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Outline

Systems biology is an emergent interdisciplinary field of study whose maingyoal
to understand the global properties and functions of a biological sysiemésti-
gating its structure and dynamics [74]. This high-level knowledge caedehed

only with a coordinated approach involving researchers witiedint backgrounds

in molecular biology, the various omics (like genomics, proteomics, metabolomics),
computer science and dynamical systems theory.

The history of systems biology as a distinct discipline began in the 1960s, and
saw an impressive growth since year 2000, originated by the increasathala-
tion of biological information, the development of high-throughput expentiale
techniques, the use of powerful computer systems for calculations daablaga
hosting, and the spread of Internet as the standard medium for infornaiiion
sion [77].

In the last few years, our research group tried to tackle a set of sybietogy
problems which look quite diverse, but share some topics like biologicalonkesw
and system dynamics, which are of our interest and clearly fundamenttdi$
field.

In fact, the first issue we studied (covered in Part 1) was the revagiaeering
of large-scale gene regulatory networks. Inferring a gene netwaile isrocess of
identifying interactions among genes from experimental data (tipically miayparr
expression profiles) using computational methods [6]. Our aim was to gempa
some of the most popular association network algorithms (the only ones applica
ble at a genome-wide level) inftigrent conditions. In particular we verified the
predictive power of similarity measures both of direct type (like correlataons
mutual information) and of conditional type (partial correlations and conditio
mutual information) applied on fierent kinds of experiments (like data taken at
equilibrium or time courses) and on both synthetic and real microarray fodata. (
coli andS. cerevisiap

In our simulations we saw that all network inference algorithms obtain bet-
ter performances from data produced with “structural” perturbatione @iéne
knockouts at steady state) than with just dynamical perturbations (like tinteecou
measurements or changes of the initial expression levels). Moreoveanaly-
sis showed dferences in the performances of the algorithms: direct methods are
more robust in detecting stable relationships (like belonging to the same protein
complex), while conditional methods are better at causal interactions (@ng. tr
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scription factor—binding site interactions), especially in presence of catdial
transcriptional regulation.

Even if time course microarray experiments are not particularly usefuhfor
ferring gene networks, they can instead give a great amount of inframmabout
the dynamical evolution of a biological process, provided that the maasuts
have a good time resolution. Recently, such a dataset has been publidSéd [
for the yeast metabolic cycle, a well-known process where yeast calthsynize
with respect to oxidative and reductive functions. In that paper, thee pamiod res-
piratory oscillations were shown to be reflected in genome-wide periodiapatte
in gene expression.

As explained in Part Il, we analyzed these time series in order to elucidate the
dynamical role of post-transcriptional regulation (in particular mRNA stability)
the coordination of the cycle. We found that for periodic genes, aecimgclasses
according either to expression profile or to function, the pulses of mRN#&-ab
dance have phase and width which are directly proportional to the pomding
turnover rates. Moreover, the cascade of events which occursgdimnyeast
metabolic cycle (and their correlation with mRNA turnover) reflects to a large ex
tent the gene expression program observable in other dynamical toatesh as
the response to stresses or stimuli.

The concepts of network and of systems dynamics return also as majer argu
ments of Part Ill. In fact, there we present a study of some dynamioakepties
of the so-called chemical reaction networks, which are sets of chemieelesp
among which a certain number of reactions can occur. These netwarnkiseca
modeled as systems of ordinanyffdrential equations for the species concentra-
tions, and the dynamical evolution of these systems has been theoreticaigdstud
since the 1970s [47, 65]. Over time, several independent conditiores heen
proved concerning the capacity of a reaction network, regardlesseofoften
poorly known) reaction parameters, to exhibit multiple equilibria. This is a par-
ticularly interesting characteristic for biological systems, since it is requdoed
the switch-like behavior observed during processes like intracellulaaléigrand
cell differentiation.

Inspired by those works, we developed a new open source softaakage
for MATLAB, called ERNEST, which, by checking these various critenatbe
structure of a chemical reaction network, can exclude the multistationarity of the
corresponding reaction system. The results of this analysis can befosed;
ample, for model discrimination: if for a multistable biological process there are
multiple candidate reaction models, it is possible to eliminate some of them by
proving that they are always monostationary.

Finally, we considered the related property of monotonicity for a reactibn ne
work. Monotone dynamical systems have the tendency to converge taidib-eq
rium and do not present chaotic behaviors. Most biological systengsthawsame
features, and are therefore considered to be monotone or near-mef®so 116].
Using the notion of fundamental cycles from graph theory, we provetsbeo-
retical results in order to determine how distant is a given biological netfxonk
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being monotone. In particular, we showed that the distance to monotonicity of a
network is equal to the minimal number of negative fundamental cycles obthe c
responding J-graph, a signed multigraph which can be univocally iassddo a
dynamical system.

For a more thorough introduction to thefférent topics briefly presented here,
we refer the reader to the initial chapter of each Part.

The material of this thesis has been the object of the following publications:

1. N. Soranzo, G. Bianconi and C. Altafini
“Comparing association network algorithms for reverse engineeringgd-ar
scale gene regulatory networks: synthetic versus real data”
Bioinformatics23(13), pp. 1640-1647, 2007

2. M. Zampieri, N. Soranzo and C. Altafini
“Discerning static and causal interactions in genome-wide reverse emngine
ing problems”
Bioinformatics24(13), pp. 1510-1515, 2008

3. N. Soranzo, M. Zampieri, L. Farina and C. Altafini
“MmRNA stability and the unfolding of gene expression in the long-period
yeast metabolic cycle”
BMC Syst. Biol3:18, 2009

4. N. Soranzo and C. Altafini
“ERNEST: a toolbox for chemical reaction network theory”
Bioinformatics25(21), pp. 2853-2854, 2009

5. G. lacono, F. Ramezani, N. Soranzo and C. Altafini
"Determining the distance to monotonicity of a biological network: a graph-
theoretical approach”
IET Syst. Biol4(3), pp. 223-235, 2010
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Chapter 1

Introduction

In the field of Systems Biology, the possibility of using the information provided
by high throughput measurements in order to infer interactions betwees gam
resents a first step towards a comprehensive understanding of adtébkygtem in
terms of gene functions, “partner genes”, conditions for activationdgnmdmical
behavior. The reconstrucion of gene regulatory networks [6, B fmicroarray
expression profiles is certainly one of the most challenging problem famdbar

of reasons. First, the number of variables that come into play is very higheo
order of the thousands or tens of thousands at least, and there is nanmaiki-
cient biological knowledge to restrict the analysis to a subset of coigblas for a
given biological process. Second, the number of gene expressiblepavailable

is typically much less that the number of variables, thus making the problem un-
derdetermined. Third, there is no standard model of the regulatory msoisfor

the genes, except for a generic causkizet relationship between transcription fac-
tors (TFs) and corresponding binding sites (BSs). Fourth, little is knamd Qo
high throughput measure is available) about the post-transcriptiondatieg and

on how it influences the regulatory pattern we see on the microarrayieqrés.

In spite of all these diiculties, the topic of reverse engineering of gene regulatory
networks is worth pursuing, as it provides the biologist with phenomenolgica
predicted gene—gene interactions.

Many methods have been proposed for this scope in the last few years, lik
Bayesian networks [50, 66], linear ordinanffdrential equations (ODES) models
[130], relevance networks [15, 33] and graphical models [30, 73187].

The aim of this work is to compare a few of these methods, focusing in par-
ticular on the last two classes of algorithms, that reconstruct weightethgyetp
gene—gene interactions. Relevance networks look for pairs of geatdsatve sim-
ilar expression profiles throughout a set dfelient conditions, and associate them
through edges in a graph. The reconstruction changes with the “similarity mea
sure” adopted: popular choices for gene networks are covarizesmed measures
like the Pearson correlation [15, 33], or entropy-based like the mutuahiation
(MI) [16, 33]. While correlation is a linear measure, Ml is nonlinear. Ehgisnple

15



16 CHAPTER 1. INTRODUCTION

pairwise similarity methods are computationally tractable, but fail to take into ac-
count the typical patterns of interaction of multivariate datasets. The goesee

is that they sffer from a high false discovery rate, i.e. genes are erroneously asso-
ciated while in truth they only indirectly interact through one or more othergene

In order to prune the reconstructed network of such false positines;an use
the notion of conditional independence from the theory of graphical fma&6],

i.e. look for residual correlation or Ml after conditioning over one or mgeaes.
These concepts are denoted as partial Pearson correlation (PPE)ratitional
mutual information (CMI). First and second order PPC were used fopthisoses
in [30]. If nis the number of genes, the exhaustive conditioning ave? genes
is instead used in [107] under the name of graphical Gaussian models Y@GM
for MI, conceptually the CMI plays the same role of the first order PPCauin
knowledge, CMI has never been used before for gene networlemfer although
an alternative method for pruning the Ml graph proposed in [88], basdtie so-
called Data Processing Inequality (DPI), relies on the same idea of coridiijon
namely on searching for triplets of genes forming a Markov chain.

Relevance networks and graphical models have been extensivelinusednt
years [84] and their results have been validated experimentally, for éxami8]
where the analysis is based on a similarity index related to CMI [88], or in [40]
where co-expression is used to investigate combinatorial regulation.

Since we miss a realistic large scale model of a gene regulatory network, it
is not even clear how to fairly evaluate and compare theerdnt methods for
reverse engineering. A few biologically inspired (small-size) benchmanisd@ms
have been proposed, like the songbird brain model [113] or the Rakpgtii24],
or completely artificial networks, typically modeled as systems of nonlingardi
ential equations [92, 133]. Since we are interested in large scale gevarke we
shall focus on the artificial network of [92], in which the genes repretdee state
variables and the mechanisms of gene—gene inhibition and activation aréethode
using sigmoidal-like functions as in the reaction kinetics formalism. This network
has several features that are useful for our purposes: (i) itsaizbechosen arbi-
trarily; (ii) realistic (nonlinear) &ects like state saturation or joint regulatory action
of several genes are encoded in the model; (iii) perturbation experimeatydiie
knockout, or diferent initial conditions, or measurement noise are easily included.

Similar comparative studies have appeared recently in the literature [8B, 124
However, [124] evaluates Bayesian networks, GGM and correlatlevamece net-
works on one specific, very small (11 genes) network. [88] insteadpeaoes
Bayesian networks, Ml relevance networks and DPI using a numbempoégsion
profilesm much larger than the number of gemgsvhile we are also interested in
more realistic scenarios. Our investigation aims at:

e comparing conditional similarity measures (like PPCs, GGM and CMI) with
“direct” measures (like correlation and Ml);

e comparing linear measures (correlation and PPCs) with nonlinear ones (Ml
CMI, DPI).
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In particular, for the dferent reconstruction algorithms we are interested in the
following questions:

e what is the predictive power for a number of measurements n? How
does it grow withm?

¢ do the algorithms scale with size?

o what is the most useful type of experiment for the purposes of netwerk in
ference?

After examining these questions, inspired by several studies suggestingtha
expression is mostly related to “static” stable binding relationships, like belgngin
to the same protein complex (PC), rather than other types of interactions more o
a “causal” and transient nature (e.g. TF—BS interactions), we tried iky viedi-
rect or conditional network inference algorithms are indeed useful redisng
static from causal dependencies in artificial and real gene netwoasedBn cur-
rent literature [3, 118, 132], the interaction networks representingglRG@3 F-BS
are roughly characterizable by means dfatient recurrent regulatory motifs, that
for simplicity we denote “dense modules” and “causal modules” (se€ Fig. 1.1
The dense modules for PC represent undirected subgraphs in whicidal are
mutually connected. The modules for the TF-BS, instead, are directechphisg
constructed with a scale-free-like connectivity, but overall sparaphy. In addi-
tion, in order to represent the combinatorifibet of multiple TFs on a target gene
the input degrees are normally higher than the output degrees.

It is worth noticing that these two types of regulatory motifs can characterize
the complexity of an organism. Going from unicellular prokarydte ¢oli) and
eukaryote §. cerevisiapto mammals (human, rat and mouse), the distribution of
annotated protein complexes shows an heavier tail towards bigger cos(dexe
Fig./1.2(a)). The same happens looking at the combinatofietteof multiple
transcription factors (see Fig. 1.2(b)) [80, 81].

Again a comparison between the two classes of similarity metrics cited above
(direct and conditional) is performed, but with the aim of analyzing their alidity
infer regulatory networks characterized by the above mentioned topalagiac-
tures, in a completely unsupervised manner. The fifierdint similarity metrics
are tested on an artificial and two real networks. The artificial network enine
to enable the evaluation under controlled conditions, while in the two caseés of b
ological data the identification of true positive (TP) edges relies on reedigdd
networks of PC and TF-BS relationships collected from the literature. \Weseh
two simple organisms, a prokaryote.(coli) and an eukaryoteS; cerevisiag in
order to test the consistency of the two regulatory structures for therelit al-
gorithms. For these two organismsfistiently many PC and TF-BS have been
annotated and large collections of gene expression profiles can beeghtiem
online repositories.

The comparison of the inference power of the 5 algorithms shows that tiee ge
interactions associated to co-participation in the same protein complex are better
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(b)

Figure 1.1: Schemes of the two regulatory motifs: in (a) a dense moduleewher
all nodes are mutually connected. In (b) a causal module, i.e. directpt gra
counting for only a few feedback loops and multi-regulated genes. Timeefo

is representing a PC, the latter (multiple) TFs acting on their BSs. PCs can be
characterized as sets of proteins that interact closely with each othermaster

of fact, searching for highly connected subgraphs is a common preéict®iCs
[118, 132]. Hence in our artificial network a dense subgraph reptesa PC. On
the other hand, a statistical description showing a honuniform conneaiisee

on an oriented and globally sparse graph emerges from the analysisif ¢bé
andS. cerevisiacknown TF-BS interactions, see Fig. 1.2. It is taken here as a
paradigm for the TF—BS modules in our artificial network.
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Figure 1.2: Log scale distribution of PC size (a), and nhumber of TFs per (pg for
different organisms. In yeast for example the largest complex is the cytoplasmic
ribosome accounting for 81 genes, whilekn coli it is the flagellum complex
composed of 24 genes. Both distributions hint at an increase in the size of th
regulatory motifs as the complexity of the organisms increase.
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detected by the direct methods, while those associated to the combinafi@ial e
of multiple TFs are better retrieved by the conditional metrics (in particular by
the graphical Gaussian model). Apart from comparing the performaofcie
algorithms on the dierent topologies, we also aim at evaluating them on modules
of different sizes (i.e. for larger PCs or with increasing numbers of TFs aating o
the same BS). For this purpose it is convenient to rank the weights of isaitdriy
matrix and look at the percentage of TPs (with respect to the total numbereof tr
edges) in the highest 1% of weights. This procedure allows us to makeébasad
and unsupervised comparison betweeffiedent metrics. For the dense modules
case, it is also possible to specify how well the reconstructed dense mamdiyes
correspond to known PCs. If we do so by means of a clustering algorithtineo
inferred graphs, we see that indeed the direct metrics are those alloveimgotbt
faithful PC reconstruction.
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Chapter 2

Methods

2.1 Artificial datasets

The influence on the transcription of each gene due to the other genesiibdd

by a (sparse) matrix of adjacencids= (& ;). As for the topology ofA, in sec-
tion/3.1 we considered two classes of directed networks widely used in literatu
as models for regulatory networks: scale-free [7] and random [39].

Instead, for the analysis of section 38yas constructed as a scale-free matrix,
representing the causal module, superimposed to a matrix of denselyctamhne
subsets of nodes representing the stable modules. The procedute usadtruct
this artificial network is such that dense regulatory modules (@dint sizes) are
numerous enough to compare the inference power amongffieeedit algorithms
in a statistically relevant manner.

The model we used to generate artificial gene expression datasets edtiere
kinetics-based system of coupled nonlinear continuous time ODEs intrdbdiice
[92]. The expression levels of the gene mMRNAs are taken as state variaale
themx;, i = 1,...,n. The rate law for the mMRNA synthesis of a gene is obtained
by multiplying together the sigmoidal-like contributions of the genes identified as
its inhibitors and activators. Consider théh row of A, i = 1,...,n, and choose
randomly a sign to its nonzero indexes. Denotejhy.., ja the indexes with
assigned positive values (activators of the geh@nd withk;, . .., k, the negative
ones (inhibitors of;). The ODE for; is then

W

Vi Vi k
dx i 0 x
— = Vi 1—[ [1 + ﬁ] l—[ TR : — — /li Xi, (21)
ij ij ik Vik
dt j€tiLmal X" 05 ) et o) X TOIK

whereV; represents the basal rate of transcriptn(respectively, k) the activa-

tion (resp. inhibition) half-lifey; ; (resp.vi) the activation (resp. inhibition) Hill
codficient (in our simulationsy; j, vix € {1,2,3,4}), and; the degradation rate
constant. The ODE (2.1) always tends to a steady state, which could lze(pas-
itive) saturation value. Whex(0) > 0, the abundance(t) remains positive during

the entire time course, hence the solution is biologically consistent. Thusgea gen

21
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expression profile experiment at timmeorresponds to a state vectag(t) . . . x,(t)]
obtained by numerically integrating (2.1). For the purpose of reconstguthim
network of gene—gene interactions from expression profiles, orusteearry out
multiple experiments, in dierent conditions, typically performed perturbing the
system in many dierent ways. We shall consider the following cases of perturba-
tions:

1. randomly chosen initial conditions in the integration of (2.1), plus gene
knockout obtained setting to 0 the paramefenf the respective dieren-
tial equation, as in [92];

2. only randomly chosen initial conditions in the integration of (2.1);
and the following types of measurements:
1. steady state measurements;

2. time-course experiments, in which the solution of the ODE is supposed to
be measured at a certain (low) sampling rate.

The numerical integration of (2.1) is carried out in MATLAB. In all case§aus-
sian measurement noise is added to corrupt the output.

2.2 Collected data

We downloaded thé&. coli gene expression datababEP “Many Microbe Mi-
croarrays Database” (build_&oli_v3_Build_1 from http//m3d.bu.edu, T. Gardner
Lab, Boston University). This dataset consists of 445 arrays frontifi&ent col-
lections corresponding to various conditions, lik&fetient media, environmental
stresses (e.g. DNA damaging drugs, pH changes), genetic pertug@ijmegu-
lations and knockouts), and growth phases. The experiments wereralcaut
on Affymetrix GeneChifkE. coli Antisense Genome arrays, containing 4345 gene
probes. FoiS. cerevisiaave compiled a collection of microarrays containing ex-
periments performed with cDNA chips (958 experiments for 6203 ORFshdin
datasets a global RMA normalization was performed prior to network inferen

PC network for yeast was downloaded from the MPACT subsection of the
CYGD database at MIPS [58]. Only the complexes annotated from the literatu
and not those obtained from high throughput experiments (according td RS
classification scheme these last are labeled “550”) were considered to lamit th
high rate of false positives. PC sizes for human, rat and mouse werdaimled
from CORUM database [105], while f&. colifrom the EcoCyc website [68]. We
obtained TF-BS networks from tliRegulonDBdatabase, version 5.6, f&. coli
[106], and from a recent collection [3] f@. cerevisiae The number of edges in
PC and TF-BS networks are summarized in Table 2.1.
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Interaction networkl N. edges| Edge type
causal modules 11716| directed
dense modules 55610 | undirected

(a) Artificial network (2154 genes)

Interaction networkl N. edges| Edge type
TF-BS 3071 | directed
PC 2228 | undirected

(b) E. coli (4345 genes)

Interaction networkl N. edges| Edge type
TF-BS 12376| directed
PC, annotated 21616 | undirected

(c) S. cerevisia€6203 genes)

Table 2.1: Number of edges in the PC and TF—BS networks for: (a) theciaittifi
network with dense modules, (&) coliand (c)S. cerevisiae

2.3 Similarity measures

2.3.1 Pearson correlation (direct)

Relevance networks based on correlation were proposed alread}.iff[® each
genei we associate a random variabfg whose measured values we denote as
xi(€) for £ = 1,...,m, the sample correlation between the random variaklesd
Xj is
2 (%(6) = %) (x(6) = X))

Mm-Dywy;
wherex;, vi andx;, v; are sample means and variancesxgf) and x;(¢) over
them measurements. When used as weight for the inferred matrix, we’ll take the
absolute value oR.

R(Xi, X)) =

2.3.2 Partial Pearson correlation (conditional)

Since correlation alone is a weak concept and cannot distinguish betiireeh
and indirect interactions (e.g. mediated by a common regulator gene), aitratgo
for network inference can be improved by the use of partial correlafgjs The
minimum first order partial correlation betwe&nandX; is obtained by exhaus-
tively conditioning the pairX;, X;j) over all Xy. If existsk # i, j which explains all
of the correlation betwee)§ andX;j, then the partial correlation betwepandX;
becomes 0 and the paiXi( X;) is conditionally independent givexy. When this
happens, following [36] we say that the tripig, X, Xx has a Markov property:
on an undirected graph genieand j are not adjacent but separatedkyThis is
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denoted in [36] a¥; 1 X| | Xk. In formulas, the minimum first order PPC is

’

Re (X3, X)) = min|ROX. X | X

where
R(Xi, Xj) = R(Xi, Xi)R(Xj, Xk)

Ja = ROG X)L - RO, %)

If Re,(Xi, Xj) ~ 0 then there existis such thatX; 1L X; | Xx. Sometimes condition-
ing over a single variable may not be enough, and one would like to exgigiterh
order PPCs. The minimum second order PPC for example is given by

Rea(%: X)) = min [ROG X | Xie, X0

R(Xi, X | Xi) =

with
R(Xi, Xj | Xi) = R(Xi, X¢ | X)R(Xj, Xe | Xi)

L= RO, X | X)L~ ROy, Xe | %)

and so on for higher order PPCs. Since the computation is exhaustivalbne
genes, the computational cost of the algorithm forkhk order minimum PPC is
of the order ofO(n¥), and it becomes quickly prohibitive fdr > 2, if n is of the
order of the thousands.

The weight matrixR can be used to rank the{— n)/2 possible (undirected)
edges of the graph. The use of PPC allows to prune the graph of maeyptas
itives computed by correlation alone. However, the information providecoly
relation and PPC is one afidependencer conditional independenceée. a low
value of correlation and PPC for a pak;(Xj) guarantees that an edge between
the two nodes is missing. A high value of the quantitRéX;, X;) andRc, (X;, Xj)
does not guarantee thiaand j are truly connected by an edge,Rs (Xi, Xj) may
be small or vanish.

In [30] it is shown how to choose a cufahreshold for the weight matrices and
how to combine together théfect of R, R, andRc,.

ROXi, X | X, X¢) =

2.3.3 Graphical Gaussian models (conditional)

When then x n matrix R of elementsR(X;, Xj) is invertible, and we can assume

that the data are drawn from a multivariate normal distribution, then the stibau

conditioning ovem — 2 genes can be expressed explicitly. Derdte: R™! the

concentration matrix of elemeng = (wj ;). Then the partial correlation between

X andX; is

Rew (X, X)) =~k
all > N L] ]

WhenRis not full rank, then the small-sample stable estimation procedure of [107]

can be used. To compuf,,, we used the R package GeneNet version 1.0.1,

available from CRAN (httgicran.r-project.org).


http://cran.r-project.org
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2.3.4 Mutual information (direct)

In a relevance network, alternatively to correlation, one can use thariatmn-
theoretic concept of MI [16, 54, 88]. Given a discrete random véixh taking
values in the set, its entropy [110] is defined as

H(X) == ) pl#i)log p(@),

pieH

where p(¢;) is the probability mass functiop(¢;)) = Pr(X = ¢), for ¢; € Hi.
The joint entropy of a pair of variables Xj), taking values in the set&f;, Hj
respectively, is

HOGX) == > pli¢))log p(gi, ¢5).

pieH, pjeH;

while the conditional entropy of; givenX; is defined a$i(Xj | X;) = H(X, X;) -
H(Xi). The Ml of (X;, X;) is defined ad(X;; Xj) = H(Xj) — H(X | X;) and can be
explicitly expressed as

p(di, &)

[(Xi; X)) = Z p(¢i, ¢j) log W > 0.

di€H;, pjeH;
When the joint probability distribution factorizes, the Ml vanishes:

P(di, i) = p(#i)p(e)) for all ¢ € Hi, ¢ € Hj = 1(X;; X)) = 0. (2.2)

2.3.5 Conditional mutual information and DPI (conditional)

Similarly to PPC, also the MI can be conditioned with respect to a third variable
Xk. The formulais:

LK X 1 Xk) = HOG | X)) = HOG | X, X)
or, equivalently,
LOXKis X 1 Xk) = H(X, Xi) + HOX, Xi) = H(X) = HOXi, X, Xk).

All pairs of nodes can be conditioned exhaustively on each of the rengainri2
nodes and the minimum of such CMIs

Ic(Xi; Xj) = minl (Xi; Xj | Xk)
ki, j

can be taken as a measure of conditional independence. When thésaexighat
explains the whole Ml betweeX andX;|, then the triplet has the Markov property

|(Xi; Xj | Xk) =0= X L Xj | Xk, (2.3)
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implying Ic(Xi; X;) = 0, otherwisdc(X;; X;j) > 0.

Just like for the correlation and PPC case, the two conditions (2.2) and (2.3
can be used to construct the graph of the gene netwbréand I¢ can also be
combined together, and possibly with a dtitbreshold (computed e.g. through a
bootstrapping method).

An alternative algorithm to implement the Markov propeXy i Xj | X is
proposed in [88]. Itis based on the so-called DPI and consists in ihgpe edge
corresponding to the minimum of the tripletX;, X;), 1(Xj, Xk) and (X, X) for
all possible triplets # j # k. This method is shown in [88] to prune the graph
of many false positives. Denolgp, the matrix obtained by applying the DPI.
Althoughlpp, andlc derive from the same notion, the information they provide is
not completely redundant.

In the computation of andlc we used the B-spline algorithm of [29]. The
matrix | obtained in this way is quite similar to the Ml one gets from the Gaussian
Kernel method used in [88], which is known to be computationally more intense
than binning into an histogram or the B-spline approach [29]. In ordewab e
uate how much the choice of the algorithm can influence the reconstructeon, w
compared two MI matrices computed using a Gaussian Kernel estimator (with the
routines provided in [89]) and the B-spline approach. A typical residh@wvn in
Fig./2.1 for a rather conservative choice of number of bins @) and spline order
2. It can be seen that the two ordering of edges weights alwégs @r less than
10%.

While the definition of CMI can be extended to higher number of conditioning
variables, from a computational point of view this becomes unfeasibla fufr
the order of thousands: the time complexity of our algorithm for complete data
matrices iO(n*(mp* + %)), wherep is the spline order anglis the number of bins
used.

2.4 Criteria for algorithm comparison

In order to evaluate the performances of the algorithms, we compare ganh (
metric) weight matrix with the corresponding adjacency mairand calculate the
(standard) quantities listed in Table 2.2.

The receiver operating characteristic (ROC) and the precision veesadl
(PvsR) curves measure the quality of the reconstruction. To give a cbrdpa
scription for varyingm, the area under the curve (AUC) of both quantities will be
used. The ROC curve describes the traffdsetween sensitivity and the false posi-
tive rate. An AUC(ROC) close to 0.5 corresponds to a random fore&id§t(ROC) <
0.7 is considered poor,.D < AUC(ROC) < 0.8 fair and AUC(ROC)> 0.8 good.
For gene networks, a&is generally sparse, the ROC curvdtsts from the high
number of false positives. The PvsR curve instead is based only on dogprae
edges and inferred edges, and therefore highlights the precision fdiestruc-
tion [88]. All the quantities we consider as well as the ROC and the PvsResurv
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Figure 2.1: Comparison dfcomputed via Gaussian Kernel method from [88] and
B-spline method used in this work with 4 bins and spline order 2 for a netwiork o
100 genes and 200 experiments. The elements of the two matrices are sorted a
the sorted values divided in 1000 bins. The figure shows the cumulativescof

the values of the sorted elemenysakis) up to thd-th bin (x-axis). The counts

for the two algorithms overlap (by construction), while the number of edges in
common dffers for less than 10% of the total.

True positives (TP) = correctly identified true edges
False positives (FP) = spurious edges
True negatives (TN) = correctly identified zero edges
False negatives (FN) = not recognized true edges

Recall (or sensitivity or TP rate) = %
False positive rate = TP
Precision = 555

Table 2.2: Quantities of interest in the evaluation of the algorithms
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are based on sorting the edge weights (in absolute values for correREQS, and
GGM) and on growing the network starting from the highest weight downeo th
lowest one. Fixing a cutbthreshold only means altering the tail of the curves,
thus we shall not make any such choice, but explore the entire rangduai\for
the edge weights.

For the networks with dense modules of section 3.2, we used also a second
criterion to test the ability of the ffierent algorithms in retrieving the two types of
regulatory modules (causal and dense) as a function of their dimensiorihi&
task it is useful to look only at the first percentile of edge weights (i.e. topii%
edges sorted by their weights). As inference is performed on the entimrge
this first percentile corresponds to 23188, 94373 and 192355 edtfesartificial,

E. coliandS. cerevisia@etworks reconstructions respectively (see Table 2.1 for the
corresponding numbers of true edges). For the two types of regulstioigtures
(causal and dense) the true edges are binned according to the sizenobdule
they belong to. The recall (i.e. the percentages of TP over the total numfiber
true edges) of the reconstructed network for each bin (of module sizeg@to
evaluate how the reconstructions vary with size (shown in[Fig. 3.4 and\d}
standard curves such as PvsR (Fig! 3.7) or ROC curves (Fig. 3.8ptcsimow the
dependence on the module size of the algorithms.

2.4.1 Clustering

In section 3.2, after selecting the most significant 1% of edges, the resgitiph

is decomposed using a simple hierarchical clustering algorithm, with weighted av
erage linkage as cost of merging, and taking a fixed number of cluste®sirf3
Fig./3.5). This procedure allows to identify the most connected compornemits)

are then matched with the dense mod(®#€s. This matching is fairly robust with
respect to the choice of the number of clusters (data not shown).
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Results

3.1 Comparison on scale-free and random artificial net-
works

In Fig. 3.1, the results for reconstructions of random and scale-&®&eonks of 100
genes with the dierent similarity measure®(Rc,, Rc,, Rc,,, |, Ic andlpp;) are
shown for diferent numberm of measurements. AUC(ROC), AUC(PvsR) and the
number of TP for a fixed value of acceptable FP (here 20) are dispiayeé three
columns. For both AUC(ROC) and AUC(PvsR), standard deviationssimoin)

are around one order of magnitude smaller than the mean values, thus irdicatin
that the repetitions are substantially faithful.

By comparing the first two rows of Fig. 3.1 it is possible to examine the in-
fluence of the network topology on the reconstruction. Under equalittons
(type and amount of experiments), all the algorithms performed betterridona
networks, confirming that they are easier to infer than scale-free |B0¢sAlso
another network parameter, the average degree, is influencing tloerpanice of
the algorithms: the predictive power is higher for sparser networks traleds
sparse ones. For example, in Fig.|3.3 compare the graphs in the firshverage
node degree equal to 1.5) with the ones in the second row (degreete@)dbr
artificial scale-free networks of 1000 genes.

If we now focus the attention on the scale-free topology (the most similar to
known regulatory networks), it can be seen from the graphs that tfierpences
of the reconstructions are much higher with knockout perturbationss(&v3)
than for data produced without knockouts (row 4). This suggests tiatkouts
(i.e. node suppression an (2.1)) help in exploring the network struatiniée per-
turbing only the initial conditions contributes very little predictive information.

Moreover, when perturbing the system with knockouts, steady state reasu
ments (row 2) are able to generate good reconstructions with much less sample
than time-course experiments (row 3), in agreement with the results of [@]. F
steady states, the performances of the algorithms improve incremsinqgto n,
then stabilize (for some, like GGM, even decrease). For time-courseinistead,

29
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the graphs tend to levelffoonly when each gene has been knocked out once, re-
gardless of the number of samples taken during the time series. This canbmse
the third row of Fig. 3.1, where the AUCs keep growing until 1000 samples (c
responding to 100 time series each contributing 10 samples) and only theto tend
stabilize (data beyond 1000 samples are not shown in Fig. 3.1). The sarde tre
can be observed increasing the number of samples per series (datzowni).s
Learning a network by means of time series alone (without any knockouyys v
difficult as can be deduced from the low values of AUCs achieved in the fmsth r
of Fig.[3.1. Notice, however, that these values get much worse (edlsenatngom)

if we consider no-knockout and steady state samples.

As for the diferent algorithms, the PPCs perform well in all conditions, and are
significantly improving performances with respect to correlation for both
AUC(PvsR) and TP for fixed FP. On the contrary, applying the DPI towiH a
tolerance of 0.1, see [88]) only slightly improves the precision of the Mic&the
DPI simply puts to zero the weights of the edges it considers false posiines,
should not forget that DPI is penalized with respect to the other measines
computing AUC(ROC). Like PPCs, GGM gives good average resultsloblds
promising especially for time-course experiments, where also CMI is fargup
than Ml and DPI.

For the random and scale-free networks reconstructed in Fig. 3.13 Rige-
ports the average runtimes (over the 10 repetitions) of the various algoriBgns
is clearly one order of magnitude slower than the other methods. It must be re-
marked that folR, Rc;, Rc, we used MATLAB code, while fot, Ic, Ipp; C++
code was created (so faster than MATLAB) &Rg|, was computed under R en-
vironment. Notice thalc grows faster than the other methods with respect to the
number of experiments.

Finally, it is important to remark that the results we obtained for a network
of 100 genes are qualitatively and quantitatively similar to those for largee ge
networks. As an example, in Fig. 3.3 (first row) a scale-free netwotk66 genes
is reconstructed from knockout experiments with steady state measureiheats
be seen that all three parameters shown AUC(ROC), AUC(PvsR) afak TiRed
FP are comparable to those shown in Fig! 3.1 (second row) for an exigatyn.

3.2 Discerning static and causal interactions

For the following comparisons, we used the same algorithms as beforet ¢éixeep
second order PPC (too computationally heavy for thousands of gamt#)@aDPI
(similar to CMI).

3.2.1 Artificial dataset

In this subsection, we consider a big artificial network with a scale-fregldgy
plus dense modules, as described in section 2.1. Our results (Fig. 3.4hieft)
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Figure 3.1: Evaluating the reconstructions ReRc,, Rc,, R, I, Ic andlpp) al-
gorithms on 100 gene artificial networks for increasing numbers of messunts.
Top row: random topology, knockout perturbations and steady stateureaents.
Second row: scale-free topology, knockout perturbations andysttait measure-
ments. Third row: scale-free, knockout and time-course experimeotsthFow:
scale-free, only initial conditions perturbations and time-course expetsmén
the two time courses 10 (equispaced) samples are taken on each time ddwerse.
x axis label “N. of measurements” refers to the total number of samples thken (
example 200 means 200 experiments of steady state type, but only 20 exgsrime
on the two time courses). Left column: AUC(ROC). Central column: AUGHBvV
Right column: number of TP for a number of FP equal to 20. Values shown a
means over 10 repetitions.
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Figure 3.2: Runtime of the algorithms for the random (left) and scale-figlat)r
networks of 100 genes shown in Fig. 3.1.
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Figure 3.4: Recall (i.e. TP rate) for the network reconstructions at thear-
centile with the five dferent similarity metrics for increasing size of the PCs, in:
(left) artificial dataset, (middlef. coliand (right)S. cerevisiaeln all three cases,
considering the percentage of TPs for the whole PC network, the twd thetdcs
can be ranked in the same order (correlation followed by MI) and aferp@ng
better than the corresponding conditional metrics.

that increasing the size of the dense modules, conditional metrics perfarse wo
than direct metrics.

Also the clustering of the reconstructed network shows the same qualitative
difference and in fact the best results are obtained for the direct meésones
lation, MI). In Fig./ 3.5 the percentage of complexes completely containechis: o
cluster, two clusters, three clusters and more than three are shown.

On the other hand for the causal modules (Fig. 3.6, left), the perforrmarice
the conditional metrics are higher than the direct ones in correspondétice o
largest modules. Notice how for all 5 algorithms the absolute performamops d
dramatically when the number of transcription factors increases, as weetekme
to the more complicated combinatoridfexct.

As for the PvsR curves of Fig. 3.7, the qualitativéfelience between direct and
conditional metrics in the two regulatory structures are substantially confirmed
although in the TF-BS curve (bottom row) theéfdrences are minimal (precision
is much lower than in PC).

3.2.2 E. coli dataset

Owing to the diferent genome organization and architecture, in prokaryotes reg-
ulatory mechanisms are much simpler than in eukaryotes. Genes are otganize
transcriptional units, with one promoter for many consecutive genestaréeab-
sent in monocistronic eukaryotic DNA. coli has only a few large PCs and also
the combinatorial regulation of transcription is lower, so we expect therdnt
algorithms to have more similar performances.

We calculate the PvsR and ROC curves of the fieedgnt metrics (Fig. 317
and 3.8, middle) and plot the percentage of TPs in the most significantnpiéece
of edges, for increasing sizes of the PCs (Fig. 3.4, middle) and combai&ayoof
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Figure 3.5: Clustering of the inferred graphs. For the artificial (I&t)coli (mid-

dle) andS. cerevisiagright) networks, the color scale represents the percentage of
PCs belonging to a single cluster (darkest), two clusters, three clusttraene
than three (lightest). Correlation and Ml are almost unanimously outperfgrmin
the three conditional metrics (the only exception being GGNVHocoli).
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Figure 3.6: Combinatorial transcription regulation. Recall for TF-BS madule
with increasing number of TFs on the same BS, in: (left) artificial, (mid&le)
coli, and (right)S. cerevisiaglatasets. In all three plots the downward trends in the
ability to recover causal modules is visible and in all three the conditional mesasu
seem to outperform the direct measures when combinatorial complexitpsese
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Figure 3.7: PvsR curves for the reconstruction of PC and TF-BS nletwdiop
row: PvsR curves of the five flerent similarity metrics using the PCs as the true
network for the artificial (left) E. coli (middle) andS. cerevisiadright) datasets.

In all three cases the two direct metrics (correlation and M) seem to farpeng
better than the corresponding conditional metrics. The curves are iggrymthe
artificial network case because the density of true PC edges is highen thartwo
organisms, see Table 2.1. Bottom row: PvsR curves of the fiteerdint similarity
metrics using TF—BS interactions as the true network for the artificial (Efgoli
(middle) andS. cerevisiadright) datasets. In absolute terms, the inference power
is much lower than for PCs. Notice, however, how the conditional metrics still
give the best results (i&. coli, correlation and MI are performing slightly better
than PPC and CMI, but GGM is still outperforming all the others; compare also
Fig. 3.6, middle panel).



sensitivity

sensitivity

36

CHAPTER 3. RESULTS

—— 1
0.9 0.9 0.9
o
08 08 . 08 —
/
=
0.7 0.7 0.7 =
0.6 0.6 0.6
2 2
= >
05 / £ 05 £ 05
2 2
o o
04 / © 0.4 ©04
|
03 / 03 03
—FP —FP —FP
0.2 —Mi 0.2 —Mi 02 —Mi
—cMm —cMm —cMm
0.1 CcP 0.1 CcP 0.1 CcP
——GGM ——GGM ——GGM
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 .6 0.8
1 - specificity 1 - specificity 1 - specificity
1 1 1
0.9 0.9 P 0.9
0.8 0.8 / 08
0.7 0.7 0.7
0.6 0.6 0.6
2 2
= =
0.5 g 0.5 z 05
() ()
0.4 //// ? 04 204
0.3 0.3 / 03
—P —P —P
0.2 —Mi 0.2 —Mi 02 —Mi
—cMm J —cMm —cMm
0.1 cP 0.1 7 cP 0.1 cP
——GGM / ——GGM ——GGM
0 0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
1 - specificity 1 - specificity 1 - specificity

Figure 3.8: ROC curves for the reconstruction of PC and TF-BS neswolp

row: ROC curves of the five ffierent similarity metrics for the PC network, in
artificial (left), E. coli (middle) andS. cerevisiadright) dataset. In all three cases
the correlation is performing better than all the other metrics. Bottom row: ROC
curves of the five dferent similarity metrics for the TF-BS network, in artificial
(left), E. coli (middle) andS. cerevisiadright) dataset. These curves highlight

the general inability of inferring TF—BS relationships from co-exprasgidexes.

Notice how the conditional metrics (in particular the GGM) in the artificial BEnd

coli networks give (slightly) better results.
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TFs (Figl 3.6, middle). PCs are identified slightly better by the two direct metrics,
although the number of relatively large complexes is too low to have statistical
significance. The dierent performances emerging from the clustering (Fig. 3.5,
middle) indicate that the highest correspondence between PCs and claister
provided by GGM followed by correlation and MI. Considering as an examp
the flagellum complex (accounting for 24 genes), if the clustering praedsiper-
formed by means of correlation and MI, the complex belongs entirely to a single
cluster, which contains also other genes functionally related to the flagelluen, lik
chemotactic genes and other genes involved in flagellar biogenesis and maotility.
Instead for CMI, PPC and GGM this complex is split respectively into 6, 82and
clusters.

Regarding TF-BS relationships, we expect the ability in recovering true inte
actions to be inversely proportional to the multiplicity of TFs. This is particularly
true for the algorithms performing well on low multiplicity TF (correlation, Ml and
GGM), while CMI has a counterintuitive slightly positive trend for multiregulated
targets.

3.2.3 S cerevisiae dataset

In S. cerevisiagFig.|3.4 (right panel) shows clearly that for small complexes the
performances of conditional metrics are comparable with those of correkatid
MI, up to a critical size above which the inference power of CMI and G@Mains
almost constant while the direct metrics increase their percentage of Tirs. T
results are consistent with the ones obtained for the artificial data. Qualiyativ
the results on the two organisms are the same, although the percentagesaoé TP
higher in the simpler one (see also Fig. 3.7, top row). In addition, the critmmb$é
the dense modules for which conditional similarities start to fail is almost similar
to the one obtained in the artificial network akd coli, suggesting an intrinsic
peculiarity of such similarity metrics. The clustering performances (Fig. B5t)r
for the five algorithms are coherent with those of Ehecoli and artificial networks
and once again better results are obtained for the correlation and MI metrics

If we move to the network of TF—BS (Fig. 3.6, right), we immediately notice
that all the three conditional metrics perform better than the direct onesugtth
in absolute terms results are much worse tharEfocoli. One reason for the low
inference power regarding TF—BS could be that regulation is not jusbctorial
but also combinatorially dierent in diterent environmental conditions. Another
could be that TFs do not show the large variations in expression thatcaeh for
the corresponding regulated genes, but instead keep their expeeasiow basal
levels (see Fig. 3/9(b)).
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Figure 3.9: TF vs BS variance. Scatter plots representing the expressiance

of the TFs against that of the corresponding BSs. In both organisth&.(@oli

and (b)S. cerevisiagmost of the times the BS variance is broader than for the
corresponding TF. Notice how especiallySncerevisiaall TFs have low variance
and how most node pairs in TF-BS edges live in the low variance corner.
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Conclusion

For the networks generated with the model (2.1), we find that steady stitesy
atic gene knockout experiments are the most informative for the purposean-
structing this type of networks, yielding an AUC(RO£)Y.7 even withm <« n. In
particular for this class of perturbations the linear similarity measures atghbno
The nonlinear measures Ml and CMI instead are less precise. For tims, $hée
situation is diferent: relevance networks perform poorly even whes> n. In
this context, conditional measures are relatively good. The markksiatice be-
tween inference on steady stateknockouts and the more “classical” dynamical
inference from time series alone without knockouts, is probably due toididyh
nonlinear content of the transient evolution (of (2.1). Reverse engigeeonlin-
ear dynamical systems is notoriously a versfidult problem, and not even the
use of nonlinear similarity measures is enough to attain a decent predictz. po
At steady state, such nonlinear behavior has collapsed into a set ofatyed
lations (corresponding tdx /dt = 0), which become dficiently informative if
“structurally” perturbed, e.g. by means of node suppressions. Irt, tauctural
perturbations are mordieient than dynamical perturbations for the purposes of
(nonlinear) network inference.

Other interesting observations are the following:

e After a certain thresholdyy > n the inference ratio of all algorithms tends
to stabilize. To improve the predictive capabilities, other types of perturba-
tions should probably be used (like simultaneous multiple knockouts, exter-
nal stimuli, etc.).

e AUC(ROC) around 0.9 are reached only by MlI, correlation and GGM in the
steady state knockout simulations.

e Conditioning is useful to improve the false discovery rate, and the TP it iden-
tifies are to a large extentféierent from those detected without conditioning.

o Of all algorithms tested only second order PPC and CMI are too computa-
tionally intensive to be used in a truly large network (tens to hundreds of
thousands of genes).
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e MI, CMI and DPI depend heavily on the implementation algorithm, and, at
least in our B-spline implementation, on the underlying model of probability
distribution (for time-course experiments the quality of the reconstruction
improves considerably with the pre-application of a rank transform to the
data). Correlations instead, are much less sensitive. For example rgplacin
Pearson correlation with Spearman correlation yields no substarttied-di
ence.

e The best performances versus runtime are achieved by the GGM algorithm.

e Sparse networks are easier to identify than dense (or less sparseyene
gardless of the algorithms used.

e Even withm < n (realistic situation), using steady state knockout experi-
ments all algorithms have a decent predictive power.

If unsupervised graph learning problems are notorioudfycdit [36, 96], the
conditions under which these problems must be studied for large scalesgema-
tory network inference (less data than nodes) are even more challehgngrthe-
less, we can see through simulation and through reasonable biologigaiEgms
on real data that the predictive power of current methods is indeederon-and
that a certain amount of structural information can be extracted even iretjilme
by means of computationally tractable algorithms, although the precision is very
low and the number of false positives unavoidably very high.

Moreover, the results reported show that indedtedent reverse engineering
algorithms have performances which are tailored fiedent “characteristic” reg-
ulatory modules. PCs are characterized by a very stable binding andisgver
a sort of post-transcriptional regulation, where gene products hdedéspressed
in a constant stoichiometric ratio and are mutually dependent one from the othe
features absent in causéfeet relationships such as transcriptional activation. For
the network generated with the model and the two real ones, we tested the abil-
ity to recover dense modulgxCs and causal transcriptional modules dfedent
sizes. Several important observations emerge from the results. Thalite of
a dense module for which direct similarity measures begin to perform better tha
the corresponding conditional ones is between 10 and 20 on both artficlakal
datasets. The dense modules that characterize PCs are better captdiestth
similarity measures, especially for large dense modules. This is almost the same in
both organisms, in spite of theftérent complexity and the low experimefgisnes
ratio. On the contrary, the conditional similarity measures are more suitedlto dea
with causal dependencies such as TF-BS interactions, especially veheontli-
natorial complexity of the regulation increases. It is evident and predécthht
the ability to recover TF—BS interactions is roughly inversely proportion#héo
number of TF regulating a gene. At the same time, it is worth pointing out that con
ditional metrics are more robust in taming this multiplicitfest of TFs. Needless
to say the inference power of all the algorithms is higher in the simpler organism,
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for both PC and TF-BS networks. This reflects the more complex eukawsate
lation, as deducible also from Fig. 1.2. Finally it is worth remarking that althoug
direct metrics are better at detecting “static” interactions and conditional metric
at detecting causal ones, in absolute terms all algorithms are far morefploater
discovering the static than the causal gene—gene dependencies (esdstuced
comparing the first and second rows in both Fig. 3.7 and 3.8, or compaegng th
recall percentages of Fig. 3.4 and Fig. 3.6).

The predictive power of a reverse engineering algorithm is clearly etifum
of several aspects. First of all system complexity, data quality and nsitero
In addition, inference power depends on the type of interaction and soeiate
topology. Showing that indeed the algorithms yiel€fetient performances coher-
ently with the features they are meant to extrapolate from the data (direstafar
and stable interactions, conditional for causal interactions) is alreaidyi$icant
and encouraging observation.
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Chapter 5

Introduction

Ultradian self-sustaining energy-metabolic oscillations arising spontalyeious
high densitySaccharomyces cerevisi@entinuous cultures exposed to glucose-
limited growth have been known and studied for decades [94, 98], ardrhare
recently been observed to induce genome-wide periodic pattern§eredit series
of microarray experiments [76, 119], although with widelyfelient periodicities,

~ 40 min for [76] and~ 300 min for [119].

Many studies aim at understanding the mechanisms inducing these sustained
oscillations and the rigorous temporal compartmentalization they induce, See [9
100] for surveys. Suggested causes range from a single criticalgattike the
feedback #&ect of cysteine on the sulfur assimilation pathway [126]) to the alterna-
tion of aerobic and anaerobic respiratory modes (as deduced by theafioas in
the concentration of dissolved, and of other observed metabolites [119]), from
the interaction with cell cycle [20, 51] to the mutual incompatibility offelient
redox biochemical processes [83, 127].

The scope of this work is to emphasize &elient aspect, intrinsically dynam-
ical and post-transcriptional, which is likely to play an important role in the co-
ordination of the “slower” yeast metabolic cycle (YMC) of [119], namely ni/RN
stability. We will show that there is a roughly linear relationship between the ave
age half life (HL) of the transcripts, clustered according to expressidumnation,
and the phase at which their concentration peaks in the cycle. Moreaijgnidrere
seems to be a strong correlation between HL and the shape of the pulssseof g
expression: genes with short HL have short and sharp (almost impindgive time
scale considered) pulses, while genes with long HL have pulses thabiaoaly
delayed but also broader and with more gentle slopes.

In recent years, post-transcriptional control is being recognizeahampor-
tant aspect of gene regulation, especially in eukaryotic DNA, which lapksonal
structure [11, 13, 53, 91]. It can occur in many guises, through mRNAouer
[18,57, 78, 123, 125], or through “RNA regulons” [70], i.e. grewd genes coor-
dinately guided in the RNA processing, localization and protein synthesididy R
binding proteins (RBPs) [56, 109], or even through the mediation of a roktab
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substrate (typically a nutrient [17, 71, 122] or an enzyme [59]). Csulteonfirms

the importance of post-transcriptional control, and points at mRNA turrnaser
regulatory mechanism at a genome-wide level. Its peculiarity consists in putting
the time axis into the picture in an intrinsically dynamical way. Consequently, in
order to be observed, it requires times series sampled affiaisntly high fre-
quency and dynamics in the right time window, a combination seldom occurring in
current expression profiling datasets. So for example the correlattoreée HL

and phastshape of the oscillations cannot be observed in the much faster YMC of
[76], where HL and the period are of comparable duration, hence #terayhas

no time to decay before the arrival of the next wavefront.

In order to emphasize the dynamical aspects, we shall treat the YMC as the
time response of a genome-wide dynamical system to a sequence of impinlsive
puts” of transcription activation. We will show that grouping genes in terins o
progressively delayed and broadened responses to a sequémmbpulses” of
transcriptional activation allows to see in a remarkably fine detail the cabaal
of events constituting the transcriptional program of the cell. The few antigigu
resulting from this classification can be interpreted in terms of some othetaanno
tion, typically compartmental localization.

In the following we shall proceed in two complementary ways: first the YMC
time series are clustered in a completely unsupervised manner, only acctordin
gene expression. The linear relationship between pulse phase (alsonpdik)
and HL then emerges in a straightforward way. Next, we consider families of
genes whose products share some common annotation, for example gehes o
same pathway or genes that are subunits of the same protein complex, knd loo
at the type of time series they produce and at their “position” along the YMC.
Both approaches confirm that the YMC represents an organizeddeastavents,
in response to precisely equispaced bursts of transcriptional activatiimthe
temporal order reflecting the transcript turnover rate.

Extrapolating from the specific YMC context, this cascade of events iswbse
able to a good extent also in other gene expression time series (suchespihese
to a pulse of nutrient of [104], or the stress responses of [55]gestig it might
reflect a prototypical dynamical mode of action of transcriptional respon
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Methods

6.1 Data sources

The YMC time series of [119], the compendium of 790 gene profile expetsnen
(all performed with the &&ymetrix GeneChip Yeast Genome S98 platform) and the
data series from [104] were downloaded from Gene Expression Osdédtabase
(httpy/www.ncbi.nlm.nih.goygeq). The time series of [104] are performed with
cDNA, hence values of the area under the profiles are intended asedlatithe
basal mMRNA abundance). For each gene, the values obtained for tloifferent
glucose stimuli are averaged. Five stress responses from [55] @atoshocks

of different amplitude, hydrogen peroxide, diamide, and sorbitol respoases)
considered. The amplitudes are averaged over the five data seriegg(theok
these responses are known to be highly similar, see [55]).

The metabolic pathways used are those of the Kyoto Encyclopedia of Genes
and Genomes (KEGG, htfpwww.genome.jfkegq). Also the assembling into the
15 macrocategories follows the KEGG hierarchy.

The protein complexes were downloaded from the MPACT subsection
(httpy/mips.helmholtz-muenchen denréproj/mpact) of the CYGD database at
MIPS. Only complexes manually annotated from the literature are consjdered
those obtained from high throughput experiments are disregardedrdaug to
the MIPS classification scheme these last are labeled “550”).

The HLs are computed averaging the values of the three experimentadtdatas
[57, 78, 123]. While the magnitudes of the HLs in the three collections show
some diferences, in “normalized” terms (looking e.g. at rank-ordered valtiss),
agreement between the three sets ffidently good, see [57] for a comparison.
No turnover data specific for long-term continuous cultures are diyraveilable.
However, it is not unlikely that even in this setting the relativifatences of HL
rates (and also their ordering) remains more or less unchanged. Iraaaywe
expect the correlation phast. to improve in presence of more tailored mRNA
turnover data.

47


http://www.ncbi.nlm.nih.gov/geo/
http://www.genome.jp/kegg/
http://mips.helmholtz-muenchen.de/genre/proj/mpact/

48 CHAPTER 6. METHODS

35

30

Period = 287.5 min

25

L = —~ L L — L L
0 100 200 300 400 500 600 700 800 900
time (min)

Figure 6.1: When the period of the bursts in the YMC is computed via Fourier
analysis, as is done in [119], the answer is 300 min. However, a closeraloo
the genes having impulse-like behavior (in this Figure the three RNA polye®ras
reveals that the sampling is not perfectly synchronized with the periogvazsen

a time window twice the period (28075 min) there are 23 samples instead of the
expected 24, and the “11.5” samples per period ratio seems to yield a maratacc
matching of the peaks. The resulting period is therefors-26 = (775-200)/2 =

2875 min. Notice how this explains why the second peak is less resolved that the
first and third one in basically all Figures shown in this work.

6.2 Time series analysis

The period of the YMC, computed in the time domain looking at the most
impulsive-like categories (in Fig. 6.1 the 3 RNA polymerases), is estimated as
287.5 min (see Fig. 6.1 for a detailed description). As in [119], geneslaet
using a periodogram test. In order to retain only genes with a well-defiegd p
odicity, we fixed a more selective p.value than [119] thereby reducinguhear

of genes to 1951. To each of the genes labeled as periodic, we ass@ac#iase,
computed maximizing the correlation with respect to a train of 360 shifted sinu-
soids (resolution of ). Thus, a phase delaycan be transformed into a time delay

= by means of the relation= ¢2822 (min).

Means and standard deviations of the phases of periodic signals musthbe c
puted “mod 360", and are normally subject to large numerical errors and ill-
conditioning. A typical example is the following: assume two periodic genes are
assigned the phases = 350° and¢, = 6°. Owing to the 360 periodicity, the
peaks of the two genes are very close, but the average phagerigf)/2 = 178,
which is obviously wrong. The correct answer requires a shift froenpitincipal
values of the periodic signalp{ — 360" + ¢2)/2 = —2°. To avoid problems with
biased mean values giod the appearance of inelegant negative phases around the
“crucial” transcription bursts, the 0 phase was chosen so as to anticipat8@®



6.3. LEAST SQUARES REGRESSIONS 49

these events. Under this convention, each period “begins” approxiniatyin
before the transcription bursts.

For each gene, the pulse width is computed estimating on each period the inter-
val in which the expression level stays above the median value acrossotive
samples.

6.3 Least squares regressions
In Fig. 7.1, the least square fitting in the kpbase plot is given by the equation
¢ =9.25HL- 10483, R’=086, p.value~ 10"

The corresponding p.value is computed via a Fisher test statistics. Sincavere h
determined the period as 287.5 min and the zero pha@® before the impulsive
bursts shown for example in Fig. 6.1, the equation in terms of time delay with
respect to the bursts; ~ %’@p -30°),is

7t ~ 7.39 HL — 107.68 (min)

Within most clusters, the standard deviation in termg & minimal; it is higher
in terms of HL, see Table 7.1. Hence if we use weighted least squaressagr,
while the fitted curves we get are still very similar in the range of values ofaster
the diferences are in the cfiient of determinatiofR?:

Method | Regression | R? | p.value
. s. weighted w.r.t¢ | ¢ =8.95HL-10124 | 0.92] ~107°
. s. weighted w.rt. HL| ¢ = 9.03 HL— 9976 | 0.54 | ~ 107

Let w be the width of the pulses, then the corresponding least squares fits are

Method | Regression | R? | p.value
l.s. w=024HL-105] 0.72| ~ 10>
l. s. weighted w.rtw | w =021 HL-0.99 | 0.32| ~ 10°°
l. s. weighted w.r.t. HL| w = 0.23HL-0.71 | 0.31 | ~ 1072

Repeating the linear regression for the three plots in Fig. 7.3(b), we get:

e phas¢HL (top plot)

Method | Regression | R? | p.value
l. s. ¢ =6.84HL-3305]| 0.64] ~ 107
l. s. weighted w.r.t¢p | ¢ = 439 HL + 27 0.82| ~10°
l. s. weighted w.r.t. HL| ¢ = 5.26 HL + 6 0.68| ~ 10

o width/HL (middle plot)
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Method | Regression | R? | p.value
l.s. w=015HL+141] 0.44| ~ 1073
l. s. weighted w.rtw | w =019HL+05 | 0.53| ~ 1073
l. s. weighted w.r.t. HL| w = 0.11 HL+ 258 | 0.8 | ~10°°

¢ width/phase (bottom plot)

Method | Regression | R? | p.value
s, ©=0026+19 |08 |~10°
. s. weighted w.r.t¢ | w = 0.03p + 1.66 | 0.96 | ~ 10710
l. s. weighted w.r.tw | w = 0.036+1.12 | 0.8 | ~107°

Finally, for the dynamical model of Fig. 7.12,:jf is the order of the transfer
function model usedy € [1, 4], we have

Method | Regression | R | p.value
l. s. v =009HL+032]052]|~1073
l. s. weighted w.r.t. HL| ¢y =0.06 HL+ 1.1 | 0.73| ~ 10°®

6.4 Clusterization

The clusterization of the time profiles in Fig. 7.1 is performed via a k-means algo-
rithm using as distance a nonnormalized correlation function. Varying thdean

of clusters anfbr the (randomly chosen) initial cluster assignments, the results (in
terms of the regressions) are basically unchanged.

6.5 A minimal dynamical model: low-pass transfer func-
tions and their dynamical system realizations

The aim of this Section is to set up a minimal dynamical model describing the
response to the periodic bursts of transcriptional activation represaatémpul-

sive inputs” to the system. Such a model has to be able to reproduce theirfigllow
features observable in the dataset:

e impulse responses get delayed and broadened in a way which is roughly
proportional to HL;

e profile changes get progressively less steep with HL;

¢ the system “discharges” completely (i.e. the mRNA concentrations return to
a basal level) in absence of further pulses.

At the same time, to be internally consistent a dynamical model has to:

e respect causality (i.e. be non-anticipating);
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e preserve positivity of the mRNA concentrations.

In the Engineering practice of Systems Theory, one of the most elemeotarslf
ism that can be used to build dynamical models is the input-output design based
on Laplace transform and elementary transfer functions [35], se¢%.fpr an
application to a transcriptional time series.

The concentration of MRNA of a gegean be described as the response to the
pulse of transcriptional activatiamby the linear integral

t
y(t) = fo g(t — 7)u(r)dr. (6.1)
In the Laplace domain, a convolution integral such as (6.1) corresgonds
t
Y(s) =L f o(t - T)U(T)dT] = G(s)U(s) (6.2)
0

wheres is the Laplace variable an@d(s) is called a transfer function. MK(t) is

a perfect impuls@g (Dirac delta) therJ(s) = L[60(t)] = 1. When the transfer
function G(s) represents a linear fiigrential equation (i.e. it derives from a lin-
ear convolution such as (6.1)), it can be expressed as a rationabpabinn the
Laplace variables. A simple such polynomial is

S+ N1

Gl(s) - S+ d1

(6.3)

wheres = —d; is called the pole 061 ands = —n; its zero. Choosingl; > 0 the
transfer function is stable (the pole is in the left half of the complex planeki.e.
bounded input will always result in a bounded output. Wher 0 the system is
said to be minimum phase. In this context this is an important condition in order to
guarantee positivity of the output signal for all times.

The requirements above can be translated into easy-to-handle desigitape
tions on the values of the poles and zeros of the transfer function. BonEe,
the first requirement (at least for what concerns pulse broadersinggt by the
class of so-called low-pass filters, the most basic of which has the forem g
(6.3), provided we choose © d; < n;. The term “low-pass” literally means that
low frequencies in the input signal pass unchanged through the trdnafgion
Gi(s), while high frequencies get damped, hence the impulsive input exits from
G1(s) smoothed and with more gentle slopes. Such a transfer function is proper
and therefore respects causality; it discharges completely as reggiimed it has
no integrator, i.e. no factors of the formdlin G;,(s)). Strictly speaking, it is not a
positive filter [1], however as long agt) > 0 and 0< d; < n itis alsoy(t) > O.
In the Laplace domain, a time deldy has Laplace transform equal@o’S. This
operator does not add poles or zeros to (6.3), but yields the irratiamafféar func-
tion

y = Gy(s)e” 5u. (6.4)
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In the time domain, each convolution integral (6.1) can be expressed asaa line
input-output systems (of ordinaryftérential equations). For the transfer function
in (6.3) and the delay operator in (6.4) this corresponds to

% = —d]_X(t) + (nl - dl)u(t - Tl)

y(t) = x(t) + u(t - Ta),

i.e. the poled; plays the role of “degradation rate” while the activation amplitude
is proportional ton; — d; (> 0). The typical impulse response of a low-pass fil-
ter transfer function such as (6.3) is shown in the top plot of[Fig. 7.12&jen

a pulse shape, the capabilities of a single low-pass filter in terms of brogdenin
and smoothing of the responses are limited, hence, in order to obtain @gsvgr
effect of delayed and broadened impulse responses, several delaypdds fil-
ters should be put in cascade. For example the order-2 transfer fuottiained
concatenating 2 filters is

_(s+ng)(s+ )

a9 = (s a) st &)’

or, in the time domain,

% = —dixq(t) + (ng — d)u(t — Ty)
d);zt(t) — —dZXZ(t) + (n2 — d2) (Xl(t) + U(t _ TZ))

Yo(t) = Xa(t) + x2(t) + u(t — T2).

In this case botld; andd, contribute to form the degradation profile of the mRNA
concentrationy,(t). Likewise, both dynamical variableg and x, contribute to
shape the pulse of a gene. Typically this model induces a steeper upicyaled

a slower degradation front, coherently with what we observe on the YMC time
series. The intermediate variabbesare only meant to describe the complexity of
the input-output relationship. Qualitatively, they might reflect intermediatesstep
in the gene expression program. For example, the transcription of the géne
the central metabolism is activated downstream of the genes for translation a
amino acid synthesis, which in their turn follow the principal bursts of traptoen
machinery (polymerases and other RNA processing components). Deamstr
activation of the genes of a category translates in this modeling framework into
delayed and broadened pulses. Typical output responses for31,a2d 4 such
concatenated blocks are shown in Fig. 7.12(b).

A simple parameter search can be set up to identify valueg df andT;, i =
1,...,4, that guarantee for each gene #isiently well-reproduced time course.
The best transfer function order for each gene is identified as that maxgie
correlation between true and model-based time series.
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Results

The~ 2000 genes labeled as periodic by a periodogram test are subdividddin
clusters, see Fig. 7.1. In Fig. 7.1(a) the clusters are sorted in increasiag of
HL (computed as the average of the HLs of the cluster elements). It is immediately
evident that the typical profiles, both in terms of the phase of the peakedti
gene the phase is computed maximizing the correlation with respect to a train of
shifted sinusoids) and of their width (although in a less regular way) is mddifie
in an almost continuous manner as we move along the clusters figures. Notice in
particular how the peaks of the first clusters match the “valleys” of the lzest.o
For the average phase on each cluster, the pHaselationship is almost linear
(Fig.[7.1(b)).

The scatter plot in Fig. 7.1(d) confirms this linear proportionality, but also
shows a growing variance along the HL axis (see Table 7.1 for detailsg. o®n
the reasons may be that the HL measures are imprecise (see comparisearbetw
HL datasets in [57]), and should probably be considered as contegifisppara-
metrically dependent on a set of physiological conditions (see also Hice®u
description in section 6.1).

The deviations from linearity of clusters 6 and 9 admit a reasonable explana
tion, mostly in terms of compartmental localization. Cluster 6 is essentially com-
posed of retrotransposons (all Tyl and Ty2) and long term repeatAaRNostly
of 6 type) for a total of 73 out of 102 genes. For most of these genes (b9) a
HL measure is missing. Hence the average HL for this cluster (and this cluster
alone) may be biased or unreliable. Cluster 9 instead is almost entirely camnpose
of cytoplasmic ribosomal subunits (109 out of 151 genes). In betwdestets 7
and 8 contain to a large extent genes with mitochondrial localizatiofoafuthc-
tion (mitochondria organization and biogenesis, protein import into mitochdndria
matrix, oxidoreductase activity for Cluster 7, mitochondrial ribosomesglepe
and membranes for Cluster 8). As is explained in detail in the next patagtap
large deviation from linearity seen in Cluster 9 can be due to an extremelgrfdst
short lived response of the mMRNAs deputed to the biosynthesis of theastois
ribosomal complexes, not deducible from the available HL data, neither thhe
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clustered according to a nonnormalized correlation distance functiodbée7.
for details on the clusters). The clusters are then sorted (from left tbfragh top

to bottom) according to the average HL. In (b) the average HL is plotted stgain
the average phase for each cluster, while in (c) the average HL is skgaumst the
average pulse width. In the scatter plot of HL versus phase (d), theiodicates

the cluster number (see colorbar on the right). As can be noticed, alordlthe
axis the standard deviation of a cluster grows with the mean, see Table 7.1 for
exact values, and the cloud of points looks like a cone (the cone delimitecby th
two red lines contains 95% of the periodic genes). Still the increase of teeph
with the HL is clearly visible. In the least-squares linear fit in (b) (greeif)dighe

L, norm of the residues is due to Cluster 9 (cytoplasmic ribosomes, see tegt). Th
p.value for both linear regressions<ds107°. Further details on these regressions
are provided in section 6.3.
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Cl. | Genes HL Phase Width Ontology
Mean SD Mean | SD Mean | SD

RNA, rRNA, and tRNA processing and

1 101 | 13.26| (9.54) | 32.4 | (9.4) 2.2 | (0.56) | metabolism, ribosome biogenesis and as-
sembly
RNA, rRNA and tRNA processing and

2 58 16.02 | (19.07)| 26.3 | (7.6) 2.3 | (0.66) | metabolism, RNA helicase, ribosome as-
sembly
RNA polymerase, translation initiation,

3 101 | 16.46| (8.65) | 43.3 | (15.4)| 2.1 | (0.65) | regulation, and termination, nucleotide
biosynthesis

4 34 | 19.44| (10.19)| 98.2 | (9.7) | 6.3 | (3.54) g;;zferase activity, DNA replication, cell

5 | 102 | 22.99| (1027)| 67.7 | 11.8)| 3.3 | (195) | 9cine metabolism, nitrogen and sulfur
metabolism, amino acid biosynthesis

6 102 | 2459 | (11.67)| 177.4| (51.0) | 5.2 | (3.43) | retrotransposons, long term repeats

7 | 124 | 2459| (13.45)| 1006 | (15.8)| 5.0 | (2.88)| Mitochondrial membrane organization and
biogenesis, mitochondrial transport

8 151 | 24.72| (11.80)| 128.3| (9.4) 76 | (2.96) mitochondrial ribosome, envelope, and
membranes

9 | 232 | 25.76| (13.78)| 44.8 | (22.5)| 2.6 | (1.46) Ei?sﬂgsm'c fibosomes, - translation pro-

10| 154 | 28.34| (16.36)| 169.7| (20.3)| 6.0 | (3.59)| ‘orcation transmembrane transport, elec-
tron transport, oxidative phosphorylation
endopeptidase activity, protein catabolic

11 | 230 | 31.99| (19.05) | 246.7| (35.5)| 5.4 | (3.90) | process, proteasome, actin filament orga-
nization, glycolysis, gluconeogenesis

12| 65 | 32.69| (18.68)| 214.8| (14.8)| 55 | (2.28) :;pc;?nae”da'who' metabolic process, perox-

13| 223 | 38.24| (28.35)| 245.8| (12.6)| 9.2 | (3.71)| Kinase activity, vacuolar transport, mem-
brane organization and biogenesis

14 | 128 | 39.10| (29.27) | 285.5| (16.1) | 10.1 | (4.19) | arginine biosynthesis, protein folding

15 | 117 | 42.83| (28.02)| 258.7 | (11.5)| 10.2 | (4.59) {‘gﬁ;ﬂ;ﬁe activity, fatty acid oxidation, cy-

16 29 4574 | (26.30) | 307.8| (15.1) | 8.7 | (2.84)| catalytic activity

Table 7.1: Statistics for the 16 clusters for Fig. 7.1
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current literature (in [131] it isffirmed that cytoplasmic ribosomal genes tend to
be stabilized by nutrient uptake).

Although less precise, also the relation between HL and pulse width on each
cluster (Fig. 7.1(c)) is approximately linear. Unlike the phiieproportionality,
this last result is expected from simple dynamical considerations, as létiger
means longer “kernel width”, see also the dynamical model explanatiowbelo

The emergence of a linear relation between HL and phase once the genes a
arranged in classes according to profile similarity suggests that a condiag
cascade of causally organized events may be taking place during the Y&AC.
some extent this is already visible through an ontological analysis of the rduste
of Fig. 7.1 (see Table 7.1), but in order to investigate more in detail the biolog-
ical meaning and significance of such a genomic “assembly line” we computed
HLs, phases and pulse widths along the main yeast pathways and for &timee o
annotated yeast protein complexes. The data for the pathways (seeZyigre/
then lumped together into the 15 functional macrocategories shown in Fign7.3.
terms of these macrocategories (sorted by phase), the result is that th&snaeN
tivation reflects tightly the gene expression program expected to takeipltoe
cell, especially for the “fast” categories, i.e. transcription, nucleotide roészb
and translation starting essentially synchronously in the time scale of the YMC,
followed by DNA replication and repair and amino acid metabolism. Progress-
ing further toward the slow processes, one encounters the metabolismergfye
carbohydrates and lipids. Also for this classification, the progressiorrimstef
phase along the cycle is substantially faithful to the increase in HL (in the tdp plo
of Fig.|7.3(b) the most significant outlier is still the category “translation”aadse
mentioned, see also Fig. 7.5), and the progression in phase is parallededry
crease in pulse width (see bottom plot of Fig. 7.3(b)).

7.1 HL and the short-period YMC

The HL of a gene is defined as the time needed to halve the concentration & mRN
in absence of new transcription. Hence in order for a “full” degradationRNA

to be observed, the interval between two consecutive waves of tigtischas to

be at least twice or three times the HL. For yeast, the mean HL extrapolatad fro
[57,78,123] is~ 26 + 17 min. Hence for the long-period YMC the response to
bursts of transcription has the time to exhaust completely before the arfitrad
next wavefront. On the contrary, for the short-period YMC describgd6] the
period is approximately 40 min, meaning that excitation and degradation frents a
substantially overlapping.

7.2 A detailed functional analysis

Using the ordering by phase of pathways and protein complexes (sé& Fand
7.4), we can zoom on these categories in much more detail. The first phase o
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Figure 7.2: Average of phase, HL, area and Pearson correlatiog EB&G path-

ways, for all genes (red) and for periodic genes (blue), sortedhage of the
periodic genes.
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Figure 7.3: (a): The periodic genes of the YMC are grouped accotdikdgcGG
pathways (see Fig. 7.2) and then in the 15 macrocategories shown.cRanaero-
category we calculate the average phase, HL, pulse width, and cometditibe
periodic genes (in blue), and also the average HL and correlation oéadisg(in
red). Sorting by phase reveals the expected concatenation of evethes ydast
gene expression program, especially in the first part with transcriptiecedng
protein synthesis and DNA replication, followed by the slower categoriegiof
tral metabolism. (b): Comparing HL and phase (or pulse width) roughly thme sa
type of direct proportionality still appear. The trend in the average psadil@ach
category (black thick lines in (c)) reflects to a large extent that of Fig.Thé.third
plotin (b) shows that also phase and pulse width are directly correlatiésbgthat
are delayed are also broadened. Linear regressions for theserpldis@aissed in

section 6.3.
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Figure 7.4: Average phase, HL, pulse width and intracomplex Pearsoglatmn
for a few MIPS protein complexes, sorted by phase (on the periodicsyene

this cascade consists of the activation of the transcription machinery witlyrthe s
chronous bursts of transcription of the three RNA polymerases (se@.Eigand
of most of the RNA processing components, like the tRNA processing coemlex
(RNase P) and rRNA processing complexes (exosome, RNaseSIRENOPY),
with the nuclear splicing complexes following closely. While the mRNAs for the
polymerases are highly coordinated, the same cannot be said for the daserip-
tion factors (TFs) required for their initiation. Overall only a few of thesaas
follow the bursting trend of the RNA polymerases, notably, among tf&®i,15
which forms the TATA-binding protein and is also a component of the polyseera
| core factor and of TFIIIB. Most other genes involved with these ganEFs do
not show any periodic pattern, and their mMRNA concentrations neveassigery
low levels.

From Fig! 7.3, the peak of mMRNA concentrations associated with the category
“translation” seems to be synchronous with the RNA processing burst.ettow
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a more careful analysis reveals that this phase is an average of two dcionemn-
talized” activations of the translation machinery, having fairlffetent phases:
while cytoplasmic translation follows almost simultaneously the RNA machinery,
the mitochondrial translation activation has a phase lag of more than one sixth of
the period. In terms of time delay, this amounts to approximately 50 min, see
Fig.[7.5. More in detail, most of the mRNAs of ribosomal small and large subunits
for both cytoplasmic and mitochondrial localizations are highly correlated within
their complex (average Pearson correlation for both is around 0.8)@anelated

with the translation complexes at the corresponding location. In particoang

the cytoplasmic translation complexes, the initiation factors elF and the termination
factors eRF are very coordinated and respond very fast, while of the #tonga-

tion factors only eEF2 and eEF3 are well-coordinated, whereas the tamggplex
eEF1 shows a less-defined response pattern, with only the subunitg ERarly
expressed. Overall for the class of translation complexes the patteativaften

of the response reflects closely the corresponding HL distributiond (&3 and

eRF have short HL, eEF has not). Notice that a simple comparison of the HLs
of the cytoplasmic and mitochondrial ribosomal and translation machinerigs (bo
approximately 24 min) does not show the significafiiestence which can be seen

on the time series profiles and which is instead revealed by the phase dalay an
sis. For cytoplasmic ribosomal biogenesis, a similar anomaly is encounteced als
in the stresstimuli responses analyzed below. For mitochondria, the same type of
pattern is verified also by other complexes, for example by both the trasskca
located in the outer and inner mitochondrial membran€d\ andTIM) which are
known to mediate the protein import into the mitochondria, se€ Fig. 7.5.

A neat organization can be seen also in the phase of the nucleotide and amino
acid metabolism: while pyrimidine and purine synthesis, as well as e.g. the CTP
synthase enzyme involved in pyrimidine biosynthesis, are synchronougheith
burst of transcription, the peaks for most of the enzymes involved in angiido a
pathways tend to be in phase with the activation of the translational machinery.
Also the synthesis of aminoacyl-tRNAs, necessary for the delivery othieo
acids to the ribosomes during translation has a similar phase. As expected, the
“synthesis” pathway of an amino acid always anticipates its “degradatathiyay
(see Fig. 7.2). In order to start translation, the initiator tRNA carrying meihéon
is required, and in fact, among the amino acid metabolic pathways, methionine is
one of the fastest. As a matter of fact, the pathways of sulfur metabolismfand o
the sulfur-related amino acids (methionine, cysteine, as well as the clotslydre
selenoamino acid metabolic pathway) present very similar and very compact time
series, with an early (synchronous with the main burst) but long lastingasiotiv
(duration of the pulse is more than 100 min). This tight coordination may hint at a
special role played by the sulfur pathways in the yeast population symizlation
[114, 121].

To conclude the protein synthesis, the nascent polypeptide chains nidist fo
into 3D structures. The molecular chaperonin-containing T-complex an@ithe
complex, which help in the folding, behave synchronously with the main burst.
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Figure 7.5: (a): Cytoplasmic vs. mitochondrial splicing, ribosomal (small and
large subunits are lumped together) and ribosomal translational compléXes.
genes are nuclear-encoded. Black profiles represent mRNAs @dsssfperiodic.
Within each of the two cellular compartments, the time courses of gene expres-
sion are similar and fairly coordinated. Even the amount of correlation artieng
complexes subunits is similar, with e.g. ribosomal mRNAs in both compartments
being more tightly coordinated than the corresponding translational maigsiner
The bursts for the cytoplasmic localizations are much sharper, highehanigs
than in the mitochondria. These last accumulate an average phaseJd&gqfor
around 50 minutes of delay (recall that the phase is computed by autatiomne
with a train of sinusoids, hence the value for the phase represents titer"cef

the pulse). The cytoplasmic ribosomal complex substantially overlaps withicluste
9 of Fig.[7.1(a), while the mitochondrial ribosomal complex is contained in clus-
ter 8 of the same Figure. (b): Mitochondrial translocases across audenaer
membranes, and mMRNAs having Puf3p as a RBP (220 genes, 134 periodic)
the 236 mMRNASs belonging to at least one of the mitochondrial categoriesxshow
the Figure, 62 have Puf3p as RBP. This tells us that in this case the “locaiizatio
constraint is stronger than co-sharing a single RBP, but that the twdticmscare
coupled and induce a similar pattern of dynamical regulation.
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On the contrary, ubiquitin and proteasome, that proceed to the recognitibn a
degradation of anomalous proteins, as well as the SCF and anaphas&ipgo
complexes, that cause the proteolysis of the cyclin-CDK complexes, ladiezns

of activation which are more delayed and broadened. Actually, this cfga®o
teolytic processes (macrocategory “folding, sorting and degradatioRigin7.3)
has the highest values of phase, i.e. it has the slowest response toHugifriEon
bursts.

The macrocategory “DNA replication and repair” (see Fig. 7.3) contaimestw
remains of the “fast” responses to a large extent synchronous (poaeiplexes:
DNA damage checkpoint, DNA repair, pre-replication, replication, repbodork,
which includes all DNA polymerases, helicases and ligases, cyclin-CDKitbin
a short time delay from the initial bursts of transcription. The peculiarity of this
class is that the pulses are more long lived than in the “transcription” and (cy
toplasmic) “translation” categories. Also the complexes regulating the cohesio
and separation of sister chromatids during the S-phase (nuclear aoFesity of
complexes) follow the same pattern (see Figl 7.4).

Moving to the core of the cell's metabolic activity, the average phase ireseas
further (see Fig. 7.3), but the main qualitativefeiience is on the shape of the
pulses, which are now broader and often with an asymmetrigdasay profile:
still sufficiently fast activation but slower and less abrupt decay. THigsrdince
is likely to reflect the longer HL associated to these categories (all havageve
HL > 30 min), and implies metabolic functions more overlapping than sequen-
tial. Along each metabolic pathway, the degree of correlation among enzymes
catalyzing neighboring reactions is higher than it is expected (the “exppeabee”
is inferred from a large collection of yeast microarray experiments, gperFg)
implying a coherent and coordinated temporal behavior along the metahatgsro

7.2.1 Central metabolism

From Fig. 7.7, it seems that the long bursts of the citric acid cycle and o@dativ
phosphorylation genes could be composed of two distinct adjacentgioasach
period. Similarly, the profiles of the anticorrelated isoenzyme pairs mentioned in
section 7.4, show that of the two recurrent patterns described in Figc), bhe
resembles the mitochondrial transcriptimanslation burst (upregulation approxi-
mately in the interval 225375 min interval and periodically thereafter), the other
is more delayed (interval 3@@50 min) and characterized by a deep downregula-
tion during and after the main transcription bursts (2805 min).

The alcohol dehydrogenases isoenzymes are “prototypes” of théteétnsa
ADH1 and ADH3 (respectively cytosolic and mitochondrial, both reducing ac-
etaldehyde to ethanol) follow the first, whilkDH2 (using ethanol as substrate)
follows the second. The first patterAlH1/ADH3) is synchronous with the hex-
okinases catalyzing the initial glucose phosphorylation: of the three igoerg
HXK2 has the earliest response but is also more rapidly repressed,iila is
more long-lived and is expressed, together with the glucoki@dd€l, also in the
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Figure 7.6: Mean correlations between genes along the KEGG metabolic path-
ways (genetic information categories such as transcription, translatidrHA
replication and repair are not included), computed for the yeast metalyolie ¢
time series (top plot) and for a collection of 790 yeast experiments (bottom plot)
The correlations are computed between enzymes that are neighbors inoferms
metabolic reactions: from adjacent genes, to genes separated by tereeeitiate
reactions (green scales). Averages between all genes involved ihvegyas also
shown in yellow. On the right panel of each plot are shown the averatimse
mean correlations along all pathways, grouped by their average enzymea
tivity degree. Correlations are higher for more tightly connected pathévears

for those having a low connectivity degree. Comparing the right handg sidine

two plots, correlation among neighboring genes for the YMC is higher thathéo
collection, thus confirming the high level of functional coordination indumgethe
YMC along the metabolic pathways.
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Figure 7.7: Time course of the central metabolic pathways.

other interval|[102].

Quite unexpectedly, the enzyme for the final irreversible step of glycolysis
pyruvate kinase@DC19 as the isoenzym®@YK2remains constantly basal), is
neither synchronous with th@DH1/ADH3 and HXK2 profile, nor with the other
one ADH2 andGLK1), but rather delayed with respect to both modes (in/Fig. 7.4
pyruvate kinase has the highest phase delay). The high level ofssikpneof alco-
hol dehydrogenase in all metabolic modes suggests that pyruvate pooduay
not be the rate-limiting step of the pathway, and that a delayed pyruvateskinas
action may help meeting cellular ATP demand by distributing uniformly ATP pro-
duction along the cycle (see Fig. 7.8(a)). As a matter of fabxC19peaks always
precede the transcription bursts (in correspondence of the dowatieguof the
mitochondrial genes) and fall right after that. Most of the enzymes fomitee-
mediate steps of glycolysis do not show any significant periodic trend{ge@.9
for an overall view of the phase of the genes on the central metabolic apshw
although on the other irreversible reaction, phosphofructokinase @eotds® FK1
and PFK2) has some degree of resemblance viiiiC19 On the contrary, the
gluconeogenesis enzymes pyruvate carboxyB¥e€() and phosphoenolpyruvate
carboxykinaseRCK1) show a strong correlation with the gen®BH1/ADH3 and
HXK2.

The acetaldehyde-ethanol exchange is part of the so-called “PDabbYfi.e.
route alternative to the pyruvate dehydrogenase complex) for acefylp@muc-
tion, see [101]. The supply to this pathway (throl®RC5) is almost continuous
(except in the “valleys” of the pyruvate kinase) and the rest of the athalde-
hyde dehydrogenase (mostly isoenzymeD6, mitochondrial) and acetyl-CoA
synthaseACS] cytosolic) coordinated withDH2. On the contrary, the pyruvate
carboxylase branch followADH1/ADH3, while the direct route pyruvatacetyl-
CoA (PDH complex) is unclear (more synchronous witbH1/ADH3 though).
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Figure 7.8: (a): Time courses of the expression levels for the enzymaigsge
catalyzing reactions involving ATP, ADP and AMP. The reactions are igigsdi

in mitochondrial and cytoplasmic (“cytoplasm” referring to the entire cell with
the exclusion of the mitochondria) compartments and according on whether the
metabolite is to be considered a substrate (red line) or a product (blue fine) o
the reaction. Thick curves represent the average over the mRNAsskpneof

the corresponding enzymes. Information abound compartment and redicgo-

tion is extrapolated from [49]. The expression of the enzymatic geneseas &k

a measure of the flux of metabolites through the reaction node (scalesvare ho
ever not indicative). The peaks of consumption of ATP in the cytoplashoiin ¢
respondence of the main bursts are small but visible. More visible is therpatter
of ATP-producing enzymes in both compartments. In the cytoplasm this ie-esse
tially due to the pyruvate kinase enzyme Cdc19 transforming phosphoeneodbgr

into pyruvate during anaerobic respiration, while in the mitochondria it is due to
the oxidative phosphorylation pathway. The fermentative rechargidgBfin the
cytoplasm is quite in antiphase with the respiratory mitochondrial one (scede he
can be even misleading: aerobic ATP production is of course far nfhoieat

than anaerobic one). Notice that during the bursts of transcription, A@iPlysis
rather than peaks of ADP induces peaks in the production of AMP, apécted

for high energy demanding reactions such as RNA polynucleotide syntl{bkis
Time course of expression for enzymes of reactions invol@xngColor, line thick-
ness and compartment subdivision is the same as above. The third plot &cthe tr
of dissolvedO; (blue line, data reproduced from [119]), and th@;, ratio (green
line). Its trend follows closely the cytoplasmic “oxygen production” (blueveu

in the middle plot), which essentially is the time course of the catalases, enzymes
detoxifying reactive oxygen species suchg£©,. Qualitatively the main discrep-
ancy between the two curves occurs in the 50 min interval following the Karsts
200+ 250 min.) wheraelO, keeps decreasing while the concentration of the Cata-
lases MRNASs remains basically at zero level. From the top plot, the explanation
could be that this is the interval in which mitochondrial respiration starts, lilgere
consumingO».
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With the exclusion of the succinyl-CoA ligase (bdtBClandLSC2 all the
steps of the citric acid cycle are more in agreement withAB#¢{1/ADH3 pat-
tern and are rigorously shut down during the transcription bursts. Figni.7,
it seems that the long bursts of the oxidative phosphorylation genes pweitia
both patterns. Looking at the trace of obserd€d (data taken from [119] and
reproduced in Fig. 7.8(b)), citric acid cycle and oxidative phosphbtioylaactiva-
tion seem to correspond to the maximum drod@ concentration (206300 min
interval following the transcription burst), but they seem to persist alsp &fter
the recovery ofdO,. It must be noticed that the trace 00, resembles closely
the expression profile of the catalase enzymes that praddwdetoxifying reactive
oxygen species.

7.2.2 Glucose-regulated carbon metabolism

There is a consistent literature on the influence of glucose abundangenan
expression [17, 32, 71, 103, 131]. On the YMC, the standard gluacteated
andor repressed signaling pathways are not expressed. For examplefithecs
ine/threonine protein kinase complex suburBNF1 SNF4 SIP1, SIP2 GAL83
as well as the other regulated genes on the same patkiay, CAT8andADR,
do not show any significant pattern.

7.2.3 More compartmentalized categories

Other categories which can be associated with a particular cellular compartmen
emerge from the joint analysis of pathways and protein complexes. Fompdxa
lipid biosynthesis, which is to a large extent localizable in the endoplasmic reticu-
lum (ER) has a phase comparable to the translocon family of complexes @#)g. 7
which is composed of the Sec61 protein translocator, the signal recogpiitin

cle which binds the ER-specific sequence on the nascent polypeptideacitithe
signal peptidase that cleaves ff.o

7.2.4 Signaling proteins

Complexes with eminently intracellular signaling functions, such as the antago-
nistic cAMP-dependent protein kinase and sethreonine phosphoprotein phos-
phatases (respectively phosphorylator and dephosphorylatomafiisig proteins)
have similar patterns of expression, similar timing during the YMC and high Pear-
son correlation (at least for what concerns periodic genes).

7.2.5 Weakly periodic categories

Several categories linked to transcriptional activation or RNA procgsbke the
histone acetyltransferase enzyme or the nuclear processing complex(faireihd
pre-RNA processing factors CFl and Il and 3’-end polyadenylati@ioks PFI) or

the chromatin assembly complex, seem to be evading the tight phase coordinatio
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However, this is mostly due to the evanescent periodic pattern, if any, cbthe-
sponding genes. Likewise for the nuclear pore complex, which assisx et of
mature mRNA through the nuclear envelope: most of its genes in fact shsis bu
which are synchronous with the initial pulses but of very small amplitude, thus
ambiguous in terms of temporal classification.

7.3 Regulation via TFs versus RBPs

In terms of regulatory influence, while the importance of transcription initiatian v
TFs is widely studied and a large amount of data (computational and expéalinen
is available about the binding of TFs to target genes, similar post-transogptio
systematic data on the regulation by means of RBPs are still sporadic [62pINo
examples are mRNAs associable to the nuclear export proteins Mex67ratd Y
[61], the Puf family of RBPs [56], and the 3' UTR motif collection of [109].
Inspired by [93], we applied these RBP lists as well as the list of TF binding
sites from [3, 86] to the YMC time series comparing the average correlationg@gmo
genes being common targets of a TF or of a RBP. The two distributions amasho
in Fig./7.10. For both TFs and RBPs, only a few motifs emerge as having a sig-
nificantly high correlation. The number of genes regulated by the samerigsva
between 1 and 226 with a mean of 35.2, while the number of genes with a common
target mMRNA motif varies between 6 and 1138 with a mean of 81.7. If we draw
from a null distribution representing random grouping, increasing timeteu of
genes in a group the probability of finding a high mean correlation obviowsly d
creases, so we expect the distribution for the second set to be tightexdado In
our case, on the contrary, there are 6 groups out of 110 with a meegiatimm
> 0.4 for the TF target genes (versus an expected value of 1 for randmumpgof
genes with the same cardinalities of these groups) and 7 groups out of 8&f
genes with a target mRNA motif (versus the expected O for random groitps w
same cardinalities). This suggests that post-transcriptional regulation éssiger
nificant that transcriptional regulation in the coordination of the metabolilecyc
although the evidence is not conclusive. When checking the groupsriaftic
genes with high correlation we found the following significant annotations:

e 44 genes out of 56 having Fhllp as TF and 10 genes out of 12 hayiig Sf
as TF are constituents of cytoplasmic ribosomes; notice that instead other
cytoplasmic ribosomal TFs such as Raplp do not correspond fhciently
high correlation;

e 22 genes out of 26 having Hap4p as TF code for subunits of respirctan
complexes;

e 62 out of 220 genes whose mRNA is bound by Puf3p are annotated for mito-
chondrial transcriptioftranslation (56 are part of mitochondrial ribosomes,
of which 47 are periodic), see Fig. 7.5.
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Figure 7.10: Top row: Distribution of the mean correlations for groupsenfeg
having a common DNA motif likely to be the target of a TF [86]. Bottom row:
Distribution of the mean correlations for groups of genes having a commommRN
motif likely to be the target of a RNA-binding protein (Yral, Mex67 [61] or five

Puf proteins [56]) or having a common 3’ UTR motif implicated in the stability or
in the subcellular localization of the mRNA [109]. The mean correlation of agro
of genes is defined as the average of the correlations between thesapseof
each gene pair in the group. The mean correlations calculated for allriegogées
are shown on the left, while on the right only the periodic genes of eaalpgie
considered.
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7.4 Double peak and anticorrelated isoenzymes

Especially for mitochondrially localized pathways, such as citric acid cyate an
oxidative phosphorylation, the pulses are very broad, with a neat réguiation
only in correspondence of the bursts of transcription and an oveuailegoften
exhibiting a double peak on each period (occurring with a phase lagLoff one
from the other, see Fig. 7.7). The four respiratory chain complexesx@mple
follow this pattern in a fairly precise manner.

In order to investigate the meaning of this double peak characteristic, we con
sider genes whose products are classified as isoenzymes. If we libekcatrrela-
tion for all pairs of isoenzymes, see Fig. 7.11(a), we see that restrictjpeyimdic
genes an almost bimodal distribution emerges, with a significant percedtage (
out of 210) of isoenzyme pairs being anticorrelatBd<{ —0.3). This behavior
has no counterpart on the distribution of expected values (computedes bip
means of a large collection of microarrays). In more than 50% of these amtico
lated pairs the pattern of activation in the time course is similar (see Fig. 7.11(c))
with one of the two isoenzymes exhibiting a deep and prolonged downregulatio
immediately following the transcription bursts. The majority of these pairs is in-
volved in oxidoreductive processes, like, for exam@B®H1YJL045W, SDH3
YMR118C, SDH4YLR164W (all subunits of succinate dehydrogenase), or the
NADP-dependent isocitrate dehydrogenase gaitsl-IDP3, IDH2-IDP3, IDP1-
IDP3, or the plasma membrane+HATPase isoenzymeBMAL-PMA2 or the
NADH dehydrogenase paifdDE1-NDE2 Three among the most anticorrelated
pairs of isoenzymes showing this pattern are located along the pentosghateos
pathway, two on the cytosolic oxidative bran@®JL3SOL4andGND1-GND2),
the third (the transketolas@KL1-TKL2) downstream. The pentose phosphate
pathway synthesizes NADPH, which is the major source of reducing &guis
and, according to [121, 127], plays a major role in the establishment of/tie. c
Also the most anticorrelated isoenzymes in the glycolysis pathway, the aldehol
hydrogenases, have a similar patte&DH1 and ADH3 (reducing acetaldehyde
to ethanol) versus\DH2 (catalyzing the reverse reaction), see section 7.2.1 for a
more detailed analysis of the periodic pattern in the central metabolism.

7.5 A minimal input-output dynamical model for the un-
folding cycle

Possible origins of the sustained oscillations are discussed at length in tatihiger

[20, 76, 83, 95, 100, 126, 127, 128]. Also Tu et al. explain the cyateits time

compartmentalization in terms of metabolism and redox balance([119, 120, 121]
Rather than adding to the list of mechanisms for metabolic regulation, by view-

ing each cycle as the dynamical response to a burst of transcripticiedltiam,

this work aims at providing a characterization of the dynamics of the unfolding

of the cycle, i.e. of how these “impulse responses” are progressieddyed and
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Figure 7.11: Anticorrelated isoenzymes for the YMC (top row in (a)) amdafo
collection of 790 yeast gene profiling experiments (bottom row (in (a)@ Gdire-
lations between all pairs of isoenzymes in the two sets are shown on the ligdt, wh
on the right only periodic pairs of genes are considered. For them, int@ the
distribution of correlations tend to a bimodal distribution, i.e. a significantetubs
of isoenzymes is anticorrelated and oscillates with opposite phases. Théypame
of anticorrelation is not visible on the reference collection. The time seridseof
pairs in red in the scatter plot of the phases (b) are depicted in (c). Ot of
two genes of these pairs (in red) is characterized by a deep valley fofain
transcription bursts. Most of these pairs are involved in redox presess
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broadened with respect to the input pulses, and of how this correlateghaith
stability of the corresponding transcripts. The compactness in terms of phds
width of the early categories over repeated oscillatory cycles is an argumfan

vor of the existence of a single triggering event for each cycle, qooreging to

the transcriptional activation bursts mentioned above. In fact, shagspeged
pulses are maintained in spite of the broader and less coordinated prbfites o
events immediately preceding them. This hypothesis is not in contradiction with
the observations about the metabolic origin of the YMC, neither with the oliserve
alterations of the period following a genetic disruption [20, 120, 121] (Wwhauld

in principle preserve the sequence of events described). On thergpiitnaerges

the metabolic control level described in [119] with an extra regulatory elemen
which is known to play a role in dynamical contexts.

In fact, the mRNA stability reflects known properties of the correspondamgg
products: while mMRNAs encoding transcriptional machinery or regulatomypo-
nents tend to be short-lived and to turn over more quickly, transcriptsiengoore
enzymatic proteins are typically more stable [91, 123, 125]. For what iskno
protein synthesis tends to follow the concentration of the correspondingAnRN
[99] and to be at least as stable, if not longer-lived [10, 60]. Hemdée expected
that the concentration of the gene products follows profiles that are simitande
of the mRNAs. The observation that the dynamics through a metabolic pathway
can be considered as a timed and sequential process at the level dxgeas-
sion appears in several papers in the literature, see [19, 134]. Te@aciple
seems to be reflected in the YMC, although it is not observable at the |ledetaif
investigated, e.g. in [19], but more macroscopically and at genome-widke lev

In terms of dynamical models, the progressive broadening and smoothing o
the response to a sequence of (transcriptional) pulses can be dedwyibeeans
of simple linear input-output models (i.e. transfer functions in the Laplace il)ma
of increasing order having “low-pass” characteristics. As the time conefahis
low-pass filter is essentially given by the HL of the mRNA, this type of model
naturally predicts the correlation HL—pulse width. In order to describeectly
also the phase along the cycle, a time delay is added to the response, seddMeth
for a thorough description and Fig. 7/12(a,b) for an example. If theraidsuch
a fitted minimal dynamical model is used to sort the annotated macrocategories of
Fig. 7.3, we still recover both the same expected cascade of events asahibe
direct proportionality with HL, see Fig. 7.12, meaning that even in terms of the
simplest possible dynamical model the kernels providing the best fitting become
increasingly complex as we progress through the cycle. This is of cenpseted
as the mRNAs gradually pass from fast turnover to high stability.

7.6 A common dynamical gene expression program

As the YMC is obtained only in particular conditions (long-term continuous cul-
tures in chemostats), an intriguing question is whether this highly organized un
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Figure 7.12: Dynamically, the response of the system to the sharp pultesof
scriptional activation can be modeled in terms of input-output transfetitursc
(i.e. convolution integrals in the Laplace domain, see Methods for detail®. Th
main feature of a simple zero-pole transfer function with low-pass chaistate
is that in correspondence of an impulse-like input it yields an output whieh is
smoothed and broadened version of the input. Concatenations of swchate
transfer functions describe accurately the progressive broadenthgelaying of
the YMC gene expression time series. Typical time profiles obtained forférans
functions of order 1 to 4 sketched in (a) are shown in (b). The top plob)n (
shows the larger kernels obtained by concatenating up to 4 first ordefdrdunc-
tion blocks. The lower plot in (b) shows how consecutive impulse regsolaok
like for the various orders of transfer functions and an extra delay elfeasein
eg. (6.4). A simple fitting of then;, di and T; parameters and of the best model
order for each gene allows to accurately reconstruct the averafijlepfor the 15
macrocategories of Fig. 7.3 (in (c) the model-based time courses are shma).
With the usual exception of the category “translation”, the best transfetibn
order is roughly proportional to the corresponding HL values, catigravith the
other variables discussed in the text.
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folding of the dynamical response to pulses of transcriptional activatipadsliar
only of the YMC or can be observed also in other experimental conditianghfs
purpose, we consider the gene expression response of steadyestsit¢o pulses

of glucose described in [104]. In this case, the yeast shows a tradsieamical
response but no oscillatory behavior. Furthermore, the transiens peaknore or
less synchronous for all genes, i.e. there is no time-ordering in the dysammic

like in the YMC. However, if for a gene we compare the maximal signed amplitude
of each expression profile on these time series with the correspondisg phd
pulse width in the YMC, a sizable anticorrelation emerges, see Fig. 7.13(a).

If, on the contrary, we consider the stress responses time series]ptjg5
YMC phasgpulse width turn out to be positively correlated (rather than anticorre-
lated) with amplitude, i.e. categories appearing early in the YMC tend to be down-
regulated in most stress responses, while “late phase” categories temdpoey-
ulated, see Fig. 7.13(b). It is known that in the stress responsesayematsted for
ribosomal proteins aridr RNA metabolism are in general downregulated, while
e.g. respiratory genes (such as those of the citric acid cycle and of ithetio®
phosphorylation) become upregulated [55]. On Fig. [7.13, notice thatiralath
these responses cytoplasmic ribosomes (cluster 9 in Fig. 7.1) are alignetiavith
rest of the (cytoplasmic) transcriptioftganslational machinery rather than with
the assigned HL values.

The conclusion of this analysis is therefore that in intrinsically dynamical con
texts some form of common response might indeed be taking place, although ex
erted by dfferent means. Such genome-wide coordinated response shows grade
ordering which reflects the degree of stability of the genes involved.
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Figure 7.13: The short-term responses of steady-state yeast to piilsesri-

ent discussed in [104] and the stress responses of [55] show #&trapsak of
up/down regulation. The peaking times are substantially uniform on the genes.
For each gene we compute the maximal signed amplitude at the peak and lump
together genes belonging to each of the known protein complexes (see4ig.
Additional file 1). If for [104] we compare this amplitude with the phase (lef) a

the pulse width (right) of the corresponding genes for the YMC, we caervb

that both scatter plots have a consistent anticorrelation: complexes lgieetjun

the glucose stimulations of [104] correspond roughly to “early” compléxeise

YMC and also to genes with a fast turnover. At the other end, complexes-do
regulated in[[104] are late in the YMC and are more stable, see (a). Thisssho
how, in spite of diferent growth and stimulation conditions, the gene expression
program is substantially faithful. On the contrary stressful stimuli suchcsette-
scribed in|[55] yield correlated pattern with phasielth of the YMC (b). Just like

for the YMC, for both types of responses cytoplasmic translation beldiffes-

ently from the mitochondrial one. In red circles the first 3 complexes of Fijc)

are highlighted, in magenta squares their mitochondrial counterparts.eHiemc
anomaly represented by cluster 9 of Fig.] 7.1 with respect to the HL clasisifica

is confirmed by these other dynamical responses.
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Chapter 8

Conclusion

In [119, 120] the time compartmentalization of the cycle is interpreted in terms
of the need to accumulate fiigient products from the metabolic reactions in or-
der to move on to the next phase of the cycle and to autoinduce furthes @fcle
oscillations. This picture is not contradicted by our observations.

It is also dfirmed in [119] that broad profiles (like those associated here to
“late” categories) may be due to loss of synchronization in the populatioeasty
cells as they progress through the cycle(s). Based on what we slimotnésiwork,
such an interpretation is problematic: loss of synchronization during a wyeiéd
jeopardize the entire transcriptional program on the following cycles, vehilde
contrary, we still see thin and precisely coordinated pulses in the fagiocae.

If, as we do in this work, rather than looking at the YMC merely as cyclic
oscillations, we study it as a highly organized dynamical response to poilses
transcriptional activation, then this response can be analyzed in muchdetait
at genome-wide level and we can observe how an important role in thdicaer
tion seems to be played by the mRNA turnover rate. The self-sustainedtdrarh
what we consider the most upstream event of the cycle, the transcripdictive-
tion burst, can still be conditioned to the accumulation of the required metabolites,
while the unfolding of the cycle, which from the analysis of [119] is alrelanywn
to be functional to the distribution of e.g. the redox load of the cells, is entiche
of an extra, intrinsically dynamical feature. This feature is a fine-grald¢ail of
our notion that genes with a fast turnover are typically regulatory, while genes
are enzymatic and metabolic [91, 125]. It can be used to describe therseqof
events occurring in the YMC as a “natural” gene expression program.

Extrapolating from the specific YMC context, the ordered pattern of edits
scribed for the YMC is to a good extent similar to that found on other intrinsically
dynamical contexts such as the stysmuli responses. Whether the mRNA sta-
bility is the cause of this coherent behavior or is simply anotlfi@ceof a more
profound regulatory mechanism is a question to which we cannot proddéra-
tive answer at the moment.
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Chapter 9

Introduction

Chemical reaction network (CRN) theory has been developed sincerthd @&0s
to study the dynamical evolution of the concentrations of the chemical species
involved in a known set of reactions [43]. Under the assumptions of wedmigss
and constant temperature, a system of ordindfeuintial equations for the species
concentrations can be derived from the chemical reactions.

Important aspects in the study of this type of dynamical systems are the exis-
tence of equilibria, their number and stability. In particular, the capacity eée-r
tion system to exhibit more than one equilibrium is not only of interest for chem-
istry or chemical engineering, but has become a major topic also for biologists
in particular in the study of the switch-like behavior observed during inixdae
signaling [69, 90, 97] or cell dierentiation [79, 129] processes.

The main dfficulty which often arises in the verification of the multistability
property is the poor knowledge of the rate functions of the reactions the
type of kinetics (like mass action, Michaelis—Menten or Hill) to the value of the
parameters (called rate constants) involved in each reaction kinetics oWee pf
CRN theory lies in the fact that its results are based on the network stradoune,
and so are independent of the values of the constants and in somelsas#4lze
type of kinetics.

In fact, Martin Feinberg and colleagues found a number of conditions[B7
43, 44], centered on the concept of network deficiency, under viheeldynamical
system for a CRN with mass action kinetics does not admit multiple equilibria,
regardless of the rate constants. Othéfedént conditions for monostationarity,
verifiable on a graph representing the CRN, were then proved [2308%, These
latest conditions, based on system injectivity, were later extended [4s&}t@
other kinetics, provided that the system is non-autocatalytic.

An interesting application of these theoretical results to biology is model dis-
crimination [21, 22, 38]: if a biological process is known to be multistable fand
it there are multiple candidate reaction models, it is possible to eliminate some of
them by proving that they are always monostationary.

For small CRNs the various conditions can be verified manually, while for
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larger networks the only so far available software tool wasGhemical Reaction
Network Toolboxversion 1.1a [38], a closed source DOS program which imple-
ments only the criteria based on deficiency theory. We decided to implement a
new, open and complete toolbox for all the previously mentioned apprsaithe

a modern environment with integrated support for system fdéidintial equations

and linear programming like MATLAB.

Another interesting property that can be studied on chemical reaction mkstwo
is monotonicity [116]. Monotone dynamical systems have very usefulachar
teristics [112], like the tendency of their solution to converge to an equilibrium
(a bounded trajectory generically converges to an equilibrium) and theofack
“chaotic” behavior.

The link with biological systems arise from the observation that, although non-
linear and complex, these systems typically show highly predictable andedrder
dynamical behavior, and a tendency to remain at equilibrium or to robustignre
to it when perturbed. It has been suggested that biological systems naght h
evolved so as to be, if not monotone, at least near monatone [85, 116].

Monotonicity in dynamical systems is a well-studied property [64, 111], and
can be stated in several alternative ways. For biological networksryaugeful
way to formulatgverify it is in terms of the sign of all possible feedback loops
among the variables of the system. Given an arbitrary system of ordirféeyeh-
tial equations (ODES), consider the undirected multigraph having an etgyedn
two variables labelled with the sign of the corresponding entry in the Jacotaan
trix. Looking only at the signs of the Jacobian gives a basic indication afffhet
(activatoryinhibitory) of a variable on another variable. In most biological con-
texts, this information is the best one can hope to obtain, as too little is known of
the functional form of the ODE and of its dependence on concentratianame-
ters, external conditions, hidden (non-modeled) variables, etc.

For this undirected multigraph, the monotonicity property corresponds to all
cycles having positive sign, where the sign of a cycle is computed as tdeqtro
of the signs of the edges forming the cycle. Undirected cycles may corrd<p
“true” oriented feedback loop or to e.g. distinct paths connecting paivenites
[116].

Itis argued in [116] that biological networks are “near monotone” in tmsse
that a relatively small number of signh changes in edges is enough to makafie g
monotone. Closely related to this idea is the intuition that biological networks may
have many more positive cycles than negative ones, which is the appgedarh
in [85]. While the simple verification of whether a network is monotone or not is
feasible in polynomial-time, the problem of testing how distant a given network is
from monotonicity (i.e. estimating the “consistency deficit” in the terminology of
[116]) is an NP-hard one [28]. As the size of a network becomes of rither @f
the thousands of nodes, like for example in any gene regulatory nettestihg
exhaustively the sign of all cycles quickly becomes an untreatable probiem,
cause the number of cycles grows exponentially. In fact, in [85] onlytslycles
were tested for large networks, while in [28] approximation algorithms based
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semidefinite programming ideas were introduced.

Our purpose is to tackle this problem from d@dient perspective, using tools
from graph theory, namely the notion of fundamental cycles. The corufep
fundamental cycle was introduced by KirclthfZ2]. What Kirchhdf showed is
that no matter how many cycles an undirected graph contains, considelyng o
fundamental cycles with respect to a spanning tree is enough as thed thst o
cycles are obtained as linear combinations of some fundamental cyclesmhn te
of linear algebra, fundamental cycles form a basis of a vector spaaserdiements
are cycles and disjoint unions of cycles.

In this work we show that fundamental cycles of positive sign form ajzades
which is invariant to the positivity property: any cycle of this subspace maxgt
a positive sign, and the cycle subspaces obtained in this way corresporaho-
tone subsystems. The number of negative fundamental cycles cardssiuothe
number of sign changes that are required to render the network mondtdaet,
each fundamental cycle is uniquely associated to a chord not sharedwithheer
fundamental cycle. By changing sign to the chords of all negative fuedéal
cycles we obtain a monotone graph.

As an easy byproduct, we get an upper bound on the number of intmses
of a network: any network can be rendered monotone by at most a number of
sign changes equal to the cardinality of a basis of fundamental cycleslatéd
(and usually sharper) upper bounds can also be obtained from thg tifesigned
graphs|[115]. These bounds are quite helpful in defining a propeianettest
whether a given network can be classified as “near-monotone”.

All bases of fundamental cycles have the same cardinality, however the nu
ber of positivgnegative fundamental cycles in a given basis depends on the choice
of spanning tree (and can vary widely with it). Needless to say, testingatl-sp
ning trees requires computational time that grows exponentially with the size of th
graph. In order to simplify the choice of a “good” spanning tree (with fEvp®s-
sible negative fundamental cycles, hence as near as possible to moitgtonie
show that is possible to maximize the overall number of positive edges oreple gr
while maintaining unaltered the sign of each cycle using cut setsrafiomale of
the method is that changes of sign through a cut set leave the consistdinily d
invariant. In the theory of monotone systems [111], this operation camespto
changing sign to the order relationship in one or more orthants; in the théory o
signed graphs [135] this corresponds to changing the represergiginent in a
“switching class of equivalence” where the consistency deficit is amianvieof the
equivalence relation.
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Chapter 10

Background material

10.1 Multigraphs

A basic reference for this Section is [34].

A directed multigraphis an ordered paiG = (V, E) whereV is a finite set of
verticesandE is a finite set of ordered triplesa,(b, ), callededgeswherea,b € V,
andl is a string referred as tHabel of the edge.a andb are called thendpoints
of (a, b, ).

An undirected multigraph G= (V, E) is a directed multigraph where for every
edge &, b,1) € E, also b,a,1) € E. For this type of graphs we considex b, ) and
(b,a,1) to be the same edge.

A self-loopis an edge & a,1) with equal endpoints. A multigraph without
self-loops is calledimple

A graphis a multigraph where for every ordered paislf) of vertices there is
at most one edga(b,l) € E.

A multigraph (resp. graph}; = (V1, E1) is asubmultigraph(resp.subgraph
of a multigraphG = (V,E) if V; €V andE; C E.

A walk in a multigraph G = (V,E) is an alternating sequence
(Vo, lo, V1, 11, . . ., lk-1, Vi) Of vertices and labels, beginning and ending with vertices,
such thaty;, vi.1,1j) € Eforanyi =0,1,...,k—1. The walkcontainsor traverses
these edges. Thiengthof a walk is the number of edges it traverses, counting
multiple edges multiple times. To a walk @& we associate the submultigraph of
G with same set of vertices and as edges the ones contained in the path.

A walk in which all vertices are distinct is called a (simppejth Two vertices
aandb are said to beonnectedf there is a path i fromato b. A (simple)cycle
in a multigraph is a walk that starts and ends at the same vertex and includes other
vertices and edges at most once. A multigrapdcigclicif there are no cycles in it.

A multigraph issignedif each edge label is1 or—1. A walk in a signed multi-
graph is positive (resp. negative) if it has an even (resp. odd) nuaibeegative
edge labels.

An undirected (resp. directed) multigra@hs calledconnectedresp.strongly
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connectedlif any two of its vertices are connected by a pati®Gin

In an undirected (resp. directed) multigraha connected componefesp.
strongly connected compongof G is a maximal connected submultigraphGaf

A forestis an acyclic undirected graph. teeis a connected forest. Every tree
T = (V, E) has exactlyV| — 1 edges.

A spanning foresbf an undirected multigrap = (V, E) is an acyclic sub-
graphT of G with the same set of vertices and as edges a maximal subget of
preserving acyclicity. The number of edges of every spanning foféstis equal
to |V| minus the number of connected componentS of

With respect to a given spanning fordst (V, Et), an edge of the multigraph
that is not inEy is called achord Adding a chord tal' creates precisely one cycle,
and we say that the chogknerateghe cycle. Obviously, each chord generates a
different cycle.

A spanning treés a connected spanning forest. Obviously an undirected multi-
graph has a spanning tree if and only if it is connected. A spanningtfofes
undirected multigraph is composed by a spanning tree for each connecteod-c
nent of the multigraph.

A cut setfor a multigraphG is a set of edges whose removal fr@rincreases
the number of connected components.

Theorem 1. Every cycle in a multigraph has an even number of edges in common
with any cut set.

10.2 Cycle spaces

Thepower sebf a setS, writtenP(S), is the set of all subsets 8 Thesymmetric
differenceis a binary operation on a power ${S) defined aAe B = (A\ B) U
(B\ A) for everyA,BC S.

Proposition 1. Symmetric dference on a power set is associative and commuta-
tive. Moreover, the empty set is an identity with respect to & (A= A) and every
setis its own inverse (A A = 0).

Consider the set of all submultigraphs of a multigr&apk: (V, E) which have
the same vertices @, or equivalently the power s@(E) of the edges o6. The
symmetric dfference of two submultigrapi@®; = (V, E1) andG, = (V,E») of G is
the submultigrapls, © G, = (V, E1 © E).

A union of cycles of a multigrapfs is a submultigraph o6.

Proposition 2. The set of all unions of disjoint cycles of an undirected multigraph
is closed under the symmetrigjérence.

Theorem 2. The set of all unions of disjoint cycles of an undirected multigraph
G is a vector space over the Galois field GF(2), using the symmejfiratice
operation as vector addition andas scalar multiplication. It is called theycle
spaceof G.
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Consider an undirected multigragh = (V, E) with k connected components
and a spanning foreSt = (V, Et). The set ofundamental cyclesf G with respect
to T is the set of cycles generated by all the chords. Since each chorthtene
exactly one fundamental cycle, the number of fundamental cycl€si®equal to
the number of chords, i.¢E| — |E7| = |E| — |V| + k, which is independent from the
choice of the spanning forest and is called midlity of G.

Theorem 3. The set of fundamental cycles of an undirected multigraph G with
respect to a spanning forest is a basis of the cycle space of G (cals&dcHy
fundamental cycle bastf G).

Corollary 1. The dimension of the cycle space of an undirected multigraph is equal
to its nullity.

With respect to a stricly fundamental cycle baBjsi = 1,...,n, every cycle
C can be written as the symmetrididirencesi¢ F; of a set of fundamental cycles.
MoreoverC contains all and only the chords which generates the fundamental
cyclesF;,i € I.

Fact 1. For some undirected multigraph G, there are bases of the cycle spakce tha
do not form sets of fundamental cycles with respect to any spanningft@eAn
example is the sunflower graph SF(3) [82].

10.3 Injectivity

Let f be a function whose domain is a §t The functionf is injective if for alla
andbin D, if a # b, thenf(a) # f(b).

10.3.1 P-matrices

Let M be a matrixmx nand letl € {1,...,m},J € {1,...,n} be a row and
column index sets respectively. ubmatrix MI, J] of M is the matrix obtained
by selecting the rows ihand the columns id from M.

A minor of M is the determinant of a square submatrix BF.  If
I C {1,...,min(m, n)}, thenM[I, ] is called aprincipal submatrixof M and its
determinant is called principal minorof M.

A square real matrix is -matrixif all of its principal minors are positive. A
square real matriM is a P*) matrix if —M is a P-matrix, i.e. if all of its prin-
cipal minors of sizek x k have sign £1)¢. P- and P*)-matrices are obviously
nonsingular.

A square real matrix is Bp-matrixif all of its principal minors are nonnegative.
A square real matris is an)‘) matrixif —M is a Pg-matrix.

The following lemma is needed for the proof of the next theorem, we provide
our own proof of the lemma since we were not able to find it in the literature.
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Lemma 1. Let M be a nx n square matrix, and D a R n diagonal matrix. Then
detM+D)= >’ []_[ D.,.]det(M[LC, L) (10.1)
Lc{d,...,n} \leL
where the complement is with respect to the{$gt. ., n}.

Proof. Define the series afxn diagonal matrice®® such thaDi('i‘) =Djifi<k
and 0 otherwise. We want to prove by induction oké¢nat

detM +D®) = []_[Dl,l)det(M[LC,LC]). (10.2)
Lc{l,...k} \leL

Fork = 0, D® is an empty matrix and the summation is simply 8t( Now,
suppose the previous formula is true for- 1. Fork > 0, using the Laplace
expansion along columk we have

detM + D®) = Zn:(—l)”k(M + DM);  det(M + DM)[{i}°, (k1Y)
i=1

SinceDM[{i1e, (ki¢] = D&D[{i}e, (ki¢] and

Mixk=(M + D(k_l))i,k ifi #k

M+ D®y =
( )I’k Mk,k + Dk,k = (M + D(k_l))i’k + Dk,k ifi=k

the expansion becomes

(Z(—l)”k(M + D&Yy det(M + D)y, {k}cl)] +
i=1
+ (-1)*Dyx det(M + D& D[k, {k)°]) =
detM + D*) + Dy detM[{k}®, (k)] + D& D[k, {ki°]).

It is possible to apply the inductive hypothesis to both these determinantd) whic
gives:

( > [HDL|Jdet(M[L°,LC]))+
Lcfl,... k-1}

leL

+Dkk Y. {r[ D[{k}c,{k}c]l,l)det('\/'[{k}c,{k}C][LC,LC])

Lcid,. k-1) \leL

The second term in this sum can be rewritten as
> [ [ Dl,l)det(lvl [(L U {K)C, (L U {k))
Lc{d,....k=1} \leLu{k}

and eq. 10.2 easily follows. Fér= n this proves ed. 10.1. ]
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Theorem 4 ([48]). Let M be a square matrix. M is a P-matrix if and only if for
every x# 0 there exists an index i such tha{Mx); > O.

Proof. Let M be aP-matrix and suppose by contradiction that there exists0

such thatg(Mx); < 0 for alli. Now, letl = {i | x; # 0}, M = M[I, ITandX = X[I],
and consider thdl| x || diagonal matrixD for which D;; = —@ > 0 for all
i =1...,]l|. Itis easy to see thaM + D)X = 0, so, given thak % 0, M + D is

singular and defl + D) = 0.
Using lemma 1, we have

det(Vi + D) = det) + >’ (]_[ Di,i]det(M[LC, L°]) > det(V)
[}

Lc{1,..., ieL

becausd;; > 0 for all i, and the minor deNI[L®, L%]) is positive sinceM is also
a P-matrix. Therefore deNl) < 0, a nonpositive principal minor df1, which
contradicts the hypothesis df being aP-matrix.

Conversely, suppose that for evexy# 0O there exists an indek such that
xi(Mx); > 0. LetM[I, I] be a principal submatrix o1, 2 one of the real eigenval-
ues ofM[I, I]and X a corresponding eigenvector. Considauch thai[l] = Xand
X = 0fori ¢ 1. Sincex # 0, leti be the index for whick;(Mx); > 0. Then, ifj is
the index inxcorrisponding td, we have that < &;(M[1, 11X); = X;(18); = 1%,
which impliesa > 0. So, every real eigenvalue Bf[l, I] is positive.

For general matrices, it is well known that

¢ the determinant, by Jordan canonical form theorem, is equal to the produc
of all eigenvalues repeated according to their multiplicity;

o for every complex eigenvalue, also its complex conjugate is an eigenvalue,
and their product is obviously positive.

So detM[l, IT) must be positive, and as a consequeltis a P-matrix. |
Corollary 2. Let M be a square matrix.

e M is a P)-matrix if and only if for every x 0 there exists an index i such
that x(MXx); < 0;

e M is a Py-matrix if and only if for every ¢ O there exists an index i such
that ¥ # 0 and %(Mx); > O;

e Misa Pg‘)-matrix if and only if for every »+ O there exists an index i such
that x # 0 and %(Mx); < 0.

Note that the part of this corollary aboBy- and Pg‘)-matrices is more pre-
cise than what found in [5], since they did not specify tkashould be nonzero.
However, this does not invalidate their results.
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10.3.2 P-matrix Jacobian and injectivity

An n-dimensional intervais a subset oR" that is the Cartesian product ofreal
intervals. Ann-dimensional interval ispen(resp.closed if all the factors are open
(resp. closed) intervals.

A function fromD < R" to R™ is differentiableif it has a total derivative at
every pointx € D. If the total derivative of a functioffi exists at a poink, then all
the partial derivatives (and so the Jacobianj eiist atx.

Theorem 5 (Gale-Nikaid [52]). Let D be a closed n-dimensional interval and
f : D — R" a differentiable function. If the Jacobiar(X) of f is a P-matrix at
every xe D, then f is injective in D.

Theorem 6 ([5]). Let f : D ¢ R" — R" be a dfferentiable function. If the
Jacobian J(x) of f is a F-)-matrix at every x D, then f is injective in D.

10.4 Stability of dynamical systems

A dynamical system consists of a set of possible states and a deterministitatule
defines the evolution in time of the state in terms of past states.

Formally, acontinuous-time dynamical systésm triplet (T, X, ¢) whereT C
R, X is a set calledstate spacdor phase spageandy : U € T x X — X is
the evolution functiorof the system, provided that(0, x) = x for everyx € X,
oty + 12, X) = ¢(ta, p(t1, X)) for every (1, X), (t1 + to, X) € U (the group property
ande(t, X) is partially diferentiable with respect to

For every continuous-time dynamical systesman be expressed as the solu-
tion of the initial value problem

dx
a(t) = f(x(1)
X(0) = %o

wheref : X — X is defined asf(x) = %—f(o, X). Instead, not every system of
ODEs define a dynamical system. If this is the case, we say that the vetdor fie
generateshe dynamical system.

For a states, the set of states, = {¢(t,a) | (t,a) € U} is called theorbit
througha.

If p(t,a) = aforallt € T, thena is called afixed point(or stationary point
or equilibrium) of the system. A stata is a fixed point for the continuous-time
dynamical system generated by a vector fieifland only if f(a) = 0.

A setA C X of states is said to hiavariantif yx C Afor all x € A.

Suppose from now on thaf is a topological space anf is totally ordered
(with order topology) and unbounded from below and above.

A statea is a periodic point of period Kor, in short, perioc point) for a
dynamical system ip(k,a) = aandg(j,a) # afor 0 < j < k. This is equivalent
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to say thatp(k + t,a) = ¢(t,a) for allt € T, and for every O< j < k there exists
t € T such thatp(j +t,a) # ¢(t,a). The orbit through a periodic point is called a
periodic orbit(or closed orbij.

The w-limit set (or forward limit se} of a statex is the setw(X) = {z € X |
da sequencéy} such that lim_ o th = +00 A liMp 400 (th, X) = 2}

A setA C X of states is said to battractingif the setB(A) = {x € X | w(X) C A}
is not empty. In this casB(A) is called thebasin of attractiorfor A. An attractor
A for the dynamical system is a minimal attracting set, i.e. it has no proper subset
0 # A1 c Awhich is attracting. All fixed points and periodic orbits are attractors.

An attractorA is said to bestable(or Lyapunov stablgif, for every neighbor-
hoodN of A, there is a neighborhodd” C N of A such that ifx e N’ theny, € N.
Attractors that are not stable are calledstable A stable attractoA is said to
be asymptotically stabléf its basin of attraction is a neighborhood Af Stable
attractors that are not asymptotycally stable are cafiadyinally stable

A dynamical system is calleahultistableif it has multiple stable attractors. It
is instead callednultistationaryif it has multiple fixed points.

A fixed pointa for a continuous-time dynamical system generated byfareli
entiable vector fieldf is calledhyperbolicif the Jacobian matrix)s(a) of f ata
has no eigenvalue with zero real part.

10.4.1 Monotone systems

The material of this Section is mainly taken from [116]. Given a partial ogden
X, a continuous-time dynamical system generated by the vectorffiddaid to
be monotone with respect toif, for every pair of initial conditions¢, yo € X, the
corresponding solutiongt) andy(t) of the initial value problem satisfy(t) < y(t)
for everyt € T. The system is said to bmonotonef it is monotone with respect
to a partial order.

Monotone systems have nice properties of convergency in their dynapeical
havior. For example, they do not admit periodic orbits. Moreover, if tisejest
one equilibrium, under mild conditions on the variables and boundness of solu
tions, this equilibrium is globally asymptotically stable [27]. If, instead, theee ar
multiple equilibria, Hirsch theorem [63] states that every bounded solution, e
cept for a measure-zero set of initial conditions, converges to thd equdibria,
provided that the system if strongly monotone (i.e. when the inequalities in the
previous definition of monotone system are strict instead of weak).

TheJ-graph(from Jacobian) associated to a dynamical system is a signed undi-
rected multigraph with verticef, . .., vn}, wheren is the dimension oX. For
every pairi, j € {1,...,n}, if the partial derivativeifj(x)/0x; > 0 (resp.< 0) for
somex € X, we draw an edge labeled. (resp.—1) fromyv; tov;. No edge is drawn
from vertexv; to vertexy; if 9fj(x)/0x; vanishes identically for atk € X. Notice
that, in principle, there could be two edges dfeiient sign fronv; to v;.

A spin assignment for a signed undirected graph is a labeling of each vertex
vi with a numbero; equal to+1 or —1. An edge between vertices andv; is
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consistent with the spin assignmenprovided that the edge label is equabter;.
We say thatr is aconsistent spin assignment for a signed undirected giieplery
edge of the graph is consistent with In other words, if there is a positive edge
between vertices; andv;j, thenv; andv; must have the same spin, while if there
is a negative edge connectingandvj, thenv; andv; must have opposite spins.
A signed undirected graph is said to tensistenif there exists a consistent spin
assignment for it.

Lemma 2. A signed undirected graph is consistent if and only if every cycle in it
is positive.

Going back to dynamical systems, Xf = R", particular partial orders can
defined by the orthants. Letbe the only vector in the intersection df —1}" and
the chosen orthant, then tieethant order<; is such thatx <, y if zx < zy; for
everyi=1,...,n.

Theorem 7(Kamke's theorem [112])Consider an orthant ordet,. The continuous-
time dynamical system generated by a vector field f is monotone with tésggc
if and only if

Zing—)?(X) >0 forallxeR"i,j=1,...,nsuchthati | (10.3)
i
Condition 10.3 is clearly equivalent to saying that the J-graph of the dyma&mic

system is an undirected graph anid a consistent spin assignment for it.

Corollary 3. A dynamical system is monotone with respect to some orthant order
if and only if its associated J-graph is consistent.

10.5 Chemical reaction networks

A chemical rection networkonsists of:
1. asets = {s1,...,sn} of n species
2. asetc ¢ R] of m complexes
3. arelation® C ¢ x ¢ of r reactionssuch thaty, y) ¢ ® for everyy € C.

For a vectorx € RY, let supx) = {i | x > 0}. A complexy = (y1,...,Yn) is
usually written ag’icsupgy) Yisi, @and eacly; is called thestoichiometric cogicient
of the species iny.

To more clearly indicate a reactiog, ') € ® we usually writey — y’. The
species indexed bsupy) are called theeactantsof the reaction, and the species
indexed bysupgy’) are called itproducts Each reactioy — y’ defines aeaction
vector y-y € R". Moreover, thestoichiometric subspace S sparly’ -y | (y.Y) €
R} € R"is the linear span of the reaction vectors.
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If we fix an order for the reactions, then te®ichiometric matrix Ns thenxr
matrix whosej-th column is thej-th reaction vector. S8 can also be defined as
the column space dfl ands = rank(N) = dim(S) is called theank of the reaction
network. Clearlys < n, in particular ifs = nthenS = R", otherwiseS is an
s-dimensional hyperplane passing through O

Letc(t) : R-o — RY, be the function of molar concentrations such thé) is
the concentration of specigsat timet. A compositions the valuec € Rgo of all
molar concentrations at a particular instant of time.

A reaction systenis a reaction network, ¢, ®) with an associate#inetics
V() 1R, — R§O such that, foreach — y’ € %, vy (-) is called therate function
of the reaction, angy_.,-(c) > 0 if and only if supfy) € supfc). Eachvy_.y(c)
describes the instantaneous probability of occurence of the reactiory’ when
the composition i€. The positivity condition requires that a reaction proceeds at
non-zero rate exactly when all reactant species are present in th@sibiom

The dynamics of the reaction system is governed by the first order ODE

c(t) = NvV(c(t)). (10.4)
which, using block matrix multiplication, can be expressed as
)= > NyoyWoy(©®) = D = YWy (clt). (10.5)
Yoy ER Yoy ER

This equation describes the rate of change of the concentration of izSpeas
the sum of the reaction rates for the present concentration, each welghtae
net number of molecules af produced at every occurrence of the corresponding
reaction.
The most common choice for rate functions is thass actiorform, in which
for a reactiory — y’ we have:

n
Vo (€) = Ky l_l q

i=1
whereky_y € R.q is the rate constandf y — y” and by convention ©= 1. This
formulation amounts to assuming that the probability that reagtieny’ occurs in
the next infinitesimal time intervalt is proportional to the concentration of each
reactant, possibly elevated to some power if more molecules are needee for th
reaction to take place. This is deemed to reflect the likelihood of an encounter
among all molecules involved in the reaction.

If all reactions are of mass action type, the network kinetics is said to be mass
action, and the ODE (10.5) becomes

=D, O ~Wkoy [ [a®”.
1

Yoy ER i=
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10.5.1 Stoichiometric compatibility and multiple equilibria

Let c(-) be a solution of| (10/4) in the time interval,[D]. For everyt € [0, T], the
fundamental theorem of calculus and (10.5) imply that

t t
c)-c0)= [ sndr= [ =Dy leteer

0 ySyex

t
= D0 [ oyl

Y=Y ER

which is a linear combination of the reaction vectors, and thus
c(t) —c(0) e S. (10.6)

Two compositionscy, ¢ € Rgo are said to bestoichiometrically compatible
if c, —cy € S (i.e. if there existsr € R" such thatc; — ¢; = Na). The “stoi-
chiometrically compatible” relation is clearly an equivalence, its classes Hed ca
stoichiometric compatibility classesd ares-dimensional hyperplanes parallel to
S. From (10.6), it follows that the orbit) is entirely contained in the stoichio-
metric compatibility class of(0).

Moreover, every stoichiometric compatibility clagg][is invariant, since for
everyc; € [cq] the orbityc, € [co] = [c4].

Each stoichiometric compatibility class can have fiedent number of equi-
libria within itself. Thus, the problems of finding if a reaction system admits an
equilibrium, if it presents multistationarity, or to determine the stability type of an
equilibrium should be tackled within each stoichiometric compatibility class.

A reaction network £, ¢, ®) has the capacity for multiple equilibriéresp.
multiple positive equilibriqif there exist a rate function(c) and two stoichiomet-
rically compatible compositions;, c; € RY, (resp.R7) such thatc; # c; and
Nwv(ci) = NV(cp) = 0.

10.5.2 Conserved moieties

Let S+ be the orthogonal complement of the stoichiometric subsi@ae R"
relative to the scalar produet, i.e.S* = {ge R" | g-u = 0,Yu € S}. Al-
ternatively, S* can be defined as the left null space of the stoichiometric ma-
trix N, i.e. S+ = {g € R" | g'"N = 0}. Linear algebra theorems show that
dim(S*) = dimR") — dim(S) = n— s, s0S* # {0} ifand only if s< n.

Considerg € S+ \ {0} and letc(t) be a solution of the ODE (10.4) in the
time interval [QT]. From eqg. (10.6) it follows thaty - (c(t) — c¢(0)) = O, that is
g-c(t) = g- c(0). So, fixed an initial compositiog(0), Y.i! , gici(t) is constant for
allt € [0, T], which is clearly a conservation relation for the species concentrations.
Abstracting from the particular solution, we call the formula

disi
iesupg)
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aconserved moietyf the reaction network. There ane- sindependent conserved
moieties, which are defined by a basis33f.

A reaction network is said to beonservativef there exists a positivg € S+.
From this definition, it follows that a conservative network does notasgk mass
with the exterior.

10.5.3 Deficiency theory

The complex graplof a reaction network is the directed graph whose vertices are
the complexes, and whose edges correspond to the reactidimdkage classs a
connected component of the undirected version of the complex grapimdigate

with | the number of linkage classes.

For every linkage clasp the ranks; of the corresponding subnetwork must be
less than the number of complexes £ m; — 1). Moreover, reaction vectors of
different subnetworks are linearly independentssoz'j:1 Sj < lezl(mj -1)=
m-|.

Thedeficiencyof the reaction network i = m—| — s. For what said above,
is a nonnegative integer.

A strong-linkage clasis a strongly connected component of the complex graph.
Thus, each linkage class is partitioned in one or more strong-linkage €lasse-
action network isnveakly reversibléf each linkage class is also a strong-linkage
class. A strong-linkage class isrminal if it is not connected to other strong-
linkage classes.

Theorem 8(Deficiency zero theorem [41]For any reaction network of deficiency
zero:

1. Ifthe network is not weakly reversible, then for arbitrary kinetics tlaetien
network admits neither a positive equilibrium, nor a periodic orbiRih,.

2. If the network is weakly reversible then, for mass action kinetics (tbgss
of the values of the rate constants), the reaction system admits precigely on
equilibrium within each positive stoichiometric compatibility class, which is
asymptotically stable.

Proof. For a complete proof, see [45]. ]

Theorem 9 (Deficiency one theorem [42, 43, 45]Let (S, C,R) be a reaction
network of deficiency and letd; be the deficiencies of its linkage classess |
1,...,l. Suppose that:

1.6j<Lforallj=1,...,I
2. %i46j=06

3. each linkage class contains just one terminal strong-linkage class.
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If, for particular values of the rate constants, the mass action system adngts o
equilibrium, then each positive stoichiometric compatibility class contains pre-
cisely one equilibrium. If the network is weakly reversible then, regasdiéshe
values of the rate constants, the mass action system admits preciselyuilite eq
rium within each positive stoichiometric compatibility class.

There is also an algorithm specific for networks of deficiency one [#dgse
correctness was proved in [46].

10.5.4 Network injectivity

Areaction networkg, ¢, ®) isinjectiveif Nv(c) is injective for all possible kinetics
v(c). In particular, a reaction system with mass action kinetics is injectita/€)
is injective for all possible positive rate constants of the reactions.

If a reaction system is injective, then clearly it does not have the capacity f
multiple equilibria. Therefore injectivity is a flicient condition for monostation-
arity, but it is not necessary. In fact, even if there are two distinct caitipa ¢;
andc; such thaiNv(c;) = NV(cp), to have multiple equilibria it is needed also that
they are fixed points, i.e. thatv(c;) = NV(cp) = 0.

The Jacobian matrix of a reaction system is the Jacobidh/), i.e. Iny(C) =

ONV(C) _ pjov(C)
ac. = NTe

A reaction system isonautocatalytidf forall i = 1,...,n,y - y € ® and
c € R", we have that

Ni,y—>y’ oc

and

oMy (C

vy ©
0cG;

The first condition requires that if a species is a reactant (resp. g)dducreac-
tion, then increasing its concentration cannot decrease (resp. iecteaseaction
rate. The second condition instead states that if a species does noipzaetéta
reaction, then it has no influence on the reaction rate.

Reaction systems with usual kinetics like mass action, Michaelis—Menten, etc.,
are nonautocatalytic provided that in each reaction a species appbaas arreac-
tant or as a product, but not on both sides of the reaction. Usually,tacsalytic
reaction likeA + B — 2A represents (and can be rewritten as) a set of subsequent
reactions, e.gA + B —» C — 2A, whereC is a short-lived intermediate molecule.

The qualitative classof a real matrixA, denotedQ(A), is the set of all real
matrix B such thatsignB) = sign(A). So we can say the a reaction system is
nonautocatalytic if"(;@ e Q(-NT), whereN is equal toN with some elements that
may be changed to 0.

A square matrix issign-nonsingular (SNSJ every matrix in its qualitative
class is nonsingular.

Ni’yqy’ = O =
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Theorem 10([14]). A real matrix A is SNS if and only if for every matrixeBQ(A)
sign(det(B)) = signdet(A)) # 0.

Theorem 11([14]). A real matrix A is SNS if and only if in the standard expansion
(Leibniz formula) of d€i) there is at least one nonzero term, and all the nonzero
terms have the same sign.

A real matrix A is an L-matrix if for every matrixB € Q(A) the rows ofB
are linearly independent. Clearly, a square matrix is SNS if and only if it is an
L-matrix.

A signingof orderk is a nonzero diagonal matrix of ordemwhose entries are
in the set{—1,0,1}. A row signingof am x n matrix A is a product matrixDA
whereD is a signing of ordem. A vector isunisignedif it is nonzero and it is
either nonnegative or nonpositive.

Theorem 12([75]). A real matrix A is an L-matrix if and only if every row signing
of A contains a unisigned column.

A matrix M is strongly sign determined (SSB)all square submatrices dl
are either singular or SNS.

Theorem 13([5]). If the stoichiometric matrix N of a non-autocatalytic reaction
system is SSD, then the Jacobian matki(d) is a Pé‘)-matrix atall c.

An inflow (resp.outflow) reaction for a speciese S is a reaction G- s (resp.
s — 0) with mass action kinetics, i.8g_,,(C) = Ko_s (resp.v;_o(C) = K,0C;).

Theorem 14([5]). Consider a non-autocatalytic reaction system having an out-
flow reaction for each species. If its stoichiometrix matrix N is SSD, then the
Jacobian matrix §(c) is a P™)-matrix at all c.

If the Jacobian matrixiyy(C) is aP()-matrix at allc, then the reaction system
is injective, and thus it does not have the capacity for multiple equilibria.

An equilibrium a is said to bedegeneratdf null(Jnv(@)) N'S # {0}. In this
case there is a vectare S\ {0} such thatlyy(a)v = 0 = Ov. So, 0 is an eigen-
value of IJny(@), S intersects the eigenspace of 0 and tais not hyperbolic in its
stoichiometric compatibility class].

Theorem 15([4,/24]). Let(s, ¢, R) be a reaction network having an outflow reac-
tion for all the species in the subsef C §. If the reaction networks, ¢, R U{s —

0] se s\ M}) is injective, ther(s, ¢, ®) does not have the capacity for multiple
nondegenerate equilibria.

The SR graphfor a reaction network is a bipartite undirected multigraph with
two kinds of vertices: species vertices and reaction vertices. Therpécs ver-
tex for each species in the network, and there is a reaction vertex foreaction
or reversible reaction pair in the network. If a species has a nonzecbisimetric
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codficient in a complex which is at one side of a reaction, then there is an edge be-
tween the corresponding species vertex and reaction vertex with the comajhe
as the label and the stoichiometric ioeent as the edge weight.

Pairs of edges that meet at a reaction vertex and have the same complex labe
are calledc-pairs If a cycle contains an odd number of c-pairs is calledoan
cycle otherwise is called aa-cycle Since the SR graph is bipartite, every cycle
as an even lenght. Cycles for which alternately multiplying and dividing the edg
labels along the cycle gives the final result 1 are cadlegcleqfor stoichiometric
cycles).

We say that two cycles in the SR graph havepecies-to-reaction (S-to-R)
intersectionif the common edges of the two cycles constitute a path that begins at
a species vertex and ends at a reaction vertex, or if they constitute a tigjan
of such paths.

Theorem 16([25]). Consider a reaction network having an outflow reaction for
each species. Ifin its SR graph:

1. each cycle is an o-cycle or an s-cycle,
2. no two e-cycles have an S-to-R intersection,
then, for mass action kinetics, the reaction system is injective.

Theorem 17([4]). Consider a reaction network such that in each reaction a species
does not appear on both sides of the reaction. If its SR graph satisfy theotwo
ditions of theorem 16, then its stoichiometric matrix is SSD.

So, for a nonautocatalytic reaction system with mass action kinetics, checking
if its stoichiometric matrix is SSD is enough, and checking the properties of the SR
graph does not give extra information. Otherwise, if the system is autgiiata
only the SR graph can be analyzed.



Chapter 11

ERNEST Toolbox

ERNEST Reaction Network Equilibria Study Toolbox is a software package-s
tured as a set of MATLAB functions and classes. The software is alailatuler

the GNU GPL free software license and can be downloaded from
httpy/people.sissa/italtafinypapergSoAl0Y . It requires the MATLAB Optimiza-
tion Toolbox.

The analysis is performed by the main functimodel analysis which needs
as input a structure specifying the species and reactions of a CRNofrhatfof
this structure is simply the one defined by ffranslateSBMlfunction from libS-

BML [12], which imports SBML files in MATLAB. So a SBML model, after the
standard import, can be directly analyzed by our toolbox, but all the exXwa in
mation potentially contained in the file, like compartments, constraints, reaction
modifiers and kinetic laws, will be ignored.

All the criteria implemented by ERNEST aim to verify conditions on the CRN
structure which are sficient for monostationarity of the relative dynamical system,
i.e. to rule out the possibility of multiple equilibria regardless of the rate constants
and the initial concentrations.

Themodel analysisfunction operates in the following way:

(1) calculates complexes, stoichiometric matrix and rank, linkage classegy-str
linkage classes, network reversibility, weak reversibility and deficiency;

(2a) if the Deficiency Zero theorem [41] is applicable, prints out the redat-
Sponse;

(2b.1) otherwise calculates terminal strong-linkage classes and defgseriche
linkage classes;

(2b.2a) if the Deficiency One theorem [43] is applicable, prints out theivelee-
sponse for mass action kinetics;

(2b.2b) otherwise verifies that the network is regular, and in case applipéffi-
ciency One algorithm [44] for mass action kinetics; if this algorithm verifies
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that the network admits multiple positive equilibria within a stoichiometric
compatibility class, it also prints out an example of reaction rate constants
and two equilibria for the corresponding mass action system;

(3a) ifthe CRN is autocatalytic, then calculates the Species—Reaction {jrajsh,
all its cycles and tries to verify the two conditions for monostationarity with
mass action kinetics of [25];

(3b) otherwise verifies if the stoichiometric matrix is SSD and in case exclude
multiple non-degenerate equilibria [5] for general kinetics.

Obviously the runtime of this function increases with the number of species
and reactions of the network. The most complex part is the Deficiency [Qoe a
rithm (point 2b.2b), which involves the solution of linear programming problems
with additional sign constraints, but for medifig reaction networks this code is
usually not executed since their deficiency is typically greater than one.

We verified the correctness of our toolbox by successfully reprodubia re-
sults for all the examples of [2, 22, 25, 26], plus others selected froncitbd
Feinberg’'s papers.

One interesting example is the reaction network proposed in example 1.1 of
[45]:

As 2B
A+CsD

AN
B+ E

(11.1)

As explained in the original paper, this network has deficiency 0 and iklywea
reversible, so by theorem 8, for mass action kinetics the reaction systenm@smo
tationary within each positive stoichiometric compatibility class. But what happen
if the dynamics is not of mass action type?

If we analyze this network with ERNEST, this is the relative output:

The reaction network is weakly reversible and has deficiency 0, so
with mass action kinetics each positive stoichiometric compatibility
class contains precisely one equilibrium, which is asymptotically sta-
ble.

The reaction network with mass action or Michaelis—Menten kinetics
is non-autocatalytic.

The stoichiometric matrix is not SSD. The reaction network has the
capacity for multiple equilibria.

One set of species and reactions because of which the stoichiometric
matrix is not SSD:

ans=
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’A\”B,

reactionstring=

2B—>1A

reactionstring=

1B+1E—-1A+1C

So, the system behavior for mass action is confirmed, but for other type of
kinetics ERNEST is not able to exclude the multistationarity and instead suggests
a subset of species and reaction for further investigation. In fact, gtudy the
smaller network:

As 2B
AsS B
this has the same properties of network 11.1, and a similar output from ERNES

For mass action kinetics, there is only one nontrivial equilibrium, that carabe c
culated very easily. To see if really this system with non mass action kinetics can
have multiple equilibria, we can suppose that all the reaction are mass action ex
ceptB — A, which is of Michaelis—Menten type. In this case, the system of ODEs
will be:

(11.2)

. k4CB
Ca = —k]_CA + szZB — k3CA +

kM + Cp
. k4CB
Cg = 2k10A - 2k2CZB + k3CA -

kM + Cp

Imposing the equilibrium conditionsy = €g = 0, it is easy to see that, apart
from the trivial equilibrium (0, 0), the solutions of the system are:

—knm £ ([KE, +4%

Cpy, = 2

Therefore, there are two fiierent equilibria in the same stoichiometric com-
patibility class, which in this case is simph?, and the system is in fact multista-
tionary. We have to remark that, since verifying that the stoichiometric matrix is
SSD is only a sfficient condition for monostationarity, if ERNEST says that the
reaction system has tleapacityfor multiple equilibria, it does not mean that this
is always the case.
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This example is clearly very simple, but shows how ERNEST can be useful
not only for model discrimination, but also for exploring the behavior afaction
network with diferent types of kinetics.



Chapter 12

Fundamental cycles and
monotonicity

Consider a continous-time dynamical system generated by a vectorffi¢ld
Checking whether the system is monotone, i.e. whether its associatedhligrap
consistent, is a simple task, verifiable in polynomial time with a dynamic program-
ming algorithm.

In general, for any given dynamical system, the correspondingphgsall
not be consistent, although in a biological context it might be “near-mordton
i.e. closer to monotone than expected by random edge assignments, as aaimed
[116]. Our goal is to identify the smallest number of edges such that if aags
their signs the obtained graph is consistent, and the tool we use for this iscap
extension of the theory of fundamental cycles for signed graphs.

Theorem 18. Let F, i = 1,...,n, be a stricly fundamental cycle basis of an
undirected multigraph G with respect to a spanning forest T. For every no
fundamental cycle C= e F; of G, there is a partition{l4, I} of | such that
C1 = giei, Fi and G = gj¢,Fi are cycles.

Proof. Let Fi, k € |, be one of the fundamental cycles generathgC N Fy
contains at least one edge, the chordr@f

Suppose now that N Fy is a unique path. Then als®\ F¢ andFy \ C must be
disjoint paths with the same endpoints@h Fy, so together they form the cycle
(C\ F) U(Fk\C) = Co Fg = gienyFi. Thereforef{k}, 1 \ {k}} is the desired
partition ofl.

If insteadC N Fg consists of two or more disconnected paths, we can choose two
of these paths which are “near” Ky, i.e. connected by a paty in Fx \ C. The
endpoints ofp; are also vertices @, so they divideC in two pathsp, andps such
thatC = p, - p3. Note thatp; N p2 = p1 N p3 = 0.

Now, C; = p1- p2 andC, = p; - ps are clearly two cycles o6. p; does not
contain any chord, sincg; ¢ Fx \ C C T. The pathgy, and ps instead determine
a partition of the set of chords contained@ which corresponds to a partition
{1, 12} of | such thaC1 = ei¢,Fi andC; = gj¢, Fi. O
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Theorem 19. Consider a signed undirected multigraph. If the symmetifedince
of two cycles g, C, is a unique cycle, then si¢g@; e C,) = sign(Cy) - sign(Cy).
Proof. G can be divided in two disjoint sets of edges:
C1=(C1\C) U (CinCy),
which implies that
sign(Cy) = sign(Cy \ C2) - sign(Cy N Cy),

and symmetrically fosign(C,). For the definition of symmetric ffierence

C16C2=(C1\C) U (C2\ Cy),
which implies that

sign(Cy) - signCy,)
signCy1 N C2)2

= sign(Cy) - sign(Cy).

sign(Cy & Cy) = sign(Cq \ Cy) - sign(C, \ Cq) =

_ SignCy) - sign(Cy)
+

O

Theorem 20.LetF,i =1,...,n, be the fundamental cycles of a signed undirected
multigraph G with respect to a spanning forest, and let ©;¢| F; be a cycle of G.
Then

sign(C) = [ [ sign(Fy).

iel

Proof. By induction on|l|. If |I| = 1, thenC is a fundamental cycl&;, so they
have the same sign.
Now let|l| > 1 and assume the theorem true for evErwith |I’| < |I|. For the-
orem 18 there is a partitiofis, I2} of | such thatC; = i, F; andC; = i, Fi
are cycles.l, 1> c | implies|l4], |l2] < |l], so using the inductive hypothesis we
have thatsign(Cy) = [Tie, Sign(Fi) andsign(Cz) = [Tie, Sign(Fi). Finally, ap-
plying theorem 19 tdC;, C,, we can conclude thatignC) = signC; 6 C,) =

sign(Cy) - sign(Cz) = [Tiei, SigN(Fi) - [Tier, SIgN(Fi) = [1ier Sign(Fi). O

Corollary 4. A signed undirected graph G is consistent if and only if, for an ar-
bitrarily chosen spanning forest, all corresponding fundamental cyotes are
positive.

The minimum number of edges whose sign should be changed in order that the
multigraph becomes consistent is called toasistency deficiif the multigraph.
This value measures how close a given signed multigraph is to a consisapht gr
Computing the consistency deficit is an NP-hard problem, equivalent toghe w
known MAX-CUT problem|[28] or to the problem of finding the ground stata
frustrated spin system in statistical physics [116].
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Given a signed undirected multigraph wjghfundamental cycles of which
have positive sign and— v have negative sign, one way to render the entire multi-
graph consistent is to change the sign of thedasty fundamental cycles.

Corollary 5. A signed undirected multigraph havingiadimensional fundamental
cycle basis characterized hy— v negative fundamental cycles, can be rendered
consistent by exchanging the signs of ghev chords generating the fundamental
cycles having negative sign.

Of course, the worst case is when all fundamental cycles are negativany
multigraph can be rendered consistent with at mosign changes. From the
theory of signed graphs [115], we also have another worst-cass bppnd on the
consistency deficity = (|E| — V|E[)/2. Hence we have the following Proposition.

Proposition 3. Any signed multigraph can be rendered consistent with at most
min(u, n7) sign changes in its edge labels.

The two values for the upper bound are unrelated: for very spaapdgi(with
average connectivity of a node2) thenu < 7, viceversa for more dense graphs.
While the value of: is always attainable in a graph, it is not clear from the literature
in which caseg is achievable as a worst-case upper bound.

In general the sign associated with a basis of fundamental cycles is adtimy
to changes of basis (i.e. of spanning tree). Therefore, if we can fimddamental
cycle basis with fewer fundamental negative cycles, we have to do thaages of
sign in order to obtain a monotone system. The following Proposition is the starting
point for “simplifying” the graph by changing its signs in a suitable equivaden
class in which the monotonicity properties and the number of inconsisteneies ar
preserved.

Proposition 4. Exchanging the sign of the edges through a cut set preserves the
sign of each cycle of a given signed multigraph.

Proof. From Theorem 1, every cycle intersects a cut set in an even number of
edges and hence a sign change through an entire cut set does nibieadign of a
cycle. ]

Starting from this observations, it is possible to write (heuristic) algorithms to
find an equivalent signing of the multigraph which minimizes the number of neg-
ative edges [67]. Provided we associate high weights to the edges magative
sign after the application of the heuristic, any minimum spanning tree algorithm
[31] will select a spanning tree with a minimal number of minus signs. From
Corollary 4, the cycle subspace associated with the set of fundameales tyav-
ing positive sign corresponds to the monotone subsystem of the origstahsy
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Chapter 13

Conclusion

Powerful tools to study biochemical networks are particularly needed ste8\s
Biology, where the number of (unknown) reaction parameter increaseadically.

ERNEST can be quite useful if applied for model discrimination, as in the ex-
amples cited above. It has several advantages over the Chemical Réetticork
Toolbox since it verifies more criteria, it is applicable also to kinetics not osmas
action type, it can be applied to SBML models, it is multiplatform and open source

Two possible extensions of the toolbox features are the implementation of the
advanced deficiency theory [37] (which generalizes the deficieneyatgorithm
to CRNs of deficiency greater than one), and the verification of soffirisat
conditions for multistationarity, like those of section 4 of [23] or maybe others
inspired by [117].

Another possible improvement would be to verifyffszient conditions for
monotonicity, like the one recently proposediin [2]. This would give infornmatio
on the stability of the equilibria, which is otherwise proved only for deficiebicy
networks.

Regarding instead the distance to monotonicity, a set of heuristic algorithms for
its estimation has been proposed in/[67] by our colleagues, based ondhetided
framework presented here. The output of these algorithms is an intesidéin
which the the consistency deficit must lie. These programs are able toIseat a
large networks in a limited computational time. Moreover, two gene regulatory
networks (forE. coli andS. cerevisiaghave been analyzed with this algorithms
and, as supposed by [116], they are indeed near-consistent, i.@rtheponding
dynamical systems are close to monotone.
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