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Motivations of the thesis 

 

Alzheimer‟s disease (AD) is a progressive and fatal brain disorder, for which there is no cure. AD 

causes memory loss, steady deterioration of cognition, and dementia afflicting currently over 30 

million people worldwide. The incidence of AD is thought to triple approximately by 2050 (World 

Alzheimer Report 2010) (http://www.alz.org/). In parallel with this increase, the speed of drug 

research has accelerated noticeably over the last decades. However, the number of therapeutic 

options on the market remains severely narrow. No disease-modifying therapy is available yet, 

despite the intensive efforts to develop innovative medicines.
1
 At present, four drugs for AD have 

been approved by FDA. These drugs, however, are not able to alter or prevent disease progression. 

They are, instead, palliative in alleviating the symptoms of disease.
1
 

One of the major characteristic and pathological hallmarks of AD is represented by the senile 

plaques, whose main component is the amyloid-β peptide (Aβ). According to the amyloid 

hypothesis, the generation of Aβ is a key event of AD. Indeed, soluble Aβ is thought to undergo a 

conformational change into high β-sheet content, which renders it prone to aggregate into soluble 

oligomers Aβ and, then, to form toxic extra-cellular (proto)-fibrils, which initiate the pathogenic 

cascade.
2,3

 

The self-assembly of soluble proteins and peptides into β-sheet-rich oligomeric structures and 

insoluble fibrils is a hallmark of a large number of human diseases known as amyloid diseases. In 

particular, as in AD, small oligomeric assemblies of misfolded proteins have been identified in 

other neurodegenerative disorders: α-synuclein (involved in Parkinson‟s disease), huntingtin with 

extended polyglutamine stretches (involved in Huntington disease) and the prion protein (PrP, 

involved in transmissible and inherited spongiform encephalopathies).
4
 Drugs able to interfere 

within the fibrillization process may prevent and/or cure these diseases. However, experimental 

difficulties in the characterization of the early oligomers involved in the amyloid formation process, 

given their transient nature, have seriously hampered the application of rational drug design 

approaches to the inhibition of amyloid formation. 

The amyloidogenic pathway in AD, responsible for the generation of Aβ, has been experimentally 

defined, and inhibiting this process may affect the disease progression. Aβ is produced by 

sequential proteolytic cleavage of a large trans-membrane protein, the amyloid precursor protein 

(APP), by two proteases, β- and γ-secretase (the details are discussed in the Chapter 1). Therefore, 

β- and γ-secretase enzymes have been studied in depth in the search for their inhibitors as potential 

anti-AD drugs. So far, a β-secretase inhibitor, CTS-21666 from CoMentis, advanced up to Phase II 

clinical trials. Instead, a γ-secretase inhibitor, semagestat from Eli-Lilly, failed in Phase III clinical 

http://www.alz.org/
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trials because of lack of efficacy and increased risk of skin cancer.
5
 Thus, β- than γ-secretase has 

appeared to be a better target for drug discovery purposes.
6
 

The β-secretase APP cleaving enzyme (BACE-1) catalyzes the rate limiting step in the production 

of Aβ. BACE-1 is a member of the pepsin-like family of aspartyl proteases. It is a class I 

transmembrane protein consisting of an NH2-terminal protease domain structurally well-defined, a 

connecting strand, a transmembrane region, and a cytosolic domain.
7
 Moreover, localization, 

activity, and regulation of BACE-1 have been well investigated.
8
 Its mechanism has been studied in 

detail in our sector at SISSA.
9
 

BACE-1 is recognized as one of the most promising targets in the treatment of AD.
10

 Since its 

inhibition has been validated as a suitable therapeutic strategy to reduce the production of Aβ, there 

was a boom in the development of several chemical classes of compounds as BACE-1 inhibitors 

that have been discovered by means of different approaches (see more details in Chapter 2), such as 

high-throughput screening (HTS), fragment-based, and structure-based strategies.
11

 In particular, 

compared with traditional HTS, a significantly higher hit rate can be obtained by using a structure-

based approach, which can fully exploit the large amount of structural information related to 

BACE-1 and, at the same time, allows the researchers to contain the costs related to the drug 

discovery and development process. 

 

During my PhD project, I aimed at the discovery of novel BACE-1 inhibitors as potential anti-

Alzheimer drugs in a joint collaborative effort between SISSA and the Department of 

Pharmaceutical Sciences from the University of Bologna. To reach this aim, I adopted two different 

strategies: a rational structure-based drug design by molecular docking and a random search for new 

chemical entities (NCEs) by virtual screening (see Figure 1). 

 

 

Figure 1. The two main strategies employed here as starting point for the discovery of novel BACE-1 inhibitors 
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In the first strategy, I applied a rational structure-based approach to identify a new series of 2-

aminoimidazoles as BACE-1 inhibitors. Taking advantage of a microwave-assisted synthetic 

protocol, a small library of derivatives was obtained and biologically evaluated. Remarkably, two 

compounds showed low micromolar activities in both enzymatic (Prof. Andrisano‟s Lab - 

University of Bologna, Italy) and cellular assays (JSW Bio-company of Graz, Austria). Moreover, 

one of them exhibited the capability to cross the blood brain barrier in the parallel artificial 

membrane permeability assay (this work has been performed in the Prof. Martinez‟s Lab – CSIC of 

Madrid, Spain) (Chapter 4, Strategy 1). 

 

In the second strategy, I performed a sequential application of two different in silico screening 

approaches combined with bioassays (performed in the Prof. Andrisano‟s Lab) towards the 

identification of low molecular weight organic molecules as potential BACE-1 inhibitors. Two hits, 

having novel structural features and endowed with micromolar inhibitory potency were selected, 

and the binding mode of the most potent compound was further characterize through docking 

simulations (Chapter 4, Strategy 2). 

 

During my stay in Bologna, I have been also engaged in a project devoted to the identification of 

new multitarget-directed ligands (MTDLs) as an alternative way to develop effective anti-AD 

drugs. We generated a small library of new monomeric congeners, related to the anti-AD multi-

target lead candidate “memoquin”, and determined their polypharmacological profile against three 

molecular targets involved in AD pathology, namely acetylcholinesterase (AChE), Aβ and BACE-1 

(Prof. Andrisano‟s and JSW Labs). All these novel derivatives bind to AChE with similar low 

nanomolar affinities, and function as effective inhibitors of Aβ aggregation. The most potent 

monovalent ligand also inhibits BACE-1 in vitro and APP metabolism in primary chicken 

telencephalic neurons (Chapter 4, Strategy 3). 

 

Finally, in light of reported experimental evidences
12-14

 which showed possible correlations between 

AD and prion disease (PrD), we preliminarly tested selected 2-aminoimidazoles (see the Chapter 7), 

as potential anti-prion compounds. The cellular assays were carried out at the Prion Biology 

Laboratory of SISSA, headed by Prof. G. Legname. Two of them resulted to inhibit at low 

micromolar concentrations the PrP
Sc

 replication process. These preliminary results confirmed that: 

i) the 2-aminoimidazoles are “privileged structures” in the CNS medicinal chemistry; ii) it is 

reasonable to speculate that we might have the same therapy for two distinct neurodegenerative 

disorders, such as AD and PrD.
15
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Outlines of the thesis 

 

Chapter 1. Introduction to AD: genetics, epidemiology, molecular causes and therapeutic 

approaches. 

 

Chapter 2. Illustration of the enzyme BACE-1, its key role in the amyloidogenesis, structural 

features, function and its inhibitors. 

 

Chapter 3. A succinct survey of computational methods here used, namely molecular docking for 

the rational drug design, and molecular screening for a random search. 

 

Chapter 4. Description of strategies adopted towards the discovery of novel classes of BACE-1 

inhibitors as potential anti-AD drugs. 

 

Chapter 5. Concluding remarks and future perspectives. 

 

Chapter 6. Experimental section: computational studies; synthetic procedures, physical and 

spectroscopic characterization for intermediate and final compounds; description of experimental 

procedures adopted for biological evaluation of novel compounds reported and described in the 

Chapter 4. 

 

Chapter 7. An outlook at work in progress. 
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Chapter 1 

 

1. Alzheimer’s disease (AD) 

 

1.1. Introduction to AD 

 

AD stands out among the neurodegenerative diseases as one of the major leading cause of death in 

the developed countries and the most common cause of acquired dementia in the elderly population. 

Generally, AD leads to impairment of cognitive and memory function, communication problems, 

personality changes, erratic behaviour, dependence and loss of control over bodily functions. The 

common early symptoms of AD include confusion, disturbances in short-term memory, problems 

with attention and spatial orientation, changes in personality, language difficulties and unexplained 

mood swings. Although these symptoms will likely vary in severity and chronology, overlap and 

fluctuate, the overall progress of the disease is fairly predictable. On average, people live for 8 to 10 

years after diagnosis, but this terminal disease can last for as long as 20 years. AD does not affect 

every person the same way. Approximately by 2050, the incidence of AD is expected to triple 

(World Alzheimer Report 2010). AD has a dramatic consequence on quality of life for the sufferers 

and their families, and combination of direct and indirect costs in the treatment and care of 

Alzheimer‟s patients is tremendously increasing (http://www.alz.org/). In parallel with this increase, 

the speed of drug research has accelerated noticeably in the last decades. However, the number of 

therapeutic options on the market remains severely narrow. Currently, the registered drugs for AD 

are not able to alter or prevent disease progression.
1
 They are, instead, on the market approved for 

the treatment of disease symptoms. Several years after the discovery of AD, the scientific consensus 

is quite firm that although the pathogenesis of AD is not yet fully understood, it is a multi-factorial 

disease caused by genetic, environmental, and endogenous factors, as with the other 

neurodegenerative disorders. These factors include excessive protein misfolding and aggregation, 

often related to the ubiquitin-proteasomal system (UPS), oxidative stress and free radical formation, 

impaired bioenergetics and mitochondrial abnormalities, and neuroinflammatory processes. These 

insights, together with further ongoing discoveries about AD pathogenesis, have provided the 

rationale for therapies directly targeting AD molecular causes. New drug candidates with disease 

http://www.alz.org/
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modifying potential are now in the pipeline and have reached testing in clinical trials 

(http://www.neuroinvestment.com/). 

http://www.neuroinvestment.com/
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1.2. Genetics and epidemiology of AD 

 

Mutations in three genes, amyloid precursor protein (APP), presenilin 1 (PS1, also known as 

PSEN1) and PS2 (also known as PSEN2) respectively,
16

 and duplication of the APP gene
17

 all lead 

to early-onset autosomal dominant AD. From a therapeutic perspective, targeting the mechanisms 

of familial early-onset AD makes the implicit assumption that this disease is fundamentally similar 

to the common sporadic late-onset form. The genetics of the more common late-onset AD is an 

active area of investigation. The ε4 allele of the apolipoprotein E (APOE) gene has been identified 

as the major risk factor for late-onset AD.
18

 Exactly how the mutated genes or different isoforms are 

related to the increase of disease risk is not clear, and, at least in the case of the isoform APOE4, a 

consensus mechanism of pathogenesis has not emerged yet after the discovery of its role in AD. No 

specific environmental toxin has been found to be consistently associated with AD, and there have 

been no randomized clinical trials as yet to support any specific dietary intervention. 

Epidemiological evidences point to depression, traumatic head injury and cardiovascular and 

cerebrovascular factors (i. e. cigarette smoking, midlife high blood pressure, obesity and diabetes) 

as increasing disease risk, while anti-inflammatory medications seem to reduce risk. Some studies 

even suggest a beneficial role of psychosocial factors (for example, higher education, physical 

exercise and mental activity). Such studies may point to a role of previously unconsidered pathways 

in the aetiology of the disease, but the mechanistic interpretation of retrospective epidemiological 

studies is challenging. 
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1.3. Molecular causes of AD 

 

Since Alois Alzheimer‟s seminal report of November 1906,
19

 several scientists have considered the 

defining and main pathological hallmarks of the disease to be extracellular Aβ deposits in senile 

plaques and intracellular neurofibrillary tangles (NFT) (Figure 1.1), consisting mainly of paired 

helical filaments of abnormally hyper-phosphorylated τ protein. As the disease progresses, neuronal 

death appears. In particular, cholinergic neurons and synapses of the basal forebrain are selectively 

lost, accounting for the development of cognitive impairments. These findings constituted the 

premises for the so-called “cholinergic hypothesis”, which proposed cholinergic enhancement as an 

approach for improving cognitive function in AD.
20

 

 

 

Figure 1.1. The two main morphological lesions of AD: senile plaques (A) and neurofibrillary tangles (B), consisting of 

aggregates of Aβ and hyper-phosphorylated τ protein respectively. 

 

This approach has so far produced the majority of drugs approved for treating AD. Nowadays, 

compelling evidence suggests that the generation of Aβ is a key event in the pathogenesis of AD 

and that τ aggregation may be an important secondary event linked to neurodegeneration.
21

 

According to the “amyloid cascade hypothesis”,
2,3,22

 the generation of Aβ would happen from the 

sequential post-translational proteolysis of a large trans-membrane protein, the amyloid precursor 

protein (APP), and it would aggregate or deposit (or deposit and aggregate) in extracellular 

insoluble plaques. β-secretase generates the NH2-terminus of Aβ, cleaving APP to produce a soluble 

version of APP (β-APPs) and a 99-residue COOH-terminal fragment (C99) that remains membrane 

bound (Figure 1.2). Alternatively, α-secretase cuts within the Aβ region to produce α-APPs and an 

83-residue COOH-terminal fragment (C83). Both C99 and C83 are substrates for γ-secretase, which 

performs an unusual proteolysis in the middle of the trans-membrane domain to produce the 

amyloidogenic peptide Aβ from C99 and the not amyloidogenic one called p3 from C83 (Figure 1.2). 

Proteolysis by γ-secretase is heterogeneous: most of the full-length Aβ species produced is a 40-

residue peptide (Aβ40), whereas a small proportion is a 42-residue COOH-terminal variant (Aβ42). 
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The longer and more hydrophobic Aβ42 is much more prone to fibril formation than is Aβ40, and 

even though Aβ42 is a minor form of Aβ, it is the major Aβ species found in cerebral plaques. In 

addition to Aβ40 and Aβ42, one more isoform of Aβ exist, the 38-residue peptide (Aβ38), whose 

levels in AD patients resulted particularly increased in the cerebrospinal fluid (CSF).
23

 

 

 
Figure 1.2. The protein sequences are not drawn to scale. The transmembrane protein APP (membrane indicated in 

green) can be processed along two main pathways, the α-secretase pathway and the amyloid-forming β-secretase 

pathway. In the α-secretase pathway, α-secretase cleaves in the middle of the amyloid-β region (orange) to release a 

large soluble APP-fragment, α-APPs (blue). The carboxy (C)-terminal C83 peptide is metabolized to p3 by γ-secretase. 

In the amyloid-forming β-secretase pathway, β-secretase releases a large soluble fragment, β-APPs (blue). The C-

terminal C99 peptide is then cleaved by γ-secretase at several positions, leading to the formation of amyloid-β 40 (Aβ40) 

and the pathogenic amyloid-β 42 (Aβ42). γ-secretase cleavage also releases the APP intracellular domain (AICD), which 

could have a role in transcriptional regulation. The effects of β- and γ-secretase inhibitors can be distinguished in 

secondary assays: both inhibitor classes block the formation of pathogenic Aβ42, but β-secretase inhibitors also block 

the formation of β-APPs and C99, whereas γ -secretase inhibitors also block the formation of p3 and the APP C-terminal 

fragment (yellow), leading to accumulation of C99 and C83. 

 

Experimental evidences consolidated the “amyloid hypothesis” (Figures 1.3 and 1.4) showing that 

the amount of fibrillogenic Aβ is increased by the vast majority of mutations causing familial AD 

and that Aβ impairs neuronal functions in a variety of experimental models.
24

 Soluble Aβ is thought 

to undergo a conformational change to high β-sheet content, which renders it prone to aggregate 

into soluble oligomers and larger insoluble fibrils in plaques. (Figure 1.3) In this process, the 

fibrillogenic Aβ42 isoform triggers the misfolding of other Aβ species. Currently, the nature of the 

neurotoxic Aβ species is very difficult to define because monomers, soluble oligomers, insoluble 

oligomers, and insoluble amyloid fibrils are expected to accumulate and exist in dynamic 

equilibrium in the brain. Initially, only Aβ deposited in plaques was assumed to be neurotoxic, but 
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more recent findings suggest that soluble oligomers (Aβ-derived diffusible ligands or ADDLs) 

might be the central players. 

 

 

Figure 1.3. Aggregation process of Aβ peptide and subsequent formation of senile plaques 

 

 

Figure 1.4. The sequence of pathogenic events that are thought to lead to Alzheimer's disease (AD) is shown. The 

cascade is initiated by the generation of Aβ42. In familial early onset AD, Aβ42 is overproduced owing to pathogenic 

mutations. In sporadic AD, various factors can contribute to an increased load of Aβ42 oligomers and aggregates. Aβ 

oligomers might directly injure the synapses and neurites of brain neurons, in addition to activating microglia and 
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astrocytes. Tau pathology, which contributes substantially to the disease process through hyper-phosphorylated τ and 

tangles, is triggered by Aβ42. 

 

Afterward, Aβ may exert its neurotoxic effects in a variety of ways (Figure 1.4), including 

disruption of mitochondrial function via binding of the Aβ-binding alcohol dehydrogenase 

protein,
25

 induction of apoptotic genes through inhibition of Wnt
26

 and insulin signaling,
27

 

formation of ion channels,
28

 stimulation of the stress-activated protein kinases (SAPK) pathway
29

 or 

activation of microglia cells leading to the expression of pro-inflammatory genes, an increase in 

reactive oxygen species (ROS), and eventual neuronal toxicity and death.
30

 More recently, it has 

become clear that, in addition to forming extracellular aggregates, Aβ (or its precursor APP) has 

complicated intracellular effects involving a variety of subcellular organelles, including 

mitochondria. Mitochondrial APP has been shown to accumulate in the protein import channels of 

mitochondria of human AD brains, and this accumulation inhibits the entry of cytochrome c oxidase 

subunits proteins,
31

 with decreased activity of respiratory chain enzymes, increased free radical 

generation, and impaired reducing capacity. These data provide a potential explanation for the well-

established observation that mitochondrial function and energy metabolism are impaired early in 

AD.
32

 

NFTs are composed mainly of paired helical filaments (PHF) that contain an abnormal hyper-

phosphorylated form of the microtubule-associated protein τ. Phosphorylation within the 

microtubule binding domain of τ protein results in its reduced ability to stabilize microtubules 

assembly, leading to the disruption of neuronal transport and eventually to accelerated synaptic loss 

and cell death. Dephosphorylation of τ protein isolated from NFT restores its ability to bind with 

neuronal microtubules, indicating that the mechanisms regulating 

phosphorylation/dephosphorylation kinetics are perturbed in AD. The nature of protein kinases, 

phosphatases, and τ sites involved in this lesion has recently been elucidated, suggesting that 

activation of phosphoseryl/phosphothreonyl protein phosphatase-2A (PP-2A) or inhibition of both 

glycogen synthase kinase-3β (GSK-3β) and cyclin-dependent protein kinase 5 (cdk5) might be 

required to inhibit AD neurofibrillary degeneration.
33

 

Several other hypotheses have been proposed to explain the pathogenesis of AD, including 

oxidative stress, metal ion dyshomeostasis, and inflammation.
34

 In the context of such a complex 

disease, it is not trivial to state that these hypotheses are not mutually exclusive. Rather, they 

complement each other, intersecting at a high level of complexity. Oxidative damage is present 

within the brain of AD patients and is observed within every class of biological macromolecules, 

including nucleic acids, proteins, lipids, and carbohydrates.
35

 Oxidative injuries may develop 

secondary to excessive oxidative stress resulting from Aβ-induced free radicals, mitochondrial 
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abnormalities, inadequate energy supply, inflammation, or altered antioxidant defences. Oxidative 

stress is thought to have a causative role in the pathogenesis of AD.
36

 Support for this hypothesis 

has also been provided by the current notion that, while AD is probably associated with 

multifaceted aetiologies and pathogenic phenomena, all these mechanisms seem to share oxidative 

stress as a unifying factor. Strictly related to the oxidative damage hypothesis, there is general 

acceptance that redox active metals can contribute to excess production of damaging ROS through 

Fenton‟s chemistry.
37

 Besides creating oxidative stress, copper, together with other metal ions, 

influences the protein aggregation processes that are critical in most neurodegenerative diseases. 

For example, APP and Aβ are able to bind and reduce copper, which forms a high-affinity complex 

with Aβ, promoting its aggregation, and Aβ neurotoxicity depends on catalytically generated H2O2 

by Aβ-copper complexes in vitro. Moreover, copper, together with zinc and iron, is accumulated in 

the amyloid deposits of AD brains, which are partially disassembled by metal chelators. 

Finally, neuroinflammation of CNS cells has been recognized as an invariable feature of all 

neurodegenerative disorders. In AD, among CNS cells, microglia have received special interest. 

Microglia are activated by Aβ to produce cytokines, chemokines, and neurotoxins that are 

potentially toxic and therefore may contribute to neuronal degeneration. However, recent findings 

suggest that microglia may play a neuroprotective role in AD. This highlights the potential risk of 

using the inhibition of monocyte/macrophage recruitment as a therapeutic strategy and argues for 

caution in the pursuit of this approach.
38

 Despite this, modulation of inflammation is one of the 

most dynamic areas in the search for new therapeutic targets for AD and related neurodegenerative 

disorders.
39
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1.4. Current AD therapies 

 

Among the previously mentioned hypotheses, the cholinergic one is the oldest. It has also had the 

strongest influence on the development of clinical treatment strategies. In fact, in 1993, it led to the 

introduction of the acetylcholinesterase inhibitor (AChEI) tacrine (1), the first drug to be approved 

for the treatment of AD, not longer used because of its hepatotoxicity. Later, three other AChEIs, 

donepezil (2), galantamine (3), and rivastigmine (4) reached the market, becoming the standard for 

AD therapy, only later complemented by memantine (5), a non-competitive NMDA antagonist 

(Figure 1.5). Not with standing the diffused clinical practice, the debate on whether or not AChEIs 

are effective medications continues. Although beneficial in improving cognitive, behavioural, and 

functional impairments, they seem unable to address the molecular mechanisms that underlie the 

pathogenic processes. Current AD drug development programs focus primarily on agents with anti-

amyloid disease-modifying properties. Many different pharmacological approaches to reducing 

amyloid pathology and tauopathy are being studied. 

 

 

Figure 1.5. Chemical structures of the five drugs available for AD treatment (mechanisms of action are indicated in 

parentheses). 
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1.5. Aβ-based therapeutic approaches 

 

Genetic and pathological evidence strongly supports the amyloid cascade hypothesis of AD, which 

states that Aβ, a proteolytic derivative of the large trans-membrane protein APP, and in particular 

the least soluble 42 amino-acid long Aβ42 isoform, have an early and vital role in all forms of AD. 

Key experimental evidences support a crucial role of Aβ in the pathogenesis of AD: i) amyloid 

deposits provide early pathological evidence of AD and neuritic plaques are a key diagnostic 

criterion; ii) in peripheral amyloidoses (unrelated to Aβ and AD), amyloid burden drives tissue 

dysfunction, thereby suggesting that brain amyloid is pathogenic as well; iii) Aβ oligomers show 

acute synaptic toxicity effects, whereas plaque-derived Aβ fibrils have pro-inflammatory effects and 

cause neuronal toxicity; iv) the most important genetic risk factor, APOE4, is associated with 

increased amyloid burden; v) most importantly, all mutations that cause familial early-onset AD 

increase Aβ42 production or the ratio of Aβ42 compared to the less aggregation-prone Aβ40 isoform. 

All these mutations directly enhance amyloidogenic APP processing: APP mutations by changing 

the substrate properties of APP and PSEN mutations by changing the properties of the γ-secretase 

complex. Based on this evidence, several Aβ-targeted therapeutic strategies are being pursued, 

including: (I) modulation of Aβ production; (II) inhibition of Aβ aggregation; (III) enhancement of 

Aβ degradation; (IV) immunotherapy targeted at Aβ. 

 

(I) Modulation of Aβ production 

The post-traslational APP processing pathway outlines immediately three radical strategies to 

reduce Aβ generation: α-secretase stimulation, β- and γ-secretase inhibition. 

 

(i) α-secretase stimulation 

α-secretase pathway stimulation might lead to a reduction of the APP substrates available for Aβ 

formation, activating non-amyloidogenic αAPPs. Moreover, α-secretase is stimulated also by 

AChEIs via selective muscarinic activation inducing the translation of APP mRNA with the final 

goal of restricting amyloid fibre assembly. Three members of the ADAM family (“a disintegrin and 

metalloproteinase”) ADAM-10, ADAM-17 and ADAM-9 have been proposed as α-secretases. To 

date, it is accepted that each of these enzymes acts as a physiologically relevant α-secretase. Genetic 

studies revealed that ADAM-10 is a key protein involved in neurogenesis and axonal extension.
40,41

 

This underlines the positive, neuroprotective role of ADAM-10 and, thus, of α-secretase like 

cleavage activity in the metabolic processing of APP. In addition to ADAMs, other membrane-

associated metalloproteinases could contribute to the shedding of APP. Stimulation of α-secretase 
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activities can be achieved via several signalling cascades including phospholipase C, 

phosphatidylinositol 3-kinase and serine/threonine-specific kinases such as protein kinases C, and 

mitogen activated protein kinases. Direct activation of protein kinase C and stimulation of distinct 

G protein-coupled receptors are known to increase α-secretase processing of APP.
42

 Agonists for 

M1 muscarinic receptors and serotonin 5-HT receptors are currently in clinical trials to test their 

efficiency in the treatment of AD.
43,44

 

 

(ii) β-secretase inhibition 

β-secretase, also called BACE-1 is a membrane bound aspartic protease specifically abundant in 

brain, which forms, together with its homologue BACE-2, a new branch of the pepsin family.
45

 The 

enzyme catalyzes the cleavage of APP to produce N-terminus of Aβ peptides. The data suggesting 

BACE-1 is the enzyme relevant to AD-related APP processing are strong, and have recently been 

reviewed along with other aspect of BACE-1 biology.
46

 BACE-1 inhibition holds promise for the 

production of safe anti-amyloid therapy, as transgenic mice lacking the BACE gene produce little or 

no Aβ, and do not display any robust negative phenotype.
47,48

 For these reasons, BACE-1 appears to 

be an excellent drug target, even if the absence of toxicity in mice does not prove absence of human 

toxicity. Although the biology of BACE-1 inhibition seems to be a promising line in inquiry, 

development of compounds able to inhibit this enzyme is proving to be challenging.
10

 Research 

aimed at the discovery of BACE-1 inhibitors has been strengthened by the large amount of 

available information, particularly, on the proteasic domain which has structurally well-defined 

opening new opportunities for a rational drug design. 

 

(iii) γ-secretase inhibition and modulation 

γ-secretase is responsible for the final cut of the APP to produce the Aβ peptide implicated in the 

pathogenesis of AD. Thus, this protease has resulted a drug target for the development of anti-AD 

therapeutics. γ-secretase is a complex of four different integral membrane proteins, with the multi-

pass presenilin being the catalytic component of a novel intramembrane-cleaving aspartyl protease. 

Several inhibitors of the γ-secretase complex have been identified, including peptidomimetics that 

block the active site, helical peptides that interact with the initial substrate docking site, and drug-

like compounds. To date, one peptidomimetic γ-secretase inhibitor (DAPT) has advanced into late-

phase clinical trials for the treatment of AD, but serious concerns remain. γ-secretase cleaves other 

substrates besides APP, the most notorious being the Notch receptor that is required for many cell 

differentiation events. Because proteolysis of Notch by γ-secretase is essential for Notch signalling, 

interference with this process by γ-secretase inhibitors can cause severe toxicities. γ-secretase 
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inhibitors may cause abnormalities in the gastrointestinal tract, thymus and spleen in rodents. Thus, 

the potential of γ-secretase as therapeutic target likely depends on the ability to selectively inhibit 

Aβ production without hindering Notch proteolysis. Unfortunately, recently, semagacestat, a γ-

secretase inhibitor, failed in Phase III clinical trials for AD showing no evidence of beneficial 

effects and the increase in the risk of skin cancer.
5
 The discovery of compounds capable of such 

allosteric modulation of the protease activity has revived γ-secretase as an attractive target. 

Structural modifications of these γ-secretase modulators have allowed to discover and advance 

novel compounds in clinical trials, renewing interest in γ-secretase as therapeutic target. Small 

molecules, that shift Aβ42 to shorter Aβ species, were discovered while investigating the mechanism 

for the reduced prevalence of AD among users of non-steroidal anti-inflammatory drugs 

(NSAIDs).
49

 Subsequent studies have shown that some NSAIDs are able to modulate Aβ synthesis 

by binding γ-secretase and, despite this mechanism, without interfering with Notch metabolism. As 

a result of this, some of these NSAIDs have recently advanced up to the clinical trials 

(http://www.neuroinvestment.com/). However, recently, R-flurbiprofen developed by Myriad (the 

enantiomer of the NSAID flurbiprofen that has almost no COX activity) culminated in the largest 

18-month Phase III clinical trial in AD completed so far. 

 

(II) Inhibition of Aβ-aggregation 

Small amounts of the various Aβ isoforms are constitutively generated by neurons. Monomeric Aβ 

molecules, in particular Aβ42, can form oligomeric aggregates that are thought to initiate the 

pathogenic cascade. Initially, it was assumed that only Aβ that had aggregated into the large fibrils 

that constitute the mature neuritic amyloid plaques would exert toxic properties. However, in recent 

years small soluble oligomeric assemblies of Aβ have attracted a lot of attention, as it was 

demonstrated that they can directly induce synaptic dysfunction. The exact nature of the pathogenic 

oligomeric species remains unclear and a consensus pathogenic oligomer assembly mechanism has 

not yet emerged.
50

 Nevertheless, in principle, developing brain penetrable small-molecule drugs that 

interfere with Aβ–Aβ peptide interactions seems an alternative approach. If the peptide interactions 

are the same in oligomers and in larger fibrils, then such molecules could inhibit both the formation 

of toxic oligomers and of neuritic plaques. If the peptide–peptide interactions were different in both 

aggregates, then one could theoretically identify molecules that interfere with just one or the other 

process. In this case, the assay set-up would be a key experiment to find molecules that block only 

formation of oligomers or molecules that block only formation of large fibrils. In the 1990s, several 

different assay formats for the identification of nucleation and deposition inhibitors that would 

block the formation of large fibrils were described. However, very few aggregation inhibitors have 

http://www.neuroinvestment.com/


 22 

moved into clinical testing. One can only speculate whether it was simply not feasible to generate 

potent drug-like molecules that block Aβ–Aβ peptide interactions in a specific manner or whether 

decision-makers felt uncomfortable committing to this unvalidated mechanism of action for a drug. 

Tramiprosate from Neurochem, able to bind to Aβ monomers and maintain it in a non-fibrillar 

form,
51

 progressed into large Phase III trials, but without beneficial effects. Drawing mechanistic 

conclusions from this trial is difficult, because it is not known whether the drug blocked Aβ 

aggregation in the brain. Aβ42 reduction in cerebrospinal fluid had been reported in a previous Phase 

II trial of the drug,
52

 but whether this represents a desirable pharmacodynamic effect of an 

aggregation inhibitor is not clear. A different class of molecule, cyclohexanehexol isomers, has 

been suggested to stabilize Aβ into non-toxic conformers and inhibit Aβ fibrils assembly in vitro, 

translating into the amelioration of several AD-related phenotypes in APP transgenic mice.
53

 

Currently, Elan is testing one of these isomers, elND005, in Phase II trials for AD. Another 

approach to interfere with toxic Aβ species is based on the notion that trace metals, in particular 

zinc and copper, contribute to amyloid pathology.
54

 This has led to the investigation of orally 

available brain-penetrant „metal–protein attenuating compounds‟. The first of these compounds, 

clioquinol, has been reported to drastically reduce amyloid pathology in APP transgenic mice.
55

 

Prana is advancing a second-generation compound, PBT2, in Phase II trials.
56

 

 

(III) Enhancement of Aβ-degradation 

The strategy aimed at stimulating Aβ degradation represents an additional approach to decrease 

levels of Aβ oligomers. In particular, in the last years, several key enzymes involved in Aβ 

degradation have been identified, most notably the proteases neprilysin, insulin-degrading enzyme 

and plasmin.
57

 From a drug development perspective, specific activation of enzymes is much more 

challenging than inhibition. Indeed, researchers from Wyeth, in contrast to the difficulty to directly 

activate a protease, have aimed at blocking the inhibitor of a protease necessary for activating an 

Aβ-degrading enzyme. On the basis of experimental evidences showing that plasmin cleaves Aβ in 

vitro and that tissue plasminogen 

 activator (required to generate plasmin from plasminogen) is inhibited in vivo by plasminogen 

activator inhibitor 1 (PAI-1), orally available PAI-1 inhibitors lowering plasma and brain Aβ levels 

in transgenic mice have been generated.
58

 In addition, an other strategy is based on targeting 

proteins involved in the transport from CNS to periphery (or viceversa) where Aβ can be 

degradated. In fact, other two potential targets, the receptor for advanced glycation end products 

(RAGe, also called AGeR), which mediates the influx of Aβ from peripherical sites into the brain, 

and the low-density lipoprotein receptor-related protein 1 (lRP-1), which mediates efflux of Aβ 
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from the brain, have been proposed to dominate Aβ transport at the BBB. Moreover, Aβ–RAGe 

interactions have been proposed to activate nuclear factor-κB signalling pathways, which may 

promote apoptosis and inflammatory responses.
59

 If this model is correct, a RAGe inhibitor could 

lower amyloid load in the brain and also block the other detrimental effects of Aβ–RAGe signalling. 

In according to these findings, Pfizer is currently testing an orally bio-available RAGe inhibitor in 

Phase II trials for mild to moderate AD. 

 

(IV) Anti-Aβ immunotherapy 

Anti-Aβ immunotherapy for AD has received considerable attention over the past few years, and 

more than ten immunotherapeutic agents have entered clinical trials. Currently, three of these are in 

Phase III trials: Elan‟s bapineuzumab (humanized 3D6), Lilly‟s solanezumab (humanized 266) and 

Baxter‟s intravenous immunoglobulin G (IvIG), a preparation of human serum immunoglobulin 

that contains naturally occurring antibodies directed against Aβ.
60

 

Generally, four models of antibody-mediated amyloid clearance, which are not mutually exclusive, 

have been proposed: i) small amounts of amyloid-specific antibodies reach amyloid deposits in the 

brain and trigger a phagocytic response by microglia;
61-65

 ii) amyloid-specific antibodies reach 

amyloid deposits in the brain and resolve them directly through interaction of the antibody with the 

amyloid deposit;
66

 iii) amyloid-specific antibodies act as a peripheral sink for soluble Aβ species, 

leading ultimately to the resolution of brain deposits by pulling soluble Aβ into the periphery, where 

it is rapidly cleared; iv) amyloid-specific antibodies rapidly bind to oligomeric Aβ species, blocking 

their toxic effects without immediate impact on amyloid load. 

As immunotherapy is at the crossroads of immunology and the nervous system, a deeper 

understanding of the Aβ peptide clearance mechanism may lead to an optimized therapeutic 

approach to the treatment of AD. Antibodies generated with the first-generation vaccine might not 

have the desired therapeutic properties to target the "correct" mechanism, however, new 

immunological approaches are now under consideration. 
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1.6. Alternative therapeutic approaches 

 

Hyper-phosphorylated tau (τ) protein and τ -based therapeutics 

Together with the senile plaques, the intra-cellular NFT, which consist of paired helical filaments of 

hyper-phosphorylated and conformationally altered τ protein, are the main pathological hallmarks 

of AD. τ and tangle pathology are also present in a number of other disorders such as Pick‟s disease, 

progressive supranuclear palsy, corticobasal degeneration and motor neuron diseases. However, 

there is a strong correlation between cognitive dysfunction and tangle load and localization in AD.
67

 

τ binds and stabilizes microtubules, while its hyper-phosphorylated in AD brain disrupt microtubule 

structure. The presence of NFT in AD and their correlation with cognitive status suggest an 

important role in dementia. Phosphorylation within the microtubule binding domain of τ results in 

its reduced ability to stabilize microtubules assembly, leading to the disruption of neuronal transport 

and eventually to faster synaptic loss and cell death. De-phosphorylation of τ isolated from NFT 

restores its ability to bind with neuronal microtubules, indicating that the mechanisms regulating 

phosphorylation or de-phosphorylation kinetics are perturbed in AD.  

Inhibition of τ aggregation and blockade of its hyper-phosphorylation are the main strategies which 

have being exploited. Inhibition of aggregation is conceptually more appealing, because there seems 

to be general consensus that τ aggregates are detrimental.
68

 However, as for Aβ peptide, from a drug 

development perspective anti-aggregation approaches pose a lot of challenges. Indeed, finding 

drug-like molecules that specifically disrupt protein–protein interactions over large interaction 

surfaces is theoretically very difficult, even though τ-specific hexapeptide motifs critically 

contribute to the overall aggregation process.
68

 In the case of anti-AD drugs, from a 

pharmacokinetic perspective the BBB penetration would represent additional hurdle for such 

molecules. Nonetheless, academic researchers are pursuing anti-τ aggregation strategies: screens 

have been run, hits have been identified and medicinal chemistry efforts have been initiated.
68

 

Strategies aimed at reducing τ hyper-phosphorylation, which appear to be more straightforward, are 

more widely pursued. Several drug target candidates have been proposed, including cyclin-

dependent kinase 5 activator 1 (CDK5R1), MAP/microtubule affinity-regulating kinase 1 (MARK-

1) and glycogen synthase kinase 3 (GSK-3), even if is not clear yet whether a single culprit kinase 

even exists. In particular some of these kinases have been investigated in preclinical studies by 

various companies, but, at present, no updates on clinical trials were presented. However the 

clinically most advanced τ-directed therapy is methylthioninium chloride (methylene blue), which 

has been reported to dissolve τ filaments isolated from AD brains in vitro and to prevent τ 

aggregation in cell-based models. Based on these findings, TauRx Therapeutics initiated a Phase II 
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placebo-controlled clinical trial in subjects with mild to moderate AD. Significant AD assessment 

scale-cognitive score differences relative to placebo were observed in the middle-dose group, but 

not in the low- and high-dose groups after 24 and 50 weeks of treatment, what the authors 

interpreted as evidence of arrested disease progression. 

 

Anti-inflammatory approaches 

Inflammation in CNS has been recognized as an invariable feature of all neurodegenerative 

disorders. However, there is currently no consensus about whether and how the inflammatory 

process in AD should be targeted therapeutically. Activated microglia are strongly associated with 

senile plaques and, in particular, many inflammatory mediators including prostaglandins, 

pentraxins, complement components, cytokines, chemokines, proteases and protease inhibitors are 

up-regulated in AD brains. This has led to the hypothesis that anti-inflammatory therapy could be 

beneficial, as also highlighted by lower incidence of AD in patients with arthritis, most of whom 

use NSAIDs. Statistical studies have shown a roughly 50% reduction in AD risk in long-term users 

of NSAIDs and warranted their testing in clinical trials for AD. However, COX2-selective 

compounds celecoxib and rofecoxib, and of the mixed COX1/COX2 inhibitor naproxen, did not 

show any therapeutic benefit in clinical trials. In according to this, firstly, the data are consistent 

with the idea that NSAIDs and anti-inflammatory approaches in general work only in primary 

prevention of AD, not in treatment.
69

 Secondly, the trials may not have addressed the right 

molecular targets. In fact, it has been suggested that one should focus on COX1, because, in 

contrast to COX2, it is highly up-regulated in microglia. It was argued that doses in the naproxen 

trial were too low and that future trials should use full therapeutic doses of COX1-targeted NSAIDs 

despite the gastrointestinal side effects.
69

 In addition, NSAIDs have molecular targets in addition to 

COX, which may not have been optimally engaged in the previous trials. For example, specific 

activation of peroxisome proliferator-activated receptor-γ (PPARγ) elicits anti-amyloidogenic, anti-

inflammatory and insulin-sensitizing effects.
70

 However, the recent failure of rosiglitazone in large 

Phase III trials
70

 does not support further evaluation of this target in AD treatment. It has also been 

proposed that the epidemiologically promising NSAIDs, in contrast to the NSAIDs tested in large 

trials, show direct γ-secretase modulating activity (unrelated to their COX effects) and that this 

explains the failure of the NSAID trials and points to a direction for future development.
49

 Although 

inflammation plays a role AD pathology, an increasing number of preclinical studies suggest that 

some aspects of the immune response may actually be beneficial. 
71

 In AD, microglia probably 

phagocytose and clear Aβ, and ongoing clinical immuno therapy studies promise to improve 

microglial phagocytosis of Aβ, thus reducing amyloid pathology. Clearly, distinguishing and 



 26 

modulating beneficial and detrimental parts of the immune response in AD will be an exciting and 

challenging field for many years to come. 

 

APOE-related treatment approaches 

APOE is a major carrier of apolipoprotein and cholesterol in the brain. There are three major human 

isoforms, APOE2, APOE3 and APOE4, encoded by polymorphic alleles ε2, ε3 and ε4, 

respectively.
72

 Over all the possible genetic causes of AD, ε4 is the one involved in most cases.
73

 

However, because of the complex biological effects of APOE and its different isoforms, the 

development of APOE-related treatments is slow. The fact that ε4 is also a risk factor for a number 

of other conditions raises the question of whether an AD-specific molecular pathway even exists. 

The key question is whether ε4 is a risk factor because it has gained toxic properties with respect to 

ε3 or because it has lost beneficial ε3 function. Some investigators are pursuing different 

approaches to reduce toxic effects of APOE4. For example, by inhibiting a neuronal protease that, 

according to their model, generates a toxic APOE4 fragment or by developing „structural 

correctors‟, small molecules that would bind to APOE4 and block the intramolecular domain 

interaction that is characteristic of this isoform, thus converting it into an APOE3-like structure.
74

 

Others promote the idea that APOE4 has partially lost the beneficial function of APOE3, at least 

with respect to its involvement in the amyloid pathway. 
75

 Analyses of Aβ deposition in which 

APOE-knockout or human ε2-, ε3- or ε4-knock-in mice were cross-bred with APP transgenic mice 

showed that APOE3 caused less Aβ deposition than APOE4, and that APOE4 caused less Aβ 

deposition than the knockout mice.
75

 These results suggest that enhancing APOE expression could 

be a therapeutic strategy that could benefit anyone who carries at least one APOE3 allele.
76

 

Progression of APOE-directed treatment approaches into clinical trials has not been reported yet. 
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Chapter 2 

 

2. β-secretase APP cleaving enzyme (BACE-1) 

 

2.1. Biology, function and structural features of BACE-1 

 

Nowadays, the β-secretase APP cleaving enzyme, more commonly known in literature as BACE-1, 

is universally recognized as the protease which initiates the cleavage of APP at the β site and, as 

such, catalyses the rate limiting step in the production of Aβ. In the last years, this biological 

hypothesis was in depth studied and widely accepted by scientific community. Initially, the 

unknown enzyme cleaving APP at the beginning of Aβ, prior to aminoacid 1, was called β-

secretase. In 1992, the discovery of the Swedish APP (APPSWE) double mutation, located at -2 and -

1 (Lys670 → Asn; Met671 → Leu) of the site, where BACE-1 acts,
77

 and a cause of rare autosomal 

dominant forms of AD drew attention to the possibility that this mutation could cause AD by being 

more favourable to BACE-1 cleavage. This was substantiated in studies showing that APPSWE 

significantly enhanced the proteolytic activity of BACE-1causing a ~ 10 fold increase in Aβ 

production.
78

 

Several research groups applied an intensive search for identifying an aspartic protease fitting all 

the requirements for BACE-1, which was identified in 1999 and 2000.
45,79-82

 This protease was 

initially named memapsin-2, and Asp-2, though it is now more commonly known as BACE-1. After 

the discovery of BACE-1, a homologue was described and identified.
83

 The gene identified was 

named memapsin-1 and is also referred to as Asp-1, ALP-56, CDA-13, DRAP (Down‟s region 

aspartic protease), but now more commonly identified as BACE-2. Both BACE-1 and BACE-2 can 

process APP at the β-site, but BACE-2 has a preference to cleave the APP between aminoacids 19 

and 20 of the Aβ sequence, thus precluding Aβ formation. A number of studies provide strong 

evidence that BACE-1 is the major responsible for Aβ generation in the brain. Thus, BACE-1 

cleaves at the β and also the β‟ site (between aminoacid 10 and 11 of Aβ) of APP and has a higher 

preference to cleave APPSWE.
45,79-81

 

BACE-1 mRNA has highest expression levels in the mammalian brain,
84

 and is found in organelles 

of the secretory pathway
45

 displaying optimal activity at pH = 4.5,
85

 which is consistent with its 

detection in acidic organelles of the endosomes and trans-Golgi network (TGN) where Aβ is 
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predominantly generated.
78,86,87

 The most interesting discovery was to assess that targeted deletion 

of BACE-1 in APP transgenic mice completely abolishes the production and deposition of 

Aβ.
48,88,89

 BACE-1 and BACE-2 are the newest described members of the A1 aspartic protease 

family, commonly known as the pepsin family. Human aspartic proteases of this family also include 

pepsin, cathepsin-E, cathepsin-D, renin, pepsinogen-C and napsin. The BACE proteins represent a 

novel subgroup of this family, being the first reported aspartic proteases to contain a trans-

membrane domain and carboxyl terminal extension,
84

 and also possessing unique disulphide bridge 

distribution.
7,90

 The eight known functional human A1 aspartic proteases vary in genomic structure. 

The main features of A1 aspartic proteases are their bilobar structure, with an essential catalytic 

aspartic dyad located at the interface of the homologous N- and C-terminal lobes, with maximal 

enzyme activity occurring in an acidic environment. These Asp residues activate water molecules to 

mediate nucleophilic attack on the substrate peptide bond (see the general proteolysis mechanism 

for the aspartic proteases in Figure 2.1),
9
 and mutation of the catalytic active site aspartic residues 

abolishes enzyme activity. 

 

 

Figure 2.1. General reaction mechanism of aspartic proteases (APs). A general reaction mechanism for the chemical 

catalytic steps of APs. Starting from the lower-left angle and following the reaction clockwise: aspartic dyad in the free 

form, binding of the substrate, and nucleophilic attack of water; formation of the tetrahedral gem-diol intermediate; 

protonation of the nitrogen atom and formation of the products; release of the products and regeneration of the catalyst. 

 

For BACE-1 the catalytic dyad is represented by two aspartic acids, Asp32 and Asp228. A1 aspartic 

proteases are usually synthesised as inactive pre-pro-enzymes (zymogens), where pro-domain 

removal is necessary for enzymatic activity.
91

 In contrast to this, BACE-1 possesses enzymatic 

activity. It is synthesised with a pro-sequence that is rapidly removed during transit through the 

Golgi
92

 by the action of a furin-like convertase.
93

 BACE-1 is highly glycosylated,
94

 and its 
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carbohydrate chains may favour interaction with its substrate or with glycoproteins that help 

regulate its activity. All A1-aspartic proteases have six conserved Cys residues which form three 

disulphide bridges. BACE-1 disulphide bridges maintain correct folding and orientation of BACE, 

but are not vital to its enzymatic activity.
7,90

 In addition, the unique trans-membrane regions of 

BACE-1 and BACE-2 confer an evolutionary specialisation, allowing their sequestration to 

membranes of specific organelles and the plasma membrane. This serves to expose their catalytic 

lobes to the lumenal regions of vesicles such as endosomes or Golgi where the low pH environment 

sustains their optimal protease activity, while their C-termini are exposed to the cytoplasm, enabling 

post-translational modification and protein-protein interaction. Although very short, the cytoplasmic 

domain of BACE-1 plays an important role in orienting BACE-1 cellular trafficking and 

compartmentalization. BACE-1 resides in the trans-Golgi network (TGN) and in the endosomes, the 

main cellular sites of APP processing and Aβ production.
95

 As shown in Figure 2.2, after synthesis, 

BACE-1 resides in the endoplasmic reticulum (1) and is transported to the TGN (2). From this 

compartment, BACE-1 is transported to the plasma membrane (PM) (3) where a small proportion 

can undergo ectodomain compartment shedding (4). The majority of BACE-1 is internalized into 

endocytic compartments (EC) (5) where the acidic environment provides the optimal condition for 

the proteolysis of APP. From the endocytic compartments BACE-1 can be recycled to directly back 

to the cell surface (6a), transit to lysosomes for degradation (6b) or retrogradely to the TGN (6c) 

from where it can be trafficked back to the PM (7). It is also possible that BACE-1 can be 

transported directly from the TGN to endocytic compartments (8). 

 

 
Figure 2.2. Intracellular trafficking of the enzyme BACE-1 (see text for the discussion). 
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Insight into the three-dimensional structure of BACE-1 is vital to understanding how the enzyme 

works catalytically,
9
 and in developing inhibitors which block BACE-1 activity as a therapy for 

AD. X-Ray crystallography of BACE-1 has determined numerous structures of BACE-1 

complexes, and residues and regions that are important for substrate specificity and proteolysis.
96-99

 

To date, there are over 100 known structures of BACE-1 in complex with inhibitor, seven without 

inhibitor and one of BACE-2 in the protein data bank (http://www.pdb.org/pdb/home/home.do). 

The number of crystal structures of BACE-1 is evidence to the variety of compounds being tested as 

AD-modifying drug candidates. The X-ray structure of BACE-1 protease domain was first 

determined to 1.9 Å resolution, with BACE-1 bound to an eight residue transition state analogue 

inhibitor OM99-2 (Figure 2.3).
100

 

 

 
Figure 2.3. On the left, the chemical structure of BACE-1 inhibitor OM99-2 (6) with the constituent aminoacids and 

their subsite designations (the hydroxyethylene transition-state isostere is between P1 and P1'). On the right, a new 

cartoon model of the crystal structure of BACE-1 complexed to inhibitor OM99-2 (6) (PDB id: 1FKN).
100

 The N-lobe 

and C-lobe are blue and yellow, respectively, except the insertion loops, designated A to G in the C-lobe are magenta 

and the COOH-terminal extension is green. The inhibitor bound between the lobes is shown in red. 

 

OM99-2 (6) is a P4-P4‟ peptide (P4-P3-P2-P1*-P1‟-P2‟-P3‟-P4‟) based on the aminoacid 

composition of APPSWE (Glu-Val-Asn-Leu*Ala-Ala-Glu-Phe) but incorporating a non-cleavable 

hydroxyethylene isostere (*) at P1 and P1‟, blocking normal proteolytic BACE-1 cleavage between 

the P1 and P1‟ scissile bond (Figure 2.3). Further enzyme subsites were identified for BACE-1 with 

enzyme bound to other eight residues
98

 and longer transition state inhibitors,
99

 and the crystal 

structure of free BACE-1 has been studied.
96,97

 These crystal structure studies show BACE-1 has 

strong conservation when compared with A1 aspartic proteases, for which pepsin is prototypic, and 

also more recently with BACE-2.
101

 Ribbon diagrams of the 3D structure described for BACE-1, 

BACE-2 and pepsin, describing their major structural features, are reported in Figure 2.4. Regions 

http://www.pdb.org/pdb/home/home.do
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of commonality include: the conformation and location of the catalytic Asp dyad in the middle of 

the active site cleft at the interface between N- and C terminal lobes, and the shielding of the active 

site by a flexible antiparallel hairpin-loop, known as a flap.
100,101

 Overall accommodation of the 

eight peptide substrate (P1-P4) residues occurs at enzyme subsites (S1-S4) and P1‟-P4‟ at enzyme 

subsites S1‟-S4‟ in a similar way to other aspartic proteases. Thus, hydrogen bonds between the 

active site aspartates and 10 hydrogen bonds from different parts of the active site and flap bond to 

the substrate/inhibitor backbone in the active site cleft, with a high degree of conservation. There 

are key differences between the BACE-1 crystal structure and other aspartic proteases that may be 

exploited in design of novel and selective BACE-1 inhibitors. The most obvious difference is the 

larger molecular surface of BACE-1, due to the presence of five insertions (four loops and one 

helix) all in the C-terminal lobe, in addition to the presence of a 35 residue C-terminal extension, 

the latter being highly ordered in structure and possibly forming a stem with the trans-membrane 

domain.
100

 In addition, although the general organisation of the active site subsites is similar to 

other aspartic proteases, their specificity and conformation display key differences.
97,98,100

 

Moreover, the active site of BACE-1 is larger, having additional subsites (S5-S7), and although it 

works well with the eight substrate residues as is normal for other aspartic proteases, it can also 

accommodate a greater number of substrate residues.
102

 The larger opening of the active site occurs 

due to structural differences near subsites, and the absence of a constricting pepsin helix loop across 

from the active site.
97,98,100

 The S1 and S3 subsites consist mostly of hydrophobic residues and their 

conformations are very different to pepsin. S4 and S2 are much more hydrophilic than these 

subsites in other aspartic proteases, where S2 in BACE-1 and BACE-2 contains Arg (Arg235, 

Arg249, respectively), absent in other aspartic proteases and linked to more effective cleavage of 

APPSWE compared to normal APP.
100,101

 Subsites S5-S7 localise in the vicinity of the insertion 

helix, a region also absent in other A1 aspartyl proteases, and is believed to contribute to substrate 

recognition and transition state binding.
99

 The flexible flaps which cover the active sites of all A1 

aspartic protease contribute to hydrolytic specificity and substrate access, believed to open to allow 

substrate/inhibitor access, close when substrate/inhibitor is bound, and open to release hydrolytic 

products. However, the details of this mechanism are unclear. The BACE-1 flap position can differ 

by 4.5 Å – 7 Å at the tip when comparing free unbound enzyme (apo form) with enzyme bound to 

transition state inhibitor.
97,103

 A conserved aspartic protease Tyr71 residue in the tip of the flap 

forms hydrogen bonds with substrates/inhibitors at the P1 and P2‟ positions of BACE-1, thereby 

mechanistically sealing the flap shut.
97

 The open position is narrow and stabilised by intra-flap 

hydrogen bonds and a hydrogen bond with Tyr71 (Figure 2.4). A parallel side chain region in 

BACE-1 (and also in BACE-2), known as the third strand (see Figure 2.4), forms hydrogen bonds 
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with residues in the flap and active site residues, thereby influencing and stabilising the open or 

closed state of the enzyme.
97

 Another region of flexibility shared between BACE-1 and BACE-2, 

most likely important in recognition and processing of APP substrate, is known as the 10s loop,
101

 

which forms part of the hydrophobic S3 binding pocket (Figure 2.4). This region can also display 

flexible conformations in BACE-1 when comparing Apo and inhibitor complexed structures,
96,97,100

 

and displays subtle differences in aminoacid composition between BACE-1 and BACE-2 (Figure 

2.4) and may be involved in their substrate discrimination.
101

 

 

 
Figure 2.4. Structural features of BACE-1 compared to pepsin and BACE-2. Structures for pepsin (PDB id: 1PSN),

104
 

BACE-1 (PDB id: 1SGZ)
97

 and BACE-2 (PDB id: 2EWY)
101

 were obtained from the protein data bank. The shown 

cartoon illustrations underneath the ribbon structures represent the surface structures of each protein and a possible 

orientation of BACE-1 and BACE-2 to the membrane. The N-terminal lobes of pepsin, BACE-1 and BACE-2 are 

coloured gold, magenta and blue respectively, and the C-terminal catalytic lobes are coloured dark blue, dark grey and 

silver respectively. The flap regions of pepsin, BACE-1 and BACE-2 are shown in their respective colours of purple, 

green and wheat. The third-strands in BACE-1 and BACE-2 are shown adjacent to the flaps and coloured orange and 

beige respectively. The active site aspartates of each enzyme are coloured in red space fill. The BACE-1 and BACE-2 

insertion loops are indicated with arrow heads and the BACE-1 insertion helix is highlighted with a hatched circle. The 

dashed line in BACE-2 represents a disordered region in the BACE-2 crystal structure. 

 

Examination of the interaction of the P4-P4‟ peptide inhibitor based on the mutant aminoacid 

composition of APPSWE (Glu-Val-Asn-Leu*Ala-Ala-Glu- Phe) with active site of BACE-1 gives 

information about why this substrate displays a 60-fold increase in affinity of APPSWE over that of 
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normal wild-type APP to cause AD.
100

 Firstly, mutant P1-Leu is closely packed against P3-Val and 

both have considerable hydrophobic contacts with BACE-1, especially true for P1-Leu, part of 

which encompasses its interaction the Tyr71 at the flap tip. This hydrophobic interaction would 

likely be much more unfavourable with P1-Met in the normal APP substrate. Furthermore, the side-

chain of mutant P2-Asn is H-bonded to P4-Glu and interacts strongly with Arg296 within the S2 

subsite, both interactions would be much less favourable with the positively charged P2-Lys in 

normal APP. Together, the information gained on the unique structural features of BACE-1 through 

investigating crystal structure is lending to the rational design of inhibitor drugs,
105

 incorporating 

such information on unique subsite inhibitor interaction and flap control. Definitely, crystal 

structures of BACE-1 inhibitors complexes have revealed key features regarding the possible 

protein-ligand interactions, and information related to the nature of binding sites has been of critical 

importance in the design and development of inhibitors as potential anti-AD drug candidates. 
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2.2. BACE-1 inhibition 

 

Since BACE-1 has emerged as a promising target for the treatment of AD, its inhibition represents a 

possible therapeutic strategy to drastically reduce Aβ levels. 

Together with the experimental evidence showing that BACE-1 is the rate limiting enzyme in the 

production of Aβ peptide, a further proof supporting BACE-1 as a superior AD drug target is the 

finding that BACE-1 knock-out mice do not produce Aβ.
48,88,89

 In particular, BACE-1 null mice are 

fertile and exhibit relatively mild phenotypes such as hypo-myelination
106,107

 and schizophrenia-like 

behaviours,
108

 in contrast to mice with deficiencies in components of the γ-secretase complex. 

Indeed,
109

 mice deficient in presenilin-1,
110

 nicastrin,
111

 or APH-1
112

 all exhibit serious 

developmental defects and die at early embryonic stages because γ-secretase is required to process 

Notch, a signalling molecule that controls cell fate in embryonic and adult myelopoiesis.
113-115

 

Therefore, compared with γ-secretase, BACE-1 is viewed as a better drug target whose inhibition 

should cause less serious biological dysfunction. 

Moreover, though BACE-1 and BACE-2 share 59% homology and adopt a similar structural 

organization, the cross inhibition of BACE-2 by BACE-1 inhibitors is less of a concern. In fact, it 

has been shown that mice with a deficiency in BACE-2 are fertile and healthy.
116

 However, mice 

both BACE-1 and BACE-2 knock-out mice displayed an increased mortality risk. 

In light of these experimental evidences, in the last decade several drug discovery strategies have 

been actively exploited in the search for BACE-1 inhibitors as potential anti-AD drug candidates: i) 

substrate-based method and structure-based design, high-throughput screening and fragment-based 

lead generation. 

 

Substrate-based method and structure-based design 

Substrate-based methods have often been used as the starting point for developing aspartyl protease 

inhibitors. The first substrate-based BACE-1 inhibitor, P10–P4‟ StatVal, was developed by Elan 

Pharmaceuticals in order to purify BACE-1 from human brain homogenates.
79

 This peptidic 

inhibitor is a P1 (S)-statine substituted substrate analogue with an in vitro half-maximal inhibitory 

concentration (IC50) of ~ 30 nM. Shortly after the molecular cloning of BACE-1, Tang and Ghosh 

reported the crystal structure of BACE-1 in complex with the octapeptidic, hydroxyethylene (HE) 

isotere-based transition-state analogue inhibitor OM99-2 (6), which, as previously mentioned (see 

the previous section), was designed on the basis of aminoacidic sequence of APPSWE (Lys670 -> 

Asn; Met671 -> Leu).
100
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In spite of its excellent inhibitory potency in vitro (Ki = 1.6 nM), the bulky peptidic structure of 

OM99-2 (see Figure 2.3 in the previous section) precluded its application in vivo. Nevertheless, the 

crystallographic BACE-1/OM99-2 complex provided important molecular insights into the ligand 

binding interactions in the enzyme active site and significantly advanced the design and 

development for novel BACE-1 inhibitors. 

In parallel, a new octapeptidic BACE-1 inhibitor KMI-008 (7) (cellular IC50 = 413 nM) was 

developed by Kiso‟s group employing a hydroxymethylcarbonyl (HMC) isostere as a transition-

state mimic.
117

 Further chemical modifications of KMI-008 (7) yielded new more potent 

pentapeptidic BACE-1 inhibitors KMI-420 (8) (in vitro IC50 = 8.2 nM) and KMI-429 (9) (in vitro 

IC50 = 3.9 nM) (see the chemical structures are reported in Figure 2.5).
118

 In particular, KMI-429 

(9) appears to significantly reduce brain Aβ secretion when directly injected into the hippocampus 

of both wild-type mice (> 30% ↓ soluble Aβ) and APP transgenic mice Tg2576 (> 60% ↓ soluble 

Aβ).
119

 The model Tg2576 is particularly used to evaluate the capability of compounds (i.e. BACE-

1 and γ-secretase) potentially able to reduce the secretion of Aβ. Indeed, it displays the following 

features: over-expression of APPSWE and, related to this, increased production of Aβ40, presence of 

Aβ aggregates and lack of NFT.
120

 

 

 
Figure 2.5. Substrate-based BACE-1 inhibitors developed by Kiso‟s group 

 

At the same time, more substrate-based peptidomimetic inhibitors were also developed by big 

pharmaceutical companies and other academic research groups.
121,122

. Unfortunately, as expected, 

despite their nanomolar affinity in vitro for the enzyme, these peptidomimetic BACE-1 inhibitors 

do not present a valuable pharmacokinetic profile (i.e., large size, poor brain permeability, short 

half-life in vivo, and low oral availability) making them unsuitable anti-AD drug candidates.
123

 On 

the other hand, based on the large amount of structural information and guided by a structure-based 

approach, these first-generation inhibitors have laid the foundation for the rational design of later 

generations of smaller, non-peptidic BACE-1 inhibitors that have significantly improved drug 

properties.
123
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The BACE-1 inhibitors, 10 and 11 (see Figure 2.6), developed via chemical modifications of 

OM99-2 (6), are typical examples of BACE-1 inhibitors having less-peptidic features. Both of them 

exhibited stronger potency (cellular IC50 equal to 39 nM and 1 nM, respectively) and impressive in 

vivo efficacy (reduction of plasma Aβ level by 30% and 65%, respectively) when intraperitoneally 

(i.p.) injected into Tg2576 mice.
124,125

 

 

 

Figure 2.6. Chemical structures of substrate-based BACE-1 inhibitors obtained by modifications on the reference 

inhibitor OM99-2 (6). 

 

In addition to this, further modifications of KMI-420 (8) and KMI-429 (9) produced tetrazole ring-

containing compounds KMI-570 (12) (in vitro IC50 = 4.8 nM) and KMI-684 (13) (in vitro IC50 = 1.2 

nM), Both of them also display improved brain permeability (see Figure 2.5).
126

 

In 2007 researchers from GSK reported the first orally available BACE-1 inhibitor GSK188909 

(14), a small non-peptidic compound originated from substrate-based design (Figure 2.7). 

GSK188909 (14) displayed a cellular IC50 of 5 nM and showed excellent selectivity over other 

aspartic proteases. When orally administered in TASTPM mice, a in vivo model which expresses 

both mutant APPSWE and PS1 mutant (Met146 → Val), GSK188909 (14) effectively reduced brain 

Aβ levels.
127

 Subsequently, Schering-Plough also reported an orally effective 4-

phenoxypyrrolidine-based BACE-1 inhibitor, 15, (Figure 2.7), with good pharmacokinetics and 

selectivity (Ki = 0.7 nM, cellular IC50 = 21 nM).
128
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Figure 2.7. Chemical structures of first oral bioavailable BACE-1 inhibitors. 

 

In the scenario of BACE-1 inhibitors, the most promising news have arrived from CoMentis, which 

has developed the only BACE-1 inhibitor CTS-21166 (cellular IC50 = 1.2–3.6 nM), that has resulted 

satisfactory enough to recently advance up the Phase II clinical trial thus far. In particular, in 2008, 

CoMentis revealed this small compound as a transition-state analog inhibitor (its structure is 

currently not available) with excellent properties in brain penetration, selectivity, metabolic 

stability, and oral availability. In particular, when i.p. injected (4 mg/kg over six weeks) into an 

aggressive APP transgenic mouse (expressing both the Swedish and London mutations), CTS-

21166 reduced brain Aβ levels by over 35% and plaque load by 40%. The data from human Phase I 

studies suggested that this compound appeared safe at dose as high as 225 mg, and when 

intravenously (i.v.) injected into AD patients, it caused a dose-dependant reduction of plasma Aβ 

levels for an extended period of time (http://www.alzforum.org/new/detail.asp?id=1790). More 

thorough clinical evaluation of CTS-21166 is underway by CoMentis in a partnership with Astellas 

Pharma in Japan. Following this trend, several companies such as Merck, Eli Lilly, and Takeda are 

also considering Phase I human testing with their own BACE-1 inhibitors 

(http://www.alzforum.org/new/detail.asp?id=1790). Interesting clinical data will likely be available 

for these inhibitors in the near future. 

 

High-troughput screening (HTS) and fragment-based lead generation methods 

Though many BACE-1 inhibitors were successfully designed as substrate-based analogues 

mimicking the transition state, most of non-peptidic BACE-1 inhibitors were developed using HTS 

http://www.alzforum.org/new/detail.asp?id=1790
http://www.alzforum.org/new/detail.asp?id=1790
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or a fragment-based lead generation method. In particular, HTS has been conducted by many big 

pharmaceutical companies to identify hit compounds from different chemical libraries. In 2001, 

Takeda presented the first series of non-peptidic BACE-1 inhibitors with an in vitro IC50 of 0.35–

2.93 μM using this approach.
129

 Subsequently, Wyeth reported their hit compound WY-25105 (16) 

(in vitro IC50 = 3.7 μM, cellular IC50 = 20 μM) containing an acylguanidine moiety that can form 

key interactions with the aspartic catalytic dyad (Asp32 and Asp228).
130

 Structure optimization of 

this compound has led to the development of a more potent BACE-1 inhibitor 17 (Figure 2.8) with 

an in vitro IC50 of 0.11 μM, also showing an 85-fold selectivity over the cathepsin D.
130

 Using the 

similar approach, Johnson & Johnson developed the BACE-1 inhibitor 18 (Figure 2.8) having a 

stronger affinity for BACE-1 (Ki = 11 nM)
131

 and, nevertheless, exhibiting excellent brain 

permeability and oral availability. Indeed, when orally administered at 30 mg/kg to rats, 18 was able 

to lower plasma Aβ40 levels by 40−70% 3 h post-dosing. In spite of all of these successes, none of 

these HTS-based inhibitors has entered a clinical trial. 

Recently, fragment-based drug discovery (FBDD) has emerged as a novel alternative to the 

traditional HTS method in identifying potent BACE-1 inhibitory drugs. In contrast to HTS, which 

uses libraries of relatively high molecular weight compounds, the FBDD approach takes advantage 

of libraries comprising more diverse and smaller-sized compounds (fragments) to identify hits that 

can be efficiently developed into potent leads with drug-like properties. After the hits identification, 

chemical modifications may hamper to obtain lead compounds and to further optimize these leads 

into suitable drug candidates. 

Together with these methods, a variety of biophysical techniques (NMR, X-ray crystallography, 

fluorescence resonance energy transfer (FRET) or surface plasmon resonance (SPR), etc.), 

computational tools and biochemical assays can be coupled in fragment screening. In particular, by 

a fragment screening approach assisted with NMR and followed by X-ray crystallography and 

FRET assays, AstraZeneca reported a FBDD-based BACE-1 inhibitor 19 (Figure 2.8) with a 

cellular IC50 ≈ 0.47 μM.
132,133

 Astex, in a partnership with AstraZeneca, discovered several BACE-1 

inhibitors by employing a X-ray crystallography based fragment screening.
134

 

This approach provides detailed structural information on the binding mode of fragments to the 

active pocket of BACE-1 highlighting the chemical optimizations which can be performed on these 

inhibitors. Huang et al. reported non-peptidic BACE-1 inhibitors using fragment screenings by a 

computer-assisted docking simulation method.
135,136

 Moreover, researchers from Evotec identified a 

series of BACE-1 inhibitors by a novel fluorescence-polarization-assay-based fragment screening 

method coupled with X-ray crystallography.
137

 The integration of various techniques in the 
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fragment screening has made FBDD an increasingly popular method for designing potent small-

molecule BACE-1 inhibitors. 

 

 

Figure 2.8. Chemical structures of non-substrate-based BACE-1 inhibitors. 

 

It should be emphasized that each of the previously mentioned strategies of drug discovery has its 

pros and cons. While substrate-based BACE-1 inhibitors usually show high potency and selectivity, 

their poor oral availability and permeability across the blood-brain barrier frequently make them 

unsuitable drug candidates. By contrast, the HTS method has the advantage of generating hits with 

high diversity, smaller size, and more drug-like properties (i.e., oral availability and brain 

penetration). However, the hit rate of HTS tends to be extremely low and the hits generally have 

lower potency and selectivity than substrate-based inhibitors. Compared with the traditional HTS 

method, however, fragment-based screening and structure-based approach enjoy much higher hit 

rates, and like HTS, can identify leads with favourable drug properties. On the other hand, fragment 

leads are too small to exhibit satisfactory potency and selectivity, thus requires considerable 

subsequent chemical modifications. Overall, a combinatorial approach associated with 

computational structure-based studies that carefully integrates the strengths of different design 

strategies may find its successful application in the future design of more applicable BACE-1 

inhibitory drugs. 

 

Alternative therapeutic approaches targeting BACE-1 
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Few therapeutic approaches outside of BACE-1 inhibitors have so far been reported. Chang et al. 
138

 

explored the idea that neutralizing antibodies against BACE-1, generated from the immunization 

with the protease itself, may be enlisted to reduce Aβ production. Immunization of BACE-1 

produces polyclonal anti-BACE-1 antibodies in peripheral system such as plasma. Certain 

percentage of antibodies penetrates BBB and binds to BACE-1 on surface of brain cells. Rapid 

endocytosis on neuron membrane carries surface molecules to endosome with an optimal pH ~ 4.5 

for BACE-1 activity. Because enzymatic site of BACE-1 is masked by antibodies, BACE-1 

hydrolysis on APP is prevented. Therefore, production of Aβ is reduced improving the cognitive 

performance of AD mice. The antibodies in this approach serve as inhibitors for BACE1 activity 

and thus do not require the participation of immune cells for Aβ reduction. This may indeed lower 

the risk of autoimmune response as observed in Aβ immunization. A conceptually related approach 

is immunization using peptides derived from the BACE-1 cleavage site in APP. A study with AD 

mice using this approach has shown promise.
139

 

Other strong evidences to deal with are the intracellular trafficking of BACE-1 allowing to perform 

its function of APP hydrolysis and consider endosome as the main location of enzyme activity. 

Considering this issue might explain the poor results obtained with some inhibitors in cellular 

assays.
140

 In fact, although ubiquitously expressed, BACE-1 mRNA has the highest expression 

levels in the mammalian brain, and is found in acidic organelles of the endosomes and trans-Golgi 

network. This is consistent with the discovery that BACE-1 cleavage of APP occurs predominantly 

in endosomes, and that endocytosis of APP and BACE-1 is essential for Aβ production.
140

 BACE-1 

activity and access to substrates is regulated by the composition of lipid raft domains in the 

membrane bilayer. Endosomes have high lipid raft and cholesterol content, critical in regulating 

APP endocytosis with increased amyloidogenic processing. In order to overcome this crucial issue, 

an innovative approach was recently reported, consisting of targeting inhibition to the subcellular 

compartment where the enzyme is active. A membrane anchored BACE-1 transition state inhibitor 

20 was synthesized by coupling via a polyglycol linker the inhibitor to a sterol moiety (see Figure 

2.9).
140,141
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Figure 2.9. Illustration of sterol-linked BACE-1 inhibitor 20 targeting endosome. 

 

This inhibitor efficiently targeted BACE-1 in endosomes via endocytosis, significantly enhancing 

the inhibitor efficacy, both in cell culture and in fly and mouse models of AD. Although it is too 

early to say whether this approach will lead to a functional drug therapy, the authors postulate that 

this membrane-tethering strategy might also be useful for designing inhibitors against other disease-

associated membrane proteins. 

 

Potential mechanism-based toxicity from BACE-1 inhibition 

Actually, whether BACE-1 null mice did not display severe physiological dysfunctions it is 

plausible to expect that toxicity related to BACE-1 inhibition will not cause so warning side effects 

However, it has become increasingly clear that APP is not the sole substrate for BACE-1, which 

also cleaves membrane-bound substrates. One of these substrates is neuregulin-1 (Nrg-1),
106,107

 an 

essential neurotrophic factor that, through the ErbB family of receptor-tyrosine kinases, regulates 

various neurological processes, such as synaptic functions, neuronal migration, myelination, and 

neurotransmitter functions, among many others.
142-144

 In BACE-1 null mice, abolished cleavage of 

Nrg1 disrupted BACE1-dependant Nrg1/ErbB signaling, causing hypo-myelination (thinner 

myelin) of both peripheral nerves
106,107

 and central nerves
106

 as well as schizophrenia-like 

phenotypes in these mice.
108

 Furthermore, it has shown that BACE-1 null mice exhibit impaired re-

myelination in adult mice.
145

 Another important BACE-1 substrate is the voltage-gated sodium 
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channel β2 (Navβ2) subunit.
146,147

 Voltage-gated sodium channel proteins are composed of a pore-

forming α subunit and auxiliary β subunits.
148

 In particular, BACE-1 null mice display epileptic 

seizures which might derive from elevated neuronal surface expression of sodium channel proteins 

and the resulted increased neuronal excitability.
149

 It is highly plausible that the abolished cleavage 

of Navβ2 by BACE-1 leads to these observed alterations, because the disruption of this cleavage in 

BACE-1 null mice will potentially affect both the expression and cellular trafficking of sodium 

channel proteins. The absence of BACE-1 will reduce the shedding of Navβ2 intracellular domain 

that can regulate gene expression of the sodium channel α subunit;
146

 disruption of BACE-1 

dependant cleavage of Navβ2 will also increase the level of full-length Navβ2 protein, able to bind 

to the α subunit and, then, to mediate its trafficking to the membrane surface.
150

 Moreover, aged 

BACE-1 null mice were found to undergo to hippocampal neurodegeneration that is probably due to 

the sustained asynchronous neuronal stimulation in these mice.
149

 

All together these important findings strongly suggest that BACE-1 performs diverse physiological 

functions through processing of different substrates. Therefore, careful titration of drug dosage may 

still be a needed precaution to avoid the potential mechanism-based toxicity incurred by BACE-1 

directed AD therapy.
151
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Chapter 3 

 

3. Computational methods 

 

3.1. Molecular docking 

 

Introduction 

Molecular docking is a computational tool and represents a crucial component of many drug 

discovery projects, from hit identification to lead optimization. In particular, it is employed in 

approaches such as structure-based design and virtual screening techniques, widely used in many 

discovery efforts: respectively, prediction of binding modes and selection from virtual large 

databases of putative ligands into the binding site of biological target. The docking methodology 

was pioneered during the early 1980s and remains a current and highly active area of research, 

thanks also to its short time and low computational cost. 

In particular, it is a multi-step process in which each step introduces one or more additional degrees 

of complexity. Initially, the process begins with the application of algorithms that sample the 

several degrees of conformational freedom of small molecules “posing” them in the binding site. 

The algorithms are complemented by scoring functions that are designed to describe the biological 

activity through the evaluation of interactions between the ligand and the potential target as well as 

the entropic cost of the ligand conformation. 

Some of these scoring functions adopted for molecular docking try to estimate the free energy of 

binding of the ligand-target complex. Unfortunately, this estimation is not always reliable because 

of the high error associated to it. However, the molecular docking represents a useful technique in 

the computer-aided drug design and discovery context towards delicate issues such as the 

identification of molecular features that are responsible for specific biological recognition and/or 

the prediction of chemical modifications to improve potency of ligands. 

Molecular docking is a computational procedure that predicts binding mode of a ligand in its target 

protein. This is achieved by minimizing a scoring function, which describes the interactions 

between ligand and target with respect to the atomic positions of the two moieties. 
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In this work, GOLD
152

 and AutoDock
153,154

 programs were used to predict ligand-protein 

interactions. Both these programs adopt genetic algorithms to generate the single poses of ligands 

into the binding site of protein target, which are evaluated by their appropriate scoring functions. 

 

Algorithms in molecular docking 

Several algorithms are used in molecular docking programs to obtain the pose of ligand in the 

binding site of protein. In general, the docking problem is the search for the minimum of a function 

that depends on a large number of degrees of freedom, namely the position and the geometrical 

arrangement of ligand (its conformation) and of its target. 

The searching algorithms adopted in molecular docking can be divided in three types of searches: 

systematic, stochastic and deterministic; some algorithms combine more than one of these 

approaches. 

Systematic algorithms explore a grid of values for each degree of freedom considered, in a 

combinatorial way. As the number of degrees of freedom increases, the number of evaluations 

needed increases rapidly and termination criteria are inserted to prevent the algorithm from 

sampling space that is known to lead to the wrong solution. Stochastic search algorithms make 

random changes on the degrees of freedom of the system. To improve convergence, multiple 

independent runs are performed. In deterministic searches, the initial state determines the move that 

can be made to generate the next state, which generally has the same or a lower energy than the 

initial state. 

 

Genetic algorithms (GAs) 

The Genetic Algorithms (GAs) belong the class of stochastic algorithms and are based on the 

language of natural genetics and evolutionary biology. GAs are computer programs that mimic the 

process of evolution by manipulating a collection of n data structures called chromosomes. Indeed, 

using genetic operations they search for possible conformations of ligands.
152,155

 

The quality of results depends on the starting genes, the number of evolutionary events and the 

scoring function adopted to select the most favourable conformers. Firstly, the GA generates an 

initial population as set of chromosomes (conformations of ligands randomly chosen and 

determined into the binding pocket). The chromosomes are defined by one or more strings of genes 

(variables), that can assume binary, integer or real values corresponding to: i) ligand translation (x, 

y, z coordinates of the center of mass); ii) ligand orientation (rotation angles); iii) ligand 

conformation (torsion angle for each rotatable bond). The population undergoes to a fitness 

evaluation of ligand-protein complex: each chromosome is associated to a score based on a function 
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which approximately estimates the binding free energy/fitness. Starting from an initial population of 

chromosomes (parents), randomly generated and subsequently evaluated on the basis of specific 

scoring function, the GA repeatedly applies the three genetic operators, such as reproduction, 

crossover and mutation, to obtain a new population of chromosomes (children) that replace the 

least-fit members of the population. 

 reproduction represents the selection process of the fittest members scored of a population 

that will survive in the next generation; 

 crossover combines chromosomes by performing a one or two-point crossing on the parent 

strings resulting in the children ones (as higher the number of crossover points is, more 

information is exchanged between the parent strings); 

 mutation randomly modifies one o more gene(s) to give the offspring chromosomes. 

Thus, in contrast with the only reproduction operator, crossover and mutation allow the exploration 

of the conformational space through the introduction of children chromosomes to be submitted to a 

new cycle of genetic operations. The whole cycle is repeated until some generations are defined 

and/or until some conditions (i. e. RMSD, ΔG) are satisfied. 

GOLD uses an island-based genetic algorithm search strategy
155

 and includes rotational flexibility 

for selected receptor hydrogen along with full ligand flexibility. AutoDock uses a genetic algorithm 

as a global optimizer combined with energy minimization as a local search method.
153,154

 The ligand 

is flexible, while the receptor is rigid. 

 

Genetic algorithm in GOLD 

GOLD employs a so-called island-based genetic algorithm. This means that not only one large 

population of chromosomes (described in the previous section) is manipulated, but also several sub-

populations (i.e. islands) are considered and individual chromosomes can migrate among them. This 

feature improves the efficiency of search (a diagram showing how the GA in GOLD works is given 

in Figure 3.1). In addition, information concerning H-bonds between the ligand and the protein 

target is also encoded in the chromosome. The H-bonds are matched with a least squares fitting 

protocol to maximize the number of this kind of inter-molecular interactions. A population of 

potential solutions (in this case, possible docking poses of ligand) is set up at random. Each member 

of the population is encoded as a chromosome which contains information on: i) the mapping of 

ligand H-bounded atoms onto complementary protein ones; ii) mapping of hydrophobic points on 

the ligand onto protein ones; conformation around flexible ligand bonds and protein OH-groups. 

Each chromosome is assigned a fitness score based on its predicted binding affinity and the 
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chromosomes within the population are ranked according to fitness. The population of 

chromosomes is iteratively optimized.
156

 

 

 

Figure 3.1. The block diagram of the GA as implemented in GOLD. 

 

Genetic algorithm in AutoDock 

The AutoDock adopts a GA in which it is implemented a local search method, initially proposed by 

Solis and Wets,
157

 that allows to minimize the scoring function of selected individuals. The 

optimized atomic coordinates (phenotype) are stored back in the chromosome (genotype). Then, the 

new chromosome enters into a new iteration of genetic operators employed by GA. Given this 

transfer of information from phenotype to genotype this algorithm is called Lamarckian genetic 

algorithm (LGA).
154

 In the LGA the local search (see Figure 3.2) is normally performed in 

phenotypic space and employs information about the fitness landscape. Sufficient iterations of the 

local search arrive at a local minimum, and an inverse mapping function is used to convert from its 

phenotype to its corresponding genotype. However, in the case of molecular docking, local search is 

performed by continuously converting from the genotype to the phenotype, so inverse mapping is 

not required. The genotype of the parent is replaced by the resulting genotype, however, in 

accordance with Lamarckian principles. 

Moreover, in the LGA genotypic mutation has a different role with respect to the traditional GAs. 

Traditionally, mutation acting as a local search operator allows small refining changes not 

efficiently performed by reproduction and crossover. However, by using the explicit local search 

operator this role is not fundamental, but it allows to replace alleles that might disappear during the 

reproduction. Therefore, the mutation operator can have a multiple exploratory role. 
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Figure 3.2. Genotypic and phenotypic search leading to a Darwinian and Lamarckian search. 

 

Scoring functions 

The evaluation and ranking of predicted ligand conformations is a crucial aspect of molecular 

docking. Thus, the design of reliable scoring functions is of fundamental importance. Scoring 

functions implemented in docking programs make various assumptions and simplifications in the 

evaluation of modelled complexes and do not fully account for a number of physical phenomena 

that determine molecular recognition for example, entropic effects. Essentially, three types or 

classes of scoring functions are currently applied: force-field-based, empirical and knowledge-based 

scoring functions. 

Molecular mechanics force fields usually quantify the sum of two energies, the receptor–ligand 

interaction energy and internal ligand energy (such as steric strain induced by binding). Most force-

field scoring functions only consider a single protein conformation, which makes it possible to omit 

the calculation of internal protein energy, which greatly simplifies scoring. Various force-field 

scoring functions are based on different force field parameter sets. 

The empirical scoring functions are fit to reproduce experimental data, such as binding energies 

and/or conformations, as a sum of several parameterized functions. The design of these scoring 

functions is based on the idea that binding energies can be approximated by a sum of individual 

uncorrelated terms. The coefficients of the various terms are obtained from regression analysis 

using experimentally determined binding energies and, potentially, X-ray structural information. 

There are also the scoring functions knowledge-based, which are designed to reproduce 

experimental structures rather than binding energies. In knowledge-based functions, ligand–protein 

complexes are modelled using relatively simple atomic interaction-pair potentials. A number of 

atom-type interactions are defined depending on their molecular environment. In common with 

empirical methods, knowledge-based scoring functions attempt to implicitly capture binding effects 

that are difficult to model explicitly. 
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 vdwvdwininhbhbfitness EcEcEcGS   

Here, we revise the scoring functions implemented in the programs used in the thesis: GoldScore 

and ChemScore for GOLD, and the empirical scoring function from AutoDock 

 

GoldScore (GS) 

 

GS is a force-field-based scoring function implemented in GOLD and, in particular, it is defined as 

the weighted sum of the following components: the energy of the H-bonds between the protein and 

the ligand (Ehb), the internal energy of the ligand in the binding pose (Ein) and the van der Waals 

interaction energy of the bound complex (Evdw) (see the equation reported below).
152,155

 

 

      (3.1) 

 

GS is defined as a fitness function, where every single component is coupled to some given 

coefficients: chb, cin and cvdw. These are empirically determined on the basis of adjustments 

performed to best reproduce a series of known crystallographic ligand/protein complexes. 

The H-bond term considers the difference between the interactions of protein and ligand in the 

complex and free in water, thus accounting for desolvation effect: initially the donor (d) and the 

acceptor (a) are considered in solution and, then, on coming together (da) water (w) is stripped off. 

Therefore, the H-bond energy Eij between a donor i and an acceptor j between the ligand and the 

protein is composed by the following terms: 

 

        (3.2) 

 

The interaction energies for each donor and acceptor types are pre-calculated with quantum 

mechanics and molecular mechanics approaches for a set of model fragments. For all the poses of 

ligand generated, the possible combinations of donors i and acceptors j between the ligand and the 

protein‟s are evaluated and a weight wij between 0 and 1 is assigned to each bond on the basis of 

both the distance between donor and acceptor and the angle formed by donor, H atom and acceptor: 

 

        (3.3) 

 

   awdwwwdaij EEEEE 
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(3.4) 

 

 

 

 

 

     (3.5) 

 

The distance dLP is between the donor and the acceptor‟s lone pair. In default implementation of 

GOLD, dmax varies linearly from 4.0 Å at the first iterations to 1.5 Å after 75000 iterations to let 

only close-contacts H-bond contribute to GS fitness value of the final solutions. Similarly,   is the 

angle between the donor, the H atom and the acceptor lone pair. The H-bond energy term in the 

scoring function is then given by the sum of all individual H-bond energies, multiplied by their 

weights: 

 

        (3.6) 

 

The internal energy contribution is considered in GS function only when it is positive to avoid a 

lower minimization of the internal energy of ligand than of the one of reference conformation. It is 

the sum of the steric and torsional energies ligand: the steric energy is described by a sum over all 

the atoms i ≠ j, separated by a distance dij, in the ligand of a 6-12 Lennard-Jones potential term: 

 

         (3.7) 

 

whereas the torsional one, associated with four consecutively bonded atoms I, j, k, l, is given by: 

 

      (3.8) 

 

where ωijkl is the torsional angle, nijkl the periodicity and Vijkl the barrier of rotation. 

The term Evdw describes the close-contact interaction energy and it is calculated as the sum over all 

pairs of atoms i and j, respectively from ligand and protein, which are distanced between them less 

than 1.5 times the sum of their van der Waals radii. A 4-8 potential is used to describe this 

interaction: 
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        (3.9) 

 

where dij is the distance between two atoms. If Eij > sEij,min, a linear cut-off is applied to switch off 

this interaction, Eij,min being the minimum of Eij and s being a scaling factor whose value increases 

logarithmically during the run in order to encourage the close contacts. A and B were chosen with 

the aim at reproducing the minimum of the standard 12-6 potential. The 4-8 potential is preferred 

because it is softer and allows the algorithm to easily form close-contacts with the protein. 

 

ChemScore (CS) 

The CS function was derived empirically from a set of 82 protein-ligand complexes from the PDB 

whose experimental binding affinities were determined.
158,159

 Unlike GS, CS was trained by 

multiple regression analysis against measured affinity data. The CS function attempts to estimate 

the total free energy of binding for a ligand-protein complex as a sum of different components: 

 

  (3.10) 

 

       (3.11) 

 

 

         (3.12) 

 

 

         (3.13) 

 

 

In particular the function 3.10 uses contact terms to respectively estimate contributions from H-

bonds (EHbond), metal-ligand (Emetal) and lipophilic interactions (Elipo). The term Hrot indicates a 

penalty for flexibility of ligand and depending on its number of rotatable bonds. 

The coefficients c0 (it is a constant), chbond, clipo, cmetal, and crot were empirically derived during the 

validation of the scoring function. 

The H-bond term is calculated for all complementary possibilities of H-bonds between the ligand 

atoms, i, and target (and water) atoms, I. The functions g1 and g2 have the following form: 

 

48

ijij d

B

d

A
E

ij


rotrotlipolipometalmetalHbondHbondChemScore HcEcEcEccG  0

    
iI

Hbond grgE 21

 
aM

aMmetal rfE

 
lL

iLlipo rfE



 51 

     (3.14) 

 

 

 

     (3.15) 

 

 

where r  is the deviation of bond length from 1.85 Å and ∆α the deviation of bond angle from the 

ideal value of 180°. 

The third term is eventually calculated for all acceptor/donors a in the ligand and the metal ion M in 

the target. This is described by the function f(r), which has a simple contact form common for: 

 

      (3.16) 

 

 

where R1 is 0.5 Å plus the sum of the two atoms‟ van der Waals radii and R2 = R1+ 3.0 Å. The same 

functional form is used to describe the lipophilic term, that is calculated for all lipophilic atoms in 

the ligand, l, and in the protein L. 

The final term identifies the frozen rotatable bonds of ligand. All non-terminal sp
3
---sp

3 
and sp

2
---

sp
2 

bonds are considered frozen if atoms on both sides of the bond are in contact with the target 

(two atoms are considered to be in contact if their distance is less than 0:5 Å). 

Hrot estimates the flexibility penalty for molecules with frozen rotatable bonds: 

 

     (3.17) 

 

Nrot being the number of frozen rotatable bonds, and Pnl(r) and P’nl(r) the percentages of polar 

atoms on either side of the rotatable bond. 

 

AutoDock scoring function 

In AutoDock
154

 the implemented scoring function is defined as an empirical binding free energy 

function: 
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  (3.18) 

 

The summations are performed over all pairs of ligand atoms, i, and protein atoms, j, in addition to 

all pairs of atoms in the ligand separated by three or more bonds. rij is the distance between the 

atoms, φ is the H-bond angle, and qi is the electrostatic charge of atom i. All five ∆G terms on the 

right hand side are coefficients empirically determined using linear regression analysis from a set of 

thirty protein-ligand complexes with known binding constants. The first three terms are in vacuo 

interaction terms: Lennard/Jones 12-6 dispersion repulsion term; a directional 12-10 hydrogen 

bonding term; screened Coulomb electrostatic potential. ∆Gtor is a measure of the unfavorable 

entropy of ligand binding due to the restriction of conformational degrees of freedom, and Ntor is the 

number of sp
3
 bonds in the ligand. The last term approximately accounts for the desolvation free 

energy upon ligand binding. For each atom in the ligand, fragmental volumes of surrounding 

protein atoms (Vj) are weighted by an exponential function and then summed, evaluating the 

percentage of volume around the ligand atom that is occupied by protein atoms. This percentage is 

then weighted by the atomic salvation parameter of the ligand atom (Si) to give the desolvation 

energy. 

 

Cluster analysis 

 

AClAP implements a hierarchical agglomerative clustering algorithm.
160,161

 „„Hierarchical‟‟ means 

that clusters at a higher level are union of clusters at lower levels, while „„agglomerative‟‟ means 

that clusters never break apart during the formation process. The global hierarchy can be 

represented by means of a dendrogram, a tree showing different clustering levels, spanning from 1 

to n. RMSD is taken as a measure of conformation-to-conformation distance. Therefore, the 

clustering algorithm starts with n unitary clusters; at each step, the two closest clusters are merged, 

until only one cluster containing all the poses is reached.
162

 The way the inter-cluster distance is 

evaluated by the average linkage method. Once the hierarchical tree is built, KGS penalty function 

is used to define the best clustering level and to prune it. At the end for each cluster, the 

representative conformation is calculated. 
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3.2. Molecular screening 

 

Introduction 

Among the different computational approaches available at present to complement or to succeed the 

array of HTS discovery technologies, virtual screening (VS) is one of the most popular. VS 

methods are mainly designed for searching large virtual compounds databases and selecting a 

limited number of candidate molecules for testing in order to identify NCEs with the desired 

biological activity. 

The VS origins are protein-structure-based compounds screening or docking
163,164

 and chemical-

similarity searching based on small molecules.
165

 Although structures of target proteins are 

becoming increasingly available as templates for structure-based VS, small-molecule-based 

screening continues to dominate the field, owing to the fact that hit or lead information is still the 

predominant source of knowledge in many cases. 

 

Chemical similarity search 

In the context of VS, one of the most straightforward approaches is the similarity-search based on 

2D molecular fragments as templates. This method aims at finding compounds that exhibit required 

chemical, structural, pharmacological or other properties. Such properties are represented as 

molecular descriptor sets and these descriptor sets are compared against each other by calculating a 

dissimilarity score between them. Thus, the goal of the screening procedure is often expressed as an 

allowed maximal dissimilarity score: structures with a dissimilarity score below such predefined 

threshold are accepted by the screening process, while others are rejected. 

 

Dissimilarity metrics 

The comparison of two descriptors involves the calculation of one or more dissimilarity coefficients 

using dissimilarity metrics. The following metrics have been employed: Tanimoto and Euclidean. 

Values of these metrics are non-negative numbers. A zero dissimilarity value indicates that the two 

descriptors are identical, and the larger the value of the dissimilarity coefficient the bigger the 

difference between the two structures is. 

 

Tanimoto’s dissimilarity metrics 

In its original form, Tanimoto metrics
165

 can be applied to binary fingerprints and it is a similarity 

metric: 
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       (3.19) 

 

where a and b are two binary fingerprints, & denotes binary bit-wise and-operator, | denotes binary 

bit-wise or-operator and B( x ) is the number of 1 bits in any binary fingerprint x: 

 

     (3.20) 

 

The larger the number of common bits in a and b, the larger the value of similarity coefficient, Tsim, 

is. Therefore larger values represent higher similarity between a and b; 1 is total similarity, when 

the two descriptors are the same, while 0 represents the absolute dissimilarity. From that it is 

straightforward to obtain a dissimilarity measure: 

 

       (3.21) 

 

However, extending binary Tanimoto dissimilarity to molecular descriptors other than binary 

fingerprints is less obvious. 

The idea is to represent an integer value as a unary number, that is, replace it by as many 1 bits as 

its value is. This can be extended to a binary fingerprint by adding leading zeros to the series of 1 so 

as to make the length of all series the same. In this way, a binary fingerprint is generated and the 

original Tanimoto metric can be applied to it. For example the series 13, 4, 7, 9 can be represented 

as unary numbers as follows: 

1111111111111, 1111, 1111111, 111111111 

The binary form is: 
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1111111111111, 0000000001111, 0000001111111, 0000111111111 

which can simple be written as a binary fingerprint: 

1111111111111000000000111100000011111110000111111111 

for which applying Tanimoto is simple. With the above consideration in mind, Tanimoto can be 

rewritten for integer valued descriptor in the form below: 

 

 
 
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n

i iiii

ii
sim

baba

ba
baT

1 ,min

,min
,         nn bbbaaa ,...,,,..., 11   (3.22) 

 

Euclidean distance 

The Euclidean distance, as a geometrical distance function, can be used to measure the distance 

(dissimilarity) between two non-spatial objects, in our case between two molecular descriptors. The 

formulation is straightforward: 

 

        (3.23) 

 

Note, that this distance is a dissimilarity function, and, on this basis, 0 value represents total 

similarity. However, the Euclidean distance of two molecular descriptors is not upper-bounded: the 

larger the distance the higher the dissimilarity between the two descriptors. One could think that this 

characteristic of the Euclidean metric allows more accurate measurement of dissimilarity, but in 

practice this is seldom needed. Instead, the direct comparability of dissimilarity values is important. 

This is hard to achieve with the use of Euclidean distance since dissimilarity values obtained for a 

large compound library are scattered in a wide range and one should not necessarily have a priori 

ideas about suitable threshold for the dissimilarity value for acceptance/rejection. 
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Chapter 4 

 

4. Novel classes of BACE-1 inhibitors as potential anti-Alzheimer’s drugs 

So far no compounds have been identified that can slow down or halt the progression of AD. Since 

it has been experimentally well assessed that the enzyme BACE-1 catalyses the rate-limiting step in 

the production of Aβ, it represents an attractive target for therapeutic intervention to arrest the 

disease. Investigation into role of BACE-1 in other physiological proteolytic processes is necessary 

to identify all possible risks of mechanism-based side effects, which might result from its inhibition. 

Although this remain a moot point, the experimental evidences discussed in the Chapter 2 and the 

fact that research groups both in academia and in pharmaceutical industry are currently pursuing 

BACE-1 as a viable therapeutic target suggest that there is a reasonable and suitable  possibility that 

the benefits of BACE-1 inhibition outweigh the risks. Here, three different approaches employed 

and aimed at the discovery of novel BACE-1 inhibitors as potential anti-AD drugs are reported: 

i) structure-based design and synthesis (Strategy 1); 

ii) in silico discovery (Strategy 2); 

iii) design and synthesis of MTDLs (Strategy 3). 
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4.1. Strategy 1 

A small chemical library of 2-aminoimidazole derivatives as BACE-1 inhibitors: 

structure-based design, synthesis, and biological evaluation 
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4.1.1. Introduction 

The first BACE-1 inhibitors were peptide and peptidomimetic compounds successfully designed as 

substrate-based transition state analogs showing a nanomolar affinity for BACE-1.
98,100

 

Unfortunately, as expected, these peptidic and peptidomimetic compounds, because of high 

molecular weight, low hydrofobicity and reduced capability to cross the BBB, do not present a 

valuable pharmacokinetic profile. However, the crystal structures of these inhibitors in complex 

with the enzyme have been utilized for structure-based projects that have led to the discovery of 

several classes of compounds with improved pharmacokinetics properties.
123

 In particular, there 

was a boom in the development of non-peptidic BACE-1 inhibitors that have been discovered by 

means of different experimental screening approaches, such as HTS and fragment-based.
11,151

 

Particularly compared with traditional HTS, a significantly higher hit rate can be obtained by using 

a computational structure-based approach, which can fully exploit the large amount of structural 

information making BACE-1, despite the largeness of its active site, a suitable target for rational 

drug design purposes.
6
 

Here, we report on the structure-based design and microwave-assisted synthesis of a novel small 

library of 2-aminoimidazoles as BACE-1 inhibitors. 
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4.1.2. Structure-based design 

Initially, we aimed at identifying a moiety potentially interacting with the catalytic aspartic dyad of 

the enzyme. In particular, among the possible scaffolds, the 2-aminoimidazole appeared to be a very 

attractive moiety for the following reasons: i) it contains the guanidinium function, which can 

provide optimal interactions with the catalytic aspartic dyad (see Figure 4.1), as also demonstrated 

by the crystal structures of several guanidinium-carrying inhibitors in complex with BACE-

1;
131,133,166

 ii) it is a privileged structure;
167

 iii) it allows the parallel synthesis of differently 

polysubstituted derivatives.
168,169

 Therefore, the 2-aminoimidazole was docked to validate its 

capability to interact with the catalytic dyad of BACE-1. 

 

 

Figure 4.1. The guanidinium function (A) is contained in the 2-aminoimidazole moiety (B) which is a valuable 

interacting counterpart with the catalytic dyad, Asp32 and Asp228, as shown by the docking BACE-1/2-

aminoimidazole complex (C) 

 

As expected, the 2-aminoimidazole turned out to be oriented in the center of the rather large BACE-

1 binding pocket by interacting with both catalytic aspartic acids, Asp32 and Asp228, via 

electrostatic and H-bond interactions (see Figure 4.1). Then, among the 2-aminoimidazoles reported 

in the literature, the fragment 21 shown in Figure 4.2 turned out to be particularly well-suited for 

drug discovery purposes for the following reasons: 21 has a low molecular weight (MW = 263.34) 

and displays a rather good chemical accessibility, which could allow for generating library of 

compounds. This fragment was preliminary investigated by means of docking simulations. The 

binding mode of 21 at BACE-1 binding pocket is reported in Figure 4.2. The following interactions 

were identified: i) the guanidinium moiety of 21 interacted with both aspartic acids (Asp32 and 

Asp228) side chains and with Thr232; ii) one of the two phenyl rings formed hydrophobic 

interactions (with Val69, Trp76, Phe108) and a π-π stacking with Tyr71; iii) the second phenyl ring 

established a cation-π interaction with the side chain of Arg235. 
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Figure 4.2. Low-energy docking model of the BACE-1/21 complex. 

 

In light of this computational result, 21 was tested against BACE-1 using an enzymatic assay.
170

 It 

exhibited a moderate-to-low inhibitor potency at 100 μM concentration (BACE-1 inhibition % = 

19.64 ± 0.69). On these bases, decorating fragment 21, we designed and synthesized a small library 

of 2-aminoimidazoles. 
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4.1.3. Chemistry 

The 2-aminoimidazoles, 21-31, were obtained taking advantage of a microwave–assisted, one-pot, 

two-step protocol
169

 based on the cyclocondensation of 2-benzylaminopyrimidines 32a-d and 

appropriate 3-substituted-α-bromopropyl aldehydes 33a-f, followed by the cleavage of the 

corresponding not isolated intermediate imidazo[1,2-a]pyrimidin-1-ium salts with an excess of 

hydrazine (Scheme 4.1). The 2-benzylaminopyrimidines 32a-d were synthesized in parallel by 

reaction of commercially available benzylbromides 34a-d with excess of 2-aminopyrimidine 35 and 

sodium hydride (Scheme 4.2). The α-bromo aldehydes 33a-f were obtained in a parallel fashion 

using the following synthetic pathway. A cross-coupling Suzuki reaction between the 3-

(bromophenyl)-propionic methyl esters 36-37, which can be easily accessed from the corresponding 

3-(bromophenyl)-propanoic acids, and the appropriate boronic acids 38-41 in the presence of a 

catalytic amount of tetrakis (triphenylphosphine) palladium Pd(PPh3)4 gave the 3-biphenyl 

propanoic methyl esters 42a-e, respectively. These were reduced to the corresponding 3-biphenyl 

propyl alcohols 43a-e. Oxidation of 43a-e and commercially available 3-phenylpropanol 43f gave 

the corresponding 3-substituted propyl aldehydes 44a-f, which were brominated in mild conditions 

using 0.5 equivalent of 5,5-dibromobarbituric acid (DBBA) to provide the required 3-substituted-α-

bromopropyl aldeydes 33a-f (Scheme 4.3). 

Schemes 

 

Scheme 4.1. Reagents and conditions: (a) MeCN, 150 °C, 150 W; (b) 60% hydrazine (5 eq), MeCN, 100 °C, 100 W. 
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Scheme 4.2. Reagents and conditions: (a) NaH, THF, 24 h, room temperature. 

 

 

Scheme 4.3. Reagents and conditions: (a) Pd(PPh3)4, Na2CO3 (aq), toluene:EtOH (2:1), 5 h, reflux; (b) LiAlH4, Et2O, 0 

°C, 5 h; (c) PCC (1.4 eq), CH2Cl2, 0 °C, 3 h; (d) DBBA (0.5 eq), Et2O, HCl (cat). 
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4.1.4. Results and discussion 

22-31 were first tested in biochemical assays performed using the fluorescence resonance energy 

transfer (FRET) methodology.
170

 The BACE-1 inhibition studies were based on the cleavage of 

peptide substrate mimicking the human APP sequence with the Swedish mutation 

(Methoxycoumarin-Ser-Glu-Val-Asn-Leu-Asp-Ala-Glu-Phe-Lys-dinitrophenyl, M-2420, Bachem, 

Germany)
170

 (see Experimental section (ES)). 22-31 were tested at a concentration of 5 μM and 

their BACE-1 inhibition percentages are reported in Table 4.1. The IC50 values of most active 

compounds (27-29 and 31) were determined by using the linear regression parameters. 

Subsequently, the capability of 27-29 and 31 to modulate APP processing was examined by 

performing a cell-based ELISA assay. This study was carried out in primary chicken telencephalon 

neurons to assess the effect of the most active inhibitors on secretion of Aβ38, Aβ40 and Aβ42
170

 (see 

ES). 

As previously described, our strategy was based on 21 as the starting fragment for generating a new 

series of BACE-1 inhibitors. In particular, we attempted to improve the low potency of 21 (see 

Figure 4.2) by initially modifying the electronic and hydrophobic properties of the benzyl group in 

position R1 (see Scheme 4.1) through the introduction of fluorine and chlorine atoms in different 

positions (see compounds 22-24 in Table 4.1). 
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Table 4.1. BACE-1 inhibition profile of compounds 22-31. 

Cpds Chemical Structure BACE-1 

Inhibition (%)
a,b

 

BACE-1 

IC50 (μM)
a
 

 

22 

 

 

 

26.40 ± 0.02 

 

n.d.
c
 

 

23 

 

 

 

20.27 ± 0.01 

 

n.d. 

 

24 

 

 

 

23.31 ± 0.01 

 

n.d. 

 

25 

 

 

32.51 ± 0.01 

 

n.d. 

 

26 

 

 

32.48 ± 0.01 

 

n.d. 

 

27 

 

 

 

40.25 ± 0.01 

 

7.40 ± 1.20 

 

28 

 

 

 

38.17 ± 0.05 

 

7.32 ± 0.54 

 

29 

 

 

 

41.34 ± 0.01 

 

5.59 ± 0.06 

 

30 

 

 

24.25 ± 0.02 

 

n.d. 

 

31 

 

 

37.78 ± 0.01 

 

5.95 ± 0.17 

a
 Values are mean ± S.D. of two independent experiments for BACE-1 inhibition.

170
 
b
 % inhibition of BACE-1 activity 

at the concentration of 5 μM of the tested compounds 22-31. 
c
 n. d. = not determined. 

 

Especially, when compared to 21, 22-24 appeared to have an electron-poorer benzyl group (R1) (see 

Figure 4.3) that could allow this moiety to establish more favourable π-π stacking with electron-rich 

aromatic residues located in the binding pocket (i.e. Tyr71 and Trp76). 
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Figure 4.3. ESP surfaces of compounds 21 and 22-24 differently substituted at the crucial R1 position (shown inside the 

red and blue dashed lines for compounds 21 and 22-24, respectively). According to the BACE-1 inhibition data, a 

concurrent decrease in negative charge (i.e., electron density) of the attached aromatic system can be seen, represented 

in the ESP surface as a gradual colour change from red→white→blue over the benzene ring. 

 

In addition, from a pharmacokinetic perspective, the presence of fluorine atoms on an aromatic ring 

could improve the metabolic stability, by avoiding a probable aromatic hydroxylation 

mechanism.
171

 

To increase the chemical diversity, we then synthesized a second series of derivatives, 25-31, 

maintaining a halogenated benzyl group in R1 and bearing differently substituted aromatic rings in 

R2 and R3 (meta and para positions, see Scheme 4.1). All compounds showed a BACE-1 inhibitory 

profile. In particular, 27-29 and 31 showed IC50 values in the low micromolar range (see Table 4.1). 

To characterize the binding mode of one of the most active inhibitors, docking and molecular 

dynamics (MD) simulations were carried out using BACE-1 (PDB id: 1SGZ)
97

 and 27 (see Figure 

4.4 and ES). 
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Figure 4.4. The binding mode of 27 at the proteasic domain of BACE-1 (PDB id: 1SGZ).
97

 

The following interactions were observed for the best-ranked pose as obtained using the Goldscore 

scoring function (see ES): i) the amino group (NH2) of 27 interacts via H-bond with the catalytic 

dyad; ii) the N3 nitrogen of the imidazole ring establishes electrostatic and H-bond interactions with 

the side chains of Asp228 and Thr232, respectively; iii) the fluorine atom interacts with the NH of 

Trp76 side chain; iv) the benzyl ring establishes favorable π-π stacking with the side chain of Tyr71 

and hydrophobic interactions with Val69, Trp76, and Phe108; v) the phenyl group mounted on the 

C4 of the imidazole ring interacts via cation-π with the Arg235; vi) the polymethoxylated 

substituent in R3 might establish H-bond interactions with the side chains of Asn233 and Lys321, 

both residues located in a solvent-exposed region of the active site. Notably, once this complex was 

already computationally generated, the X-ray structure of a 2-aminoimidazole derivative in complex 

with BACE-1 was published by researchers from Merck.
172,173

 Interestingly enough, our predicted 

binding mode was remarkably similar to that reported
172,173

 showing as pivotal interactions the salt-

bridge between the guanidinium moiety and the aspartic dyad. To further investigate the role of 

these electrostatic interactions, we monitored the stability of these salt bridges throughout two 

independent runs of 50 ns each (overall 100 ns) of MD simulations (see Figures 4.5) (see ES for 

further details). 
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Figure 4.5. The two distances (Å) d1/d1‟ (Cγ@Asp228---Ccat@2-aminoimidazole) and d2/d2‟ (Cγ@Asp32---Ccat@2-

aminoimidazole) are plotted as a function of the simulated time (ns). 

 

 

Figure 4.6. The distance (Å) d3/d3‟ (centroid@Tyr71---centroid@phenyl moiety) is plotted as a function of the 

simulated time (ns). 

 

Both interactions were remarkably stable showing that the guanidinium was the anchoring point of 

our inhibitors at BACE-1 active site. In addition, as shown in Figure 4.6, also a stable π-π stacking 

has been observed between the fluorinated-benzyl ring and the side chain of Tyr71. In light of these 

results, 27-29 and 31 were tested using cellular assays based on the secretion of Aβ38, Aβ40 and 

Aβ42 and on cell viability in primary chicken telencephalon neurons.
174

 The reduction of Aβ38, Aβ40, 

and Aβ42 formation was evident for 27 and 28 up to concentrations of 5 μM (IC50 values are 
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reported in Table 4.2); in contrast, 29 and 31 resulted inactive. Notably, 7 displayed some moderate 

toxicity at 25 μM, while 28 started to become toxic at 50 μM (see Figure 4.7). 

 

Table 4.2. Inhibition of Aβ38, Aβ40 and Aβ42 secretion,
a
 in vitro permeability (Pe) values

b
 with 

related predictive penetration into the CNS
c
 and molecular descriptors

d
 of compounds 27-29 and 31. 

 
Cpds 

Aβ38 
IC50 (μM)

a
 

 

Aβ40 
IC50 (μM)

a
 

 

Aβ42 
IC50 (μM)

a
 

 

Pe 
(10

-6
 cm s

-1
)

b
 

 
Prediction

c
 

cLogP 
(prot.)

d
 

cLogP 
(not 

prot.)
d
 

TPSA 
(prot.)

d
 

TPSA 
(not 

prot.)
d
 

 
27 

 
15 

 
23 

 
19 

 
4.0 ± 1.0 

 
CNS+ 

 
2.572 

 
5.593 

 
63.562 

 
62.317 

 
28 

 
33 

 
35 

 
27 

 
3.2 ± 0.2 

 
CNS+/- 

 
2.663 

 
5.685 

 
63.562 

 
62.317 

 
29 

 
n. a.

e
 

 
n. a. 

 
n. a. 

 
n. d.

f
 

 
n. d. 

 
3.517 

 
6.539 

 
45.094 

 
43.849 

 
31 

 
n. a. 

 
n. a. 

 
n. a. 

 
4.0 ± 0.7 

 
CNS+ 

 
4.581 

 
7.602 

 
58.234 

 
56.989 

a
 Values are mean of three independent experiments for reduction of Aβ secretion. All data were corrected with mean 

neurons viability obtained in the MTT reduction assay, performed after 24 h of treatment with these BACE-1 inhibitors 

to evaluate their potential cell toxicity. 
b
 Values are mean ± S.D. of two independent experiments (PBS/EtOH = 70/30 

was used as solvent). 
c
 The compounds were classified

175
as CNS+ when they present a Pe value > 3.55 x 10

-6
 cm s

-1
, 

and as CNS+/- when the Pe value is between 3.55 x 10
-6

 and 2.00 x 10
-6

 cm s
-1

. 
d
 cLogP and TPSA in both protonated 

and not protonated were calculated by Molinspiration, a free-online cheminformatics tool 

(http://www.molinspiration.com). 
e
 n. a. = not active. 

f
 n. d. = not determined. 

 

 

Figure 4.7. Neurotoxicity of T.I., compounds 27 and 28, after 24 h of treatment. Values represent the mean neuronal 

viability in percent and the S.E.M. from one independent experiment performed in 96-well plates (n = 6 per experiment) 

http://www.molinspiration.com/
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for each T.I. concentration and for controls. The vehicle control group was set as 100%. Statistical analysis was 

performed using one-way ANOVA analysis followed by Bonferroni‟s Multiple Comparison Test. 

 

To explain the different activity of derivatives 27-29 and 31 in cellular assays, we explored some of 

their molecular descriptors such as calculated decimal logarithm of octanol/water partition 

coefficient (cLogP) and topological polar surface area (TPSA). 29 and 31 showed higher cLogP and 

lower TPSA values when compared to 27 and 28 (see Table 4.2). Finally, since an anti-AD drug 

candidate must work at central nervous system (CNS) level, we studied the capability of 27-29 and 

31 to cross the blood brain barrier (BBB) by using the parallel artificial membrane permeability 

assay (PAMPA), as described by Di et al.
175

 (see ES). As shown by the in vitro permeability (Pe) 

values (Table 4.2), 28 BBB permeation was predicted to be low, 29 was not examined because of its 

insolubility in the experimental conditions here employed, whereas 27 and 31 were predicted to be 

able to cross the BBB by passive permeation. In light of this series of experiments, it turned out that 

27 was a promising hit to undergo to a subsequent hit-to-lead campaign. Interestingly, structurally 

similar compounds recently reported by Hills et al.
173

 have shown relatively low Pgp efflux, 

pointing to this class of molecules as promising BACE-1 lead candidates. 
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4.2. Strategy 2 

Sequential virtual screening approach to the identification of small organic 

molecules as potential BACE-1 inhibitors 
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4.2.1. Introduction 

As previously mentioned, most of the non-peptidic BACE-1 inhibitors have been discovered by 

means of different screening approaches. Among these, the virtual screening method was 

particularly exploited in the straightforward and random search for novel and structurally diverse 

compounds as BACE-1 inhibitors covering a broad range of the chemical space. 

Several computational groups have successfully identified novel hit candidates,
136,176,177

 most of 

which have been resulted active at low micromolar range. Notably, given the considerable largeness 

of the active site of BACE-1, these inhibitors presented a relatively high molecular weight (MW) 

being out of range (> 500 Daltons (Da)). 

In contrast to this, here, we report on the sequential application of VS approaches to identify novel 

scaffolds towards the discovery of new BACE-1 inhibitors with a reduced MW and, thus, valuable 

ligand efficiency (LE). 
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4.2.2. Results and discussion 

As a prerequisite for the blood-brain barrier (BBB) permeability, we searched for molecules 

matching the following physicochemical properties: a MW < 450 Da; a number of H-bonds < 8; a 

logP from 2 to 5; a polar surface area (PSA) < 100 Å
2
.
178

 In this way, we focused only on those 

molecules putatively endowed of pharmacokinetic properties appropriate for CNS penetration. 

 

 

Figure 4.8. Schematic representation of the sequential virtual screening approach. Identification of new high-

micromolar and micromolar hits: compounds 45 and 46, respectively. 

 

In Figure 4.8, our VS funnel is reported. Starting from two different databases of commercially 

available compounds, we were able to identify two micromolar inhibitors through two subsequent 

steps of VS simulations. To initially reduce the high dimensionality of the database, we biased the 

VS procedure focusing on small molecules bearing a guanidinium moiety. Indeed, such a moiety 

provides optimal interactions with the catalytic aspartic dyad, as shown by the crystal structures of 

guanidinium-carrying inhibitors in complex with BACE-1.
131,133,166

 

In particular, we focused on dihydroisocytosine derivatives, which were designed by a fragment-

based lead generation and structure-guided evolution.
133

 For instance, compound 47 (Figure 4.9) 

was shown to be a rather potent BACE-1 inhibitor as assessed by biochemical and cell-based 

assays: IC50 = 0.38 μM using the FRET methodology; IC50 = 0.59 μM using whole-cell assays. 

Furthermore, otherwise from many BACE-1 inhibitors, 47 displays a good value of LE,
179

 0.36,
133

 

and promising physicochemical features. 
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47 was actually here exploited as a template for the first step of our protocol. In particular, by 

employing ScreenMD, a tool from Chemaxon, we performed a 2D chemical similarity search by 

using the Tanimoto‟s metric calculated using the molecular similarity index 

(http://www.chemaxon.com). TPSA (topological polar surface area, see Figure 4.9) and a calculated 

logP (cLogP) were also used as pre-screening parameters to focus only on those compounds, 

matching the criteria of BBB permeability, as previously described. We screened databases from 

ChemBridge
TM

 (http://www.chembridge.com) which
 

provides a highly diverse collection of 

compounds. In particular, we considered DIVERSet
TM 

and CNS-Set
TM

 libraries containing a total of 

~110,000 compounds. 

 

 
Figure 4.9. The dihydroisocytosine derivative BACE-1 inhibitor (PDB id: 2VA6), 47, and its molecular descriptors: 

molecular weight (MW); topological polar surface area (TPSA); H-bond donors (HBD); H-bond acceptors (HBA); 

number of rotatable bonds (NRB); calculated decimal logarithm of octanol/water partition coefficient (cLogP). 

 

We selected only those molecules with a similarity index more than 50%, thus obtaining ~500 

compounds. The molecules were clusterized on the basis of maximum common substructures, and 

classified by the hierarchical tool LibMCS (http://www.chemaxon.com). Depending on the cutting 

level, a variable number of chemically different clusters could be obtained. In our approach, seven 

clusters were finally pinpointed by visual inspection, and seven new compounds, 45 and 48-53, 

representative of each cluster, submitted to biological evaluation (see ES). 

Most of the molecules were able to slightly inhibit BACE-1 being the isothiourea derivative, 45, the 

most promising hit (Figure 4.8) with an IC50 value equal to 92.5 μM ± 9.7 (according to the “Sigma 

Assay”, see ES). Furthermore, 45 was also tested using the “Invitrogen Assay”, confirming the 

previous inhibition potency (see Table 6.3 in ES). Interestingly enough, 45 was characterized by 

new structural features rather different from those of the dihydroisocytosine template 47, still 

keeping a similarity level more than 50% as far as the guanidine moiety was concerned. In light of 

this, we launched a campaign of similarity search using 45 as reference compound for the following 

main reasons: i) 45 was the sole compound showing a consistent inhibition profile according to both 

biochemical assays (see Table 6.3 in ES); ii) 45 has a relatively low molecular weight (MW = 

339.42), and therefore, possible hit compounds structurally related to it can represent promising 

starting point for identifying potential lead candidates; iii) the molecular structure of 45 is relatively 

http://www.chemaxon.com/
http://www.chembridge.com/
http://www.chemaxon.com/
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new in the field of BACE-1 drug discovery, and therefore it can open up new chemical 

opportunities in the search for novel BACE-1 inhibitors. 

On these bases, we performed the second step of our protocol, by virtual screening all the 

isothiourea derivatives present in the ZINC database (http://zinc.docking.org/). The resulting subset 

of molecules, ~800, was used to perform structure-based VS into the active site of BACE-1. This 

was performed by employing the GOLD 4.1.1 software (CCDC, Cambridge, UK),
152

 and the crystal 

structure of BACE-1 in complex with OM99-2 (PDB id: 1FKN).
100

 Seven new compounds, 46 and 

54-59, were retrieved by this procedure (the chemical structures are reported in Table 6.4 of ES) 

and one of them, 46, showed an IC50 = 3.5 ± 0.1 μM (according to the “Sigma Assay”). 

To further validate this result, a new experiment, based on increasing 10-fold the enzyme 

concentration, was employed to verify the binding specificity of compound 46. In fact, no shift in 

IC50 of 46 was observed. 

A possible mode of binding of 46 into the active site of the protein target is reported in Figure 4.10. 

In particular, the following main interactions between the ligand and the proteasic domain of 

BACE-1 were identified: i) the ligand NH group, belonging to the benzoimidazole moiety, H-

bonded to Asp32 side chain; ii) the carbonyl group interacted via H-bond with both the Thr72 side-

chain and backbone; iii) the NH group, belonging to the acetamide moiety, formed an H-bond with 

both Asp228 and Thr231 side chains; iv) the pyridinic nitrogen atom H-bonded to Arg235 side 

chain; v) the thioacetamidic sulfur atom weakly H-bonded to protonated Asp32 side chain; vi) the 

chlorine atom formed hydrophobic interactions with Ile226 and Val332; vii) the methyl-

benzimidazole moiety was stabilized by hydrophobic interactions mainly with Leu30, Tyr71, 

Phe108, Ile110, Trp115, and Ile118. 

 

http://zinc.docking.org/
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Figure 4.10. Low-energy docking pose of the BACE-1/46 complex. 

 

Interestingly, 46, which displayed micromolar affinity, possessed relatively high LE of 0.34, more 

than that of known nanomolar peptide-based inhibitors(LE < 0.2), and similar to that of the 

dihydroisocytosine inhibitor 47 (LE = 0.36). Moreover, the proposed binding mode for 46 is 

predicting that the H-bond donors of the guanidine NH2 in known inhibitors, as the compound 47, 

can be replaced by a S atom, which is normally considered a weak H-bond acceptor (see Figure 

4.11). 

 

 

Figure 4.11. Superimposition of 46 (iceblue) and 47 (white) highlighting with a magenta ellipse the weak H-bond 

between the sulfur atom and the Asp32 side chain is reported. 
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Furthermore, both new hit compounds, 45 and 46, had a low molecular weight and were compliant 

with both the requirements of BBB permeability
178 

and the Lipinski‟s rule (Figure 4.12). 

 

 
Figure 4.12. Molecular descriptors of the inhibitors 45 and 46: the common structural motif of 45 and 46 is shown 

inside the violet dashed lines. 

 

Finally, we noticed that 45 and 46 displayed a new common structural motif able to interact with 

the aspartic catalytic dyad as shown in Figure 4.12. In this context, the higher activity of 46 

compared to 45 could be likely due to the presence of the pyridine ring, which can establish an 

electrostatic interaction with Arg235 thus improving its affinity for the enzyme.
180,181

 

In addition, thioureas as BACE-1 inhibitors have very recently been reported by Schering-Plough
182

 

However, in this case, since the molecules are acyclic, the H-bond donor plays a major role in the 

binding with Asp32, as also demonstrated by the x-ray structure of the complex. Conversely, we 

report on cyclic isothioureas that represents a new chemotype showing a quite novel mode of 

binding. 

Finally, the present compounds might represent promising non-peptidic hits to undergo subsequent 

optimization steps to improve BACE-1 inhibiting profile and eventually afford novel anti-AD lead 

candidates. 
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4.3. Strategy 3 

Synthesis of monomeric derivatives to probe memoquin’s bivalent interactions 
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4.3.1. Introduction 

In the field of medicinal chemistry the multi target directed ligand (MTDL) theory is emerging as an 

interesting approach, being particularly used to combat multi-factorial diseases, such as AD. Compared 

with the well-accepted clinical use of multi-medication therapy (MMT), the MTDL design strategy 

might represent its natural evolution, and MTDLs emerge as valuable tools for hitting the multiple 

targets implicated in AD aetiology. Several MTDLs have been developed by academia and industry 

in recent years as an alternative way to develop effective anti-AD drugs.
183-189

 

In this scenario, one MTDL, which resulted able to affect several mechanisms relevant to AD, was 

memoquin (60), a molecule developed by the Department of Pharmaceutical Sciences at the 

University of Bologna. 

60 was rationally designed with the aim of creating a NCE with a poly-pharmacological profile 

against AD.
190,191

 An in vitro and in vivo characterization revealed its multifunctional mechanism of 

action, and its interaction with three molecular targets involved in AD pathology, namely 

acetylcholinesterase (AChE), Aβ, and BACE-1.
192

 60 is thus the successful product of one of the 

first AD multitarget drug discovery efforts. 

From a medicinal chemistry point of view, 60 is a bivalent ligand, with a symmetrical structure 

composed of two 2-methoxybenzyl-diamino moieties connected by a benzoquinone spacer. 

With the aim of verifying if a dimeric structure is essential for activity and incorporating activity at 

diverse targets into a single molecule, a novel series of monomeric congeners, related to the multi-

target lead candidate 60, was synthesized and, then, their potential multifunctional profile 

biologically evaluated. 
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4.3.2. Design 

As well in the field of opioids, where several examples of linking two pharmacophoric units via 

spacers of different length and flexibility were reported by Portoghese,
193

 the bivalent ligand 

strategy has received attention over the past decade for the design of anti-AD drugs. This was 

mostly motivated by the peculiar topology of a classical AD target, the enzyme AChE, which has 

two recognition sites sharing common molecular features.
194

 Consequently, improved potency is 

shown by drugs that simultaneously bind the catalytic and the peripheral anionic (PAS) sites of 

AChE.
195-199

 

The multitarget approach could be considered an evolution of the bivalent ligands concept. This is 

because combining structural elements from two ligands is the simplest way of incorporating 

activity at two targets into a single molecule.
200

 The rationale for using the bivalent ligand approach 

in AD also stems from the possibility that dimeric structures may be capable of bridging 

independent recognition sites on other validated targets (such as Aβ and BACE-1), resulting in a 

binding interaction that is thermodynamically more favourable than the monovalent binding of two 

molecules. In principle, this would be particularly advantageous in view of the complexity of the 

recognition mechanism of protein-protein interactions in amyloidosis.
201

 As a matter of fact, several 

amyloid binding compounds share a common bivalent structure and bivalent 'molecular tweezers' 

have been envisaged as the next generation of ligands.
202

 Another positive feature of anti-AD 

bivalent ligands is that, due to their high hindrance, they can efficiently fit the extended substrate 

binding site of BACE-1.
203

 However, their high MW has negative consequences for the 

pharmacokinetic profile. 

For 60, we could verify absorption through oral administration and access to the central nervous 

system.
204

 Nevertheless, if we strictly reason in terms of Lipinski‟s rule,
205

 60 violates the MW 

parameter, being out of range (632 vs. 500 Da). On this basis, we sought to generate analogs of 60 

with a reduced MW, yet maintaining its promising multitarget profile. 

To this end, we prepared and then evaluated at multiple targets (AChE, Aβ, BACE-1) five 

congeners (61-65), which we formally obtained by cutting the dimeric structure of 60 in two halves. 

In the resulting monomeric compounds, one 2-methoxybenzyl-diamino chain is always preserved, 

with the ending fragments being a napthoquinone (61), a quinolinoquinone (62), a 2,3-dimethyl-

benzoquinone (63), and a 2-methoxy-benzoquinone (64), respectively. Moreover, we reduced the 

flexibility at the polymethylene chain of 64, because a conformationally restricted analogue (65) 

might show improved potency. Notably, all compounds displayed an MW below the 500 Da cut-off 

(see Chart 4.1 for design strategy). 
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Chart 4.1. Design strategy for monovalent ligand 61-65. 
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4.3.3. Results and discussion 

To characterize the multi-target profile of 61-65, their inhibitory activity at human AChE and 

butyrylcholinesterase (BChE) (Table 4.3) was tested. Kinetic and molecular modelling evidence 

have demonstrated that 60 is a dual binding cholinesterases inhibitor, which accounts for its 

remarkable nanomolar activity.
190,191

 Interestingly, all compounds, except 65, were effective 

inhibitors of AChE, with 61 being just six times less potent than 60. 

 

Table 4.3. Inhibitory activity on human AChE and BuChE, BACE-1 and Aβ aggregation by 61-65 

and reference compound 60. 

Cpds IC50 AChE 

(nM)
a
 

IC50 BuChE 

(nM)
a
 

BACE-1 

inhibition (%)
b
 

Inhibition of Aβ aggregation (%) 

AChE-induced
c
 Self-induced

d
 

60 1.55 ± 0.11 144 ± 100 > 80 87.1 ± 1.7 66.8 ± 4.4 

61 9.73 ± 0.44 1490 ± 100 60.2 ± 1.6 69.1 ± 3.2 27.3 ± 4.3 

62 27.9 ± 1.6 2560 ± 170 Na 41.3 ± 0.7 15.4 ± 6.7 

63 29.0 ± 4.0 314 ± 21 12.8 ± 2.0 60.6 ± 0.2 30.2 ± 1.4 

64 65.3 ± 2.2 22800 ± 1600 32.8 ± 2.4 n.t. 45.7 ± 3.4 

65 24400 ± 1400 3580 ± 150 32.9 ± 1.0 n.t. 20.5 ± 1.0 

a
Human recombinant AChE and BuChE from human serum were used. IC50 values ± SEM represent the concentration 

of inhibitor required to decrease enzyme activity by 50% and are the mean of two independent measurements, each 

performed in duplicate. 
b
Inhibition of BACE-1. The concentration of the tested inhibitor was 3 μM. Experimental 

conditions as in the work reported by Bolognesi et al..
206

 For 61 IC50 = 2.8 ± 0.1 μM. IC50 value represents the 

concentration of inhibitor required to decrease enzyme activity by 50% and is the mean of two independent 

measurements, each performed in duplicate; na = not active. 
c
Inhibition of AChE-induced Aβ(1−40). The concentration 

of the tested inhibitor and Aβ40 was 100 μM and 230 μM, respectively, whereas the Aβ40: AChE ratio was equal to 

100:1. Values are the mean of two independent experiments each performed in duplicate; n.t. = not tested. 
d
Inhibition of 

Aβ42 50 μM self-aggregation when [I] = 10 μM was used. The Aβ42/inhibitor ratio was equal to 5/1. Values are the 

mean of two independent experiments each performed in duplicate. 

 

This suggests that even the monovalent structures of 61-64 could establish interactions with both 

sites of the enzyme, whereas it is plausible that the constrained structure of 65 did not allow an 

optimal docking into the AChE gorge. Figure 4.13A reports the bound conformation of 61, resulting 

from docking simulations carried out at the active site of hAChE (PDB id: 1B41,
207

 see ES). Here, 

we see that 61 was able to interact with the catalytic region and, at the same time, to protrude 

towards the solvent exposed gorge entrance. 
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Figure 4.13. Low energy docking model of 61 (orange) into the active sites of AChE (A: residues displayed in light 

green) and BACE-1 (B: residues displayed in light cyan). 

 

The following interactions between 61 and hAChE were observed: i) the ligand protonated nitrogen 

established a cation-π interaction with the indole ring of Trp86 and the phenol ring of Tyr337; ii) 

the oxygen in position 1 of the quinone moiety established an H-bond interaction with the backbone 

of Phe295; iii) the naphtalen-dione moiety established a favorable π-π stacking with the indole ring 

of Trp286 of the PAS. This last finding was relevant in the context of previous reports that linked 

inhibition of AChE–induced Aβ aggregation with a binder‟s ability to interact with the PAS of the 

enzyme.
208

 Indeed, the AChE–induced Aβ aggregation experiments,
208

 performed on the three most 

active AChEIs 61-63, are in agreement with the proposed binding mode at AChE. Activities in the 

AChE–induced aggregation and AChE inhibition were highly correlated for 61, which was the most 

potent in both assays. A different pattern was found for 62 and 63. 

In light of the remarkable anti-aggregating properties of 60
209

 and several other bivalent 

ligands,
206,210

 the ability of 61-65 to reduce Aβ42 spontaneous aggregation was then investigated. 

Data in Table 4.3 show that 61-65 at 10 μM inhibited Aβ self-aggregation in a range varying from 

15% to 46%. At the same concentration, 60 displayed a percentage of 68%, which is less than two 

times higher than that of the most potent compound 64. 

Interestingly, two protonable diamino chains of 60 do not appear to be necessary for Aβ binding. 

Conversely, these data pinpoint to the quinone core as an essential feature for potent aggregation 

inhibition, in agreement with the well-documented inhibitory capability of quinones towards Aβ 

assembly.
211-213

 Spacer flexibility also seems to be important, with 65 showing halved percent 

inhibition with respect to 64. As part of its multi-target profile, 60 inhibits BACE-1 quite 

effectively.
190

 Therefore, preliminary studies were carried out to assess whether the monomeric 

derivatives retained the ability to inhibit BACE-1 in vitro. 61-65 were tested at a concentration of 3 
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μM and their inhibition percentages are reported in Table 4.3. The most potent compound was 61, 

which inhibited enzyme activity by 60%, whereas 60 by a percentage higher than 80%. For 61 we 

also calculated an IC50 value of 2.8 μM. To check for nonspecific effects, additional experiments 

were performed on 60 and 61 with a different source of enzyme, type of substrate, and in the 

presence of a detergent (CHAPS, 0.1% w/v). In this second assay, 61 showed a similar potency 

(IC50 value of 3.0 μM) while 60 was less active (IC50 = 4.6 μM). The discrepancy of results between 

the two assays for 60 is likely to be a consequence of differences in the substrate, protein, and assay 

buffer. 

Docking simulations were performed to elucidate, at molecular level, the BACE-1 inhibitory 

activity of 61. Figure 4.13B reports the binding mode of 61 at BACE-1 proteasic site (PDB id 

2QZL).
214

 The leading interactions that characterized the bound complex were: i) the proximal 

nitrogen of the spacer established two H-bond interactions with the side chain of catalytic Asp32, 

and the carbonyl oxygen of Gly34 backbone; ii) the oxygen in position 4 of naphtalen-dione moiety 

interacted via H-bond with the side chain of Tyr198; iii) the protonated nitrogen established an H-

bond interaction with the carbonyl oxygen of Gly230 backbone; iv) the aliphatic chain of the spacer 

was lodged in a hydrophobic subpocket described by Tyr71, Phe108, Ile110, Leu30, Ile118, and 

Trp115; and v) the quinone formed hydrophobic contacts with Ile226 and Val332. 

To further substantiate the secretase inhibitory activity, we also tested whether 61 affects APP 

processing in a cellular context. This study was carried out in primary chicken telencephalon 

neurons to assess the effect on secretion of Aβ38, Aβ40 and Aβ42.
174

 Thus, intrinsic cell toxicity of 61 

was first evaluated, using 60 as reference compound. Treating primary neurons for 24 h with 61 

(0.01–50 μM) did not lead to modified viability, whereas treatment with high concentration of 60 

(25 and 50 μM) significantly abolished neuronal viability (see Figure 4.14). 
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Figure 4.14. Neurotoxicity of compounds 60 and 61 after 24 h of treatment. Values represent the mean neuronal 

viability in percent and S.E.M. (n = 6 per experiment) for each concentration and for controls. The vehicle control group 

(VC) was set as 100%. Statistical analysis was performed using one-way ANOVA analysis followed by Bonferroni‟s 

Multiple Comparison Test. 

 

Notably, 60 exhibited a similar toxicity in SH-SY5Y cell line.
215

 These data are encouraging 

because they disprove possible concerns about a potential toxicity of these molecules linked to their 

quinone portion: the presence of a quinone in both 60 and 61 points to a molecule-related rather 

than a chemotype-related toxicity profile. Concerning studies on amyloid peptides production, 61 

inhibited Aβ38, Aβ40 and Aβ42 secretion, with IC50 values of 19, 21 and 46 μM, respectively. These 

values were corrected with mean neurons viability, obtained in the MTT reduction assay. 

Conversely, due to its toxicity, a concentration-dependent decrease in Aβ secretion could not be 

observed for 60. There is a growing body of evidence that MTDLs
183

 provide a viable area for AD 

drug discovery. One limitation to this approach is that most of the hits discovered so far tend to 

have high MW, resulting in new NCEs that are eventually associated with poor oral 

bioavailability.
216

 The low ligand efficiency of MTDLs is a critical issue. This is because affinity at 

the different targets usually parallels the increase in MW, whereas pharmacokinetic properties are 

improved by reducing the MW.
216

 Interestingly, in the present series of 60-derivatives, the reduction 

of MW did not correspond to a reduction in the multiple activities. In fact, for the most active 

compound 61, the MTDL activity profile remains almost unchanged with respect to 60, with the 

toxicity profile actually being improved. 
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In conclusion, if the decrease in MW translates into the expected superior bioavailability, 61 could 

be a promising starting point in the search for new MTDLs against AD. 
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Chapter 5 

 

5. Concluding remarks and future perspectives 

 

AD has no current cure, although treatments for symptoms are available. These can temporarily 

slow the worsening of dementia symptoms and improve quality of life for patients suffering AD and 

their caregivers. Currently, there is a worldwide effort to find better ways to treat the disease, delay 

its onset, and prevent it from developing (http://www.alz.org/). 

From a drug discovery perspective, human BACE-1 has appeared to be a suitable target for the 

following reasons: i) BACE-1 catalyzes the rate-limiting step in the production of Aβ; ii) it has 

widely been structurally characterized; iii) a BACE-1 inhibitor, CTS-21666 from CoMentis, 

advanced up to Phase II clinical trials. 

 

Here, I have presented my theoretical and experimental work towards the successful identification, 

by two different strategies (see Strategies 1 and 2), of new chemical entities (NCEs) able to inhibit 

BACE-1. In particular, in contrast with traditional high-throughput screening (HTS), particularly 

employed by big pharmaceutical companies with a tremendously high level of costs, we have 

performed a significantly higher hit rate by using structure-based and computer-aided drug 

discovery approaches. In addition, I have been engaged in another study (Strategy 3) based on the 

rational design and synthesis of novel multitarget-directed ligands (MTDLs) as an alternative 

therapeutic strategy against AD, and a novel lead candidate has been identified. Notably, BACE-1 

turned out to be one of the selected molecular targets. 

 

Strategy 1 

In the first study, I have described a rational structure-based approach, integrated with a synthetic 

protocol amenable to parallel synthesis, aimed at discovery of new 2-aminoimidazole derivatives as 

BACE-1 inhibitors. Among 10 derivatives ex novo synthesised (Table 4.1, paragraph 4.1.4), 27 has 

emerged as a promising anti-BACE-1 hit because of the following reasons: 

i) the rather good chemical accessibility that allows to carry out extensive SAR studies; 

ii) the low micromolar inhibitory profile against BACE-1, as assessed by enzymatic and 

cellular assays; 

http://www.alz.org/
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iii) the capability to cross in vitro the BBB as assessed by the PAMPA test. 

Furthermore, we have identified the potential binding mode of 27 through molecular docking and 

molecular dynamics simulations (Figure 4.4, paragraph 4.1.4). The pivotal interactions with BACE-

1 might be the basis for the future design of compounds with higher affinity. 

In conclusions, 27 can represent a suitable starting point for an extensive campaign of hit-to-lead 

and, eventually, lead optimization. Indeed, these results are promising in the context of the 2-

aminoimidazole-based BACE-1 inhibitors, where a major issue is the blood brain barrier (BBB) 

penetration.
217

 

 

Strategy 2 

In the second strategy, we have adopted another drug discovery approach based on the sequential 

application of two different computational tools, a random chemical-similarity search and structure-

based screening, together with experimental biochemical assays. 

This in silico approach has allowed me to identify two novel small drug-like organic molecules as 

potential BACE-1 inhibitors (Figure 4.8, paragraph 4.2.2). Both these new hits have a low MW and 

are compliant with the requirements of BBB permeability and the Lipinski‟s rule.205 Moreover, they 

show common physicochemical properties and novel structural motif able to interact with the 

aspartic catalytic dyad. Beside this “primary interaction”, we could also identify accessory moieties, 

in particular for the most active compound 46, whose binding mode was well-characterized through 

docking simulations (Figure 4.10, paragraph 4.2.2), likely able to modulate the affinity of this class 

of ligands towards their biological counterpart. 

These compounds might represent promising non-peptidic hits to undergo subsequent optimization 

steps to improve BACE-1 inhibiting profile and eventually afford novel anti-AD lead candidates.
218

 

Notably, 46 has a relatively high value of ligand efficiency (LE), especially compared to other 

BACE-1 inhibitors reported in the literature,
136,176,177,219

 which have been identified by virtual 

screening procedures and resulted active at the similar micromolar range, but characterized by a 

high MW. 

 

Strategy 3 

There is a growing body of evidence that an alternative strategy to target the multi-factorial nature 

of AD is representd by MTDLs. One limitation to this approach is that most of the hits discovered 

so far tend to have high MW, resulting in new NCEs that are eventually associated with poor oral 

bioavailability. The low LE of MTDLs is a critical issue. This is because affinity at the different 

targets usually parallels the increase in MW, whereas pharmacokinetic properties are improved by 
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reducing the MW. Interestingly, in the present series of memoquin (60) derivatives (Chart 4.1, 

paragraph 4.3.2.), the reduction of MW did not correspond to a reduction in the multiple activities. 

In fact, for the most active compound 61, the MTDL activity profile remains almost unchanged 

with respect to 60, with the toxicity profile actually being improved. In conclusion, if the decrease 

in MW translates into the expected superior bioavailability, 61 may be a promising starting point in 

the search for new MTDLs against AD. 

 

We conclude that this work represents an excellent initial step towards the development of new 

potent BACE-1 inhibitors and MTDLs for the treatment of AD. The combined and parallel use of 

computer-aided drug design tools together with focused synthetic strategies may further contribute 

to carry out a straightforward and innovative research with a lower expense of economic resources, 

compared to the costs of the HTS approach. In particular, the MTDL strategy is intended to have a 

crucial role in the design and development of effective anti-Alzheimer‟s drugs. 
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Chapter 6 

 

6. Experimental section 

 

6.1. Computational studies 

6.1.1. Methods in Strategy 1 

 

Molecular docking 

The model of BACE-1 was constructed by removing all water molecules from its crystal structure 

(X-ray structure of human BACE1 “apo” form; PDB id: 1SGZ)97 and adding all hydrogen atoms 

and minimized by Amber force field Parm99.
220

 Histidines were protonated in according to their 

putative H-bond patterns in the crystal structure. The 3D models of ligands were built using Sybyl 

7.1.1 (Tripos Associates Inc, USA) and then optimized at the density functional level of theory 

(B3LYP/6-31G*) by means of the Gaussian09
221

 software. Docking simulations were carried out by 

means of GOLD,
152

 4.1.1 version. The outcomes from docking were clusterized by using 

AClAP.
160,161

 

Before running simulations with 27, the docking protocol was validated by assessing the capability 

of GOLD
152

 and AutoDock
153

 to reproduce the crystallographic structures of guanidinium-carrying 

BACE-1 inhibitors in complex with the enzyme (PDB id: 2VA5, 2VA6, and 2VA7).
133

 When our 

studies were almost completed, the X-ray structure of BACE-1 in complex a 2-aminoimidazole 

derivative appeared in the literature.
172

 Therefore, to further strengthen our protocol, this complex 

(PDB id: 3H0B)172 was investigated by docking simulations. In particular, three different 

protonation states of catalytic aspartates were taken into account using three different scoring 

functions: GS, CS, and the empirical function from AutoDock. The results are shown in the Table 

6.1. All these results clearly showed that GOLD employing the GS scoring function was superior to 

both CS and AutoDock, in terms of reproducibility of crystallographic complexes (as far as the 2-

aminoimidazole moiety was concerned). For this reason the following setup was defined: i) BACE-

1 in the di-deprotonated state (overall charge of the catalytic dyad -2); ii) GOLD for docking 

simulations; iii) GS scoring function for ranking. 

 

Table 6.1. Validation results of docking protocol. 
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GS 

RMSD
a
 (Å) 

 

CS 

RMSD
a
 (Å) 

 

AutoDock 

RMSD
a
 (Å) 

Asp32 and Asp228 

dideprotonated 

(net charge:-2) 

 

0.082 

 

0.693 

 

0.436 

Asp32 protonated 

Asp228 deprotonated 

 (net charge:-1) 

 

0.100 

 

0.929 

 

2.125 

Asp228 protonated 

Asp32 deprotonated 

(net charge:-1) 

 

0.118 

 

1.641 

 

0.481 

a
RMSD related to the 2-aminoimidazole moiety of the best-ranked docking pose as obtained by the three different 

scoring functions with respect to the crystallographic 2-aminoimidazole derivative in complex with the enzyme BACE-

1 (PDB id: 3H0B).
172

 

 

GOLD 

GOLD 4.1.1 adopts a search genetic algorithm to generate lowest binding ligand-protein complex 

energies. Genetic algorithm default parameters were set: the population size was 100, the selection 

pressure was 1.1, the number of operations was 10
5
, the number of islands was 5, the niche size was 

2, migrate was 10, mutate was 95, and crossover was 95. Docking calculations were computed to 

obtain 250 randomly seeded runs for each ligand. Binding-site cavity was set as a spherical region 

of 15 Å radius centered on Cγ of Asp32. To evaluate the single poses resulted by search algorithm 

both GS and CS scoring functions were used. 

AutoDock 

To perform better docking experiments, the ligands were docked using AutoDock 4.0. The 

parameters for the molecules were calculated adopting its standard parameterization procedure. The 

LGA was applied as a search method for the different docking results. The potential grid map for 

each atom type was calculated using a cubic box (center: Cγ of Asp32) of 76 grid points in each 

direction, with a distance of 0.425 Å between grid points. For each ligand 100 docking runs were 

performed. 

Cluster analysis 

The results both from GOLD and AutoDock were rationalized by means of the clustering algorithm 

AClAP.
161

 This cluster analysis program employs hierarchical agglomerative method by a user-

independent cutting rule to give the most representative poses. 

 

Electrostatic Potential (ESP) 
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The ESP surfaces were calculated by using the SMP version of the Gaussian 09
221

 package and, in 

particular, employing the B3LYP functional, and the 6-311G(d,p) basis set. Optimisations of 21 and 

22-24 were carried out in vacuo, and ESP surfaces were plotted between -0.02 and +0.02 atomic 

units by using VMD (as previously shown in Figure 4.3, paragraph 4.1.4).
222

 

 

Molecular dynamics (MD) 

The binary complex between BACE-1 and compound 27 was investigated by means of MD 

simulations carried out with the NAMD-2.7 software.
223

 MD simulations (two independent runs of 

50 ns each, overall 100 ns) of the BACE-1/27 complex were carried out in explicit solvent and 

periodic boundary conditions. Indeed, the BACE-1/27 complex as outcome of docking simulations 

was immersed in a water box with a size of 80 × 85 × 75 Å
3
. Overall charge neutrality in the system 

was achieved by adding five Na
+
 counterions. The Amber Force Field parm99SB

224
 was used to 

describe the protein and the counterions, while the TIP3P model was used for water.
225

 The ligand 

was treated with the General Amber Force Field.
226

 

Firstly, water shells and counterions were minimized using steepest descent and conjugate gradient 

algorithms. Then, a minimization of the entire complex was performed setting a convergence 

criterion on the gradient of 0.001 Kcal
-1

 Å
-1

. Equilibrization runs were carried out by heating the 

system to 300 K in 100 ps. This was followed by MD simulations in the NPT ensemble (costant 

temperature and pressure).  

The simulations were carried out by means of Langevin dynamics using a damping coefficient of 5 

ps
-1

 and a uniform integration time step of 2 fs. Bonds involving hydrogen atoms were restrained to 

their equilibrium geometry with the SHAKE algorithm.
227

 Short-range non-bonded interactions 

were treated using a cut-off radius of 10.0 Å as long as a zero switching function active at distances 

larger than 8.0 Å. A neighbour list having a radius of 12.0 Å was used and updated every 10 

integration time steps. Periodic boundary conditions were employed, and long-range electrostatics 

was estimated by means of the Particle-Mesh Ewald method
228

 using a grid spacing of less than 1.0 

Å in each dimension. 

The analyses performed by visual inspection with VMD software
222

 allowed us to observe a rather 

good stability of some key interactions. In particular the aspartic dyad and the guanidinium moiety 

have shown a quite stable electrostatic interaction throughout the simulations (see Figure 4.5, 

paragraph 4.1.4). In addition, also a stable π-π stacking has been observed between the fluorinated-

benzyl ring and the side chain of Tyr71 (see Figure 4.6, paragraph 4.1.4). 
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6.1.2. Methods in Strategy 2 

 

Chemical similarity screening 

The Tanimoto similarity was computed according to the following equation: 

)&()()(

)&(
),(

baBbBaB

baB
baTsim


  

Where a and b stand for two binary fingerprints, representing respectively the molecule template (a) 

and each molecule from ChemBridge database (b), and & denotes binary bit-wise and-operator. As 

a consequence, the larger the number of common bits in a and b, the larger the value of Tsim. No-

scaling factors were adopted. 

We selected a similarity cut-off of 0.8, which did not provide any novel scaffolds. Therefore, we 

increased the similarity cut-off up to 0.5, which turned out to be the best compromise between 

chemical similarity and diversity. In this way, starting from dihydroisocytosine we discover an iso-

thiourea derivative (compound 1) with a promising BACE-1 affinity.  

All molecules selected, 45 and 48-53, from 2D chemical similarity search were tested using two 

different biochemical assays (“Invitrogen Assay” and “Sigma Assay”). Only the results obtained 

with 45 were found comparable in both assays (see Table 6.2). 

 

Table 6.2. All molecules, 45 and 48-53, selected from 2D chemical similarity search were tested 

using two different biochemical assays (“Invitrogen Assay” and “Sigma Assay”). Only the results 

obtained with 45 were found comparable in both assays. 

Cpds Chemical structures Invitrogen Assay 

 

Sigma Assay 

 

Concentration 

(μM) 

Inhibition 

(%) 

Concentration 

(μM) 

Inhibition 

(%) 

 

 

 

45 

 

 

 

29.80 

 

 

20.22 ± 2.30 

 

 

30.70  

 

 

20.31 ± 1.60 

 

 

 

48 

 

 

 

 

30.36 

 

 

 

9.67 ± 0.55 

 

 

 

31.06 

 

 

 

44.12 ± 6.42 
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49 

 

 

 

 

30.17 

 

 

 

n.a* 

 

 

 

34.50 

 

 

 

62.31 ± 13.05 

 

 

50 

 

 

 

 

31.98 

 

 

n.a 

 

 

28.80 

 

 

24.54 ± 5.73 

 

 

 

51 

 

 

 

 

30.00 

 

 

 

n.a. 

 

 

 

 

 

 

 

n.d.
 #
 

 

 

 

52 

 

 

 

 

 

30.00 

 

 

 

67.37 ± 13.50 

 

 

 

27.18 

 

 

 

n.a 

 

 

 

53 

 

 

 

 

 

30.00 

 

 

 

57.48 ± 8.53 

 

 

 

34.00 

 

 

 

n.a 

* n.a. = not active; 
#
 n.d. = not determined. 

 

Molecular docking 

 

Protein preparation 

The protein model for docking simulations was based on the PDB id 1FKN.
100

 Water molecules, 

ions, and ligands were removed, and hydrogen atoms were added by using the BIOPOLIMERS 

module of Sybyl 7.3. Histidines were protonated accordingly to their putative H-bond patterns in 

the crystal structure. Asp32 was neutral, protonated on inner oxygen of side chain, and the Asp228 

negatively charged in agreement with a previous study.
229

 

Ligands Preparation 

The 3D models of ligands were generated by Sybyl 7.3 and then optimized at the density functional 

level of theory (B3LYP/6-31G*) by means of the Gaussian09 software.
221

 



 94 

Docking Protocol 

All the docking simulations were performed by GOLD 4.1.1 software. The active site was defined 

as a sphere of 15 Å centered on the atom Cγ of the Asp32. Automatic settings with an accuracy of 

100% for genetic algorhythm were used: the population size was 100, the selection pressure was 

1.1, the number of operations was 10
5
, the number of islands was 5, the niche size was 2, migrate 

was S4 10, mutate was 95, and crossover was 95. Both the scoring functions (Goldscore and 

Chemscore) were applied separately in two independent runs of docking simulations for the subset 

of molecules from ZINC database. Our protocol was preliminary validated by assessing the 

capability of GOLD to reproduce the BACE-1/47 complex (PDB id: 2VA6).
133

 To further confirm 

this result, two analogues of 47, 19 and 66, (respectively PDB id: 2VA7 and 2VA5)
133

 were docked 

with GOLD, showing the suitability of the program to study this class of compounds against 

BACE-1. Moreover, two additional BACE-1 experimental complexes (PDB id: 2FDP
230

 and 

2IS0)
231

 were studied with the same protocol, further demonstrating the capability of GOLD to 

reproduce crystallographic complexes of BACE-1/inhibitors. Obtained results are shown in the 

Table 6.3. 

 

Table 6.3. Validation results of docking protocol. 

Cpds PDB id Chemical Structure Docking RMSD (Å) 

 

 

47 

 

 

2VA6 
 

 

 

0.7 

 

 

19 

 

 

2VA7 

 

 

 

0.2 

 

 

66 

 

 

2VA5 

 

 

 

1.2 

 

 

67 

 

 

2FDP 

 

 

 

1.8 
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68 

 

 

2IS0 

 

 

 

1.7 

 

 

All compounds selected from structure-based virtual screening, 46 and 54-59, (see Table 6.4) were 

tested using the “Sigma Assay”. Because of their intrinsic fluorescence, except compound 46, it was 

not possible to determine the putative BACE-1 inhibition percentages. 

 

Table 6.4. Compounds selected from structure-based virtual screening. 

 

Cpds 

 

Chemical Structure 

 

IC50 (μM) 

 

46 

 

 

3.5 ± 0.1 

 

54 

 

 

> 5
#
 

 

55 

 

 

N/A
§
 

 

56 

 

 

N/A 

 

57 

 

 

N/A 

 

58 

 

 

N/A 
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59 

 

 

N/A 

# 
Determined by “Invitrogen Assay”. 

§
 Not Available (N/A) 

 

This work was carried out in collaboration with Prof. Recanatini‟s group. 
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6.1.3. Methods in Strategy 3 

 

Molecular docking 

The docking simulations were carried out by means of ICM 3.7. 

AChE was modelled starting from the crystallographic structure of human AChE in complex with 

fasciculin (PDB id: 1B41).
207

 Fasciculin and other non protein molecules were deleted and only the 

enzyme chain was retained. Hydrogen atoms and missing heavy atoms were added. Zero occupancy 

side chains, polar hydrogen atoms, and the positions of asparagine and glutamine side chain amidic 

groups were optimized and assigned the lowest energy conformation. After optimization, histidines 

were assigned the tautomerization state which improved the hydrogen bonding pattern. 

The residues defining the boundaries of the binding box were assumed to be known and directly 

derived from the bound poses of the two inhibitors: propidium (in complex with mouse AChE; PDB 

id: 1N5R) and donepezil (in complex with torpedo AChE; PDB id: 1EVE).
232,233

 Likewise, BACE-1 

was modelled starting from the crystallographic structure of the human enzyme in complex with a 

peptide-mimetic inhibitor (PDB id: 2QZL).
214

 

Ligands were built defining the right bond orders, hydrogen bonds, and protonation states. Each 

ligand was assigned the MMFF force field
234

 atom types and charges. 

The docking engine employed was the Biased Probability Monte Carlo (BPMC) stochastic 

optimizer as implemented in ICM.
235,236

 The ligand binding site at the receptor was represented by 

precalculated 0.5 Å spacing potential grid maps, representing van der Waals potentials for hydrogen 

and heavy probes, electrostatics, hydrophobicity, and hydrogen bonding. 

The molecular conformation was described by means of internal coordinate variables. The adopted 

force field was a modified version of the ECEPP/3 force field.
237

 The binding energy was assessed 

by means of the standard ICM empirical scoring function.
238

 

 

This work was performed in collaboration with Dr. Bottegoni from IIT of Genova.
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6.2. Chemistry 

6.2.1. General chemical methods 

Reaction progress was monitored by TLC on precoated silica gel plates (Kieselgel 60 F254, Merck) 

and visualized by UV254 light. Flash column chromatography was performed on silica gel (particle 

size 40-63 μM, Merck). Tetrahydrofuran (THF) and Et2O were freshly distilled over 

sodium/benzoketal. Unless otherwise stated, all reagents were obtained from commercial sources 

and used without further purification. Compounds were named relying on the naming algorithm 

developed by CambridgeSoft Corporation and used in Chem-BioDraw Ultra 11.0. 
1
H-NMR and 

13
C-NMR spectra were recorded at 200-400 and 50-100 MHz, respectively. All the NMR 

experiments were performed by using CDCl3 as solvent. Chemical shifts (δ) are reported in parts 

per millions (ppm) relative to TMS as internal standard. Coupling constants (J), when given, are 

reported in Hertz (Hz). For microwave-assisted organic synthesis a CEM Discover BenchMate 

reactor was used in the standard configuration as delivered, including proprietary software. All 

microwave-assisted reactions were carried out in sealed quartz process vials (15 mL). IR-FT spectra 

were performed in Nujol and obtained on a Nicolet Avatar 320 E.S.P. instrument; νmax is expressed 

in cm
-1

. Mass spectra were recorded on a V.G. 7070 E spectrometer or on a Waters ZQ 4000 

apparatus operating in electrospray (ES) mode. Purity of compounds was determined by elemental 

analyses; purity for all the tested compounds was ≥95%. 

 

6.2.2. General procedure for the microwave-assisted synthesis of 2-aminoimidazoles 21-31 and 

their characterization 

In a 10 mL microwave vial, 2-benzylaminopyrimidines 32a-d (1.0 equiv) and 3-substituted-α-

bromopropyl aldehydes 33a-f (1.35 eq) were successively dissolved in dry CH3CN (2-3 mL). The 

microwave reactor was irradiated by maximum power of 150 W at the temperature of 150 °C for 75 

min. After the reaction mixture was cooled with an air flow for 15 min, a hydrazine hydrate 60% 

solution (5 equiv) was added, and the mixture was irradiated at 100 W to heat at the temperature of 

100 °C for 15 min. The reaction mixture was diluted by CH2Cl2 (20 mL), washed with a saturated 

NH4Cl solution (10 mL), brine (10 mL) and H2O (2 x 10 mL). The organic layer was dried over 

Na2SO4, then filtered and concentrated. The resulting residue was purified by flash chromatography 

on silica gel (CH2Cl2/MeOH = 9.5/0.5) (Scheme 4.1). 
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1,4-Dibenzyl-1H-imidazol-2-amine (21). 

Reaction of N-benzylpyrimidin-2-amine 32a (0.28 g, 1.53 mmol) and 2-

bromo-3-phenylpropanal 33f (0.44 g, 2.07 mmol) gave the crude final 

product 21 that was purified by flash chromatography (CH2Cl2/MeOH = 

9.5/0.5). Yield 31%; brown solid; ESI-MS (m/z): 264 (M+H
+
); 

1
H-NMR (200 MHz): δ 7.37-7.14 

(m, 10H), 6.10 (s, 1H), 5.61 (br-s, 2H, NH2), 4.87 (s, 2H), 3.76 (s, 2H) ppm; 
13

C-NMR (50 MHz): δ 

147.4, 136.4, 133.9, 129.0, 128.8, 128.7, 128.5, 128.0, 127.8, 127.0, 111.2, 49.0, 31.4 ppm. IR: ν = 

3420 cm
−1

. 

 

4-Benzyl-1-(4-fluorobenzyl)-1H-imidazol-2-amine (22). 

Reaction of N-(4-fluorobenzyl)pyrimidin-2-amine 32b (0.25 g, 1.25 

mmol) and 2-bromo-3-phenylpropanal 33f (0.36 g, 1.68 mmol) gave 

the crude final product 22 that was purified by flash chromatography 

(CH2Cl2/MeOH = 9.5/0.5). Yield 29%; brown solid; ESI-MS (m/z): 282 (M+H
+
); 

1
H-NMR (200 

MHz): δ 7.28-7.12 (m, 7H), 7.05-6.96 (m, 2H), 6.04 (s, 1H), 5.94 (br-s, 2H, NH2), 4.87 (s, 2H), 3.73 

(s, 2H) ppm; 
13

C-NMR (50 MHz): δ 164.7, 159.8, 147.4, 138.3, 131.0, 130.9, 129.2, 129.1, 128.7, 

128.3, 126.3, 116.0, 115.5, 111.5, 47.8, 33.0 ppm. IR: ν = 3422 cm
−1

. 

 

4-Benzyl-1-(3,5-difluorobenzyl)-1H-imidazol-2-amine (23). 

Reaction of N-(3,5-difluorobenzyl)pyrimidin-2-amine 32c (0.27 g, 1.25 

mmol) and 2-bromo-3-phenylpropanal 33f (0.36 g, 1.68 mmol) gave the 

crude final product 23 that was purified by flash chromatography 

(CH2Cl2/MeOH = 9.5/0.5). Yield 21%; brown solid; ESI-MS (m/z): 300 

(M+H
+
); 

1
H-NMR (200 MHz): δ 7.29-7.20 (m, 5H), 6.71-6.67 (m, 3H), 6.10 (s, 1H), 5.10 (br-s, 2H, 

NH2), 4.89 (s, 2H), 3.77 (s, 2H) ppm; 
13

C-NMR (50 MHz): δ 165.8 (d, J = 12.5), 160.8 (d, J = 
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12.5), 148.2, 139.0, 138.7, 137.7, 132.2, 128.8, 128.5, 126.6, 111.2, 110.0, 103.8 (t, J = 25), 47.6, 

32.6 ppm. IR: ν = 3421 cm
−1

. 

 

4-Benzyl-1-(2-chlorobenzyl)-1H-imidazol-2-amine (24). 

Reaction of N-(2-chlorobenzyl)pyrimidin-2-amine 32d (0.27 g, 1.25 

mmol) and 2-bromo-3-phenylpropanal 33f (0.36 g, 1.68 mmol) gave the 

crude final product 34 that was purified by flash chromatography 

(CH2Cl2/MeOH = 9.5/0.5). Yield 11%; brown solid; ESI-MS (m/z): 299 (M+H
+
); 

1
H-NMR (200 

MHz): δ 7.40-7.23 (m, 8H), 7.07-7.02 (m, 1H), 5.96 (s, 1H), 4.95 (s, 2H), 4.80 (br-s, 2H, NH2) 3.80 

(s, 2H) ppm; 
13

C-NMR (50 MHz): δ 148.1, 137.8, 133.0, 132.3, 131.5, 129.9, 129.8, 128.9, 128.7, 

128.5, 127.5, 126.6, 111.3, 46.2, 32.5 ppm. IR: ν = 3420 cm
−1

. 

 

1-(4-Fluorobenzyl)-4-((3',5'-dimethoxybiphenyl-3-yl)methyl)- 1H-imidazol-2-amine (25). 

Reaction of N-(4-fluorobenzyl)pyrimidin-2-amine 32b 

(0.25 g, 1.25 mmol) and 2-bromo-3-(3',5'-

dimethoxybiphenyl-3-yl)propanal 33a (0.58 g, 1.68 

mmol) gave the crude final product 25 that was purified 

by flash chromatography (CH2Cl2/MeOH = 9.5/0.5). 

Yield 21%; orange solid; ESI-MS (m/z): 418 (M+H
+
); 

1
H-NMR (200 MHz): δ 7.48-7.25 (m, 4H), 

7.15-6.99 (m, 4H), 6.74-6.73 (m, 2H), 6.48-6.46 (m, 1H), 6.21 (s, 1H), 4.79 (s, 2H), 3.99 (br-s, 2H, 

NH2), 3.85 (s, 6H), 3.82 (s, 2H) ppm; 
13

C-NMR (50 MHz): δ 164.8, 161.0, 159.9, 147.5, 143.5, 

141.1, 140.4, 136.7, 131.8, 131.7, 128.7, 128.5, 128.1, 127.7, 124.9, 116.1, 115.7, 112.4, 105.5, 

99.1, 55.4, 47.8, 34.8 ppm. IR: ν = 3414 cm
−1

. 
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1-(3,5-Difluorobenzyl)-4-((3',5'-dimethoxybiphenyl-3-yl)methyl)-1H-imidazol-2-amine (26). 

Reaction of N-(3,5-difluorobenzyl)pyrimidin-2-amine 32c 

(0.27 g, 1.25 mmol) and 2-bromo-3-(3',5'-

dimethoxybiphenyl-3-yl)propanal 33a (0.58 g, 1.68 mmol) 

gave the crude final product 26 that was purified by flash 

chromatography (CH2Cl2/MeOH = 9.5/0.5). Yield 22%; 

brown solid; ESI-MS (m/z): 436 (M+H
+
); 

1
H-NMR (400 MHz): δ 7.46-7.44 (m, 1H), 7.42-7.40 (m, 

1H), 7.35-7.31 (m, 1H), 7.24-7.21 (m, 2H), 6.75-6.70 (m, 2H), 6.69-6.61 (m, 2H), 6.44-6.43 (m, 

1H), 6.04 (s, 1H), 4.79 (s, 2H), 4.82 (s, 6H), 3.80 (s, 2H), 2.78 (br-s, 2H, NH2) ppm; 
13

C-NMR (50 

MHz): δ 165.7 (d, J = 12.5), 161.7 (d, J = 12.5), 148.0, 143.3, 141.0, 140.3, 140.2, 136.9, 128.6, 

128.1, 127.7, 124.9, 112.0, 109.8, 109.6, 109.3, 105.4, 103.3 (t, J = 25), 99.2, 55.3, 47.4, 34.7 ppm. 

IR: ν = 3415 cm
−1

. 

 

1-(4-Fluorobenzyl)-4-((3',5'-dimethoxybiphenyl-4-yl)methyl)-1H-imidazol-2-amine (27). 

Reaction of N-(4-fluorobenzyl)pyrimidin-2-amine 32b 

(0.25 g, 1.25 mmol) and 2-bromo-3-(3',5'-

dimethoxybiphenyl-4-yl)propanal 33b (0.58 g, 1.68 mmol) 

gave the crude final product 27 that was purified by flash 

chromatography (CH2Cl2/MeOH = 9.5/0.5). Yield 30%; yellow solid; ESI-MS (m/z): 418 (M+H
+
); 

1
H-NMR (400 MHz): δ 7.47 (d, J = 8.4, 2H), 7.31 (d, J = 8.4, 2H), 7.10-7.08 (m, 2H), 7.04-6.99 (m, 

2H), 6.70-6.69 (m, 2H), 6.44-6.43 (m, 1H), 6.02 (s, 1H), 4.79 (s, 2H), 3.82 (s, 6H), 3.79 (s, 2H), 

1.96 (br-s, 2H, NH2) ppm; 
13

C-NMR (50 MHz) δ 164.0, 161.0, 159.0, 147.4, 143.3, 139.3, 139.0, 

136.6, 131.7, 129.2, 128.7, 128.5, 127.1, 116.2, 115.8, 112.4, 105.3, 99.1, 55.4, 47.9, 34.3 ppm. IR: 

ν = 3414 cm
−1

. 
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1-(3,5-Difluorobenzyl)-4-((3',5'-dimethoxybiphenyl-4-yl)methyl)-1H-imidazol-2-amine (28). 

Reaction of N-(3,5-difluorobenzyl)pyrimidin-2-amine 32c 

(0.28 g, 1.25 mmol) and 2-bromo-3-(3',5'-

dimethoxybiphenyl-4-yl)propanal 33b (0.59 g, 1.69 mmol) 

gave the crude final product 28 that was purified by flash 

chromatography (CH2Cl2/MeOH = 9.5/0.5). Yield 31%; yellow solid; ESI-MS (m/z): 436 (M+H
+
); 

1
H-NMR (400 MHz): δ 7.49 (d, J = 8.4, 2H), 7.32 (d, J = 8.4, 2H), 6.73-6.70 (m, 1H), 6.69-6.68 (m, 

2H), 6.65-6.62 (m, 2H), 6.43-6.42 (m, 1H), 6.21 (s, 1H), 4.81 (s, 2H), 3.83 (s, 2H), 3.82 (s, 6H), 

1.64 (br-s, 2H, NH2) ppm; 
13

C-NMR (50 MHz) δ 165.8 (d, J = 12.5), 161.0 (d, J = 12.5), 147.7, 

143.2, 140.4, 140.2, 140.1, 139.4, 138.9, 137.2, 129.2, 127.1, 112.2, 109.8, 109.3, 105.2, 103.4 (t, J 

= 25), 99.0, 55.3, 47.6, 34.3 ppm. IR: ν = 3415 cm
−1

. 

 

1-(3,5-Difluorobenzyl)-4-((4'-(trifluoromethyl)biphenyl-4-yl)methyl)-1H-imidazol-2-amine 

(29). 

Reaction of N-(3,5-difluorobenzyl)pyrimidin-2-amine 32c 

(0.15 g, 0.70 mmol) and 2-bromo-3-(4'-

(trifluoromethyl)biphenyl-4-yl)propanal 33c (0.34 g, 0.95 

mmol) gave the crude final product 29 that was purified 

by flash chromatography. Yield 26%; yellow solid; ESI-MS (m/z): 444 (M+H
+
); 

1
H-NMR (400 

MHz): δ 7.66-7.64 (m, 4H), 7.53 (d, J = 8.4, 2H), 7.36 (d, J= 8.4, 2H), 6.76-6.75 (m, 1H), 6.66-6.65 

(m, 2H), 6.08 (s, 1H), 4.81 (s, 2H), 3.83 (s, 2H), 3.06 (br-s, 2H, NH2) ppm; 
13

C-NMR (100 MHz): δ 

164.6 (d, J = 12.3), 162.1 (d, J = 12.3), 148.3, 144.3, 138.5, 138.1, 137.9, 132.1, 129.5, 129.1, 

127.5, 127.2, 125.7, 125.6, 122.1, 111.2, 110.1, 109.9, 104.0 (t, J = 24.6), 47.6, 32.2 ppm. IR: ν = 

3418 cm
−1

. 

 

1-(3,5-Difluorobenzyl)-4-((3'-(benzyloxy)biphenyl-4-yl)methyl)-1H-imidazol-2-amine (30). 
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Reaction of N-(3,5-difluorobenzyl)pyrimidin-2-

amine 32c (0.18 g, 0.82 mmol) and 2-bromo-3-(3'-

(benzyloxy)biphenyl-4-yl)propanal 33d (0.44 g, 

1.11 mmol) gave the crude final product 30 that 

was purified by flash chromatography (CH2Cl2/MeOH = 9.5/0.5). Yield 23%; yellow solid; ESI-MS 

(m/z): 482 (M+H
+
); 

1
H-NMR (200 MHz): δ 7.56-7.29 (m, 10H), 7.21-7.18 (m, 2H), 6.99-6.96 (m, 

1H), 6.82-6.98 (m, 3H), 6.01 (s, 1H), 5.14 (s, 2H), 4.88 (s, 2H), 3.84 (s, 2H), 2.02 (br-s, 2H, NH2) 

ppm; 
13

C-NMR (50 MHz): δ 160.8 (d, J = 12.5), 159.1 (d, J = 12.5), 147.3, 142.6, 139.2, 138.8, 

137.6, 137.0, 130.9, 129.7, 129.3, 128.6, 128.0, 127.5, 127.2, 119.8; 113.7, 113.3, 112.6, 109.9, 

109.4, 103.6 (t, J = 25), 70.1, 47.7, 34.5 ppm. IR: ν = 3415 cm
−1

. 

 

1-(2-Chlorobenzyl)-4-(4-(dibenzo[b,d]furan-1-yl)benzyl)-1H-imidazol-2-amine (31). 

Reaction of N-(2-chlorobenzyl)pyrimidin-2-amine 32d (0.15 g, 

0.68 mmol) and 2-bromo-3-(4-(dibenzo[b,d]furan-1-

yl)phenyl)propanal 33e (0.35 g, 0.92 mmol) gave the crude 

final product 31 that was purified by flash chromatography 

(CH2Cl2/MeOH = 9.5/0.5). Yield 13%; yellow solid; ESI-MS (m/z): 465 (M+H
+
); 

1
H-NMR (400 

MHz): δ 7.97-7.95 (m, 1H), 7.91-7.88 (m, 1H), 7.83-7.81 (m, 2H), 7.58-7.55 (m, 2H), 7.46-7.31 (m, 

6H), 7.25-7.22 (m, 2H), 6.94-6.92 (m, 1H), 6.25 (s, 1H), 4.92 (s, 2H), 3.87 (s, 2H), 2.63 (br-s, 2H, 

NH2) ppm; 
13

C-NMR (100 MHz): δ 156.1, 153.3, 148.2, 136.9, 135.0, 133.1, 131.8, 130.3, 130.0, 

129.9, 129.1, 129.0, 128.8, 127.6, 127.2, 126.7, 125.4, 124.9, 124.1, 123.2, 122.8, 120.6, 119.6, 

111.8, 111.3, 46.4, 31.8 ppm. IR: ν = 3413 cm
−1

. 

 

6.2.2. General parallel procedure for the synthesis of 2-benzylaminopyrimidines 32a-d and 

their characterization 
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In distinct reactors, 2-aminopyrimidine 35 (4 equiv) was dissolved in dry THF (12 mL) and the 

resulting solution was cooled in an ice bath. To these solutions NaH (4 equiv) was added resulting 

in effervescence and in the formation of suspensions. The mixtures were stirred in the ice bath for 

15 min, and then the appropriate benzyl bromide derivates 34a-d (1 equiv) were added dropwise to 

each reactor. The mixtures were stirred at room temperature for 24 h and each one was treated as 

follow. The solvent was evaporated under vacuo, and H2O (25 mL) was added. The resulting 

aqueous solution was extracted with CH2Cl2 (3 x 25 mL) and the combined organic layers were 

washed with H2O (25 mL), saturated NaHCO3 solution (25 mL) and brine (25 mL), dried over 

anhydrous Na2SO4 and concentrated under vacuo. Each crude residue was purified by flash 

chromatography on silica gel (petroleum ether/EtOAc = 1/1) (Scheme 4.2). 

 

N-benzylpyrimidin-2-amine (32a). 

Reaction of 2-aminopyrimidine 35 (1.5 g, 15.75 mmol) and the benzyl 

bromide 34a (0.46 mL, 3.96 mmol) afforded compound 32a that was purified 

on silica gel (petroleum ether/EtOAc = 1/1). Yield 93%; yellow solid; 
1
H-

NMR (200 MHz): δ 8.20 (d, J = 4.4, 2H), 7.40-7.28 (m, 5H), 6.52 (t, J = 4.8, 1H), 6.28 (br-s, 1H, 

NH), 4.66 (d, J = 5.8, 2H) ppm. 

 

N-(4-fluorobenzyl)pyrimidin-2-amine (32b). 

Reaction of 2-aminopyrimidine 35 (1.5 g, 15.75 mmol) and the benzyl 

bromide 34b (0.49 mL, 3.96 mmol) afforded compound 32b that was 

purified on silica gel (petroleum ether/EtOAc = 1/1). Yield 83%; white 

solid; 
1
H-NMR (200 MHz): δ 8.29 (d, J = 4.6, 2H), 7.38-7.29 (m, 2H), 7.08-6.99 (m, 2H), 6.58 (t, J 

= 4.8, 1H), 5.62 (br-s, 1H, NH), 4.63 (d, J = 6.0, 2H) ppm. 

 

N-(3,5-difluorobenzyl)pyrimidin-2-amine (12c). 

Reaction of 2-aminopyrimidine 35 (1.5 g, 15.75 mmol) and the benzyl 

bromide 34c (0.50 mL, 3.96 mmol) afforded compound 32c that was 
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purified on silica gel. Yield 85%; white solid; 
1
H-NMR (400 MHz): δ 8.24 (d, J = 4.8, 2H), 6.85 (d, 

J = 6.4, 2H), 6.69-6.64 (m, 1H), 6.56 (t, J = 4.8, 1H), 5.90 (br-s, 1H, NH), 4.62 (d, J = 6.4, 2H) 

ppm. 

 

N-(2-chlorobenzyl)pyrimidin-2-amine (32d). 

Reaction of 2-aminopyrimidine 35 (1.5 g, 15.75 mmol) and the benzyl bromide 

34d (0.50 mL, 3.96 mmol) afforded compound 32d that was purified on silica 

gel (petroleum ether/EtOAc = 1/1). Yield 95%; yellow solid; 
1
H-NMR (200 

MHz): δ 8.23 (d, J = 4.8, 2H), 7.46-7.28 (m, 2H), 7.24-7.18 (m, 2H), 6.54 (t, J = 4.8, 1H), 6.40 (br-

s, 1H, NH), 4.75 (d, J = 6.2, 2H) ppm. 

 

6.2.3. General parallel procedure for the synthesis of 3-(bromophenyl)-propionic methyl 

esters 36-37 and their characterization 

In distinct reactors, solutions of the appropriate 3-(3-bromophenyl)-propionic acid or 3-(4-

Bromophenyl)-propionic acid in MeOH were prepared and concentrated H2SO4 was added to each 

reactor. The resulting mixtures were stirred under reflux for 16h. Each crude mixture was reduced 

under vacuo and the residues were partitioned with dichloromethane (20 mL) and saturated 

NaHCO3 solution (20 mL). The organic layers of each reaction was dried with Na2SO4, filtered and 

evaporated. The resulting compounds were used in a further reaction without any further 

purification. 

 

Methyl 3-(3-bromophenyl)propanoate (36). 

3-(3-Bromophenyl)-propanoic acid (0.4 g, 1.74 mmol) led to compound 36. 

Yield 99%; white oil; 
1
H-NMR (200 MHz): δ 7.36-7.32 (m, 2H), 7.16-7.13 (m, 

2H), 3.68 (s, 3H), 2.93 (t, J = 7.4, 2H), 2.62 (t, J = 7.8, 2H) ppm. 
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Methyl 3-(4-bromophenyl)propanoate (37). 

3-(4-Bromophenyl)-propanoic acid (0.4 g, 1.74 mmol) led to compound 

37. Yield 99%; white oil; 
1
H-NMR (400 MHz): δ 7.32 (d, J = 8.2, 2H), 

7.01 (d, J = 8.0, 2H), 3.60 (s, 3H), 2.83 (t, J = 7.6, 2H), 2.62 (t, J = 8.0, 

2H) ppm. 

 

6.2.4. General parallel procedure for the synthesis of biphenyl propanoic acid methyl esters 

42a-e and their characterization. 

In distinct reactors, 3-(bromophenyl)-propionic methyl esters 36-37 (1.0 equiv) were dissolved in 

toluene (7 mL). Phenyl boronic acids 38-41 (2 equiv) in EtOH (3.5 mL) and Na2CO3 2M (2M, aq, 

3.0 equiv) were then added to the corresponding reactors, and the resulting mixtures were 

deoxygenated with a stream of N2. After 10 min, Pd(PPh3)4 (0.005 equiv) was added and each 

mixture was stirred at reflux temperature for 5 h under N2, then cooled to room temperature and 

treated as follows. Each solution was poured into a mixture of H2O (5 mL) and Et2O (5 mL), and 

the two phases were separated. The aqueous layer was washed with Et2O (5 mL), and the organic 

phases were combined and washed with 1M NaOH (5 mL), followed by brine (5 mL), then dried 

over Na2SO4 and evaporated. Purification of each crude product performed by flash 

chromatography on silica gel (petroleum ether/EtOAc = 8/2) yielded the corresponding biphenyl 

propanoic acid methyl esters 42a-e (Scheme 4.3). 

 

Methyl 3-(3',5'-dimethoxybiphenyl-3-yl)propanoate (42a). 

Reaction of 3-(bromophenyl)-propionic methyl ester 36 (0.3 g, 

1.23 mmol) and boronic acid 38 (0.45 g, 2.46 mmol) afforded 

compound 42a that was purified by flash chromatography on silica 

gel (petroleum ether/EtOAc = 8/2). Yield 97%; white powder; 
1
H-

NMR (400 MHz): δ 7.42-7.40 (m, 2H), 7.36-7.33 (m, 1H), 7.19-7.17 (m, 1H), 6.72-6.70 (m, 2H), 

6.47-6.46 (m, 1H), 3.83 (s, 6H), 3.67 (s, 3H), 3.01 (t, J = 8.0, 2H), 2.67 (t, J = 7.6, 2H) ppm. 
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Methyl 3-(3',5'-dimethoxybiphenyl-4-yl)propanoate (42b). 

Reaction of 3-(bromophenyl)-propionic methyl ester 37 (0.3 g, 

1.23 mmol) and boronic acid 38 (0.45 g, 2.46 mmol) afforded 

compound 42b that was purified by flash chromatography on 

silica gel (petroleum ether/EtOAc = 8/2). Yield 94%; white 

powder; 
1
H-NMR (200 MHz): δ 7.52 (d, J = 7.8, 2H), 7.29 (d, J = 

8.0, 2H), 6.75-6.74 (m, 2H), 6.49-6.48 (m, 1H), 3.87 (s, 6H), 3.71 (s, 3H), 3.02 (t, J = 7.6, 2H), 2.69 

(t, J = 7.6, 2H) ppm. 

 

Methyl 3-(4'-(trifluoromethyl)biphenyl-4-yl)propanoate (42c). 

Reaction of 3-(4-bromophenyl)-propionic methyl ester 37 (0.3 g, 

1.23 mmol) and boronic acid 39 (0.47 g, 2.46 mmol) afforded 

compound 42c that was purified by flash chromatography on 

silica gel. Yield 95%; white powder; 
1
H-NMR (200 MHz): δ 

7.72-7.70 (m, 4H), 7.56-7.53 (m, 2H), 7.35-7.31 (m, 2H), 3.71 (s, 3H), 3.04 (t, J = 8.0, 2H), 2.71 (t, 

J = 7.0, 2H) ppm. 

 

Methyl 3-(3'-(benzyloxy)biphenyl-4-yl)propanoate (42d). 

Reaction of 3-(bromophenyl)-propionic methyl ester 37 (0.3 g, 

1.23 mmol) and boronic acid 40 (0.56 g, 2.46 mmol) afforded 

compound 42d that was purified by flash chromatography on 

silica gel (petroleum ether/EtOAc = 8/2). Yield 99%; 
1
H-NMR 

(200 MHz): δ 7.54-7.18 (m, 12H), 6.97 (d, J = 7.2, 2H), 5.14 (s, 2H), 3.71 (s, 3H), 3.02 (t, J = 7.8, 

2H), 2.69 (t, J = 7.6, 2H) ppm. 

 

Methyl 3-(4-(dibenzo[b,d]furan-1-yl)phenyl)propanoate (42e). 
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Reaction of 3-(bromophenyl)-propionic methyl ester 37 (0.3 g, 1.23 

mmol) and boronic acid 41 (0.52 g, 2.46 mmol) afforded compound 

42e that was purified by flash chromatography on silica gel (petroleum 

ether/EtOAc = 8/2). Yield 80%; 
1
H-NMR (400 MHz): δ 7.99-7.97 (m, 

1H), 7.93-7.91 (m, 1H), 7.87-7.85(m, 2H), 7.61-7.58 (m, 2H), 7.49-7.47 (m, 1H), 7.46-7.34 (m, 

4H), 3.71 (s, 3H), 3.06 (t, J = 7.2, 2H), 2.73 (t, J = 7.2, 2H) ppm.
 

 

6.2.5. General procedure for the synthesis of 3-biphenyl propyl alcohols 43a-e and their 

characterization 

LiAlH4 (1.2 equiv) was dissolved in dry Et2O (2 mL) and to the resulting suspension cooled at 0 °C 

a solution of the appropriate biphenyl propanoic methyl esters 42a-e (1.0 equiv) in dry Et2O was 

added dropwise. The reaction mixture was stirred at room temperature for 5 h under N2 atmosphere. 

The mixture was cooled to 0 °C and quenched with sequential additions of H2O (1 mL), NaOH 10% 

(0.8 mL) and H2O (1 mL). The aqueous suspension was extracted with Et2O (3 x 10 mL). The 

combined organic layers were dried over Na2SO4 and evaporated to dryness. The crude products 

were used in a further reaction without purification (Scheme 4.3). 

 

3-(3',5'-Dimethoxybiphenyl-3-yl)propan-1-ol (43a). 

Biphenyl propanoic methyl ester 42a (0.33 g, 1.10 mmol) led to 

compound 43a. Yield 83%; white semisolid; 
1
H-NMR (400 MHz): δ 

7.43-7.41 (m, 2H), 7.36-7.34 (m, 1H), 7.32-7.18 (m, 1H), 6.75-6.74 

(m, 2H), 6.49-6.48 (m, 1H), 3.84 (s, 6H), 3.69 (t, J = 6.4, 2H), 2.77 (t, 

J = 7.6, 2H), 1.97-1.91 (m, 2H), 1.82 (br-s, 1H, OH) ppm. 

 

3-(3',5'-Dimethoxybiphenyl-4-yl)propan-1-ol (43b). 

Biphenyl propanoic methyl ester 42b (0.15 g, 0.50 mmol) led to 

compound 43b. Yield 99%; white powder; 
1
H-NMR (200 MHz): δ 
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7.40 (d, J = 8.2, 2H), 7.14 (d, J = 7.8, 2H), 6.63-6.62 (m, 2H), 6.36-6.34 (m, 1H), 3.73 (s, 6H), 3.58 

(t, J = 6.6, 2H), 2.64 (t, J = 7.2, 2H), 1.88-1.74 (m, 2H), 1.82 (br-s, 1H, OH) ppm. 

 

3-(4'-(Trifluoromethyl)biphenyl-4-yl)propan-1-ol (43c). 

Biphenyl propanoic methyl ester 42c (0.24 g, 0.94 mmol) led to 

compound 43c. Yield 87%; white powder; 
1
H-NMR (200 MHz): δ 

7.72-7.70 (m, 4H), 7.57 (d, J = 8.0, 2H), 7.34 (d, J = 8.2, 2H), 

3.75 (t, J =6.2, 2H), 2.81 (t, J = 7.2, 2H), 2.05-1.91 (m, 2H), 1.67 (br-s, 1H, OH) ppm. 

 

3-(3'-(Benzyloxy)biphenyl-4-yl)propan-1-ol (43d). 

Biphenyl propanoic methyl ester 42d (0.16 g, 0.46 mmol) led to 

compound 43d. Yield 99%; white solid; 
1
H-NMR (200 MHz): 

δ 7.57-7.21 (m, 12H), 7.02-6.97 (m, 2H), 5.16 (s, 2H), 3.75 (t, J 

= 6.2, 2H), 2.80 (t, J =8.0, 2H), 2.04-1.94 (m, 2H), 1.48 (br-s, 1H, OH) ppm. 

 

3-(4-(Dibenzo[b,d]furan-1-yl)phenyl)propan-1-ol (43e). 

Biphenyl propanoic methyl ester 42e (0.30 g, 0.91 mmol) led to 

compound 43e. Yield 98%; white solid; 
1
H-NMR (400 MHz): δ 7.99-

7.97 (m, 1H), 7.92-7.90 (m, 1H), 7.86-7.83 (m, 2H), 7.60-7.58 (m, 2H), 

7.57-7.44 (m, 1H), 7.43-7.33 (m, 4H), 3.74 (t, J = 6.0, 2H), 2.80 (t, J 

=7.6, 2H), 2.01-1.94 (m, 2H), 1.40 (br-s, 1H, OH) ppm. 

 

6.2.6. General procedure for the synthesis of 3-substituted propyl aldehydes 44a-f and their 

characterization 

A solution of the appropriate 3-biphenyl propyl alcohols 43a-f (1.0 equiv) in CH2Cl2 (5 mL) was 

added dropwise to the suspension of PCC (1.4 equiv) in CH2Cl2 (15 mL) cooled to 0 °C. The 
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reaction mixture was stirred in an ice bath for 3-4h, then filtered on silica gel and evaporated to 

dryness. All the compounds were used in the next step without any further purification (Scheme 

4.3). 

 

3-(3',5'-Dimethoxybiphenyl-3-yl)propanal (44a). 

3-Biphenyl propyl alcohol 43a (0.42 g, 1.54 mmol) lead to compound 

44a. Yield 90%; yellow oil; 
1
H-NMR (200 MHz): δ 9.83 (t, J = 1.2, 

1H), 7.50-7.35 (m, 3H), 7.23-7.20 (m, 1H), 6.79-6.78 (m, 2H), 6.55-

6.53 (m, 1H), 3.88 (s, 6H), 3.05 (t, J = 7.0, 2H), 2.86 (t, J = 7.4, 2H) ppm. 

 

3-(3',5'-Dimethoxybiphenyl-4-yl)propanal (44b). 

3-Biphenyl propyl alcohol 43b (0.42 g, 1.54 mmol) lead to compound 

44b. Yield 72%; yellow oil; 
1
H-NMR (400 MHz): δ 9.82 (t, J = 1.2, 

1H), 7.50 (d, J = 6.8, 2H), 7.24 (d, J = 7.6, 2H), 6.72-6.71 (m, 2H), 

6.47-6.45 (m, 1H), 3.83 (s, 6H), 2.98 (t, J = 7.6, 2H), 2.79 (t, J = 7.2, 

2H) ppm. 

 

3-(4'-(Trifluoromethyl)biphenyl-4-yl)propanal (44c). 

3-Biphenyl propyl alcohol 43c (0.23 g, 0.82 mmol) led to compound 

44c. Yield 88%; yellow oil;
 1

H-NMR (200 MHz): δ 9.89 (t, J = 1.6, 

1H), 7.71-7.70 (m, 4H), 7.57 (d, J = 8.0, 2H), 7.34 (d, J = 8.4, 2H), 

3.06 (t, J = 7.2, 2H), 2.87 (t, J = 6.8, 2H) ppm. 

 

3-(3'-(Benzyloxy)biphenyl-4-yl)propanal (44d). 

3-Biphenyl propyl alcohol 43d (0.26 g, 0.81 mmol) lead to 

compound 44d. Yield 94%; yellow oil; 
1
H-NMR (200 MHz): δ 
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9.88 (t, J = 1.6, 1H), 7.57-7.35 (m, 6H), 7.31-7.23 (m, 6H), 7.02-6.96 (m, 1H), 5.15 (s, 2H), 3.03 (t, 

J = 7.2, 2H), 2.85 (t, J = 7.4, 2H) ppm. 

 

3-(4-(Dibenzo[b,d]furan-1-yl)phenyl)propanal (44e). 

3-Biphenyl propyl alcohol 43e (0.39 g, 1.29 mmol) lead to compound 44e. 

Yield 98%; yellow oil; 
1
H-NMR (400 MHz): δ 9.86 (t, J = 1.2, 1H), 7.99-

7.97 (m, 1H), 7.93-7.91 (m, 1H), 7.90-7.84 (m, 2H), 7.60-7.57 (m, 2H), 

7.48-7.43 (m, 1H), 7.41-7.33 (m, 4H), 3.04 (t, J = 7.6, 2H), 2.85 (t, J = 7.6, 

2H) ppm. 

 

3-Phenylpropanal (44f). 

3-Phenyl propyl alcohol 43f (2.0 g, 14.6 mmol) lead to compound 44f. Yield 

81%; yellow oil; 
1
H-NMR (200 MHz): δ 9.79 (t, J = 1.0, 1H), 7.40-7.23 (m, 5H), 

2.98 (t, J = 7.4, 2H), 2.75 (t, J = 7.0, 2H) ppm. 

 

6.2.7. General procedure for the synthesis of 3-substituted-α-bromopropyl aldehydes 33a-f 

and their characterization 

A solution of the appropriate 3-susbstituted propyl aldehydes 44a-f (1.0 equiv) in dry Et2O (2 mL) 

was added dropwise to a solution of DBBA (0.5 equiv) in dry Et2O (4 mL). Successively, a solution 

4N of HCl in 1,4-dioxane (0.028 mL, 0.1equiv) was added dropwise and the reaction mixture was 

stirred at room temperature for 20 h. The resulting suspension was extracted with a saturated 

NaHCO3 solution (10 mL) and Et2O (3 x 10 mL). The combined organic layers were washed with 

H2O (10 mL), and brine (10 mL), then dried over Na2SO4 and evaporated to dryness (Scheme 4. 

3). 

 

2-Bromo-3-(3',5'-dimethoxybiphenyl-3-yl)propanal (33a). 
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The 3-susbstituted propyl aldehyde 44a (0.64 g, 2.36 mmol) led to 

the brominated product 33a. Yield 99%; thick yellow oil; 
1
H-NMR 

(200 MHz): δ 9.52 (d, J = 1.4, 1H), 7.53-7.20 (m, 4H), 6.74-6.73 

(m, 2H), 6.51-6.50 (m, 1H), 4.54-4.47 (m, 1H), 3.87 (s, 6H), 3.62-3.52 (m, 1H), 3.29-3.18 (m, 1H) 

ppm. 

 

2-Bromo-3-(3',5'-dimethoxybiphenyl-4-yl)propanal (33b). 

3-susbstituted propyl aldehyde 44b (0.47 g, 1.73 mmol) led to the 

brominated product 33b. Yield 99%; thick yellow oil; 
1
H-NMR (200 

MHz): δ 9.55 (d, J = 1.8, 1H), 7.57-7.54 (m, 1H), 7.40-7.28 (m, 3H), 

6.74-6.73 (m, 1H), 6.53-6.49 (m, 2H), 4.57-4.46 (m, 1H), 3.87 (s, 6H), 

3.62-3.45 (m, 2H) ppm. 

 

2-Bromo-3-(4'-(trifluoromethyl)biphenyl-4-yl)propanal (33c). 

The 3-susbstituted propyl aldehyde 44c (0.20 g, 0.72 mmol) led to the 

brominated product 33c. Yield 83%; thick yellow oil; 
1
H-NMR (200 

MHz): δ 9.55 (d, J = 2.2, 1H), 7.71-7.70 (m, 4H), 7.57 (d, J = 8.0, 

2H), 7.33 (d, J = 8.4, 2H), 4.42-4.31 (m, 1H), 3.41-3.19 (m, 2H) ppm. 

 

2-Bromo-3-(3'-(benzyloxy)biphenyl-4-yl)propanal (33d). 

The 3-susbstituted propyl aldehyde 44d (0.24 g, 0.76 mmol) led to 

the brominated product 33d. Yield 96%; thick yellow oil; 
1
H-NMR 

(200 MHz): δ 9.54 (d, J = 2.4, 1H), 7.58-7.18 (m, 12H), 7.02-6.96 

(m, 1H), 5.15 (s, 2H), 4.55-4.46 (m, 1H), 3.60-3.45 (m, 1H), 3.29-

4.18 (m, 1H) ppm. 
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2-Bromo-3-(4-(dibenzo[b,d]furan-1-yl)phenyl)propanal (33e). 

The 3-susbstituted propyl aldehyde 44e (0.25 g, 0.83 mmol) led to the 

brominated product 33e. Yield 98%; 
1
H-NMR (400 MHz): δ 9.53 (d, J = 

2.4, 1H), 7.98-7.96 (m, 1H), 7.94-7.92 (m, 1H), 7.89-7.86 (m, 2H), 7.60-

7.57 (m, 2H), 7.66-7.28 (m, 5H), 4.54-4.51 (m, 1H), 3.60-3.54 (m, 1H), 

3.28-3.22 (m, 1H) ppm. 

 

2-Bromo-3-phenylpropanal (33f). 

3-Phenyl propyl aldehyde 44f (1.15 g, 8.57 mmol) led to the brominated 

product 33f. Yield 93%; 
1
H-NMR (200 MHz): δ 9.51 (d, J = 2.6, 1H), 7.36-7.21 

(m, 5H), 4.48-4.44 (m, 1H), 3.56-3.45 (m, 1H), 3.25-3.13 (m, 1H) ppm. 
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6.3. Biology 

6.3.1. BACE-1 inhibition: enzymatic procedures 

 

Method A: M-2420 substrate and Sigma enzyme 

Human recombinant BACE-1, sodium acetate, CHAPS and DMSO were purchased from Sigma 

Aldrich (Milan, Italy). The substrate, M-2420, was from Bachem, (Torrance, CA, USA). Purified 

water from Milli-RX system (Millipore, Milford, MA, USA) was used to prepare buffers and 

standard solutions. Spectrofluorometric analyses were carried out on a Fluoroskan Ascent multiwell 

spectrofluorimeter (excitation: 320 nm; emission: 405 nm) by using black microwell (96 wells) 

Corning plates (Sigma, Italy).  

Stock solutions of the tested compounds were prepared in DMSO and diluted with DMSO. 

Specifically, 175 μL of BACE1 enzyme (25 nM in NaOAc 20 mM pH 4.5, containing 0.1% w/v 

CHAPS) were incubated with 5 μL of test compound for 60 minutes. To start the reaction, 20 μL of 

M-2420 (3 μM in Hepes 10 mM pH 7.5) were added to the well. The mixture was incubated at 

room temperature for 15 minutes and the fluorescence signal was read at 405 nm. 

Assays were done with a blank containing all components except BACE1 in order to account for 

non enzymatic reaction. The reaction rates were compared and the percent inhibition due to the 

presence of test compounds was calculated. Each concentration was analyzed in duplicate. The 

percent inhibition of the enzyme activity due to the presence of increasing test compound 

concentration was calculated by the following expression: 100-(vi/vo × 100), where vi is the initial 

rate calculated in the presence of inhibitor and vo is the enzyme activity. To demonstrate inhibition 

of BACE-1 activity, inhibitor IV (Calbiochem, Darmstadt, Germany) was used as reference 

inhibitor (IC50 = 13.61 nM). 

 

Method B: Panvera peptide and Invitrogen Enzyme 

Purified Baculovirus-expressed BACE-1 and rhodamine derivative substrate were purchased from 

Panvera (Madison, WI, U.S). Sodium acetate and DMSO were from Sigma Aldrich (Milan, Italy). 

Purified water from Milli-RX system (Millipore, Milford, MA, USA) was used to prepare buffers 

and standard solutions. Spectrofluorometric analyses were carried out on a Fluoroskan Ascent 

multiwell spectrofluorimeter (excitation: 544 nm; emission: 590 nm) by using black microwell (96 

wells) Corning plates (Sigma, Italy). Stock solutions of the tested compounds were prepared in 

DMSO and diluted with 50 mM sodium acetate buffer pH = 4.5. Specifically, 20 μL of BACE1 

enzyme (25 nM) were incubated with 20 μL of test compound for 60 minutes. To start the reaction, 

20 μL of substrate (0.25 μM) were added to the well. The mixture was incubated at 37 °C for 60 
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minutes. To stop the reaction, 20 μL of BACE-1 stop solution (sodium acetate 2.5 M) were added to 

each well. Then the spectrofluorometric assay was performed by reading the fluorescence signal at 

590 nm. 

Assays were done with a blank containing all components except BACE-1 in order to account for 

non enzymatic reaction. The reaction rates were compared and the percent inhibition due to the 

presence of test compounds was calculated. Each concentration was analyzed in triplicate The 

percent inhibition of the enzyme activity due to the presence of increasing test compound 

concentration was calculated by the following expression: 100-(vi/vo × 100), where vi is the initial 

rate calculated in the presence of inhibitor and vo is the enzyme activity. To demonstrate inhibition 

of BACE-1 activity, inhibitor IV (Calbiochem, Darmstadt, Germany) was used as reference 

inhibitor (IC50 = 12.89 nM). 

 

6.3.2. Inhibition of AChE and BuChE activities 

The method of Ellman et al. was followed.
239 

Five different concentrations of each compound were 

selected in order to obtain inhibition of AChE or BuChE activities comprised between 20 and 80%. 

The assay solution consisted of a 0.1 M potassium phosphate buffer pH 8.0, with the addition of 

340 M 5,5‟-dithio-bis(2-nitrobenzoic acid), 0.02 unit/mL of human recombinant AChE or BuChE 

from human serum (Sigma Chemical), and 550 M of substrate (acetylthiocholine iodide or 

butyrylthiocholine iodide, respectively). Test compounds were added to the assay solution and 

preincubated at 37 °C with the enzyme for 20 min before the addition of substrate. Enzyme reaction 

was followed at 412 nm for five min by a double beam spectrophotometer (Jasco V-530). Assays 

were carried out with a blank containing all components except AChE or BuChE in order to account 

for non-enzymatic reaction. The reaction rates were compared, and the percent inhibition due to the 

presence of test compounds was calculated. Each concentration was analyzed in triplicate, and IC50 

values were determined graphically from inhibition curves (percent inhibition vs log inhibitor 

concentration). 

 

6.3.3. Inhibition of AChE-induced A-amyloid aggregation 

Aliquots of 2 µL A40 peptide (Bachem AG, Germany), lyophilized from a 2 mg mL
-1

 HFIP 

(1,1,1,3,3,3-hexafluoro-2-propanol) solution and dissolved in DMSO, were incubated for 24 h at 

room temperature in 0.215 M sodium phosphate buffer (pH 8.0) at a final concentration of 230 µM. 

For co-incubation experiments aliquots (16 µL) of human recombinant AChE (final concentration 

2.30 µM, A/AChE molar ratio 100:1) and AChE in the presence of 2 µL of tested inhibitor (final 

concentration = 100 M) were added. Blanks containing A, AChE, and A plus inhibitor, in 0.215 
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M sodium phosphate buffer pH 8.0 were prepared. The final volume of each vial was 20 µL. Each 

assay was run in duplicate. To quantify amyloid fibril formation, the thioflavin T fluorescence 

method was then applied.
208,240,241

 

Analyses were performed with a Jasco Spectrofluorometer FP-6200 using a 3 ml quartz cell. After 

incubation, the samples containing A, or A plus AChE, or A plus AChE in the presence of 

inhibitors were diluted with 50 mM glycine-NaOH buffer (pH 8.5) containing 1.5 µM thioflavin T 

to a final volume of 2.0 mL. A 300s-time scan of the emitted fluorescence (ex = 446 nm, em = 490 

nm) was performed and the intensity values at the plateau were averaged after subtracting the 

background fluorescence of 1.5 µM thioflavin T and AChE. 

The fluorescence intensities in the presence and in the absence of inhibitor were compared and the 

percentage of inhibition was calculated by the following expression: 100-(IFi/IFo x 100) where IFi 

and IFo are the fluorescence intensities obtained for A plus AChE in the presence and in the 

absence of inhibitor, respectively.
208

 

 

6.3.4. Inhibition of A42 self-aggregation 

HFIP pretreated A42 samples (Bachem AG, Switzerland) were resolubilized with a CH3CN/0.3 

mM Na2CO3/250 mM NaOH (48.4/48.4/3.2) mixture in order to have a stable stock solution ([A] 

= 500 M). Experiments were performed by diluting the peptide stock solution in 10 mM phosphate 

buffer (pH = 8.0) containing 10 mM NaCl, to a final concentration of 50 M in the absence or in 

the presence of compounds 61-65 at 10 M. Samples were then incubated without stirring at 30 °C 

for 24 h. To quantify amyloid fibril formation, the thioflavin T fluorescence method was used.
240,241

 

After incubation, samples were diluted to a final volume of 2.0 mL with 50 mM glycine-NaOH 

buffer (pH = 8.5) containing 1.5 μM thioflavin T. A 300-seconds-time scan of fluorescence 

intensity was carried out (λex = 446 nm; λem = 490 nm), and values at plateau were averaged after 

subtracting the background fluorescence of 1.5 μM thioflavin T solution. 
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6.3.5. BACE-1 inhibition: cellular assays procedures 

 

Preparation and culture of neurons 

One-day-old fertilized eggs were stored under appropriate conditions until start of breeding. On 

embryonic day 0 eggs were transferred to the breeding incubator and under turning kept at 37.8 °C 

and 55 % humidity until embryonic day eight.  

All cell culture experiments were carried out under sterile conditions meaning all procedures were 

performed in a cell culture unit with special cell culture equipment. Items necessary like glassware, 

forceps or scissors were sterilised prior to the experiment. Stock solutions were purchased already 

sterile and final suspensions like the culture medium were freshly prepared in the laminar airflow 

cabinet. 

In short, embryos were transferred to a plastic dish, and decapitated. Both hemispheres were 

removed, collected and cleaned from any loose tissue. Hemispheres were mechanically dissociated.  

 

Administration of test and reference item 

For the secretase assay, poly-D-lysine pre-coated 24-well microplates were used with three wells 

per test items (T.I.) and reference item (R.I.) concentration (n=3). 1.8 x 106 cells were plated per 24 

well in a total volume of 2 mL. The cell culture medium consisted of DMEM with 4.5 g glucose/L, 

5% Nu Serum, 0.01% gentamycin and 2 mM L-glutamine. Cultures were maintained at 37 °C, 95% 

humidity and 5% CO2. 48 h after initiation of culture, medium was exchanged with fresh medium 

containing T.I., R.I., or vehicle in a total volume of 300 μL. DAPT was used as R.I.. 

DAPT was dissolved in DMSO to a stock concentration of 5 mM and applied on cultured neurons 

at a final concentration of 200 nM. All T.I. were dissolved in DMSO. 24 h after treatment, cell 

culture supernatants were taken off, snap frozen and stored at -80 °C prior to Aβ38, Aβ40, and Aβ42 

measurement. 

Viability assay 

In parallel, test items were evaluated for their effect on cell viability of primary chicken 

telencephalon neurons in 96-well plates. 3 x 105 cells were plated per 96 well in a total volume of 

160 μL. Cultures were maintained at 37 °C, 95% humidity and 5% CO2. 48 h after initiation of 

culture, medium was exchanged with fresh medium containing T.I., R.I., or vehicle in a total 

volume of 60 μL. After 24 h of treatment, viability was determined by using the MTT reduction 

assay. 

 

Evaluation 
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Determination of Aß species 

In cell supernatants, Aβ38, Aβ40, and Aβ42 levels were determined with a commercially available 

Aβ-Triplex kit from Mesoscale Discovery, USA. Aβ levels in cell supernatants were evaluated in 

comparison to an Aβ peptide standard as pg per mL.  

MTT-Viability Assay 

Viability of cultures was determined with the MTT assay using a plate-reader (570 nm). The MTT-

assay is a very sensitive assay measuring the mitochondrial dehydrogenase activity in viable cells 

and is based on the reduction of yellow MTT (3-(4,5-dimethylthiazol-2-yl)-2,5,diphenyl tetrazolium 

bromide) to dark blue formazan crystals by mitochondrial dehydrogenases (succinate 

dehydrogenase). Since this reaction is catalysed in living cells only this assay can be used for the 

quantification of cell viability. For determination of cell viability, MTT solution was added to each 

well in a final concentration of 0.5 mg/mL. After 2 h the MTT containing medium was aspired. 

Cells were lysed with 3% SDS and formazan crystals were dissolved in isopropanol/HCl. To 

estimate optical density, a plate-reader was used at wavelength 570 nm. Cell viability is expressed 

in optical density (OD). 

 

Statistics 

Descriptive statistical analysis was performed. Data will be represented as mean ± S.D. or (S.E.M.). 

To determine statistical significant differences between treatment groups, one-way ANOVA 

analyses followed by Bonferroni‟s Multiple Comparison Tests were performed. 
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6.3.6. CNS penetration: in vitro PAMPA-BBB test 

Prediction of the brain penetration was evaluated using a parallel artificial membrane permeability 

assay (PAMPA)
175

. Ten commercial drugs, phosphate buffer saline solution at pH 7.4 (PBS), 

Ethanol and dodecane were purchased from Sigma, Acros organics, Merck, Aldrich and Fluka. The 

porcine polar brain lipid (PBL) (catalog no. 141101) was from Avanti Polar Lipids. The donor plate 

was a 96-well filtrate plate (Multiscreen® IP Sterile Plate PDVF membrane, pore size is 0.45 μM, 

catalog no. MAIPS4510) and the acceptor plate was an indented 96-well plate (Multiscreen®, 

catalog no. MAMCS9610) both from Millipore. Filter PDVF membrane units (diameter 30 mm, 

pore size 0.45 μm) from Symta were used to filtered the samples. A 96-well plate UV reader 

(Thermoscientific, Multiskan spectrum) was used for the UV measurements. Test compounds [(3-5 

mg of Caffeine, Enoxacine, Hydrocortisone, Desipramine, Ofloxacine, Piroxicam, Testosterone), 

(12 mg of Promazine) and 25 mg of Verapamile and Atenolol] were dissolved in EtOH (1000 μL). 

100 microlitres of this compound stock solution was taken and 1400 μL of EtOH and 3500 μL of 

PBS pH 7.4 buffer were added to reach 30% of EtOH concentration in the experiment. These 

solutions were filtered. The acceptor 96-well microplate was filled with 180 μL of PBS/EtOH 

(70/30). The donor 96-well plate was coated with 4 μL of porcine brain lipid in dodecane (20 mg 

mL
-1

) and after 5 minutes, 180 μL of each compound solution was added. 1-2 mg of every 

compound to be determined their ability to pass the brain barrier were dissolved in 1500 μL of 

EtOH and 3500 μL of PBS pH 7.4 buffer, filtered and then added to the donor 96-well plate. Then 

the donor plate was carefully put on the acceptor plate to form a “sandwich”, which was left 

undisturbed for 2 h and 30 min at 25 °C. During this time the compounds diffused from the donor 

plate through the brain lipid membrane into the acceptor plate. After incubation, the donor plate was 

removed. UV plate reader determined the concentration of compounds and commercial drugs in the 

acceptor and the donor wells. Every sample was analyzed at three to five wavelengths, in 3 wells 

and in two independent runs. Results are given as the mean ± S.D. and the average of the two runs 

is reported. 10 quality control compounds (previously mentioned) of known BBB permeability were 

included in each experiment to validate the analysis set. 

In order to explore the capacity of 27-29 and 31 to penetrate into the brain, we used the 

PAMPA‐BBB method described by Di et al.
175

 which employed a brain lipid porcine membrane. 

The in vitro permeabilities (Pe) of commercial drugs through lipid membrane extract together with 

compounds 27-29 and 31 were determined and described in Table 6.5. An assay validation was 

made comparing the reported permeability values of commercial drugs with the experimental data 

obtained employing this methodology. A good correlation between experimental‐described values 

was obtained Pe (exptl) = 1.0345 (bibl) ‐ 0.584 (R
2
= 0.967) (Figure 6.1). From this equation and 
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following the pattern established in the literature for BBB permeation prediction
175,242

 we could 

classify the compounds as CNS+ when they present a permeability > 3.55 x 10‐6 cm s‐1and as 

CNS+/- when the Pe value is between 3.55 x 10
-6

 and 2.00 x 10
-6

 cm s
-1

. 

Based on these results we can consider that compounds 27 and 31 are able to cross the BBB by 

passive permeation (see Table 6.5). 29 precipitates in the experimental conditions employed so it 

was not possible to determine the BBB permeability. 

 

 

Figure 6.1. Linear correlation between experimental and reported permeability of commercial drugs using the PAMPA-

BBB assay. 

 

Table 6.5. Permeability (Pe) in the PAMPA-BBB assay for ten commercial drugs (used in the 

experiment validation) and the compounds 27-29 and 31 with their predictive penetration in the 

CNS
a
. 

Cpds 
 

Bibl.
b
 Pe 

(10
-6

 cm s
-1

)
c
 

Prediction
d
 

 

 
Atenolol 

 

 
0.8 

 
0.2 ± 0.1 

 

 

 
Caffeine 

 

 
1.3 

 
0.9 ± 0.2 

 

 

 
Desipramine 

 

 
12 

 
12.4 ± 1.0 

 

 

 
Enoxacine 

 

 
0.9 

 
0.3 ± 0.2 

 

 

 
Hydrocortisone 

 
1.9 

 
0.6 ± 0.4 
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Ofloxacin 

 

 
0.8 

 
0.7 ± 0.7 

 

 

 
Piroxicam 

 

 
2.5 

 
0.4 ± 0.4 

 

 

 
Promazine 

 

 
8.8 

 
11.5 ± 0.9 

 

 

 
Testosterone 

 

 
17 

 
15.7 ± 1.2 

 

 

 
Verapamil 

 

 
16 

 
15.6 ± 1.2 

 

 

 
27 
 

  
4.0 ± 1.0 

 

 
CNS+ 

 

 
28 
 

  
3.2 ± 0.2 

 
CNS+/- 

 
29 
 

  
n. d.

e
 

 
n. d. 

 
31 
 

  
4.0 ± 0.7 

 
CNS+ 

a
PBS/EtOH (70/30) was used as solvent. 

b
From reference Di et al..

175
 

c
Values are mean ± S.D. of two independent 

experiments. 
d
The compounds were classified

175
 as CNS+ when they present a Pe value > 3.55 x 10

-6
 cm s

-1
, and as 

CNS+/- when the Pe value is between 3.55 x 10
-6

 and 2.00 x 10
-6

 cm s
-1

. 
e
n. d. = not determined. 
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Chapter 7 

 

7. Outlook 

 

7.1. 2-Aminoimidazole derivatives as interfering probes in the replication 

process of prion protein 

 

7.1.1. Overview of Prion diseases (PrDs) 

PrDs, also known as transmissible spongiform encephalopathies (TSEs), are a group of invariably 

fatal disorders, including bovine spongiform encephalopathy (BSE) of cattle, scrapie of sheep, 

chronic wasting disease (CWD) of deer, moose and elk, Creutzfeldt-Jakob (CJD) and Gerstmann-

Sträussler-Scheinker (GSS) diseases of humans.
243

 Currently, there is no cure for each one of these 

PrDs.
244,245

 They are characterized by widespread neurodegeneration; therefore, affected individuals 

or animals exhibit clinical symptoms of both cognitive and motor dysfunction. 

Despite their rare incidence in humans, PrDs have captured very large attention from the scientific 

community due to the unconventional mechanism of transmission. The typical microscopic features 

of prion diseases are vacuolation of the neuropil in the grey matter, prominent neuronal loss, 

exuberant reactive astrogliosis and a variably gradual accumulation of the scrapie form of the prion 

protein (PrP
Sc

) in the central nervous system.
245

 According to the “protein-only hypothesis”, in the 

CNS of the infected host, the normal cellular form of prion protein (PrP
C
) is converted into an 

abnormal insoluble amyloidogenic isoform (PrP
Sc

, also simply named prion.
245

 The latter acts as a 

template for PrP
C
 leading to nascent PrP

Sc
 molecules. The conversion process is associated with 

conformational changes of secondary structure from α-helices to β-sheets. The term “prion” (a 

small proteinaceous infectious particle that is resistant to inactivation by most procedures that 

modify nucleic acids)
246

 was proposed by Stanley B. Prusiner to distinguish the infectious pathogen 

that causes prion diseases from viruses and viroids. The infection principle consists purely of 

protein and is capable of replicating and transmitting infections without the need for informational 

nucleic acids.
246

 Numerous experiments have provided evidence that PrP
C
 is a key player in prion 

replication as well as in prion-induced neurodegeneration.
247

 PrP
C
 expression is categorically 
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required for neurodegeneration in host neurons, because the presence of PrP
Sc

 alone does not cause 

disease.
248

 Mice lacking the prion gene are resistant to the infection.
249,250

 

The conversion PrP
C
 to the PrP

Sc
 form by protein-protein interaction is a characteristic feature of 

the diseases. PrP
C
 is one of amyloidogenic proteins, which are associated with a variety of 

conformational diseases. Indeed, PrDs show many pathologic features analogous to other 

neurodegenerative disorders similarly characterized by the presence of abnormal protein 

accumulation in the nervous system leading to a selective neuronal death, such as AD (extra-

cellular Aβ-composed senile plaques and NFTs consisting in intra-cellular deposition of hyper-

phosphorilated τ), Parkinson‟s disease (Lewy bodies formed by α-synuclein), Huntington disease 

(huntingtin protein aggregates). As it should be pointed out that the commonness in aggregation of 

these amyloidogenic proteins, despite their differences in sequence, in all conformational diseases 

might suggest that PrP
Sc

 blockers are also effective to prevent other fibril formation. Hence, 

studying the antiprion compounds may help to define a common pharmacophore for other 

amyloidoses. 
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7.1.2. Introduction 

PrDs are neurodegenerative and infectious disorders that affect both human and animals, and not 

current drugs are available yet. Although reliable proof-of-principle was demonstrated in a variety 

of experimental models, and several classes of small molecules have been identified, the mode-of-

action and targets for most of the antiprion molecules remain largely unexplored. Indeed, 

structurally diverse chemical antiprion compounds, covering a broad range of the chemical space, 

have been discovered so far by screening approaches.
251

 

Based on these considerations, it emerges that the rational design of antiprion compounds is still a 

big challenge. The lack of validated molecular targets forces medicinal chemists to undertake a 

cellular phenotypic approach. However, a favorable point that could further motivate rational drug 

discovery in PrDs, is that the lessons we can learn from their investigation with small molecules 

might have an impact on other conformational diseases characterized by a similar pathological 

aggregation and accumulation of misfolded proteins. 

To this end, it is particularly relevant to note that PrP
C
 was recently identified as a mediator of Aβ-

oligomer-induced synaptic dysfunction, and hence PrP
C
-specific compounds might have therapeutic 

potential for AD.
13

 In addition, several neuropathological and genetic links between AD and PrD 

have been recently proposed. For example, some cases of coexistent CJD and AD have been 

reported. The Met–Val129 polymorphism in human PrP
C
 is a risk factor for early-onset AD, and a 

systematic meta-analysis of AD genetic association studies revealed that the gene encoding PrP
C
 is 

a potential AD susceptibility gene.
252

 Moreover, there are similarities in the post-translational 

processing, sequence and copper-binding properties of PrP
C
 and APP or the Aβ peptide.

14,253
 Recent 

experimental evidences have shown that PrP
C
 inhibits BACE-1-mediated cleavage of APP and the 

subsequent formation of Aβ suggesting that PrP
C
 may be a key protective player against AD.

12,254
 

As a result of these findings, it is emerging as alternative and suitable strategy the idea to have 

common therapeutic approaches for these two distinct neurodegenerative disorders.
13,253 

In light of this, we considered reasonable to perform a preliminary screening of selected 2-

aminoimidazoles (reported in Strategy 1) to verify their potential antiprion activity. This was 

supported by the following reasons: i) they are synthetically readily accessible and amenable to 

compounds library generation; ii) some of these 2-aminoimidazoles have been shown to cross the 

BBB; iii) they have been extensively explored in medicinal chemistry and analogous chemical 

classes (i. e. 2-aminothiazoles, 2-aminobenzothiazoles and 2-thioimidazoles)
255-257

 have been 

reported as antiprion compounds. Therefore, it seemed conceivable that 2-aminoimidazoles could 
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serve as a template for a diverse array of pharmacophores toward the identification of novel 

chemical class for the treatment of prion diseases. 

Here, we present some preliminary results on 2-aminoimidazole derivatives, which resulted able to 

inhibit PrP
Sc

 aggregation at a micromolar range with a low concomitant cytotoxicity. 
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7.1.3. Preliminary results 

A cell-screening assay was used to test antiprion activity across of the selected 2-aminoimidazoles. 

Their ability to reduce PrP
Sc

 concentrations in scrapie-infected mouse hypothalamus (ScGT1) cells 

was determined from Western blot densitometry of the proteinase K (PK)-resistant PrP
Sc

. The 

compounds were initially screened at 10 μM, and their ability to reduce PrP
Sc

 levels after exposure 

for five days was evaluated by comparison with the untreated control. The effects of tested 

compounds on ScGT1 cells viability were determined (see Table 7.1). For compounds 26, 28-30 

and 31, the EC50 values, which represent the effective concentrations for half-maximal inhibition, 

were also calculated (see Table 7.1). Two well-documented antiprion agents, imipramine and 

quinacrine, were investigated as positive controls and their EC50 values of 6.2 ± 0.4 and 0.4 ± 0.1 

μm were obtained, respectively. 

Firstly, the cytotoxic effects of compounds 25-31 were determined by calcein-AM assay in the 

ScGT1 cell line. As reported in Figure 7.1, the treatment of ScGT1 cells with test compounds (1 

μM) did not lead to any significant change in cell viability, with the exception of 25 and 27, where 

the cell viability was lower than 40 and 60% respectively, and which resulted dendrimental for the 

cells at the concentration of 10 μM (see Figure 7.1). 

 

 

Figure 7.1. Cytotoxic effects of 25-31 determined at two different concentrations (at 1 and 10 μM as shown in panel A 

and B, respectively) by calcein-AM assay in the ScGT1 cell line 

 

Therefore, 25 and 27 were not screened for prion replication, whereas other compounds were 

assayed at different concentrations ranging from 1 to 15 μM. All the tested 2-aminoimidazoles 

displayed activity at micromolar range (see EC50 values reported in Table 7.1). 

 

Table 7.1. Cell viability and inhibition of PrP
Sc

 accumulation in ScGT1 cells grown by compounds 

26, 28-30 and 31.
a
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Cpds 

 

Chemical Structure 

 

EC50 

(μM)
b
 

 

Viable Cells 

(%)
c
 

 

Western Blot 

(concentrations μM) 

 

 

 

 

26 

 

N

N
NH2

O

O

F

F

 

 

 

 

 

7.8 

 

 

 

 

78.8 ± 3.5 

 

 

 

 

 

 

28 

 

 

N

N
NH2

F

FO
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level in cells to 50% versus untreated cells (EC50). [c] Cell viability at the EC50 concentration was determined by 

calcein-AM cytotoxicity assay and expressed as an average percentage of viable cells versus untreated control cells. 
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Notably, compounds 28 and 29, compared with their EC50 values, showed a considerably low 

cytotoxicity. In addition, as previously reported in the Strategy 1, 28 displayed a relative capability 

to cross in vitro the BBB as assessed by PAMPA test. 

In light of these preliniminary results and the chemical accessibility, to delucidate the potential 

mode-of-action of derivatives 28 and 29, further investigations are in progress in an attempt to 

better address the future optimization by systematic SAR studies of more potent and novel 2-

aminoimidazoles derivatives as potential antiprion drugs. 
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