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Outline

Systems biology is an emergent interdisciplinary field of study whose main goalis
to understand the global properties and functions of a biological system by investi-
gating its structure and dynamics [74]. This high-level knowledge can be reached
only with a coordinated approach involving researchers with different backgrounds
in molecular biology, the various omics (like genomics, proteomics, metabolomics),
computer science and dynamical systems theory.

The history of systems biology as a distinct discipline began in the 1960s, and
saw an impressive growth since year 2000, originated by the increased accumula-
tion of biological information, the development of high-throughput experimental
techniques, the use of powerful computer systems for calculations and database
hosting, and the spread of Internet as the standard medium for informationdiffu-
sion [77].

In the last few years, our research group tried to tackle a set of systemsbiology
problems which look quite diverse, but share some topics like biological networks
and system dynamics, which are of our interest and clearly fundamental for this
field.

In fact, the first issue we studied (covered in Part I) was the reverse engineering
of large-scale gene regulatory networks. Inferring a gene network isthe process of
identifying interactions among genes from experimental data (tipically microarray
expression profiles) using computational methods [6]. Our aim was to compare
some of the most popular association network algorithms (the only ones applica-
ble at a genome-wide level) in different conditions. In particular we verified the
predictive power of similarity measures both of direct type (like correlationsand
mutual information) and of conditional type (partial correlations and conditional
mutual information) applied on different kinds of experiments (like data taken at
equilibrium or time courses) and on both synthetic and real microarray data (for E.
coli andS. cerevisiae).

In our simulations we saw that all network inference algorithms obtain bet-
ter performances from data produced with “structural” perturbations (like gene
knockouts at steady state) than with just dynamical perturbations (like time course
measurements or changes of the initial expression levels). Moreover, our analy-
sis showed differences in the performances of the algorithms: direct methods are
more robust in detecting stable relationships (like belonging to the same protein
complex), while conditional methods are better at causal interactions (e.g. tran-
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scription factor–binding site interactions), especially in presence of combinatorial
transcriptional regulation.

Even if time course microarray experiments are not particularly useful forin-
ferring gene networks, they can instead give a great amount of information about
the dynamical evolution of a biological process, provided that the measurements
have a good time resolution. Recently, such a dataset has been published [119]
for the yeast metabolic cycle, a well-known process where yeast cells synchronize
with respect to oxidative and reductive functions. In that paper, the long-period res-
piratory oscillations were shown to be reflected in genome-wide periodic patterns
in gene expression.

As explained in Part II, we analyzed these time series in order to elucidate the
dynamical role of post-transcriptional regulation (in particular mRNA stability)in
the coordination of the cycle. We found that for periodic genes, arranged in classes
according either to expression profile or to function, the pulses of mRNA abun-
dance have phase and width which are directly proportional to the corresponding
turnover rates. Moreover, the cascade of events which occurs during the yeast
metabolic cycle (and their correlation with mRNA turnover) reflects to a large ex-
tent the gene expression program observable in other dynamical contexts such as
the response to stresses or stimuli.

The concepts of network and of systems dynamics return also as major argu-
ments of Part III. In fact, there we present a study of some dynamical properties
of the so-called chemical reaction networks, which are sets of chemical species
among which a certain number of reactions can occur. These networks can be
modeled as systems of ordinary differential equations for the species concentra-
tions, and the dynamical evolution of these systems has been theoretically studied
since the 1970s [47, 65]. Over time, several independent conditions have been
proved concerning the capacity of a reaction network, regardless of the (often
poorly known) reaction parameters, to exhibit multiple equilibria. This is a par-
ticularly interesting characteristic for biological systems, since it is requiredfor
the switch-like behavior observed during processes like intracellular signaling and
cell differentiation.

Inspired by those works, we developed a new open source software package
for MATLAB, called ERNEST, which, by checking these various criteria on the
structure of a chemical reaction network, can exclude the multistationarity of the
corresponding reaction system. The results of this analysis can be used,for ex-
ample, for model discrimination: if for a multistable biological process there are
multiple candidate reaction models, it is possible to eliminate some of them by
proving that they are always monostationary.

Finally, we considered the related property of monotonicity for a reaction net-
work. Monotone dynamical systems have the tendency to converge to an equilib-
rium and do not present chaotic behaviors. Most biological systems have the same
features, and are therefore considered to be monotone or near-monotone [85, 116].
Using the notion of fundamental cycles from graph theory, we proved some theo-
retical results in order to determine how distant is a given biological networkfrom
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being monotone. In particular, we showed that the distance to monotonicity of a
network is equal to the minimal number of negative fundamental cycles of the cor-
responding J-graph, a signed multigraph which can be univocally associated to a
dynamical system.

For a more thorough introduction to the different topics briefly presented here,
we refer the reader to the initial chapter of each Part.

The material of this thesis has been the object of the following publications:

1. N. Soranzo, G. Bianconi and C. Altafini
“Comparing association network algorithms for reverse engineering of large-
scale gene regulatory networks: synthetic versus real data”
Bioinformatics23(13), pp. 1640-1647, 2007

2. M. Zampieri, N. Soranzo and C. Altafini
“Discerning static and causal interactions in genome-wide reverse engineer-
ing problems”
Bioinformatics24(13), pp. 1510-1515, 2008

3. N. Soranzo, M. Zampieri, L. Farina and C. Altafini
“mRNA stability and the unfolding of gene expression in the long-period
yeast metabolic cycle”
BMC Syst. Biol.3:18, 2009

4. N. Soranzo and C. Altafini
“ERNEST: a toolbox for chemical reaction network theory”
Bioinformatics25(21), pp. 2853-2854, 2009

5. G. Iacono, F. Ramezani, N. Soranzo and C. Altafini
”Determining the distance to monotonicity of a biological network: a graph-
theoretical approach”
IET Syst. Biol.4(3), pp. 223-235, 2010
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Chapter 1

Introduction

In the field of Systems Biology, the possibility of using the information provided
by high throughput measurements in order to infer interactions between genes rep-
resents a first step towards a comprehensive understanding of a biological system in
terms of gene functions, “partner genes”, conditions for activation anddynamical
behavior. The reconstrucion of gene regulatory networks [6, 54] from microarray
expression profiles is certainly one of the most challenging problem for a number
of reasons. First, the number of variables that come into play is very high, of the
order of the thousands or tens of thousands at least, and there is normallyno suffi-
cient biological knowledge to restrict the analysis to a subset of core variables for a
given biological process. Second, the number of gene expression profiles available
is typically much less that the number of variables, thus making the problem un-
derdetermined. Third, there is no standard model of the regulatory mechanisms for
the genes, except for a generic cause–effect relationship between transcription fac-
tors (TFs) and corresponding binding sites (BSs). Fourth, little is known (and no
high throughput measure is available) about the post-transcriptional regulation and
on how it influences the regulatory pattern we see on the microarray experiments.
In spite of all these difficulties, the topic of reverse engineering of gene regulatory
networks is worth pursuing, as it provides the biologist with phenomenologically
predicted gene–gene interactions.

Many methods have been proposed for this scope in the last few years, like
Bayesian networks [50, 66], linear ordinary differential equations (ODEs) models
[130], relevance networks [15, 33] and graphical models [30, 73, 87, 107].

The aim of this work is to compare a few of these methods, focusing in par-
ticular on the last two classes of algorithms, that reconstruct weighted graphs of
gene–gene interactions. Relevance networks look for pairs of genes that have sim-
ilar expression profiles throughout a set of different conditions, and associate them
through edges in a graph. The reconstruction changes with the “similarity mea-
sure” adopted: popular choices for gene networks are covariance-based measures
like the Pearson correlation [15, 33], or entropy-based like the mutual information
(MI) [16, 33]. While correlation is a linear measure, MI is nonlinear. These simple
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16 CHAPTER 1. INTRODUCTION

pairwise similarity methods are computationally tractable, but fail to take into ac-
count the typical patterns of interaction of multivariate datasets. The consequence
is that they suffer from a high false discovery rate, i.e. genes are erroneously asso-
ciated while in truth they only indirectly interact through one or more other genes.

In order to prune the reconstructed network of such false positives, one can use
the notion of conditional independence from the theory of graphical modeling [36],
i.e. look for residual correlation or MI after conditioning over one or moregenes.
These concepts are denoted as partial Pearson correlation (PPC) andconditional
mutual information (CMI). First and second order PPC were used for thispurposes
in [30]. If n is the number of genes, the exhaustive conditioning overn− 2 genes
is instead used in [107] under the name of graphical Gaussian models (GGM). As
for MI, conceptually the CMI plays the same role of the first order PPC. Inour
knowledge, CMI has never been used before for gene network inference, although
an alternative method for pruning the MI graph proposed in [88], basedon the so-
called Data Processing Inequality (DPI), relies on the same idea of conditioning,
namely on searching for triplets of genes forming a Markov chain.

Relevance networks and graphical models have been extensively usedin recent
years [84] and their results have been validated experimentally, for example in [8]
where the analysis is based on a similarity index related to CMI [88], or in [40]
where co-expression is used to investigate combinatorial regulation.

Since we miss a realistic large scale model of a gene regulatory network, it
is not even clear how to fairly evaluate and compare these different methods for
reverse engineering. A few biologically inspired (small-size) benchmark problems
have been proposed, like the songbird brain model [113] or the Raf pathway [124],
or completely artificial networks, typically modeled as systems of nonlinear differ-
ential equations [92, 133]. Since we are interested in large scale gene networks, we
shall focus on the artificial network of [92], in which the genes represent the state
variables and the mechanisms of gene–gene inhibition and activation are modeled
using sigmoidal-like functions as in the reaction kinetics formalism. This network
has several features that are useful for our purposes: (i) its size can be chosen arbi-
trarily; (ii) realistic (nonlinear) effects like state saturation or joint regulatory action
of several genes are encoded in the model; (iii) perturbation experiments like gene
knockout, or different initial conditions, or measurement noise are easily included.

Similar comparative studies have appeared recently in the literature [88, 124].
However, [124] evaluates Bayesian networks, GGM and correlation relevance net-
works on one specific, very small (11 genes) network. [88] instead compares
Bayesian networks, MI relevance networks and DPI using a number of expression
profilesm much larger than the number of genesn, while we are also interested in
more realistic scenarios. Our investigation aims at:

• comparing conditional similarity measures (like PPCs, GGM and CMI) with
“direct” measures (like correlation and MI);

• comparing linear measures (correlation and PPCs) with nonlinear ones (MI,
CMI, DPI).
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In particular, for the different reconstruction algorithms we are interested in the
following questions:

• what is the predictive power for a number of measurementsm ≪ n? How
does it grow withm?

• do the algorithms scale with size?

• what is the most useful type of experiment for the purposes of network in-
ference?

After examining these questions, inspired by several studies suggesting that co-
expression is mostly related to “static” stable binding relationships, like belonging
to the same protein complex (PC), rather than other types of interactions more of
a “causal” and transient nature (e.g. TF–BS interactions), we tried to verify if di-
rect or conditional network inference algorithms are indeed useful in discerning
static from causal dependencies in artificial and real gene networks. Based on cur-
rent literature [3, 118, 132], the interaction networks representing PCsand TF–BS
are roughly characterizable by means of different recurrent regulatory motifs, that
for simplicity we denote “dense modules” and “causal modules” (see Fig. 1.1).
The dense modules for PC represent undirected subgraphs in which allnodes are
mutually connected. The modules for the TF–BS, instead, are directed subgraphs
constructed with a scale-free-like connectivity, but overall sparse graphs. In addi-
tion, in order to represent the combinatorial effect of multiple TFs on a target gene
the input degrees are normally higher than the output degrees.

It is worth noticing that these two types of regulatory motifs can characterize
the complexity of an organism. Going from unicellular prokaryote (E. coli) and
eukaryote (S. cerevisiae) to mammals (human, rat and mouse), the distribution of
annotated protein complexes shows an heavier tail towards bigger complexes (see
Fig. 1.2(a)). The same happens looking at the combinatorial effect of multiple
transcription factors (see Fig. 1.2(b)) [80, 81].

Again a comparison between the two classes of similarity metrics cited above
(direct and conditional) is performed, but with the aim of analyzing their abilityto
infer regulatory networks characterized by the above mentioned topological struc-
tures, in a completely unsupervised manner. The five different similarity metrics
are tested on an artificial and two real networks. The artificial network is meant
to enable the evaluation under controlled conditions, while in the two cases of bi-
ological data the identification of true positive (TP) edges relies on real physical
networks of PC and TF–BS relationships collected from the literature. We choose
two simple organisms, a prokaryote (E. coli) and an eukaryote (S. cerevisiae), in
order to test the consistency of the two regulatory structures for the different al-
gorithms. For these two organisms sufficiently many PC and TF–BS have been
annotated and large collections of gene expression profiles can be gathered from
online repositories.

The comparison of the inference power of the 5 algorithms shows that the gene
interactions associated to co-participation in the same protein complex are better
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(a) (b)

Figure 1.1: Schemes of the two regulatory motifs: in (a) a dense module, where
all nodes are mutually connected. In (b) a causal module, i.e. directed graph ac-
counting for only a few feedback loops and multi-regulated genes. The former
is representing a PC, the latter (multiple) TFs acting on their BSs. PCs can be
characterized as sets of proteins that interact closely with each other. Asa matter
of fact, searching for highly connected subgraphs is a common predictorfor PCs
[118, 132]. Hence in our artificial network a dense subgraph represents a PC. On
the other hand, a statistical description showing a nonuniform connectivitydegree
on an oriented and globally sparse graph emerges from the analysis of theE. coli
andS. cerevisiaeknown TF–BS interactions, see Fig. 1.2. It is taken here as a
paradigm for the TF–BS modules in our artificial network.
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Figure 1.2: Log scale distribution of PC size (a), and number of TFs per gene (b) for
different organisms. In yeast for example the largest complex is the cytoplasmic
ribosome accounting for 81 genes, while inE. coli it is the flagellum complex
composed of 24 genes. Both distributions hint at an increase in the size of the
regulatory motifs as the complexity of the organisms increase.
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detected by the direct methods, while those associated to the combinatorial effect
of multiple TFs are better retrieved by the conditional metrics (in particular by
the graphical Gaussian model). Apart from comparing the performancesof the
algorithms on the different topologies, we also aim at evaluating them on modules
of different sizes (i.e. for larger PCs or with increasing numbers of TFs acting on
the same BS). For this purpose it is convenient to rank the weights of each similarity
matrix and look at the percentage of TPs (with respect to the total number of true
edges) in the highest 1% of weights. This procedure allows us to make an unbiased
and unsupervised comparison between different metrics. For the dense modules
case, it is also possible to specify how well the reconstructed dense modulestruly
correspond to known PCs. If we do so by means of a clustering algorithm on the
inferred graphs, we see that indeed the direct metrics are those allowing the most
faithful PC reconstruction.
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Chapter 2

Methods

2.1 Artificial datasets

The influence on the transcription of each gene due to the other genes is described
by a (sparse) matrix of adjacenciesA = (ai, j). As for the topology ofA, in sec-
tion 3.1 we considered two classes of directed networks widely used in literature
as models for regulatory networks: scale-free [7] and random [39].

Instead, for the analysis of section 3.2,A was constructed as a scale-free matrix,
representing the causal module, superimposed to a matrix of densely connected
subsets of nodes representing the stable modules. The procedure usedto construct
this artificial network is such that dense regulatory modules (of different sizes) are
numerous enough to compare the inference power among the different algorithms
in a statistically relevant manner.

The model we used to generate artificial gene expression datasets is the reaction
kinetics-based system of coupled nonlinear continuous time ODEs introduced in
[92]. The expression levels of the gene mRNAs are taken as state variables, call
themxi , i = 1, . . . ,n. The rate law for the mRNA synthesis of a gene is obtained
by multiplying together the sigmoidal-like contributions of the genes identified as
its inhibitors and activators. Consider thei-th row of A, i = 1, . . . ,n, and choose
randomly a sign to its nonzero indexes. Denote byj1, . . . , ja the indexes with
assigned positive values (activators of the genexi) and withk1, . . . , kb the negative
ones (inhibitors ofxi). The ODE forxi is then

dxi

dt
= Vi

∏

j∈{ j1,..., ja}

















1+
x
νi, j
j

x
νi, j
j + θ

νi, j
i, j

















∏

k∈{k1,...,kb}

θ
νi,k
i,k

xνi,kk + θ
νi,k
i,k

− λi xi , (2.1)

whereVi represents the basal rate of transcription,θi, j (respectivelyθi,k) the activa-
tion (resp. inhibition) half-life,νi, j (resp.νi,k) the activation (resp. inhibition) Hill
coefficient (in our simulations:νi, j , νi,k ∈ {1,2,3,4}), andλi the degradation rate
constant. The ODE (2.1) always tends to a steady state, which could be 0 ora (pos-
itive) saturation value. Whenxi(0) ≥ 0, the abundancexi(t) remains positive during
the entire time course, hence the solution is biologically consistent. Thus, a gene
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expression profile experiment at timet corresponds to a state vector [x1(t) . . . xn(t)]
obtained by numerically integrating (2.1). For the purpose of reconstructing the
network of gene–gene interactions from expression profiles, one needs to carry out
multiple experiments, in different conditions, typically performed perturbing the
system in many different ways. We shall consider the following cases of perturba-
tions:

1. randomly chosen initial conditions in the integration of (2.1), plus gene
knockout obtained setting to 0 the parameterVi of the respective differen-
tial equation, as in [92];

2. only randomly chosen initial conditions in the integration of (2.1);

and the following types of measurements:

1. steady state measurements;

2. time-course experiments, in which the solution of the ODE is supposed to
be measured at a certain (low) sampling rate.

The numerical integration of (2.1) is carried out in MATLAB. In all cases,a Gaus-
sian measurement noise is added to corrupt the output.

2.2 Collected data

We downloaded theE. coli gene expression databaseM3D “Many Microbe Mi-
croarrays Database” (build Ecoli v3 Build 1 from http://m3d.bu.edu, T. Gardner
Lab, Boston University). This dataset consists of 445 arrays from 13different col-
lections corresponding to various conditions, like different media, environmental
stresses (e.g. DNA damaging drugs, pH changes), genetic perturbations (upregu-
lations and knockouts), and growth phases. The experiments were all carried out
on Affymetrix GeneChipE. coli Antisense Genome arrays, containing 4345 gene
probes. ForS. cerevisiaewe compiled a collection of microarrays containing ex-
periments performed with cDNA chips (958 experiments for 6203 ORFs). Onboth
datasets a global RMA normalization was performed prior to network inference.

PC network for yeast was downloaded from the MPACT subsection of the
CYGD database at MIPS [58]. Only the complexes annotated from the literature
and not those obtained from high throughput experiments (according to the MIPS
classification scheme these last are labeled “550”) were considered to limit the
high rate of false positives. PC sizes for human, rat and mouse were downloaded
from CORUM database [105], while forE. coli from the EcoCyc website [68]. We
obtained TF–BS networks from theRegulonDBdatabase, version 5.6, forE. coli
[106], and from a recent collection [3] forS. cerevisiae. The number of edges in
PC and TF–BS networks are summarized in Table 2.1.

http://m3d.bu.edu
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Interaction network N. edges Edge type
causal modules 11716 directed
dense modules 55610 undirected

(a) Artificial network (2154 genes)

Interaction network N. edges Edge type
TF–BS 3071 directed

PC 2228 undirected

(b) E. coli (4345 genes)

Interaction network N. edges Edge type
TF–BS 12376 directed

PC, annotated 21616 undirected

(c) S. cerevisiae(6203 genes)

Table 2.1: Number of edges in the PC and TF–BS networks for: (a) the artificial
network with dense modules, (b)E. coli and (c)S. cerevisiae.

2.3 Similarity measures

2.3.1 Pearson correlation (direct)

Relevance networks based on correlation were proposed already in [33]. If to each
genei we associate a random variableXi , whose measured values we denote as
xi(ℓ) for ℓ = 1, . . . ,m, the sample correlation between the random variablesXi and
X j is

R(Xi ,X j) =

∑m
ℓ=1(xi(ℓ) − x̄i)(x j(ℓ) − x̄ j)

(m− 1)
√

viv j
,

where x̄i , vi and x̄ j , v j are sample means and variances ofxi(ℓ) and x j(ℓ) over
them measurements. When used as weight for the inferred matrix, we’ll take the
absolute value ofR.

2.3.2 Partial Pearson correlation (conditional)

Since correlation alone is a weak concept and cannot distinguish betweendirect
and indirect interactions (e.g. mediated by a common regulator gene), an algorithm
for network inference can be improved by the use of partial correlations[30]. The
minimum first order partial correlation betweenXi andX j is obtained by exhaus-
tively conditioning the pair (Xi ,X j) over allXk. If existsk , i, j which explains all
of the correlation betweenXi andX j , then the partial correlation betweenXi andX j

becomes 0 and the pair (Xi ,X j) is conditionally independent givenXk. When this
happens, following [36] we say that the tripleXi ,X j ,Xk has a Markov property:
on an undirected graph genesi and j are not adjacent but separated byk. This is
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denoted in [36] asXi y X j | Xk. In formulas, the minimum first order PPC is

RC1(Xi ,X j) = min
k,i, j

∣

∣

∣R(Xi ,X j | Xk)
∣

∣

∣ ,

where

R(Xi ,X j | Xk) =
R(Xi ,X j) − R(Xi ,Xk)R(X j ,Xk)
√

(1− R2(Xi ,Xk))(1− R2(X j ,Xk))
.

If RC1(Xi ,X j) ≃ 0 then there existsk such thatXi y X j | Xk. Sometimes condition-
ing over a single variable may not be enough, and one would like to explore higher
order PPCs. The minimum second order PPC for example is given by

RC2(Xi ,X j) = min
k,ℓ,i, j

∣

∣

∣R(Xi ,X j | Xk,Xℓ)
∣

∣

∣ ,

with

R(Xi ,X j | Xk,Xℓ) =
R(Xi ,X j | Xk) − R(Xi ,Xℓ | Xk)R(X j ,Xℓ | Xk)
√

(1− R2(Xi ,Xℓ | Xk))(1− R2(X j ,Xℓ | Xk))

and so on for higher order PPCs. Since the computation is exhaustive over all n
genes, the computational cost of the algorithm for thek-th order minimum PPC is
of the order ofO(nk), and it becomes quickly prohibitive fork ≥ 2, if n is of the
order of the thousands.

The weight matrixR can be used to rank the (n2 − n)/2 possible (undirected)
edges of the graph. The use of PPC allows to prune the graph of many false pos-
itives computed by correlation alone. However, the information provided bycor-
relation and PPC is one ofindependenceor conditional independence, i.e. a low
value of correlation and PPC for a pair (Xi ,X j) guarantees that an edge between
the two nodes is missing. A high value of the quantitiesR(Xi ,X j) andRC1(Xi ,X j)
does not guarantee thati and j are truly connected by an edge, asRC2(Xi ,X j) may
be small or vanish.

In [30] it is shown how to choose a cutoff threshold for the weight matrices and
how to combine together the effect ofR, RC1 andRC2.

2.3.3 Graphical Gaussian models (conditional)

When then × n matrix R of elementsR(Xi ,X j) is invertible, and we can assume
that the data are drawn from a multivariate normal distribution, then the exhaustive
conditioning overn − 2 genes can be expressed explicitly. DenoteΩ = R−1 the
concentration matrix of elementsΩ = (ωi, j). Then the partial correlation between
Xi andX j is

RCall (Xi ,X j) = −
ωi, j√
ωi,iω j, j

.

WhenR is not full rank, then the small-sample stable estimation procedure of [107]
can be used. To computeRCall , we used the R package GeneNet version 1.0.1,
available from CRAN (http://cran.r-project.org).

http://cran.r-project.org
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2.3.4 Mutual information (direct)

In a relevance network, alternatively to correlation, one can use the information-
theoretic concept of MI [16, 54, 88]. Given a discrete random variable Xi , taking
values in the setHi , its entropy [110] is defined as

H(Xi) = −
∑

φi∈Hi

p(φi) log p(φi),

where p(φi) is the probability mass functionp(φi) = Pr(Xi = φi), for φi ∈ Hi .
The joint entropy of a pair of variables (Xi ,X j), taking values in the setsHi , H j

respectively, is

H(Xi ,X j) = −
∑

φi∈Hi , φ j∈H j

p(φi , φ j) log p(φi , φ j),

while the conditional entropy ofX j givenXi is defined asH(X j | Xi) = H(Xi ,X j) −
H(Xi). The MI of (Xi ,X j) is defined asI (Xi ; X j) = H(Xi) − H(Xi | X j) and can be
explicitly expressed as

I (Xi ; X j) =
∑

φi∈Hi , φ j∈H j

p(φi , φ j) log
p(φi , φ j)

p(φi)p(φ j)
≥ 0.

When the joint probability distribution factorizes, the MI vanishes:

p(φi , φ j) = p(φi)p(φ j) for all φi ∈ Hi , φ j ∈ H j =⇒ I (Xi ; X j) = 0. (2.2)

2.3.5 Conditional mutual information and DPI (conditional)

Similarly to PPC, also the MI can be conditioned with respect to a third variable
Xk. The formula is:

I (Xi ; X j | Xk) = H(Xi | Xk) − H(Xi | X j ,Xk)

or, equivalently,

I (Xi ; X j | Xk) = H(Xi ,Xk) + H(X j ,Xk) − H(Xk) − H(Xi ,X j ,Xk).

All pairs of nodes can be conditioned exhaustively on each of the remaining n− 2
nodes and the minimum of such CMIs

IC(Xi ; X j) = min
k,i, j

I (Xi ; X j | Xk)

can be taken as a measure of conditional independence. When there exists aXk that
explains the whole MI betweenXi andX j , then the triplet has the Markov property

I (Xi ; X j | Xk) = 0⇐⇒ Xi y X j | Xk, (2.3)
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implying IC(Xi ; X j) = 0, otherwiseIC(Xi ; X j) > 0.
Just like for the correlation and PPC case, the two conditions (2.2) and (2.3)

can be used to construct the graph of the gene network.I and IC can also be
combined together, and possibly with a cutoff threshold (computed e.g. through a
bootstrapping method).

An alternative algorithm to implement the Markov propertyXi y X j | Xk is
proposed in [88]. It is based on the so-called DPI and consists in dropping the edge
corresponding to the minimum of the tripletI (Xi ,X j), I (X j ,Xk) and I (Xi ,Xk) for
all possible tripletsi , j , k. This method is shown in [88] to prune the graph
of many false positives. DenoteIDPI the matrix obtained by applying the DPI.
Although IDPI andIC derive from the same notion, the information they provide is
not completely redundant.

In the computation ofI and IC we used the B-spline algorithm of [29]. The
matrix I obtained in this way is quite similar to the MI one gets from the Gaussian
Kernel method used in [88], which is known to be computationally more intense
than binning into an histogram or the B-spline approach [29]. In order to eval-
uate how much the choice of the algorithm can influence the reconstruction, we
compared two MI matrices computed using a Gaussian Kernel estimator (with the
routines provided in [89]) and the B-spline approach. A typical result isshown in
Fig. 2.1 for a rather conservative choice of number of bins (q = 4) and spline order
2. It can be seen that the two ordering of edges weights always differ for less than
10%.

While the definition of CMI can be extended to higher number of conditioning
variables, from a computational point of view this becomes unfeasible forn of
the order of thousands: the time complexity of our algorithm for complete data
matrices isO(n3(mp3+q3)), wherep is the spline order andq is the number of bins
used.

2.4 Criteria for algorithm comparison

In order to evaluate the performances of the algorithms, we compare each (sym-
metric) weight matrix with the corresponding adjacency matrixA and calculate the
(standard) quantities listed in Table 2.2.

The receiver operating characteristic (ROC) and the precision versusrecall
(PvsR) curves measure the quality of the reconstruction. To give a compact de-
scription for varyingm, the area under the curve (AUC) of both quantities will be
used. The ROC curve describes the trade-off between sensitivity and the false posi-
tive rate. An AUC(ROC) close to 0.5 corresponds to a random forecast,AUC(ROC)<
0.7 is considered poor, 0.7 ≤ AUC(ROC)< 0.8 fair and AUC(ROC)≥ 0.8 good.
For gene networks, asA is generally sparse, the ROC curve suffers from the high
number of false positives. The PvsR curve instead is based only on comparing true
edges and inferred edges, and therefore highlights the precision of thereconstruc-
tion [88]. All the quantities we consider as well as the ROC and the PvsR curves
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Figure 2.1: Comparison ofI computed via Gaussian Kernel method from [88] and
B-spline method used in this work with 4 bins and spline order 2 for a network of
100 genes and 200 experiments. The elements of the two matrices are sorted and
the sorted values divided in 1000 bins. The figure shows the cumulative counts of
the values of the sorted elements (y-axis) up to thei-th bin (x-axis). The counts
for the two algorithms overlap (by construction), while the number of edges in
common differs for less than 10% of the total.

True positives (TP) = correctly identified true edges
False positives (FP) = spurious edges
True negatives (TN) = correctly identified zero edges
False negatives (FN) = not recognized true edges

Recall (or sensitivity or TP rate) = T P
T P+FN

False positive rateα = FP
T N+FP

Precision = T P
T P+FP

Table 2.2: Quantities of interest in the evaluation of the algorithms
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are based on sorting the edge weights (in absolute values for correlation,PPCs and
GGM) and on growing the network starting from the highest weight down to the
lowest one. Fixing a cutoff threshold only means altering the tail of the curves,
thus we shall not make any such choice, but explore the entire range of values for
the edge weights.

For the networks with dense modules of section 3.2, we used also a second
criterion to test the ability of the different algorithms in retrieving the two types of
regulatory modules (causal and dense) as a function of their dimension. For this
task it is useful to look only at the first percentile of edge weights (i.e. top 1%of
edges sorted by their weights). As inference is performed on the entire genome,
this first percentile corresponds to 23188, 94373 and 192355 edges inthe artificial,
E. coliandS. cerevisiaenetworks reconstructions respectively (see Table 2.1 for the
corresponding numbers of true edges). For the two types of regulatorystructures
(causal and dense) the true edges are binned according to the size of the module
they belong to. The recall (i.e. the percentages of TP over the total numberof
true edges) of the reconstructed network for each bin (of module size) is used to
evaluate how the reconstructions vary with size (shown in Fig. 3.4 and 3.6).More
standard curves such as PvsR (Fig. 3.7) or ROC curves (Fig. 3.8) cannot show the
dependence on the module size of the algorithms.

2.4.1 Clustering

In section 3.2, after selecting the most significant 1% of edges, the resultinggraph
is decomposed using a simple hierarchical clustering algorithm, with weighted av-
erage linkage as cost of merging, and taking a fixed number of clusters (300 in
Fig. 3.5). This procedure allows to identify the most connected components,which
are then matched with the dense modules/PCs. This matching is fairly robust with
respect to the choice of the number of clusters (data not shown).
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Results

3.1 Comparison on scale-free and random artificial net-
works

In Fig. 3.1, the results for reconstructions of random and scale-free networks of 100
genes with the different similarity measures (R, RC1, RC2, RCall , I , IC andIDPI) are
shown for different numbersmof measurements. AUC(ROC), AUC(PvsR) and the
number of TP for a fixed value of acceptable FP (here 20) are displayedin the three
columns. For both AUC(ROC) and AUC(PvsR), standard deviations (notshown)
are around one order of magnitude smaller than the mean values, thus indicating
that the repetitions are substantially faithful.

By comparing the first two rows of Fig. 3.1 it is possible to examine the in-
fluence of the network topology on the reconstruction. Under equal conditions
(type and amount of experiments), all the algorithms performed better for random
networks, confirming that they are easier to infer than scale-free ones [30]. Also
another network parameter, the average degree, is influencing the performance of
the algorithms: the predictive power is higher for sparser networks than for less
sparse ones. For example, in Fig. 3.3 compare the graphs in the first row (average
node degree equal to 1.5) with the ones in the second row (degree equalto 3) for
artificial scale-free networks of 1000 genes.

If we now focus the attention on the scale-free topology (the most similar to
known regulatory networks), it can be seen from the graphs that the performances
of the reconstructions are much higher with knockout perturbations (rows 2–3)
than for data produced without knockouts (row 4). This suggests that knockouts
(i.e. node suppression on (2.1)) help in exploring the network structure,while per-
turbing only the initial conditions contributes very little predictive information.

Moreover, when perturbing the system with knockouts, steady state measure-
ments (row 2) are able to generate good reconstructions with much less samples
than time-course experiments (row 3), in agreement with the results of [6]. For
steady states, the performances of the algorithms improve increasingm up to n,
then stabilize (for some, like GGM, even decrease). For time-course data,instead,

29
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the graphs tend to level off only when each gene has been knocked out once, re-
gardless of the number of samples taken during the time series. This can be seen on
the third row of Fig. 3.1, where the AUCs keep growing until 1000 samples (cor-
responding to 100 time series each contributing 10 samples) and only then tendto
stabilize (data beyond 1000 samples are not shown in Fig. 3.1). The same trend
can be observed increasing the number of samples per series (data not shown).
Learning a network by means of time series alone (without any knockout) is very
difficult as can be deduced from the low values of AUCs achieved in the forth row
of Fig. 3.1. Notice, however, that these values get much worse (essentially random)
if we consider no-knockout and steady state samples.

As for the different algorithms, the PPCs perform well in all conditions, and are
significantly improving performances with respect to correlation for both
AUC(PvsR) and TP for fixed FP. On the contrary, applying the DPI to MI (with a
tolerance of 0.1, see [88]) only slightly improves the precision of the MI. Since the
DPI simply puts to zero the weights of the edges it considers false positives,one
should not forget that DPI is penalized with respect to the other measureswhen
computing AUC(ROC). Like PPCs, GGM gives good average results, butlooks
promising especially for time-course experiments, where also CMI is far superior
than MI and DPI.

For the random and scale-free networks reconstructed in Fig. 3.1, Fig.3.2 re-
ports the average runtimes (over the 10 repetitions) of the various algorithms: RC2

is clearly one order of magnitude slower than the other methods. It must be re-
marked that forR, RC1, RC2 we used MATLAB code, while forI , IC, IDPI C++
code was created (so faster than MATLAB) andRCall was computed under R en-
vironment. Notice thatIC grows faster than the other methods with respect to the
number of experiments.

Finally, it is important to remark that the results we obtained for a network
of 100 genes are qualitatively and quantitatively similar to those for larger gene
networks. As an example, in Fig. 3.3 (first row) a scale-free network of1000 genes
is reconstructed from knockout experiments with steady state measurements. It can
be seen that all three parameters shown AUC(ROC), AUC(PvsR) and TPfor fixed
FP are comparable to those shown in Fig. 3.1 (second row) for an equal ratiom/n.

3.2 Discerning static and causal interactions

For the following comparisons, we used the same algorithms as before except the
second order PPC (too computationally heavy for thousands of genes) and the DPI
(similar to CMI).

3.2.1 Artificial dataset

In this subsection, we consider a big artificial network with a scale-free topology
plus dense modules, as described in section 2.1. Our results (Fig. 3.4, left)show
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Figure 3.1: Evaluating the reconstructions viaR, RC1, RC2, RCall , I , IC andIDPI al-
gorithms on 100 gene artificial networks for increasing numbers of measurements.
Top row: random topology, knockout perturbations and steady state measurements.
Second row: scale-free topology, knockout perturbations and steady state measure-
ments. Third row: scale-free, knockout and time-course experiments. Fourth row:
scale-free, only initial conditions perturbations and time-course experiments. On
the two time courses 10 (equispaced) samples are taken on each time course.The
x axis label “N. of measurements” refers to the total number of samples taken (for
example 200 means 200 experiments of steady state type, but only 20 experiments
on the two time courses). Left column: AUC(ROC). Central column: AUC(PvsR).
Right column: number of TP for a number of FP equal to 20. Values shown are
means over 10 repetitions.
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Figure 3.2: Runtime of the algorithms for the random (left) and scale-free (right)
networks of 100 genes shown in Fig. 3.1.
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Figure 3.3: Evaluating the reconstructions viaR, RC1, RCall , I andIDPI on 1000 gene
artificial networks of scale-free type, for increasing numbers of measurements, all
for knockout experiments and all at steady state. First row: average node degree
1.5. Second row: average node degree 3. Left column: AUC(ROC). Central col-
umn: AUC(PvsR). Right column: number of TP for a number of FP equal to 200.
Values shown are means over 3 repetitions.
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Figure 3.4: Recall (i.e. TP rate) for the network reconstructions at the first per-
centile with the five different similarity metrics for increasing size of the PCs, in:
(left) artificial dataset, (middle)E. coli and (right)S. cerevisiae. In all three cases,
considering the percentage of TPs for the whole PC network, the two direct metrics
can be ranked in the same order (correlation followed by MI) and are performing
better than the corresponding conditional metrics.

that increasing the size of the dense modules, conditional metrics perform worse
than direct metrics.

Also the clustering of the reconstructed network shows the same qualitative
difference and in fact the best results are obtained for the direct measures(corre-
lation, MI). In Fig. 3.5 the percentage of complexes completely contained in: one
cluster, two clusters, three clusters and more than three are shown.

On the other hand for the causal modules (Fig. 3.6, left), the performances of
the conditional metrics are higher than the direct ones in correspondence of the
largest modules. Notice how for all 5 algorithms the absolute performances drop
dramatically when the number of transcription factors increases, as we expect due
to the more complicated combinatorial effect.

As for the PvsR curves of Fig. 3.7, the qualitative difference between direct and
conditional metrics in the two regulatory structures are substantially confirmed,
although in the TF–BS curve (bottom row) the differences are minimal (precision
is much lower than in PC).

3.2.2 E. coli dataset

Owing to the different genome organization and architecture, in prokaryotes reg-
ulatory mechanisms are much simpler than in eukaryotes. Genes are organized in
transcriptional units, with one promoter for many consecutive genes, a feature ab-
sent in monocistronic eukaryotic DNA.E. coli has only a few large PCs and also
the combinatorial regulation of transcription is lower, so we expect the different
algorithms to have more similar performances.

We calculate the PvsR and ROC curves of the five different metrics (Fig. 3.7
and 3.8, middle) and plot the percentage of TPs in the most significant percentile
of edges, for increasing sizes of the PCs (Fig. 3.4, middle) and combinatoriality of
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Figure 3.5: Clustering of the inferred graphs. For the artificial (left),E. coli (mid-
dle) andS. cerevisiae(right) networks, the color scale represents the percentage of
PCs belonging to a single cluster (darkest), two clusters, three clusters and more
than three (lightest). Correlation and MI are almost unanimously outperforming
the three conditional metrics (the only exception being GGM forE. coli).
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Figure 3.6: Combinatorial transcription regulation. Recall for TF–BS modules
with increasing number of TFs on the same BS, in: (left) artificial, (middle)E.
coli, and (right)S. cerevisiaedatasets. In all three plots the downward trends in the
ability to recover causal modules is visible and in all three the conditional measures
seem to outperform the direct measures when combinatorial complexity increases.
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Figure 3.7: PvsR curves for the reconstruction of PC and TF–BS networks. Top
row: PvsR curves of the five different similarity metrics using the PCs as the true
network for the artificial (left),E. coli (middle) andS. cerevisiae(right) datasets.
In all three cases the two direct metrics (correlation and MI) seem to be performing
better than the corresponding conditional metrics. The curves are very high in the
artificial network case because the density of true PC edges is higher thanin the two
organisms, see Table 2.1. Bottom row: PvsR curves of the five different similarity
metrics using TF–BS interactions as the true network for the artificial (left),E. coli
(middle) andS. cerevisiae(right) datasets. In absolute terms, the inference power
is much lower than for PCs. Notice, however, how the conditional metrics still
give the best results (inE. coli, correlation and MI are performing slightly better
than PPC and CMI, but GGM is still outperforming all the others; compare also
Fig. 3.6, middle panel).



36 CHAPTER 3. RESULTS

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − specificity

se
ns

iti
vi

ty

 

 

P
MI
CMI
CP
GGM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − specificity

se
ns

iti
vi

ty

 

 

P
MI
CMI
CP
GGM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − specificity

se
ns

iti
vi

ty

 

 

P
MI
CMI
CP
GGM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − specificity

se
ns

iti
vi

ty

 

 

P
MI
CMI
CP
GGM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − specificity

se
ns

iti
vi

ty

 

 

P
MI
CMI
CP
GGM

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 − specificity

se
ns

iti
vi

ty

 

 

P
MI
CMI
CP
GGM

Figure 3.8: ROC curves for the reconstruction of PC and TF–BS networks. Top
row: ROC curves of the five different similarity metrics for the PC network, in
artificial (left), E. coli (middle) andS. cerevisiae(right) dataset. In all three cases
the correlation is performing better than all the other metrics. Bottom row: ROC
curves of the five different similarity metrics for the TF–BS network, in artificial
(left), E. coli (middle) andS. cerevisiae(right) dataset. These curves highlight
the general inability of inferring TF–BS relationships from co-expression indexes.
Notice how the conditional metrics (in particular the GGM) in the artificial andE.
coli networks give (slightly) better results.
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TFs (Fig. 3.6, middle). PCs are identified slightly better by the two direct metrics,
although the number of relatively large complexes is too low to have statistical
significance. The different performances emerging from the clustering (Fig. 3.5,
middle) indicate that the highest correspondence between PCs and clusters are
provided by GGM followed by correlation and MI. Considering as an example
the flagellum complex (accounting for 24 genes), if the clustering procedure is per-
formed by means of correlation and MI, the complex belongs entirely to a single
cluster, which contains also other genes functionally related to the flagellum, like
chemotactic genes and other genes involved in flagellar biogenesis and motility.
Instead for CMI, PPC and GGM this complex is split respectively into 6, 8 and2
clusters.

Regarding TF–BS relationships, we expect the ability in recovering true inter-
actions to be inversely proportional to the multiplicity of TFs. This is particularly
true for the algorithms performing well on low multiplicity TF (correlation, MI and
GGM), while CMI has a counterintuitive slightly positive trend for multiregulated
targets.

3.2.3 S. cerevisiae dataset

In S. cerevisiae, Fig. 3.4 (right panel) shows clearly that for small complexes the
performances of conditional metrics are comparable with those of correlation and
MI, up to a critical size above which the inference power of CMI and GGM remains
almost constant while the direct metrics increase their percentage of TPs. The
results are consistent with the ones obtained for the artificial data. Qualitatively,
the results on the two organisms are the same, although the percentages of TPs are
higher in the simpler one (see also Fig. 3.7, top row). In addition, the critical size of
the dense modules for which conditional similarities start to fail is almost similar
to the one obtained in the artificial network andE. coli, suggesting an intrinsic
peculiarity of such similarity metrics. The clustering performances (Fig. 3.5, right)
for the five algorithms are coherent with those of theE. coli and artificial networks
and once again better results are obtained for the correlation and MI metrics.

If we move to the network of TF–BS (Fig. 3.6, right), we immediately notice
that all the three conditional metrics perform better than the direct ones, although
in absolute terms results are much worse than forE. coli. One reason for the low
inference power regarding TF–BS could be that regulation is not just combinatorial
but also combinatorially different in different environmental conditions. Another
could be that TFs do not show the large variations in expression that can be seen for
the corresponding regulated genes, but instead keep their expressions at low basal
levels (see Fig. 3.9(b)).
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Figure 3.9: TF vs BS variance. Scatter plots representing the expressionvariance
of the TFs against that of the corresponding BSs. In both organisms ((a) E. coli
and (b)S. cerevisiae) most of the times the BS variance is broader than for the
corresponding TF. Notice how especially inS. cerevisiaeall TFs have low variance
and how most node pairs in TF–BS edges live in the low variance corner.
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Conclusion

For the networks generated with the model (2.1), we find that steady state system-
atic gene knockout experiments are the most informative for the purpose of recon-
structing this type of networks, yielding an AUC(ROC)> 0.7 even withm≪ n. In
particular for this class of perturbations the linear similarity measures are enough.
The nonlinear measures MI and CMI instead are less precise. For time series, the
situation is different: relevance networks perform poorly even whenm ≫ n. In
this context, conditional measures are relatively good. The marked difference be-
tween inference on steady state+ knockouts and the more “classical” dynamical
inference from time series alone without knockouts, is probably due to the highly
nonlinear content of the transient evolution of (2.1). Reverse engineering nonlin-
ear dynamical systems is notoriously a very difficult problem, and not even the
use of nonlinear similarity measures is enough to attain a decent predictive power.
At steady state, such nonlinear behavior has collapsed into a set of algebraic re-
lations (corresponding todxi/dt = 0), which become sufficiently informative if
“structurally” perturbed, e.g. by means of node suppressions. In short, structural
perturbations are more efficient than dynamical perturbations for the purposes of
(nonlinear) network inference.

Other interesting observations are the following:

• After a certain thresholdm0 ≥ n the inference ratio of all algorithms tends
to stabilize. To improve the predictive capabilities, other types of perturba-
tions should probably be used (like simultaneous multiple knockouts, exter-
nal stimuli, etc.).

• AUC(ROC) around 0.9 are reached only by MI, correlation and GGM in the
steady state knockout simulations.

• Conditioning is useful to improve the false discovery rate, and the TP it iden-
tifies are to a large extent different from those detected without conditioning.

• Of all algorithms tested only second order PPC and CMI are too computa-
tionally intensive to be used in a truly large network (tens to hundreds of
thousands of genes).
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• MI, CMI and DPI depend heavily on the implementation algorithm, and, at
least in our B-spline implementation, on the underlying model of probability
distribution (for time-course experiments the quality of the reconstruction
improves considerably with the pre-application of a rank transform to the
data). Correlations instead, are much less sensitive. For example replacing
Pearson correlation with Spearman correlation yields no substantial differ-
ence.

• The best performances versus runtime are achieved by the GGM algorithm.

• Sparse networks are easier to identify than dense (or less sparse) ones, re-
gardless of the algorithms used.

• Even withm ≪ n (realistic situation), using steady state knockout experi-
ments all algorithms have a decent predictive power.

If unsupervised graph learning problems are notoriously difficult [36, 96], the
conditions under which these problems must be studied for large scale generegula-
tory network inference (less data than nodes) are even more challenging. Neverthe-
less, we can see through simulation and through reasonable biological assumptions
on real data that the predictive power of current methods is indeed non-zero, and
that a certain amount of structural information can be extracted even in this regime
by means of computationally tractable algorithms, although the precision is very
low and the number of false positives unavoidably very high.

Moreover, the results reported show that indeed different reverse engineering
algorithms have performances which are tailored to different “characteristic” reg-
ulatory modules. PCs are characterized by a very stable binding and give rise to
a sort of post-transcriptional regulation, where gene products have tobe expressed
in a constant stoichiometric ratio and are mutually dependent one from the other,
features absent in cause–effect relationships such as transcriptional activation. For
the network generated with the model and the two real ones, we tested the abil-
ity to recover dense modules/PCs and causal transcriptional modules of different
sizes. Several important observations emerge from the results. The critical size of
a dense module for which direct similarity measures begin to perform better than
the corresponding conditional ones is between 10 and 20 on both artificialand real
datasets. The dense modules that characterize PCs are better captured by direct
similarity measures, especially for large dense modules. This is almost the same in
both organisms, in spite of the different complexity and the low experiments/genes
ratio. On the contrary, the conditional similarity measures are more suited to deal
with causal dependencies such as TF–BS interactions, especially when the combi-
natorial complexity of the regulation increases. It is evident and predictable that
the ability to recover TF–BS interactions is roughly inversely proportional tothe
number of TF regulating a gene. At the same time, it is worth pointing out that con-
ditional metrics are more robust in taming this multiplicity effect of TFs. Needless
to say the inference power of all the algorithms is higher in the simpler organism,
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for both PC and TF–BS networks. This reflects the more complex eukaryoteregu-
lation, as deducible also from Fig. 1.2. Finally it is worth remarking that although
direct metrics are better at detecting “static” interactions and conditional metrics
at detecting causal ones, in absolute terms all algorithms are far more powerful at
discovering the static than the causal gene–gene dependencies (as canbe deduced
comparing the first and second rows in both Fig. 3.7 and 3.8, or comparing the
recall percentages of Fig. 3.4 and Fig. 3.6).

The predictive power of a reverse engineering algorithm is clearly a function
of several aspects. First of all system complexity, data quality and numerosity.
In addition, inference power depends on the type of interaction and the associate
topology. Showing that indeed the algorithms yield different performances coher-
ently with the features they are meant to extrapolate from the data (direct forstatic
and stable interactions, conditional for causal interactions) is already a significant
and encouraging observation.
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Part II

The role of mRNA stability in the
coordination of the yeast

metabolic cycle
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Chapter 5

Introduction

Ultradian self-sustaining energy-metabolic oscillations arising spontaneously in
high densitySaccharomyces cerevisiaecontinuous cultures exposed to glucose-
limited growth have been known and studied for decades [94, 98], and have more
recently been observed to induce genome-wide periodic patterns in different series
of microarray experiments [76, 119], although with widely different periodicities,
∼ 40 min for [76] and∼ 300 min for [119].

Many studies aim at understanding the mechanisms inducing these sustained
oscillations and the rigorous temporal compartmentalization they induce, see [95,
100] for surveys. Suggested causes range from a single critical pathway (like the
feedback effect of cysteine on the sulfur assimilation pathway [126]) to the alterna-
tion of aerobic and anaerobic respiratory modes (as deduced by the fluctuations in
the concentration of dissolvedO2 and of other observed metabolites [119]), from
the interaction with cell cycle [20, 51] to the mutual incompatibility of different
redox biochemical processes [83, 127].

The scope of this work is to emphasize a different aspect, intrinsically dynam-
ical and post-transcriptional, which is likely to play an important role in the co-
ordination of the “slower” yeast metabolic cycle (YMC) of [119], namely mRNA
stability. We will show that there is a roughly linear relationship between the aver-
age half life (HL) of the transcripts, clustered according to expression or function,
and the phase at which their concentration peaks in the cycle. More generally, there
seems to be a strong correlation between HL and the shape of the pulses of gene
expression: genes with short HL have short and sharp (almost impulsive in the time
scale considered) pulses, while genes with long HL have pulses that are not only
delayed but also broader and with more gentle slopes.

In recent years, post-transcriptional control is being recognized asan impor-
tant aspect of gene regulation, especially in eukaryotic DNA, which lacksoperonal
structure [11, 13, 53, 91]. It can occur in many guises, through mRNA turnover
[18, 57, 78, 123, 125], or through “RNA regulons” [70], i.e. groups of genes coor-
dinately guided in the RNA processing, localization and protein synthesis by RNA-
binding proteins (RBPs) [56, 109], or even through the mediation of a metabolic
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substrate (typically a nutrient [17, 71, 122] or an enzyme [59]). Our result confirms
the importance of post-transcriptional control, and points at mRNA turnoveras a
regulatory mechanism at a genome-wide level. Its peculiarity consists in putting
the time axis into the picture in an intrinsically dynamical way. Consequently, in
order to be observed, it requires times series sampled at a sufficiently high fre-
quency and dynamics in the right time window, a combination seldom occurring in
current expression profiling datasets. So for example the correlation between HL
and phase/shape of the oscillations cannot be observed in the much faster YMC of
[76], where HL and the period are of comparable duration, hence the system has
no time to decay before the arrival of the next wavefront.

In order to emphasize the dynamical aspects, we shall treat the YMC as the
time response of a genome-wide dynamical system to a sequence of impulsive“in-
puts” of transcription activation. We will show that grouping genes in terms of
progressively delayed and broadened responses to a sequence of“input pulses” of
transcriptional activation allows to see in a remarkably fine detail the causalchain
of events constituting the transcriptional program of the cell. The few ambiguities
resulting from this classification can be interpreted in terms of some other annota-
tion, typically compartmental localization.

In the following we shall proceed in two complementary ways: first the YMC
time series are clustered in a completely unsupervised manner, only according to
gene expression. The linear relationship between pulse phase (also pulse width)
and HL then emerges in a straightforward way. Next, we consider families of
genes whose products share some common annotation, for example genes on the
same pathway or genes that are subunits of the same protein complex, and look
at the type of time series they produce and at their “position” along the YMC.
Both approaches confirm that the YMC represents an organized cascade of events,
in response to precisely equispaced bursts of transcriptional activation, with the
temporal order reflecting the transcript turnover rate.

Extrapolating from the specific YMC context, this cascade of events is observ-
able to a good extent also in other gene expression time series (such as the response
to a pulse of nutrient of [104], or the stress responses of [55]), suggesting it might
reflect a prototypical dynamical mode of action of transcriptional response.



Chapter 6

Methods

6.1 Data sources

The YMC time series of [119], the compendium of 790 gene profile experiments
(all performed with the Affymetrix GeneChip Yeast Genome S98 platform) and the
data series from [104] were downloaded from Gene Expression Omnibus database
(http://www.ncbi.nlm.nih.gov/geo/). The time series of [104] are performed with
cDNA, hence values of the area under the profiles are intended as relative (to the
basal mRNA abundance). For each gene, the values obtained for the twodifferent
glucose stimuli are averaged. Five stress responses from [55] (two heat shocks
of different amplitude, hydrogen peroxide, diamide, and sorbitol responses)are
considered. The amplitudes are averaged over the five data series (the signs of
these responses are known to be highly similar, see [55]).

The metabolic pathways used are those of the Kyoto Encyclopedia of Genes
and Genomes (KEGG, http://www.genome.jp/kegg/). Also the assembling into the
15 macrocategories follows the KEGG hierarchy.

The protein complexes were downloaded from the MPACT subsection
(http://mips.helmholtz-muenchen.de/genre/proj/mpact/) of the CYGD database at
MIPS. Only complexes manually annotated from the literature are considered;
those obtained from high throughput experiments are disregarded (according to
the MIPS classification scheme these last are labeled “550”).

The HLs are computed averaging the values of the three experimental datasets
[57, 78, 123]. While the magnitudes of the HLs in the three collections show
some differences, in “normalized” terms (looking e.g. at rank-ordered values),the
agreement between the three sets is sufficiently good, see [57] for a comparison.
No turnover data specific for long-term continuous cultures are currently available.
However, it is not unlikely that even in this setting the relative differences of HL
rates (and also their ordering) remains more or less unchanged. In any case, we
expect the correlation phase/HL to improve in presence of more tailored mRNA
turnover data.
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Figure 6.1: When the period of the bursts in the YMC is computed via Fourier
analysis, as is done in [119], the answer is 300 min. However, a closer look at
the genes having impulse-like behavior (in this Figure the three RNA polymerases)
reveals that the sampling is not perfectly synchronized with the period observed: in
a time window twice the period (200÷775 min) there are 23 samples instead of the
expected 24, and the “11.5” samples per period ratio seems to yield a more accurate
matching of the peaks. The resulting period is therefore 11.5·25= (775−200)/2 =
287.5 min. Notice how this explains why the second peak is less resolved that the
first and third one in basically all Figures shown in this work.

6.2 Time series analysis

The period of the YMC, computed in the time domain looking at the most
impulsive-like categories (in Fig. 6.1 the 3 RNA polymerases), is estimated as
287.5 min (see Fig. 6.1 for a detailed description). As in [119], genes are filtered
using a periodogram test. In order to retain only genes with a well-defined peri-
odicity, we fixed a more selective p.value than [119] thereby reducing the number
of genes to 1951. To each of the genes labeled as periodic, we associated a phase,
computed maximizing the correlation with respect to a train of 360 shifted sinu-
soids (resolution of 1◦). Thus, a phase delayφ can be transformed into a time delay
τ by means of the relationτ = φ287.5

360 (min).
Means and standard deviations of the phases of periodic signals must be com-

puted “mod 360◦”, and are normally subject to large numerical errors and ill-
conditioning. A typical example is the following: assume two periodic genes are
assigned the phasesφ1 = 350◦ andφ2 = 6◦. Owing to the 360◦ periodicity, the
peaks of the two genes are very close, but the average phase is (φ1+ φ2)/2 = 178◦,
which is obviously wrong. The correct answer requires a shift from the principal
values of the periodic signal: (φ1 − 360◦ + φ2)/2 = −2◦. To avoid problems with
biased mean values and/or the appearance of inelegant negative phases around the
“crucial” transcription bursts, the 0 phase was chosen so as to anticipate of ∼ 30◦
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these events. Under this convention, each period “begins” approximately24 min
before the transcription bursts.

For each gene, the pulse width is computed estimating on each period the inter-
val in which the expression level stays above the median value across consecutive
samples.

6.3 Least squares regressions

In Fig. 7.1, the least square fitting in the HL/phase plot is given by the equation

φ = 9.25 HL− 104.83◦, R2 = 0.86, p.value∼ 10−7.

The corresponding p.value is computed via a Fisher test statistics. Since we have
determined the period as 287.5 min and the zero phase∼ 30◦ before the impulsive
bursts shown for example in Fig. 6.1, the equation in terms of time delay with
respect to the bursts,τt ≃ 287.5

360 (φ − 30◦), is

τt ≃ 7.39 HL− 107.68 (min).

Within most clusters, the standard deviation in terms ofφ is minimal; it is higher
in terms of HL, see Table 7.1. Hence if we use weighted least squares regression,
while the fitted curves we get are still very similar in the range of values of interest,
the differences are in the coefficient of determinationR2:

Method Regression R2 p.value
l. s. weighted w.r.t.φ φ = 8.95 HL− 101.24 0.92 ∼ 10−9

l. s. weighted w.r.t. HL φ = 9.03 HL− 99.76 0.54 ∼ 10−4

Letω be the width of the pulses, then the corresponding least squares fits are

Method Regression R2 p.value
l. s. ω = 0.24 HL− 1.05 0.72 ∼ 10−5

l. s. weighted w.r.t.ω ω = 0.21 HL− 0.99 0.32 ∼ 10−5

l. s. weighted w.r.t. HL ω = 0.23 HL− 0.71 0.31 ∼ 10−2

Repeating the linear regression for the three plots in Fig. 7.3(b), we get:

• phase/HL (top plot)

Method Regression R2 p.value
l. s. φ = 6.84 HL− 33.05 0.64 ∼ 10−4

l. s. weighted w.r.t.φ φ = 4.39 HL+ 27 0.82 ∼ 10−6

l. s. weighted w.r.t. HL φ = 5.26 HL+ 6 0.68 ∼ 10−4

• width/HL (middle plot)
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Method Regression R2 p.value
l. s. ω = 0.15 HL+ 1.41 0.44 ∼ 10−3

l. s. weighted w.r.t.ω ω = 0.19 HL+ 0.5 0.53 ∼ 10−3

l. s. weighted w.r.t. HL ω = 0.11 HL+ 2.58 0.8 ∼ 10−5

• width/phase (bottom plot)

Method Regression R2 p.value
l. s. ω = 0.02φ + 1.9 0.8 ∼ 10−6

l. s. weighted w.r.t.φ ω = 0.03φ + 1.66 0.96 ∼ 10−10

l. s. weighted w.r.t.ω ω = 0.03φ + 1.12 0.8 ∼ 10−6

Finally, for the dynamical model of Fig. 7.12, ifψ is the order of the transfer
function model used,ψ ∈ [1,4], we have

Method Regression R2 p.value
l. s. ψ = 0.09 HL+ 0.32 0.52 ∼ 10−3

l. s. weighted w.r.t. HL ψ = 0.06 HL+ 1.1 0.73 ∼ 10−5

6.4 Clusterization

The clusterization of the time profiles in Fig. 7.1 is performed via a k-means algo-
rithm using as distance a nonnormalized correlation function. Varying the number
of clusters and/or the (randomly chosen) initial cluster assignments, the results (in
terms of the regressions) are basically unchanged.

6.5 A minimal dynamical model: low-pass transfer func-
tions and their dynamical system realizations

The aim of this Section is to set up a minimal dynamical model describing the
response to the periodic bursts of transcriptional activation represented as “impul-
sive inputs” to the system. Such a model has to be able to reproduce the following
features observable in the dataset:

• impulse responses get delayed and broadened in a way which is roughly
proportional to HL;

• profile changes get progressively less steep with HL;

• the system “discharges” completely (i.e. the mRNA concentrations return to
a basal level) in absence of further pulses.

At the same time, to be internally consistent a dynamical model has to:

• respect causality (i.e. be non-anticipating);
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• preserve positivity of the mRNA concentrations.

In the Engineering practice of Systems Theory, one of the most elementary formal-
ism that can be used to build dynamical models is the input-output design based
on Laplace transform and elementary transfer functions [35], see e.g.[9] for an
application to a transcriptional time series.

The concentration of mRNA of a geney can be described as the response to the
pulse of transcriptional activationu by the linear integral

y(t) =
∫ t

0
g(t − τ)u(τ)dτ. (6.1)

In the Laplace domain, a convolution integral such as (6.1) correspondsto

Y(s) = L
[∫ t

0
g(t − τ)u(τ)dτ

]

= G(s)U(s) (6.2)

wheres is the Laplace variable andG(s) is called a transfer function. Ifu(t) is
a perfect impulseδ0 (Dirac delta) thenU(s) = L [δ0(t)] = 1. When the transfer
function G(s) represents a linear differential equation (i.e. it derives from a lin-
ear convolution such as (6.1)), it can be expressed as a rational polynomial in the
Laplace variables. A simple such polynomial is

G1(s) =
s+ n1

s+ d1
(6.3)

wheres = −d1 is called the pole ofG1 ands = −n1 its zero. Choosingd1 > 0 the
transfer function is stable (the pole is in the left half of the complex plane), i.e.a
bounded input will always result in a bounded output. Whenn1 > 0 the system is
said to be minimum phase. In this context this is an important condition in order to
guarantee positivity of the output signal for all times.

The requirements above can be translated into easy-to-handle design specifica-
tions on the values of the poles and zeros of the transfer function. For example,
the first requirement (at least for what concerns pulse broadening)is met by the
class of so-called low-pass filters, the most basic of which has the form given in
(6.3), provided we choose 0< d1 < n1. The term “low-pass” literally means that
low frequencies in the input signal pass unchanged through the transfer function
G1(s), while high frequencies get damped, hence the impulsive input exits from
G1(s) smoothed and with more gentle slopes. Such a transfer function is proper
and therefore respects causality; it discharges completely as required (since it has
no integrator, i.e. no factors of the form 1/s in G1(s)). Strictly speaking, it is not a
positive filter [1], however as long asu(t) > 0 and 0< d1 < n1 it is alsoy(t) > 0.
In the Laplace domain, a time delayT1 has Laplace transform equal toe−T1s. This
operator does not add poles or zeros to (6.3), but yields the irrational transfer func-
tion

y = G1(s)e−T1su. (6.4)
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In the time domain, each convolution integral (6.1) can be expressed as a linear
input-output systems (of ordinary differential equations). For the transfer function
in (6.3) and the delay operator in (6.4) this corresponds to

dx(t)
dt
= −d1x(t) + (n1 − d1)u(t − T1)

y(t) = x(t) + u(t − T1),

i.e. the poled1 plays the role of “degradation rate” while the activation amplitude
is proportional ton1 − d1 (> 0). The typical impulse response of a low-pass fil-
ter transfer function such as (6.3) is shown in the top plot of Fig. 7.12(b).Given
a pulse shape, the capabilities of a single low-pass filter in terms of broadening
and smoothing of the responses are limited, hence, in order to obtain a progressive
effect of delayed and broadened impulse responses, several delayed low-pass fil-
ters should be put in cascade. For example the order-2 transfer function obtained
concatenating 2 filters is

G2(s) =
(s+ n1)(s+ n2)
(s+ d1)(s+ d2)

,

or, in the time domain,

dx1(t)
dt
= −d1x1(t) + (n1 − d1)u(t − T2)

dx2(t)
dt
= −d2x2(t) + (n2 − d2) (x1(t) + u(t − T2))

y2(t) = x1(t) + x2(t) + u(t − T2).

In this case bothd1 andd2 contribute to form the degradation profile of the mRNA
concentrationy2(t). Likewise, both dynamical variablesx1 and x2 contribute to
shape the pulse of a gene. Typically this model induces a steeper upregulation and
a slower degradation front, coherently with what we observe on the YMC time
series. The intermediate variablesxi are only meant to describe the complexity of
the input-output relationship. Qualitatively, they might reflect intermediate steps
in the gene expression program. For example, the transcription of the genes of
the central metabolism is activated downstream of the genes for translation and
amino acid synthesis, which in their turn follow the principal bursts of transcription
machinery (polymerases and other RNA processing components). Downstream
activation of the genes of a category translates in this modeling framework into
delayed and broadened pulses. Typical output responses for 1, 2,3, and 4 such
concatenated blocks are shown in Fig. 7.12(b).

A simple parameter search can be set up to identify values ofni , di andTi , i =
1, . . . ,4, that guarantee for each gene a sufficiently well-reproduced time course.
The best transfer function order for each gene is identified as that maximizing the
correlation between true and model-based time series.



Chapter 7

Results

The∼ 2000 genes labeled as periodic by a periodogram test are subdivided into 16
clusters, see Fig. 7.1. In Fig. 7.1(a) the clusters are sorted in increasingorder of
HL (computed as the average of the HLs of the cluster elements). It is immediately
evident that the typical profiles, both in terms of the phase of the peaks (for each
gene the phase is computed maximizing the correlation with respect to a train of
shifted sinusoids) and of their width (although in a less regular way) is modified
in an almost continuous manner as we move along the clusters figures. Notice in
particular how the peaks of the first clusters match the “valleys” of the last ones.
For the average phase on each cluster, the phase/HL relationship is almost linear
(Fig. 7.1(b)).

The scatter plot in Fig. 7.1(d) confirms this linear proportionality, but also
shows a growing variance along the HL axis (see Table 7.1 for details). One of
the reasons may be that the HL measures are imprecise (see comparison between
HL datasets in [57]), and should probably be considered as context-specific, para-
metrically dependent on a set of physiological conditions (see also HL sources
description in section 6.1).

The deviations from linearity of clusters 6 and 9 admit a reasonable explana-
tion, mostly in terms of compartmental localization. Cluster 6 is essentially com-
posed of retrotransposons (all Ty1 and Ty2) and long term repeat mRNAs (mostly
of δ type) for a total of 73 out of 102 genes. For most of these genes (59) an
HL measure is missing. Hence the average HL for this cluster (and this cluster
alone) may be biased or unreliable. Cluster 9 instead is almost entirely composed
of cytoplasmic ribosomal subunits (109 out of 151 genes). In between, Clusters 7
and 8 contain to a large extent genes with mitochondrial localization and/or func-
tion (mitochondria organization and biogenesis, protein import into mitochondrial
matrix, oxidoreductase activity for Cluster 7, mitochondrial ribosomes, envelope
and membranes for Cluster 8). As is explained in detail in the next paragraph, the
large deviation from linearity seen in Cluster 9 can be due to an extremely fastand
short lived response of the mRNAs deputed to the biosynthesis of the cytoplasmic
ribosomal complexes, not deducible from the available HL data, neither from the
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Figure 7.1: In (a) the time series (on the x axis: time in min) of the periodic genes is
clustered according to a nonnormalized correlation distance function (seeTable 7.1
for details on the clusters). The clusters are then sorted (from left to right from top
to bottom) according to the average HL. In (b) the average HL is plotted against
the average phase for each cluster, while in (c) the average HL is shownagainst the
average pulse width. In the scatter plot of HL versus phase (d), the color indicates
the cluster number (see colorbar on the right). As can be noticed, along theHL
axis the standard deviation of a cluster grows with the mean, see Table 7.1 for
exact values, and the cloud of points looks like a cone (the cone delimited by the
two red lines contains 95% of the periodic genes). Still the increase of the phase
with the HL is clearly visible. In the least-squares linear fit in (b) (green) half of the
L2 norm of the residues is due to Cluster 9 (cytoplasmic ribosomes, see text). The
p.value for both linear regressions is< 10−5. Further details on these regressions
are provided in section 6.3.
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Cl. Genes HL Phase Width Ontology
Mean SD Mean SD Mean SD

1 101 13.26 (9.54) 32.4 (9.4) 2.2 (0.56)
RNA, rRNA, and tRNA processing and
metabolism, ribosome biogenesis and as-
sembly

2 58 16.02 (19.07) 26.3 (7.6) 2.3 (0.66)
RNA, rRNA and tRNA processing and
metabolism, RNA helicase, ribosome as-
sembly

3 101 16.46 (8.65) 43.3 (15.4) 2.1 (0.65)
RNA polymerase, translation initiation,
regulation, and termination, nucleotide
biosynthesis

4 34 19.44 (10.19) 98.2 (9.7) 6.3 (3.54)
transferase activity, DNA replication, cell
cycle

5 102 22.99 (10.27) 67.7 (11.8) 3.3 (1.95)
glycine metabolism, nitrogen and sulfur
metabolism, amino acid biosynthesis

6 102 24.59 (11.67) 177.4 (51.0) 5.2 (3.43) retrotransposons, long term repeats

7 124 24.59 (13.45) 109.6 (15.8) 5.0 (2.88)
mitochondrial membrane organization and
biogenesis, mitochondrial transport

8 151 24.72 (11.80) 128.3 (9.4) 7.6 (2.96)
mitochondrial ribosome, envelope, and
membranes

9 232 25.76 (13.78) 44.8 (22.5) 2.6 (1.46)
cytoplasmic ribosomes, translation pro-
cesses

10 154 28.34 (16.36) 169.7 (20.3) 6.0 (3.59)
ion/cation transmembrane transport, elec-
tron transport, oxidative phosphorylation

11 230 31.99 (19.05) 246.7 (35.5) 5.4 (3.90)
endopeptidase activity, protein catabolic
process, proteasome, actin filament orga-
nization, glycolysis, gluconeogenesis

12 65 32.69 (18.68) 214.8 (14.8) 5.5 (2.28)
lipid and alcohol metabolic process, perox-
isome

13 223 38.24 (28.35) 245.8 (12.6) 9.2 (3.71)
kinase activity, vacuolar transport, mem-
brane organization and biogenesis

14 128 39.10 (29.27) 285.5 (16.1) 10.1 (4.19) arginine biosynthesis, protein folding

15 117 42.83 (28.02) 258.7 (11.5) 10.2 (4.59)
hydrolase activity, fatty acid oxidation, cy-
tokinesis

16 29 45.74 (26.30) 307.8 (15.1) 8.7 (2.84) catalytic activity

Table 7.1: Statistics for the 16 clusters for Fig. 7.1
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current literature (in [131] it is affirmed that cytoplasmic ribosomal genes tend to
be stabilized by nutrient uptake).

Although less precise, also the relation between HL and pulse width on each
cluster (Fig. 7.1(c)) is approximately linear. Unlike the phase/HL proportionality,
this last result is expected from simple dynamical considerations, as longerHL
means longer “kernel width”, see also the dynamical model explanation below.

The emergence of a linear relation between HL and phase once the genes are
arranged in classes according to profile similarity suggests that a corresponding
cascade of causally organized events may be taking place during the YMC.To
some extent this is already visible through an ontological analysis of the clusters
of Fig. 7.1 (see Table 7.1), but in order to investigate more in detail the biolog-
ical meaning and significance of such a genomic “assembly line” we computed
HLs, phases and pulse widths along the main yeast pathways and for some of the
annotated yeast protein complexes. The data for the pathways (see Fig. 7.2) are
then lumped together into the 15 functional macrocategories shown in Fig. 7.3.In
terms of these macrocategories (sorted by phase), the result is that the mRNAs ac-
tivation reflects tightly the gene expression program expected to take placein the
cell, especially for the “fast” categories, i.e. transcription, nucleotide metabolism
and translation starting essentially synchronously in the time scale of the YMC,
followed by DNA replication and repair and amino acid metabolism. Progress-
ing further toward the slow processes, one encounters the metabolism of energy,
carbohydrates and lipids. Also for this classification, the progression in terms of
phase along the cycle is substantially faithful to the increase in HL (in the top plot
of Fig. 7.3(b) the most significant outlier is still the category “translation” already
mentioned, see also Fig. 7.5), and the progression in phase is paralleled byan in-
crease in pulse width (see bottom plot of Fig. 7.3(b)).

7.1 HL and the short-period YMC

The HL of a gene is defined as the time needed to halve the concentration of mRNA
in absence of new transcription. Hence in order for a “full” degradationof mRNA
to be observed, the interval between two consecutive waves of transcription has to
be at least twice or three times the HL. For yeast, the mean HL extrapolated from
[57, 78, 123] is∼ 26± 17 min. Hence for the long-period YMC the response to
bursts of transcription has the time to exhaust completely before the arrivalof the
next wavefront. On the contrary, for the short-period YMC describedin [76] the
period is approximately 40 min, meaning that excitation and degradation fronts are
substantially overlapping.

7.2 A detailed functional analysis

Using the ordering by phase of pathways and protein complexes (see Fig.7.2 and
7.4), we can zoom on these categories in much more detail. The first phase of
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Figure 7.2: Average of phase, HL, area and Pearson correlation along KEGG path-
ways, for all genes (red) and for periodic genes (blue), sorted by phase of the
periodic genes.



58 CHAPTER 7. RESULTS

0 100 200 300

FOLDING, SORTING AND DEGRADATION

XENOBIOTICS BIODEGRADATION AND METABOLISM

LIPID METABOLISM

BIOSYNTHESIS OF SECONDARY METABOLITES

CARBOHYDRATE METABOLISM

SIGNAL TRANSDUCTION

METABOLISM OF OTHER AMINO ACIDS

ENERGY METABOLISM

AMINO ACID METABOLISM

METABOLISM OF COFACTORS AND VITAMINS

REPLICATION AND REPAIR

GLYCAN BIOSYNTHESIS AND METABOLISM

TRANSLATION

NUCLEOTIDE METABOLISM

TRANSCRIPTION

phase

0 20 40

HL

 

 
all genes
per. genes

0 5 10

width

−0.5 0 0.5 1

corr

 

 
all genes
per. genes

(a)

10 20 30 40
0

50

100

150

200

250

ph
as

e 
(d

eg
)

HL (min)

TRANSCRIPTION

REPLICATION AND REPAIR

NUCLEOTIDE METABOLISM

COFACTORS AND VITAMINS

GLYCAN METABOLISM

TRANSLATION

OTHER AMINO ACIDS

SECONDARY METABOLITES

SIGNAL TRANSDUCTION

AMINO ACID METABOLISM

FOLD, SORT AND DEGRAD.XENOBIOTICS BIODEGR, MET.

ENERGY METABOLISM

LIPID METABOLISM

CARBOHYDRATE MET.

10 20 30 40
2

4

6

8

w
id

th

HL (min)

TRANSCRIPTION

REPLICATION AND REPAIR

NUCLEOTIDE METABOLISM

COFACTORS AND VITAMINS

GLYCAN METABOLISM

TRANSLATION

OTHER AMINO ACIDS

SECONDARY METABOLITES

SIGNAL TRANSDUCTION

AMINO ACID METABOLISM

FOLD, SORT AND DEGRAD.

XENOBIOTICS BIODEGR, MET.

ENERGY METABOLISM

LIPID METABOLISM

CARBOHYDRATE MET.

0  100 200 300
2

4

6

8

w
id

th

phase (deg)

TRANSCRIPTION

NUCLEOTIDE METABOLISM
TRANSLATION

GLYCAN METABOLISM
REPLICATION AND REPAIR

COFACTORS AND VITAMINS AMINO ACID METABOLISM

ENERGY METABOLISM

OTHER AMINO ACIDS

SIGNAL TRANSDUCTION

CARBOHYDRATE MET.

SECONDARY METABOLITES
LIPID METABOLISM
XENOBIOTICS BIODEGR, MET.

FOLD, SORT AND DEGRAD.

(b)

0 200 400 600 800 1000
0

10

20

30

FOLD, SORT AND DEGRAD.

0 200 400 600 800 1000
0

20

40

60

80

XENOBIOTICS BIODEGR, MET.

0 200 400 600 800 1000
0

20

40

60

80

LIPID METABOLISM

0 200 400 600 800 1000
0

20

40

60

80

SECONDARY METABOLITES

0 200 400 600 800 1000
0

20

40

60

80

CARBOHYDRATE MET.

0 200 400 600 800 1000
0

20

40

60

SIGNAL TRANSDUCTION

0 200 400 600 800 1000
0

20

40

60

OTHER AMINO ACIDS

0 200 400 600 800 1000
0

20

40

60

ENERGY METABOLISM

0 200 400 600 800 1000
0

20

40

60

80

AMINO ACID METABOLISM

0 200 400 600 800 1000
0

20

40

COFACTORS AND VITAMINS

0 200 400 600 800 1000
0

2

4

6

REPLICATION AND REPAIR

0 200 400 600 800 1000
0

20

40

GLYCAN METABOLISM

0 200 400 600 800 1000
0

50

100

TRANSLATION

0 200 400 600 800 1000
0

20

40

60

NUCLEOTIDE METABOLISM

0 200 400 600 800 1000
0

10

20

30

TRANSCRIPTION

(c)

Figure 7.3: (a): The periodic genes of the YMC are grouped accordingto KEGG
pathways (see Fig. 7.2) and then in the 15 macrocategories shown. For each macro-
category we calculate the average phase, HL, pulse width, and correlation of the
periodic genes (in blue), and also the average HL and correlation of all genes (in
red). Sorting by phase reveals the expected concatenation of events ofthe yeast
gene expression program, especially in the first part with transcription preceding
protein synthesis and DNA replication, followed by the slower categories ofcen-
tral metabolism. (b): Comparing HL and phase (or pulse width) roughly the same
type of direct proportionality still appear. The trend in the average profiles of each
category (black thick lines in (c)) reflects to a large extent that of Fig. 7.1.The third
plot in (b) shows that also phase and pulse width are directly correlated: pulses that
are delayed are also broadened. Linear regressions for these plots are discussed in
section 6.3.
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Figure 7.4: Average phase, HL, pulse width and intracomplex Pearson correlation
for a few MIPS protein complexes, sorted by phase (on the periodic genes).

this cascade consists of the activation of the transcription machinery with the syn-
chronous bursts of transcription of the three RNA polymerases (see Fig.6.1) and
of most of the RNA processing components, like the tRNA processing complexes
(RNase P) and rRNA processing complexes (exosome, RNase MRP,SIK1, NOP1),
with the nuclear splicing complexes following closely. While the mRNAs for the
polymerases are highly coordinated, the same cannot be said for the basal transcrip-
tion factors (TFs) required for their initiation. Overall only a few of these genes
follow the bursting trend of the RNA polymerases, notably, among them,SPT15,
which forms the TATA-binding protein and is also a component of the polymerase
I core factor and of TFIIIB. Most other genes involved with these general TFs do
not show any periodic pattern, and their mRNA concentrations never surpass very
low levels.

From Fig. 7.3, the peak of mRNA concentrations associated with the category
“translation” seems to be synchronous with the RNA processing burst. However,
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a more careful analysis reveals that this phase is an average of two “compartmen-
talized” activations of the translation machinery, having fairly different phases:
while cytoplasmic translation follows almost simultaneously the RNA machinery,
the mitochondrial translation activation has a phase lag of more than one sixth of
the period. In terms of time delay, this amounts to approximately 50 min, see
Fig. 7.5. More in detail, most of the mRNAs of ribosomal small and large subunits
for both cytoplasmic and mitochondrial localizations are highly correlated within
their complex (average Pearson correlation for both is around 0.8) and correlated
with the translation complexes at the corresponding location. In particular, among
the cytoplasmic translation complexes, the initiation factors eIF and the termination
factors eRF are very coordinated and respond very fast, while of the three elonga-
tion factors only eEF2 and eEF3 are well-coordinated, whereas the larger complex
eEF1 shows a less-defined response pattern, with only the subunit eEF1−β clearly
expressed. Overall for the class of translation complexes the pattern of activation
of the response reflects closely the corresponding HL distributions [123] (eIF and
eRF have short HL, eEF has not). Notice that a simple comparison of the HLs
of the cytoplasmic and mitochondrial ribosomal and translation machineries (both
approximately 24 min) does not show the significant difference which can be seen
on the time series profiles and which is instead revealed by the phase delay analy-
sis. For cytoplasmic ribosomal biogenesis, a similar anomaly is encountered also
in the stress/stimuli responses analyzed below. For mitochondria, the same type of
pattern is verified also by other complexes, for example by both the translocases
located in the outer and inner mitochondrial membranes (TOMandTIM) which are
known to mediate the protein import into the mitochondria, see Fig. 7.5.

A neat organization can be seen also in the phase of the nucleotide and amino
acid metabolism: while pyrimidine and purine synthesis, as well as e.g. the CTP
synthase enzyme involved in pyrimidine biosynthesis, are synchronous withthe
burst of transcription, the peaks for most of the enzymes involved in amino acid
pathways tend to be in phase with the activation of the translational machinery.
Also the synthesis of aminoacyl-tRNAs, necessary for the delivery of theamino
acids to the ribosomes during translation has a similar phase. As expected, the
“synthesis” pathway of an amino acid always anticipates its “degradation” pathway
(see Fig. 7.2). In order to start translation, the initiator tRNA carrying methionine
is required, and in fact, among the amino acid metabolic pathways, methionine is
one of the fastest. As a matter of fact, the pathways of sulfur metabolism and of
the sulfur-related amino acids (methionine, cysteine, as well as the closely related
selenoamino acid metabolic pathway) present very similar and very compact time
series, with an early (synchronous with the main burst) but long lasting activation
(duration of the pulse is more than 100 min). This tight coordination may hint at a
special role played by the sulfur pathways in the yeast population synchronization
[114, 121].

To conclude the protein synthesis, the nascent polypeptide chains must fold
into 3D structures. The molecular chaperonin-containing T-complex and theGim
complex, which help in the folding, behave synchronously with the main burst.
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Complex (periodic genes only) Phase HL Width
Nuclear splicing complexes 55.11 13.7 2.22
Cytoplasmic ribosomes 47.5 24.7 2.77
Cytoplasmic translation complexes 64.9 17.8 2.1
Mitochondrial splicing complexes 125.3 22.4 6.67
Mitochondrial ribosomes 128.2 24 8.23
Mitochondrial translation complexes 127 26.7 8.5
TOM + TIM translocases 127.1 19.6 6.57
PUF3p mRNAs 129.7 25.4 7.38

(c)

Figure 7.5: (a): Cytoplasmic vs. mitochondrial splicing, ribosomal (small and
large subunits are lumped together) and ribosomal translational complexes.All
genes are nuclear-encoded. Black profiles represent mRNAs classified as periodic.
Within each of the two cellular compartments, the time courses of gene expres-
sion are similar and fairly coordinated. Even the amount of correlation amongthe
complexes subunits is similar, with e.g. ribosomal mRNAs in both compartments
being more tightly coordinated than the corresponding translational machineries.
The bursts for the cytoplasmic localizations are much sharper, higher and shorter
than in the mitochondria. These last accumulate an average phase lag of∼ 90◦, or
around 50 minutes of delay (recall that the phase is computed by autocorrelation
with a train of sinusoids, hence the value for the phase represents the “center” of
the pulse). The cytoplasmic ribosomal complex substantially overlaps with cluster
9 of Fig. 7.1(a), while the mitochondrial ribosomal complex is contained in clus-
ter 8 of the same Figure. (b): Mitochondrial translocases across outer and inner
membranes, and mRNAs having Puf3p as a RBP (220 genes, 134 periodic). Of
the 236 mRNAs belonging to at least one of the mitochondrial categories shown in
the Figure, 62 have Puf3p as RBP. This tells us that in this case the “localization”
constraint is stronger than co-sharing a single RBP, but that the two conditions are
coupled and induce a similar pattern of dynamical regulation.
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On the contrary, ubiquitin and proteasome, that proceed to the recognition and
degradation of anomalous proteins, as well as the SCF and anaphase promoting
complexes, that cause the proteolysis of the cyclin-CDK complexes, have patterns
of activation which are more delayed and broadened. Actually, this class of pro-
teolytic processes (macrocategory “folding, sorting and degradation” inFig. 7.3)
has the highest values of phase, i.e. it has the slowest response to the transcription
bursts.

The macrocategory “DNA replication and repair” (see Fig. 7.3) contains what
remains of the “fast” responses to a large extent synchronous (proteincomplexes:
DNA damage checkpoint, DNA repair, pre-replication, replication, replication fork,
which includes all DNA polymerases, helicases and ligases, cyclin-CDK) or within
a short time delay from the initial bursts of transcription. The peculiarity of this
class is that the pulses are more long lived than in the “transcription” and (cy-
toplasmic) “translation” categories. Also the complexes regulating the cohesion
and separation of sister chromatids during the S-phase (nuclear cohesion family of
complexes) follow the same pattern (see Fig. 7.4).

Moving to the core of the cell’s metabolic activity, the average phase increases
further (see Fig. 7.3), but the main qualitative difference is on the shape of the
pulses, which are now broader and often with an asymmetric rise/decay profile:
still sufficiently fast activation but slower and less abrupt decay. This difference
is likely to reflect the longer HL associated to these categories (all have average
HL > 30 min), and implies metabolic functions more overlapping than sequen-
tial. Along each metabolic pathway, the degree of correlation among enzymes
catalyzing neighboring reactions is higher than it is expected (the “expected value”
is inferred from a large collection of yeast microarray experiments, see Fig. 7.6)
implying a coherent and coordinated temporal behavior along the metabolic routes.

7.2.1 Central metabolism

From Fig. 7.7, it seems that the long bursts of the citric acid cycle and oxidative
phosphorylation genes could be composed of two distinct adjacent phases for each
period. Similarly, the profiles of the anticorrelated isoenzyme pairs mentioned in
section 7.4, show that of the two recurrent patterns described in Fig. 7.11(c), one
resembles the mitochondrial transcription/translation burst (upregulation approxi-
mately in the interval 225÷375 min interval and periodically thereafter), the other
is more delayed (interval 300÷450 min) and characterized by a deep downregula-
tion during and after the main transcription bursts (200÷275 min).

The alcohol dehydrogenases isoenzymes are “prototypes” of the 2 patterns:
ADH1 and ADH3 (respectively cytosolic and mitochondrial, both reducing ac-
etaldehyde to ethanol) follow the first, whileADH2 (using ethanol as substrate)
follows the second. The first pattern (ADH1/ADH3) is synchronous with the hex-
okinases catalyzing the initial glucose phosphorylation: of the three isoenzymes,
HXK2 has the earliest response but is also more rapidly repressed, whileHXK1 is
more long-lived and is expressed, together with the glucokinaseGLK1, also in the
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Figure 7.6: Mean correlations between genes along the KEGG metabolic path-
ways (genetic information categories such as transcription, translation, and DNA
replication and repair are not included), computed for the yeast metabolic cycle
time series (top plot) and for a collection of 790 yeast experiments (bottom plot).
The correlations are computed between enzymes that are neighbors in termsof
metabolic reactions: from adjacent genes, to genes separated by three intermediate
reactions (green scales). Averages between all genes involved in a pathway is also
shown in yellow. On the right panel of each plot are shown the average of those
mean correlations along all pathways, grouped by their average enzyme connec-
tivity degree. Correlations are higher for more tightly connected pathwaysthan
for those having a low connectivity degree. Comparing the right hand sides of the
two plots, correlation among neighboring genes for the YMC is higher than for the
collection, thus confirming the high level of functional coordination inducedby the
YMC along the metabolic pathways.
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Figure 7.7: Time course of the central metabolic pathways.

other interval [102].

Quite unexpectedly, the enzyme for the final irreversible step of glycolysis,
pyruvate kinase (CDC19, as the isoenzymePYK2 remains constantly basal), is
neither synchronous with theADH1/ADH3 andHXK2 profile, nor with the other
one (ADH2 andGLK1), but rather delayed with respect to both modes (in Fig. 7.4
pyruvate kinase has the highest phase delay). The high level of expression of alco-
hol dehydrogenase in all metabolic modes suggests that pyruvate production may
not be the rate-limiting step of the pathway, and that a delayed pyruvate kinase
action may help meeting cellular ATP demand by distributing uniformly ATP pro-
duction along the cycle (see Fig. 7.8(a)). As a matter of fact,CDC19peaks always
precede the transcription bursts (in correspondence of the downregulation of the
mitochondrial genes) and fall right after that. Most of the enzymes for theinter-
mediate steps of glycolysis do not show any significant periodic trend (seeFig. 7.9
for an overall view of the phase of the genes on the central metabolic pathways),
although on the other irreversible reaction, phosphofructokinase (bothgenesPFK1
andPFK2) has some degree of resemblance withCDC19. On the contrary, the
gluconeogenesis enzymes pyruvate carboxylase (PYC1) and phosphoenolpyruvate
carboxykinase (PCK1) show a strong correlation with the genesADH1/ADH3 and
HXK2.

The acetaldehyde-ethanol exchange is part of the so-called “PDH bypass” (i.e.
route alternative to the pyruvate dehydrogenase complex) for acetyl-CoA produc-
tion, see [101]. The supply to this pathway (throughPDC5) is almost continuous
(except in the “valleys” of the pyruvate kinase) and the rest of the pathway, alde-
hyde dehydrogenase (mostly isoenzymeALD6, mitochondrial) and acetyl-CoA
synthase (ACS1, cytosolic) coordinated withADH2. On the contrary, the pyruvate
carboxylase branch followsADH1/ADH3, while the direct route pyruvate/acetyl-
CoA (PDH complex) is unclear (more synchronous withADH1/ADH3 though).



7.2. A DETAILED FUNCTIONAL ANALYSIS 65

0 200 400 600 800 1000
0

10

20

30

40

M
ito

ch
on

dr
ia

l

ATP

0 200 400 600 800 1000
0

20

40

60

C
yt

op
la

sm

0 200 400 600 800 1000
0

20

40

60

ADP

0 200 400 600 800 1000
0

20

40

60

0 200 400 600 800 1000
0

1

2

3

4

5

AMP

0 200 400 600 800 1000
0

20

40

60

(a)

0 200 400 600 800 1000
0

10

20

30

40

50

M
ito

ch
on

dr
ia

l

O
2

0 200 400 600 800 1000
0

10

20

30

40

C
yt

op
la

sm

0

50

100

dO
2

0 200 400 600 800 1000
−10

0

10

dO
2 r

at
e

(b)

Figure 7.8: (a): Time courses of the expression levels for the enzymatic genes
catalyzing reactions involving ATP, ADP and AMP. The reactions are subdivided
in mitochondrial and cytoplasmic (“cytoplasm” referring to the entire cell with
the exclusion of the mitochondria) compartments and according on whether the
metabolite is to be considered a substrate (red line) or a product (blue line) of
the reaction. Thick curves represent the average over the mRNA expression of
the corresponding enzymes. Information abound compartment and reaction direc-
tion is extrapolated from [49]. The expression of the enzymatic genes is taken as
a measure of the flux of metabolites through the reaction node (scales are how-
ever not indicative). The peaks of consumption of ATP in the cytoplasm in cor-
respondence of the main bursts are small but visible. More visible is the pattern
of ATP-producing enzymes in both compartments. In the cytoplasm this is essen-
tially due to the pyruvate kinase enzyme Cdc19 transforming phosphoenolpyruvate
into pyruvate during anaerobic respiration, while in the mitochondria it is due to
the oxidative phosphorylation pathway. The fermentative recharging ofATP in the
cytoplasm is quite in antiphase with the respiratory mitochondrial one (scale here
can be even misleading: aerobic ATP production is of course far more efficient
than anaerobic one). Notice that during the bursts of transcription, ATP hydrolysis
rather than peaks of ADP induces peaks in the production of AMP, as is expected
for high energy demanding reactions such as RNA polynucleotide synthesis. (b):
Time course of expression for enzymes of reactions involvingO2. Color, line thick-
ness and compartment subdivision is the same as above. The third plot is the trace
of dissolvedO2 (blue line, data reproduced from [119]), and thedO2 ratio (green
line). Its trend follows closely the cytoplasmic “oxygen production” (blue curve
in the middle plot), which essentially is the time course of the catalases, enzymes
detoxifying reactive oxygen species such asH2O2. Qualitatively the main discrep-
ancy between the two curves occurs in the 50 min interval following the bursts(e.g.
200÷ 250 min.) wheredO2 keeps decreasing while the concentration of the Cata-
lases mRNAs remains basically at zero level. From the top plot, the explanation
could be that this is the interval in which mitochondrial respiration starts, thereby
consumingO2.
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Figure 7.9: Phase of the periodic genes on the central metabolism. The color
code (only for periodic genes) indicates the phase interval. Red: 0÷ 100; green:
100÷ 200; yellow: 200÷ 250; orange: 250÷ 300; brown: 300÷ 360.
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With the exclusion of the succinyl-CoA ligase (bothLSC1andLSC2) all the
steps of the citric acid cycle are more in agreement with theADH1/ADH3 pat-
tern and are rigorously shut down during the transcription bursts. FromFig. 7.7,
it seems that the long bursts of the oxidative phosphorylation genes overlap with
both patterns. Looking at the trace of observeddO2 (data taken from [119] and
reproduced in Fig. 7.8(b)), citric acid cycle and oxidative phosphorylation activa-
tion seem to correspond to the maximum drop indO2 concentration (200÷300 min
interval following the transcription burst), but they seem to persist also long after
the recovery ofdO2. It must be noticed that the trace ofdO2 resembles closely
the expression profile of the catalase enzymes that produceO2 detoxifying reactive
oxygen species.

7.2.2 Glucose-regulated carbon metabolism

There is a consistent literature on the influence of glucose abundance ongene
expression [17, 32, 71, 103, 131]. On the YMC, the standard glucoseactivated
and/or repressed signaling pathways are not expressed. For example the Snf1 ser-
ine/threonine protein kinase complex subunitsSNF1, SNF4, SIP1, SIP2, GAL83,
as well as the other regulated genes on the same pathwayMIG1, CAT8andADR1,
do not show any significant pattern.

7.2.3 More compartmentalized categories

Other categories which can be associated with a particular cellular compartment
emerge from the joint analysis of pathways and protein complexes. For example
lipid biosynthesis, which is to a large extent localizable in the endoplasmic reticu-
lum (ER) has a phase comparable to the translocon family of complexes (Fig. 7.4)
which is composed of the Sec61 protein translocator, the signal recognitionparti-
cle which binds the ER-specific sequence on the nascent polypeptide chain and the
signal peptidase that cleaves it off.

7.2.4 Signaling proteins

Complexes with eminently intracellular signaling functions, such as the antago-
nistic cAMP-dependent protein kinase and serine/threonine phosphoprotein phos-
phatases (respectively phosphorylator and dephosphorylator of signaling proteins)
have similar patterns of expression, similar timing during the YMC and high Pear-
son correlation (at least for what concerns periodic genes).

7.2.5 Weakly periodic categories

Several categories linked to transcriptional activation or RNA processing, like the
histone acetyltransferase enzyme or the nuclear processing complex family(3’-end
pre-RNA processing factors CFI and II and 3’-end polyadenylation factors PFI) or
the chromatin assembly complex, seem to be evading the tight phase coordination.
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However, this is mostly due to the evanescent periodic pattern, if any, of thecorre-
sponding genes. Likewise for the nuclear pore complex, which assists theexport of
mature mRNA through the nuclear envelope: most of its genes in fact show bursts
which are synchronous with the initial pulses but of very small amplitude, thus
ambiguous in terms of temporal classification.

7.3 Regulation via TFs versus RBPs

In terms of regulatory influence, while the importance of transcription initiation via
TFs is widely studied and a large amount of data (computational and experimental)
is available about the binding of TFs to target genes, similar post-transcriptional
systematic data on the regulation by means of RBPs are still sporadic [62]. Notable
examples are mRNAs associable to the nuclear export proteins Mex67 and Yra1
[61], the Puf family of RBPs [56], and the 3’ UTR motif collection of [109].

Inspired by [93], we applied these RBP lists as well as the list of TF binding
sites from [3, 86] to the YMC time series comparing the average correlation among
genes being common targets of a TF or of a RBP. The two distributions are shown
in Fig. 7.10. For both TFs and RBPs, only a few motifs emerge as having a sig-
nificantly high correlation. The number of genes regulated by the same TF varies
between 1 and 226 with a mean of 35.2, while the number of genes with a common
target mRNA motif varies between 6 and 1138 with a mean of 81.7. If we draw
from a null distribution representing random grouping, increasing the number of
genes in a group the probability of finding a high mean correlation obviously de-
creases, so we expect the distribution for the second set to be tighter around 0. In
our case, on the contrary, there are 6 groups out of 110 with a mean correlation
> 0.4 for the TF target genes (versus an expected value of 1 for random groups of
genes with the same cardinalities of these groups) and 7 groups out of 83 for the
genes with a target mRNA motif (versus the expected 0 for random groups with
same cardinalities). This suggests that post-transcriptional regulation is more sig-
nificant that transcriptional regulation in the coordination of the metabolic cycle,
although the evidence is not conclusive. When checking the groups of periodic
genes with high correlation we found the following significant annotations:

• 44 genes out of 56 having Fhl1p as TF and 10 genes out of 12 having Sfp1p
as TF are constituents of cytoplasmic ribosomes; notice that instead other
cytoplasmic ribosomal TFs such as Rap1p do not correspond to a sufficiently
high correlation;

• 22 genes out of 26 having Hap4p as TF code for subunits of respirationchain
complexes;

• 62 out of 220 genes whose mRNA is bound by Puf3p are annotated for mito-
chondrial transcription/translation (56 are part of mitochondrial ribosomes,
of which 47 are periodic), see Fig. 7.5.
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Figure 7.10: Top row: Distribution of the mean correlations for groups of genes
having a common DNA motif likely to be the target of a TF [86]. Bottom row:
Distribution of the mean correlations for groups of genes having a common mRNA
motif likely to be the target of a RNA-binding protein (Yra1, Mex67 [61] or thefive
Puf proteins [56]) or having a common 3’ UTR motif implicated in the stability or
in the subcellular localization of the mRNA [109]. The mean correlation of a group
of genes is defined as the average of the correlations between the expressions of
each gene pair in the group. The mean correlations calculated for all the gene pairs
are shown on the left, while on the right only the periodic genes of each group are
considered.
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7.4 Double peak and anticorrelated isoenzymes

Especially for mitochondrially localized pathways, such as citric acid cycle and
oxidative phosphorylation, the pulses are very broad, with a neat downregulation
only in correspondence of the bursts of transcription and an overall profile often
exhibiting a double peak on each period (occurring with a phase lag of∼ 100◦ one
from the other, see Fig. 7.7). The four respiratory chain complexes forexample
follow this pattern in a fairly precise manner.

In order to investigate the meaning of this double peak characteristic, we con-
sider genes whose products are classified as isoenzymes. If we look atthe correla-
tion for all pairs of isoenzymes, see Fig. 7.11(a), we see that restricting toperiodic
genes an almost bimodal distribution emerges, with a significant percentage (43
out of 210) of isoenzyme pairs being anticorrelated (R < −0.3). This behavior
has no counterpart on the distribution of expected values (computed as above by
means of a large collection of microarrays). In more than 50% of these anticorre-
lated pairs the pattern of activation in the time course is similar (see Fig. 7.11(c)),
with one of the two isoenzymes exhibiting a deep and prolonged downregulation
immediately following the transcription bursts. The majority of these pairs is in-
volved in oxidoreductive processes, like, for example,SDH1-YJL045W, SDH3-
YMR118C, SDH4-YLR164W (all subunits of succinate dehydrogenase), or the
NADP-dependent isocitrate dehydrogenase pairsIDH1-IDP3, IDH2-IDP3, IDP1-
IDP3, or the plasma membrane H+-ATPase isoenzymesPMA1-PMA2, or the
NADH dehydrogenase pairsNDE1-NDE2. Three among the most anticorrelated
pairs of isoenzymes showing this pattern are located along the pentose phosphate
pathway, two on the cytosolic oxidative branch (SOL3-SOL4andGND1-GND2),
the third (the transketolasesTKL1-TKL2) downstream. The pentose phosphate
pathway synthesizes NADPH, which is the major source of reducing equivalents
and, according to [121, 127], plays a major role in the establishment of the cycle.
Also the most anticorrelated isoenzymes in the glycolysis pathway, the alcoholde-
hydrogenases, have a similar pattern:ADH1 andADH3 (reducing acetaldehyde
to ethanol) versusADH2 (catalyzing the reverse reaction), see section 7.2.1 for a
more detailed analysis of the periodic pattern in the central metabolism.

7.5 A minimal input-output dynamical model for the un-
folding cycle

Possible origins of the sustained oscillations are discussed at length in the literature
[20, 76, 83, 95, 100, 126, 127, 128]. Also Tu et al. explain the cycle and its time
compartmentalization in terms of metabolism and redox balance [119, 120, 121].

Rather than adding to the list of mechanisms for metabolic regulation, by view-
ing each cycle as the dynamical response to a burst of transcriptional activation,
this work aims at providing a characterization of the dynamics of the unfolding
of the cycle, i.e. of how these “impulse responses” are progressively delayed and
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(b) Scatter plot of the phase of the peri-
odic isoenzymatic pairs (the pairs in blue
haveR> −0.3)
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Figure 7.11: Anticorrelated isoenzymes for the YMC (top row in (a)) and for a
collection of 790 yeast gene profiling experiments (bottom row (in (a)). The corre-
lations between all pairs of isoenzymes in the two sets are shown on the left, while
on the right only periodic pairs of genes are considered. For them, in the YMC the
distribution of correlations tend to a bimodal distribution, i.e. a significant subset
of isoenzymes is anticorrelated and oscillates with opposite phases. The sametype
of anticorrelation is not visible on the reference collection. The time series ofthe
pairs in red in the scatter plot of the phases (b) are depicted in (c). One ofthe
two genes of these pairs (in red) is characterized by a deep valley following the
transcription bursts. Most of these pairs are involved in redox processes.



72 CHAPTER 7. RESULTS

broadened with respect to the input pulses, and of how this correlates withthe
stability of the corresponding transcripts. The compactness in terms of phase and
width of the early categories over repeated oscillatory cycles is an argument in fa-
vor of the existence of a single triggering event for each cycle, corresponding to
the transcriptional activation bursts mentioned above. In fact, sharp, equispaced
pulses are maintained in spite of the broader and less coordinated profiles of the
events immediately preceding them. This hypothesis is not in contradiction with
the observations about the metabolic origin of the YMC, neither with the observed
alterations of the period following a genetic disruption [20, 120, 121] (which could
in principle preserve the sequence of events described). On the contrary, it merges
the metabolic control level described in [119] with an extra regulatory element
which is known to play a role in dynamical contexts.

In fact, the mRNA stability reflects known properties of the corresponding gene
products: while mRNAs encoding transcriptional machinery or regulatory compo-
nents tend to be short-lived and to turn over more quickly, transcripts encoding core
enzymatic proteins are typically more stable [91, 123, 125]. For what is known,
protein synthesis tends to follow the concentration of the corresponding mRNA
[99] and to be at least as stable, if not longer-lived [10, 60]. Hence,it is expected
that the concentration of the gene products follows profiles that are similar tothose
of the mRNAs. The observation that the dynamics through a metabolic pathway
can be considered as a timed and sequential process at the level of geneexpres-
sion appears in several papers in the literature, see [19, 134]. The same principle
seems to be reflected in the YMC, although it is not observable at the level ofdetail
investigated, e.g. in [19], but more macroscopically and at genome-wide level.

In terms of dynamical models, the progressive broadening and smoothing of
the response to a sequence of (transcriptional) pulses can be described by means
of simple linear input-output models (i.e. transfer functions in the Laplace domain)
of increasing order having “low-pass” characteristics. As the time constant of this
low-pass filter is essentially given by the HL of the mRNA, this type of model
naturally predicts the correlation HL–pulse width. In order to describe correctly
also the phase along the cycle, a time delay is added to the response, see Methods
for a thorough description and Fig. 7.12(a,b) for an example. If the order of such
a fitted minimal dynamical model is used to sort the annotated macrocategories of
Fig. 7.3, we still recover both the same expected cascade of events and thesame
direct proportionality with HL, see Fig. 7.12, meaning that even in terms of the
simplest possible dynamical model the kernels providing the best fitting become
increasingly complex as we progress through the cycle. This is of courseexpected
as the mRNAs gradually pass from fast turnover to high stability.

7.6 A common dynamical gene expression program

As the YMC is obtained only in particular conditions (long-term continuous cul-
tures in chemostats), an intriguing question is whether this highly organized un-
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Figure 7.12: Dynamically, the response of the system to the sharp pulses oftran-
scriptional activation can be modeled in terms of input-output transfer functions
(i.e. convolution integrals in the Laplace domain, see Methods for details). The
main feature of a simple zero-pole transfer function with low-pass characteristic
is that in correspondence of an impulse-like input it yields an output which isa
smoothed and broadened version of the input. Concatenations of such zero-pole
transfer functions describe accurately the progressive broadeningand delaying of
the YMC gene expression time series. Typical time profiles obtained for transfer
functions of order 1 to 4 sketched in (a) are shown in (b). The top plot in (b)
shows the larger kernels obtained by concatenating up to 4 first order transfer func-
tion blocks. The lower plot in (b) shows how consecutive impulse responses look
like for the various orders of transfer functions and an extra delay element as in
eq. (6.4). A simple fitting of theni , di andTi parameters and of the best model
order for each gene allows to accurately reconstruct the average profiles for the 15
macrocategories of Fig. 7.3 (in (c) the model-based time courses are shownin red).
With the usual exception of the category “translation”, the best transfer function
order is roughly proportional to the corresponding HL values, coherently with the
other variables discussed in the text.
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folding of the dynamical response to pulses of transcriptional activation ispeculiar
only of the YMC or can be observed also in other experimental conditions. For this
purpose, we consider the gene expression response of steady-stateyeast to pulses
of glucose described in [104]. In this case, the yeast shows a transient dynamical
response but no oscillatory behavior. Furthermore, the transient peaks are more or
less synchronous for all genes, i.e. there is no time-ordering in the dynamics, un-
like in the YMC. However, if for a gene we compare the maximal signed amplitude
of each expression profile on these time series with the corresponding phase and
pulse width in the YMC, a sizable anticorrelation emerges, see Fig. 7.13(a).

If, on the contrary, we consider the stress responses time series of [55], the
YMC phase/pulse width turn out to be positively correlated (rather than anticorre-
lated) with amplitude, i.e. categories appearing early in the YMC tend to be down-
regulated in most stress responses, while “late phase” categories tend to be upreg-
ulated, see Fig. 7.13(b). It is known that in the stress responses genesannotated for
ribosomal proteins and/or RNA metabolism are in general downregulated, while
e.g. respiratory genes (such as those of the citric acid cycle and of the oxidative
phosphorylation) become upregulated [55]. On Fig. 7.13, notice that alsoin all
these responses cytoplasmic ribosomes (cluster 9 in Fig. 7.1) are aligned withthe
rest of the (cytoplasmic) transcriptional/translational machinery rather than with
the assigned HL values.

The conclusion of this analysis is therefore that in intrinsically dynamical con-
texts some form of common response might indeed be taking place, although ex-
erted by different means. Such genome-wide coordinated response shows a graded
ordering which reflects the degree of stability of the genes involved.
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Figure 7.13: The short-term responses of steady-state yeast to pulsesof nutri-
ent discussed in [104] and the stress responses of [55] show a transient peak of
up/down regulation. The peaking times are substantially uniform on the genes.
For each gene we compute the maximal signed amplitude at the peak and lump
together genes belonging to each of the known protein complexes (see Fig.7.4 in
Additional file 1). If for [104] we compare this amplitude with the phase (left) and
the pulse width (right) of the corresponding genes for the YMC, we can observe
that both scatter plots have a consistent anticorrelation: complexes upregulated in
the glucose stimulations of [104] correspond roughly to “early” complexesin the
YMC and also to genes with a fast turnover. At the other end, complexes down-
regulated in [104] are late in the YMC and are more stable, see (a). This shows
how, in spite of different growth and stimulation conditions, the gene expression
program is substantially faithful. On the contrary stressful stimuli such as those de-
scribed in [55] yield correlated pattern with phase/width of the YMC (b). Just like
for the YMC, for both types of responses cytoplasmic translation behavesdiffer-
ently from the mitochondrial one. In red circles the first 3 complexes of Fig.7.5(c)
are highlighted, in magenta squares their mitochondrial counterparts. Hence the
anomaly represented by cluster 9 of Fig. 7.1 with respect to the HL classification
is confirmed by these other dynamical responses.
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Chapter 8

Conclusion

In [119, 120] the time compartmentalization of the cycle is interpreted in terms
of the need to accumulate sufficient products from the metabolic reactions in or-
der to move on to the next phase of the cycle and to autoinduce further cycles of
oscillations. This picture is not contradicted by our observations.

It is also affirmed in [119] that broad profiles (like those associated here to
“late” categories) may be due to loss of synchronization in the population of yeast
cells as they progress through the cycle(s). Based on what we showedin this work,
such an interpretation is problematic: loss of synchronization during a cyclewould
jeopardize the entire transcriptional program on the following cycles, whileon the
contrary, we still see thin and precisely coordinated pulses in the fast categories.

If, as we do in this work, rather than looking at the YMC merely as cyclic
oscillations, we study it as a highly organized dynamical response to pulsesof
transcriptional activation, then this response can be analyzed in much moredetail
at genome-wide level and we can observe how an important role in the coordina-
tion seems to be played by the mRNA turnover rate. The self-sustained character of
what we consider the most upstream event of the cycle, the transcriptional activa-
tion burst, can still be conditioned to the accumulation of the required metabolites,
while the unfolding of the cycle, which from the analysis of [119] is alreadyknown
to be functional to the distribution of e.g. the redox load of the cells, is enriched
of an extra, intrinsically dynamical feature. This feature is a fine-gradeddetail of
our notion that genes with a fast turnover are typically regulatory, while slow genes
are enzymatic and metabolic [91, 125]. It can be used to describe the sequence of
events occurring in the YMC as a “natural” gene expression program.

Extrapolating from the specific YMC context, the ordered pattern of eventsde-
scribed for the YMC is to a good extent similar to that found on other intrinsically
dynamical contexts such as the stress/stimuli responses. Whether the mRNA sta-
bility is the cause of this coherent behavior or is simply another effect of a more
profound regulatory mechanism is a question to which we cannot provide adefini-
tive answer at the moment.
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Part III

Chemical reaction network
theory and its applications
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Chapter 9

Introduction

Chemical reaction network (CRN) theory has been developed since the early 1970s
to study the dynamical evolution of the concentrations of the chemical species
involved in a known set of reactions [43]. Under the assumptions of well mixedness
and constant temperature, a system of ordinary differential equations for the species
concentrations can be derived from the chemical reactions.

Important aspects in the study of this type of dynamical systems are the exis-
tence of equilibria, their number and stability. In particular, the capacity of a reac-
tion system to exhibit more than one equilibrium is not only of interest for chem-
istry or chemical engineering, but has become a major topic also for biologists,
in particular in the study of the switch-like behavior observed during intracellular
signaling [69, 90, 97] or cell differentiation [79, 129] processes.

The main difficulty which often arises in the verification of the multistability
property is the poor knowledge of the rate functions of the reactions, from the
type of kinetics (like mass action, Michaelis–Menten or Hill) to the value of the
parameters (called rate constants) involved in each reaction kinetics. The power of
CRN theory lies in the fact that its results are based on the network structurealone,
and so are independent of the values of the constants and in some cases also of the
type of kinetics.

In fact, Martin Feinberg and colleagues found a number of conditions [37, 41,
43, 44], centered on the concept of network deficiency, under whichthe dynamical
system for a CRN with mass action kinetics does not admit multiple equilibria,
regardless of the rate constants. Other different conditions for monostationarity,
verifiable on a graph representing the CRN, were then proved [23, 25,108]. These
latest conditions, based on system injectivity, were later extended [4, 5] also to
other kinetics, provided that the system is non-autocatalytic.

An interesting application of these theoretical results to biology is model dis-
crimination [21, 22, 38]: if a biological process is known to be multistable, andfor
it there are multiple candidate reaction models, it is possible to eliminate some of
them by proving that they are always monostationary.

For small CRNs the various conditions can be verified manually, while for
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larger networks the only so far available software tool was theChemical Reaction
Network Toolbox, version 1.1a [38], a closed source DOS program which imple-
ments only the criteria based on deficiency theory. We decided to implement a
new, open and complete toolbox for all the previously mentioned approaches, in
a modern environment with integrated support for system of differential equations
and linear programming like MATLAB.

Another interesting property that can be studied on chemical reaction networks
is monotonicity [116]. Monotone dynamical systems have very useful charac-
teristics [112], like the tendency of their solution to converge to an equilibrium
(a bounded trajectory generically converges to an equilibrium) and the lackof
“chaotic” behavior.

The link with biological systems arise from the observation that, although non-
linear and complex, these systems typically show highly predictable and ordered
dynamical behavior, and a tendency to remain at equilibrium or to robustly return
to it when perturbed. It has been suggested that biological systems might have
evolved so as to be, if not monotone, at least near monotone [85, 116].

Monotonicity in dynamical systems is a well-studied property [64, 111], and
can be stated in several alternative ways. For biological networks, a very useful
way to formulate/verify it is in terms of the sign of all possible feedback loops
among the variables of the system. Given an arbitrary system of ordinary differen-
tial equations (ODEs), consider the undirected multigraph having an edge between
two variables labelled with the sign of the corresponding entry in the Jacobianma-
trix. Looking only at the signs of the Jacobian gives a basic indication of theeffect
(activatory/inhibitory) of a variable on another variable. In most biological con-
texts, this information is the best one can hope to obtain, as too little is known of
the functional form of the ODE and of its dependence on concentrations,parame-
ters, external conditions, hidden (non-modeled) variables, etc.

For this undirected multigraph, the monotonicity property corresponds to all
cycles having positive sign, where the sign of a cycle is computed as the product
of the signs of the edges forming the cycle. Undirected cycles may correspond to
“true” oriented feedback loop or to e.g. distinct paths connecting pairs ofvertices
[116].

It is argued in [116] that biological networks are “near monotone” in the sense
that a relatively small number of sign changes in edges is enough to make the graph
monotone. Closely related to this idea is the intuition that biological networks may
have many more positive cycles than negative ones, which is the approachtaken
in [85]. While the simple verification of whether a network is monotone or not is
feasible in polynomial-time, the problem of testing how distant a given network is
from monotonicity (i.e. estimating the “consistency deficit” in the terminology of
[116]) is an NP-hard one [28]. As the size of a network becomes of the order of
the thousands of nodes, like for example in any gene regulatory network,testing
exhaustively the sign of all cycles quickly becomes an untreatable problem,be-
cause the number of cycles grows exponentially. In fact, in [85] only short cycles
were tested for large networks, while in [28] approximation algorithms basedon
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semidefinite programming ideas were introduced.
Our purpose is to tackle this problem from a different perspective, using tools

from graph theory, namely the notion of fundamental cycles. The concept of a
fundamental cycle was introduced by Kirchhoff [72]. What Kirchhoff showed is
that no matter how many cycles an undirected graph contains, considering only
fundamental cycles with respect to a spanning tree is enough as the rest of the
cycles are obtained as linear combinations of some fundamental cycles. In terms
of linear algebra, fundamental cycles form a basis of a vector space whose elements
are cycles and disjoint unions of cycles.

In this work we show that fundamental cycles of positive sign form a subspace
which is invariant to the positivity property: any cycle of this subspace musthave
a positive sign, and the cycle subspaces obtained in this way correspondto mono-
tone subsystems. The number of negative fundamental cycles corresponds to the
number of sign changes that are required to render the network monotone. In fact,
each fundamental cycle is uniquely associated to a chord not shared with any other
fundamental cycle. By changing sign to the chords of all negative fundamental
cycles we obtain a monotone graph.

As an easy byproduct, we get an upper bound on the number of inconsistencies
of a network: any network can be rendered monotone by at most a number of
sign changes equal to the cardinality of a basis of fundamental cycles. Unrelated
(and usually sharper) upper bounds can also be obtained from the theory of signed
graphs [115]. These bounds are quite helpful in defining a proper metric to test
whether a given network can be classified as “near-monotone”.

All bases of fundamental cycles have the same cardinality, however the num-
ber of positive/negative fundamental cycles in a given basis depends on the choice
of spanning tree (and can vary widely with it). Needless to say, testing all span-
ning trees requires computational time that grows exponentially with the size of the
graph. In order to simplify the choice of a “good” spanning tree (with fewest pos-
sible negative fundamental cycles, hence as near as possible to monotonicity), we
show that is possible to maximize the overall number of positive edges on the graph
while maintaining unaltered the sign of each cycle using cut sets. Therationaleof
the method is that changes of sign through a cut set leave the consistency deficit
invariant. In the theory of monotone systems [111], this operation corresponds to
changing sign to the order relationship in one or more orthants; in the theory of
signed graphs [135] this corresponds to changing the representativeelement in a
“switching class of equivalence” where the consistency deficit is an invariant of the
equivalence relation.
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Chapter 10

Background material

10.1 Multigraphs

A basic reference for this Section is [34].
A directed multigraphis an ordered pairG = (V,E) whereV is a finite set of

verticesandE is a finite set of ordered triples (a,b, l), callededges, wherea,b ∈ V,
andl is a string referred as thelabel of the edge.a andb are called theendpoints
of (a,b, l).

An undirected multigraph G= (V,E) is a directed multigraph where for every
edge (a,b, l) ∈ E, also (b,a, l) ∈ E. For this type of graphs we consider (a,b, l) and
(b,a, l) to be the same edge.

A self-loop is an edge (a,a, l) with equal endpoints. A multigraph without
self-loops is calledsimple.

A graph is a multigraph where for every ordered pair (a,b) of vertices there is
at most one edge (a,b, l) ∈ E.

A multigraph (resp. graph)G1 = (V1,E1) is asubmultigraph(resp.subgraph)
of a multigraphG = (V,E) if V1 ⊆ V andE1 ⊆ E.

A walk in a multigraph G = (V,E) is an alternating sequence
〈v0, l0, v1, l1, . . . , lk−1, vk〉 of vertices and labels, beginning and ending with vertices,
such that (vi , vi+1, l i) ∈ E for anyi = 0,1, . . . , k− 1. The walkcontainsor traverses
these edges. Thelengthof a walk is the number of edges it traverses, counting
multiple edges multiple times. To a walk inG we associate the submultigraph of
G with same set of vertices and as edges the ones contained in the path.

A walk in which all vertices are distinct is called a (simple)path. Two vertices
a andb are said to beconnectedif there is a path inG from a to b. A (simple)cycle
in a multigraph is a walk that starts and ends at the same vertex and includes other
vertices and edges at most once. A multigraph isacyclicif there are no cycles in it.

A multigraph issignedif each edge label is+1 or−1. A walk in a signed multi-
graph is positive (resp. negative) if it has an even (resp. odd) number of negative
edge labels.

An undirected (resp. directed) multigraphG is calledconnected(resp.strongly
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connected) if any two of its vertices are connected by a path inG.
In an undirected (resp. directed) multigraphG, a connected component(resp.

strongly connected component) of G is a maximal connected submultigraph ofG.
A forestis an acyclic undirected graph. Atreeis a connected forest. Every tree

T = (V,E) has exactly|V| − 1 edges.
A spanning forestof an undirected multigraphG = (V,E) is an acyclic sub-

graphT of G with the same set of vertices and as edges a maximal subset ofE
preserving acyclicity. The number of edges of every spanning forestof G is equal
to |V| minus the number of connected components ofG.

With respect to a given spanning forestT = (V,ET), an edge of the multigraph
that is not inET is called achord. Adding a chord toT creates precisely one cycle,
and we say that the chordgeneratesthe cycle. Obviously, each chord generates a
different cycle.

A spanning treeis a connected spanning forest. Obviously an undirected multi-
graph has a spanning tree if and only if it is connected. A spanning forest of an
undirected multigraph is composed by a spanning tree for each connected compo-
nent of the multigraph.

A cut setfor a multigraphG is a set of edges whose removal fromG increases
the number of connected components.

Theorem 1. Every cycle in a multigraph has an even number of edges in common
with any cut set.

10.2 Cycle spaces

Thepower setof a setS, writtenP(S), is the set of all subsets ofS. Thesymmetric
differenceis a binary operation on a power setP(S) defined asA⊖ B = (A \ B) ∪
(B \ A) for everyA, B ⊆ S.

Proposition 1. Symmetric difference on a power set is associative and commuta-
tive. Moreover, the empty set is an identity with respect to it (A⊖ ∅ = A) and every
set is its own inverse (A⊖ A = ∅).

Consider the set of all submultigraphs of a multigraphG = (V,E) which have
the same vertices ofG, or equivalently the power setP(E) of the edges ofG. The
symmetric difference of two submultigraphsG1 = (V,E1) andG2 = (V,E2) of G is
the submultigraphG1 ⊖G2 = (V,E1 ⊖ E2).

A union of cycles of a multigraphG is a submultigraph ofG.

Proposition 2. The set of all unions of disjoint cycles of an undirected multigraph
is closed under the symmetric difference.

Theorem 2. The set of all unions of disjoint cycles of an undirected multigraph
G is a vector space over the Galois field GF(2), using the symmetric difference
operation as vector addition and· as scalar multiplication. It is called thecycle
spaceof G.
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Consider an undirected multigraphG = (V,E) with k connected components
and a spanning forestT = (V,ET). The set offundamental cyclesof G with respect
to T is the set of cycles generated by all the chords. Since each chord generates
exactly one fundamental cycle, the number of fundamental cycles ofG is equal to
the number of chords, i.e.|E| − |ET | = |E| − |V| + k, which is independent from the
choice of the spanning forest and is called thenullity of G.

Theorem 3. The set of fundamental cycles of an undirected multigraph G with
respect to a spanning forest is a basis of the cycle space of G (called astrictly
fundamental cycle basisof G).

Corollary 1. The dimension of the cycle space of an undirected multigraph is equal
to its nullity.

With respect to a stricly fundamental cycle basisFi , i = 1, . . . ,n, every cycle
C can be written as the symmetric difference⊖i∈I Fi of a set of fundamental cycles.
MoreoverC contains all and only the chords which generates the fundamental
cyclesFi , i ∈ I .

Fact 1. For some undirected multigraph G, there are bases of the cycle space that
do not form sets of fundamental cycles with respect to any spanning tree of G. An
example is the sunflower graph SF(3) [82].

10.3 Injectivity

Let f be a function whose domain is a setD. The functionf is injective if for alla
andb in D, if a , b, then f (a) , f (b).

10.3.1 P-matrices

Let M be a matrixm × n and let I ⊆ {1, . . . ,m}, J ⊆ {1, . . . ,n} be a row and
column index sets respectively. Asubmatrix M[I , J] of M is the matrix obtained
by selecting the rows inI and the columns inJ from M.

A minor of M is the determinant of a square submatrix ofM. If
I ⊆ {1, . . . ,min(m,n)}, then M[I , I ] is called aprincipal submatrixof M and its
determinant is called aprincipal minorof M.

A square real matrix is aP-matrix if all of its principal minors are positive. A
square real matrixM is a P(−) matrix if −M is a P-matrix, i.e. if all of its prin-
cipal minors of sizek × k have sign (−1)k. P- and P(−)-matrices are obviously
nonsingular.

A square real matrix is aP0-matrix if all of its principal minors are nonnegative.
A square real matrixM is aP(−)

0 matrix if −M is aP0-matrix.
The following lemma is needed for the proof of the next theorem, we provide

our own proof of the lemma since we were not able to find it in the literature.
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Lemma 1. Let M be a n× n square matrix, and D a n× n diagonal matrix. Then

det(M + D) =
∑

L⊆{1,...,n}

















∏

l∈L
Dl,l

















det(M[Lc, Lc]) (10.1)

where the complement is with respect to the set{1, . . . ,n}.

Proof. Define the series ofn×n diagonal matricesD(k) such thatD(k)
i,i = Di,i if i ≤ k

and 0 otherwise. We want to prove by induction overk that

det(M + D(k)) =
∑

L⊆{1,...,k}

















∏

l∈L
Dl,l

















det(M[Lc, Lc]). (10.2)

For k = 0, D(k) is an empty matrix and the summation is simply det(M). Now,
suppose the previous formula is true fork − 1. For k > 0, using the Laplace
expansion along columnk, we have

det(M + D(k)) =
n
∑

i=1

(−1)i+k(M + D(k))i,k det((M + D(k))[{i}c, {k}c])

SinceD(k)[{i}c, {k}c] = D(k−1)[{i}c, {k}c] and

(M + D(k))i,k =















Mi,k = (M + D(k−1))i,k if i , k

Mk,k + Dk,k = (M + D(k−1))i,k + Dk,k if i = k

the expansion becomes














n
∑

i=1

(−1)i+k(M + D(k−1))i,k det((M + D(k−1))[{i}c, {k}c])














+

+ (−1)2kDk,k det((M + D(k−1))[{k}c, {k}c]) =

det(M + D(k−1)) + Dk,k det(M[{k}c, {k}c] + D(k−1)[{k}c, {k}c]).
It is possible to apply the inductive hypothesis to both these determinants, which
gives:
















∑

L⊆{1,...,k−1}

















∏

l∈L
Dl,l

















det(M[Lc, Lc])

















+

+ Dk,k

∑

L⊆{1,...,k−1}

















∏

l∈L
D[{k}c, {k}c] l,l

















det(M[{k}c, {k}c][Lc, Lc])

The second term in this sum can be rewritten as

∑

L⊆{1,...,k−1}

















∏

l∈L∪{k}
Dl,l

















det(M[(L ∪ {k})c, (L ∪ {k})c])

and eq. 10.2 easily follows. Fork = n this proves eq. 10.1. ¤
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Theorem 4 ([48]). Let M be a square matrix. M is a P-matrix if and only if for
every x, 0 there exists an index i such that xi(Mx)i > 0.

Proof. Let M be aP-matrix and suppose by contradiction that there existsx , 0
such thatxi(Mx)i ≤ 0 for all i. Now, let I = {i | xi , 0}, M̂ = M[I , I ] and x̂ = x[I ],
and consider the|I | × |I | diagonal matrixD for which Di,i = − (M̂x̂)i

x̂i
≥ 0 for all

i = 1, . . . , |I |. It is easy to see that (̂M + D)x̂ = 0, so, given that ˆx , 0, M̂ + D is
singular and det(̂M + D) = 0.

Using lemma 1, we have

det(M̂ + D) = det(M̂) +
∑

L⊂{1,...,|I |}















∏

i∈L
Di,i















det(M̂[Lc, Lc]) ≥ det(M̂)

becauseDi,i ≥ 0 for all i, and the minor det(̂M[Lc, Lc]) is positive sinceM̂ is also
a P-matrix. Therefore det(̂M) ≤ 0, a nonpositive principal minor ofM, which
contradicts the hypothesis ofM being aP-matrix.

Conversely, suppose that for everyx , 0 there exists an indexi such that
xi(Mx)i > 0. Let M[I , I ] be a principal submatrix ofM, λ one of the real eigenval-
ues ofM[I , I ] and x̂ a corresponding eigenvector. Considerx such thatx[I ] = x̂ and
xi = 0 for i < I . Sincex , 0, let i be the index for whichxi(Mx)i > 0. Then, if j is
the index in ˆx corrisponding toi, we have that 0< x̂ j(M[I , I ] x̂) j = x̂ j(λx̂) j = λx̂2

j ,
which impliesλ > 0. So, every real eigenvalue ofM[I , I ] is positive.

For general matrices, it is well known that

• the determinant, by Jordan canonical form theorem, is equal to the product
of all eigenvalues repeated according to their multiplicity;

• for every complex eigenvalue, also its complex conjugate is an eigenvalue,
and their product is obviously positive.

So det(M[I , I ]) must be positive, and as a consequenceM is aP-matrix. ¤

Corollary 2. Let M be a square matrix.

• M is a P(−)-matrix if and only if for every x, 0 there exists an index i such
that xi(Mx)i < 0;

• M is a P0-matrix if and only if for every x, 0 there exists an index i such
that xi , 0 and xi(Mx)i ≥ 0;

• M is a P(−)
0 -matrix if and only if for every x, 0 there exists an index i such

that xi , 0 and xi(Mx)i ≤ 0.

Note that the part of this corollary aboutP0- and P(−)
0 -matrices is more pre-

cise than what found in [5], since they did not specify thatxi should be nonzero.
However, this does not invalidate their results.
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10.3.2 P-matrix Jacobian and injectivity

An n-dimensional intervalis a subset ofRn that is the Cartesian product ofn real
intervals. Ann-dimensional interval isopen(resp.closed) if all the factors are open
(resp. closed) intervals.

A function from D ⊆ Rn to Rm is differentiableif it has a total derivative at
every pointx ∈ D. If the total derivative of a functionf exists at a pointx, then all
the partial derivatives (and so the Jacobian) off exist atx.

Theorem 5 (Gale-Nikaid̂o [52]). Let D be a closed n-dimensional interval and
f : D → Rn a differentiable function. If the Jacobian Jf (x) of f is a P-matrix at
every x∈ D, then f is injective in D.

Theorem 6 ([5]). Let f : D ⊆ Rn → R
n be a differentiable function. If the

Jacobian Jf (x) of f is a P(−)-matrix at every x∈ D, then f is injective in D.

10.4 Stability of dynamical systems

A dynamical system consists of a set of possible states and a deterministic rulethat
defines the evolution in time of the state in terms of past states.

Formally, acontinuous-time dynamical systemis a triplet (T,X, ϕ) whereT ⊆
R, X is a set calledstate space(or phase space) andϕ : U ⊆ T × X → X is
the evolution functionof the system, provided thatϕ(0, x) = x for every x ∈ X,
ϕ(t1 + t2, x) = ϕ(t2, ϕ(t1, x)) for every (t1, x), (t1 + t2, x) ∈ U (thegroup property)
andϕ(t, x) is partially differentiable with respect tot.

For every continuous-time dynamical system,ϕ can be expressed as the solu-
tion of the initial value problem

dx
dt

(t) = f (x(t))

x(0) = x0

where f : X → X is defined asf (x) ´ ∂ϕ

∂t (0, x). Instead, not every system of
ODEs define a dynamical system. If this is the case, we say that the vector field f
generatesthe dynamical system.

For a statea, the set of statesγa = {ϕ(t,a) | (t,a) ∈ U} is called theorbit
througha.

If ϕ(t,a) = a for all t ∈ T, thena is called afixed point(or stationary point
or equilibrium) of the system. A statea is a fixed point for the continuous-time
dynamical system generated by a vector fieldf if and only if f (a) = 0.

A setA ⊆ X of states is said to beinvariant if γx ⊆ A for all x ∈ A.
Suppose from now on thatX is a topological space andT is totally ordered

(with order topology) and unbounded from below and above.
A statea is a periodic point of period k(or, in short, period-k point) for a

dynamical system ifϕ(k,a) = a andϕ( j,a) , a for 0 < j < k. This is equivalent
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to say thatϕ(k + t,a) = ϕ(t,a) for all t ∈ T, and for every 0< j < k there exists
t ∈ T such thatϕ( j + t,a) , ϕ(t,a). The orbit through a periodic point is called a
periodic orbit(or closed orbit).

Theω-limit set (or forward limit set) of a statex is the setω(x) = {z ∈ X |
∃ a sequence{tn} such that limn→+∞ tn = +∞∧ limn→+∞ ϕ(tn, x) = z}.

A setA ⊆ X of states is said to beattractingif the setB(A) = {x ∈ X | ω(x) ⊆ A}
is not empty. In this caseB(A) is called thebasin of attractionfor A. An attractor
A for the dynamical system is a minimal attracting set, i.e. it has no proper subset
∅ , A1 ⊂ A which is attracting. All fixed points and periodic orbits are attractors.

An attractorA is said to bestable(or Lyapunov stable) if, for every neighbor-
hoodN of A, there is a neighborhoodN′ ⊆ N of A such that ifx ∈ N′ thenγx ⊆ N.
Attractors that are not stable are calledunstable. A stable attractorA is said to
be asymptotically stableif its basin of attraction is a neighborhood ofA. Stable
attractors that are not asymptotycally stable are calledmarginally stable.

A dynamical system is calledmultistableif it has multiple stable attractors. It
is instead calledmultistationaryif it has multiple fixed points.

A fixed pointa for a continuous-time dynamical system generated by a differ-
entiable vector fieldf is calledhyperbolicif the Jacobian matrixJf (a) of f at a
has no eigenvalue with zero real part.

10.4.1 Monotone systems

The material of this Section is mainly taken from [116]. Given a partial order≤ on
X, a continuous-time dynamical system generated by the vector fieldf is said to
bemonotone with respect to≤ if, for every pair of initial conditionsx0, y0 ∈ X, the
corresponding solutionsx(t) andy(t) of the initial value problem satisfyx(t) ≤ y(t)
for everyt ∈ T. The system is said to bemonotoneif it is monotone with respect
to a partial order.

Monotone systems have nice properties of convergency in their dynamicalbe-
havior. For example, they do not admit periodic orbits. Moreover, if thereis just
one equilibrium, under mild conditions on the variables and boundness of solu-
tions, this equilibrium is globally asymptotically stable [27]. If, instead, there are
multiple equilibria, Hirsch theorem [63] states that every bounded solution, ex-
cept for a measure-zero set of initial conditions, converges to the set of equilibria,
provided that the system if strongly monotone (i.e. when the inequalities in the
previous definition of monotone system are strict instead of weak).

TheJ-graph(from Jacobian) associated to a dynamical system is a signed undi-
rected multigraph with vertices{v1, . . . , vn}, wheren is the dimension ofX. For
every pairi, j ∈ {1, . . . ,n}, if the partial derivative∂ fi(x)/∂x j ≥ 0 (resp.≤ 0) for
somex ∈ X, we draw an edge labeled+1 (resp.−1) fromv j to vi . No edge is drawn
from vertexv j to vertexvi if ∂ fi(x)/∂x j vanishes identically for allx ∈ X. Notice
that, in principle, there could be two edges of different sign fromv j to vi .

A spin assignmentσ for a signed undirected graph is a labeling of each vertex
vi with a numberσi equal to+1 or −1. An edge between verticesvi and v j is
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consistent with the spin assignmentσ provided that the edge label is equal toσiσ j .
We say thatσ is aconsistent spin assignment for a signed undirected graphif every
edge of the graph is consistent withσ. In other words, if there is a positive edge
between verticesvi andv j , thenvi andv j must have the same spin, while if there
is a negative edge connectingvi andv j , thenvi andv j must have opposite spins.
A signed undirected graph is said to beconsistentif there exists a consistent spin
assignment for it.

Lemma 2. A signed undirected graph is consistent if and only if every cycle in it
is positive.

Going back to dynamical systems, ifX = Rn, particular partial orders can
defined by the orthants. Letz be the only vector in the intersection of{1,−1}n and
the chosen orthant, then theorthant order≤z is such thatx ≤z y if zi xi ≤ ziyi for
everyi = 1, . . . ,n.

Theorem 7(Kamke’s theorem [112]). Consider an orthant order≤z. The continuous-
time dynamical system generated by a vector field f is monotone with respect to≤z

if and only if

zizj
∂ fi
∂x j

(x) ≥ 0 for all x ∈ Rn, i, j = 1, . . . ,n such that i, j. (10.3)

Condition 10.3 is clearly equivalent to saying that the J-graph of the dynamical
system is an undirected graph andz is a consistent spin assignment for it.

Corollary 3. A dynamical system is monotone with respect to some orthant order
if and only if its associated J-graph is consistent.

10.5 Chemical reaction networks

A chemical rection networkconsists of:

1. a setS = {s1, . . . , sn} of n species;

2. a setC ⊆ Rn
≥0 of m complexes;

3. a relationR ⊆ C × C of r reactionssuch that (y, y) < R for everyy ∈ C .

For a vectorx ∈ Rn
≥0, let supp(x) = {i | xi > 0}. A complexy = (y1, . . . , yn) is

usually written as
∑

i∈supp(y) yisi , and eachyi is called thestoichiometric coefficient
of the speciessi in y.

To more clearly indicate a reaction (y, y′) ∈ R we usually writey → y′. The
species indexed bysupp(y) are called thereactantsof the reaction, and the species
indexed bysupp(y′) are called itsproducts. Each reactiony→ y′ defines areaction
vector y′−y ∈ Rn. Moreover, thestoichiometric subspace S= span{y′−y | (y, y′) ∈
R } ⊆ Rn is the linear span of the reaction vectors.
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If we fix an order for the reactions, then thestoichiometric matrix Nis then× r
matrix whosej-th column is thej-th reaction vector. SoS can also be defined as
the column space ofN ands= rank(N) = dim(S) is called therankof the reaction
network. Clearlys ≤ n, in particular if s = n thenS = Rn, otherwiseS is an
s-dimensional hyperplane passing through 0

Let c(t) : R≥0 → Rn
≥0 be the function of molar concentrations such thatci(t) is

the concentration of speciessi at timet. A compositionis the valuec ∈ Rn
≥0 of all

molar concentrations at a particular instant of time.
A reaction systemis a reaction network (S , C ,R ) with an associatedkinetics

v(·) : Rn
≥0→ R

R

≥0 such that, for eachy→ y′ ∈ R , vy→y′(·) is called therate function
of the reaction, andvy→y′(c) > 0 if and only if supp(y) ⊆ supp(c). Eachvy→y′(c)
describes the instantaneous probability of occurence of the reactiony → y′ when
the composition isc. The positivity condition requires that a reaction proceeds at
non-zero rate exactly when all reactant species are present in the composition.

The dynamics of the reaction system is governed by the first order ODE

ċ(t) = Nv(c(t)). (10.4)

which, using block matrix multiplication, can be expressed as

ċ(t) =
∑

y→y′∈R
N·,y→y′vy→y′(c(t)) =

∑

y→y′∈R
(y′ − y)vy→y′(c(t)). (10.5)

This equation describes the rate of change of the concentration of a species si as
the sum of the reaction rates for the present concentration, each weighted by the
net number of molecules ofsi produced at every occurrence of the corresponding
reaction.

The most common choice for rate functions is themass actionform, in which
for a reactiony→ y′ we have:

vy→y′(c) = ky→y′

n
∏

i=1

cyi
i ,

whereky→y′ ∈ R>0 is the rate constantof y→ y′ and by convention 00 = 1. This
formulation amounts to assuming that the probability that reactiony→ y′ occurs in
the next infinitesimal time intervaldt is proportional to the concentration of each
reactant, possibly elevated to some power if more molecules are needed for the
reaction to take place. This is deemed to reflect the likelihood of an encounter
among all molecules involved in the reaction.

If all reactions are of mass action type, the network kinetics is said to be mass
action, and the ODE (10.5) becomes

ċ(t) =
∑

y→y′∈R
(y′ − y)ky→y′

n
∏

i=1

ci(t)
yi .
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10.5.1 Stoichiometric compatibility and multiple equilibria

Let c(·) be a solution of (10.4) in the time interval [0,T]. For everyt ∈ [0,T], the
fundamental theorem of calculus and (10.5) imply that

c(t) − c(0) =
∫ t

0
ċ(τ)dτ =

∫ t

0

∑

y→y′∈R
(y′ − y)vy→y′(c(τ))dτ

=
∑

y→y′∈R
(y′ − y)

∫ t

0
vy→y′(c(τ))dτ,

which is a linear combination of the reaction vectors, and thus

c(t) − c(0) ∈ S. (10.6)

Two compositionsc1, c2 ∈ Rn
≥0 are said to bestoichiometrically compatible

if c2 − c1 ∈ S (i.e. if there existsα ∈ Rr such thatc2 − c1 = Nα). The “stoi-
chiometrically compatible” relation is clearly an equivalence, its classes are called
stoichiometric compatibility classesand ares-dimensional hyperplanes parallel to
S. From (10.6), it follows that the orbitγc(0) is entirely contained in the stoichio-
metric compatibility class ofc(0).

Moreover, every stoichiometric compatibility class [c1] is invariant, since for
everyc2 ∈ [c1] the orbitγc2 ⊆ [c2] = [c1].

Each stoichiometric compatibility class can have a different number of equi-
libria within itself. Thus, the problems of finding if a reaction system admits an
equilibrium, if it presents multistationarity, or to determine the stability type of an
equilibrium should be tackled within each stoichiometric compatibility class.

A reaction network (S , C ,R ) has the capacity for multiple equilibria(resp.
multiple positive equilibria) if there exist a rate functionv(c) and two stoichiomet-
rically compatible compositionsc1, c2 ∈ Rn

≥0 (resp.Rn
>0) such thatc1 , c2 and

Nv(c1) = Nv(c2) = 0.

10.5.2 Conserved moieties

Let S⊥ be the orthogonal complement of the stoichiometric subspaceS in Rn

relative to the scalar product· , i.e. S⊥ = {g ∈ Rn | g · µ = 0,∀µ ∈ S}. Al-
ternatively, S⊥ can be defined as the left null space of the stoichiometric ma-
trix N, i.e. S⊥ = {g ∈ Rn | gTN = 0}. Linear algebra theorems show that
dim(S⊥) = dim(Rn) − dim(S) = n− s, soS⊥ , {0} if and only if s< n.

Considerg ∈ S⊥ \ {0} and letc(t) be a solution of the ODE (10.4) in the
time interval [0,T]. From eq. (10.6) it follows thatg · (c(t) − c(0)) = 0, that is
g · c(t) = g · c(0). So, fixed an initial compositionc(0),

∑n
i=1 gici(t) is constant for

all t ∈ [0,T], which is clearly a conservation relation for the species concentrations.
Abstracting from the particular solution, we call the formula

∑

i∈supp(g)

gisi
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aconserved moietyof the reaction network. There aren− s independent conserved
moieties, which are defined by a basis ofS⊥.

A reaction network is said to beconservativeif there exists a positiveg ∈ S⊥.
From this definition, it follows that a conservative network does not exchange mass
with the exterior.

10.5.3 Deficiency theory

Thecomplex graphof a reaction network is the directed graph whose vertices are
the complexes, and whose edges correspond to the reactions. Alinkage classis a
connected component of the undirected version of the complex graph. Weindicate
with l the number of linkage classes.

For every linkage classj, the ranksj of the corresponding subnetwork must be
less than the number of complexes (r j ≤ mj − 1). Moreover, reaction vectors of
different subnetworks are linearly independent, sos =

∑l
j=1 sj ≤

∑l
j=1(mj − 1) =

m− l.
Thedeficiencyof the reaction network isδ = m− l − s. For what said above,δ

is a nonnegative integer.
A strong-linkage classis a strongly connected component of the complex graph.

Thus, each linkage class is partitioned in one or more strong-linkage classes. A re-
action network isweakly reversibleif each linkage class is also a strong-linkage
class. A strong-linkage class isterminal if it is not connected to other strong-
linkage classes.

Theorem 8(Deficiency zero theorem [41]). For any reaction network of deficiency
zero:

1. If the network is not weakly reversible, then for arbitrary kinetics the reaction
network admits neither a positive equilibrium, nor a periodic orbit inRn

>0.

2. If the network is weakly reversible then, for mass action kinetics (regardless
of the values of the rate constants), the reaction system admits precisely one
equilibrium within each positive stoichiometric compatibility class, which is
asymptotically stable.

Proof. For a complete proof, see [45]. ¤

Theorem 9 (Deficiency one theorem [42, 43, 45]). Let (S , C ,R ) be a reaction
network of deficiencyδ and letδ j be the deficiencies of its linkage classes, j=
1, . . . , l. Suppose that:

1. δ j ≤ 1, for all j = 1, . . . , l

2.
∑l

j=1 δ j = δ

3. each linkage class contains just one terminal strong-linkage class.
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If, for particular values of the rate constants, the mass action system admits one
equilibrium, then each positive stoichiometric compatibility class contains pre-
cisely one equilibrium. If the network is weakly reversible then, regardless of the
values of the rate constants, the mass action system admits precisely one equilib-
rium within each positive stoichiometric compatibility class.

There is also an algorithm specific for networks of deficiency one [44],whose
correctness was proved in [46].

10.5.4 Network injectivity

A reaction network (S , C ,R ) is injectiveif Nv(c) is injective for all possible kinetics
v(c). In particular, a reaction system with mass action kinetics is injective ifNv(c)
is injective for all possible positive rate constants of the reactions.

If a reaction system is injective, then clearly it does not have the capacity for
multiple equilibria. Therefore injectivity is a sufficient condition for monostation-
arity, but it is not necessary. In fact, even if there are two distinct composition c1

andc2 such thatNv(c1) = Nv(c2), to have multiple equilibria it is needed also that
they are fixed points, i.e. thatNv(c1) = Nv(c2) = 0.

The Jacobian matrix of a reaction system is the Jacobian ofNv(c), i.e.JNv(c) =
∂Nv(c)
∂c = N ∂v(c)

∂c .
A reaction system isnonautocatalyticif for all i = 1, . . . ,n, y → y′ ∈ R and

c ∈ Rn, we have that

Ni,y→y′
∂vy→y′(c)

∂ci
≤ 0

and

Ni,y→y′ = 0⇒
∂vy→y′(c)

∂ci
= 0.

The first condition requires that if a species is a reactant (resp. product) in a reac-
tion, then increasing its concentration cannot decrease (resp. increase) the reaction
rate. The second condition instead states that if a species does not partecipate in a
reaction, then it has no influence on the reaction rate.

Reaction systems with usual kinetics like mass action, Michaelis–Menten, etc.,
are nonautocatalytic provided that in each reaction a species appears only as a reac-
tant or as a product, but not on both sides of the reaction. Usually, an autocatalytic
reaction likeA+ B→ 2A represents (and can be rewritten as) a set of subsequent
reactions, e.g.A+ B→ C→ 2A, whereC is a short-lived intermediate molecule.

The qualitative classof a real matrixA, denotedQ(A), is the set of all real
matrix B such thatsign(B) = sign(A). So we can say the a reaction system is
nonautocatalytic if∂v(c)

∂c ∈ Q(−ÑT), whereÑ is equal toN with some elements that
may be changed to 0.

A square matrix issign-nonsingular (SNS)if every matrix in its qualitative
class is nonsingular.
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Theorem 10([14]). A real matrix A is SNS if and only if for every matrix B∈ Q(A)
sign(det(B)) = sign(det(A)) , 0.

Theorem 11([14]). A real matrix A is SNS if and only if in the standard expansion
(Leibniz formula) of det(A) there is at least one nonzero term, and all the nonzero
terms have the same sign.

A real matrix A is an L-matrix if for every matrix B ∈ Q(A) the rows ofB
are linearly independent. Clearly, a square matrix is SNS if and only if it is an
L-matrix.

A signingof orderk is a nonzero diagonal matrix of orderk whose entries are
in the set{−1,0,1}. A row signingof a m× n matrix A is a product matrixDA
whereD is a signing of orderm. A vector isunisignedif it is nonzero and it is
either nonnegative or nonpositive.

Theorem 12([75]). A real matrix A is an L-matrix if and only if every row signing
of A contains a unisigned column.

A matrix M is strongly sign determined (SSD)if all square submatrices ofM
are either singular or SNS.

Theorem 13([5]). If the stoichiometric matrix N of a non-autocatalytic reaction
system is SSD, then the Jacobian matrix JNv(c) is a P(−)

0 -matrix at all c.

An inflow (resp.outflow) reaction for a speciess ∈ S is a reaction 0→ s (resp.
s → 0) with mass action kinetics, i.e.v0→s (c) = k0→s (resp.vs→0(c) = ks→0cs ).

Theorem 14([5]). Consider a non-autocatalytic reaction system having an out-
flow reaction for each species. If its stoichiometrix matrix N is SSD, then the
Jacobian matrix JNv(c) is a P(−)-matrix at all c.

If the Jacobian matrixJNv(c) is aP(−)-matrix at allc, then the reaction system
is injective, and thus it does not have the capacity for multiple equilibria.

An equilibrium a is said to bedegenerateif null(JNv(a)) ∩ S , {0}. In this
case there is a vectorv ∈ S \ {0} such thatJNv(a)v = 0 = 0v. So, 0 is an eigen-
value ofJNv(a), S intersects the eigenspace of 0 and thusa is not hyperbolic in its
stoichiometric compatibility class [a].

Theorem 15([4, 24]). Let (S , C ,R ) be a reaction network having an outflow reac-
tion for all the species in the subsetM ⊆ S . If the reaction network(S , C ,R ∪{s →
0 | s ∈ S \M }) is injective, then(S , C ,R ) does not have the capacity for multiple
nondegenerate equilibria.

TheSR graphfor a reaction network is a bipartite undirected multigraph with
two kinds of vertices: species vertices and reaction vertices. There is a species ver-
tex for each species in the network, and there is a reaction vertex for each reaction
or reversible reaction pair in the network. If a species has a nonzero stoichiometric
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coefficient in a complex which is at one side of a reaction, then there is an edge be-
tween the corresponding species vertex and reaction vertex with the complex name
as the label and the stoichiometric coefficent as the edge weight.

Pairs of edges that meet at a reaction vertex and have the same complex label
are calledc-pairs. If a cycle contains an odd number of c-pairs is called ano-
cycle, otherwise is called ane-cycle. Since the SR graph is bipartite, every cycle
as an even lenght. Cycles for which alternately multiplying and dividing the edge
labels along the cycle gives the final result 1 are calleds-cycles(for stoichiometric
cycles).

We say that two cycles in the SR graph have aspecies-to-reaction (S-to-R)
intersectionif the common edges of the two cycles constitute a path that begins at
a species vertex and ends at a reaction vertex, or if they constitute a disjoint union
of such paths.

Theorem 16([25]). Consider a reaction network having an outflow reaction for
each species. If in its SR graph:

1. each cycle is an o-cycle or an s-cycle,

2. no two e-cycles have an S-to-R intersection,

then, for mass action kinetics, the reaction system is injective.

Theorem 17([4]). Consider a reaction network such that in each reaction a species
does not appear on both sides of the reaction. If its SR graph satisfy the twocon-
ditions of theorem 16, then its stoichiometric matrix is SSD.

So, for a nonautocatalytic reaction system with mass action kinetics, checking
if its stoichiometric matrix is SSD is enough, and checking the properties of the SR
graph does not give extra information. Otherwise, if the system is autocatalytic,
only the SR graph can be analyzed.



Chapter 11

ERNEST Toolbox

ERNEST Reaction Network Equilibria Study Toolbox is a software package struc-
tured as a set of MATLAB functions and classes. The software is available under
the GNU GPL free software license and can be downloaded from
http://people.sissa.it/∼altafini/papers/SoAl09/ . It requires the MATLAB Optimiza-
tion Toolbox.

The analysis is performed by the main functionmodel analysis, which needs
as input a structure specifying the species and reactions of a CRN. The format of
this structure is simply the one defined by theTranslateSBMLfunction from libS-
BML [12], which imports SBML files in MATLAB. So a SBML model, after the
standard import, can be directly analyzed by our toolbox, but all the extra infor-
mation potentially contained in the file, like compartments, constraints, reaction
modifiers and kinetic laws, will be ignored.

All the criteria implemented by ERNEST aim to verify conditions on the CRN
structure which are sufficient for monostationarity of the relative dynamical system,
i.e. to rule out the possibility of multiple equilibria regardless of the rate constants
and the initial concentrations.

Themodel analysisfunction operates in the following way:

(1) calculates complexes, stoichiometric matrix and rank, linkage classes, strong-
linkage classes, network reversibility, weak reversibility and deficiency;

(2a) if the Deficiency Zero theorem [41] is applicable, prints out the relative re-
sponse;

(2b.1) otherwise calculates terminal strong-linkage classes and deficiencies of the
linkage classes;

(2b.2a) if the Deficiency One theorem [43] is applicable, prints out the relative re-
sponse for mass action kinetics;

(2b.2b) otherwise verifies that the network is regular, and in case apply the Defi-
ciency One algorithm [44] for mass action kinetics; if this algorithm verifies
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that the network admits multiple positive equilibria within a stoichiometric
compatibility class, it also prints out an example of reaction rate constants
and two equilibria for the corresponding mass action system;

(3a) if the CRN is autocatalytic, then calculates the Species–Reaction graph,finds
all its cycles and tries to verify the two conditions for monostationarity with
mass action kinetics of [25];

(3b) otherwise verifies if the stoichiometric matrix is SSD and in case exclude
multiple non-degenerate equilibria [5] for general kinetics.

Obviously the runtime of this function increases with the number of species
and reactions of the network. The most complex part is the Deficiency One algo-
rithm (point 2b.2b), which involves the solution of linear programming problems
with additional sign constraints, but for medium/big reaction networks this code is
usually not executed since their deficiency is typically greater than one.

We verified the correctness of our toolbox by successfully reproducing the re-
sults for all the examples of [2, 22, 25, 26], plus others selected from thecited
Feinberg’s papers.

One interesting example is the reaction network proposed in example 1.1 of
[45]:

A⇆ 2B
A+C⇆ D
տւ
B+ E

(11.1)

As explained in the original paper, this network has deficiency 0 and is weakly
reversible, so by theorem 8, for mass action kinetics the reaction system is monos-
tationary within each positive stoichiometric compatibility class. But what happens
if the dynamics is not of mass action type?

If we analyze this network with ERNEST, this is the relative output:

The reaction network is weakly reversible and has deficiency 0, so
with mass action kinetics each positive stoichiometric compatibility
class contains precisely one equilibrium, which is asymptotically sta-
ble.
The reaction network with mass action or Michaelis–Menten kinetics
is non-autocatalytic.
The stoichiometric matrix is not SSD. The reaction network has the
capacity for multiple equilibria.
One set of species and reactions because of which the stoichiometric
matrix is not SSD:

ans=
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’A’ ’B’

reactionstring=

2 B→ 1 A

reactionstring=

1 B + 1 E→ 1 A + 1 C

So, the system behavior for mass action is confirmed, but for other type of
kinetics ERNEST is not able to exclude the multistationarity and instead suggests
a subset of species and reaction for further investigation. In fact, if westudy the
smaller network:

A⇆ 2B
A⇆ B

(11.2)

this has the same properties of network 11.1, and a similar output from ERNEST.
For mass action kinetics, there is only one nontrivial equilibrium, that can be cal-
culated very easily. To see if really this system with non mass action kinetics can
have multiple equilibria, we can suppose that all the reaction are mass action ex-
ceptB→ A, which is of Michaelis–Menten type. In this case, the system of ODEs
will be:



























ċA = −k1cA + k2c2
B − k3cA +

k4cB

kM + cB

ċB = 2k1cA − 2k2c2
B + k3cA −

k4cB

kM + cB

Imposing the equilibrium conditions ˙cA = ċB = 0, it is easy to see that, apart
from the trivial equilibrium (0, 0), the solutions of the system are:

cB1,2 =

−kM ±
√

k2
M + 4k1k4

k2k3

2

cA =
k2

k1
c2

B

Therefore, there are two different equilibria in the same stoichiometric com-
patibility class, which in this case is simplyR2, and the system is in fact multista-
tionary. We have to remark that, since verifying that the stoichiometric matrix is
SSD is only a sufficient condition for monostationarity, if ERNEST says that the
reaction system has thecapacityfor multiple equilibria, it does not mean that this
is always the case.



102 CHAPTER 11. ERNEST TOOLBOX

This example is clearly very simple, but shows how ERNEST can be useful
not only for model discrimination, but also for exploring the behavior of a reaction
network with different types of kinetics.
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Fundamental cycles and
monotonicity

Consider a continous-time dynamical system generated by a vector fieldf (·).
Checking whether the system is monotone, i.e. whether its associated J-graph is
consistent, is a simple task, verifiable in polynomial time with a dynamic program-
ming algorithm.

In general, for any given dynamical system, the corresponding J-graph will
not be consistent, although in a biological context it might be “near-monotone”,
i.e. closer to monotone than expected by random edge assignments, as claimedin
[116]. Our goal is to identify the smallest number of edges such that if we change
their signs the obtained graph is consistent, and the tool we use for this scope is an
extension of the theory of fundamental cycles for signed graphs.

Theorem 18. Let Fi , i = 1, . . . ,n, be a stricly fundamental cycle basis of an
undirected multigraph G with respect to a spanning forest T . For every non-
fundamental cycle C= ⊖i∈I Fi of G, there is a partition{I1, I2} of I such that
C1 = ⊖i∈I1Fi and C2 = ⊖i∈I2Fi are cycles.

Proof. Let Fk, k ∈ I , be one of the fundamental cycles generatingC. C ∩ Fk

contains at least one edge, the chord ofFk.
Suppose now thatC ∩ Fk is a unique path. Then alsoC \ Fk andFk \ C must be
disjoint paths with the same endpoints ofC ∩ Fk, so together they form the cycle
(C \ Fk) ∪ (Fk \ C) = C ⊖ Fk = ⊖i∈I\{k}Fi . Therefore,{{k}, I \ {k}} is the desired
partition of I .
If insteadC ∩ Fk consists of two or more disconnected paths, we can choose two
of these paths which are “near” inFk, i.e. connected by a pathp1 in Fk \ C. The
endpoints ofp1 are also vertices ofC, so they divideC in two pathsp2 andp3 such
thatC = p2 · p3. Note thatp1 ∩ p2 = p1 ∩ p3 = ∅.
Now, C1 = p1 · p2 andC2 = p1 · p3 are clearly two cycles ofG. p1 does not
contain any chord, sincep1 ⊂ Fk \C ⊆ T. The pathsp2 andp3 instead determine
a partition of the set of chords contained inC, which corresponds to a partition
{I1, I2} of I such thatC1 = ⊖i∈I1Fi andC2 = ⊖i∈I2Fi . ¤
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Theorem 19.Consider a signed undirected multigraph. If the symmetric difference
of two cycles C1,C2 is a unique cycle, then sign(C1 ⊖C2) = sign(C1) · sign(C2).

Proof. C1 can be divided in two disjoint sets of edges:

C1 = (C1 \C2) ∪ (C1 ∩C2),

which implies that

sign(C1) = sign(C1 \C2) · sign(C1 ∩C2),

and symmetrically forsign(C2). For the definition of symmetric difference

C1 ⊖C2 = (C1 \C2) ∪ (C2 \C1),

which implies that

sign(C1 ⊖C2) = sign(C1 \C2) · sign(C2 \C1) =
sign(C1) · sign(C2)

sign(C1 ∩C2)2

=
sign(C1) · sign(C2)

+
= sign(C1) · sign(C2).

¤

Theorem 20. Let Fi , i = 1, . . . ,n, be the fundamental cycles of a signed undirected
multigraph G with respect to a spanning forest, and let C= ⊖i∈I Fi be a cycle of G.
Then

sign(C) =
∏

i∈I
sign(Fi).

Proof. By induction on|I |. If |I | = 1, thenC is a fundamental cycleFi , so they
have the same sign.
Now let |I | > 1 and assume the theorem true for everyI ′ with |I ′| < |I |. For the-
orem 18 there is a partition{I1, I2} of I such thatC1 = ⊖i∈I1Fi andC2 = ⊖i∈I2Fi

are cycles.I1, I2 ⊂ I implies |I1|, |I2| < |I |, so using the inductive hypothesis we
have thatsign(C1) =

∏

i∈I1
sign(Fi) and sign(C2) =

∏

i∈I2
sign(Fi). Finally, ap-

plying theorem 19 toC1,C2, we can conclude thatsign(C) = sign(C1 ⊖ C2) =
sign(C1) · sign(C2) =

∏

i∈I1
sign(Fi) ·

∏

i∈I2
sign(Fi) =

∏

i∈I sign(Fi). ¤

Corollary 4. A signed undirected graph G is consistent if and only if, for an ar-
bitrarily chosen spanning forest, all corresponding fundamental cyclesof G are
positive.

The minimum number of edges whose sign should be changed in order that the
multigraph becomes consistent is called theconsistency deficitof the multigraph.
This value measures how close a given signed multigraph is to a consistent graph.
Computing the consistency deficit is an NP-hard problem, equivalent to the well-
known MAX-CUT problem [28] or to the problem of finding the ground stateof a
frustrated spin system in statistical physics [116].
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Given a signed undirected multigraph withµ fundamental cycles of whichν
have positive sign andµ− ν have negative sign, one way to render the entire multi-
graph consistent is to change the sign of the lastµ − ν fundamental cycles.

Corollary 5. A signed undirected multigraph having aµ-dimensional fundamental
cycle basis characterized byµ − ν negative fundamental cycles, can be rendered
consistent by exchanging the signs of theµ − ν chords generating the fundamental
cycles having negative sign.

Of course, the worst case is when all fundamental cycles are negative, i.e. any
multigraph can be rendered consistent with at mostµ sign changes. From the
theory of signed graphs [115], we also have another worst-case upper bound on the
consistency deficit,η = (|E| −

√
|E|)/2. Hence we have the following Proposition.

Proposition 3. Any signed multigraph can be rendered consistent with at most
min(µ, η) sign changes in its edge labels.

The two values for the upper bound are unrelated: for very sparse graphs (with
average connectivity of a node< 2) thenµ < η, viceversa for more dense graphs.
While the value ofµ is always attainable in a graph, it is not clear from the literature
in which casesη is achievable as a worst-case upper bound.

In general the sign associated with a basis of fundamental cycles is not invariant
to changes of basis (i.e. of spanning tree). Therefore, if we can find afundamental
cycle basis with fewer fundamental negative cycles, we have to do fewerchanges of
sign in order to obtain a monotone system. The following Proposition is the starting
point for “simplifying” the graph by changing its signs in a suitable equivalence
class in which the monotonicity properties and the number of inconsistencies are
preserved.

Proposition 4. Exchanging the sign of the edges through a cut set preserves the
sign of each cycle of a given signed multigraph.

Proof. From Theorem 1, every cycle intersects a cut set in an even number of
edges and hence a sign change through an entire cut set does not alterthe sign of a
cycle. ¤

Starting from this observations, it is possible to write (heuristic) algorithms to
find an equivalent signing of the multigraph which minimizes the number of neg-
ative edges [67]. Provided we associate high weights to the edges havingnegative
sign after the application of the heuristic, any minimum spanning tree algorithm
[31] will select a spanning tree with a minimal number of minus signs. From
Corollary 4, the cycle subspace associated with the set of fundamental cycles hav-
ing positive sign corresponds to the monotone subsystem of the original system.
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Chapter 13

Conclusion

Powerful tools to study biochemical networks are particularly needed in Systems
Biology, where the number of (unknown) reaction parameter increase dramatically.

ERNEST can be quite useful if applied for model discrimination, as in the ex-
amples cited above. It has several advantages over the Chemical Reaction Network
Toolbox since it verifies more criteria, it is applicable also to kinetics not of mass
action type, it can be applied to SBML models, it is multiplatform and open source.

Two possible extensions of the toolbox features are the implementation of the
advanced deficiency theory [37] (which generalizes the deficiency one algorithm
to CRNs of deficiency greater than one), and the verification of some sufficient
conditions for multistationarity, like those of section 4 of [23] or maybe others
inspired by [117].

Another possible improvement would be to verify sufficient conditions for
monotonicity, like the one recently proposed in [2]. This would give information
on the stability of the equilibria, which is otherwise proved only for deficiency0
networks.

Regarding instead the distance to monotonicity, a set of heuristic algorithms for
its estimation has been proposed in [67] by our colleagues, based on the theoretical
framework presented here. The output of these algorithms is an interval inside
which the the consistency deficit must lie. These programs are able to treat also
large networks in a limited computational time. Moreover, two gene regulatory
networks (forE. coli andS. cerevisiae) have been analyzed with this algorithms
and, as supposed by [116], they are indeed near-consistent, i.e. the corresponding
dynamical systems are close to monotone.
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[102] A. Rodŕıguez, T. de la Cera, P. Herrero, and F. Moreno. The hexokinase
2 protein regulates the expression of theGLK1, HXK1 andHXK2 genes of
Saccharomyces cerevisiae. Biochem. J., 355(3):625–631, 2001.

[103] F. Rolland, J. Winderickx, and J. M. Thevelein. Glucose-sensing and -
signalling mechanisms in yeast.FEMS Yeast Res., 2(2):183–201, 2002.

[104] M. Ronen and D. Botstein. Transcriptional response of steady-state yeast
cultures to transient perturbations in carbon source.Proc. Natl. Acad. Sci.
U.S.A., 103(2):389–394, 2006.

[105] A. Ruepp, B. Brauner, I. Dunger-Kaltenbach, G. Frishman, C. Montrone,
M. Stransky, B. Waegele, T. Schmidt, O. N. Doudieu, V. Stümpflen, and
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[117] C. Souĺe. Graphic requirements for multistationarity.ComPlexUs,
1(3):123–133, 2003.

[118] V. Spirin and L. A. Mirny. Protein complexes and functional modulesin
molecular networks.Proc. Natl. Acad. Sci. U.S.A., 100(21):12123–12128,
2003.

[119] B. P. Tu, A. Kudlicki, M. Rowicka, and S. L. McKnight. Logic of theyeast
metabolic cycle: Temporal compartmentalization of cellular processes.Sci-
ence, 310(5751):1152–1158, 2005.

[120] B. P. Tu and S. L. McKnight. Metabolic cycles as an underlying basis of
biological oscillations.Nat. Rev. Mol. Cell Biol., 7(9):696–701, 2006.

[121] B. P. Tu, R. E. Mohler, J. C. Liu, K. M. Dombek, E. T. Young, R.E. Synovec,
and S. L. McKnight. Cyclic changes in metabolic state during the life of a
yeast cell.Proc. Natl. Acad. Sci. U.S.A., 104(43):16886–16891, 2007.

[122] R. C. Vallari, W. J. Cook, D. C. Audino, M. J. Morgan, D. E. Jensen, A. P.
Laudano, and C. L. Denis. Glucose repression of the yeastADH2 gene oc-
curs through multiple mechanisms, including control of the protein synthe-
sis of its transcriptional activator, ADR1.Mol. Cell. Biol., 12(4):1663–1673,
1992.

[123] Y. Wang, C. L. Liu, J. D. Storey, R. J. Tibshirani, D. Herschlag, and P. O.
Brown. Precision and functional specificity in mRNA decay.Proc. Natl.
Acad. Sci. U.S.A., 99(9):5860–5865, 2002.



BIBLIOGRAPHY 119

[124] A. V. Werhli, M. Grzegorczyk, and D. Husmeier. Comparative evalua-
tion of reverse engineering gene regulatory networks with relevance net-
works, graphical gaussian models and bayesian networks.Bioinformatics,
22(20):2523–2531, 2006.

[125] C. J. Wilusz and J. Wilusz. Bringing the role of mRNA decay in the control
of gene expression into focus.Trends Genet., 20(10):491–497, 2004.

[126] J. Wolf, H.-Y. Sohn, R. Heinrich, and H. Kuriyama. Mathematical analysis
of a mechanism for autonomous metabolic oscillations in continuous culture
of Saccharomyces cerevisiae. FEBS Lett., 499(3):230–234, 2001.

[127] Z. Xu and K. Tsurugi. A potential mechanism of energy-metabolism oscilla-
tion in an aerobic chemostat culture of the yeastSaccharomyces cerevisiae.
FEBS J., 273(8):1696–1709, 2006.

[128] Z. Xu and K. Tsurugi. Role of Gts1p in regulation of energy-metabolism
oscillation in continuous cultures of the yeastSaccharomyces cerevisiae.
Yeast, 24(3):161–170, 2007.

[129] S.-J. Yan, J. J. Zartman, M. Zhang, A. Scott, S. Y. Shvartsman, and W. X.
Li. Bistability coordinates activation of the EGFR and DPP pathways in
Drosophilavein differentiation.Mol. Syst. Biol., 5(278), 2009.
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