's poetry.” 

- The Catcher in the Rye (J.D. Salinger) - 
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Abstract 

The main aim of this research project was to compare the effects of a parietal lesion in 

brain tumour patients with effects of prefrontal and premotor lesions on a number of 

processes related to the ability to operate in near space. More specifically, we studied 

the effects of a brain tumour lesion on two basic processes such as the ability to (i) 

reach an object in space and (ii) to integrate spatiotemporal information in a prediction 

task. Then, two more cognitive processes were investigated, namely (iii) the ability to 

perform visuospatial transformations and (iv) to encode and retrieve the spatial relation 

between letters in a string.  To that purpose, an anatomical group study approach was 

used. The method allowed us to better localize the relevant systems involved on the 

processes investigated.  

 

The first part of the thesis concerns optic ataxia, a disorder involving errors in reaching 

a position in space. From a behavioural point of view, optic ataxia patients have been 

found to be inaccurate in reaching and grasping objects when the movement has to be 

performed to a position in the periphery and less frequently to one in central vision. 

However, recent lines of research suggested that the PPC might be involved not only in 

simple reaching tasks toward peripheral targets, but also in changing the hand 

movement trajectory in real time, if the target moves. Most of the documented 

individual cases of optic ataxia have been described following a bilateral lesion of the 

posterior parietal cortex. Only a few studies have been conducted on unilateral brain 

damaged patients making use of a group study approach.  The present study 

investigated whether patients with a lesion arising from operation for prefrontal, 

premotor or parietal tumours are selectively impaired in three experimental pointing 

conditions: i) pointing to a peripheral target (extrafoveal), ii) pointing to a target they 

can fixate and iii) making hand corrections to a moved target. The study confirmed the 

critical importance of the parietal cortex in all three tasks. The degree of extrafoveal 

reaching errors correlated significantly in parietal patients with that to fixable targets, 

but there was no relation for these patients between extrafoveal reaching errors and the 

‗shift cost‘ of making a correction. The findings confirm that misreaching effects occur 

only for parietal patients, but suggest that deficits in on-line movement adjustments and 

in misreaching to the periphery might well reflect two independent processes.  
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In the second part of the thesis we examined a possibly related process, presumed to be 

localised in the parietal cortex, namely the integration of spatial and temporal 

information. We carried out two studies on this topic. In the first of these (three 

experiments), we asked a group of healthy volunteers to predict the position of a 

moving target after it has suddenly disappeared for a short time. We found that subjects 

were more accurate in guessing the position of a moving invisible target when the 

prediction had to be made in the left hemispace, irrespective of the direction of the 

movement and the hand used. We explained the results in terms of a right hemisphere 

advantage in coordinating spatial and temporal information. The same prediction task 

was used with brain tumour patients. In line with the previous study, in this second 

work we found the same lateralization effects as in normal subjects in patients with 

lesions involving the left anterior, right anterior and left posterior cortices. By contrast, 

no lateralization effects were observed for the right posterior group. 

 

In addition, the role of the posterior parietal cortex was investigated in how visuospatial 

transformations, such as rotating an object in space, are carried out. Mental rotation is a 

cognitive process, which engages a distributed cortical network including the frontal, 

premotor and parietal regions. Like other visual-spatial transformations it could require 

operations on both metric (e.g. distances and angles) and categorical (e.g. left, right, 

above, below) spatial representations. Previous reports based on behavioural studies of 

normal subjects have suggested that the right hemisphere is involved in metric 

processing and the left hemisphere in categorical processing. Our study suggests that 

this is not the case. We found that patients with a brain tumour involving the right 

parietal and the left prefrontal cortices made a significantly higher number of errors 

than the other patients. In particular, whereas the right parietal group made poor use of 

categorical information, the left prefrontal patients showed a broader mental rotation 

impairment with a significant number of metric errors. The results are discussed in 

terms of the model of Kosslyn et al. (1989) of the mental transformation Processes. 

 

The last part of the project aimed at extending the results about the critical role of the 

parietal cortex in acting in near space to a domain, which apparently seems different 

from those discussed before. The last experiment concerns phonological dyslexia, a 

reading disorder in which patients can read familiar words well, but they show 

impairments in reading non-words. Phonological alexia is frequently associated with 



 15 

damage to the left hemisphere, even if few cases of a right hemisphere involvement in 

left-handed patients have been also reported. The present work was based on the 

possibility that a right posterior lesion could lead a difficulty in reading pronounceable 

nonword strings, because of a difficulty in structuring the relation of its component 

objects (letters) in space. In accord with our hypothesis we observed that together with 

the left posterior group, also the right posterior group showed a significant impairment 

in reading nonwords, with no effect for the word material. The left posterior group 

made a higher number of substitution errors, whereas the right posterior group made 

more positional errors (errors in which letters occur in inappropriate parts of the string). 

 

In conclusion, with an anatomically group study approach with brain tumour patients 

we were able to confirm the important role played by the parietal cortex in a number of 

spatial processing. A variety of spatial tasks were used to pursuit our aims. Critically, 

we showed that the development of well-specified models of normal cognition allows 

linking findings from cognitive neuropsychology. 
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   Chapter 1 

 

General Introduction 
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1.1 Introduction 

One of the central issues in neuroscience is how humans represent and process spatial 

information. Many of the everyday actions such as picking up a cup of tea, judging the 

distance between two objects, catching a ball, representing a place on a map, are all 

examples of human spatial abilities. Even if many of these actions are performed 

without effort, the cognitive system is faced with several problems in the spatial 

domain, which have to be promptly solved. For example, reaching for a cup of tea 

requires not only that one attends the object and directs the hand toward it, but also that 

one ignores other objects on the table (e.g. you do not take the cup of a friend), 

coordinates the hand movement with those of the eyes and the head, and is able to act 

on the cup from different directions. Similarly, catching a ball implies not only that one 

represents the object in the environment, but also that one determines the future 

trajectory of the ball, judges accurately where and when it will reach one.  

 

Historically speaking scientific interest on spatial functions and their relative disorders 

developed after the first War World, when soldiers with brain injuries were examined 

(Holmes, 1918). These pioneering studies suggested that damage to the parietal cortex 

could specifically affect the way in which one processes and integrates spatial aspects 

of the environment, such as the location of objects and their spatial relationships or the 

ability to accurately reach on object in space. However, it was not until Zangwill and 

his colleagues published a series of papers on groups of patients that the crucial role of 

the right hemisphere in spatial disorders was emphasized (Patterson & Zangwill, 1944; 

Ettlinger et al., 1957). In subsequent years a number of visuomotor and visuospatial 

disorders such as optic ataxia, constructional apraxia, hemispatial neglect have been 

described after parietal damage and several attempts were made to create an integrative 

framework in which the spatial properties of the parietal cortex can be combined. 

Moreover, Critchley (1953) remarked how symptoms of parietal lesions can differ 

widely, with some patients showing only few abnormal signs, while others showing an 

intricate clinical picture of symptoms. 

 

The purpose of this project is to provide an overview of the possible effects of a brain 

tumour lesion on the ability of representing and processing spatial information, as 

required on different experimental spatial tasks. The thesis can be broadly divided in 
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two sections. In the first section (Chapter 2, 3 and 4) we will focus on some basic 

mechanisms underlying the ability of people to act in near space, such as reaching and 

integrating spatial and temporal information. The second section (Chapter 5 and 6) will 

focus on constructing and using visuospatial mental representations as is required in 

more cognitive processes such as mental rotation and reading. Before describing the 

experimental work in the next chapters, this Introduction provides some background 

information about the anatomo-functional aspects of the parietal cortex and some of the 

possible spatial disorders, which can arise after a lesion of it.  

 

 

1.2 The neurobiological basis of spatial cognition: anatomical 

and functional considerations of the parietal cortex 

 

1.2.1Anatomy  

The part of the brain which we call parietal cortex can be delimited by three anatomical 

boundaries: (i) the Rolandic fissure, which defines the anterior part of the parietal 

cortex and separate it from the frontal lobe, (ii) the parieto-occipital solcus which 

defines the posterior limit of the parietal lobe and separate it from the occipital one, and 

(iii) the Sylvian fissure which defines the lateral boundary and separates the parietal 

from the temporal cortex. Generally speaking, the anterior part of the parietal cortex 

(the primary somatosensory cortex, Broadmann‘s areas 1, 2 and 3) is mainly involved 

in the processing of information from the body parts based on the degree of sensory 

innervations, whereas the posterior one (posterior parietal cortex, PPC) is involved with 

the integration of multimodal information for constructing a spatial representation of 

the external world, planning and executing object-centred movements and attention 

processes (Mountcastle et al, 1975; Culham & Kanwisher, 2001). The PPC itself can be 

broadly subdivided into two major sections, the inferior parietal lobe (IPL), which plays 

an important role in attention, visual awareness and in generating object-related actions 

(Driver & Mattingley, 1998; Fogassi, 2005), and the superior parietal lobe (SPL), which 

is thought to be important for the control of visually guided actions (Connolly, 

Andersen, & Goodale, 2003; Culham, Cavina-Pratesi, & Singhal, 2006; Goodale & 

Milner, 1992; Milner & Goodale 2006; Caminiti et al., 1996). The SPL and the IPL are 

separated by the intraparietal solcus (IPS), which is in turn surrounded by a number of 
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functionally relevant subregions integrating neural signals from different sensory 

modalities and controlling action in space (Figure 1A). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Organization of the human (A) and primate (B) posterior parietal cortex (PPC). Superior 

parietal lobule=SPL, inferior parietal lobule=IPL, intraparietal solcus =IPS, medial intraparietal 

region=MIP, ventral intraparietal region=VIP, lateral intraparietal region=LIP, anterior intraparietal 

region=AIP (adapted from Bisley and Goldberg, 2010). 

 

 

 

1.2.2 Neurophysiological studies 

In monkeys, much research has been done on the anatomo-functional organization of 

IPS and areas surrounding it (Figure 1B).  Each of these areas has been held to be 

concerned with particular subfunctions within the visuomotor processes. Thus, earlier 

physiological studies have suggested that the lateral intraparietal (LIP) area is 

concerned with the control of eye-movements and peripheral attention (Andersen et al., 

2004); the anterior intraparietal area (AIP) with preshaping of grasping (Murata et al., 

2000), the medial intraparietal area (MIP) and area V6A with reaching movements 

(Snyder et al., 2000; Battaglini et al., 2002) the ventral parietal area (VIP) with the 

multimodal encoding of the space and the movements towards the head (Colby et al., 

1993).  

 

Anatomically, these areas are interconnected in a set of neural circuits comprising 

motor areas in the frontal cortex and visual areas in the occipital one (Rizzolatti et al. 

1998, Averbeck et al., 2009) (Figure 2).  

 

A B 
IPS 

SPL 

IPL 

http://www.ncbi.nlm.nih.gov/pubmed/9741757
http://www.ncbi.nlm.nih.gov/pubmed/9741757
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Figure 2. Overview of the projections from the posterior parietal cortex. The dorsal stream is here 

depicted in plain lines, wheres dotted lines represent the ventral stream Abbreviations: AIP: anterior 

intraparietal area; BS: brainstem; Cing. Cingulate motor areas; d: dorsal; FEF: frontal eye field; FST: 

floor of the superior temporal sulcus; Hipp.: Hippocampus; LIP: lateral intraparietal area; M1: primary 

motor cortex; MIP: mesial intraparietal area; PIP: posterior intraparietal area; MST: medial superior 

temporal area; MT: mediotemporal area; PF: prefrontal cortex; PM: premotor cortex; SC: superior 

colliculus; SEF: supplementary eye field; SMA: supplementary motor area; STS: superior temporal 

sulcus, STP: superior temporal polysensory area; TE: temporal area; TEO: temporo-occipital area; v: 

ventral; V1: primary visual cortex, VIP: ventral intraparietal area. (Adapted from Rossetti and Pisella, 

2002) 

 
 
 

Therefore, the posterior parietal cortex (PPC) can be considered as an early and 

intermediate stage in the process leading from vision to movement, where a variety of 

signals (e.g. visual, somatosensory, attentional, and auditory) are processed and 

integrated. When the functional organization of the parietal and frontal areas is 

contrasted with their pattern of cortico-cortical connections, a reciprocal distributed 

system emerges (Figure 3A and 3B).  
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More recent work (Averbeck et al., 2009) using cluster analysis showed four 

statistically significant cluster areas in the parietal cortex and six in the frontal region. 

These clusters are composed of a set of adjacent areas. Thus, regarding the parietal 

region, the authors define a the dorsal-parietal cluster (PAR-d), which includes areas 

MIP, PEc and Pea; the somatosensory cluster (SS), which is formed by SI, SII and PE; 

the ventral-parietal cluster (PAR-v) that consists of PF, PFG, PG and AIP and the 

medio-lateral parietal cluster (PAR-ml), which includes PGm, V6A, LIP, VIP and Opt). 

A similar analysis on the frontal region revealed the existence of a dorsal premotor 

(PMd, consisting of F2-vr, F2 pre-cd, F3, F6 and F7), ventral premotor (PMv, including 

F4 and F5), primary motor (MI), cingular (CING, formed by 23 a, b, c and 24 a, b, c), 

prefrontal ventral (PFCv, consisting of 45v, 46 a,b and F7-SEF) and prefrontal dorsal 

(PFCd, formed by 46d, 8A and 8B) clusters. The topographic, reciprocal connections 

between these frontal and the parietal clusters suggest the existence of a ‗privileged, 

although not private, routes of information flow between the parietal and the frontal 

cortex‘ (Caminiti et al., 2010). Functionally speaking, the PAR-d and PM-d clusters are 

Figure 3: Cortico-cortical 

connections of the primate 

frontal and parietal lobes. 

 

Fronto-parietal circuits 

involved in visuomotor control 

in monkeys. Blue arrows 

indicate cortico-cortical 

connections between frontal 

and parietal regions.  

 

(A) Lateral view of the brain.  

 

(B) Lateral view of the 

hemisphere where parts of the 

parietal and occipital lobes have 

been removed to show the 

location of the areas buried in 

the medial bank of the 

intraparietal sulcus and in the 

rostral bank of the parieto-

occipital sulcus. 

 

(Adapted from Battaglia-Mayer 

& Caminiti, 2002; Battaglia-

Mayer, Archambault & 

Caminiti, 2006) 

SUPERIOR PARIETAL LOBE 
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important for the integration of visual and somatic information necessary for reaching 

(Georgopoulos et al., 1984; Colby & Duhamel, 1991; Battaglia-Mayer et al., 2000); the 

PAR-v and PM-v are involved in the hand-object interaction for grasping (Taira et a., 

1990; Rizzolatti & Matelli, 2003) and PAR-ml and its prefrontal counterpart are 

involved in the early stages of eye-hand coordination for reaching (Battaglia-Mayer et 

al, 2000,2001, 2005;2007).  

 

A complementary way of viewing the network is in terms of a gradient-like functional 

architecture with a gradual transition of the functional properties of the neurons across 

the parietal-frontal system along a rostrocaudal dimension (Johnson et al., 1996; 

Battaglia-Mayer et al., 2001; Caminiti et al., 2010). In particular, whereas visual 

information predominates in the caudal pole of the network (e.g. area V6A), the hand 

ones predominate in the rostralmost part of the superior parietal lobe, with the 

visuomotor cells coexisting in the intermediate parietal regions (e.g. area MIP) 

(Battaglia-Mayer et al., 2005 for a review). 

 

1.2.3 Brain imaging studies 

Even though functional homologies between macaque and human PPC are difficult to 

determine, human neuroimaging studies suggested a similar mosaic of specialized 

parietal areas (Culham and Kanwhisher, 2001, Culham et al., 2006). In particular, there 

are many regions that demonstrate similar functional properties in both humans and 

monkeys. Since it is activated by both saccades and peripheral attention, the parietal eye 

fields (PEF) area has been proposed as the human homologue of LIP (Muri et al., 

1996), whereas the human homologue of AIP is located at the junction between the 

anterior portion of the IPS and the inferior postcentral solcus (Binkofski et al., 1998; 

Culham, Cavina Pratesi, & Goodale, 2004; Faillenot, Sakata, Costes, Decety, & 

Jeannerod, 1997). A human area functional similar to MIP and V6A is located in the 

medial intraparietal solcus (mIPS) and the precuneus (PCu) (Grefkes & Fink, 2005; 

Connolly, Andersen, & Goodale, 2003; Prado et al., 2005). Finally, regarding the 

possible candidates for the VIP area, mixed results have been reported. Some studies 

reported activation in the fundus of the human IPS (Bremmer, Schlack, Shah et al., 

2001), whereas others argue for the postcentral solcus (Huang and Sereno, 2005). 

 

 



 25 

1.2.4 Neuropsychological studies 

Neuroimaging studies on human brain functions are also likely to benefit from crosstalk 

with related approaches, such as the neuropsychological one. In particular, given the 

methodological difficulties related to the study of arm movements in the fMRI 

environment (e.g. the movement needs to be physically limited and this can induce 

artefacts), the neuropsychological method has frequently been used in tasks involving 

actions in near space. The neuropsychological approach takes advantages of the insights 

of both the lesion method and cognitive psychology.  

 

The logic of the lesion method is straightforward. If a brain region contains processing 

units or connections, which contribute critically to carrying out a task, then damage to 

that region will impair the performance of that task, resulting in a set of behavioural 

deficits. Neuropsychological data has demonstrated many different types of spatial 

deficits in patients following parietal lesions. One of the most striking features of the 

work on spatial cognition is the diversity and complexity of the possible dysfunctions to 

which a parietal lesion can give rise. Since lesions affecting the parietal lobe can be 

large in size, in many patients a combination of these disorders was observed. 

Nevertheless, many dysfunctions may manifest in dissociated and partial forms. For 

instance, damage to the IPL or the superior temporal gyrus (STG) of the right 

hemisphere commonly leads to hemispatial neglect (Husain& Rorden, 2003; Mesulam, 

1999; Karnath, Ferber, & Himmelbach, 2001; Mort et al., 2003; Vallar & Perani, 1986) 

and to directional hypokinesia (Mattingley et al., 1992, 1998). In both cases, patients 

might exhibit deficits in representing and acting in the contralesional space. Other 

parietal patients, particularly those with damage to the SPL, IPS and the parieto-

occipital junction (POJ), often misreach objects in the periphery, so-called optic ataxia 

(Perenin and Vighetto, 1988; Karnath & Perenin, 2005).  

 

However, neuropsychology is much more than just a list of possible cognitive 

impairments, which a dysfunctional brain structure can give rise. Indeed, cognitive 

neuropsychologists argue that by investigating the behaviour of people with brain 

damage, it is also possible to identify separable cognitive subsystems and to infer the 

way in which the normal cognitive processes are organized (Shallice, 1988).  Models of 

normal cognitive functions can be used to understand impaired performance in patients 

with brain lesions and findings of impaired performance can offer evidence to support, 

http://www.ncbi.nlm.nih.gov/pubmed/1486464
http://www.ncbi.nlm.nih.gov/pubmed/9515962
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reject or further integrate current theories of normal processing (Coltheart, 1985; Ellis 

& Young, 1988). Disorders such hemispatial neglect and optic ataxia, but also other 

spatial symptoms such as mental rotation deficits, inaccuracy in correctly processing 

spatial relationships between objects, spatial-temporal integration disorders, all 

represent illustrative examples of how cognitive neuropsychology can been applied 

successfully to comprehend complex cognitive functions. 

  

 

1.3 Functional relevance of spatial representations in brain 

damaged populations 

By studying people with selective disorders of cognition in the spatial domain we can 

make inferences about the nature and the structure of how people represent and process 

spatial information. Generally speaking, spatial representations involve different 

parameters and operations, such geometrical and physical properties, reference frames, 

perspective taking, relations between objects.  Brain damage may result in the selective 

loss of certain systems, while leaving others intact. The contrast between intact and 

damaged aspects of spatial representation may differ between individuals, producing 

different patterns of spatial disorder. In this way we can build models of normal spatial 

functioning by studying patients with brain lesions. 

 

Spatial representation is not a unitary concept. Rather, there are different types of 

spatial processes, depending on the function that spatial information serves. Thus, an 

object can be represented in terms of its relations to multiple frames of references. We 

will further examine the primary role that egocentric and allocentric frames of 

references play in spatial cognition. 

 

1.3.1 Viewer-centered/egocentric frames of reference 

One type of spatial representation is the viewer-centered/egocentric frame of reference, 

where the location of the object is represented with respect to the viewer. In such a 

frame of reference, spatial properties such as distance and the terms ‗left‘ and ‗right‘ 

refer to the position of the object with respect to the observer. A typical example in 

which the spatial information is specified in an egocentric frame of reference is 

reaching. In order to reach an object, the brain needs to compute aspects of the space as 
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accurately as possible. Thus, to carry out a simple hand movement, such as reaching, it 

seems natural that the brain would represent the position of the target in a quantitative, 

fine-grained metric format, such as distance and angles. This occurs independently of 

whether the target is directly fixated with the eyes (foveal condition) or from the 

periphery (extrafoveal condition). There is an extensive scientific literature suggesting 

that metric information can be represented in terms of multiple egocentric frames of 

reference, such as relative to the position of the eyes (eye-centered coordinates), the 

head (head-centered coordinates), the shoulder (shoulder-centered coordinates) and the 

hand (hand-centered coordinates) (Mountcastle et al., 1975; Buneo et al., 2002; Buneo 

& Andersen, 2006; Battaglia-Mayer et al., 2000). This raises the issue of how the 

different egocentric spatial representations might be transformed in order to accurately 

reach an object in space. It has been argued that the posterior parietal cortex has a 

crucial role in performing sensorimotor transformations (Andersen, Essick & Siegel, 

1987) and that damage to that brain area can lead to visuomotor transformation deficits, 

such as optic ataxia (Buxbaum and Coslett, 1998; Rossetti et al., 2003).  

 

1.3.1.1 Optic ataxia 

It has long been known that damage to the posterior parietal cortex (PPC) can lead to 

optic ataxia (OA) (Balint, 1909; Ratcliff and Davies-Jones, 1972; Pisella et al, 2008). 

Patients with OA display impairments in the visuomotor domain, especially when they 

are required to perform reaching and pointing movements in extrafoveal conditions 

(Battaglia-Mayer et al., 2002; Glover, 2003). Misreaching errors in OA patients are 

usually found to be independent of any primary motor, sensory, praxis or attentional 

deficit (Balint, 1909; Perenin and Vighetto, 1988; Coulthard et al., 2006; Striemer et al., 

2009).  

 

In a pioneering study Perenin and Vighetto (1988) analysed the performance of stroke 

patients with parietal lesions (three right and seven left), while they were performing a 

simple reaching task. Patients with a unilateral lesion of the right parietal cortex were 

found to be more inaccurate when they had to reach for an object presented in their 

contralesional left visual field, independently of the hand used. On the other hand, in 

addition to the contralateral visual field impairment, patients with a unilateral lesion of 

the left parietal cortex showed a significantly higher number of misreaching errors 

when they were asked to reach to the objects with their contralesional right hand. These 
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different hemispherical effects have been classically called ‗visual field effects‘ and 

‗hand effects‘ respectively. Moreover, three out of the seven left parietal patients were 

also found to be impaired in the central visual field condition when using the right hand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Visual field and hand effects for right hemisphere damaged (A), left hemisphere damaged 

(B) patients and the control group (C). The figures represent the petcentage of errors when patients 

pointed to the left visual field (LVF), right visual field (RVF) and in central vision (CVF), with the left 

and the right hand (From Perenin and Vighetto, 1988). 

 

Studies investigating the visual and the hand effects have mainly being conducted in 

extrafoveal conditions, where the stimuli to be reached are presented in the visual 

periphery. In these experimental conditions, OA patients produce inaccurate reaching 

endpoints (Garcin et al., 1967; Perenin and Vighetto, 1988; Pisella et al., 2000). In 

contrast, most OA patients are usually good in reaching for objects presented in the 

central vision space, although a few cases of foveal optic ataxia have been observed 

(Rondot et al., 1977; Perinin and Vighetto, 1988; Buxbaum and Coslett, 1998; Rossetti 

et al., 2003). In the case of foveal optic ataxia, the patients exhibit misreaching errors in 

both the central and the peripheral visual fields.  

 

The observation that OA patients are usually found to be inaccurate in reaching for 

objects in the periphery and less frequently in the central visual field might just be a 

reflection of the lower spatial resolution of peripheral vision. Moreover, since both 
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hemispheres process the target position in central vision, good performance in this 

experimental condition could also reflect the activity of the spared hemisphere. 

However, OA patients with bilateral lesions often show good performance in foveal 

reaching tasks (Milner et al., 1999; Gréa et al., 2002). Therefore the existence of 

distinct cortical networks subserving central and peripheral reaching cannot be 

excluded. Indeed, more recently, a brain imaging study of Prado et al. (2005) provided 

some evidence for this hypothesis. The investigators explored whether the fronto-

parietal reaching network could have been differently activated in two reaching 

conditions, namely foveal vs. extrafoveal. Using fMRI, they demonstrated that reaching 

in central vision activated a network including the medial intraparietal solcus (mIPS) 

and the caudal part of the dorsal premotor cortex (PMd). By contrast, reaching in 

peripheral vision activated a more extensive area. In addition to the mIPS and the 

caudal part of the PMd, reaching in the periphery also activated the rostral part of the 

PMd and the medial part of the parieto-occipital junction (POJ).  

 

One widely accepted claim is that the posterior parietal cortex (PPC) is not just 

involved in simple reaching tasks toward peripheral targets, but is also a key structure 

for adjusting the hand movement trajectory in real time, a condition which usually 

occurs in central vision (Pisella et al., 2000; Gréa et al., 2002). For instance, when 

patients must point to a stationary target which suddenly changes position at the time of 

movement onset on 30% of the trials, Pisella and colleagues (2000) observed that the 

optic ataxic patient IG was impaired in performing online movement corrections in the 

shift condition only (Figure 5).  

 

Converging evidence about the role of the PPC in fast online movement adjustments 

has also been obtained from a transcranial magnetic stimulation (TMS) study in healthy 

subjects (Desmurget, 1999). Moreover, a recent neurophysiological study with monkeys 

provided evidence of the importance of area 5 in the superior parietal lobe (SPL) in 

making fast in-flight corrections of hand trajectories (Archambault et al., 2009).  
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Rossetti et al (2003) held that the impaired performance of OA patients in tasks 

requiring automatic movement corrections could be explained by a deficit in the process 

of fast online visuomotor control, which is involved in rapid motor adjustment of the 

on-going action. However, since movement towards a peripheral target is based on less 

precise visual information, the visuomotor control might also be involved in adapting 

online movement parameters with respect to the hand and object spatial locations. On 

this hypothesis, one would predict that two types of impairments should be found in 

association in OA patients, namely misreaching (i) toward targets in the periphery and 

(ii) in experimental conditions requiring online movement corrections. Supporting 

evidence has come from a study of Blangero et al. (2008). In their study the optic ataxic 

patient CF was found to be impaired in reaching towards targets in the periphery. 

Impairments were also observed when he had to adjust his movements in flight. In both 

tasks, the authors observed the same combination of hand and visual field effects. 

However, in a recent review Pisella and colleagues (2009) suggested that while the 

Figure 5. Automatic movement adjustment impairments in the bilateral optic ataxia patient I.G 

and in a control subject.  The figure describes the trajectories of the hand when a static object was 

presented (C) or when a change of the hand trajectory was required (CR). As shown in the figure, 

patient I.G. was specifically impaired in this second condition. She performed a whole movement to the 

first location of the object (C), followed by a second movement towards the shift location (R) (From 

Pisella et al., 2000).  
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visual field effects might indeed reflect a deficit in the spatial processing of visual 

inputs, the hand effects (even in central vision) might be a consequence of a deficit in 

the spatial processing of the proprioceptive information from the ataxic hand. In the 

first case, the impairment would result from damage to the parieto-occipital junction 

(POJ). In the second, the hand effects would be due to a lesion of the medial part of the 

intraparietal sulcus (mIPS). 

 

Much of our knowledge about reaching impairments in OA patients has come from 

neuropsychological studies, which made use of the methodologies of single case and 

selected case series. However, this method is not ideal for the localization of relevant 

systems and for this an anatomically based group study approach is most appropriate. 

Recently, a group study of Shallice and colleagues (2010) on OA replicated the visual 

field effects for reaching towards peripheral targets observed by Perenin and Vighetto 

(1988). The parieto-occipital group was significantly less accurate compared with other 

patient groups with the impairment affecting specifically the contralateral visual field. 

The behavioural findings were corroborated by an anatomical analysis, which showed 

an involvement of the superior parietal lobe (SPL). The results were consistent with 

localizations found in earlier studies using other techniques (but see Karnath and 

Steinbach, in press; Shallice and Skrap, in press). To our knowledge no studies have 

examined a series of patients with the ‗automatic pilot‘ task. 

In the present thesis (Chapter 2) we made used of an anatomical based group study 

approach in order to consider the processes required (a) for pointing toward targets in 

the periphery, (b) toward stationary targets (with patients allowed to look at targets 

before pointing) and (c) for correcting movements in flight. We investigated whether 

these processes are behaviourally and anatomically dissociable and what are the critical 

brain areas involved. 

 

1.3.1.2 Spatio-temporal integration 

In the previous paragraph (1.3.1.1), we provided an example of how damage to the 

posterior parietal cortex can severely affect the way in which people use egocentric 

metric information in order to act in peripersonal space. There are, however, more 

complex situations than reaching, which involve the processing of objects in space. One 

is that of predicting the future position of moving target or its current position if it is 

passing behind an object. In this condition, a simple viewer-centered reference frame 
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account would probably be insufficient. Since the image of the object does not move 

across the retina at a constant speed, the retinal motion information might need to be 

supplemented by allocentric information such as the position of the object in time with 

respect to the surrounding space (e.g. a monitor). 

 

In dynamic environments the integration of spatial and temporal information is a 

frequently used process. Visuomotor tasks such as avoiding vehicles when walking 

across a road, passing the ball to a teammate and catching a flying mosquito are all 

examples. To successfully predict the position of a moving target it is necessary to take 

into account that the target is moving during the time and to estimate its trajectory and 

speed on the basis of the preceding spatial information. There is growing interest in 

where in the brain the integration of temporal and spatial information might occur. 

Walsh (2003) has recently claimed that a common processing system for space, time 

and numbers exists (A Theory of Magnitude, ATOM), which may be located in the 

inferior parietal cortex. In particular, he suggested that the right parietal cortex might be 

critical. Several studies support the idea that the parietal cortex, particularly the right, 

plays a crucial role in the integration of spatial and temporal information. For example, 

in a brain-imaging study with healthy subjects performing a detection task, Coull and 

Nobre (1998) observed that the parietal cortex, mainly on the right, was largely 

activated when subjects directed their attention to both spatial and temporal cues, as 

compared with either dimension alone. Similarly, by using an integrated 

neuropsychological and repetitive transcranial magnetic stimulation (rTMS) approach, 

Olivieri et al. (2009) tested whether the contribution of the right parietal cortex becomes 

critical for the execution of both spatial and timing bisection tasks. In these 

experiments, the healthy subjects were presented with a target with a variable duration 

(timing task) or with a virtual line segment with a variable length (spatial task). In the 

retrieval phase, they were then asked to press a response button when they thought that 

the same (reproduction task) or the half (bisection task) of the previous temporal or 

spatial interval had elapsed or been covered. Repetitive transcranial magnetic 

stimulation applied on the right parietal cortex but not on the left one of the healthy 

subjects during the retrieval phase caused a lateralized bias during both the tasks. For 

the timing task, similar effects were found in right brain damaged patients with spatial 

neglect. The authors concluded that the right posterior parietal cortex might reflect a 

possible neural correlate of spatial-temporal interaction. This issue was also 
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investigated in an experiment of Boulinguez at al. (2003). By using a task in which 

subjects were required to predict object trajectories, the authors found that the response 

times were shorter when the targets moved in the left visual field, regardless of which 

hand was used for responding. The authors interpreted these hemispatial effects by 

arguing that the right hemisphere might be critically involved in tasks requiring spatio-

temporal processing. However, this hemisphere interpretation contrasts with that made 

from fMRI studies (Assmus et al. 2003, 2005; Coull et al., 2008) where subjects were 

asked whether a collision between two targets would occur or not. Instead, these 

authors observed that the brain region activated during such a kind of tasks (where 

spatiotemporal integrations are required) was the left inferior parietal cortex 

(supramarginal gyrus), not the right. Therefore, whether the integration of the spatial 

and temporal information occurs in the right or in the left hemisphere is still an open 

issue in neuroscience and it will be investigated in the present thesis (Chapter 3 and 4). 

 

1.3.2 Object-centered/allocentric frames of reference 

In the case of an object-centered reference frame, the object is represented with respect 

to its own spatial properties and its spatial relation to other objects. According to 

Kosslyn et al. (1989), spatial relations can be depicted at two levels of abstraction, such 

as categorical and metric aspects. In the categorical analysis, the spatial relations 

among objects in scenes are represented in qualitative terms (as is captured by an 

expression such as ‗the pen is near the big cup on the desk‘). In the metric/coordinate 

analysis, spatial relationships are represented in terms of quantitative distances and 

angles. In this case, metric aspects - such as distances - and the categorical/qualitative 

terms - such as left, right, top and bottom - refer to the object itself and its spatial 

relation with other objects. They are independent of the observer. Evidence from brain 

imaging and neuropsychological studies seem to confirm the central role of the 

posterior parietal cortex in encoding categorical and metric spatial information 

(Ratcliff, 1979; Ditunno and Mann, 1990; Harris et al., 2000; Kosslyn et al., 1998; 

Zacks, 2008, Martin et al., 2008), even if controversies about which hemisphere, the left 

or the right, is mainly involved in the two processes still exist. Object-centered 

mechanism might obviously influence a variety of visuospatial tasks, such as mental 

rotation, which requires operations on both categorical and metric representations of 

objects. Another typical example for objects with well-defined intrinsic categorical 

spatial relations is letters, which are part of a word.  
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1.3.2.1 Mental rotation 

The ability to imagine the rotation of an object in space has been studied most 

intensively by using the Shepard and Metzler task in which subjects are required to 

decide whether two figures are the same or mirror images (Shepard and Metzler, 1971; 

Cooper and Shepard, 1973) (Figure 6). In these pioneering studies reaction times 

increased proportionally to the angular distance between the two stimuli, which fitted 

with what would be expected if subjects rotate the objects linearly before making the 

decision. This mental rotation, they claimed, is an analogue process. Although certain 

subsequent studies have provided further support for the linearity of the angular 

distance effect (Shepard and Cooper, 1982; Corballis and Sergent, 1989; Carpenter et 

al., 1999; Keehner et al., 2006), other researchers have suggested that the mental 

transformations involved are not always smooth and analogue, but can occur in a more 

categorical step-like manner, that is by moving from an object‘s position to another 

without passing through the space between them (Kosslyn, 1980; Franklin and Tversky, 

1990; Hegarty, 1992).  

 

 

 

 

 

 

 

 

 

 

Figure 6. Example of stimuli presented to the subjects and reaction times as a function of angular 

difference in orientation (from Shepard and Metzler, 1971). 

 

Consider for instance the simple situation in which a subject is working with objects, 

which have then to be acted on from a different perspective, like the situation in which 

yours is one of a number of identical cups of tea on a table. You walk round to another 

side of the table but then need to pick up the appropriate cup. One needs to know which 

is one‘s own. Introspectively one does not do this by rotating the table in one‘s head. It 

is possible to localize and infer spatial relations between and within objects despite 

M
e
a
n

 R
e
a
c
ti

o
n

 T
im

e
s 

(s
e
c
) 



 35 

changes of the direction from which they are viewed (Corballis, 1988; Marr, 1980), and 

not necessarily by using continuous transformations through intermediate positions. In 

these situations other cognitive strategies can be used, such as using categorical 

representations of the objects in relation to stored spatial frames. On the other hand, 

when subjects are required to perform an object recognition task (e.g. by comparing two 

objects and deciding whether they are equal or different) they could use a ‗matching‘ 

strategy, in which they retain in memory the initial orientation of one object and rotate 

it until aligned with the other one. From this perspective, as suggested by Pylyshyn 

(2002), the evidence favoring the linearity of the angular distance effect may be specific 

to the task used. It remains possible that linearity and the use of analogue 

transformation are not principles, which govern mental rotation in all situations.  

 

A related project is the attempt to isolate the subsystems and their neural basis involved 

in mental rotation. In monkeys, for instance, it has been shown that lesions to the 

inferior temporal cortex impair the ability to discriminate two 3D rotated objects when 

the rotation difference is less than 60°, whereas they are basically good in 

discriminating between identical shapes rotated by 60° or more (Holmes and Gross, 

1984). These results have some parallels with the study of Jolicoeur in humans 

(Jolicoeur et al., 1985), who showed that reaction times in discriminating 2D and 3D 

objects changed with respect to the rotation amount, with 60° representing the boundary 

for two possible underlining strategies. When small rotation differences are used, the 

object could be identified and rotated as a whole through the angular difference. On the 

other hand, for larger differences in rotation, the salient feature are extracted from the 

shape and a location to it is than assigned (e.g. the salient feature is on the left).  

 

As far as brain processes in humans are concerned, the parietal cortex seems to have a 

critical role in locating features and rotating objects. Parietal damage can produce 

significant impairments in mental rotation tasks. This has been observed, for instance, 

in the pioneering study of Ratcliff (1979) in brain-damaged patients. In this experiment 

patients were presented with a schematic drawing of a man with one marked hand. On 

each trial this figure was presented in an upright or an inverted position and participants 

were required to say which of the two hands was marked – the left or the right hand 

(Figure 7). The authors found that patients with right parietal lesions made more errors 
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in the inverted condition, which required a mental re-orientation of the stimulus, in 

comparison to patients with left hemisphere and bilateral lesions. 

 

 

 

 

 

 

 

 

 

 

 

The involvement of the right parietal cortex in the mental rotation processing has been 

further supported using different experimental methodologies including 

neuropsychological (Ditunno and Mann, 1990), brain imaging (Deutsch et al., 1988; 

Carpenter et al., 1999; Harris et al., 2000), topographical ERPs (Yoshino et al., 2000) 

and TMS (Harris and Miniussi, 2003) studies. However, other research has provided 

evidence that rotation may also involve left hemisphere neural activation depending on 

the stimuli and the tasks used (Kosslyn et al., 1998; Vingerhoets et al., 2001; Jordan et 

al., 2001; Tomasino et al., 2003). In addition, some functional imaging studies have 

also obtained activations in the premotor and supplementary motor areas while 

performing mental rotation tasks (Cohen and Bookheimer, 1994; Richter et al., 2000; 

Lamm et al., 2007; de Lange et al., 2005). These results led researchers to claim that 

motor simulation could be used to solve mental rotation tasks. Moreover, a recent meta-

analysis (Zacks, 2008) showed that brain regions that were mainly activated during 

mental spatial transformations included frontal and inferotemporal areas. More 

specifically, although the brain was bilaterally activated in most regions, these studies 

stressed a major involvement of the right parietal cortex (Harris et al., 2000; Halari et 

al., 2006) and an involvement of the left prefrontal cortex (Johnston et al., 2004; 

Kosslyn et al., 2001; Zacks et al., 1999).  

 

Another important issue related to mental rotation and its neural substrates concerns the 

model put forward by Kosslyn et al. (1989). They argued that creating the 

Figure 7. Types of stimuli 

used by Ratcliff (1979). 

Participants judged whether 

a picture of a human body 

had its right or left arm 

marked. 
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representation of the spatial context in which objects lie involves at least two distinct 

processes. The first involves a categorical analysis in which the spatial relations among 

objects in scenes are represented in qualitative terms (as is captured by an expression 

such as ‗the pen lies on the left side of the desk‘). The second involves a metric analysis 

of the vector spatial relationships in terms of quantitative distances and angles, which 

they called coordinate representations. Kosslyn et al. (1989) argued that while metric 

spatial processing engages the right hemisphere, categorical processing involves the 

left. The latter would follow if categorical processing relates to language processes. On 

this approach, mental rotation transformations, like many other visuo-spatial processing 

could require operations on both metric and categorical representations of objects. 

Following the ideas of Kosslyn, it is possible that these two processes might be 

selectively impaired and so cause different types of mental rotation deficits according to 

the side of the lesion: a lesion of the left hemisphere would impair categorical 

representations, whereas the metric analyses will be disrupted by a lesion of the right 

hemisphere.  

 

The anatomical basis of the theoretical framework of Kosslyn et al. (1989) was 

questioned in the work of Bricolo et al. (2000). They described a patient (PAO) who 

had sustained a right parietal lesion, but despite that, had relatively good performance in 

object recognition and in several visuo-spatial tasks. However, he was grossly impaired 

in any task involving rotation such as Kohs's Blocks. A specific rotation task was 

investigated in more detail. PAO was presented with a dot inside a tilted square frame 

of reference and had to reproduce its position, relative to the square, after the square 

had been rotated to the vertical. If his attempt was in the vicinity of the correct 

response, then his psychophysical accuracy curve was as good as that of normal 

controls. However, a high proportion of his attempts were in completely inappropriate 

parts of the square. His performance was interpreted as preserving metric operations, 

but with categorical ones impaired. Thus in his case a specific disorder of categorical 

operations appeared to follow a right hemisphere lesion. This idea has subsequently 

been supported by the work of Toraldo and Shallice (2004) who found similar 

impairments of categorical spatial representations in another right hemisphere patient 

(VQ). However, both these studies used single case methodology, which is not 

sufficient for proper localization of relevant lesion sites.  
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In the categorical-metric coding debate, a different hypothesis has been recently 

proposed by Martin et al. (2008) on the basis of their fMRI study. The authors claimed 

that both the right and the left hemisphere are activated in coding categorical as well as 

metric positions. Indeed, when using working-memory tasks in which the coding of 

categorical or metric spatial relations was required, the authors failed to find a strong 

hemispheric specialization. Both categorical and metric tasks evoked activity in a 

similar fronto-parieto-occipital neural network and the differences were more of a 

quantitative than of a qualitative nature. Moreover, a significant activation was found in 

the dorsolateral prefrontal cortex when no visible space categorization was given 

(coordinate task) or when more than three elements had to be coded. Martin et al. 

interpreted their data as supporting the ‗Continuous Spatial Coding’ (CSC) hypothesis, 

according to which there might be ―continuity between categorical and coordinate 

spatial relations along a complexity dimension‖ and both hemispheres might be 

implicated in both types of spatial relation coding.  

 

As it will be discussed in Chapter 5, we attempted to establish the critical regions of the 

prefrontal, premotor and parietal cortex involved in mental rotation transformations. In 

particular, we will focus on the open debate about the hemispherical specialization for 

categorical and metric/coordinate operations. 

 

1.3.2.2 Phonological alexia 

The proposed framework of a qualitative (categorical) representation of spatial position 

may be relevant for performance in many other spatial contexts and so might be also 

extended to tasks which are less intuitively related to space, such as reading. Normal 

reading is a complex componential skill that is susceptible to particular patterns of 

breakdown after damage in relative isolation from other deficits. Because reading 

encompasses visual processing as well as linguistic analysis, deficits in any of these 

processes could give rise to reading disorder, such as visual dyslexia (Marshall & 

Newcombe, 1973; Lambon Ralph & Ellis, 1997), neglect dyslexia (Kinsbourne & 

Warrington, 1962; Ellis, Flude & Young, 1987; Behrmann et al., 1990), phonological 

alexia (Derouesne & Beauvois, 1979; Funnel, 1983; Patterson, 1982), surface (Marshall 

& Newcombe, 1973; Coltheart et al., 1983) and deep dyslexia (Marshall & Newcombe, 

1973; Coltheart et al., 1980) etc. With respect to the possible role of spatial processing, 

we will focus on phonological alexia. 
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Phonological alexia, originally described by Beauvois & Derouesne (1979), is the 

disorder in which the patient can read words well but is impaired at reading 

orthographically and phonologically legal non-words. The presence or absence of 

phonological alexia in a large series of patients has recently been investigated by 

Rapcsak et al. (2009) (Figure 8).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A striking finding these authors made is that phonological alexia is a frequent symptom 

following left hemisphere stroke.  In particular these authors show that it tends to arise 

from a number of different lesion sites. The study of Rapcsak et al., however, involved 

only left hemisphere patients.  This is natural as phonological alexia is a disorder of 

language processing.  However, early in the investigation of phonological alexia there 

was a suggestion that it occurred somewhat more often than might be expected in 

patients with right hemisphere lesions (see Patterson, 2000).  Thus, the disorder 

occurred with right hemisphere lesions in two right-handed patients (Derouesne & 

Beauvois, 1985; Job & Sartori, 1984) and in one predominantly left-handed patient 

(Patterson, 2000).  

 

Figure 8. The influence of stimulus type on reading and spelling performance in perisylvian patients 

and normal controls (From Rapcsak et al., 2009). 
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Why might this be? One possibility is straightforward. Neglect dyslexia has been 

extensively described following right hemisphere lesions (e.g. Ellis, Flude & Young, 

1987; Behrmann et al., 1990). Moreover in a study of Ladavas, Shallice & Zanella 

(1997a) of 23 Italian patients with right hemisphere lesions selected for the occurrence 

of neglect on standard tests, four presented with a neglect dyslexia for both words and 

non-words, but nearly all the others presented with a dyslexia principally affecting non-

words, that is a form of phonological alexia. There is, however, at least one other 

possibility.  As we reported before (paragraph 1.3.2.1), it has been argued by Bricolo et 

al. (2000) and Toraldo et al. (2004) that one aspect of spatial agnosia following right 

hemisphere lesions involves the inability to qualitatively structure the relation between 

objects in space. In processing a word, any putative ordering can be supported by units 

that categorise the word-form as a whole (Morton, 1969; McClelland & Rumelhart, 

1981), but in pronounceable nonwords the ordering of letters lacks this top-down 

support.  Could right hemisphere lesions disturb this process? We will further 

investigate this issue in Chapter 6. 

 

 

1.4 Using brain tumours in neuropsychological studies 

In the previous sections we have provided an introduction to the types of the spatial 

disorders to which a parietal lesion can give rise and how cognitive neuropsychology 

can help at understanding the functioning of normal processes. As far as the 

neuropsychological method is concerned, a wide range of conditions such as tumours 

(gliomas, astrcytomas, metastases and meningiomas), traumatic head injuries, vascular 

accidents (ischaemias and hasemorrhages) and dementing conditions might affect 

cognitive functioning. A detailed consideration of the theoretical difficulties in 

comparing neuropsychological studies, which make use of different lesion types, is not 

the scope of this thesis. However, if one turns instead to issue of using brain damage to 

identify the critical brain region associated to certain brain functions, it is clear that 

each of these methods has been proved to be useful for the localisation of a cognitive 

function, in most cases providing converging results. Nevertheless, while strokes are 

generally assumed to produce focal effects, with the potential for selective cognitive 

impairments, this is not univocally accepted for brain tumours. Within the 
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neuroscientific literature, brain tumours have been recently criticised as a method for 

localizing critical regions for cognitive deficits (Karnath and Steinbach, 2011).  

 

The scepticism is related to some problematic aspects of brain tumour.  One of the main 

criticisms is related to possible difficulties in determining the boundaries of the injured 

brain tissue in brain tumours. Karnath and Steinbach (2011) claim that since the tumour 

might extend far beyond the damaged visible area on MR scans, what appears as 

normal in MR imaging, might be functionally impaired. Another aspect arguing again 

the use of brain tumours for localizing cognitive processes is the possible functional 

reorganization, which might follow low-grade gliomas. Thus, according to the authors, 

the remodelling of the function might start even long before the tumour is diagnosed 

and could lead to errors in the interpretations of the anatomo-functional relationship. 

Finally, the cognitive effects could be weaker in comparison to those observed in 

patients with stroke. All these methodological limits related to the tumour approach 

drive Karnath and Steinbach (2011) to object the validity of the method in the 

localization of cognitive processes. However, the claim that brain tumours are not a 

valid method in the localisation of cognitive functions is for many aspects questionable 

and it can be generalized to other lesion methods, such as vascular diseases (see 

Shallice & Skrap, 2011; Duffau, 2011 and Bartolomeo, 2011; Bizzi, 2011; for a detail 

discussion on the topic). Thus, neuropsychological studies with stroke patients can 

suffer from different methodological limits ranging from possible neuroplasticity 

mechanism to ‗invisible effects‘ in distant brain regions, as well as differences in 

vascular territories. Vascular diseases usually affect older brains, which might altered 

by a widespread disease process. Moreover, given the gross impairments which can 

follow a stroke lesion, patients are frequently tested in a chronic phase, where 

compensation strategies are, however, likely to occur (Bartolomeo, 1997). Finally, the 

argument that brain tumours can give rise to invisible effects in brain region which 

appear normal on MRI can be likely extended to stroke lesions too (Alexander et al., 

2010).  

 

In certain cases, the occurrence of cognitive deficits following brain tumours 

anticipated by many years those observed with stroke patients. Thus, some of the early 

accounts of spatial disorders following brain damage were based on brain tumours. For 

instance, Jackson (1876) observed that a patient following a right occipito-temporo-
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parietal glioma extending to the hippocampus showed difficulties in route finding, 

reading and face recognition. Based on this evidence, he argued a special role for the 

posterior right hemisphere in recognition of objects, places and persons. The years that 

followed brought further reports linking these cognitive processes to the right 

hemisphere, in patients suffering from strokes (e.g. Dunn, 1895 p.54). Another possible 

example comes from the study of Brain (1941), who discussed a patient with a tumour 

in the right hemisphere. This patient showed impairments in localizing objects in near 

space, but was accurate in estimate distance in near space. The result was nicely 

replicated with stroke patients in more recent years (e.g. Berti and Frassinetti, 2000).  

 

Moreover, what Karnath and Steinbach failed to confront is that studies with brain 

tumour patients are consistent in the localisation of their cognitive effects with those 

observed in previous works with different aetiologies (Shallice et al., 2010; Campanella 

et al., 2010), demonstrating that they are useful for localizing cognitive functions. In 

particular, in a recent study Shallice et al. (2010) demonstrated that the critical lesion 

sites for recognition of Fragmented Letters (Warrington & James, 1991) and for optic 

ataxia results nicely fit, regarding to the localization aspect, with previous brain 

imaging (Fink et al., 1999) and neuropsychological studies with stroke patients (Perenin 

and Vighetto, 1988; Karnath and Perenin, 1995). Similarly, a study with brain tumour 

patients of Campanella et al. (2010) corroborated the findings of a voxel-based 

morphometry work on patients with dementia (Brambati et al., 2006). Both studies 

showed that the left posterior middle temporal regions could lead to deficits in naming 

artefacts.  

 

In summary, it is natural that each of the methods used in cognitive neuroscience have 

their own strengths and weakness. Cognitive science is multidisciplinary in nature and 

each of single approaches provides additional fodder for theories of brain function. If 

one is aware of the possible limits of the method and the theoretical framework in 

which the results stand, there is no reason to refrain from avoid one or another. 

 

1.5 Aim of the thesis 

Thus, to summarize, evidence from lesion studies on animals and humans confirm the 

role of the posterior parietal cortex in representing and integrating spatial information 
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for acting in nearby space. But impairments in the spatial domain can be observed in 

more complex spatial abilities such as mentally transforming objects in space or 

predicting the spatial position of an invisible moving target.  

 

Consistent with these themes, the present thesis will examine how damage to the 

posterior parietal cortex can give rise to a complex set of spatial and action-related 

disorders, compromising the ability to move around and think about space. In 

particular, the current work will summarize four of the possible disruptive spatial 

processing deficits arising from a brain tumour lesion, outlining what each syndrome 

can tell us about the functional organization of the parietal cortex. More specifically, 

the thesis will be focused on optic ataxia and possible functional dissociation among 

reaching conditions (Chapter 2), hemispatial effects in integrating spatial and temporal 

information in healthy subjects (Chapter 3) and after a parietal damage (Chapter 4), 

mental transformation impairments as reflected by deficits in categorical and metric 

processing (Chapter 5) and phonological dyslexia (Chapter 6).  

 

From a methodological point of view, in this work we made use of an anatomically 

based group study approach, comparing the performance of patients with lesions 

occurring in different parts of the brain. In order to evaluate whether the performance of 

the patients is significantly impaired, neuropsychological studies have traditionally 

made use of both healthy controls (matched for age, education and gender) as well as 

patients with the same or different aetiologies. However, in some studies, as when 

dealing with patients following operations for brain tumours in the acute phase, healthy 

subjects do not always represent the first choice for control and different approaches 

can be adopted. This is because there are some factors that cannot be matched to the 

healthy controls. Thus, having very recently had brain surgery produces psychological 

and physiological stresses, which are not present in the normal population. Since it is 

not always possible or easy to eliminate such confounding, in the thesis most analyses 

were performed contrasting lesion groups. In particular, after selecting and dividing 

patient according to the localization and the side of the tumour (e.g. prefrontal, 

premotor, parietal), we first compared the performance across these groups. If a 

significant effect was observed, we then compared the performance of each group of 

patients with the others combined, thus providing evidence as to which is the critical 

impaired group. 
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    Chapter 2 

 

 Reaching a moving target: dissociations 
in brain tumour patients  
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2.1 Introduction 

The general aim of this chapter is to investigate the ability to reach an object in 

peripersonal space in three experimental conditions, namely (i) when patients can 

directly fixate the static target with the eyes (foveal condition), (ii) when they have to 

reach it in the periphery (extrafoveal condition) and (ii) when they have to adapt the 

hand trajectory in flight with respect to a target shift (automatic pilot task). Specifically, 

the first purpose of these next two experiments is to assess whether damage to the 

posterior parietal cortex might specifically affect the ability to accurately reach an 

object in space, leading to well-known reaching disorders such as optic ataxia (see 

paragraph 1.3.1.1). As we mentioned before, since well-known cortico-cortical 

connections between the parietal and the frontal regions exist (Battaglia-Mayer & 

Caminiti, 2002; Averbeck et al., 2009), one might expect possible spatial impairments 

also in patients following damage to other parts of the brain, such as the premotor one. 

Moreover, these deficits might arise not only after bilateral damage as frequently 

reported (Jackson et al., 2005; Pisella et al., 2000; Blangero et al., 2008), but also with 

unilateral lesions (Perenin & Vighetto, 1988; Ratcliff and Davies-Jones, 1972). In the 

present studies an anatomically based group study approach with unilateral brain 

tumours affecting the left and right hemisphere of the prefrontal, premotor and parietal 

cortex was used.   

 

However, a more crucial purpose of these two first experiments is the assessment of 

possible anatomical and behavioural dissociations among three of the more frequently 

observed reaching impairments in optic ataxia, namely extrafoveal and foveal 

misreaching and the inability to perform automatically movement adjustments (Pisella 

et al., 2000; Grea et al., 2002; Blangero et al., 2008). At an individual level, the pattern 

of single and double dissociations (Shallice, 1988) might support the existence of 

separable components necessary to accurately act in near space, shedding light on the 

possible cognitive mechanisms responsible for optic ataxia.  
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2.2 Experiment 1: Pointing to the periphery 

In Experiment 1 we used a pointing task in which the patients were required to point as 

quickly and accurately as possible toward a target in the periphery. The aim of the 

current experiment was to test whether the patients suffered from OA. 

 

2.2.1 Materials and Methods 

Patients 

53 patients less than 70 years old who were being operated on a cerebral tumour in the 

left or right prefrontal, premotor and parietal cortex were tested in the Neurosurgery 

Department (Santa Maria della Misericordia Hospital, Udine). In all patients the tumour 

macroscopically determined in the MRI scan was removed. Of these 53 patients, 11 

were excluded for the following reasons: (i) presence of multiple or bilateral lesions 

(n=1), (ii) recurrence of the tumour (n=1), (iii) more than 40% of the lesion involved a 

second relevant brain region (prefrontal, premotor or parietal) (n=5), (iv) eye-capturing 

on more than 4 trials (n=6). All the remaining 42 patients underwent the experimental 

assessment within one week of their operation. In this patient group, 18 patients had a 

predominantly prefrontal lesion (8 right prefrontal, 10 left prefrontal), 9 a 

predominantly premotor lesion (5 right premotor, 4 left premotor), and 15 a 

predominantly parietal lesion (9 right parietal, 6 left parietal). A display of the 

overlapping regions is shown in Figure 1. Patients were between 17 and 69 years of age 

(mean age=46.55 years; SD=14.41 years). The mean educational level was 12.69 years, 

SD 4.70 years. The mean lesion size was 41.40 ml (SD=32.61). 
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Figure 1. Overlapping lesion reconstructions for each of the prefrontal (A), premotor (B) and 

parietal (C) brain tumour patients in Experiment 1 (extrafoveal task). The number of overlapping 

lesions is illustrated by different colors coding increasing frequencies from violet (n = 1) to red (n = max. 

number of subjects in the respective group).   
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Procedure and Stimuli 

A 15-inch resistive high-resolution touch screen (3M) and a PC (Pentium 4, 3 GHz) 

were used for the presentation of stimuli and to record the response of participants. All 

patients sat in a normally lit room at a viewing distance of 50 cm from the display. The 

starting hand position was aligned to the center of the display and located 40 cm away 

from it. Each trial began with the presentation of a cross, which the patients were asked 

to fixate. Randomly 1 or 3 s later, a white filled circle of 1.2 cm of diameter (target) 

was presented on a black background. Patients were required to point as quickly and 

accurately as possible to the target, while continuing to fixate the cross at the center of 

the display (Figure 2). They were not allowed to move the head. Targets could appear 

on the left or the right side of the fixation point with a horizontal visual angle ranging 

from 2 to 20 degrees.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Experimental procedure. In all the trials patients were required to point as quickly as possible 

to a target in the periphery, while keep fixating to the cross at the center of the dislay. 

 

The target remained visible until the patient made a response and the next trial began 

when the patient pressed the response pad. Patients were required to perform four 

blocks of trials counterbalanced for hand (ABBA design, 48 trials in total). The same 

number of targets was presented in both the left and right sides of the screen 

(respectively left and right hemispace). Since patients were asked to fixate the center of 

the screen and to point to the target in peripheral vision, in this task the left and the right 
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hemispace also coincide with the left and the right visual field. Each session began with 

a short practice (6 trials for the right hand and 6 trials for the left hand). During the task 

the experimenter constantly monitored patients‘ eye movements in order to check for 

breaks in fixation. Patients were discarded from the statistical analyses if they foveated 

the target on more than four trials. Moreover, for each parietal patient the standard 

clinical procedure for testing gaze apraxia was used. Patients were asked first to fixate 

the examiner‘s finger and then to track with their eyes the movement direction of the 

examiner‘s finger, which was moved from left to right and right to left. Since the time 

available to test patients close to operation was severely limited, it was not practicable 

to use eye tracking or hand monitoring apparatus, because they require much time to be 

calibrated. In addition, fixing the head was not possible for clinical reasons. 

 

Data analysis 

Behavioral data 

For each participant we calculated the mean Reaction Times (RTs), Movement Times 

(MTs) and the accuracy. RTs were measured from the onset of the target to the release 

of the response pad. MTs were measured from the release of the contact switch to the 

moment at which patients touched the touch-screen. Accuracy was calculated as the 

absolute distance in millimeters between the center of the target and the point of contact 

on the touch screen. Trials were discarded if the RTs and accuracy were four SDs below 

or above the grand mean of each participant or if the touch screen failed to record the 

response of the patient. For all patients this accounted for less than 5% of trials. 

 

For all the measures, we used the same statistical procedure, which involved three 

levels of analysis: 

1. We first selected and divided patients into three groups according to the 

predominant location of the brain tumour (prefrontal, PreF; premotor, PreM, 

parietal, Pa) and we compared the performance among the three groups. 

2. If a significant overall effect was observed, we compared the performance of each 

group of patients with those of the other two groups combined (e.g. Pa vs PreF 

and PreM combined; in other words, Pa vs NonPa).  

3. The same procedure was used in order to check for any possible hemispace/visual 

field and hand effects, by considering the difference in terms of RTs, MTs and 
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accuracy between the controlateral hemispace or hand minus the ipsilateral 

hemispace or hand (hemispace effect= C/I hemispace; hand effect= C/I hand). 

4. Given the robust neuroscientific evidence about the role of the parietal cortex in 

the online movement adjustments, we considered the parietal as the critical group 

and we always check for laterality effects with this group. In other words we 

always carry out a further analysis in what the performance of the left and the 

right parietal patients are treated separately. 

 

The raw data were first checked for normality using the Kolmogorov-Smirnov test and 

for homogeneity of variance by applying the Levene test. As the data were not normally 

distributed, non-parametric tests were used. The results were considered significant if 

the P value was < 0.05 all the significant tests were two-tailed. 

 

Anatomical data 

The location and the extension of the tumour were carried out using a digital format 

contrast-enhanced t1-weighted MRI scans obtained 1-7 days before operation using a 

1.5T machine. The preoperative MRI scans were selected, as they are the scans 

generally used by the neurosurgeon during the operation with the Neuronavigator as the 

best indicator of macroscopic tumour extent. This allowed us to avoid any possible 

confusion in draw lesions due to the replacement of neural brain tissue that occurs after 

surgical removal. MRicro reconstructional software was used to extrapolate a 3D 

representation of the lesion from digital MR scans (Rorden and Brett, 2000). The scans 

and ROIs were normalized to the Montreal Neurological Institute template by using 

SPM05b with 12 affine transformations and 7 x 9 x 7 basis functions.  

 

 

2.2.2 Results 

Absolute accuracy 

First, a non parametric ANOVA across all the three groups on the average absolute 

accuracy revealed that the three groups differed significantly [Kruskal-Wallis; x
2
 

=21.09, P <.001] (See Figure 5). In order to identify a possible candidate impaired 

group, we then contrasted the performance of each group of patients with the other two 

groups combined. The parietal group was significantly less accurate than the other two 

groups combined [Pa vs Non-Pa: U= 28, P <.001, Mann-Whitney test]. The prefrontal 
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group was significantly more accurate than the non-prefrontal patients [PreF vs Non-

PreF: U= 90, P =.001, Mann-Whitney test]. No significant differences in terms of 

accuracy were observed between the premotor and the non-premotor group [PreM vs 

Non-PreM: U= 100, P >.1, Mann-Whitney test]. No significant differences were found 

for accuracy in pointing between left and right parietal patients [Mann-Whitney test, U= 

23, P >.6]. The parietal group is clearly the critical group. 

 

A non parametric ANOVAs contrasting the three group of patients was run to test 

whether they differed in the degree to which they showed C/I hemispace and hand 

effects for accuracy. The three groups differed in the degree of their C/I hemispace 

effects [Kruskal-Wallis; x
2
 = 18.58, P <.001], but showed no differences in the C/I hand 

effects [Kruskal-Wallis; x
2
 = 1.82, P >.4]. In particular, the parietal group was less 

accurate than the non-parietal patients in pointing to the stimuli in the contralateral 

hemispace [Mann-Whitney test, Pa vs Non-Pa, U= 39, P <.001]. Conversely, the 

prefrontal and the premotor patient showed smaller C/I hemispace effects than the non-

prefrontal and non-premotor patients respectively [Mann-Whitney test, PreF vs Non-

PreF, U= 119, P <.02; PreM vs Non-PreM, U= 82, P <.05]. Again, the parietal group is 

the critical group.  

 

No lateralization effects in the C/I measure were observed when the parietal groups 

were contrasted [Mann-Whitney test, U= 23, P >.6]. Thus, when accuracy in the left vs 

the right hemispace was compared among the parietal patients, it was found that the left 

parietal group was significantly less accurate in the right hemispace [Wilcoxon test, z= -

2.20, P <.05], whereas the right parietal patients were less accurate in the hemispace 

[Wilcoxon test, z= -2.67, P <.01]. In addition, on comparing the performance of the 

parietal patients when using the left or the right hand, only the right parietal patients 

showed a hand difference being less accurate with the left hand [Wilcoxon test, z= -

2.43, P <.02]. A summary of the main results of the C/I hemispace and hand effects is 

given in Table 1. 
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Reaction Times and Movement Times 

RTs and MTs did not differ significantly across the three patient groups [Kruskal-

Wallis, RTs: x
2
 =.54, P >.7; MTs: x

2
 =.39, P >.8] and no relevant hand and hemispace 

effects were observed. 

 

2.2.3 Discussion 

The analyses on pointing accuracy showed that the parietal group was less accurate than 

the non-parietal patients in pointing to targets to the periphery. Moreover, the parietal 

patients showed a significantly greater hemispace effect of the contralateral over the 

ipsilateral hemispace, but did not show an equivalent hand effect. Right parietal patients 

were also less accurate when pointing to the left than the right hemispace and when 

using the left rather than the right hand. The left parietal group was also more impaired 

in the right than the left hemispace, but there was no significant difference for them 
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regarding the hand used. In line with the recent literature on optic ataxia, these findings 

support the idea that the parietal group can be treated as the critical group.  

 

 

2.3 Experiment 2: Automatic Pilot 

In the second experiment we attempted to establish the cortical regions responsible for 

correcting hand movements in flight. Each participant performed a simple pointing task 

toward a stationary target, but on 33% of the trials the target moved to an unpredictable 

position.  

 

2.3.1 Materials and methods 

Patients 

A total of 52 patients less than 70 years old and hospitalized for an operation of a 

cerebral tumour in the left or right prefrontal, premotor and parietal cortex were tested 

in the Neurosurgery Department (Santa Maria della Misericordia Hospital, Udine).  Of 

these 52 patients, 6 were excluded for the following reasons: (i) multiple or bilateral 

lesions (n=1); (ii) recurrence of the tumour (n=1); (iii) more than 40% of the lesion 

involved a second relevant brain region (prefrontal, premotor or parietal) (n=4). All the 

remaining 46 patients underwent the experimental assessment within one week of their 

operation. In this patient group, 18 patients had a predominantly prefrontal lesion (11 

left prefrontal, 7 right prefrontal,), 10 a predominantly premotor lesion (4 left premotor, 

6 right premotor), and 18 a predominantly parietal lesion (6 left parietal, 12 right 

parietal). A display of the overlapping regions is shown in Figure 3. Patients were 

between 17 and 69 years of age (mean age= 47.85 years; SD= 14.43 years). The mean 

educational level was 12.28 years, SD 4.93 years. The mean lesion size was 42.33 ml 

(SD= 34.57). For each parietal patient the standard clinical procedure for testing gaze 

apraxia was used (see p.51). On clinical testing no patient had problems in changing 

fixation appropriately with the exception of slight vertical deviations in patient LPa5. 
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Figure 3. Overlapping lesion reconstructions for each of the prefrontal (A), premotor (B) and 

parietal (C) brain tumour patients in Experiment 2 (automatic pilot task). The number of 

overlapping lesions is illustrated by different colors coding increasing frequencies from violet (n = 1) to 

red (n = max. number of subjects in the respective group).   
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Procedure and Stimuli 

The apparatus was the same as that used for Experiment 1. The starting hand position 

was aligned to the center of the display and located 40 cm away from it. Each trial 

began with the presentation of the target, a white filled circle (1.2 cm diameter) 

presented on a black background and randomly located on the display. After 1 second, a 

sound warned the participants to point as quickly and accurately as possible to the 

target, which remained visible until the patient touched it. In order to avoid slow 

movements, a time constraint of 1.2 s was used after which the target disappeared. 

Patients performed four sessions, in which the right and the left hand were used in an 

ABBA order. A session was composed of 112 trials in which 56 trials were in the left 

hemispace and 56 trials in the right hemispace, randomly presented. In 32 trials (16 

trials for the left hand and 16 trials for the right hand; about 30% of the total for each 

hand condition) the position of the target was randomly moved about 5 degrees to the 

left, to the right, up or down from its initial position (Figure 4). In line with the 

pioneering study of Pisella et al. (2000), the shift of the target was made at the 

movement onset. Each session began with short practice trials (3 trials for each hand). 

During the practice session, there were no shift trials. However, before starting the 

experimental session, patients were informed that on some trials the target could move 

to a new position and that they would need to adapt their ongoing movement to this 

second new position. The eyes of the patients were positioned at the level of the center 

of the display. Patients were informed that they were allowed to look at the stimuli and 

to follow its movement with the eyes. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4. Schematic representation of the task in Experiment 2. 
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Data analysis 

For all the measures, the same statistical procedures of Experiment 1 were used.  

 

2.3.2 Results 

 Absolute accuracy 

First, a non parametric ANOVA across all the three lesion groups on the absolute 

accuracy in the non-shift condition revealed that the groups differed significantly 

[Kruskal-Wallis; x
2 

= 6.13, P <.05]. In order to identify a possible candidate impaired 

group, the performance of each group of patients was then contrasted with the other two 

groups combined. The parietal group was significantly less accurate compared to the 

other two groups combined [Pa vs Non-Pa: U = 142, P <.02; PreF vs Non-PreF: U = 

183, P >.1; PreM vs Non-PreM: U = 139, P >.2; Mann-Whitney test]. Restricting 

attention to the critical parietal group, the statistical analysis revealed no significant 

differences in terms of accuracy in the non-shift condition between the left and right 

parietal patients [Mann-Whitney test, U= 19, P >.1]. Regarding the C/I hemispace and 

hand effects, only a hand effect was found when comparing the three groups of patients 

[Kruskal-Wallis: x
2
 = 9.82, P <.01], but there was only a strong trend when the parietal 

and the non-parietal patients were compared [Mann-Whitney test, U= 169, P <.07]. 

 

Second, we analyzed the accuracy shift costs across the three groups, which we defined 

as the difference in terms of accuracy between the shift and the non-shift conditions. 

Again, a statistically significant difference was found between these groups [Kruskal-

Wallis; x
2
 = 7.44, P <.05]. Using the same procedure as before we observed a 

significant effect for the premotor group [PreM vs Non-PreM: Mann-Whitney test, U= 

82, P <.01], with the premotor patients showing reduced shift costs effects with respect 

to the non-premotor. There was a strong trend for the parietal group to show larger shift 

costs than the non-parietal patients [Pa vs Non-Pa: Mann-Whitney test, U= 171, P 

<.07]. No significant effects were found for the prefrontal group [PreF vs Non-PreF: 

Mann-Whitney test, U= 235, P >.7]. When we compared the accuracy in the shift and 

non-shift condition for each of the three patient groups, a significant difference was 

found for the premotor group who were better in the shift condition [Wilcoxon test, z= -

2.50, P <.02]. No difference was found for either the prefrontal or the parietal patients 

[Wilcoxon test, PreF: z= -0.59, P >.5; Pa: z= -1.41, P >.1]. An overview of the mean 
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accuracy of the prefrontal, premotor and parietal groups in Experiment 1 and 

Experiment 2 is shown in Figure 5. 

 

We also investigated whether the incidence of abnormal shift costs was affected by 

hemispace and hand. On the basis of the distribution of shift costs for non-parietal 

patients, the incidence of patients having abnormal shift costs in the left hemispace was 

significantly higher for right parietal patients (5/12) than for the other five groups 

combined (2/34) [Fisher‘s exact test, P <.01], but there were no equivalent effects for 

the left parietal patients in the right hemispace (1/6) [Fisher‘s exact test, P >.3]. With 

respect to the hand effects, the incidence of abnormal shift costs was significantly 

higher in the right parietal patients only when the left hand was used (5/12) [Fisher‘s 

exact test, right hand: P >.1; left hand: P < 0.05]. No hand effects were conversely 

observed for the left parietal group with respect to the others combined [P >.1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Absolute accuracy (means and standard errors) as a function of condition (pointing to the 

periphery, non-shift accuracy and shift costs) and patient group. LPreF=left prefrontal; RPref=right 

prefrontal; LPreM=left premotor; RPreM=right premotor; LPa= left parietal; RPa=right parietal). 
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In order to check for a possible relationship between the accuracy in the non-shift 

condition and the accuracy shift costs a non-parametric correlation analysis was carried 

out within each group of patients. A significant effect was observed for the parietal 

group [Spearman‘s rho= 0.48; P <.05], but not for the prefrontal or the premotor groups 

[Spearman‘s rho= 0.12 P >.1 and Spearman‘s rho=-.27 P >.2, respectively]. 

Considering the two parietal groups separately, the effects approached significance for 

the right parietal [Spearman‘s rho= 0.56 P <.06], but not for the left [Spearman‘s rho= 

0.31 P >.5]. 

 

Reaction Times and Movement Times  

RTs did not differ significantly across the three patient groups [Kruskal-Wallis, x
2
 = 

3.13, P >.2] and this was also true for the MTs in the non-shift condition [Kruskal-

Wallis; x
2
 = 1.27, P >.5]. There was, however, a significant difference between these 

patient groups for the MTs shift costs [Kruskal-Wallis; x
2
 = 9.11, P <.02]. We therefore 

contrasted the performance of each group of patients for this measure with that of the 

other two groups combined. A significant difference was found between the prefrontal 

and non-prefrontal patients [Mann-Whitney test, U= 134, P <.01], with the prefrontal 

having the smaller MTs shift costs [PreF: mean= 6.53 msec, SD= 33.15 msec; Non-

PreF: mean= 7.96, SD= 32.26]. Conversely, the premotor group was found to have 

higher MTs shift costs compared to the other two groups combined [PreM: mean= 

39.61, SD= 14.99, Non-PreM: mean= 14.01, SD= 35.72; Mann-Whitney test, U= 89, P 

<.02]. No significant differences were observed by comparing the MTs shift costs of the 

parietal group with the non-parietal [Mann-Whitney test, U= 225, P >.5]. No laterality 

effect was found in MTs shift costs in any patient group. No contralateral/ipsilateral 

hand and hemispace effects were observed among the three groups of patients when we 

considered the MTs shift costs.  

 

When we compared the MTs for the shift compared with the non-shift conditions for 

each of the three groups, we observed that the MTs were significantly slower in the 

shift condition in both the premotor [Wilcoxon Signed Ranks Test, z= -2.80, P <.01] 

and the parietal groups [Wilcoxon Signed Ranks Test, z= -2.55, P <.02], but not in the 

prefrontal groups [Wilcoxon Signed Ranks Test, z= -.85, P >.3]. In other words, the 

prefrontal patients failed to adapt the duration of their ongoing movements to the 
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experimental condition (shift vs non-shift) (See Table 2 for the overall comparison of 

MTs in the three experimental condition) 

 

 PreF PreM Pa 

Extrafoveal 
666.82 

(192.27) 

665.78 

(87.33) 

624.02 

(167.91) 

Shift 
612.65 

(137.68) 

590.20 

(89.74) 

569.10 

(106.40) 

Non-shift 
606.65 

(137.68) 

550.59 

(90.62) 

547.61 

(103.54) 

Shift costs 
6.53 

(33.15) 

39.61 

(14.99) 

21.49 

(37.54) 

 

Table 2. MTs (means and standard deviations) as a function of lesion side and experimental 

condition. 

 

 

2.3.3 Discussion 

The analysis on pointing accuracy in (foveal) non-shift trials showed that the parietal 

patients were significantly less accurate than non-parietals. Moreover, when the shift 

costs for accuracy were considered, two interesting effects were observed. The 

premotor patients showed significant reduced shift costs for accuracy and increased 

shift costs for MTs than the non-premotors, whereas the parietal group was very near to 

approach significance in showing greater shift costs for accuracy than the non-parietals, 

with no effects in MTs.   

 

2.4 Pointing to the periphery vs. Automatic Pilot  

The results of Experiment 1 and Experiment 2 revealed that patients with a lesion of the 

parietal cortex were not only impaired in pointing to targets to the periphery, but also to 

ones in central vision. Moreover, in the automatic pilot task impairments in pointing 

towards both stationary and shifted targets were observed.  

 

In order to investigate the issue of whether performance in different conditions can 

dissociate, the results of the 41 patients who were tested in both Experiments 1 and 2 
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were examined. In particular, we considered the performance of each parietal patient 

and treated the non-parietal patients as a normative control group. The variables, which 

were considered in this comparison, were (i) the accuracy in pointing to the periphery, 

(ii) the accuracy in the non-shift condition (Automatic Pilot) and (iii) the accuracy shift 

costs. This procedure was then followed by an examination of the lesion sites of poorly 

as opposed to satisfactorily behaving patients. Here the procedure adopted was the 

Voxel Lesion Symptom Mapping (VLSM) analysis (Bates et al., 2003; Rorden and 

Karnath, 2004, Rorden et al., 2007). 

 

Correlation analyses were used to look for possible relationships among the three 

experimental conditions in parietal patients. No significant correlations were observed 

between extrafoveal pointing and shift costs [Spearman correlation coefficient= -.18, P 

>.05] (Figure 6A) and between non-shift condition and shift costs [Spearman 

correlation coefficient= .48, P >.05]. However, a strong and significant association was 

found between the extrafoveal and the (foveal) non-shift conditions [Spearman 

correlation coefficient=.55, P <.05] (See Figure 6B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Relationship between 

(A) extrafoveal and non-shift 

accuracy and (B) between 

extrafoveal accuracy and shift 

costs.  

 

Diamonds designate the accuracy 

of non-parietal patients. The 

regression line and the confidence 

interval lines (95th percentile) are 

shown respectively as solid and 

dashed lines. Squares designate the 

right parietal patients, whereas 

circles refer to the performance of 

patients with a left parietal lesion.  
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Using the dissociation framework of Shallice (1988), patients were classified as 

displaying (i) a classical dissociation, if the patients were impaired in one variable, but 

performed normally in the other, with a significant discrepancy on the RSDT between 

performance on the two measures (eg. patient impaired in Task 1 and normal 

performance in Task 2) or (ii) a strong dissociation, if they were impaired in both 

variables but performed significantly better in one with respect to the other (eg. 

impairment in both Task 1 and Task 2, but with patient being significantly worse in task 

1). In the non-parietal groups, only one right prefrontal patient showed a classical 

dissociation between the accuracy in the non-shift condition and the shift costs. The 

performance of the parietal patents is shown in Appendix (Table 1).  

 

Making statistical comparisons between the three experimental measures, we observed 

a set of complementary double dissociations, which will be considered in turn. 

 

2.4.1 Pointing to the periphery vs. Shift costs 

Patients LPa5, RPa1, RPa7 and RPa8 showed a classical dissociation of impaired 

pointing to the periphery and normal shift costs, whereas patient RPa 5 showed the 

complementary classical dissociation performing normally in pointing to the periphery 

but with increased shift costs. Complementary strong dissociations were also observed 

between the two measures for patients RPa3 and RPa4, who showed a larger 

impairment in pointing to the periphery (RPa3) than for shift costs (RPa4) respectively. 

 

2.4.2 Non-shift pointing vs. Shift costs 

When comparing accuracy in the non-shift condition and shift costs, again both 

classical and strong dissociations were observed. Patients LPa5 and RaP8 exhibited 

classical dissociations with increased misreaching in the non-shift condition compared 

with normal shift costs. Patient RPa3 was significantly more impaired in the non-shift 

condition than for shift costs. By contrast, patients RaP4 and RaP5 exhibited the 

complementary strong dissociation, both being significantly more impaired for shift 

costs than in misreaching in the non-shift condition.  

 

For this particular comparison one can also examine the accuracy in the two conditions 

directly. Thus, in each parietal patient we compared the difference in accuracy between 

the shift and non-shift condition using the Wilcoxon Signed Ranks Test on individual 
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trials. RPa3 was found to be much more impaired in the non-shift condition than the 

shift one [Wilcoxon Signed Ranks Test, z= -2.94, P <.005], whereas the reversed 

pattern was observed for RPa4 and RaP5 [Wilcoxon Signed Ranks Test, RPa4: z= -

2.94, P <.005; RPa5: z= -4.31, P <.001, respectively]. No significant effects were 

observed for patients LPa5 and RPa8 (See Table 1, Appendix).  

 

2.4.3 Pointing to the periphery vs. Non-shift pointing 

What should probably be considered as a trend dissociation has also been found 

between pointing to the periphery and the non-shift condition (Shallice, 1988). Patients 

RPa7 and RPa8 were significantly more impaired in the former condition. However, the 

patients were impaired in both. 

 

 

2.5. More specific anatomical corrispondences 

 

2.5.1 VLSM analyses 

With VLSM analyses we were able to provide evidence concerning the anatomically 

location of the brain areas responsible for the reaching deficits without any a priori 

grouping method. For the extrafoveal condition the main lesion responsible for reaching 

impairments was quite extensive running from very superior parts of the posterior 

parietal cortex to the white matter. (Figure 7B). This result is very similar to the results 

of Shallice et al., (2010) with exception that in our work, the superior parietal cortex 

involved is more lateral (see Figure 7A for comparison). On the other hand, the 

common area for the shift costs was the precuneus and the white matter (Figure 7C). An 

involvement of the more anterior white matter was observed for the non-shift condition 

(Figure 7D). All these anatomical loci survived Bonferroni corrections.  
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2.5.2 Overlapping lesions of the critical parietal patients. 

Considering the overlap of lesions of the critical patients for whom pointing to the 

periphery is relatively speaking worse than their shift costs (Figure 8A), the cortical 

structures damaged were the superior parietal lobe (SPL), the intraparietal sulcus (IPS) 

and the angular gyrus. On the other hand when considering the overlap of lesions of 

patients less impaired in pointing to the periphery compared with increased shift costs, 

the cortical structures damaged were the precuneus (RPa5), the angular gyrus and the 

inferior parietal cortex (RPa4) (Figure 8B).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Overlapping lesion reconstructions for each of the five parietal patients showing (A) greater 

misreaching to the periphery than shift costs (LPa5=violet; RPa1=blue; RPa3=red; RPa7=cyan; 

RPa8=green) and (B) greater shift costs than misreaching to the periphery (RPa4=red; RPa5=blue).  

 

 

2.6 Hemispace vs. Hand effects 

An approach similar to that used for detecting dissociations between experimental 

conditions was also adopted for hemispace and hand effects. On this approach, for each 

of the three experimental conditions we assessed the difference of the performance of 

the individual patients on C/I hemispace and hand effects. This has been done first by 

using the Revised Standardized Difference Test for the overall comparisons across 

conditions for each patient; secondly a 2x2 (hemispatial x hand) ANOVA was run 

within patients on the individual trials. Only if both types of analyses gave a significant 

result, the effect was treated as real. As can be seen from Appendix (Table 2), we found 
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that two parietal patients (LPa5 or RPa3) consistently showed hand effects in the non-

shift condition (see Figure 9 for a pictorial representation).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Stimuli and reaching response of patient LPa5 (left and right hand) in the non-shift 

condition (Experiment 2). Note the greater inaccuracies with the right hand independently of the visual 

field. 
 

Hemispace effects were conversely observed in pointing to the periphery for RPa8 

(Figure 10) and in the shift costs for RPa4 (Figure 11). Moreover, looking in detail at 

the performance of RPa4 in the shifted condition, no qualitative difference was 

observed when the target shift to the left or to the right (left and right hemispaces 

combined) (See Figure 12). In other words, the patient was less accurate in correcting 

the hand trajectory in flight, independently of the visual field in which the target moved.   

 

 

 

 

 

 

 

 

 

Figure 10: Stimuli and reaching response of patient RpA8 (left and right hand) in the extrafoveal 

condition (Exp. 2). Dashes lines represent the left visual field, where there was the greater inaccuracy. 

Left Hand Right Hand 

PIXELS PIXELS 

PIXELS PIXELS 

Left Hand Right Hand 
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Figure 11: Stimuli and reaching response of patient RPa4 (left and right hand) in the shift 

condition (Experiment 2). Red dotted lines represent the left visual field; violet solid lines indicate the 

errors in correcting hand movement trajectories. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Performance of patients RPa4 in the automatic pilot task. The filled circles represent 

initial and shifted positions of the target. Empty circles represent individual responses of the patients with 

respect to the target position.  

Left Hand Right Hand 
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2.7 General Discussion  

In this study we aimed at investigating the role of the prefrontal, premotor and parietal 

cortices in three experimental conditions concerned with reaching: i) pointing to the 

periphery, ii) non-shift pointing toward stationary targets and iii) automatic hand 

movement corrections (shift costs). It has long known that patients with a lesion of the 

parietal cortex can develop OA. Most of the previous studies in the field have used 

single-case methodology in patients having chronic bilateral lesions of the parietal 

cortex and the performance of patients with frontal and premotor lesions has normally 

not been assessed.   

 

With respect to OA, it has frequently been observed that a lesion of the PPC might lead 

to misreaching deficits, especially when the movement is performed in peripheral 

vision. Moreover, several studies have suggested that the PPC is also a key structure for 

performing fast movement corrections in flight, even in central vision (Desmurget et al., 

1999; Pisella et al., 2000; Grea et al., 2002; Blangero et al., 2008, Archambault et al., 

2009). However, only one study compared the performance of a single patient in both 

extrafoveal and ‗automatic pilot‘ tasks (Blangero et al., 2008). Using an anatomical 

group-study approach with patients having unilateral lesions of the prefrontal, premotor 

and the parietal cortex we were able to confirm that misreaching effects occurs only for 

patients with a parietal lesion. The parietal group has been found to be more inaccurate 

than the non-parietal group on the two basic accuracy measures, namely in pointing to 

the periphery (Experiment 1, paragraph 2.2, Chapter 2) and to non-shift targets 

(Experiment 2, paragraph 2.3, Chapter 2). There was also a strong trend for them to be 

more impaired when a fast correction of the movement trajectory was required 

(Experiment 2, shift costs). Moreover, right parietal patients showed significantly 

greater shift costs in the left hemispace and when the left hand was used. These results 

are clearly in line with the extensive scientific literature on the importance of the 

parietal lobe for visuomotor processing (Perenin and Vighetto, 1988; Buxbaum and 

Coslett, 1998; Desmurget et al., 1999; Jackson et al., 2005; Pisella et al., 2000; 

Archambault et al., 2009).  

 

From a theoretical point of view, several hypotheses have been proposed to explain the 

misreaching deficits in patients with a lesion of the parietal cortex. Based on results of a 
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single-case study they conducted, Pisella and colleagues (2000) suggested that the 

parietal cortex is the key structure for performing fast movement corrections and that 

OA can be related to a disruption of automatic hand guidance. From this perspective, 

Blangero and colleagues (2008) developed a possible model of visuomotor 

transformations in which the adjustment of the movement in flight is held to rely on two 

independent spatial representations, that of the target (target representation) and that of 

the hand location (hand location representation). The representation of the target would 

be coded first in retino-centric coordinates and then used to update the planning of the 

movement of the hand. The model predicts that somewhat different patterns of visual 

field and hand effects can occur across different subjects, with visual field effects in 

extrafoveal pointing arising from unilateral damage to the target representation 

‗module‘ and hand effects to a hand location ‗module‘. In addition, non-shift pointing 

impairments would be expected only when the system representing hand position is 

damaged, since in that condition patients normally foveate before initiating reaching. 

From this model, using the fMRI results of Prado (2005), Blangero et al. (2008) and 

Pisella et al. (2009) made the following anatomical predictions, namely that (i) damage 

to the target representation (located in the POJ) should lead to misreaching in peripheral 

vision and also when the target suddenly jumps to the periphery, whereas (ii) damage to 

the hand location representation (located in the mIPS) would produce errors in central 

vision (in the absence of visual feedback of the hand).  

 

Following the predictions of the Lyon group, one would therefore expect a significant 

correlation between pointing to the periphery and shift costs and no correlation between 

extrafoveal and (foveal) non-shift conditions. However, what the results of the present 

work suggest is exactly the opposite. The results we observed in our parietal population 

do not provide clear support for the model proposed by Blangero and colleagues (2008). 

Correcting the hand trajectory in flight and extrafoveal reaching showed a 

complementary classical double dissociation and no signs of significant correlation. By 

contrast, when examining if associations were present between extrafoveal and foveal 

(non-shift) reaching, a strong and significant correlation was observed. Moreover, no 

patient exhibited a classical dissociation between the two conditions. There were two 

patients who showed significant differences between the tasks (RPa7 and RPa8). 

However, in both it was of the more over the less difficult condition. In other words, 

there was no evidence that they do involve different processes.  
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The model proposed by Blangero and colleagues (2008) also faces some complications 

regarding the visual field and hand effect in individual patients. Thus, for instance, 

patient RPa8 shows an effect of visual field not only when pointing to the periphery, 

which is expected from the model, but he also showed a hemispace effect in the non-

shift condition, which on the argument above should only give rise to a hand effect (see 

Appendix). However, it may be possible to consider this patient as a different type as he 

was one of only two to show evidence of magnetic misreaching (Carey et al., 1997, 

Jackson et al., 2005). The possibility that the patient was affected by an eye-movement 

disorder also cannot be completely excluded. However, one would then expect RPa8 to 

be worse in the non-shift condition where an eye movement should occur compared to 

the extrafoveal condition where it could not; in fact RPa8 showed the opposite pattern. 

Moreover, none of the above patients showed neglect or spatial motor errors in clinical 

tests such as Star Cancellation (Wilson et al., 1987), Matrix test performance (Spinnler 

and Tognoni, 1987) and the Trail Making test (AITB, 1944), with the minor exception 

of LPa5 on some Star Cancellation stimuli. More critically, patient LPa1 shows a hand 

effect for shift costs but not in the non-shift condition, where it should primarily have 

occurred on the model.  

 

Moreover neurophysiological studies suggest that superior parietal neurons are 

influenced by both eye-related and hand-related signals, although with a different 

strength along the rostro-caudal dimension (Battaglia-Mayer et al., 2001, 2003; Ferraina 

et al., 2001, 2009). According to this view, when a lesion in the neurons of the superior 

parietal cortex occurs, what it is lost is not the eye- or the hand-related signal per se, but 

the combinatorial property of the parietal neurons. From an anatomical point of view, 

the results of the VLSM analyses strengthen the hypothesis according to which optic 

ataxia, and in particular misreaching to the periphery, is mostly observed after lesions 

of the SPL (Perenin & Vighetto, 1988; Shallice et al., 2010).  

 

With respect to the misreaching deficits following parietal lesions, alternative 

hypotheses have been proposed. For instance, Buxbaum and Coslett (1998) on the basis 

of the reaching impairments of two OA patients held to be of foveal and non-foveal 

subtypes claimed that the disorder can be explained by a failure of the visuomotor 

transformation processes, which they held may be based on many different types of 

representation frames (eg. eye-centred, hand-centred). However, damage to any 
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individual reference frame of this type, such as shoulder-centred, could not by itself 

explain the existence of the common ‗non-foveal‘ subtype. They therefore propose an 

additional assumption. ‗The actions of the eye and the hand may be linked by a 

common system of spatio-motor coordinates‘, which could be damaged in non-foveal 

OA (see also Carey et al., 2002).  

 

Our results, however, throw light on a neglected point. Typically ‗non-foveal OA‘ 

relates to absolutely better performance at the fovea when accuracy is tested rather 

crudely (eg. by the ability to grasp an object). However, control subjects are more 

accurate at reaching to foveally represented than to non-foveal targets. When this 

difference in the performance of control subjects is taken into account by the use of z-

scores, there are almost as many patients with impaired performance for foveal reaching 

as for extrafoveal. As we mentioned before, classical dissociations between the two 

types do not occur in our series. Instead what classically dissociates is the shift cost 

from extrafoveal accuracy. The fact that what dissociates is the performance in the two 

last conditions is intriguing because it suggests that two independent mechanisms might 

be involved in reaching to the periphery and in adapting the motor trajectory on-line.  

In parallel to the study of neurological patients, Archambault et al. (2011) investigated 

the possible mechanism responsible for the online corrections of hand trajectories using 

a multiple cell recording in monkeys. The authors examined the hand trajectories of 

monkeys during (i) direct reaches and (ii) when an updating of the movement trajectory 

was required (namely when the target was replaced by a second shifted target). The 

authors observed that when asked to reach to a target, which suddenly jumps to another 

spatial location at the movement onset, as in our study, the PPC was directly involved 

in the implementation of the on-line movement adjustments. Moreover, time lags in the 

neural activity led to the suggestion that the premotor cortex first encodes the command 

for the correction of the motor plan, and then the parietal cortex estimates the 

kinematics of the movement. In other words the parietal cortex implements the 

trajectory, whereas the premotor cortex would have the important role of signaling the 

need to update the hand trajectory. By contrast, we hypothesize that when asked to 

reach for a stationary target, the involvement of the premotor cortex would not be 

critical; subcortical structures could initiate the operation.  
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The existence of such an overall system could explain the dissociations observed 

between intact pointing to the periphery and impaired shift costs. The premotor process 

might involve the suppression of the initiated motor trajectory as suggested by 

experiments with monkeys (Mostofsky and Simmonds, 2008) and on humans (Logan, 

1994; Buch et al., 2010). Alternatively, it might simply signal to the PPC the need to 

update the hand trajectory. 

 

A quite common pattern of response in our study is a somewhat greater impairment in 

misreaching in the periphery than in the non-shift condition and particularly in shift 

costs. If the system determining the trajectory in the superior posterior parietal cortex is 

damaged, one would expect that the determination of the movement trajectory would be 

impaired in both non-shift conditions and when one points to the periphery and this is 

frequently found in the parietal group. The occurrence of inaccurate pointing to the 

periphery without either non-shift misreaching or greater shift costs could be explained 

by somewhat reduced resources being available to the trajectory setting system. Indeed, 

when performing a reaching movement to the periphery the spatial resolution is much 

lower than in central vision; consequently greater resources would be required to set the 

trajectory. If only reduced resources are available this could result in inaccurate 

peripheral reaching. As far as the shift condition is concerned, the position of the target 

was moved by only five degrees, a much smaller distance than for the more extreme 

positions of the stimuli used in pointing to the periphery. Thus, the resources required 

by the trajectory setting system in the shift situation would be much closer to those 

needed in the non-shift condition. A somewhat reduced accuracy in both shift and non-

shift conditions would therefore be predicted with milder damage to the trajectory 

setting system, but with a relatively small increase in the difference between them. 

Therefore, when the trajectory setting system is damaged, impairment in misreaching is 

more likely to be observed in pointing to the periphery than in shift costs, and this so for 

5 parietal patients. 

 

In the current study the complementary pattern also occurred. Two right parietal 

patients were found to be more impaired in adjusting the hand trajectory online than in 

pointing to the periphery. The behavior of one (RPa5) who had significantly greater 

shift costs but no problem in pointing to the periphery should probably be distinguished 

from that of other parietal patients having increased shift costs, from both the 
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anatomical and behavioral points of view. His increased shift costs were abnormal only 

in the vertical dimension even for horizontal shifts of the target. The damaged cortical 

region of RPa5 was centered on the right precuneus. However, RPa4, whose lesion 

involved mainly the white matter underlying the inferior parietal lobe, showed a strong 

dissociation between the two experimental conditions, with the shift cost impairment 

being the more severe. His difficulties would fit with a disconnection of the 

suppression/updating central system from that for the setting of the trajectory. A further 

finding which fits the account we have just given based on the conceptual framework of 

Archambault et al. (2011) is that patients with a premotor lesion were found to have 

slower movement times in the shift condition compared with the non-parietal groups. 

This slowing in movement times occurs only when top-down control is required, as 

expected on the hypothesis.  

 

There are some undoubted limitations in our study design.  The approach adopted was 

the study of patients very shortly after operation, as selective deficits resulting from the 

operation can be most easly observed at such time (Shallice et al., 2010; Battaglini et 

al., 1998). Due to the difficulties in carrying out studies with acute neurosurgical 

patients who were just recovering from skull surgery, eye-tracker and motion-tracker 

devices were not used in the current research. Then, also extensive calibration processes 

would not be practicable with acute neurosurgical patients. Fixing the head is also not 

clinically practicable. Thus, we were not able to assess important variables such as the 

eye- and hand- trajectory and their spatial relations. However, the lack of quantitative 

measurement of these variables did not allow us to investigate critical questions, such as 

when and how the hand changed its trajectory with respect to the shift of the target and 

also what role was played by the movement of the eyes. Moreover, in the absence of a 

motion-tracker device, it is possible that we underestimated the number of patients 

showing impairments in hand corrections, this can be also carried out by an explicity 

two-step hand path (eg. Pointing to first target and only when close in time to it) In this 

case, however, we should observe longer MTs, and we did not, with the exception of 

the premotor patients) (See Table 2). 

 

We were also not able to establish whether the time at which the target shifts to a new 

position could reveal whether different cortical regions were important at different 
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stages of the trajectory correction processes across task epochs. By evaluating the 

correlations in cell firing frequency in a single-step and a double-step reaching task, 

Archambault et al. (2009) observed that a signal concerning the specification of the 

future hand movement trajectory seems to emerge between 150 msec following the 

presentation of the target and the shift in hand movement. Therefore, it would be 

interesting to check the effects on the shift costs when the target shift is made during the 

RTs and not only at movement onset.  

 

Despite these potentially complications, we have shown that a variety of patterns of 

misreaching can occur in parietal patients when pointing to the periphery and online 

movement adjustments are considered. Our overall interpretation aims to combine the 

approaches of Blangero et al. (2008) and of Archambault et al. (2011). 
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    Chapter 3 

 

Hemispatial effects on spatio-temporal 
integration 
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3.1 Introduction 

Tracking and estimating the position of a moving target is a frequently used process. 

Avoiding vehicles when walking across a road, passing the ball to a teammate and 

catching a flying mosquito are all examples. To successfully predict the position of a 

moving target both spatial and temporal processing are required. In particular, since the 

prediction of the distance (s) covered by the target has to be made after extrapolating 

the movement speed (v) and movement duration (t), a spatial-temporal computation (s= 

v ∙ t) is needed. There is growing interest in where in the brain temporal and spatial 

integration are represented and where spatio-temporal integration might occur.  

 

There is scientific agreement about the critical role played by the right parietal cortex in 

spatial processing. This idea has been confirmed by many neuropsychological studies, 

which showed that patients following damage to the right parietal cortex can exhibit a 

variety of impairment in the spatial domain (e.g. line orientation detection, mental 

rotation, attention to the left hemispace). On the other hand, previous studies suggest 

that different cortical structures can contribute to temporal processing. In particular, the 

involvement of a specific brain region in time perception seems to strictly depend on 

different experimental variables such as the task, the stimulus modality and the duration 

of the temporal range. Previous lines of evidence suggest that brain structures such as 

the prefrontal, the motor and the parietal cortex, as well as basal ganglia and the 

cerebellum, are crucial for temporal processing ranging from millisecond to seconds 

(Ivry, 1996; Rao et al., 2001; Lewis and Miall, 2003).  

 

Clinically, temporal processing deficts are less common than spatial ones. However, as 

Critchley nicely marked in the early ‗50s, impairements in both spatial and temporal 

dimensions can emerge following a lesion of the parietal cortex. However, from an 

anatomical point of view, the results of a previous neuropsychological study suggested 

that the right hemisphere, and in particular the inferior parietal cortex as well as the 

right prefrontal and premotor areas are necessarily implicated in time perception 

(Harrington et al., 1998).  

 

As far as spatial and temporal processing is concerned, another important issue is 

whether different effects can be observed with respect to the side of space on which a 
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stimulus is presented. Perhaps the most dramatic examples can be found in studies 

dealing with visuospatial attention and in particular with hemispatial neglect, a 

syndrome in which patients fail to respond and orient to stimuli presented in the 

contralesional hemispace. Lesions responsible for neglect usually involve the right 

parietal lobe and can give rise to a defective accuracy when the spatial response has to 

be made in the hemispace contralateral to the brain lesion. This impairment is strongly 

related to the side in which the stimulus is presented and this can also be evident in 

conditions in which patients are free to move their eyes, as when they read words on a 

screen or when required to describe and mentally scan objects in the left part of a scene 

as in the cloud experiments of Bisiach and Luzzatti (1978). A large number of findings 

suggested that the boundaries of the neglected space are not only influenced by the 

retinotopic reference frame, but also by other egocentric (e.g. head, trunk) and 

allocentric (e.g. environment and object centred) coordinate systems. In particular, in a 

pioneering study, Ladavas (1987) reported that patients with a right parietal lesion 

showed a reduced responsivity and accuracy to stimuli that appear in a relative left 

position, no matter which visual field was stimulated. In other words laterality effects in 

neglect and healthy subjects not only relate to the visual field investigated but also to 

the hemispace in which the response has to be made (Bächtold et al. 2000; Bowers and 

Heilman 1980; Olivieri et al., 2009; Riddoch and Humphreys 1987). The hemispatial 

effects not only relate to the representation of space, but can also be observed even for 

magnitudes such as numbers and time. Thus it has been observed that low numbers are 

associated with the left side of space and higher numbers with the right side of space 

(Fisher et al., 2003; Casarotti et al., 2007). Similarly, temporal information seems to be 

represented through an internal spatial reference frame, in which short durations are 

processed faster for stimuli in the left side of space, whereas the longer ones are 

processed faster for stimuli in the right hemispace (Vallesi et al., 2008; Ishihara et al., 

2008; Torralbo et al., 2006). However, wheter such effects arise from differences in 

anatomical localisation of functions remains to be established. 

 

Could the hemispatial effects also be extended to conditions involving spatio-temporal 

integration? As we discussed previously (paragraph 1.3.1.2, Chapter 1), the question of 

where in the brain spatio-temporal integration occurs has captured the attention of many 

researchers. An increasing number of studies on this topic have appeared in the 

neuroscientific literature in the last ten years. In particular, there are works supporting 
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the idea of a right parietal cortex superiority for a such kind of processes (Boulinguez et 

al., 2003; Olivieri et al., 2009), whereas others claim that is the left parietal and not the 

right which plays a critical role (Assmus et al. 2003, 2005; Coull et al., 2008). 

Therefore, whether the integration of the spatial and temporal information occurs 

predominantly in the right or in the left hemisphere or both is still an open issue. The 

use of different experiment designs could partly account for the inconsistencies in the 

previous results. In particular, experiments in which one has to be estimate whether a 

collision would occur, such as the studies of Assmus et al. (2005) and Coull et al. 

(2008), could require additional categorical cognitive processing, not only spatio-

temporal integration.  

 

The aim of this study was to investigate further the issues of whether spatio-temporal 

integration can take advantage from the hemispace in which it occurs. Unlike previous 

studies, which make use of perceptual judgments such as decisions about collision 

events or trajectory, we examined whether subjects can actively predict the position of 

an invisible moving object, controlling for possible effects due to the direction of the 

moving target and for the hand used. Moreover, this study has been conducted in 

parallel with a neuropsychological one to examine the lesion site critical for the process 

(Chapter 4). 

 

 

 

3.2 Experiment 1 

 

3.2.1 Methods 

Participants 

Three sets of sixteen healthy right-handed subjects were recruited for Task 1, Task 2 

and Task 3. The ages ranged from 18 to 34 years. All the volunteers had normal or 

corrected-to-normal vision, no past neurological or psychiatric history and used no 

medication.  

 

Apparatus and Stimuli 

A schematic view of the apparatus is shown in Figure 1. The stimuli were presented on 

a 19-inch resistive high-resolution touch screen (Elo). The monitor resolution was set to 
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1280 x 1024 pixels with a screen refresh rate of 60 Hz. A personal computer (Pentium 

4, 3 GHz) running E-Prime (PST) was used for the presentation of the stimuli and to 

record the responses of participants. The stimuli were composed of a white filled circle 

with a diameter of 1.2 cm displayed on a black background. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: A schematic representation of the procedure used in the three experiments. Subjects are 

presented with a filled dot, which moves along the screen and then suddenly disappears. Immediately 

upon hearing the warning sound, they are asked to predict the actual position of the invisible target. The 

arrows indicate the direction of the motion of the target. Both the arrows and the dashed lines (which 

represent an imaginary boundary between the left and the right hemispace) were not displayed on the 

screen. Only one of the targets was shown at the time. (a) In Task 1 the target moves from left to right in 

the left hemispace and from right to left in the right hemispace; (b) In Task 2 the target moves from the 

top to the bottom in the left and in the right hemispace; (c) In Task 3 the target moves from right to left in 

the left hemispace and from left to right in the right hemispace. 

 

 

Procedure  

All subjects sat in a dark room with a viewing distance of 50 cm from the display. The 

starting hand position was aligned to the display‘s centre and located 40 cm away from 

it on a response pad. The target was initially presented on one side of the display. It 

moved along the x-axis with a fast (4.4 cm/s) or a slow (1.8 cm/s) speed and it 

disappeared after an unpredictable spatial interval (range: 3.8-12.2 pixels) in order to 

prevent any a priori knowledge of where the target would have further stopped its 

movement. After a short (2.3 cm) or a long (6.8 cm) occlusion distance, a 1000 Hz tone 

warned the subjects to point as quickly and accurately as possible to where they thought 

the circle would have arrived at the moment of the sound. The pointing response on the 

touchscreen allows us to record the display coordinates. Participants were not allowed 
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to trace the target with the finger on the screen, but they were free to follow the target 

with the eyes. Once they touched the screen, they were required to place the hand back 

on the starting position. No response was collected if the hand left the response pad 

before the tone. Apparatus, stimuli and design were the same in all three tasks, with the 

exception of the direction of the moving stimuli. In Task 1 the target moved from left to 

right in left hemispace and from right to left in right hemispace. In Task 2 the dot 

moved from top to bottom in left or right hemispace. Finally, in Task 3 the target could 

move from center to left or right, respectively in the left and the right hemispace. For 

each individual task the same final positions of the moving targets were used, both for 

the left and the right hemispace. 

 

For each task, two separate block conditions were used in an ABAB design 

counterbalanced over subjects: in one condition the circle moved in the left hemispace 

and in the other condition the circle moved in the right hemispace. Subjects were not 

aware of the fact that the target‘s final position was blocked for hemispace. Within the 

block (Left or Right Hemispace), the two other variables (Occlusion distance: short or 

long; Speed: fast or slow) were presented in a pseudo-randomized order. In total 

subjects received 8 practice and 64 experimental trials. The approximate total duration 

of each task was about 20 minutes. Feedback was provided about the position of the 

target only during the practice session. No eye movement instructions were given.  

 

Data Analyses 

The raw data were first checked for normality using the Kolmogorov–Smirnov test and 

for homogeneity of variance by the Levene test. When the data were not normally 

distributed, non-parametric tests were used. The results were considered significant if 

the p value was <.05. All the significant tests were two-tailed.  

 

3.2.2 Results  

RTs  

In all the three tasks the analysis of response times indicated that the mean RTs were 

shorter for long occlusion distances than for short (Wilcoxon Signed Rank Test, Task 1: 

z = -3.10, p <.003; Task 2: z = -3.52, p <.001, Task 3: z = -3.36, p <.001). No other 

significant main effects and interactions were observed (see Table 1 for comparison). 
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Absolute Accuracy  

Absolute accuracy refers to the distance in cm between the position pointed to and the 

position that the invisible target would have occupied at the moment of the warning 

sound, given the constant speed and direction. In all the three tasks we found a main 

effect for hemispace, with subjects being more accurate in the left than in the right 

hemispace (Wilcoxon Signed Rank Test, Task 1: z = -2.17, p <.03; Task 2: z = -2.12, p 

<.03; Task 3: z = -2.79, p <.005). In neither Task 1 nor Task 2 significant effects were 

observed for the type of occlusion distance (Wilcoxon Signed Rank Test, Task 1: z = - 

0.88, p >.30; Task 2: z = - 0.62, p >.50), whereas a significant difference was found 

between the fast and slow speeds (Wilcoxon Signed Rank Test, Task 1: z = -2.82, p 

<.005; Task 2: z = -1.97, p <.05), with subjects being more accurate in guessing the 

position of the target when a slow speed was used. In these respects, the situation was 

different in Task 3. The occlusion distance was found to affect the accuracy of the 

subjects; they were more accurate in estimating the position of the target after a long 

occlusion distance (mean: 1.21 cm, SD= 0.36 cm) than a shorter one (mean: 1.80 cm, 

SD= 0.72) (Wilcoxon Signed Rank Test, z = -2.64, p <.010). In addition, no significant 

difference was found between fast and slow speeds (Wilcoxon Signed Rank Test, z = -

.57, p >.50). See Table 2 for the overall results. 
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Under/Overestimations 

The responses of the subjects were also considered in terms of overshooting (positive 

sign, when pointing too far) or undershooting (negative sign). For all the three tasks, a 

repeated measures analysis of the variance (ANOVA) showed a significant difference 

between the two occlusion distances (Task 1: F1,15 =516.94, p<.001; Task 2: F1,15 

=77.72, p<.001; Task 3: F1,15 =70.79, p<.001) with overestimation in the short 

occlusion condition and underestimation in the long one. Moreover, in all the three 

Tasks we found a significant Speed by Occlusion interaction (Task 1: F1,15 =18.48, 

p<.003; Task 2: F1,15 =7.08, p<.03; Task 3: F1,15 =8.55, p<.03), with underestimations 

being larger for fast speeds when long occlusions were used.  

 

In Task 1 we also observed a significant Hemispace by Occlusion and Hemispace by 

Speed interaction (respectively, F1,15 =25.68, p<.001 and F1,15 =23.45, p<.001), with 

underestimations being larger for long occlusions and slow speeds when subjects made 

the prediction in the right hemispace. Finally, in Task 1 we found a significant triple 

interaction Hemispace x Occlusion x Speed (F1,15=6.88, p<.03) arising from the 

Occlusion x Speed interaction being significant in the right hemispace (F1,15 =17.08, 

p<.003) but not in in the left (F1,15 =4.00, p>.05). All the results are shown in Figure 2. 
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Figure 2:  Under- and Over-shooting (mean and standard errors) for Task 1, Task 2 and Task 3. 
Negative errors represent underestimations, while positive errors represent overestimations. LHsp= left 

hemispace, RHsp= right hemispace, Short= short occlusion distance, Long= long occlusion distance, 

Fast= fast speed, Slow= slow speed.   

 

 

3.2.3 Discussion 

There were four main findings in the three tasks of Experiment 1.  

 

First, the results showed that subjects were significantly better in estimating the 

position of the target in left hemispace than in right, independently of the direction of 

the movement of the target. The size effect was similar across the three studies. A 

Kruskal-Wallis test comparing the size of the hemispace effect across the three tasks 

was completely insignificant (p > 0.50). Moreover, since the target moved from left-to-

right in the left hemispace (Task 1), and also top-to-bottom (Task 2) and right-to-left 

(Task 3), the left-to right reading habits of subjects cannot be the cause of the 

hemispatial effects we observed in all the three tasks.  

 

 Second, in both Tasks 1 and 2 subjects were observed to be more accurate in estimating 

the future position of the target when it moved with a slow speed. This result is in 

accordance with previous studies suggesting that tracking slower moving objects is 

easier than tracking fast moving ones (Franconeri et al., 2008). However, this sort of 

effect was not found in Task 3, where subjects were equally good at predicting the 

position of the target at different speeds. In addition, in Task 3 a significantly better 

performance was observed when subjects predicted the final position after a long 

occlusion distance, where the RTs of the subjects were also found to be significantly 
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faster. In Tasks 1 and 2 such an effect was not observed. The different effects of the 

speed and the occlusion distance can be explained by methodological differences in the 

three tasks. In Task 3 the target moved from the center to the left or to the right side of 

the screen, covering the same spatial distance we used in the previous tasks. However, 

unlike Tasks 1 and 2, the space available for placing the mark was smaller than in the 

previous tasks. In other words, due to moving from the centre of the screen toward the 

horizontal edges, the prediction is made from a smaller range. Therefore it seems 

plausible that in Task 3 subjects were less error-prone when the invisible target moved 

for a long occlusion distance, independently of the speed used. 

 

Third, we found that the subjects were faster at estimating the position of the invisible 

target when a long rather than a short occlusion distance was used. This result can be 

explained in terms of a Variable Foreperiod (FP) effect, which relates to the readiness 

of the subjects to respond to a GO signal. Many studies indicate that RTs are faster for 

longer FPs than for shorter ones when they vary within a block (Karlin 1959; Vallesi et 

al. 2007; Woodrow, 1914).  

 

Fourth, we observed a general tendency of the subjects to overestimate the position of 

the target for short occlusion distances and to underestimate it when long occlusions 

were used, especially for fast speeds. A possible explanation for the overestimation of 

the position of the target in the short occlusion condition might be in terms of 

anticipatory smooth pursuit eye movements. Predictive eye movements anticipating the 

motion of a pursued target have been documented in several studies (e.g. Kerzel et al., 

2001). Moreover, since the invisible target moved with a predictable direction and 

speed, a smooth pursuit eye movement account might also explain the undershooting 

for long occlusion distances. Indeed, it has previously been observed that when the 

tracked target disappeared, the pursuit eye velocity of the subject decreases (Becker and 

Fuchs, 1985). However, we cannot exclude other possible interpretations of the results, 

such as an explanation in terms of an adaptation level effect. The adaptation level 

theory (Helson, 1948) suggests that subjects judge stimuli, such as the occlusion 

distance, in relation to an existing internal reference standard developed from the 

preceding stimuli. The occlusion distance is therefore judged as long or short with 

respect to the adaptation level. Moreover, stimuli that deviate in the opposite directions 

from the adaptation level (long vs. short occlusion distance) are assumed to elicit the 
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opposite type of responses, one leading to underestimation and the other to an 

overshoot. Responses are skewed by the context in which the stimuli are presented. In a 

positively skewed context (where short occlusion distances occurred more often), 

subjects can place the mark ahead of the actual position of the target. Conversely, in a 

negative skewed context (long occlusions) they can place the mark behind (Parducci 

and Wedell, 1986). 

 

From the results of the three tasks, two other important questions arise: 

1. Could all these effects depend upon the hand used to place the mark?  

2. Do the laterality effects truly reflect a right hemisphere superiority in integrating 

spatial and temporal information or are they related only to spatial processing?  

 

We investigated these questions in Experiment 2 (paragraph 3.3) and Experiment 3 

(paragraph 3.4) respectively. In Experiment 2 we asked subjects to perform the same as 

Task 1 of Experiment 1, but using the left (non-dominant) hand. In Experiment 3 we 

developed a pure spatial task in which subjects were required to remember the last 

spatial position of a moving target after it disappeared for a short (1 s) or a long (3 sec) 

temporal interval.  

 

 

3.3 Experiment 2 

 

3.3.1 Methods 

Participants 

Sixteen healthy right-handed subjects participated in Experiment 2 (9 males and 7 

females, aged between 17 and 31 years). All had normal or corrected-to-normal vision, 

no past neurological or psychiatric history and used no medication.  

 

Apparatus, Stimuli and Design 

Apparatus, stimuli, design and data analysis procedures were the same as Task 1 of 

Experiment 1, with the exception of the hand used to place the mark. In this experiment 

the subjects were required to use the left (non-dominant) hand.  
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3.3.2 Results  

RTs 

A repeated measures analysis of the variance (ANOVA) showed a main effect for the 

Occlusion condition (F1,15=8.43, p<.03) with subjects being faster with long occlusion 

distances than with short (means were respectively 382.22 msec and 413.78 msec). No 

other significant main effects and interactions were observed. 

 

Absolute Accuracy  

A main effect of Hemispace (Wilcoxon Signed Rank Test, z = -2.02, p <.05) showed 

that subjects were more accurate in guessing the position of the moving target in the left 

hemispace (mean: 1.72 cm, SD=0.31) than the right (mean: 1.88 cm, SD=0.52). No 

significant differences were observed between the short and the long occlusion distance 

conditions.  

 

Under/Overestimations 

A repeated measures analysis of variance (ANOVA) gave a significant difference 

between the two occlusion distances (F1,15=75.97, p<.001), with overestimations for the 

short interval and underestimations for the long occlusion condition. A significant 

interaction was observed between Hemispace and Occlusion (F1,15=80.32, p<.001), with 

larger overestimations for short distances in the right hemispace. Moreover, we also 

found an Occlusion by Speed interaction (F1,15=4.61, p<.05), with underestimations 

being larger for long distances and fast speeds. The results are summarized in Figure 3. 

 

 

 

 

 

 

 

 

 

Figure 3:  Under- and Over-shooting (mean and standard errors) for Exp 2 and Exp 3. Negative 

errors represent underestimations, while positive errors represent overestimations. LHsp= left hemispace, 

RHsp= right hemispace, Short= short occlusion distance, Long= long occlusion distance, Fast= fast 

speed, Slow= slow speed.   
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3.3.3 Discussion 

In line with the findings from the previous tasks we observed that subjects were more 

accurate in guessing the position of an invisible moving target when the prediction had 

to be made in the left rather than the right hemispace. Moreover, when we looked at the 

qualitative nature of such errors (under- and over-estimations) we again observed a 

main effect for Occlusion and a significant Occlusion by Speed interaction. The 

subjects overestimated the position of the target for short occlusions and underestimated 

for long occlusion distance, with the undershooting being larger for fast speeds. Since 

the subject used the left and not the right (dominant) hand in the present study, we can 

conclude that all these effects cannot be just be explained by the hand used to reach the 

target. 

 

 

3.4 Experiment 3 

 

3.4.1 Methods 

Participants 

Sixteen healthy right-handed subjects participated in Experiment 3 (11 males and 5 

females, aged between 21 and 32 years). All had normal or corrected-to-normal vision, 

no past neurological or psychiatric history and used no medication.  

 

Apparatus, Stimuli and Design 

In Experiment 3 we used the same apparatus, stimuli and data analysis procedure used 

in Task 1 of Experiment 1. The target appeared at one side of the screen and moved 

along the x-axis with a fast (4.4 cm/s) or a slow (1.8 cm/s) speed. After an unpredictable 

spatial interval the target disappeared for a short (1 sec) or a long (3 sec) retention 

interval. Then, a 1000 Hz tone warned the subjects to point as quickly and accurately as 

possible to where they thought the target had disappeared. As in the previous tasks, two 

separate block conditions were used in an ABAB design counterbalanced over subjects: 

in one condition the circle moved from left to right in the left hemispace and in the 

other condition the circle moved from right to left in the right hemispace.  
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3.4.2 Results  

RTs 

No significant differences in response times were observed between the right and the 

left hemispace (Wilcoxon Signed Rank Test, z = -1.19, p>.10) and between the fast and 

slow speeds (Wilcoxon Signed Rank Test, z = -.931, p>.30). A significant effect was 

found between the two retention intervals (Wilcoxon Signed Rank Test, z = -3.26, p< 

.003), with subjects being faster with long intervals than with short (means were 

respectively 399.11 and 468.64 msec).  

 

Absolute Accuracy  

No significant effects in terms of absolute accuracy were found between right and left 

hemispace (Wilcoxon Signed Rank Test, z = -1.40, p>.10) and between short and long 

retention intervals (Wilcoxon Signed Rank Test, z = -1.45, p>.10). Figure 4 displays the 

absolute accuracy results for the Hemispace variable in all the five tasks. Subjects were 

found to be more accurate in guessing the position of the target when a slow speed was 

used (fast: mean = .78 cm; SD=.016; slow: mean=.61 cm, SD=0.15) (Wilcoxon Signed 

Rank Test, z = -3.00, p<.003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Mean absolute accuracy (cm) and standard errors for the left hemispace (LHsp) and the right 

hemispace (RHsp) in Exp. 1 (Task 1, Task 2 and Task 3), Exp. 2 and Exp. 3. 

 

   EXP 1: TASK 
1 

EXP 1: TASK 2 EXP 1: TASK 3 EXP 2 EXP 3 
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Underestimation/Overestimations 

As did for the previous tasks, also in Experiment 3 we looked at the existence of 

possible directional errors (Results shown in Figure 3). In other words we checked 

whether the response of the subject was directed towards the centre of the screen 

(pointing forward with respect to the direction of the target) or away from the centre 

(pointing backward). A repeated measures analyses of the variance (ANOVA) showed a 

main effect for Hemispace, suggesting that the overestimations were larger in the left 

than the right hemispace (F1,15=7.08, p<.03), namely when the dot moved from the left 

to the right. Main effects were observed also for retention intervals (F1,15=21.04, p 

<.001) and Speed (F1,15=48.62, p <.001). Subjects have been found to show larger 

overshooting for short retention intervals and fast speeds. 

 

3.4.3 Discussion 

The main result of Experiment 3 was the lack of a laterality effect for absolute 

accuracy. In other words, the subjects showed no significant differences in accuracy 

between the left and the right hemispace, when required to perform a purely spatial task 

such as remembering the last spatial position of a target. This ‗negative‘ result is in 

contrast with any hypothesis that the results of Experiment 1 and 2 could be explained 

just in terms of spatial processing per se and not by the need to produce spatio-temporal 

integration. Interestingly, for long occlusions intervals the RTs to respond were over 

100 msec slower in Experiment 3 than in the three conditions of Experiment 1. Thus, 

the lack of better performance in the left hemispace could therefore also represent a 

possible dissociation between responses mediated by the dorsal stream (Experiment 1) 

and ones based partially on conscious judgements (possibly Experiment 3). In other 

words, the right hemispare might have a critical role especially when an immediate 

action response in a spatial task is required. Moreover, in contrast with the previous 

tasks, we observed a general tendency to overestimate the position of the target with 

errors being larger in the left hemispace, for short retention intervals and fast speeds. 

The results can be explained in terms of a Representational Momentum Effect, a 

memory distortion which has been first reported by Freyd and Finke (1984). When 

observers are first presented with a stationary or moving target that vanishes without 

warning and then asked to judge where the target has disappeared, observers have been 

found to be more likely to indicate a point which is ahead of the actual vanishing point 

in terms of the direction of the moving dot (for a review, Hubbard, 2005). This effect is 
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influenced by many factors such as the velocity, the direction of the target and the 

temporal interval between the responses of the subjects and when the target vanished. 

For instance, Hubbard and Bharucha (1988) reported that faster speeds led to larger 

forward displacements, while Halpern and Kelly (1993) observed that the effect was 

larger for targets presented in the left visual field. These results are consistent with the 

data we reported. 

 

 

3.5 General discussion 

In the current study five tasks were run to investigate the probable lateralized spatial 

effects on accuracy in estimating the position of an invisible moving target. The first 

four main tasks differed from each other with respect to the direction of the moving 

target within the display (Experiment 1: Task 1, Task 2 and Task 3) and to the hand 

used (Experiment 2). Moreover, in the additional task (Experiment 3), subjects were 

required to remember the final spatial position of a moving target after a temporal 

interval of 1 or 3 seconds.  

 

In Experiment 1 an analysis of the accuracy of the subjects revealed a significant main 

effect of the hemispace variable, indicating that participants were more accurate when 

they predicted the position of an invisible moving target in the left hemispace rather 

than the right. This suggested that a right hemisphere superiority could exist for 

spatiotemporal integration.  

 

Our findings seem to be in contrast with those of previous fMRI studies in which 

collision and trajectory judgments caused an increase in the neural activity of the left 

parietal cortex (Assmus et al., 2005; Coull et al. 2008). However, it shoul be noted that 

in both the latter experiments, healthy volunteers were required to judge whether the 

stimuli would have collided or not by selecting and pressing the corresponding response 

button. Therefore, one can claim that the left parietal activation is not directly related to 

on-line spatio-temporal integration, but to conscious action selection and action 

preparation. Interestingly, previous brain imaging studies showed that when the 

selection of the movement is crucial for the task (e.g. as in a choice reaction time task), 

an activation of the left parietal cortex could be observed, independently of the hand 
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used (Kawashima et al., 1993; Schluter et al., 2001). Conversely, this left hemisphere 

dominance was not observed in a simple reaction time task, where brain activation was 

contralateral to the hand used. Notwithstanding, our findings do not preclude a role for 

the left parietal cortex in tasks other than the one used, the simple prediction of the 

spatial position an invisible target would take over in time. In other words, predicting if 

a collision would occur could require additional cognitive processes, not spatiotemporal 

integration alone. 

 

Conversely, the results fit well with the ATOM theory (Walsh, 2003), according to 

which the right parietal cortex could have a role in the integration of spatial and 

temporal information. Also findings with neglect patients support this view. Indeed, 

patients with neglect following a right hemisphere lesion frequently show impairments 

in temporal representation as well as spatial (Basso et al., 1996; Danckert et al., 2007; 

Calabria et al., 2011). If the interpretation of the laterality effects as related to a right 

hemisphere superiority for spatio-temporal integration is correct, we should have 

observed a different pattern in patients with brain damage involving the right parietal 

cortex. We will investigate this issue in the next Chapter (Chapter 4).  

 

Finally, in Experiment 2 and Experiment 3 we demonstrated that the left hemispace 

advantage for spatio-temporal integration could not be explained by a hand effect or by 

a spatial processing per se. Indeed, the effect was still present when patients used the 

left (non-dominant) hand and it was not present anymore when subjects were required 

to remember the last spatial position of the moving target.  
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            Chapter 4 

 

Hemispatial effects on spatio-temporal 
integration: evidence from brain tumour 

patients 
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4.1 Introduction 

 

In Chapter 3 evidence has been provided that the right hemisphere plays an important 

role in integrating spatial and temporal information. In particular, we observed that 

subjects are generally more accurate in estimating the position of an invisible moving 

target when the predicted position is in the left hemispace rather than the right. In 

accordance with the theory of Walsh (ATOM; 2003) (see paragraph 1.3.1.2, Chapter 1 

and paragraph 3.6, Chapter 3), the results were explained in terms of a right hemisphere 

superiority for the process responsible for spatio-temporal integration. 

 

In the study presented in this chapter, we have investigated this issue more directly in a 

population of unilateral brain tumour patients with lesion occurring in the anterior or in 

the posterior (parietal or parietal-occipital) regions of the brain. The specific aim is to 

examine whether the laterality effects observed in healthy subjects will no be longer to 

be present in patients with damage to the right posterior cortex. 

 

Methodologically, a slight change to the procedure used in Task 1 of Experiment 1 

(paragraph 3.1.2, Chapter 3) was made, due to the smaller size of the monitor that was 

available for patient testing. In the left-to-right condition, patients track the visible 

moving target in the left hemispace but need to predict the position of the no longer 

visible target when it would be in the right hemispace. We refer to this as a right 

hemispace (RHsp) effect. In a complementary fashion, in the right-to-left condition, 

patients track the visible moving object in the right hemispace and respond when it 

would be in the left hemispace (LHsp, left hemispace effect).  

 

A pilot study with 16 healthy controls confirmed the validity of the new adapted task in 

generating similar hemispatial effects to those observed in studies reported in Chapter 3 

(see Figure 1). As before, subjects were more accurate in making the judgement about 

the position of the invisible moving target in the left hemispace rather than the right 

(Wilcoxon Signed Rank Test, z = -2.64, p<.01), with no significant differences in terms 

of speed (Wilcoxon Signed Rank Test, z = -.36, p>.5).  
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Figure 1: Mean absolute accuracy (cm) and standard errors for the left hemispace (LHsp) and the right 

hemispace (RHsp) in Experiment 4. 

 

 

4.2 Methods 

Participants 

45 patients less than 70 years old who were being operated to remove a cerebral tumour 

in the left or right frontal and parietal-occipital cortex were tested in the Neurosurgery 

Department (Santa Maria della Misericordia Hospital, Udine). Patients were assigned to 

the posterior group (Post) if the lesion primarily involved the parietal and/or the 

occipital cortex, but not the motor, premotor or prefrontal cortices. Those with lesions 

of the motor, premotor and/or prefrontal cortices have been included in the anterior 

group (Ant). Of these 45 patients tested, 5 were excluded for the following reasons: (i) 

multiple or bilateral lesions (n=1), (ii) recurrence of the tumour (n=1), (iii) hemiplegia 

(n=3). All the remaining 40 patients underwent the experimental assessment within one 

week of their operation. In this patient group, 25 patients had a predominantly anterior 

lesion (12 left and 13 right) and 15 a predominantly posterior lesion (5 left and 10 

right). A display of the overlapping regions is shown in Figure 2. Patients were between 

17 and 67 years of age (mean age=47.75 years; SD=14.03 years).  
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Figure 2. Overlapping lesion reconstructions for each of the prefrontal (A), premotor (B) and 

parietal (C) brain tumour patients. The number of overlapping lesions is illustrated by different colors 

coding increasing frequencies from violet (n = 1) to red (n = max. number of subjects in the respective 

group).   

A - PREFRONTAL 

B - PREMOTOR 

C - PARIETAL 
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The mean educational level was 12.88 years, SD 5.36years. The mean lesion size was 

37.65 ml (SD=28.63). No significant differences were observed between groups for 

lesion size (Kruskal-Wallis x
2
= .69, p =.88), age (Kruskal-Wallis x

2
= 6.78, p =.08) or 

educational level (Kruskal-Wallis x
2
= .90, p =.82) (Table 1, p.77). Any possible 

disorder in the attention domain patients was assessed by the use of four standard tests: 

Trail Making test (Giovagnoli et al., 1996), Attentional Matrices (Spinnler & Tognoni, 

1987), Star cancellation test (Wilson et al., 1987) and the Balloons test (Edgeworth et 

al., 1998). Moreover, for each parietal patient, the standard clinical procedure for testing 

gaze apraxia was used (See Chapter 2, p.51). 

 

Table 1: Age, educational level, lesion size (mean, SD) and gender distribution of 

the four patient groups 

Group Gender (M/F) Age 
Years of 

education 
Lesion size (ml) 

L Ant 8/4 50.25 (17.05) 12.25 (6.05) 33.92 (22.49) 

R Ant 4/9 41.38 (11.41) 12.85 (4.28) 40.00 (36.47) 

L Post 2/5 43.20 (11.19) 12.00 (5.61) 43.00 (16.23) 

R Post 6/4 55.30 (1.29) 14.10 (6.24) 36.40 (31.61) 

     

L Ant= left anterior, R Ant= right anterior, L Post=left posterior, R Post=right posterior 

 

Apparatus, Stimuli and Design 

A 15-inch resistive high resolution touch screen (3M) and a personal computer 

(Pentium 4, 3 GHz) running E-Prime were used for the presentation of stimuli and to 

record the response of participants. All subjects sat in a dark room at a viewing distance 

of 50 cm from the display. The starting hand position was aligned to the display‘s 

centre and located 40 cm away from it on a response pad. The target was initially 

presented on one side of the display. It moved along the x axis with a fast (5.8 cm/s) or 

a slow (2.3 cm/s) speed and it disappeared after an unpredictable spatial interval (range: 

6.5-17.9 cm) in order to prevent any a priori knowledge of where the target would be 

likely to stop its movement. After an 8.8 cm occlusion distance, a 1000 Hz tone warned 

the subjects to point as quickly and accurately as possible to where they thought the 

circle would have arrived at the moment of the sound. The final position of the invisible 

target varied across trials in a range of about 11 cm from the centre of the screen. The 



 101 

pointing response on the touchscreen allows us to record the display coordinates. 

Participants were not allowed to trace the target with the finger on the screen, but they 

were free to follow the target with the eyes. Once they touched the screen, they were 

required to place the hand back on the starting position. No response was collected if 

the subjects leave the response pad before the tone. Patients were required to perform 

four blocks of trials counterbalanced for the moving direction of the dot (ABBA 

design). In one block the dot moved from left-to-right in the left hemispace, in the other 

one it moved from right-to-left in the right hemispace. As mentioned before 

(Introduction, paragraph 4.1, Chapter 4), for the first type of stimuli patients predict the 

position of the invisible target when it is in the right hemispace, whereas in the second 

type they responded to where it should be in the left hemispace. Moreover, in contrast 

with the previous experiments (Experiment 1 and 2, Chapter 3), only a long occlusion 

distance was used. Within each block, the slow and fast speeds were presented in a 

pseudo-randomized order. Each session began with a short practice (4 trials for the dot 

moving left-to-right and 4 trials for the dot moving right-to-left). No eye-movements 

instructions were given to the patients. 

 

Data analysis 

Behavioural data 

For each participant we calculated the mean Reaction Times (RTs), Movement Times 

(MTs) and the accuracy. RTs were measured from the onset of the target to the release 

of the response pad. MTs were measured from the release of the contact switch to the 

moment at which patients touched the touch-screen. Accuracy was calculated as the 

absolute distance in millimetres between the real position of the invisible target and the 

point of contact on the touch screen. Trials were discarded if the RTs and Accuracy 

were four SDs below or above the grand mean of each participant or if the touch screen 

failed to record the response of the patient. For all patients this accounted for less than 

5% of trials.  

 

For all the measures, we used the same statistical procedure based on that adapted by 

Stuss et al. (2005), which involved two levels of analysis: 

(i) We first selected and divided patients into four groups according to the side and the 

predominant location of the brain tumour (left anterior, L Ant, right anterior, R Ant, 

left posterior, L Post and right posterior, R Post) and we first compared the 
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performance among these groups. Three different measures were examined: (i) the 

overall effects on RTs, MTs and absolute accuracy; (ii) the difference in terms of 

accuracy, reaction times and movement times between the left minus the right 

hemispace (LHsp-RHsp, hemispatial effect) and (iii) between fast minus slow speed 

(Fast-Slow, speed effect). The results were corrected for multiple comparisons (p < 

.017). 

(ii) If a significant overall effect was observed at this level, we contrasted the 

performance of each group of patients with those of the other groups combined (e.g. 

R Post vs. L Ant, R Ant and L Post combined). In this way we were able to be more 

specific about the location of any impairment with respect to our patient population. 

 

The raw data were first checked for normality using the Kolmogorov-Smirnov test and 

for homogeneity of variance by applying the Levene test. As the data were not normally 

distributed, non-parametric tests were used. The results were considered significant if 

the p value was <.05; all the significance tests were two-tailed. 

  

Anatomical data 

The location and the extension of the tumour were carried out using a digital format 

contrast-enhanced t1-weighted MRI scans obtained 1-7 days before operation using a 

1.5T machine. The preoperative MRI scans were selected, as they are the scans 

generally used by the neurosurgeon during the operation with the Neuronavigator as the 

best indicator of macroscopic tumour extent. This allowed us to avoid any possible 

confusion in draw lesions due to the replacement of neural brain tissue that occurs after 

surgical removal. MRicro reconstructional software was used to extrapolate a 3D 

representation of the lesion from digital MR scans (Rorden and Brett, 2000). The scans 

and ROIs were normalized to the Montreal Neurological Institute template by using 

SPM05b with 12 affine transformations and 7 x 9 x 7 basis functions.  

 

4.3 Results  

4.3.1 RTs and MTs 

The Kruskal-Wallis test showed no significant effect of the overall RTs and MTs 

among the four groups of patients (RTs:  x
2
=2.18, p =.54; MTs: x

2
=2.57, p =.46; 

Kruskal-Wallis test), as well as hemispatial (LHsp-RHsp, RTs:  x
2
=1.80, p =.61; MTs: 
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x
2
=4.46, p =.22; Kruskal-Wallis test) and speed effects (Fast-Slow, RTs:  x

2
=2.26, p 

=.52; MTs: x
2
=5.83, p =.12; Kruskal-Wallis test). 

 

Absolute Accuracy  

Absolute accuracy refers to the distance in cm between the position pointed by the 

patient and the real position of the invisible target at the moment of the sound, given the 

axis and the constant speed. A non-parametric analysis between the four groups of 

patients revealed that they did not differ significantly in terms of overall accuracy (left 

and right hemispace combined) (Kruskal-Wallis, x
2
=1.67, p =.64). 

 

However, when considering the hemispatial effects, a significant difference between the 

patient groups was observed (LHsp-RHsp Kruskal-Wallis, x
2
=10.32, p =.016). Then, in 

order to identify a possible candidate impaired group, we contrasted the performance of 

each group of patients with the other three combined. At this stage of analysis both the 

left anterior and right posterior groups differed significantly from the other groups 

combined (L Ant vs. Others: U=88, p =.017; R Ant vs. Others: U =169, p =.86; L Post 

vs. Others: U =81, p =.81; R Post vs. Others: U =57, p =.003; Mann-Whitney test) 

(Figure 3).  

 

 

 

 

Since each of the left anterior and right posterior groups were part of the control group 

for the others, and the effects were in opposite directions, it is possible that only one of 

the two apparent effects is real, with the other arising from the composition of the 

respective control group. We therefore repeated the analogous procedure removing the 

Figure 3: A schematic 

representation of the 

procedure used in the 

three experiments. 

Subjects are presented 

with a filled dot, which 

moves along the screen 

and then suddenly 

disappears. 

Immediately upon 

hearing the warning 

sound, they are asked to 

predict the actual 

position of the invisible 
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left anterior and the right posterior groups from the respective control group. On this 

second round, only the right posterior group differed statistically from the other two 

groups combined (R Post vs. R Ant+L Post, U=46, p =.008; Mann-Whitney test). The 

difference observed between the left anterior and the other two groups was not 

significant (L Post vs. R Ant+L Post, U=58, p =.17; Mann-Whitney test). This means 

that only the right posterior effect is clearly genuine. Moreover, the right posterior 

group was significantly worse than the other groups combined in the left hemispace, but 

it was not in the right one (LHsp: U= 85, p =.043; RHsp: U=150, p =1). 

 

No significant effects were observed between the four groups over possible speed 

effects (Fast-Slow, Kruskal-Wallis: x
2
=.92, p =.82) (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Speed effects as a function of patients groups. Mean absolute accuracy (cm) and standard 

errors for fast and slow speeds. L Ant= left anterior; R Ant= right anterior; L Post= left posterior; R Post= 

right posterior. 

 

Moreover, in order to assess the possible concomitant effects of attention disorders, 

patients were also tested with four standard attention tests. The results of the right 

posterior patient are given in Table 2. The performance of each patient was compared 

with the normal norms. All the patients were within the normal range, with the 

exception of RPa9, who showed impairments in the Attentional Matrices test. 
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Table 2: Results of the right parietal on the most directly relevant clinical tests. 

Patient Sex.age 

Lesion 

volume 

(ml) 

LHsp 

accuracy 

(cm) 

RHsp 

accuracy 

(cm) 

Star 

cancellation  
Balloons  Trail 

A 

Trail 

B 

Attentional 

Matrices 
L (27) R (27) L (10) R (10) 

Rpa 1 F.62 71 3.03 2.63 25 22      

Rpa 2 F.67 37 3.49 3.60        

Rpa 3 F.53 21 1.48 1.80     50‘‘ 111‘‘ 53.75 

Rpa 4 M.52 4 2.88 1.51   
A: 9 

B: 8 

A: 10 

B: 10 
26‘‘ 77‘‘ 44.25 

Rpa 5 M.65 65 4.36 2.85   
A: 9 

B: 10 

A: 9 

B: 9 
58‘‘ 158‘‘ 49.25 

Rpa 6 M.57 15 4.75 4.36        

Rpa 7 M.67 7 1.25 1.88 27 27   45‘‘ 114‘‘ 52.25 

Rpa 8 F.54 10 1.82 1.11 27 27   44‘‘ 194‘‘ 50.75 

Rpa 9 M.31 97 2.10 1.77 25 24   52‘‘ 129‘‘ 30.25* 

Rpa 10 M.61 12 2.23 1.78        

*Significant impairment 

 

Additional analyses were performed to assess possible correlations between the 

performance of patients in the left and right hemispaces. Significant associations were 

observed between the two measures in the non-parietal groups (Spearman correlation 

coefficient =.76, p <.001) and in the right posterior group (Spearman correlation 

coefficient =.65, p =.04), whereas no significant correlations between the accuracy in 

the left and the right hemispace were observed for the left posterior group (Spearman 

correlation coefficient =.40, p =.51). A significant correlation between the two 

measures was also observed in normal controls in the Pilot Study (Spearman correlation 

coefficient = .86, p <.001) (see Paragraph 4.1). 

 

Underestimation/Overestimations 

The responses of the patients were also considered in terms of overshooting (positive 

sign, when pointing too far) or undershooting (negative sign). A repeated measures 

analyses of the variance (ANOVA) with side and tumour location as between factors 

showed a significant main effect of hemispace, with patients showing in general larger 

overestimations in the right hemispace than in the left (F1,36 =11.16, p =.002). 

Moreover, significant Hemispace by Group (F3,36 =4.79, p =.019) and Hemispace by 

Speed (F3,36 =3.20, p =.035) interactions were observed. However, no significant 
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interaction were observed between hemispace effects and location of the brain tumour 

(Hemispace*Group, F2,36 =1.93, p =.16). 

 

4.4 Discussion 

This study aimed to assess whether damage to the right posterior cortex can disrupt the 

hemispatial effects we reported in normal subjects (Chapter 3). From a behavioural 

point of view, there was a significant difference between groups with respect to the 

hemispatial effect. The present work confirmed the results of Chapter 3 by 

demonstrating that patients with a lesion involving the left anterior, right anterior and 

left posterior cortex behave in a similar fashion to normal subjects with respect to the 

hemispatial effects. However, the right posterior group showed a different pattern. They 

were worse then the other patients in the left hemispace, but not in the right. 

 

One way in which one might try to interpret the different pattern of results for the right 

posterior group compared with the others is in terms of a right hemisphere superiority 

for spatio-temporal processing (Walsh, 2003; Olivieri et al., 2009). According to this 

hypothesis, damage to the right posterior cortex would impair the ability to integrate 

spatial and temporal information, independently of whether the prediction has to be 

made for the left or for the right hemispace. However, on a closer inspection, there are 

suggestions that the effect observed in the right posterior group might not be simply 

interpreted in this way. Thus, clear evidence for impairments in both hemispaces was 

obtained, which is what one expects if the right posterior cortex is the only structure 

involved in integrating spatial and temporal information.  

 

Why might this specific pattern of results occur? It is possible that two factors operate 

in spatio-temporal integration. One, in accordance with the theory of Walsh (2003), is 

that the right posterior cortex has greater resources than the left one for integrating 

spatial and temporal information. The second is that systems in each hemisphere 

operate more effectively for stimuli in the contralateral than in its ipsilateral 

hemispace.  The overall model would be as shown in Figure 5. On this model, patients 

with a right posterior lesion would be particularly impaired in the integration of spatial 

and temporal information in the left hemispace. On the other hand, damage to the left 
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posterior cortex would have less effect on the performance of patients, since the right 

posterior cortex would combine spatial and temporal information with respect to targets 

in both the left and right hemispace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This hypothesis is supported by the correlation analysis we performed. The strong 

positive correlation between the accuracy in the left hemispace and the right hemispace 

in both healthy (pilot study) and non-parietal patients supports the idea that spatial and 

temporal information are combined in a single module (placed in the right posterior 

cortex, in unimpaired subjects). Damage to the critical right posterior module would 

lessen the correlation as the left posterior system would be partially responsable for 

right hemispace effects, as there were suggestions of this effect in the right posterior 

group (Spearman correlation coefficient = .65, p =.04). The correlation of the right 

posterior group is in fact weaker than the non-parietals (Spearman correlation 

coefficient =.76) and the normal controls (Spearman correlation coefficient =.86). 

However, in the model proposed, significant correlations between the accuracy in left 

and right hemispace should also be observed in the left posterior group. We failed to 

find this positive association. Since the number of patients with left posterior lesion that 

could be tested in the present study was very small (N=5), the model we propose clearly 

needs to be tested by future studies.  
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One alternative hypothesis to explain the lower performance of the right posterior group 

in the left hemispace is in terms of neglect. In the present study, clear signs of left 

neglect were not observed in any of the six right posterior patients who were tested (see 

Table 2, p.82). Moreover, no significant differences in RTs and MTs were observed 

between the four groups of patients and more critically, no hemispatial effects in these 

measures were found. Therefore, a possible role of neglect in the spatio-temporal 

integration impairments remains only a remote possibility. 

 

Of course, in this study we only investigated a single task, the most basic spatio-

temporal one. Other investigations would be needed to assess whether the spatio-

temporal system like the trajectory setting and reaching ones involved in optic ataxia 

are influenced by the hand used. Conceivably, one could obtain effects analogous to 

those we obtained with respect to hemispace. In addition, the possibility needs to be 

considered that slowing up of RTs occurring in the spatial condition could lead to the 

involvement of the ventral route. 
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                 Chapter 5 

 

Two qualitatively different impairments in 
making rotation operations  

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Buiatti T, Mussoni A, Toraldo A, Skrap M, & Shallice T (2011). Two qualitatively different impairments 

in making rotation operations. Cortex, 47(2): 166-179. 
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5.1 Introduction 

 

In the previous chapters, processes underlying reaching and spatio-temporal integration 

were investigated in detail. In this chapter we will focus on a more cognitive process, 

such as mental rotation. The aims of the study reported in the current chapter are 

twofold. A first purpose is to investigate whether a unilateral brain tumour occurring in 

different part of the brain, such as the prefrontal, premotor and parietal cortex lead to 

impairments in performing mental rotation operations. A second aim is to further 

investigate the categorical-metric account (Kosslyn et al., 1989) by means of 

neuropsychological tools (see paragraph 1.3.2.1, Chapter 1). For this purpose, we used 

the experimental paradigm based on the previous work by Bricolo et al. (2000), which 

required patients to remember the position of a dot inside an upright or a tilted frame of 

reference and to reproduce it inside a subsequent identical upright reference frame after 

the frame was re-oriented vertically.  

 

In this work, we used different methods of analysis. The first traditional methodology 

used was an anatomically based group study approach. In the initial comparisons, 

following the procedure of Stuss et al. (2005), the relative performance of patients with 

tumours in six different regions of cortex was contrasted. This analysis allowed us to 

investigate the contaminating effects of variables such as lesion size and age. This 

procedure was then followed by an examination of the lesion sites of poorly as opposed 

to satisfactorily behaving patients. Here the procedure adopted was the Voxel Lesion 

Symptom Mapping (VLSM) analysis (Bates et al., 2003; Rorden and Karnath, 2004, 

Rorden et al., 2007). Finally, in order to validate the main findings of the group analysis 

and to exclude any possibility that the pattern of responding observed was achieved by 

chance, we also contrasted our empirical findings with a Monte-Carlo simulation study.  

 

5.2 Methods 

Patients 

A total of 95 patients with a single circumscribed brain tumour confined in the left or 

right prefrontal, premotor and parietal cortex were selected and tested in the 

Neurosurgery Department (Santa Maria della Misericordia Hospital, Udine) within a 

time period of about three years. Of these 95 patients, 40 were excluded by means of 
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the following criteria: (i) multiple or bilateral lesions; (ii) recurrence of the tumour; (iii) 

hemianopia, severe neglect or right hand motor impairment, (iv) diagnosed stroke, head 

injury or other neurological and psychiatric diseases. We performed the experimental 

test on the remaining 55 patients (Tab. 1). All the 55 patients underwent the 

experimental assessment within one week from their operation. Within this patient 

group, 26 patients had a predominant prefrontal lesion (12 right prefrontal, 14 left 

prefrontal), 13 a predominant premotor lesion (5 right premotor, 8 left premotor) and 16 

a predominant parietal lesion (9 right parietal, 7 left parietal). A display of the 

overlapping regions is shown in Figure 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Patients were between 20 and 70 years of age (mean age, 45.35 years; SD, 12.79 years). 

The mean educational level was 11.27 years, SD 4.02 years. With respect to the 

aetiology, 43 patients with glioma (17 high grade; 26 low grade), eight with 

meningioma, three with metastases and one with an arteriovenous malformation (AVM) 

were tested. Lesion volume mean was 46.76 ml, SD 35.83 ml. A significant difference 

1 1 1 

1 1 1 
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between groups was found for lesion size [Kruskal-Wallis 
2
 = 11.88, p = .04]. 

Premotor patients tended to have smaller lesions than parietal and prefrontal patients. 

 

The rotation test was one of the 17 given to the patients. We show in Table 1 the results 

for the most directly relevant tests, a test for neglect - Star cancellation (Wilson et al., 

1987), and two non-spatial attentional tests – the Elevator Counting test (Test of 

Everyday Attention, Robertson et al., 1994) and the Phonemic Verbal Fluency test 

(Multilingual aphasia examination, Benton and Hamsher, 1978). 

 

 

 

 

 

 

 

 

 

Stimuli  

A 15-inch resistive high-resolution touch screen (3M) and a personal computer 

(Pentium 4, 3 GHz) were used for the presentation of the stimuli and to record the 

responses of participants. All patients sat in a normally lit room with a viewing distance 

of 60 cm from the display. The starting hand position was aligned to the display‘s 

centre and located 40 cm away from it. As far as the mental rotation task was concerned 

we used an adapted version of Bricolo et al.‘s paradigm (2000). The stimulus was a 12 

x 12 cm square which had a thick top. A small black dot (diameter: 3 mm) was located 

inside the square following some procedural constraints: it could appear in a 0-3 mm 

radius circle around one of the six crossing grids which were obtained by dividing the 

12 x 12 cm square into 16 invisible smaller equal squares. The probe square was 

presented in pseudorandomly selected positions within the display. The square was 

presented in one of three possible orientations: upright (0° rotation), tilted rightwards 

(the patients had to mentally rotate the square anticlockwise, AC45° rotation) or tilted 

leftwards (the patients had to mentally rotate the square clockwise, CL45° rotation). 

Twelve practice trials and 33 experimental trials were given to each patient. The same 
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number of experimental trials (11) was used for the three probe orientations with a fixed 

random sequence for all patients. Examples of the stimuli used in the experiment are 

shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Procedure 

As illustrated in Figure 2, each trial began with the presentation of the probe square 

which could be rotated by 0°, -45° (CL45° condition) or +45° (AC45° condition) from 

an upright position. After 500 msec, the small black dot appeared inside the reference 

frame and remained visible for 300 msec. Patients were instructed to identify and 

remember the position of the dot with respect to the reference frame and 1 sec after its 

disappearance, they were asked to reproduce its position inside the now upright frame 

of reference. The exact instructions were: ―Look at this (first) square – it can be upright, 

or tilted towards one side, but you can easily recognise it because its top edge is thicker. 

A dot will appear shortly inside the square – remember its exact position within it. After 

a while you will be presented with an empty upright square. Your task will then be to 

touch where you remember that the dot was in the previous square‖. While the response 

frame was always presented at the geometric centre of the computer screen, the probe 

square appeared at random positions along its horizontal dimension. This was done in 

order to prevent reaching movements towards untransformed positions of the screen. 

All of the patients responded with a pen using their right (dominant) hand, with the 

exception of one patient, who, due to a post-surgery motor impairment, used his left 
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(non-dominant). The upright response frame remained visible until the participants 

responded. When they pointed to the touch screen, the stimulus disappeared and the 

experimenter started the next trial by pressing the spacebar. Patients were given four 

practice trials for each orientation condition. Each session lasts about ten minutes.  

 

 

Data analyses 

Behavioural data: For the data analyses we employed an anatomically based group 

study approach that was based on the Stuss et al.‘s 2005 procedure. The methodology 

used to infer brain-behaviour relations involved three levels of analysis:  

 (i) We selected and divided patients into six groups according to the side and the 

predominant location of the brain tumour (right prefrontal, RPreF; left prefrontal, 

LPreF; right premotor, RPreM; left premotor, LPreM; right parietal, RPar; left 

parietal, LPar) and we first compared the performance among these groups.  

(ii) If a significant overall effect was obtained, we compared the performance of each 

group of patients with those of the other groups combined (e.g. RPar vs. RPreF, 

LPreF, RPreM, LPreM, and LPar combined). In this way we were able to be more 

specific about the location of any impairment with respect to our patient 

population.  

(iii) If we found a significant effect at this level, we performed more detailed analyses. 

 

We applied the following procedure of error classification to the data set of each 

individual patient (Toraldo and Shallice, in preparation):  

1. Errors. An error was assigned when the patient reached out to a point more than 

1.5 cm away from the correct position. The 1.5 cm criterion corresponds to the 

25% of the width of one of the four quadrants into which the 12 x 12 square was 

divided for the qualitative analyses (see below).  

2. Classification of errors in spatial categories. The reference frame was 

considered as a square divided into four quadrants (top-left, top-right, bottom-

left, bottom-right) and we determined whether the target‘s position and the 

wrong response of the patients were in the same or in a different quadrant. In 

this way, each response was broadly classified as ―Correct Quadrant‖ (CQ, 

response in the correct quadrant but more than 1.5 cm away from target 

position) or as ―Quadrant error‖ (Q, response in an incorrect quadrant). A 
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subsequent analysis was carried out on the direction of Quadrant errors. Thus, 

we evaluated whether the Q errors were in the same (Q+) or in the opposite 

direction (Q-) with respect to the required rotation (Figure 3).   

Figure 1: Hemispatial effects as a function of groups of patients. Mean absolute accuracy (cm) and standard 

errors for the left hemispace (LHsp) and the right hemispace (RHsp).  L Ant= left anterior; R Ant= right anterior; 

L Post= left posterior; R Post= right posterior. 



 117 

In order to address the model put forward by Kosslyn et al. (1989), all responses were 

further classified into a number of spatial subcategories, according to whether or not 

the patient‘s response was close to (i.e., less than 1.5 cm from) theoretically important 

positions within the frame of reference (see Fig. 3 for details)
1
. These positions were:  

i. OR (Omitted Rotation). The OR position is where a patient would point 

to, when no mental rotation at all has been applied to the square. In other 

words, the position of the stimulus dot with respect to the square centre 

has been reproduced, with no regard for the orientation of the frame. 

 

ii. Cat (Pure Categorical): Qr (Reflection error), Qd and d (Dimension 

errors). We defined the response of the patient as Qr error, when the 

placed mark was in a reflection of the correct position with respect to the 

horizontal, the vertical, or both axes of the square. A d error was 

diagnosed when the mark was within the correct quadrant, but in the 

position obtained by swapping the two vectors from the two closest 

edges of the square; e.g. if correct position was 2 cm from the left edge 

and 3 cm from the top edge, the d point was 3 cm from the left, and 2 cm 

from the top edge. Qd positions were axes-reflections of the d position in 

other quadrants. Interestingly, the Q+d and the Q-d points are exactly 

90° away from the correct position in either direction with respect to the 

reference frame. All these categories were collectively called ―Pure 

Categorical‖ errors because they both preserve the metrics – the touched 

position is at correct distances from the closest sides of the square – but 

do not respect the categorical aspects of the representation. We first 

analysed the general category – ―Pure Categorical‖ errors – and on a 

following step we analysed Reflection and Dimension errors separately.  

 

iii. m (Pure Metric). We called ―Pure Metric errors‖ those responses that 

were located in the correct quadrant – thus indicating preserved 

categorical processing – but well away (more than 1.5 cm) from all 

theoretically relevant positions, i.e., the correct position (C), the d and 

                                                                          
1 Disambiguation procedure. When more than one error category could be applied to a given response, we chose the closest theo- retical point to 

classify it. For instance, if a patient responded 1.1 cm from the OR point and 1.3 cm from the Q-r point, we clas- sified the error as OR because the OR 

point was the closer. 
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the OR points. This indicates selective damage to the metric component 

of the processing.  

 

iv. Qm (Quadrant and Metric error). We called ―Qm‖ errors those 

responses located in an incorrect quadrant and outside all of the 

theoretically important areas (d and r).  

 

Kosslyn et al.‘s (1989) distinction between categorical and metric processing is best 

characterized, in this error classification procedure, by classes (ii) and (iii) above, i.e. 

―Pure Categorical‖ and ―Pure Metric‖ errors. 

 

The raw data were first checked for normality using the Kolmogorov-Smirnov test and 

for homogeneity of variance by the Levene test. As the data were not normally 

distributed, non-parametric tests were used. The results were considered significant if 

the p value was < .05. All the significant tests were two- tailed unless otherwise 

specified.  

 

Anatomical data: The pre-operative location of the tumour was carried out using a 

digital format contrast-enhanced t1-weighted MRI scan obtained 1-2 days before 

operation, using a 1.5T machine and a GRE-3D T1-weighted scan (TI 600 msec, TR 

1400 msec, TE 31 msec, TH 1 mm, DF 1 mm); this image was selected as it is the scan 

generally used by the neurosurgeon during the operation with the Neuronavigator as the 

best indicator of macroscopic tumour extent. MRicro reconstructional software was 

used to extrapolate a 3D representation of the lesion from digital MR scans (Rorden and 

Brett, 2000). The boundary of a lesion was drawn as a region of interest (ROI) on each 

sagittal slide in collaboration with the neurosurgeon and a neuroradiologist, who did not 

know the behavioural results, so as to limit the lesion‘s boundary to the brain tissue 

removed during the surgical approach. The scans and ROIs were normalized using 

SPM05b with 12 affine transformations and 7 x 9 x 7 basis functions. Each patient‘s 

lesion was referred to an anatomical template image AAL (Automated Anatomical 

Labelling) (Tzourio-Mazoyer et al., 2002), a macroscopic anatomical parcellation of 

MNI volume (Collins et al., 1998).  Afterwards, the Voxel-based Lesion-Symptom 

Mapping analyses were run. The procedure allows one to use the statistical relation 

between behavioral data and the specific voxels affected by the lesion without grouping 
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patients for lesion location or relying on behavioral cut-offs (Bates et al., 2003; Rorden 

and Karnath, 2004). The Non-Parametric Mapping software (NPM) (Holmes et al., 

1996) was used to run the Brunnel-Munzel test (Brunner and Munzel 2000) and 

compute a statistical map for continuous variable results (Rorden et al. 2007). The 

results are shown using Bonferonni corrected significance values, requiring a minimum 

of three patients affected for a voxel for it to be included. 

 

 

5.3 Results 

The Background variables were analysed first. No significant differences were found 

among the six groups for educational level [F(5,48) = 1.6, p = .18] and age [F(5,48) = 

0.77, p = .57]. We also studied the effects of the variables on performance in our 

experimental task. Age did not significantly influence error rate in the two rotation 

conditions combined [F(1,46) = 1.13, p = .29, with error rate being normalized by a log-

transformation]. A significant effect of educational level on error rate was, however, 

found [F(1,46) = 4.77, p = .03].  

 

Overall error analysis 

An exploratory analysis was performed by comparing the overall number of errors in 

the rotation conditions (CL45° and AC45° combined) and in the non-rotation condition 

(0°). The average number of errors was greater for the CL45°/AC45° conditions 

combined than for the 0° condition. This result was significant for almost all patient 

groups [LPreF: z = -2.94, p = .002, RPreF: z = -2.49, p = .007, LPreM: z = -1.81, p = 

.036, RPreM: z = -1.00, p = .159, LPar: z = -1.63, p = .051, RPar: z = -2.67, p = .004; 

one-tailed Wilcoxon Signed Rank tests]. No significant differences were observed by 

comparing the number of error responses in the CL45° and the AC45° rotation 

conditions within each patient group (for all groups: p >.05, Wilcoxon Signed Rank 

test) (Figure 4). 

 

A one-way non-parametric ANOVA across all six groups on the number of errors 

occurring in the rotation conditions (CL45°/AC45°) showed that the groups differed 

significantly [Kruskal-Wallis; 
2
(5) = 13.18, p = .02]. 
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One of the aims of this study was to examine whether or not the more impaired groups 

behave qualitatively differently in the nature of their errors from other impaired groups 

and from less impaired patients. However this aim is faced by the methodological 

problem that controls are at virtually ceiling, so we cannot use the nature of their errors 

to contrast with the pattern of errors made by impaired groups. So a modification of the 

approach developed by Stuss and colleagues was adopted to putatively identify more 

impaired groups and potential control groups. First, we compared the performance 
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among all the six groups to determine whether there was a significant difference 

between them. Given at what was found, we then contrasted the performance of each 

group of patients with the other five groups combined. At this stage the left prefrontal 

group differed significantly from the other five (CL45°/AC45° errors combined, Mann-

Whitney U=178, p = .035), but the right parietal did not. In order to investigate whether 

there were differences among the five groups, we removed the left prefrontal group and 

repeated the analogous procedure. On this second round only the right parietal group 

performed statistically worse than the other groups combined (RP: U=77, p = .03; 

Mann-Whitney). Repeating the procedure a third time did not lead to any new 

significant effects (p > .35). We will therefore putatively take the right parietal and left 

prefrontal groups as impaired groups and treat the other groups combined as a control 

group. 

 

In order to determine whether the effects observed were related to differences in lesion 

size, we correlated the patients performance in the CL45°/AC45° conditions combined 

with lesion size. Overall the correlation of the total number of errors with lesion size 

was completely insignificant [F(1,46) = 0.83, p = .37]. Spearman correlation 

coefficients for the six subgroups ranged from -.87 to .42 for the six groups, in all cases 

being far from significance (p >.3).  

 

Direction of errors  

The statistical analyses revealed that both the right parietal and the left prefrontal 

groups made a significantly greater number of Quadrant errors (Q) compared to the 

other four groups combined [RPar vs. Others: Mann-Whitney U=75, p = .03; LPreF vs. 

Others: Mann-Whitney U=130, p = .02]. For the negative Quadrant errors (Q-) – 

moving in the direction opposite to that of the rotation required – the right parietal 

patients made a significantly greater number than the other groups combined [RPar vs. 

Others: Mann-Whitney U=62, p = .01]. However, for the positive Quadrant errors (Q+) 

– moving too far in the same direction as that of the required rotation, the left prefrontal 

patients made a larger number than the other groups combined [LPreF vs. Others: 

Mann-Whitney U=153.5, p = .04] (Table 2).  

 

When a direct comparison of the number of Q- and Q+ errors within each group was 

carried out, a significant effect was found for the right parietal patients with the Q- 
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errors being the more frequent (Wilcoxon Signed Rank test z = -2.54, p = .01). The four 

patient control groups combined also showed significantly more  than Q+ errors (z = -

2.52, p = .01). However, in the left prefrontal group, the difference was far from 

significant (p = .51). If we consider the direction in which the square has to be rotated, 

clockwise (CL45°) versus anticlockwise (AC45°), the right parietal patients showed a 

similar rate of Q- errors in both conditions – no significant difference could be detected. 

In other words, the right parietal patients tended to rotate in an incorrect direction more 

than the other lesion control groups irrespective of the direction required, clockwise or 

anticlockwise.  

 

Qualitative differences in error types: Metric and Categorical errors 

The analysis of Quadrant errors showed us that gross group differences emerged with 

respect to the direction of the error. We then investigated whether the errors could arise 

from the malfunction of a purely metric or categorical process. For this reason we 

considered the number of errors that fell into three qualitative error categories. One type 

is the error that would arise if the patient did not perform a rotation operation and 

responded on the basis of the initial position of the target point (Omitted Rotation)
2
 A 

second is if the patient produced a response in the reflection of the correct response 

point with respect to the horizontal, the vertical, or both axes of the square (Reflection 

error). The third is if the patient made the correct metric operation on the target point 

but used an incorrect neighbouring side or corner as the starting point for the metric 

operation (Dimension error); these were the type of categorical errors described by 

Bricolo et al. (2000) and Toraldo and Shallice (in preparation) in individual right 

hemisphere patients. These last two types were collectively considered as ―Pure 

Categorical‖ errors. Symmetrically, we identified another category as ―Pure Metric‖ 

errors, i.e., locations of the response mark that unambiguously suggest a specific 

impairment of metric information processing, with spared categorical information: this 

area is the part of the correct quadrant which is outside of all the theoretically relevant 

areas (OR, d, correct target position). A final error type, which is not purely categorical, 

is the Quadrant and Metric error, which occurs when the patients place the mark in an 

incorrect quadrant and outside all the theoretically important areas listed above.  

 

                                                                          
2 The omitted rotation point (OR) falls in the correct quadrant in some trials, and in the Q- quadrant in some others, according to where the target is 

located within its quadrant. 
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There were theoretically important effects involving the two relevant groups, namely 

the right parietal and the left prefrontal (Table 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

First, for both groups no significant difference was found in the number of Omitted 

Rotation (OR) [RPar vs. Others: Mann-Whitney U=111, p = .25; LPreF vs. Others: 

Mann-Whitney U=174, p = .20]. Second, a Mann-Whitney analysis revealed that only 

the left prefrontal patients were impaired in the processing of metrics, showing a larger 

number of Pure Metric (m) errors [LPreF vs. Others: Mann-Whitney U=127, p = .02]. 

Conversely, with respect to the Pure Categorical errors (d, Q+d, QQd, Q+r, QQr), we 

found that only the right parietal patients made a significantly larger number of such 

errors [RPar vs. Others: Mann-Whitney U=82.5, p = .04]. In more detail, by looking 

separately at the two spatial subcategories, we observed that the right parietal group 

made a significantly greater number of both Dimension (d, Q+d, Q-d, QQd) [RPar vs. 

Others: Mann-Whitney U=87, p = .05] and Reflection errors (Q+r, Q-r, QQr) [RPar vs. 

Others: Mann-Whitney U=78, p = .02]. No significant effects were observed with these 

measures for the left prefrontal group. Third, with respect to the Quadrant and Metric 

(Q+m, Q-m, QQm) errors a significant result was again observed only for the left 

prefrontal group [LPreF vs. Others: Mann-Whitney U=102, p = .002].  

 

Voxel Lesion Symptom Mapping 

With VLSM analyses we were able to anatomically localize the brain areas responsible 

for the mental rotation deficits without any a priori grouping method. For the Pure 
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Categorical Errors patients with lesions in the right inferior parietal cortex showed a 

significant involvement. On the other hand, the common area for the Pure Metric and 

Quadrant and Metric errors was the left insula verging on the putamen. All these 

anatomical loci survived Bonferroni corrections.  

 

Monte-Carlo simulation 

In order to test whether the qualitative impairments observed in the right parietal and in 

the left prefrontal groups truly reflected a mental transformation deficit and were not 

just the effect of random selection of locations within the square, we additionally 

performed a Monte Carlo simulation study to obtain chance levels. We generated 

random positions within the square as responses to each of the 33 stimuli that have been 

really administered, and repeated this procedure 10,000 times. On each of the 10,000 

samples, we applied the same error classification procedure that was applied to real data 

from patients. For each spatial subcategory we compared the probability of an error 

occurring by chance (expected probability) with the observed probability.  The binomial 

tests revealed that the error proportions in the Pure Metric and Quadrant and Metric 

subcategories were significantly lower than chance in the left prefrontal group. 

Conversely, the observed proportions of Pure Categorical errors were more frequent 

than expected by chance in the right parietal group. These findings clearly indicate that 

the incorrect responses of patients in theoretically important regions did not occur by 

random selection of points in the square (Figure 5). 
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Figure 3: Model of the spatio-temporal integration. The filled-boxes correspond to the systems 

involved in the integration of spatial and temporal information. The empty boxes indicate the hemispace 

in which the target is presented. The arrows indicate the direction of the putative spatio-temporal vectors. 

According to this model the right posterior cortex has greater resources for spatio-temporal computations, 

as suggested by the size of the red arrows. Moreover, the vectors directed toward the contralateral 

hemispace are much stronger than the ipsilateral ones.  

 

 

 

5.4 Discussion 

The initial aim of this study was to provide further evidence on what cortical regions 

are responsible for mental rotation transformations. We employed the mental rotation 
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task developed by Bricolo et al. (2000), but we used an anatomically based group study 

approach rather than a single-case method. Each patient was assigned to one of six 

groups, namely left prefrontal, right prefrontal, left premotor, right premotor, left 

parietal, right parietal. A broad analysis on the number of error responses in the rotation 

conditions revealed that the six groups performed in a significantly different way. We 

used a modification of the procedure adopted by Stuss et al. (2005) to determine 

candidate impaired groups. This procedure selected the left prefrontal and right parietal 

groups, which did not differ significantly from each other for the overall number of 

errors, as candidate impaired groups; the other four groups were treated collectively as a 

patient control group. The appropriateness of this candidate categorisation was 

supported by the analyses carried out on the qualitative nature of the errors, which 

revealed that the impairments in the left prefrontal and right parietal groups were 

significantly different in a number of ways from the other patient groups combined. 

These include findings on the direction of errors, namely the positive Quadrant errors 

for the left prefrontal group and the negative Quadrant errors for the right parietal 

group. In addition if one considers the qualitative error classification, there were again 

significant effects for the left prefrontal group with respect to Pure Metric and 

Quadrant and Metric and for the right parietal group with respect to Dimension and 

Reflection errors.   

 

Right parietal group 

The analysis of the overall error rate indicated that patients with a lesion centered on the 

right parietal cortex made a significantly larger number of errors with respect to the 

other four patient groups combined. Particularly, in the two rotation conditions about 

44% of all trials were errors, which is definitely a sizeable effect. This result supports 

the widely accepted claim that the right parietal cortex is specifically involved in mental 

rotation transformations, which is consistent with previous neuropsychological, EEG, 

TMS and neuroimaging researches (Ratcliff, 1979; Inoue et al., 1998; Harris et al., 

2000; Harris and Miniussi, 2003). In detail, by looking at the qualitative nature of these 

errors we observed that the right parietal patients were specifically impaired in the 

processing of categorical spatial information. Indeed, they produced a significant 

number of Pure Categorical errors, which occur when one ignores the qualitative 

spatial cues without any metric impairment. If a patient operates correctly metrically 

with respect to a landmark, say a corner, but chooses an incorrect neighbouring corner 
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for the operation, this produces a Dimension error. The patient‘s performance is 

metrically correct, but categorically incorrect. One subset of such errors (Q-d) 

corresponds to rotating the square in the incorrect direction. The right parietal group 

made significantly more Dimension errors than the other four control patient groups 

combined. If a patient takes a reflection of the position of the target with respect to the 

horizontal, the vertical, or both axes of the square, this is a Reflection error. S/he places 

the mark in a complementary horizontal or vertical position in an incorrect quadrant, 

failing to take into account the categorical representation of the target. Right parietal 

patients also produced significantly more such errors than the other four patient groups 

combined. These results were confirmed by a subsequent simulation study, which 

showed that the proportion of categorical error responses were significantly greater than 

would be expected by random selection of locations in the square.  

 

Moreover, we observed that unlike the patient control groups the right parietal patients 

showed a greater tendency to rotate the square in the wrong direction (Q- errors). We 

believe that this behavior reflects a deficit, which is specifically qualitative in nature. 

One could argue that this significant frequency of Q- errors might instead reflect lack of 

precision in applying the appropriate spatial transformations (angles). However, if this 

hypothesis holds true, then it would remain unexplained why in the right parietal group 

both the Pure Metric and the Quadrant & Metric error rates were not statistically 

different from those in patient control groups, or even from chance (Monte Carlo 

simulation). In fact errors clustered in categorically important positions of the square. 

An alternative hypothesis is that the findings observed in the right parietal group might 

be explained in terms of neglect. In a study performed by Kerkhoff and Zoelch in 1998, 

it has been observed that when asked to orient an oblique line (―target‖) to match a 

horizontal, vertical or 45° reference line, neglect patients with a right hemisphere lesion 

showed a significant anticlockwise tilt of the target. In the present study, signs of 

neglect on the Star Cancellation task (Wilson et al., 1987) were observed in three out of 

nine right parietal patients. All three were in the subset of five patients making the 

larger number of categorical errors. Of the other two patients in this subset, one 

obtained a perfect score on Star Cancellation and the other had a poor but not 

lateralized performance. However, with respect to our rotation task, it is not likely that 

the pattern of results shown by right parietal patients can be explained just in terms of 

an indirect effect of neglect. If neglect had had a major role, one would have predicted a 
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sizable difference in performance according to the direction – clockwise (CL45°) vs. 

anticlockwise (AC45°), of the required rotation. Following Kerkhoff and Zoelch 

(1998), neglect should induce a bias towards performing anticlockwise rotations, 

resulting in more frequent errors in those trials where the opposite rotation is required, 

i.e. the CL45° condition. The same prediction is derived by another possible scenario 

related to neglect: in the CL45° condition the thick side is in the left half of the tilted 

stimulus; failure to detect the thick side would induce random selection of rotation 

direction, with consequent Q- errors being more frequent in this CL45° than in the 

AC45° condition. However, no such effect was found, with right parietal patients who 

make roughly comparable numbers of errors in the two conditions. Indeed, they made 

more errors than patient controls in rotating leftwards when presented with a CL45° 

stimulus, and rightwards when an AC45° stimulus was displayed. In other words, they 

had an increased tendency to rotate in the wrong direction, whichever direction was 

required on a trial. A possible partial role of neglect in the categorical errors remains a 

possibility.  

 

Martin et al. (2008) have argued that both hemispheres are involved in coding both 

metric and categorical positions for a Continuous Spatial Coding hypothesis in which 

both hemispheres are implicated in both types of spatial relation coding. They found 

some degree of hemispheric specialization, not related to the categorical/metric nature 

of the task, but to the processing load involved. Thus for instance, they found a right 

hemisphere advantage in the inferior parietal lobule and the angular gyrus. In many 

respects our evidence fits well with their findings: we also obtained greater involvement 

of the right parietal than the left parietal cortex in the task. However unlike in the work 

of Martin et al., we did not find any deficits in right parietal patients in carrying out 

metric operations per se.  This dissociation – a categorical deficit without a metric 

deficit – is difficult to reconcile with the Continuous Spatial Code hypothesis, which 

had explained Martin et al.‘s findings well. This model assumes that categorical and 

metric relations differ on a complexity continuum, with metric encoding being 

generally more complex than categorical encoding. In this case, however, one would 

expect that a lesion would produce the complementary dissociation, with categorical 

relations being relatively spared.  
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It is plausible that the difference between the present study and Martin et al.‘s is due to 

the different type of task used. Martin et al. used a working memory task, in which 

rotation was not involved. In such a task, metric accuracy is likely to be more stressed 

than categorical accuracy, as no transformation is required. By contrast, our rotation 

task is more heavily loaded on categorical operations than on metric accuracy, both 

because of the need to rotate, and because the absolute metric error allowed was quite 

large (1.5 cm).  

 

In summary, we agree with Martin et al. on the likely involvement of both hemispheres 

in both metric and categorical operations. However, the existence of an above chance 

rate of error types such as Reflection and Dimension strongly suggests that the two 

types of operation can be separately impaired. Indeed in Reflection and Dimension 

errors, responses are very close to simple geometrical transformations of the correct 

position. Thus a gross categorical mistake and a fine metric analysis are simultaneously 

observed. Such a dissociation is even more convincing if other error types involving 

metric-based inaccuracies do not occur at above chance levels. This profile was 

previously reported in an individual case study of Bricolo et al. (2000) and is also the 

case for the right parietal group in the current study. 

 

How might such errors be explained? A typical analogue rotation process (à la Shepard 

& Meltzer) would predict very different error patterns from the ones we observed. It 

should be noted that our task, while corresponding to operations often made in the daily 

life, is very different from the tasks standardly used in ―mental rotation‖ experiments. 

Indeed, it allows another strategy in addition to the analogue rotation procedure. 

Suppose that the spatial analysis of the figure is carried out in two main steps, (i) 

categorical operations are carried out to relate parts of the figure to an object-centred 

reference frame – known to be important, for instance, in neglect (Behrmann and 

Moscovitch, 1994; Driver, 1998; Humphreys et al., 1996, Humphreys and Riddoch, 

1995), and subsequently (ii) metric operations are carried out with respect to crucial 

parts of the figure. It would then follow that our task allows subjects the much easier 

possibility of not actually carrying out an analogue rotation operation. Instead, the 

subject might store the categorical and metric encodings from the first square, and 

reproduce them on the second square. This would only be possible if subjects could 

categorically organise the figure in terms of an object-centred reference frame. The 
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gross spatial agnosia shown clinically by many right parietal patients (e.g. Warrington, 

1969) suggests that this may not be possible in some patients of this group. In this case 

Reflection and Dimension errors would correspond to a failure of one of the categorical 

operations stages of the process. 

 

More specifically, we suggest that poor performance in our mental rotation task could 

be explained by an impairment of one or more steps of the following procedure:  

1. Implement a correct object-centred reference frame on the first (tilted) 

square.  

2. Carry out a categorical encoding of the position of the dot. 

3. Carry out a metric encoding of the position of the dot.  

4. (Following presentation of the upright empty square), retrieve the 

object-centred reference frame.  

5. Retrieve the appropriate categorical representation.  

6. Retrieve the metric representation.  

 

Our proposal is that a lesion of the right parietal cortex may disrupt the object-centred 

system of reference, the categorical spatial representation of the target, or both. The 

account is motivated by the need to explain the qualitative impairments we observed in 

our clinical population. New investigations would be needed to test whether other 

predictions of the model are correct. 

 

Left prefrontal group 

A second group of patients was impaired in the performance of our mental rotation task, 

namely the left prefrontal group. More detailed determination of the anatomical locus 

involved was limited by characteristics of our patient series, namely a lack of patients 

with tumours involving the more superior parts of prefrontal cortex.  

 

The left prefrontal group had a different type of mental transformation deficit with 

respect to right parietal patients. They produced a significant increase in the number of 

metrically incorrect responses both in the correct and in the incorrect quadrants. This 

finding is in agreement with the study of Martin et al. (2008), who found a strong 

recruitment of the attentional and executive processes, especially when metric coding 

was required. In addition, with respect to the other four groups combined the left 
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prefrontal group was the only one to produce a relatively large number of errors where 

rotation was too far in the correct direction (Q+). They also made a similar number of 

errors of rotation in the wrong direction (Q-). The specific mental rotation impairment 

of the left prefrontal patients might be explained in different ways.  

 

One possible explanation is that the deficits found in the left prefrontal patients are due 

to impairments in the short-term retention of spatial information. Indeed activity in the 

DLPFC has been often observed in both humans and primates in tasks which require the 

retention of spatial information for a limited period of time (Wilson et al., 1993, 

Courtney et al., 1996, 1998; Owen et al., 1996; Levy and Goldman-Rakic, 2000; Wager 

and Smith, 2003). However, lesions to the right prefrontal cortex impair spatial working 

memory more than ones to the left (Bor et al. 2006), so this makes this account less 

plausible for a specifically left prefrontal deficit.  

 

A second account would be in terms of a difficulty in producing the appropriate 

amplitude for the motion response. Desmurget et al. (2004) presented results that are 

clearly supportive of a role of the basal ganglia in advance planning of movement 

extent. Patients with Parkinson disease were found to be selectively impaired in using 

advance information about movement amplitude. Moreover, in a subsequent PET 

experiment increased neural activation in the rostral and caudal portions of the bilateral 

putamen was specifically observed in a task requiring amplitude planning. The results 

found for some of the patients placed in our left prefrontal group would fit well with 

damage or a disconnection of the putamen (three patients), but this would be a less 

satisfactory account for patients with a more specifically prefrontal damage. Moreover, 

a hypothetical amplitude planning deficit could well affect the baseline condition too 

(0°, no rotation); however our left prefrontal group was not specifically impaired in 

such a condition.  

 

One related question is why no sign of any such impairment was found in the right 

prefrontal group. As reported in the overall error analysis, the performance of the right 

prefrontal patients was not statistically different from that observed for the other groups 

combined. The absence of effects cannot be a problem of lack of statistical power. 

Indeed the sample size was similar for right prefrontal (N = 12) and left prefrontal (N = 
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14) groups and the difference in the overall number of errors was sizeable and 

significant (averaging at, respectively, 5.7 and 11 out of 33; Mann-Whitney p =.041). 

 

Since the subjects almost gave their responses with their right hand, it might be 

suggested that the greater impairment of the left and in the right prefrontal patients 

simply reflect their using of the right hand. This possibility cannot be ruled out. 

However, if a lateralized hand effect would contribute to the results, then one might 

expect a greater impairment in the left premotor group, which was not found.   

 

As a third possible explanation we suggest that the pattern of performance found in the 

left prefrontal group arises from a set of processes related to acquiring action 

operations. This are the so-called task setting operations (Stuss et al., 1995; Alexander 

et al., 2005; Shallice et al., 2008a, 2008b) specifically impaired in left prefrontal 

lesions. Task-setting is the collective name for the processes involved in learning in 

going from a novel set of operations when the subject is initially faced by a new task to 

their smooth well-learned execution after repeated practice. A left prefrontal lesion 

would be expected to increased error rates early in task performance because of 

impairments in task-setting. In our study the task was very short requiring only 5 

minutes to be completed. Thus the errors occurred before the task was over-learned. We 

propose that the failure on the task of the left prefrontal patients arises because they do 

not acquire the specific categorical and metric operations listed in the section above 

[―Right Parietal group‖ (the six-step procedure)]; instead they would fall back on a 

rough rotation operation, with little control over its correct angular size, failing to carry 

out a proper metric or a categorical encoding. This hypothesis would explain the 

specific pattern of performance of the left prefrontal patients and in particular the 

relatively large number of quadrant errors in the same direction as that of the rotation 

required (Q+ errors), and the high incidence of metric errors.  
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                                                                                        Chapter 6 

 

Phonological dyslexia following left and 
right parietal lesions 
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6.1 Introduction 

The development of models of the reading process has been intimately linked to the 

investigation of the acquired dyslexias. Thus the argument of Marshall & Newcombe 

(1973) that there are two different routes through which letter strings can be read was 

based on the contrast between the properties of deep and surface dyslexia.  The 

assumption that there are three routes for reading aloud not two, while originally 

suggested by Coltheart (1978) on the basis of studies in normal subjects, received a 

major boost from the identification of reading without semantics by Schwartz et al. 

(1979).  In this syndrome the patient has no understanding of words irregular in their 

spelling-to-sound correspondences but they can be read aloud well. 

 

More recently, with the development of models of reading aloud, such as those of Plaut 

et al. (1996), Coltheart et al. (1993, 2001), Zorzi, Houghton & Butterworth (1998) and 

Perry, Ziegler & Zorzi (2007) a major bone of contention between the protagonists of 

the different theories has concerned their ability to account for the existence of 

individual neuropsychological syndromes, and in particular for reading without 

semantics and phonological alexia (see e.g. Coltheart, 2006; Woollams et al., 2007). 

Phonological alexia, originally described by Beauvois & Derouesne (1979), is the 

disorder in which the patient can read words well but is impaired at reading 

orthographically and phonologically legal non-words. That the syndrome was 

theoretically important for understanding the mechanisms of normal reading was argued 

very early by Funnell (1983) on the basis of the existence of a patient of this type who 

had little comprehension of words. The disorder was held to provide evidence for the 

existence of separate routes for lexical and non-lexical reading aloud, both being 

distinct from a semantic route. Clearly the existence of this pattern of performance is 

easily explained if three routes exist, as in the models of Coltheart et al. (2001) and 

Zorzi et al. (1998); the pattern can then arise from the selective impairment of a non-

lexical reading route.  However, proponents of connectionist two-route models had an 

excellent retort (e.g. Harm & Seidenberg, 1999). Patterson & Marcel (1992) showed in 

six phonological alexic patients that they were unable to blend in production a three 

phoneme nonsense syllable even if the individual phonemes to be combined were 

presented non-visually, such as by being presented separately auditorily. It was 

therefore suggested that phonological alexia arose from impairments in those parts of 
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the speech output system concerned with phonological-level processing and so the 

syndrome not relevant to how the information was transmitted from the orthographic to 

the phonological system in reading aloud. 

 

The pattern of performance shown in the patients of Patterson & Marcel was not 

however, found in all phonological alexic patients. Caccapolo-van Vliet et al. (2004a, 

2004b) described three phonological patients with Alzheimer‘s disease whose word 

reading was at 96% or better. By contrast the best of the three achieved only 56% 

correct in the reading of non-words, far worse.  However the patients behaved almost 

perfectly on certain tests loading on processing within the phonological system itself, 

such as blending or segmentation. No tests of the ability to read non-words homophonic 

with words, e.g. kwite, such as that carried out by Derouesné & Beauvois (1979), 

appear to have been used with these patients and so a completely conclusive theoretical 

conclusion cannot be drawn.  However, the natural theoretical interpretation is that the 

impairment of these patients cannot be attributed to a problem in the phonological 

output system, such as in the phonological output buffer. Thus the work of Caccapolo-

van Vliet et al. removes the indirect support that the earlier study of Patterson & Marcel 

had provided for the two-reading route (e.g. a single phonological route and a semantic 

route) theory of say, Plaut et al. (1996). 

 

More recently, however, the drawing of conclusions concerning the organisation of the 

normal reading system from single-case studies alone has been apparently undermined 

by Woollams et al. (2007) in their analyses of reading-without-semantics carried out in 

a large group of semantic dementia patients. They found that patients presenting as 

having the syndrome of reading-without-semantics could be plausibly reinterpreted as 

being qualitatively no different from the more common condition of surface dyslexia; 

instead they could be held to lie at one end of the distribution of individual performance 

of how much their reading system weighted the respective contributions of a semantic 

route and a single phonological route.  In support of this interpretation, the pattern of 

decline of the reading abilities of patients who initially presented as showing reading-

without-semantics paralleled that of surface dyslexic patients as the disease progressed. 

The syndrome appeared to be the end of the distribution of surface dyslexia and not a 

qualitatively different disorder.  Thus individual case studies seem to need to be 

combined with investigation of an unselected series of a range of patients. 
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In a recent neuropsychological study, Rapcsak et al. (2009) investigated the presence or 

absence of phonological dyslexia in a large series of patients, confirming the 

importance of the left hemisphere for the development of the disorder. However, 

previous works have also reported that damage to the right and not only to the left 

hemisphere can lead to phonological dyslexia (Derouesne & Beauvois, 1985; Job & 

Sartori, 1984) (see paragraph 1.3.2.2, Chapter 1). 

 

The purpose of the present investigation is to follow up the study of Rapcsak et al. with 

patients having a different aetiology, namely cerebral tumours (Shallice & Skrap, 

2010), and to investigate not only left hemisphere patients but also right hemisphere 

ones.  In addition, the nature of the errors made by patients will be investigated, 

contrasting errors where the order of the letter units is not respected, that is 

transpositions, omissions or insertions, with ones where letter substitutions occur, but 

qualitatively appropriate spatial processing of the letter units has taken place. As the 

aim of the work is to enable functional comparisons to be made between anatomically 

defined groups, a fixed anatomical grouping procedure is used to allow functional 

inferences to take place across the multiple measures (see Shallice & Cooper, 2011). 

This is difficult or impossible to do with measures such as VLSM or VBM, where the 

anatomical specification of the critical lesions is conducted separately for each measure. 

 

Finally, the present study also aims at describing the existence of perseverative 

phenomena in patients with phonological alexia. Perseveration, an inappropriate 

repetition of an earlier response, has been often reported in brain-damaged patients in 

both spontaneous speech and naming tasks (Sandson & Albert, 1984; Cohen & 

Dehaene, 1998; Papagno & Basso, 1996). For example, in an object-naming task, after 

naming correctly the picture of a cat, the patient can perseverate (saying ‗cat‘) in the 

following items, when a different response is expected (for instance when a mouse is 

presented). Perseverative errors, which can be observed in a wide range of verbal and 

non-verbal tasks, have also been found in reading tasks (Halpern, 1965; Shallice & 

Warrington, 1977; Hirsh, 1998; Caccappolo-van Vliet et al., 2003). Perseverative errors 

will tend to increase when similar stimuli are used. By manipulating the order of 

presentation of words and nonwords in the reading list in this fashion, we aimed at 

inducing perseverative errors in our patient groups.  
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 6.2 Materials and Methods 

Patients 

72 patients less than 70 years old who were being operated for a cerebral tumour in the 

left or right prefrontal, premotor and parieto-occipital regions of the brain were tested in 

the Neurosurgery Department (Santa Maria della Misericordia Hospital, Udine). 

Patients were assigned to the posterior group (Post) if the lesion primarily involved the 

parietal and the occipital cortex, but not the motor, premotor or prefrontal cortices. 

Those with lesions of the motor, premotor and prefrontal cortices have been included in 

the anterior group (Ant). In all patients the tumour macroscopically determined in the 

MRI scan was removed. Of these 72 patients, 14 were excluded for the following 

reasons: (i) multiple or bilateral lesions (n=1); (ii) recurrence of the tumour (n=1); (iii) 

aphasia (n=12). All the remaining 58 patients underwent the experimental assessment 

within one week of their operation. In these patient groups, 36 patients had a lesion in 

the anterior regions of the brain (19 left, 17 right) and 22 in the posterior ones (6 left, 16 

right). The mean age and educational level were respectively 48.81(SD: 15.20) and 12 

(SD 5.04) years. The mean lesion size was 47.97 ml (SD=39.59).  

 

In addition, eight subjects free from any neurological and psychiatric disorder but with 

a lumbar disc disease participated in the experiment as control subjects (mean 

age=50.88 years, SD=11.07; mean educational level=10.25 years, SD=4.9). The four 

groups of brain tumour patients and the control group did not differ significantly with 

respect to age [F(4,61)=2.31, p=.068] or education [F(4,61)=.65, p =.63). Moreover, no 

significant differences were observed when we compared the lesion size between 

groups [F(3,54)=.22, p =.88]. See Table 1 for the clinical details and Figure 1 for lesion 

overlapping. 
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Figure 1. Overlapping lesion reconstructions for each of the four groups of brain tumour patients. 

The lighter the colour the higher the number of patients within that group who have that brain area 

damaged. L ant= left anterior, R ant= right anterior, L post= left posterior, R post= right posterior.  

 

 

Stimulus presentation 

A 15-inch resistive high-resolution touch screen (3M) and a personal computer 

(Pentium 4, 3 GHz) were used for the presentation of the stimuli and to record the 

response of participants. All patients sat in a normally lit room at a viewing distance of 

60 cm from the display. The eyes of the patients were positioned at the level of the 

centre of the display.  

 

The task started with a fixation cross and 200 msec after an upper case word (W) or a 

nonword (NW) was displayed on the monitor. The stimuli were located at the center of 

the display and presented horizontally. The stimuli remained visible for 2s after the 

onset of the response of the patients, who were required to read the target aloud. The 

1 1 

1 1 
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linguistic material consisted of a list containing 32 words and 32 nonwords. The same 

set of linguistic material and the same order of stimuli presentation were used for all the 

participants. The length of the stimuli was 4, 6, 8 and 10 letters long. The stimuli were 

presented according to an ABBA design (W-NW-NW-W), in which each nonword was 

directly related to the previous or subsequent word. Thus, the nonwords were derived 

from words by modifying the order of the letters while maintaining orthographic and 

phonological plausibility [e.g. Word: PATATA (English  potato), Nonword: 

TAPATA]. The pairing was constructed in such way in order to induce perseverations.  

 

Data analysis 

Initially, the average number of (i) words (W), (ii) nonwords (NW), and (iii) the 

difference between nonwords and words (NW-W) was calculated and contrasted among 

the four patient groups (left anterior, L Ant; right anterior, R Ant, left posterior, L Post, 

right posterior, R Post) and control (Ctrl) groups. The performance of each group of 

patient was also directly compared with the controls, by using a Bonferroni correction 

of p =.0125.  

 

If significant effects were observed at this level, we further investigated whether the 

nature of the nonword reading errors was qualitatively different in the impaired groups 

and if there were significant effects of hemisphere. With respect to the types of error 

patients made, four different error subcategories were defined. Omitting, inserting or 

changing the position of one or more letters in the real words or nonwords were 

considered to be positional errors (e.g., OTRA  ‗‗ota‘‘, ‗‗otara‘‘ or ‗‗orta‘‘), whereas 

substitution errors (e.g., TAPATA  ‗‗tepata‘‘) were those in which the number of the 

letters was the same, but the patient erroneously substituted one or more letters. When 

no response was obtained, the error was classified as a no response. If the reading error 

made by the participant did not fulfil the previous three criteria, the response of the 

patient was labelled as complex (e.g., GADONA  ‗‗ganonana‘‘). Then, a subsequent 

analysis examined the number of perseveration and lexicalisation errors.  

 

The raw data were first checked for normality using the Kolmogorov-Smirnov test and 

for homogeneity of variance by applying the Levene test. As the data were not normally 

distributed, non-parametric tests were used. The results were considered significant if 

the p value was <.05. All the significance tests were two-tailed. 
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6.3 Results 

Word and nonword errors 

When contrasting the number of errors among the four groups of patients and the 

controls, a significant difference was found in the total number of NONWORD errors 

(Kruskal Wallis tests, x
2
=14.51, p=.006) and the difference NONWORD minus WORD 

errors (Kruskal Wallis tests, x
2
=14.54, p=.006). No significant difference between the 

groups was observed for the number of WORD errors (Kruskal Wallis tests, x
2
=4.24, 

p=.374) (Figure 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Number of reading errors (means and standard errors) as a function of condition (word 

and nonwords) and patient group. In order to be comparable with the number of errors in the nonword 

list, the number of reading errors in words has been divided by 4. L ant= left anterior, R ant= right 

anterior, L post= left posterior, R post= right posterior.  

 

The left anterior, left posterior and the right posterior groups all made highly 

significantly more NONWORD errors than controls (Mann-Whitney test, L Ant vs. 

Ctrl: U=26.50; L Post vs. Ctrl: U=3, p=.005; R Post vs. Ctrl: U=20, p=.006). The right 

anterior group was not significantly different from the controls on the NONWORD 

measure (Mann-Whitney test: U=40.50, p =.110). Moreover, the three ‗positive‘ groups 

showed equivalent effects on the NONWORD-WORD error measure (Mann-Whitney 
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test, L Ant vs. Ctrl: U=23, p=.004; L Post vs. Ctrl: U=2, p=.003; R Post vs. Ctrl: 

U=18.5, p=.004) (Figure 2). No significant differences were observed when we 

compared the number of WORD, NONWORD and NONWORD minus WORD errors 

between the left anterior vs. left posterior, left anterior vs. right posterior and left 

posterior vs. right posterior groups (in all cases, p>.15) and also when we contrasted the 

performance of the left anterior vs. left posterior vs. right posterior groups (Kruskal-

Wallis test, WORD: x
2
=.45, p=.800; NONWORD: x

2
=2.15, p=.342; NONWORD minus 

WORD: x
2
=1.89, p=.389). 

 

Since only the results of the left anterior, left posterior and the right posterior groups 

were significantly impaired on nonwords by comparison with controls, we took them as 

the impaired groups and investigated whether the nature of the nonword reading errors 

was qualitatively different among the three groups.  

 

Error subcategories 

Positional errors, substitutions, no responses and ‘other’ errors  

The overall results are shown in Table 2. To determine whether the types of errors made 

by the left anterior, left posterior and right posterior groups in reading nonwords were 

qualitatively different, we contrasted the performance among the three critical groups 

and the controls on a number of error types (see Table 3 for examples of each type of 

reading error).  
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As shown in Figure 3, an interesting pattern was observed with respect to the 

substitution and the positional errors. A significant difference between the four groups 

was found in the number of positional errors (Kruskal Wallis tests, x
2
=8.71, p=.033), 

substitutions (Kruskal Wallis tests, x
2
=9.44, p=.024), positional errors minus 

substitutions (Kruskal Wallis tests, x
2
=7.89, p=.048) and the complex errors (Kruskal 

Wallis tests, x
2
=9.81, p=.020).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Number 

of positional and 

substitution errors 

(means and standard 

errors) committed 

by the left anterior 

(L ant), left posterior 

(L post), right 

posterior (R post), 

right posterior with 

the two neglect 

patients out (R post-

N) and control (Ctrl) 

groups.  
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Post-hoc contrasts between the impaired group and the controls indicated that the right 

posterior group made a significantly higher number of positional errors (Mann-Whitney 

test, R Post vs. Ctrl: U=23, p=.011) but not substitutions than controls (Mann-Whitney 

test, U=41.5, p =.172). The right posterior group also made a significantly higher 

number of nonword reading errors in the complex category (Mann-Whitney test: U=28, 

p =.027). Similar analyses conducted on the left posterior group revealed that for them 

the number of substitutions and complex errors (Mann-Whitney test, substitutions: 

U=5.5, p =.013; complex: U=4; p =.008) but not positional errors (Mann-Whitney test: 

U=15, p =.282) were significantly higher than for the controls. When we compared the 

performance of the left anterior group to the controls, no significant effects were 

observed for the positional errors (Mann-Whitney test: U=43.5, p =.084), while a 

significant effect was found for both substitutions (Mann-Whitney test: U=32, p =.019) 

and the complex errors (Mann-Whitney test: U=36, p =.034).  

 

When the three impaired groups were compared, we observed that the number of 

positional errors minus substitutions differed significantly (Kruskal Wallis tests, L Ant 

vs. L Post vs. R post: x
2
=7.01, p =.030). Looking in more detail, we found that the left 

posterior group differed from the right posterior group on this measure (Mann-Whitney 

test, U=16.5, p =.017) and that the patients with a left anterior lesion did not differ from 

either left or right posterior groups (Mann-Whitney test, L Ant vs. L Post: U=28, p 

=.069; L Ant vs. R Post: U=114, p =.217). Taken together the analyses show that the 

left anterior, left posterior and right posterior groups were all impaired in reading 

nonwords, but with the error profiles being qualitatively different among the three 

groups and more specifically between the left posterior and the right posterior groups.  

 

Hemi-Space errors  

Additional analyses were performed to establish whether the misreading occurred more 

often on the left, right side of the nonword or on both sides. No significant differences 

were observed when comparing the number of errors in the first and second halves of 

the nonwords within each of the groups of patient (Wilcoxon Signed Ranks Test, L Ant: 

z=-.99, p =.318; L Post: z=-.730, p=.465; R Post: z=-.742, p =.458). Also by contrasting 

the number of nonwords in which errors occurred in the first half, in the second half or 

on both sides of the stimulus, no significant differences were observed among the three 
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impaired groups (Kruskal Wallis tests, first half: x
2
=3.46, p =.177; second half: x

2
=2.12, 

p =.346; both sides: x
2
=7.46, p =.689). The overall results are shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Number of nonword errors (means and standard errors) occurred in the first half, second 

half or on both sides as a function of patient group. L ant= left anterior, R ant= right anterior, L post= 

left posterior, R post= right posterior, R post-N= right posterior with the two neglect patients out, Ctrl= 

controls. 

 

These results are not what one would expect on the hypothesis that the right posterior 

pattern derives from neglect dyslexia, where a first-half effect would be expected. 

However, when considering the number of omissions in reading nonwords among the 

three impaired groups we found a significant effect in the first half of nonwords 

(Kruskal Wallis tests, first half: x
2
=7.38, p =.025). Patients with a right posterior lesion 

made a significantly higher number of omissions in the first half of the word with 

respect to the left anterior group (Whitney test, R post vs. L ant, first half: U=86, p 

=.029), but not with respect to the left posterior group (Whitney test, R post vs. L post, 

first half: U=31, p =.231). The results on the standard neglect tests are shown in Table 

4.  
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Now, the omissions are the standard way in which neglect dyslexia manifests itself with 

Italian readers (Ladavas, Shallice & Zanella, 1997a). At an individual level, two right 

posterior patients (Rpost1 and Rpost2) did indeed omit the first half of words or 

nonwords on 10 and 3 trials respectively (e.g. RARBUCANTI  ‗‗ucanti‘‘, TITOLO 

 ‗‗tolo‘‘). The two patients made only omissions and complex errors. They differed 

from the other right posterior patients in showing clear signs of neglect dyslexia. When 

these two patients were removed from the analyses, there was still a significant effect 

for the right posterior group compared with the controls in showing a higher number of 

positional errors (Mann-Whitney test, R Post vs. Ctrl: U=23, p =.024) and a significant 

difference in positional errors minus substitution when comparing the left and the right 

posterior groups (Mann-Whitney test, R Post vs. L Post: U=16.5, p =.033).  

 

One right parietal case shows the non-neglect form of right parietal phonological alexia 

particularly clearly. This patient – RPa12 - had a lesion involving mainly Brodmann 

Areas 7 and 40. He read the words 100% correctly but pronounceable nonwords only 

47% correctly.  Of the errors, 4 affected the first half of the word only, 4 only the 

second half, and 9 both halves.  4 of the errors were omissions, 2 in the first half of the 

word and 2 in the second. 4 were order errors. There was 1 insertion and 4 substitutions. 

The complete corpus of his errors is given in Table 5. 
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Perseverations 

We investigated whether a higher incidence of perseverations occurred for each of the 

left anterior, left posterior and right posterior groups. Taking into account the number of 

nonword perseverations and using a criterion of three standard deviation above the 

mean of the healthy controls, we observed that 3 out of 6 left parietal patients made a 

higher number of perseverative errors. The number of patients with perseverations was 

insignificantly lower for the left anterior (4 out of 19) and right posterior groups (3 out 

16) (Chi-Square test, x
2
= 2.53, p= .28). 

 

Lexicalisations 

Lexicalisations occurred only in a small proportion of the stimuli for the left anterior, 

left posterior and the right posterior groups, for example SAPOTE  ‗‗sapone’’ 

(English – soap).  By using the same criterion of three standard deviations above the 

controls mean, we observed that 4 out of 19 left anterior, 1 out of 6 left posterior and 3 

out of 16 right posterior patients made a higher number of lexicalisations. This result 

was not statistically significant (Chi-Square test, x
2
= 0.07, p= .97). 

 

 

6.4 Discussion 

The results need to be considered in three different contexts.  The first is whether they 

support the findings of Rapcsak et al. (2009) who were the first to examine the 

incidence of phonological alexia systematically in a group of left hemisphere patients.  

The second concerns they way in which we could explain the possible occurrence of 

phonological alexia following right parietal lesions.  The third concerns the implication 

of these findings for models of the normal reading system. 

 

As far as the first issue is concerned, the results obtained from patients with a lesion of 

the left hemisphere replicate those reported by Rapcsak et al. Similarly, we observed 

that at a group level, lesions involving the left anterior and left posterior cortical regions 

significantly affect the phonological ability of patients who, as a group, produce a 

higher number of errors on orthographically and phonologically legal nonwords 

compared with normal controls, but there is no such effect with words. However, what 
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it is new with respect to the group study of Rapcsak et al. is that not only a left 

hemisphere lesion, but also a right posterior one can lead to phonological dyslexia. 

 

Right parietal patients made significantly more errors than normal subjects on reading 

nonwords.  Indeed, as far as nonword reading is concerned, they made more than six 

times as many errors, on average, as do normal subjects; and have the second highest 

error rate of the four groups of patients.  However, it should be noted that while their 

word reading errors were not significantly higher than those of the controls, they also 

made on average six times as many word reading errors as controls, and were again the 

second-highest of the patient groups in this respect.  Thus for the overall reading errors 

alone, one cannot rule out the possibility that the high rates of nonword reading errors 

in the group, just reflect a general reading impairment combined with the generally 

greater difficulty of nonwords over words. 

 

If we look in more detail at the nature of the reading errors, however, any single factor 

account becomes implausible.  In particular, the number of substitution errors is 

significantly greater in the left posterior and the left anterior groups than the controls 

but not for the right posterior group. By contrast, what we have called positional errors 

are significantly greater in the right posterior group only. Moreover, the rate of 

positional minus substitution errors differs significantly across the three groups. 

However, the pattern found in the right parietal group is in fact quite similar to that of 

the left anterior group and the controls; it is the left parietal group that has the unusual 

pattern.   

 

Rapcsak et al. account for their findings in terms of a "general phonological deficit in 

patients with perisylvian lesions (which) produces enlarged lexicality effects across all 

language tasks" (p. 586). As far as the left hemisphere results are concerned, the lack of 

a significant difference between the error patterns of the left posterior and left anterior 

groups means that this hypothesis is not refuted by our findings.  However, the overall 

results suggest that it is the left posterior group that stands out as far as its error pattern 

is concerned. What is clear is that phonological alexia is a common symptom pattern 

following right parietal lesions as well as left hemisphere ones and it is very implausible 

that the "general phonological deficit‖ could be extended to that group too.  Thus any 

attempt to explain phonological alexia in terms of a single locus of impairment in the 
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model of the reading system, such as in the phonological processing parts of the speech 

output system, or as a general phonological deficit can only capture one of a number of 

qualitatively different impairments.   

 

Why, though, should the right parietal group produce as many errors with nonwords as 

it does? It is well known that right parietal lesions give rise to a wide range of spatial 

processing disturbances. Indeed, one of these is unilateral spatial neglect, in which 

patients fail to respond and orient to stimuli presented in the contralesional (left) 

hemispace. Neglect can be observed in different tasks, including reading. One of the 

most investigated reading disorders frequently co-occurring with unilateral spatial 

neglect is neglect dyslexia. Many experimental studies concerning with reading list of 

words and nonwords have reported findings that right hemisphere injured patients omit 

or misread letters on the left part of the stimulus (Kinsbourne & Warrington, 1962; 

Ladavas et al., 1997a, Ladavas et al., 1997b; Arduino et al., 2002; Vallar, Burani & 

Arduino, 2010 for a review). Moreover in neglect dyslexia words can often be read 

better than nonwords (e.g. Riddoch et al., 1990; Hillis & Caramazza 1995b; Ladavas et 

al., 1997a). Thus, one possibility is that the effects can be explained in terms of neglect 

dyslexia. However, when the possible hemispatial reading effects were taken into 

account, no significant difference were observed among the groups for errors occurring 

in the first half of the nonword (pp. 144-147). Clear signs of neglect dyslexia – on 

omissions - were indeed only observed in 2 out of 16 right posterior patients in the 

present study. When these two neglect dyslexia patients were removed from the 

analysis, no overall change in other aspects of the pattern of results was found. 

 

Errors other than clear neglect dyslexic ones are much higher in the right parietal group 

than in the control group, so one appears to also have genuine phonological alexia not 

attributable to neglect in the right parietal group.  Given that the right parietal area does 

not make a major contribution to phonological processing, some other source of 

processing difficulty is presumably involved.   

 

One possibility that must be considered is that the effects can result in some way from 

disorders of eye movements or of remapping after a saccade. Some tasks have been 

held to lead to a right hemisphere effect on eye movement control, particularly with 

respect to the double step saccade task. Thus, in an initial report, Heide et al. (1996) 



 151 

held that patients with parietal lesions were impaired in remapping contralesional 

saccades, but gave no lateralisation effects; in a later paper they argued ―our data 

confirm the key role of the posterior parietal cortex in the analysis of space with a 

dominance of the right hemisphere‖ (Heide and Kompf, 1997, p 166). However, these 

effects were observed when saccades were made after the target had been turned off. 

Other possibilities could include some forms of word crowding effect on reading 

(Crutch and Warrington, 2009), although as far as we know no lateralisation effects 

have been described with the syndrome. 

 

Procedure for translating letter strings into speech must segment the letter strings and 

produce an ordering of the segments.  If, as has been argued in the Introduction, the 

right parietal lobe is concerned with representing qualitative spatial relations between 

objects in the visual array, then the process of ordering segments in the letter string 

could well be parasitic on this spatial process, with individual graphemes corresponding 

to objects.  In this case, transpositions, insertions, particularly of letters occurring 

elsewhere in the string and omissions, which collectively we have called positional 

errors, are to be expected. As we have seen, lesions to the right posterior region produce 

not only high rates of errors in reading nonwords but also, by comparison with control 

subjects, an excess of positional errors. As word reading does not lead to a high rate of 

errors in these patients, it can be presumed that the reading of words is less parasitic on 

the same process of representing the qualitative spatial relation between objects.  

 

If this line of argument is accepted, this suggests that, at least for multisyllabic strings, 

nonwords are read by a different procedure from words. This would appear to support 

the position of two separate procedures being involved in the non-semantic mapping of 

orthographic onto phonological representations, one being for whole word units and the 

other for the segmented components of the letter string. This is of course the position of 

three-route theorists such as Coltheart (1978), Morton and Patterson (1980), Coltheart 

et al. (1993, 2001), Zorzi et al. (1998) (see also Shallice & McCarthy, 1985; Norris, 

1994). However, it would be premature to argue that these findings are necessarily in 

conflict with two-route theories such as that of Plaut et al. (1996). Such models were 

initially developed to deal with monosyllabic words only. When they are elaborated to 

deal with multisyllabic words, the model almost necessarily becomes more complex. 

Thus Sibley et al. (2008) and Sibley, Kello & Seidenberg (2010) have developed a 
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model where the basic inputs to a single undifferentiated 3-layer phonological route, 

which takes the place of the orthographic-to-phonological net of Plaut et al. model, are 

representations of letter sequences.  The letter sequence representations themselves are 

learned from a preceding 3-level Elman-type network, which takes as input individual 

letter-forms. Intuitively, it is not at all clear, how damage to the main network could 

give rise to positional errors.  However, until the effect of damage to such networks is 

examined computationally, one cannot definitively say that this would not occur (see 

also Pagliuca & Monaghan, 2010). 
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                                                                                      Chapter 7 

 

General Discussion   
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7.1 Summary of the project  

Many of the daily activity such as passing an object to a friend, picking up a cup of tea 

involve spatial representations. Although we interact with objects in space apparently 

without effort, the cognitive system is faced with several types of problem, which have 

to be promptly solved. The main purpose of this thesis was to investigate the cognitive 

processes and the neural substrates of representing and processing spatial information, 

as required by different spatial tasks. To this end a neuropsychological approach has 

been adopted. In particular, we made use of patients who have been operated for a 

unilateral cerebral tumour involving the left or the right prefrontal, premotor and 

parietal cortices. In detail, we tried to extend our knowledge on the mechanisms 

underlying (i) direct and corrected reaching (Chapter 2), (ii) the integration of spatial 

and temporal information (Chapters 3 and 4), (iii) the ability to mentally rotate an 

object (Chapter 5) and to (iv) qualitatively structure the spatial relations between letters 

in words and non-words (Chapter 6). 

 

The research reported resulted in the following contributions: 

1. Neuropsychological data suggest that setting the trajectory and signalling the 

need to update the hand trajectory in flight might require two anatomically and 

functionally distinct systems; 

2. Behavioural data on both normal adults and brain tumour patients suggest that 

the right posterior cortex is crucial for integrating spatial and temporal 

information, even if a subsidiary role of the left posterior cortex is accepted; 

3. Neuropsychological data showed that the right posterior cortex is critically 

involved in the processing of categorical information as required in a mental 

rotation task; 

4. Results from patients with lesions involving the right posterior cortex suggest 

that this brain region is probably necessary for segmenting and spatially 

organizing letters in non-words.  

 

In the next sections we will provide a detailed summary of each of these findings. 

 

 

 



 156 

7.1.1 Reaching in near space 

The specific goal of Chapter 2 was to investigate the cognitive and neural mechanisms 

underlying the ability to reach to an object in near space. In particular, we aimed at 

investigating whether processes such as reaching to a target located in central vision, to 

the periphery or performing fast changes of the hand trajectory are behaviorally and 

anatomically dissociable.  

 

In the first experiment we required patients operated for a brain tumour in the left or 

right prefrontal, premotor and parietal cortices to point as accurately as possible to 

peripheral stimuli, while continuing to fixate the cross at the center of the display. The 

analysis of their overall accuracy corroborated many earlier studies in showing that the 

parietal patients were less accurate than the non-parietals in pointing to targets to the 

periphery. Moreover, a hemifield effect was observed, with right parietals being less 

accurate in the left (contralateral) hemifield, and the left parietal patients being less 

accurate in the right (contralateral) one. These results are clearly in line with the 

literature about optic ataxia, which is thought to mainly manifest as a reaching disorder 

toward extrafoveal targets following a posterior parietal cortex lesion (Perenin & 

Vighetto, 1988; Carey et al., 2002; Buxbaum & Coslett, 1998; Rossetti et al., 2003; 

Shallice et al., 2010). A second experiment investigated the neural correlates of in-flight 

hand movement corrections in the same brain tumour population. In this work, we 

presented patients with a static target and asked them to point to it, as quickly and 

accurate as possible. On about the 30% of the trials the initial position of the target was 

suddenly shifted about 5 degrees left, right, up or down at the movemnt onset, thus 

requiring a correction of the hand path. First, we observed that compared to the non-

parietals, patients with a lesion involving the parietal cortex were less accurate in the 

non-shift (foveal) condition and had larger shift costs. The incidence of patients having 

abnormal shift costs in the left hemispace was higher for right parietal patients than the 

other group combined. Second, reduced shift costs for accuracy and higher shift costs 

for movement times were observed in the premotor group compared to non-premotor 

patients. Given the results of the parietal patients in Experiment 1 (extrafoveal pointing) 

and 2 (automatic pilot task), we next investigated whether the performance of the 

parietal group dissociate or not at a behavioural level.   
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Foveal vs. Extrafoveal reaching 

Previous studies suggested that optic ataxic patients are impaired in extrafoveal 

reaching, but often they are without evident movement disorders in central vision. Only 

few works suggest that both disorders can coexist in the same patient (Perenin & 

Vighetto, 1988; Buxbaum & Coslett, 1998). However, what the previous researchers on 

optic ataxia have neglected is that in general the control subjects are more accurate at 

reaching to foveally presented than non-foveal targets. Therefore, if one also takes into 

account the performance of control subjects by the use of z-scores (as we did in the 

present work), it can be observed that there are almost as many patients showing 

misreaching in central as in peripheral vision. In our reserach, the result was also 

strengthened by the strong positive correlation we found in the parietal group between 

the accuracy in the non-shift (foveal) condition and the accuracy in the extrafoveal task.  

 

Extrafoveal vs. Shift costs 

In contrast, in the current literature on optic ataxia what has been claimed to be 

associated is the misreaching to the periphery and the concomitant deficit in adjusting 

the hand trajectory in flight (Pisella et al., 2000; Blangero et al., 2008). For instance, in 

a recent study Blangero and colleagues (2008) required the optic ataxia patient CF to 

reach as accurate as possible to a target presented to the left or the right peripheral 

visual field. In contrast to his spared performance in central vision, CF was found to be 

significantly impaired when the hand movement was directed toward the left 

(controlateral) peripheral targets, especially when the left hand was used. The same 

pattern of results was also observed in an automatic pilot task (Pisella et al., 2000), 

where the target suddenty jumped to the ataxic or the healthy peripheral visual field at 

the movement onset. CF showed only slightly corrections when the target jumped to the 

periphery in the ataxic visual field. Moreover, the rare movements that he could correct 

were anticipated by a saccade, which brought the target in central vision. In summary, 

in contrast to his normal performance in foveal reaching, CF was significantly less 

accurate when the target was presented to the left (extrafoveal condition) or jumped 

(automatic pilot task) to his left ataxic visual field. In other words, foveal and 

extrafoveal reaching appear to dissociate at a behavioral level, whereas reaching to 

peripheral targets and adjusting the hand trajectory in flight can reflect the activity of 

the same module. Blangero and colleagues claimed that what is damaged in CF is the 

module responsible for reaching targets acquired in peripheral vision (for extrafoveal 
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and automatic pilot tasks, located in the POJ), whereas the one subserving central vision 

(located in the mIPS) is intact.  

 

Our study does not support the claim of Blangero and collegues. Indeed, a strong 

positive correlation between reaching to the periphery and reaching to foveal targets 

was found in parietal patients, suggesting the existence of similar mechanims. By 

contrast, what dissociated were extrafoveal reaching and the ability to modify the hand 

trajectory on-line. Indeed, there was absolutely no correlation across parietal patients 

between the two measures, which gave rise to classical double dissociations at an 

individual level. The results are clearly in contrast with the position of Blangero et al. 

(2008) and suggest that the processes involved in reaching to the periphery and in 

adpting motor trajectory on-line require two at least partially segregated neural systems.  

 

Inaccuracy to central and peripheral targets vs inability to adjust the hand 

trajectory on-line: possible interpretation 

Recently, a cell recording study has adressed the question of the role of the motor, 

premotor and parietal cortex in fast corrections of hand trajectory (Archambault et al., 

2011).  By examining the hand trajectories of monkeys during direct and corrected 

reaches, the authors showed that the PPC seems to be prefentially involved in the 

estimation of the kinematics and in the implementation of the online adjustment, 

whereas the PMd provided the signal to update the motor command toward a suddently 

change of the position of the target.  The results we found in brain tumour patients fit 

with the existence of two such distinct systems in reaching. One system, located in the 

posterior parietal lobe, would be engaged in the determination of the movement 

trajectory. Damage to this system would result in less accurate reaching movements in 

both (foveal) non-shift and extrafoveal tasks, as frequently occured in our parietal 

patients. However, since the spatial resolution provided by visual stimuli in the 

periphery is much lower than in central vision, impairments in extrafoveal condition 

might be observed more frequently than those observed in central vision, and also for 

shift costs. Indeed, since the movement of the target to the new shifted position 

(Experiment 2) was relatively small (only 5 degress), the resources required by the 

trajectory setting system would be much closer to those needed in the non-shift 

condition. The second system would be located in the premotor cortex and would be 

recruited to suppress the initiated motor trajectory or to signal the need to update the 
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hand trajectory. Damage to the premotor cortex should then cause a slowing in shift 

costs for movement times, as we found in the premotor group. Moreover, disconnection 

between the first (estimation of the kinematics of the motor periphery) and the second 

(higher order command for the correction) system should result in higher shift costs for 

accuracy.  

 

7.1.1.1 Suggestions for future research 

There are certain lines of research, which could better elucidate the interactions 

between systems for trajectory setting and trajectory updating. First, given the results 

we observed in the automatic pilot task (Experiment 2), it would be valiable to assess 

the effects of a lesion of the parietal and the premotor cortices on the shift costs when a 

signal calling for a change of movement direction is given earlier during the formation 

of a motor plan. In other words, the temporal dynamics of the trajectory updating could 

be better investigated in a future work, in which different shifting times are used. 

Moreover, the quality of the work could be improved by monitoring the path of the 

hand and the eye movements respectively with motion and eye tracking systems. For 

clinical reasons this would be better investigated in somewhat longer studies after 

operation than the studies conducted in this thesis. In this way we would be able to 

assess the important relation between the movement of the hand and the movement of 

the eyes.  

 

Second, one could use a behavioural paradigm in which reaching is made more difficult 

by the presence of obstacles. Patients could be asked to fixate and perform hand 

movements toward stationary targets (foveal simple condition). In the 30% of the trials, 

an obstacle could be presented between the hand of the subject and the target. A motion 

tracking systems could be used in order to record the hand trajectory, as well as some 

kinematic parameters such as the direction and the speed of the movement. Care should 

be taken about the choice of the position of the target in space (left vs. right hemispace) 

and the time at which the obstacle appears. In light of the model proposed by Blangero 

et al. (2008), patients who have no sign of foveal optic ataxia should not be impaired in 

such as task, since the target is not presented in the periphery. Conversely, on the 

Archambault et al. (2011) account, one would predict that a disconnection between the 

premotor and the parietal cortex would impair performance on the ‗obstacle‘ condition, 
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with no impairments in the classical foveal one (in this case the subcortical structures 

could be involved in setting up the kinematic parameters).  

A third aspect, which needs further investigation, is the possibility of hemispatial 

effects. Given the presence of the obstacle, in setting up the trajectory the brain needs 

also to take into account the spatial relations between the obstacle and the target, 

namely an allocentric-based representation. Therefore, a question might arise ‗can we 

observe different accuracy effects with respect to the position of the target and the 

obstacle in space‘?  

 

A fourth possible point concerns the cerebella activity. The potential role of the 

cerebellum in reaching has not been investigated in the present thesis. However, since 

the cerebellum is functionally connected to the frontal and parietal regions (Sasaki, 

1979) and it is involved in movement control as well in other cognitive functions (Ito, 

1984; Leiner et al., 1986; Sanes, Dimitrov & Hallet, 1990; Ivry et al., 2002), it would be 

interesting to assess whether the reaching impairments following cerebellum lesions are 

behaviourally distinct from those observed after damage to the parietal cortex.  

 

7.1.2 Brain correlates of spatio-temporal integration 

In three behavioural studies we required healthy subjects to predict the position of an 

invisible moving target, in order to investigate whether the performance of the subjects 

could take advantage from the hemipace in which the response occurs. Significantly 

more accurate responses were expected to occur in the left hemispace, given the 

suggested superiority of the right hemisphere in making spatio-temporal integrations 

(Walsh 2003). The results showed that subjects were significantly better in predicting 

the position of the target in the left hemispace than the right, independently of the 

direction of the movement of the target (Experiment 1, Chapter 3) and the hand used 

(Experiment 2, Chapter 3), nor of a spatial processing per se (Experiment 3, Chapter 3).  

We interpreted the results in terms of a superiority of the right hemisphere in integrating 

spatial and temporal information, as suggested by previous studies (Boulinguez et al., 

2003; Olivieri et al., 2009).  

 

More critically, the study on normal volunteers was conducted in parallel with a 

neuropsychological one to examine the lesion site critical for this process (Chapter 4). 

Thus, the specific propose of the lesion study was to assess whether the hemispatial 
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effects observed in healthy subjects would no longer be present in patients with damage 

to the right posterior cortex. As expected, the right posterior group was worse than the 

other groups combined in the left hemispace. On the other hand in general they were 

accurate as the other groups in the right hemispace. The latter result gives rise to an 

important question related to the specificity of the right posterior cortex in integrating 

spatial and temporal information. Indeed, if the right posterior cortex is the only 

structure involved in this computation, one cannot easily explain why the right posterior 

patients were not also impaired in the right hemispace. One possibility is given by a 

model in which both the left and the right hemisphere are involved in the combination 

of spatial and temporal information, but with different strengths. According to this 

model, two factors might operate on spatio-temporal integration. One is that the right 

hemisphere has greater resources than the left hemisphere and the second is that the 

systems in each hemisphere operate more efficiently for stimuli in the contralateral than 

the ipsilateral hemispace. On this model the right posterior patients will be significantly 

impaired in the left hemispace, but not in the right. On the other hand, a left posterior 

lesion would not result in an impaired performance, since the right posterior hemisphere 

has greater reasources compared to the left.  

 

7.1.2.1 Suggestions for future research 

In Chapter 4, we found that the right parietal patients were less accurate in the left 

hemispace, but as accurate as the other groups in the right. On the other hand, in the 

same way as the healthy controls and the frontal groups, the left parietal group was 

found to be more accurate in the left rather then the right hemispace. Given these 

results, we proposed a model in which both the left and the right hemisphere are 

involved in the computation of a combination of spatial and temporal information, but 

with the right one having greater resources for performing the task. However, the 

number of patients with a left posterior lesion was very small in our brain tumour 

population (N=5). Thus, it would be important to assess the reliability of these results 

with a larger number of left posterior patients. Moreover, questions can also be 

formulated on the specific task we used to investigate the combination of spatial 

temporal information.  Do the hemispatial effects relate to the superiority of the right 

posterior cortex in representing the objects spatial locations in allocentric frames of 

references? In order to answer to this question we think it would be beneficial to use a 

different type of prediction task, in which the response relies only on allocentric cues. 
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For instance, patients could be required to judge the time at which two moving visible 

objects would collide in the left or in the right hemispace, namely a task in which the 

spatial relations between the two objects has to be taken into account. If the right 

hemisphere is specifically engaged in allocentric representation, we might observe a 

poor performance for the right parietal patients only.  

 

7.1.3 Mental transformations in space 

Kosslyn et al. (1989) proposed that the representation of the spatial context in which 

objects lie involved two distinct processes: a categorical analysis, in which the spatial 

position of the object is represented in qualitative terms (e.g. left, right, up, down), and 

a metric analysis, in which the spatial relations among objects are represented in 

quantitative terms (e.g. distance and angles). On the basis of the response time of 

healthy subjects to a tachistoscopic presentation of visual stimuli, Kosslyn claimed that 

the metric processing involves the right hemisphre, whereas the categorical engages the 

left one. The latter would follow if categorical processing relates to language. However, 

the anatomical basis for the theoretical framework of Kosslyn and colleagues was 

questioned in two single case studies, which demonstrated that a specific disorder of 

categorical spatial representations followed a right and not a left hemiphere lesion in 

two cases (Bricolo et al., 2000; Toraldo & Shallice, 2004). By using a modified version 

of the Bricolo et al.‘s task (2000), we attempted to establish the cortical regions relevant 

for the categorical aspects of mental rotation transformations.  

 

In accordance with previous single-case neuropsychological investigations (Bricolo et 

al., 2000; Toraldo and Shallice, 2004), we found that patients with right and not left 

parietal cortex lesions had problems, which we interpreted as involving categorical 

spatial processing. In our task we required patients to remember the position of a dot 

with respect to an upright or a tilted frame of reference and physically to reproduce it 

inside a subsequent identical upright reference frame. It is likely that the patients did 

not use a matching strategy (mentally rotate the image until it is aligned, as used in the 

classical mental rotation task of Shepard and Metzler, 1971). Moreover, the use of an 

analogue process to mentally rotate the frame would not completely explain our results. 

If an analogue process had been used to solve the task, one could not explain why in the 

right parietal group the errors were mainly clustered in some categories (Reflections and 

Dimension errors) and not broadly distributed. Conversely, we propose that participants 
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could simply use object-centred and categorical spatial representations of the dot in 

relation to the spatial reference frame and could perform the rotation in a step-like 

manner. A failure of the object-centred or of the encoding of the categorical features 

encoding could therefore have been responsible for the deficits we observed in the right 

parietal group.  

 

On the other hand, with respect to the left prefrontal group, we found a broader mental 

transformation deficit, which resulted in a significant number of metrically incorrect 

responses in both the correct and the incorrect quadrants. This finding is in agreement 

with the study of Martin et al. (2008), who observed a strong recruitment of the 

attentional and executive process, especially when a metric coding was required. We 

currently favour the task setting hypothesis according to which left prefrontal patients 

would have a difficulty in acquiring the specific program necessary to organize the 

sequence of operations required to carry out the task. However, we consider such an 

interpretation as provisional and further investigation being needed, especially with 

respect to the representation of metric information.  

 

7.1.3.1 Suggestions for future research  

Chapter 5 showed that damage to the right posterior cortex affects the ability to encode 

and retrieve categorical information and provided no evidence in favour of a role in 

metric processing. In fact, the right parietal patients failed to process the qualitative 

spatial cues, without showing signs of impairment in processing metric representation. 

However, it is possible that some posterior patients, who made metric errors, have been 

missed in our study due to the group study approach or because of the restricted set of 

target position employed. Using a similar mental rotation task it would be interesting to 

find out whether a different set of stimuli would give rise to the same effects. For 

instance, one could use not only a set of 2D objects, but also 3D shapes, in order to ass 

possible neural differences. Another suggestion would be to investigate more 

systematically whether there are positions and/or sets of stimuli, which give rise to 

metric errors, other than for left anterior patients. A finding like that would increase the 

evidence for an influence of the right posterior cortex in allocentric/object centered 

spatial representation. Moreover, it would be interesting to find out the temporal 

dynamics of the metric and the categorical information. We speculated that one first 

carries out the categorical encoding of the position of the dot with respect to the object-
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centred axes and then accesses the metric information. This hypothesis may be tested in 

an electroencehalography (EEG) experiment. For instance, patients could be required to 

judge whether two subsequent stimuli are identical or not. In one condition, two images 

can be presented which differ in their metric aspects, but not in the categorical ones 

(e.g. the dot is always presented near to the left-top corner, but some distance below the 

original position). In the other one, we could present two images, which differ for a 

categorical aspect (e.g. same distance from the corner, in another part of the frame). We 

would expect an earlier activation of the right parietal cortex for the categorical cues. 

Conversely, a delayed electrophysiological response could be recorded for the metric 

information in both the right parietal cortex and the left anterior one. 

  

7.1.4 Phonological dyslexia: the role of the right posterior cortex 

Phonological dyslexia, originally described by Beauvois & Derouesne (1979) is 

characterized by a selective impairment in reading non-words, while at the same time 

words are read without any particular problem. Phonological dyslexia has been 

frequently observed in association to damage to a number of sites in the left dominant 

hemisphere (e.g. Rapcsak et al., 2009), but also in few individual cases following a 

right hemisphere lesion (Derouesne & Beauvois, 1985; Job & Sartori, 1984; Patterson, 

2000). By using an antomically based group study approach, we aimed at investigate 

further the role of the right hemisphere in reading. In particular, we assed whether the 

right posterior cortex could play a critical role in segmenting and spatially organizing 

letters within words and non-words. Thus, we reasoned that if the right posterior cortex 

is engaged in the representation of spatial relationships between objects (as considered 

in Chapter 5), reading impairments might also occur in reading non-words, where 

representation of the letter sequence is critical. Indeed, althought in processing a word, 

any putative ordering can be supported by units that categorise the word-form as a 

whole (Morton, 1969; McClelland & Rumelhart, 1981), in pronounceable nonwords the 

ordering of letters lacks this top-down support and so damage to the sequence 

information could give rise to phonological dyslexia.  

   

In the study presented in Chapter 6 we required patients with a lesion involving the left 

or the right anterior or posterior cortex to read a list of words and pronounceable non-

words. The results are closely related to those recently documented by Rapcsak et al. 

(2009). Patients with a brain tumour involving the left anterior and the left posterior 
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cortices were significantly impaired in reading non-words compared to normal controls, 

but there was no such effect in reading words. However, more surprisingly, we 

observed that phonological dyslexia could arise not only from a left but also from a 

right posterior lesion. At a gross level, the performance of the left anterior, left posterior 

and the right posterior groups had similar characteristics. They produced a higher 

number of errors on orthographically and phonologically legal non-words compared 

with normal controls, but there was no such effect with words. However, on a more 

detailed investingation on the nature of the non-word reading errors, differences 

between their impairments emerged. Thus, we observed that with respect to the 

controls, the number of substitution errors was significantly higher in the left anterior 

and left posterior groups, whereas the positional errors (deletions, insertions and order 

errors) were larger in the right posterior patients. Critically, we claimed that neglect 

might not account for the reading deficits of the right posterior group. Indeed, at a 

group level no significant differences were observed between groups for errors 

occurring in the first half of the non-word. On the other hand, we suggest that what was 

significantly impaired in the right posterior group was the ability to structure the spatial 

relationships between letters. This suggests that, at least for multisyllabic strings, non-

words might be read by a different procedure from words, supporting the hypothesis of 

a 3 reading routes, a semantically mediated lexical route (for words), and two non-

semantic routes, one for processing whole word units and the other for the segmented 

components of the string.  

 

 7.1.4.1 Suggestions for future research  

 The overall account of the findings of Chapter 6 leaves some issues that need to be 

resolved in future work. For instance, the left anterior group shows a very similar error 

pattern to the right parietal group.  It is not clear why this should be. Possibly the left 

anterior group do not show sufficient care in implementing a nonword decomposition 

procedure, a somewhat similar interpretation to that we provide for the rotation errors 

they make (Chapter 5). However, the most basic and surprising findings, namely that 

phonological alexia arises frequently after right parietal lesions, and that in most such 

patients the pattern of errors seems to reflect an impairment of the process of 

segmenting and spatially organising the segmented units, strongly suggests that the 

reading aloud of nonwords, at least in Italian, involves processes that are not critically 

involved in the reading aloud of words. It would be interesting to investigate whether 
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the same pattern of results could be observed also in a similar ‗word-nonword‘ writing 

task. A finding like that would increase the evidence for the importance of the right 

parietal cortex in spatially organizing letters in a string.  

 

7.2 Discussion of the overall project  

In the thesis a large amount of data supporting the importance of the posterior parietal 

cortex in a number of different daily spatial tasks was provided. As we mentioned in the 

General Introduction, spatial representation involves at least two frames of reference, (i) 

an egocentric frame, where objects are represented with respect to the momentary 

location and orientation of the user and (ii) an object frame, in which the spatial 

relations between object parts are represented with respect to axes inherent to the object 

itself or the environment. The neuropsychological data presented in the thesis 

demonstrated that damage the posterior parietal cortex can disrupt the ability to 

combined spatial information in both egocentric and allocentric frames of references, 

with possible functional dissociations with respect to the hemisphere compromised.  

 

Previous studies suggested that damage to the posterior parietal cortex would severely 

affect the ability to combine the ocular and arm spatial information in a common 

egocentric frame (Lacquaniti et al., 1995; Lacquaniti, 1997), resulting in a specific 

reaching impairment (Battaglia-Mayer & Caminiti, 2002). Studies on patients with 

optic ataxia are especially pertinent in this context. Optic ataxic patients are impaired in 

localizing (via reaching) an object with respect to their body, that is a primary 

egocentric information. This naturally occurs when one has to reach to an object 

presented in central vision, to the periphery, as well as when the target suddenly moves 

to a new position at the movement onset. However, even though egocentric encoding 

alone is useful if one requires stationary ―snapshots‖ of an environment, when the 

object moves in space or when the spatial relationship between objects has to be taken 

into account, a real-time representation of the surroundings is also needed. In other 

word, the brain faces the necessity to process allocentric/object-centered spatial 

coordinates. One might argue that localising objects ‗via reaching‘ requires always an 

absolute or egocentric representation, whereas more cognitive tasks such as the one we 

used in Chapter 5 (mental rotation) can be executed accurately without egocentric 

localisation, on the basis of the spatial relationship between the dot and the square. 
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Previous studies suggested that there is parallel processing of egocentric and allocentric 

information in the parietal lobe and the hippocampal formation (Feigenbaum and 

Morris, 2004, Kesner, 2000; Waller & Hodgson, 2006; for a review on the topic see 

Burgess, 2008). However, behavioural differences could emerge with respect to the 

hemisphere compromised. Anatomically, Benton (1979) argued that an intact right 

hemisphere might be crucial for processing relative position information, but not 

absolute egocentric localization. In accordance with this claim, studies investigating the 

ability to encode spatial relationship have revealed a specific right hemisphere deficit in 

individual cases (Bricolo et al., 2000; Toraldo & Shallice, 2004), whereas studies 

investigating visuomotor deficits typically involved patients with left hemisphere 

involvement, but also right parietal patients were found to be impaired (Ratcliff and 

Davies-Jones, 1972; Perenin and Vighetto, 1988). Moreover, that there are differences 

in the hemispherical specialisation for egocentric and allocentric spatial information has 

also been supported by two fMRI studies, which revealed a bilateral fronto-parietal 

activation for egocentric representations and a right-sided parietal asymmetry for 

allocentric ones (Galati et al., 2000; Zaehle et al., 2007).   

 

In Chapter 2 we found that both the left and the right parietal patients were equally 

impaired in reaching to foveal and extrafoeval targets, thus suggesting that the systems 

involved in reaching are in general bilaterally distributed. This hypothesis is supported 

by the current literature on optic ataxia showing that both left and right parietal lesions 

can give rise to misreaching deficits (e.g. Perenin and Vighetto, 1988). However, 

regarding the shift costs for accuracy, we observed that the incidence of parietal patients 

having abnormal shift costs was higher for right parietal patients than the other groups 

combined. None of the left parietal patients showed abnormal shift costs, even than 

three of them showed abnormalities in foveal reaching. One possibility is that updating 

the hand trajectory in-flight requires both egocentric and allocentric spatial 

representations, with the former be implemented in both the left and the right 

hemisphere and the latter being a prerequisite of the right parietal cortex. However, 

since the movements of the target and of the hand are fast and the path very short, it 

seems more plausible that an allocentric representation is unlikely to be used. An 

alternative hypothesis is that the right parietal patients showed higher shift costs, 

because signalling the need of change the trajectory in flight involved specifically the 

right premotor cortex. It is conceivable that the left premotor cortex could be less 
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engaged in this process, because it might be more involved in language and particularly 

in action-selection processes of the contention scheduling type. Further investigations 

are needed to test these alternative hypotheses for why it is specifically right parietal 

patients that are selectively impaired in making adjustments of hand movements. 

There are other complex situations in which a simple viewer-centered reference frame 

account would be probabily insufficient to explain the poor performance of parietal 

patient, as when one is required to predict the position of an invisible moving target 

(Chapter 4). In this latter case the egocentric information (e.g. the retinal and extra-

retinal signals) needs to be supplemented by allocentric information (e.g. the 

surrounding space). A question naturally arises on what is the relation between the 

reaching impairments observed in parietal patients in the three basic reaching tasks and 

the inability to predict the next position of an object over time. Are the spatial disorders 

just two instances of a single more general visuomotor deficit in an egocentric frame of 

reference or does the latter task require different spatial representation? Intuitively, one 

could argue that the hemispatial effect observed in the right parietal patients in the 

prediction task (namely, a poor performance in the left hemispace) is just a reflection of 

a basic problem in using and combining egocentric coordinates for reaching in the left 

hemisphere. However, the errors were much larger in the prediction task than in the 

reaching task. The difference between the left and the right parietal patients was 0.87 

cm cm in the prediction task and about 0.3 cm in the three reaching conditions (foveal= 

0.27 cm, extrafoveal= 0.17, shift costs= 0.40 cm). Therefore, just adding a basic 

reaching impairment onto the other cognitive processes involved in spatio-temporal 

integration would not explain the space-time difficulty. One needs to consider what 

determines where one reaches when the target object is not visible. We suggest that 

predicting the position of an invisible moving target requires more than a spatial 

representation within a combination of egocentric coordinates (namely the position of 

the eyes, body and the hand). In this task an allocentric object-based representation can 

also be used for action planning. In accordance to what was claimed just above, we also 

propose that - object-centred and other allocentric representations of objects in the very 

local environment might also preferentially engage the right posterior hemisphere.  

 

In summary, the experimental data reported in the thesis seems to suggest that the right 

parietal lobe seems to be involved in disturbance of allocentric/object-centered spatial 

representation. In general, right parietal patients were found to be less accurate in 
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mentally rotating an object and taken into account object-referent relationships. The 

right parietal patients were also found to be much impaired than the other groups in 

updating the hand trajectory and predicting the next position of an invisible moving 

target in the left hemispace. As discussed before, both tasks require an allocentric 

spatial representation. Conversely, the right parietal cortex does not bear sole 

responsibility for the localization and reaching of single static points in space with 

respect to the viewer. In fact, data from the first two experiments showed that parietal 

lesions of either hemisphere produce a deficit in reaching to objects and patients who 

showed reaching difficulties did not always manifest problems with other spatial tasks 

(see Table 1).  

 

Table 1: Z-scores of left and right parietal patients as a function of the experimental condition. 

Since the dependent measures are not directly comparable, z-scores were computed for each task 

condition separately, based on the performance of the non-parietal groups. Cognitive impairment is 

defined as a z-score of more than 1.65, which is equivalent with p<.05. * Significant impairment. LPa= 

left parietal; RPa= right parietal; Lhsp= left hemsipace; RHsp=right hemispace; Cat=categorical error; 

Met= metrical error. 

 

 reaching 

spatio-

temporal 

mental 

rotation reading 

 Extrafoveal Non-Shift Shift costs LHsp RHsp Cat Met Positional 

         

LPa1 -1.19 1.61 -0.63 0.76 1.23 -0.18 -0.14  

LPa2 -0.98 1.31 0.16 0.30 -0.33   0.47 

LPa3 -0.52 0.41 0.65 -0.86 0.23   -0.47 

LPa4 1.41 2.19 * -0.08 -0.35 -0.88   0.47 

LPa5 3.83 * 6.82 * 0.18      

LPa6 0.58 2.35 * 0.52 -0.35  -0.18 -0.14 2.34 * 

RPa1 -0.33 2.27 * -1.31 -0.64 -0.50   -0.47 

RPa2 2.51 * 1.06 3.15 * 1.42 * -0.77   -0.47 

RPa3 7.14 * 5.98 * 2.88 * 3.59 * 0.45   0.47 

RPa4 6.24 * 4.13 * 11.57 * 4.17 * 1.84 * 2.40 * 0.31 2,34* 

RPa5 3.04 * 0.85 14.83 * -0.97 -0.43   0.47 

RPa6 0.31 1.42 2.00 * -0.13 -1.13   3.27 * 

RPa7 2.05 * 8.98 * 1.21 0.27 -0.53   -0.47 

RPa8 3.30 * 5.53 * -1.64     1.40 

RPa9 -0.45 1.51 -0.32     3.27 * 
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Unfortunately, for practical reasons, not all the patients were tested with all the spatial 

tasks we developed. In particular, for the mental rotation task a different population of 

brain tumour patients have been used (with the exception of 2 patients, one left and one 

right parietal). Therefore, we have only limited data showing the behavioural 

association and dissociation of impairments in the brain tumour population. However, 

regarding the hemispherical specialisation issue, at a group level there are signs 

suggesting that the reaching impairments may be unrelated to the impairments in more 

complex tasks requiring allocentric spatial processing. This is in accordance with 

previous studies, which showed that low-level sensory analysis are carried out equally 

well by either hemisphere, whereas when a more complex analysis of spatial 

components are required, the right hemisphere has a critical role (Moscovitch, 1979; 

Young & Ratcliff, 1983). 

 

 

7.3 Conclusions 

In conclusion, evidence from separate studies suggested that damage to the posterior 

parietal cortex can lead to distinct spatial disorders, ranging from more basic spatial 

impairments such as reaching and integrating spatial and temporal information, to more 

cognitive disorders such as the inability to mentally rotate an object in space and to 

structure the position of letters in non-words. With an anatomically based group study 

approach, we were able to confirm the results observed in the past by the use of 

different methods, and were also able to provide new insights on the mechanisms and 

the neural substrates underlying spatial processing. Understanding how all of these 

processes work together is possibly the next major task for researchers interested in 

spatial cognition.  
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