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Introduction

This work deals with the problem of the existence and multiplicity of periodic solutions
to nonautonomous planar Hamiltonian systems, collecting some results obtained during my
Ph.D. studies [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. More precisely, we consider the planar
differential system

Jz′ = ∇zH(t, z), z = (x, y) ∈ R2, (1)

with J =

(
0 −1
1 0

)
the standard symplectic matrix and H : R×R2 → R a regular function,

T -periodic in the first variable (with T > 0 fixed), and we look for periodic solutions to (1) of
fixed period, both harmonic (i.e., T -periodic) and subharmonic (i.e., kT -periodic, with k ≥ 2
an integer, and kT the minimal period, in a suitable sense).

The following brief summary is meant just to give an account of the main problems
considered in this work and of the main methods used to analyze them. Each chapter
is indeed equipped with a further introduction, containing more detailed descriptions and
motivations for our research, as well as a rich bibliography on the corresponding subject.

Let us first recall that (1) is the case N = 1 of the system of 2N ordinary differential
equations (i = 1, . . . , N)

x′i =
∂H

∂yi
(t, x1, . . . , xN , y1, . . . , yN )

y′i = −∂H
∂xi

(t, x1, . . . , xN , y1, . . . , yN ),

z = (x1, . . . , xN , y1, . . . , yN ) ∈ R2N , (2)

nowadays known as Hamilton’s equations1 and describing the evolution of a mechanical
system with N degrees of freedom. To be more precise, (xi(t), yi(t)) ((qi(t), pi(t)), following
tradition) play the role of “generalized coordinates” and “generalized conjugate momenta”,
while the function H(t, x, y) - the so-called Hamiltonian - represents the total energy of the
system (notice that, in the autonomous case, H(t, x, y) = H(x, y) is indeed a first integral
for (2)). Of particular physical relevance is the case when the Hamiltonian writes as the

1Quoting [128], “the Hamilton’s equations appear for the first time in a paper of Lagrange (1809) on
perturbation theory, but it was Cauchy (1831) who first gave the true significance of those equations. In
1835, Hamilton put those equations at the basis of his analytical mechanics [...]”. With respect to the
Lagrangian formulation of classical mechanics, the Hamiltonian formalism provides a better insight on the
geometrical properties of the phase space, highlighting its symplectic structure; quoting V.I. Arnold [11],
“Hamiltonian mechanics is geometry in phase space”.
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sum of a kinetic energy K(t, y) = 1
2

∑N
i=1 y

2
i and of a potential energy V (t, x), so that (2)

gives, setting2 u(t) = x(t),

u′′ +∇uV (t, u) = 0, u ∈ RN , (3)

that is, in the case N = 1,

u′′ + v(t, u) = 0, u ∈ R, (4)

for V (t, x) =
∫ x

0
v(t, ξ) dξ. This subclass of Hamiltonian systems has been enormously inves-

tigated from the mathematical point of view in the last decades and it has a special role also
in this thesis.

Our choice to limit the attention to a planar setting can look unnecessarily restrictive,
since nowadays modern functional-analytic techniques (like Topological Degree Theory or,
since (2) has a variational structure, Critical Point Theory) permit to successfully tackle
the problem in arbitrary dimension. On the other hand, the two-dimensional case deserves
a particular attention, since “elementary” - but powerful - tools from Planar Topology can
lead to very precise results for (1), which often do not have analogues in higher dimension.
This is the main theme of this thesis: in particular, we are interested in the situations in
which (1) exhibits high multiplicity of periodic solutions and, possibly, chaotic dynamics.
More in detail, we always assume that (1) admits an equilibrium point3 (which, without loss
of generality, is supposed to be the origin), namely

∇zH(t, 0) ≡ 0 (5)

(that is, for (4), v(t, 0) ≡ 0), and we look for multiple nontrivial periodic solutions, performing
our analysis in two different directions4.

Part I - Periodic solutions which wind around the origin

In the first part of the thesis (Chapters 2, 3 and 4), we look for periodic solutions which
wind around the origin (which correspond, in the case of the scalar equation (4), to solutions
which change their sign). This is, of course, a very natural choice, since simple autonomous
examples - just require, for H(t, z) = H(z),

〈∇H(z)|z〉 > 0, for z 6= 0, and lim
|z|→+∞

H(z) = +∞,

2Our choice of using the letter u for the unknown of second order ODEs like (3) and (4) is motivated by
the fact that this notation is typically employed in the literature dealing with elliptic PDEs, which represent
a natural generalization of (3) and (4).

3Equations of this type are called unforced by some authors. Notice that, when a T -periodic solution to
(1) is known “a priori” to exist, we can always enter in such a setting via a (time-dependent) linear change
of variables, which does not modify the asymptotic properties of the Hamiltonian (see Chapter 4 for some
examples in which such a strategy is realized).

4We will distinguish between periodic solutions which wind around the origin and periodic solutions which
do not wind around the origin. By this, as usual, we mean that their homotopy class in the fundamental group
π1(R2 \ {0}) is, respectively, nontrival or trivial; see the introductory section “Notation and Terminology”
for more details.
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(that is, for (4) with v(t, x) = v(x), v(x)x > 0 for x 6= 0 and
∫ +∞

0
v(ξ) dξ = +∞) - show that

the origin can be a global center for (1): namely, all the nontrivial solutions are periodic,
winding around the origin in the same angular direction. We use here the Poincaré-Birkhoff
fixed point theorem, in a suitable generalized version, to perform our analysis for the general
nonautonomous case, in presence of a dynamics of center type. Indeed, by proving that
a “gap” occurs between the number of turns around the origin of the solutions departing
from the inner and the outer boundary of a topological annulus, it is possible to ensure the
existence of periodic solutions making a precise number of revolutions around the origin:
such an additional information is the key point to distinguish among periodic solutions, thus
proving sharp multiplicity results. In the same spirit, the information about the number of
windings is a crucial fact in establishing the minimality of the period, when trying to detect
subharmonic solutions. More in detail, the first part of the thesis is organized as follows.

In Chapter 2 we study the existence of periodic solutions to (1), by comparing the non-
linear system, both at zero and at infinity, with autonomous Hamiltonian systems with
Hamiltonian positively homogeneous of degree 2. The main property of such comparison
systems is that the origin is an isochronous center (namely, all the nontrivial solutions are
periodic, winding around the origin, and have the same minimal period); as a consequence,
one can estimate in a very precise manner the number of revolutions of “small” and “large”
solutions to (1). In particular, a rotational analysis of a generalized Landesman-Lazer condi-
tion for planar systems is performed. Various results are presented, essentially treating the
case when (1) is semilinear, sublinear and superlinear at infinity.

In Chapter 3 we describe a general strategy to detect, via the Poincaré-Birkhoff twist
theorem, periodic solutions to second order scalar differential equations like (4) in presence
of lower/upper T -periodic solutions. Applications are given to pendulum type equations and
to Ambrosetti-Prodi type problems. In both cases, a preliminary step in the proof relies
on the use of the coincidence degree, which allows to prove the existence and localization
of a first T -periodic solution. Via a change of coordinates, such a T -periodic solution is
transformed into the origin (in order to have (5) satisfied) and the Poincaré-Birkhoff fixed
point theorem eventually provides other periodic solutions, winding around this first one.

In Chapter 4 we consider the second order scalar differential equation

u′′ + λf(t, u) = 0, u ∈ R, (6)

with λ > 0 playing the role of a parameter. The function f(t, x) is assumed to be supersub-
linear, i.e.,

lim
|x|→0

f(t, x)

x
= lim
|x|→+∞

f(t, x)

x
= 0, uniformly in t ∈ [0, T ],

so that a gap between the number of revolutions of “small” and “large” solutions is not
naturally available. However, we prove that, under a weak sign condition on f(t, x), “inter-
mediate” solutions perform, when λ→ +∞, an arbitrarily large number of turns around the
origin. Accordingly, it is possible to apply twice (precisely, on a small and on a large annu-
lar region) the Poincaré-Birkhoff fixed point theorem, giving pairs of sign-changing periodic
solutions to (6).
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Part II - Periodic solutions which do not wind around the origin

In the second part of the thesis (Chapters 5 and 6), we look for periodic solutions which do
not wind around the origin: in such an analysis, we are mainly motivated by the problem
of the existence of one-signed periodic solutions to the scalar equation (4). This case is, in
principle, more difficult. Indeed, one has to observe, on one hand, that a global dynamics
of center type, as in the first part of the thesis, prevents the existence of periodic solutions
which do not turn around the origin. Accordingly, to derive results in this direction, one has
to impose suitable sign changes for 〈∇zH(t, z)|z〉 (that is, in the case of (4), for v(t, x)x) in
order to combine, for system (1), different dynamical scenarios, usually of center and saddle
type. On the other hand, it can be hard to provide multiplicity results, since the natural
“tag” of the number of windings around the origin here cannot be used to distinguish among
solutions and more precise properties of localizations in the plane have to be looked for.
Accordingly, different abstract tools have to be employed to perform the analysis. The plan
of this second part of the thesis is the following.

In Chapter 5 we consider the general case when, for the planar Hamiltonian system (1),
an equilibrium point of saddle type is matched with an asymptotic dynamics of center type.
Precisely, we show that such a twist dynamics leads to the existence of periodic solutions
which do not wind around the origin, accompanied by a great number of large periodic
(subharmonic) solutions around the origin. However, the classical version of the Poincaré-
Birkhoff theorem here does not suffice and a recent modified version has to be used.

In Chapter 6 we turn our attention to the existence of positive periodic solutions to second
order scalar differential equations of the type

u′′ + q(t)g(u) = 0, u ∈ R, (7)

being q(t) a T -periodic function which changes its sign and g(x) a function satisfying the sign
condition g(x)x > 0 for x 6= 0. Problems of the type (7) are called indefinite (referring to the
fact that q(t) assumes both positive and negative values and therefore does not have a definite
sign) and they have been widely investigated in the past few decades, as a simple model
exhibiting high multiplicity of sign-changing solutions (with different boundary conditions)
and, eventually, chaotic dynamics. Such a complex dynamical behavior essentially comes
from the alternation, in the time variable, of a saddle type dynamics (when q(t) ≤ 0) with
a center type dynamics (when q(t) ≥ 0). Here we show that this class of problems gives
a natural setting in which existence and multiplicity of positive periodic solutions can be
detected, as well, provided that (7) is studied in dependence of real parameters, acting on
the weight function q(t). Precisely, in Section 6.1 we are concerned with the case

lim
x→0+

g(x)

x
= lim
x→+∞

g(x)

x
= 0,

showing the existence of multiple positive T -periodic solutions, positive subharmonics of
any order as well as a complex dynamics (in the coin-tossing sense), entirely generated by
positive solutions to (7); in our analysis, we use here a recent approach linked to the theory
of topological horseshoes. Finally, in Section 6.2 we prove the existence of multiple positive
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T -periodic solutions when

lim
x→0+

g(x)

x
= 0, lim

x→+∞

g(x)

x
= +∞,

and the weight function q(t) satisfies a symmetry condition: such periodic solutions - whose
existence and multiplicity is strictly related to the number and the height of the positive
humps of q(t) - are provided via solutions of an auxiliary Neumann problem, which is analyzed
by a careful shooting technique in the phase plane.

Further remarks and work in progress

This thesis mainly investigates the existence and multiplicity of periodic solutions to pla-
nar Hamiltonian systems via a dynamical systems approach. As already anticipated at the
beginning of this introduction, various other tools to tackle this very classical problem are
available and a complete overview on the subject is highly beyond the purposes of this work.
Nevertheless, it seems to be worth briefly mentioning some issues which could be related
to the topic of the present thesis, proposing some selected references. Needless to say, this
viewpoint is very personal, being strongly influenced by the knowledge and the interests of
the author.
The use of Topological Methods in the study of boundary value problems associated with dif-
ferential systems is, of course, very classical, starting in its modern form with the pioneering
paper by Leray and Schauder [109] where the so-called continuation technique was intro-
duced (see [123] for a nice survey on the topic and earlier contributions). For the periodic
boundary value problem, a convenient approach in the framework of coincidence degree has
been proposed by Mawhin [120]. Such a technique is very general, being useful, in principle,
for systems in arbitrary dimension and having an arbitrary (i.e., possibly non Hamiltonian)
structure; on the other hand, usually, only existence or low multiplicity of periodic solutions
is obtained. For superlinear differential systems (a situation in which the usual a priori bound
for periodic solutions is not available and the method of Leray-Schauder can not be directly
used), a powerful technique in the framework of Topological Methods has been developed
by Capietto, Mawhin and Zanolin [43], matching the global continuation approach with the
introduction of an invariant which is strictly related to the rotation number (see the intro-
ductory section “Notation and Terminology”) considered in our work; such a technique is
particularly well suited for planar problems. The use of polar type coordinates also plays
an important role when resonant systems are considered, leading to very precise results of
Landesman-Lazer type in the plane [67, 72] (compare with Remark 2.2.5). We finally observe
that Rabinowitz’s global bifurcation theory [146] (which could be successfully used to prove
high multiplicity results for planar differential systems with separated boundary conditions)
cannot be directly applied for the periodic problem since the eigenvalues of Jz′ = λz (or
of related spectral problems) have even multiplicity. However, bifurcation from infinity has
been employed in [115] to prove “multiplicity near resonance” results (on the lines of [125])
for periodic solutions to (4) in presence of symmetry conditions; a more recent contribution,
using a degree theory for SO(2)-equivariant gradient maps, can be found in [84].
On the other hand, Calculus of Variations and Critical Point Theory provide a natural, pow-
erful tool to treat Hamiltonian systems in arbitrary dimension; their range of applicability,
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moreover, is not restricted to periodic solutions but it also covers the investigation of homo-
clinic and heteroclinic solutions and, possibly, complex dynamics. As far as the second order
system (3) is considered, well developed minimization arguments, linking theorems, Morse
and Lusternik-Schnirelmann theories apply providing existence results for a very broad class
of nonlinearities, see [128]. On the other hand, the variational formulation of the periodic
problem associated with the general Hamiltonian system (2) leads to the functional

F (z) =

∫ T

0

N∑
i=1

x′i(t)yi(t) dt−
∫ T

0

H(t, x1(t), . . . , xN (t), y1(t), . . . , yN (t)) dt,

which is strongly indefinite (i.e., its leading part
∫ T

0

∑N
i=1 x

′
i(t)yi(t) dt is unbounded both

from below and from above), so that the above mentioned tools can not be used directly:
investigations in this direction started with the pioneering work by Rabinowitz [149] and
some abstract critical point theorems for strongly indefinite functionals were later developed
by Benci and Rabinowitz [17] (see [2] for a nice overview on the topic, as well as for a
wide bibliography). As for superlinear Hamiltonian systems, the existence of infinitely many
T -periodic solutions was first proved by Bahri and Berestycki [13] assuming the Ambrosetti-
Rabinowitz superlinearity condition (such a condition, however, is stronger than the planar
superlinearity condition suggested by topological tools and used in [43]; see the discussion
after Theorem 2.3.8). Hamiltonian systems with an equilibrium point at the origin and
asymptotically linear at infinity were studied by Ahmann-Zehnder [9] and Conley-Zehnder
[50] via Maslov type index theories. This last investigation naturally suggests a comparison
between Variational Methods and the Poincaré-Birkhoff fixed point theorem, showing that
always, as far as the planar case is considered, the multiplicity results obtained via the twist
theorem are considerably stronger (we refer to the papers [111, 118] and our Remark 1.1.2 for
more comments; in the higher dimensional case, multiplicity can be guaranteed when some
additional conditions - like convexity, symmetry in the space variable, or for autonomous
systems - are required). Multidimensional generalizations of the Poincaré-Birkhoff fixed
point theorem, in the framework of variational tools, lead to the very deep questions raised
by Arnold’s conjectures [11].

Another worth mentioning aspect of our work is the relationship between periodic bound-
ary conditions and other (separated) Sturm-Liouville type boundary conditions which could
be considered in association with the planar Hamiltonian system (1). In this regard, we
remark that our approach mainly relies on the study of the trajectories of the solutions to
(1) in the plane: such an analysis provides information on the Poincaré map associated with
(1) and periodic solutions are then found via fixed point theorems. Most of our preliminary
estimates, accordingly, could be combined with classical shooting type arguments in order to
derive multiplicity results for Sturm-Liouville boundary value problems associated with (1).
This is the case, for instance, for most of the technical estimates for the rotation numbers
developed in Chapters 2 and 5 (Landesman-Lazer conditions for Sturm-Liouville problems
would be, however, a delicate issue), which could lead to corresponding multiplicity results.
The precise statements, of course, would have to be written case by case and cannot be
summarized here; notice, however, that in our results we actually consider an infinite family
of periodic problems (namely, the kT -periodic ones - being k an integer number) thus show-
ing the full strength of the method proposed. Counterparts, for both the Dirichlet and the
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Neumann problem, of the results of Chapter 4 are particularly natural and they have been
considered in the corresponding paper [34]. Finally, the analogies between the periodic and
the Neumann problem when dealing with the existence of positive solutions to the second
order scalar equations of Chapter 6 are emphasized in the corresponding introduction.

To conclude, we briefly touch on possible future developments of our research, along some
of the directions presented in the present work.
Chapters 2 and 5 provide a quite exhaustive description of the dynamics of a planar Hamilto-
nian system having an equilibrium point. However, a possibly interesting investigation could
be performed about the general requirement of the global continuability for the solutions; to
this aim, techniques based on the construction of some spiral-like curves in the plane used to
bound the solutions (as in the proof of Lemma 4.2.2) could be useful. For instance, it was
proved by Hartman [97] that the global continuability for the solutions is not needed in the
case of the second order equation (4), when v(t, 0) ≡ 0 and v(t, x)/x→ +∞ for |x| → +∞.
Chapter 3 suggests the following general question: when subharmonic solutions can be ob-
tained between a lower solution α(t) and an upper solution β(t) such that α(t) < β(t)?
We do not know the answer; of course simple examples show that additional conditions are
needed, but one can imagine many different situations (in the easiest case, when α(t), β(t) are
solutions) in which subharmonics actually exist. This could be related to the investigation
of subharmonic solutions to planar Hamiltonian systems having two, or more, equilibrium
points, in connection with some results by Abbondandolo and Franks [1, 81]. Chaotic dy-
namics for some of the examples considered in Chapters 3 and 4 should be detected as well.
Finally, Chapter 5 can give rise to investigations in different directions. First of all, the exis-
tence of subharmonic solutions is, to the best of our knowledge, still to be studied for most
of the problems considered. Second, we suspect that, on the lines of [24, 89, 90, 91], various
results obtained in the scalar ODEs setting could be extended to the Neumann problem for
elliptic partial differential equations (on balls and looking for radial solutions at first, and
via variational tools for arbitrary domains as well) and, maybe, for second order systems like
(3). At last, it could be nice to study a supersublinear problem (with Dirichlet, Neumann
and periodic boundary conditions) when the weight function changes its sign more and more
times. Combining the estimates of Section 6.1 with the ones of Section 6.2, one could likely
prove an high multiplicity result which seems to be completely new.
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Notation and terminology

The plane R2 is endowed with the Euclidean scalar product 〈z1|z2〉 = x1y1 + x2y2, for
z1 = (x1, y1), z2 = (x2, y2) ∈ R2, and the corresponding Euclidean norm is denoted by
|z1| =

√
x2

1 + y2
1 . A symplectic structure is defined as well, via the (standard) symplectic

matrix J =

(
0 −1
1 0

)
. The origin 0R2 = (0, 0) is simply denoted by 0 and by R2

∗ we mean

the punctured plane R2 \ {0}. In a similar way, for numeric sets K = N,Z,Q,R,C, the
symbol K∗ denotes K \ {0K}. Finally, K+ = K ∩ [0,+∞[ (resp., K− = K∩ ] − ∞, 0]) and
K+
∗ = K∩ ]0,+∞[ (resp., K−∗ = K∩ ]−∞, 0[).

We often use polar coordinates in the plane; that is to say, for z ∈ R2
∗, we write z =

(ρ cos θ, ρ sin θ), where ρ > 0 and θ ∈ R. Sometimes, we also identify the plane R2 with
the complex plane C (i.e., z = (x, y) ∈ R2 ∼ z = x + iy ∈ C), thus writing z = ρeiθ. A
crucial tool in this framework is the rotation number of a planar path, which is defined, for
z = (x, y) : [t1, t2] → R2 absolutely continuous and such that z(t) 6= 0 for every t ∈ [t1, t2],
as

Rot (z(t); [t1, t2]) =
1

2π

∫ t2

t1

〈Jz′(t)|z(t)〉
|z(t)|2

dt =
1

2π

∫ t2

t1

y(t)x′(t)− x(t)y′(t)

x(t)2 + y(t)2
dt. (8)

The rotation number is related to the polar coordinates in the sense that it gives an algebraic
count of the (clockwise) angular displacement of the planar path z(t) around the origin, in
the time interval [t1, t2]. Precisely, if z(t) = ρ(t)(cos θ(t), sin θ(t)), with ρ(t), θ(t) absolutely
continuous functions and ρ(t) > 0 (by the theory of covering spaces [94], such functions
always exist), then it can be seen that

Rot (z(t); [t1, t2]) =
θ(t1)− θ(t2)

2π
.

When z(t1) = z(t2) (that is, z(t) is a closed path), then Rot (z(t); [t1, t2]) is an integer
number, which characterizes the homotopy class of the loop t 7→ z(t) in the fundamental
group π1(R2

∗) ' Z and is often called “winding number”. In particular, we say that a loop
z(t) winds around the origin (resp., does not wind around the origin) if Rot (z(t); [t1, t2]) 6= 0
(resp., Rot (z(t); [t1, t2]) = 0).

We use quite standard notation for function spaces. For instance, Ck (with k ∈ N) is
the space of continuous functions with continuous derivatives up to the k-th order, Lp (with
1 ≤ p ≤ ∞) is the Lebesgue space and W k,p (with k ∈ N and 1 ≤ p ≤ ∞) is the Sobolev
space (the domain and codomain of the functions being clear from the context, or explicitly
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indicated). When we write CkT , L
p
T ,W

k,p
T we mean that the functions are defined on R, T -

periodic and (locally) Ck, Lp,W k,p. Moreover, we say that a function Ξ : R × O → RN
(N ∈ N∗ and O ⊂ RN an open subset), T -periodic in the first variable, is Lp-Carathéodory
(1 ≤ p ≤ ∞) if Ξ(·, ξ) is measurable for every z ∈ O, Ξ(t, ·) is continuous for almost every
t ∈ [0, T ] and, for every K ⊂ O compact, there exists hK ∈ LpT such that |f(t, ξ)| ≤ hK(t) for
almost every t ∈ [0, T ] and every ξ ∈ K.

We consider first order planar differential systems like

Jz′ = Z(t, z), z = (x, y) ∈ R2, (9)

with Z : R × R2 → R2 a function which is T -periodic in the first variable and (at least)
L1-Carathéodory. Accordingly, we mean the solutions in the generalized (Carathéodory)
sense, i.e., locally absolutely continuous functions (on an interval) solving the differential
equation almost everywhere. Of course, when Z(t, z) is continuous on both the variables,
every generalized solution is of class C1 and solves the differential equation for every t (that
is, it is a classical solution). We say that system (9) is Hamiltonian if there exists a function
H : R × R2 → R, T -periodic in the first variable and differentiable in the second one with
∇zH(t, z) (at least) L1-Carathéodory, such that Z(t, z) = ∇zH(t, z). When we refer to the
second order scalar differential equation

u′′ + v(t, u) = 0, u ∈ R, (10)

with v : R × R → R a function which is T -periodic in the first variable and (at least)
L1-Carathéodory, we implicitly mean that it is written as the first order planar differential
system

x′ = y, y′ = −v(t, x), (11)

which is Hamiltonian, with H(t, x, y) = 1
2y

2 +
∫ x

0
v(t, ξ) dξ. Generalized solutions z(t) =

(x(t), y(t)) to the first order system (11) correspond to generalized solutions u(t) = x(t) to
the second order equation (10), i.e., functions of class C1 with a locally absolutely continuous
second derivative, solving the equation almost everywhere.

We are mainly interested in the search for solutions to (9) having period which is an
integer multiple of T . Precisely, we say that a solution z(t) is harmonic if is T periodic and
we say that it is a subharmonic of order k (with k ≥ 2 an integer) if it is kT -periodic, but
not lT -periodic for any integer l = 1, . . . , k−1 (namely, kT is the minimal period in the class
of the integer multiples of T ). We recall that, in some cases, it is possible to show that a
subharmonic solution of order k has kT has minimal period; for instance, this is the case if
the following condition, first introduced in [130], is satisfied:

If z(t) is a periodic function with minimal period qT , for q rational, and Z(t, z(t)) is a
periodic function with minimal period qT , then q is necessarily an integer.

Such a condition can be seen as an essential time dependence for the nonlinearity Z(t, z),
and it is satisfied when it has some particular structures (for instance, when Z(t, x, y) =
(q(t)g(x), y) - corresponding to u′′ + q(t)g(u) = 0 - with q(t) > 0 having minimal period T ).

Finally, some notation for integer part type functions is useful. Precisely, for a > 0, with
the symbol bac we mean the greatest integer less than or equal to a, while by dae we denote
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the least integer greater than or equal to a. Moreover, we set

E−(a) =

{
bac if a /∈ N
a− 1 if a ∈ N,

E+(a) =

{
dae if a /∈ N
a+ 1 if a ∈ N,

so that E−(a) ≤ bac ≤ a ≤ dae ≤ E+(a).
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Chapter 1

Preliminaries

This is a preliminary chapter, collecting the main abstract topological results which are
employed in this thesis to prove the existence of periodic solutions to planar Hamiltonian
systems.

Section 1.1 is devoted to the Poincaré-Birkhoff fixed point theorem, which is used in
Chapters 2, 3 and 4. Section 1.2 deals with a recent modified version of the Poincaré-
Birkhoff fixed point theorem, employed in Chapter 5. Finally, Section 1.3 collects some
results about chaotic dynamics and describes a topological method - the “stretching along
the paths” method, SAP for brevity - leading to periodic points and complex dynamics for
a planar map: this is the main tool in Chapter 6. The material of the chapter is standard,
with the partial exception of Section 1.2, where a detailed exposition, coming from [28], of
the application of the modified Poincaré-Birkhoff theorem to Hamiltonian systems which are
asymptotically linear at zero is given.

1.1 The “classical” Poincaré-Birkhoff Theorem

The Poincaré-Birkhoff fixed point theorem is a classical result of Planar Topology, ensuring
the existence of two fixed points for an area-preserving “twist” homeomorphism of a closed
annulus. It was conjectured, and proved in some special cases, by Poincaré [144] in 1912,
motivated by the analysis of the restricted three body problem. Later, in 1913, Birkhoff
provided a complete proof of the existence of one fixed point [22] and finally, in 1926, of the
second one [23]. A detailed and convincing checking of Birkhoff’s original arguments - based
on an ingenious application of the index of a vector field along a curve - was given in the
expository paper by Brown and Neumann [35].

Here is a modern statement of the classical version of the theorem. For 0 < ri < ro, we
denote by A[ri, ro] = {z ∈ R2 | ri ≤ |z| ≤ ro} the closed annulus of radii ri, ro (“i” means
“inner” and “o” means “outer”). We also define the covering projection

Π : R+
∗ × R 3 (ρ, θ) 7→

√
2ρ(cos θ, sin θ) ∈ R2

∗, (1.1)

making R+
∗ × R a (universal) covering space of R2

∗, and we recall that, given a map Ψ :
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D ⊂ R2
∗ → R2

∗, the map Ψ̃ : Π−1(D) ⊂ R+
∗ × R → R+

∗ × R is said to be a lifting of Ψ if

Π ◦ Ψ̃ = Ψ ◦Π.

Theorem 1.1.1. Let Ψ : A[ri, ro] → A[ri, ro] be an area-preserving homeomorphism. Sup-

pose that Ψ has a lifting Ψ̃ : [r2
i /2, r

2
o/2]× R→ [r2

i /2, r
2
o/2]× R of the form

Ψ̃(ρ, θ) = (R(ρ, θ), θ + γ(ρ, θ)), (1.2)

being R(ρ, θ), γ(ρ, θ) continuous functions, 2π-periodic in the second variable. Finally, as-
sume that:

(i) R(r2
i /2, θ) = r2

i /2 and R(r2
o/2, θ) = r2

o/2 for every θ ∈ R;

(ii) γ(r2
i /2, θ)γ(r2

o/2, θ) < 0 for every θ ∈ R.

Then Ψ̃ has at least two fixed points (ρ(1), θ(1)), (ρ(2), θ(2)) ∈ ]r2
i /2, r

2
o/2[×R such that

(ρ(2), θ(2))− (ρ(1), θ(1)) 6= (0, 2kπ), for every k ∈ Z. (1.3)

As it is clear, condition (1.3) ensures that zi = Π(ρ(1), θ(1)), z2 = Π(ρ(2), θ(2)) are distinct
fixed points of Ψ, belonging to the open annulus of radii ri, ro. Some comments about the
statement of the theorem are now in order; see also Figure 1.1.

Figure 1.1: A numerical simulation describing the classical version of the Poincaré-Birkhoff fixed point
theorem, Theorem 1.1.1. In the figure, different colors are used to highlight the “twist” effect of the area-
preserving homeomorphism Ψ(x, y) = (x cos(2(x2 + y2)) + y sin(2(x2 + y2)),−x sin(2(x2 + y2)) + y cos(2(x2 +

y2))) on the annulus A[1, 2]. Such a map admits the lifting Ψ̃(ρ, θ) = (ρ, θ + 2π − 4ρ), which satisfies all
the assumptions of the Poincaré-Birkhoff theorem. In our example, in particular, each point of the annulus
is moved by Ψ to a point on the same circumference, the angular displacement being constant on each
circumference and monotonically depending on the distance from the origin. It is worth noticing that the
map Ψ can be realized as the Poincaré operator, at time T = 1/2, of the autonomous planar Hamiltonian
system x′ = 4y(x2 + y2), y′ = −4x(x2 + y2) (that is, Jz′ = ∇H(z) for H(x, y) = (x2 + y2)2).
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• The property of area-preservation is meant in the sense that µ(B) = µ(Ψ(B)) for every
Borel set B ⊂ A[ri, ro], being µ the standard Lebesgue measure in the plane. Notice
that, when Ψ is a diffeomorphism, Ψ is area-preserving if and only if |det Ψ′| = 1.

• Since [r2
i /2, r

2
o/2] × R is simply connected, the theory of covering spaces [94] ensures

that a lifting Ψ̃ of Ψ always exists. Moreover, Ψ̃ satisfies

Ψ̃(ρ, θ + 2π) = Ψ̃(ρ, θ) + (0, 2kΨπ),

being kΨ an integer which depends only on the homotopy class of Ψ. For general
(continuous) maps on an annulus, kΨ could take any value; here, since Ψ is an homeo-
morphism, kΨ can be only ±1. Assumption (1.2) requires eventually that kΨ = 1: that
is, Ψ is homotopic to the identity.

• Conditions (i) and (ii) concern the behavior of Ψ at the boundary of the annulus.
Precisely, (i) says that both the inner and the outer boundary are invariant for Ψ, while
(ii) (the so called twist condition) gives a rigorous meaning to the informal expression
“the boundaries are rotated in opposite angular directions”. Notice that it is really
necessary to work with a lifting of Ψ, since the twist condition is meaningless for maps
on the annulus; on the other hand, we obtain not only fixed points of Ψ, but fixed points
of any lifting satisfying the twist condition (this will be a crucial fact in the applications,
see the discussion after Theorem 1.1.3). We remark that, in slightly different contexts
(often related to the theories of Kolmogorov-Arnold-Moser and Aubry-Mather, see [92]),
it is named “twist condition” the assumption

∂

∂ρ
γ(ρ, θ) > 0, (1.4)

i.e., the monotonicity of the twist (which is well-defined also without invoking the lifting
to the covering space). To avoid misunderstandings, it can be useful to call “boundary
twist condition” the requirement (ii) of Theorem 1.1.1. Notice that the boundary twist
condition (ii) and (1.4) are mutually independent. However, when both of them are
assumed, the proof of Theorem 1.1.1 is very simple (see, for instance, [51, Proposition
1]).

• A compact way to express the assumptions of Theorem 1.1.1 is obtained by requiring
that Ψ is a twist homeomorphism isotopic (i.e., homotopic via homeomorphisms) to
the identity. In such a case, indeed, Ψ is homotopic to the identity and preserves each
boundary component. Another property of Ψ which could be taken into account is the
preservation of the orientation. Indeed, whenever Ψ is homotopic to the identity and
preserves the boundaries, then it is orientation-preserving; conversely, an orientation-
preserving homeomorphism which leaves each boundary component invariant satisfies
(1.2). Recall in particular that, if Ψ is a diffeomorphism, Ψ is orientation-preserving
if and only if det Ψ′ > 0. Hence, when Ψ is smooth and satisfies the assumptions
of Theorem 1.1.1, then det Ψ′ = 1. Maps fulfilling this latter property are called
symplectic.

• The map Ψ̃P : [ri, ro] × R → [ri, ro] × R defined by Ψ̃P (ρ, θ) = (
√

2R(ρ2/2, θ), θ +
γ(ρ2/2, θ)) is a lifting of Ψ, relatively to the covering projection P (ρ, θ) = ρ(cos θ, sin θ).
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Of course, Ψ̃P has two fixed points, as well, so that Theorem 1.1.1 holds true also if
the (more standard) covering projection P is considered. However, it can be useful to

express the theorem using Π because, being det Π′ = 1, the lifting Ψ̃ is area-preserving
too.

Great efforts have been made to generalize Theorem 1.1.1, both in the direction of replac-
ing the area-preservation assumption by a more topological condition (see, among others,
[23, 46, 80, 82, 95, 164]) and in the direction of relaxing the requirement of the invariance
of the annulus [23, 61, 62, 80, 82, 99, 100, 150]. The history of such generalizations and
developments is very interesting and some “delicate” versions of the twist theorem have been
settled only very recently; we refer to [51, 76] for a more complete discussion.

As for the application of the theorem to (nonautonomous) planar Hamiltonian systems,
the invariance of the annulus is the major drawback. We state here the generalized version
which will be used in this thesis; it is due to Rebelo [150, Corollary 2]. In the statement, we
will denote by D(Γ) the open bounded region delimited by a Jordan curve Γ ⊂ R2 (according
to the Jordan theorem). Moreover, we will say that Γ is strictly star-shaped around the origin
if 0 ∈ D(Γ) and every ray emanating from the origin intersects Γ exactly once1.

Theorem 1.1.2. Let Γi,Γo ⊂ R2 be strictly star-shaped Jordan curves around the origin,
with D(Γi) ⊂ D(Γo), and let Ψ : D(Γo) → Ψ(D(Γo)) be an area-preserving homeomorphism

with Ψ(0) = 0. Suppose that Ψ|D(Γo)\{0} has a lifting Ψ̃ : Π−1(D(Γo)\{0})→ Π−1(Ψ(D(Γo))\
{0}) of the form (1.2), being R(ρ, θ), γ(ρ, θ) continuous functions, 2π-periodic in the second
variable. Finally, assume that

γ(ρ, θ) > 0, for every (ρ, θ) ∈ Π−1(Γi),

and
γ(ρ, θ) < 0, for every (ρ, θ) ∈ Π−1(Γo),

(or conversely). Then Ψ̃ has at least two fixed points (ρ(1), θ(1)), (ρ(2), θ(2)) ∈ Π−1(D(Γo) \
D(Γi)), such that (1.3) holds true.

Remark 1.1.1. According to [150, Remark 2] and [62, Lemma 1], the condition Ψ(0) = 0
can be replaced by 0 ∈ Ψ(D(Γi)). We have chosen to deal with this simpler version because,
when applying Theorem 1.1.2 to the existence of periodic solutions to Hamiltonian systems,
the assumption Ψ(0) = 0 just requires the “a priori” existence of a periodic solution, a fact
which will be always assumed in the thesis (compare with (5) of the Introduction).

Theorem 1.1.2 is reminiscent of the version of the Poincaré-Birkhoff theorem given by
W.-Y. Ding [62], which, however, does not require the strictly star-shapedness of the outer
boundary: this is a very delicate point. Indeed, at first it was shown in [119] that the
assumption of a strictly star-shaped inner boundary is not eliminable. More recently, [108]
provided an example showing that the outer boundary has to be star-shaped too, so that the
result stated in [62] does not seem to be correct. We point out that such a mistake probably
goes back to the result by Jacobowitz [99] (dealing with an annulus whose inner boundary

1We warn the reader that some authors name “star-shaped” the curves satisfying such a property, with
the adjective “strictly” referred to the smooth case, when the intersection is, in addition, non-tranverse.
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degenerates into a point), which is invoked in the proof by W.-Y. Ding. On the other hand,
the proof of Theorem 1.1.2 given in [150] is based on a reduction to the classical version of
the twist theorem. Theorem 1.1.2, in the case when Γi,Γo are circumferences of center the
origin, is also contained in [61].

We finally state the semi-abstract result, based on Theorem 1.1.2 together with the con-
cept of rotation number of a planar path (as defined in (8) of the introductory section “No-
tation and Terminology”), which is our main tool to prove the existence of periodic solutions
(winding around the origin) to unforced planar Hamiltonian systems

Jz′ = ∇zH(t, z), (1.5)

being H : R× R2 → R a function which is T -periodic in the first variable and differentiable
in the second one, with ∇zH(t, z) an L1-Carathéodory function such that ∇zH(t, 0) ≡ 0.
Dealing with (1.5), we also assume that the uniqueness and the global continuability for the
solutions to the associated Cauchy problems are ensured and denote by z(·; z̄) the unique
solution to (1.5) such that z(0; z̄) = z̄.

Theorem 1.1.3. Let k ∈ N∗ and j ∈ Z. Suppose that there exist Γi,Γo ⊂ R2, strictly
star-shaped Jordan curves around the origin, with D(Γi) ⊂ D(Γo), such that

Rot (z(t; z̄); [0, kT ]) < j, for every z̄ ∈ Γi,

and
Rot (z(t; z̄); [0, kT ]) > j, for every z̄ ∈ Γo,

(or conversely). Then there exist two kT -periodic solutions z
(1)
k,j(t), z

(2)
k,j(t) to (1.5), with

z
(1)
k,j(0), z

(2)
k,j(0) ∈ D(Γo) \ D(Γi),

such that
Rot (z

(1)
k,j(t); [0, kT ]) = Rot (z

(2)
k,j(t); [0, kT ]) = j. (1.6)

Observe that the condition ∇zH(t, 0) ≡ 0 implies that, if z̄ 6= 0, then z(t; z̄) 6= 0 for every
t ∈ R, so the rotation numbers appearing in the statement of the theorem are well defined.
Relation (1.6), of course, has to be meant as an information about the nodal properties of the
periodic solutions found (in particular, we recall that, when (1.5) comes from a second order
scalar equation u′′ + v(t, u) = 0, kT -periodic solutions to (1.5) satisfying (1.6) correspond
to kT -periodic solution of the scalar equation having exactly 2j zeros in [0, kT [ ; see, for
instance, [34, Lemma 3.8])) and it is the key point to get multiplicity of solutions. Indeed,
when - in the setting of Theorem 1.1.3 - there exist jmin, jmax ∈ Z, with jmin < jmax, such
that

Rot (z(t; z̄); [0, kT ]) < jmin, for every z̄ ∈ Γi,

and
Rot (z(t; z̄); [0, kT ]) > jmax, for every z̄ ∈ Γo,

(or conversely), then one can apply more and more times Theorem 1.1.3 to find jmax−jmin+1
pairs of kT -periodic solutions, with rotation number equal to jmin, jmin +1, . . . , jmax−1, jmax,
respectively. Therefore:
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the larger the “gap” between the rotation numbers of the solutions departing from the inner
and the outer boundary, the greater the number of the periodic solutions obtained.

Initial values, at time t = 0, of such kT -periodic solutions will be provided, via Theorem
1.1.2, as fixed points of the k-th iterate of the Poincaré map Ψ associated with (1.5) (see the
sketch of the proof below for some details). For k = 1, Theorem 1.1.3 gives the existence of
T -periodic solutions (i.e., harmonic solutions) to the planar Hamiltonian system (1.5). On
the other hand, when k > 1, it is easy to see that (see, for instance, [59, pp. 523-524]),
whenever k, j are relatively prime integers (namely, their greatest common divisor is 1), then

the kT -periodic solutions z
(1)
k,j(t), z

(2)
k,j(t) are not lT -periodic for any integer l = 1, . . . , k−1, so

that they are subharmonic solutions of order k to (1.5). Notice that subharmonic solutions
of order k correspond to fixed points of Ψk which are not fixed points of Ψl for any l =
1, . . . , k − 1. We finally remark that, as pointed out in the proof of [152, Theorem 5], it is

possible to show that the subharmonic solutions z
(1)
k,j(t), z

(2)
k,j(t) do not belong to the same

periodicity class, i.e., z
(1)
k,j(·) 6≡ z

(2)
k,j(· + lT ) for every integer l = 1, . . . , k − 1. This means

that the orbits of z1 = z
(1)
k,j(0) and z2 = z

(2)
k,j(0), namely O1 = {z1,Ψ(z1), . . . ,Ψk−1(z2)} and

O2 = {z2,Ψ(z2), . . . ,Ψk−1(z2)}, are disjoint.

Sketch of the proof. Let us consider the Poincaré map Ψ : R2 3 z̄ 7→ z(T ; z̄). The standard
theory of ODEs ensures that Ψ is a global homeomorphism of the plane onto itself; moreover,
since ∇zH(t, 0) ≡ 0, it turns out that Ψ(0) = 0. We also have that Ψ is area-preserving:
indeed, when H(t, z) is of class C2 in the second variable, this just follows from the classical
Liouville’s theorem, while the general case can be treated by approximation (see, as a guide,
[132, Remark 2.35]). Notice that the same properties hold for the k-th iterate of Ψ, as well.

Define Ψ̃k,j : R+
∗ × R 3 (ρ, θ) 7→ (Rk(ρ, θ), θ + γk,j(ρ, θ)), where

Rk(ρ, θ) = |Ψk(Π(ρ, θ))|2/2, γk,j(ρ, θ) = 2π(j − Rot(z(t; Π(ρ, θ)); [0, kT ])).

It is easy to see that Ψ̃k,j is a lifting of Ψk|R2
∗

: R2
∗ → R2

∗; moreover, if (ρ∗, θ∗) is a fixed point

of Ψ̃k,j , then z(t; Π(ρ∗, θ∗)) is a kT -periodic solution to (1.5) with rotation number equal to
j. Since

γk,j(ρ, θ) > 0, for every (ρ, θ) ∈ Π−1(Γi),

and
γk,j(ρ, θ) < 0, for every (ρ, θ) ∈ Π−1(Γo),

the thesis follows plainly from Theorem 1.1.2

Remark 1.1.2. As it is clear, Theorem 1.1.3 is based on the concept of rotation number of
a curve around the origin, which deeply relies on the topology of the punctured plane R2

∗. A
partial extension of such a tool to the higher dimensional case is represented by the celebrated
Conley-Zehnder index [50] (also named Maslov index by some authors; see, for instance, the
books [2, 113] and the references therein). Based on the Maslov index, together with Morse
theory, partial generalizations of Theorem 1.1.3 to higher dimension have been obtained
(see, among others, [50, 111, 112]), despite the 2-dimensional nature of the Poincaré-Birkhoff
theorem. However, the main difference is that such results do not provide, in general, a
greater number of periodic solutions with a larger “gap” between the Maslov indexes at zero
and at infinity. For further comments, we refer to the introductions of [111, 118].
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1.2 A “modified” Poincaré-Birkhoff Theorem

In this section we present a “modified” version of the Poincaré-Birkhoff theorem, proved by
Margheri, Rebelo and Zanolin [118] (see also [41]). The main difference compared to the
“classical” version lies in the fact that the twist condition is considerably weakened (at the
inner boundary); as a consequence, only one fixed point is provided.

Here is the statement of the result, dealing with a map defined on a vertical strip contained
in H+ = {(ρ, θ) ∈ R2 | ρ ≥ 0}.

Theorem 1.2.1. Let Ψ̃ : [0, R] × R ⊂ H+ → Ψ̃([0, R] × R) ⊂ H+ be an area-preserving
homeomorphism of the form (1.2), being R(ρ, θ), γ(ρ, θ) continuous functions, 2π-periodic in
the second variable, and such that R(0, θ) = 0 for every θ ∈ R. Finally, assume that there
exists θ∗ ∈ R such that

γ(0, θ∗) > 0

and

γ(R, θ) < 0, for every θ ∈ R.

Then Ψ̃ has at least one fixed point in ]0, R[×R.

We are now going to derive, on the lines of Theorem 1.1.3, a corollary of Theorem 1.2.1
dealing with periodic solutions to the planar Hamiltonian system (1.5). Notice that, in the
proof of Theorem 1.1.3, we lifted - with respect to the covering projection (1.1) - the restriction
Ψk|R2

∗
: R2
∗ → R2

∗ (being Ψ the Poincaré map associated with (1.5)) to an homeomorphism
defined on the open half-space {(ρ, θ) ∈ R2 | ρ > 0}. On the other hand, in order to apply
Theorem 1.2.1, we need a map defined on (a strip of) the closed half-space H+, which can not
be obtained directly in this manner. From a geometrical point of view, this corresponds to
working in a planar annulus whose inner boundary degenerates into a single point, a situation
which has been the source of some inaccuracies in previous versions of the Poincaré-Birkhoff
theorem (see the brief discussion after Theorem 1.1.2). Here, we propose to show, with some
details, how to enter in the setting of Theorem 1.2.1 when the following conditions on the
Hamiltonian are fulfilled:

(C1) H : R × R2 → R is a continuous function, T -periodic in the first variable, such that
∇zH(t, z) exists and is continuous on R × R2. Without loss of generality, moreover,
we require H(t, 0) ≡ 0;

(C2) ∇zH(t, 0) ≡ 0 and there exists a continuous and T -periodic function B : R → Ls(R2)
(we denote here by Ls(R2) the vector space of real 2× 2 symmetric matrices) such that

lim
z→0

∇zH(t, z)−B(t)z

|z|
= 0, uniformly in t ∈ [0, T ]. (1.7)

As usual, we also assume that the uniqueness and the global continuability for the solutions
to the Cauchy problems associated with (1.5) are ensured and denote by z(·; z̄) the unique
solution to (1.5) such that z(0; z̄) = z̄.
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Let us define the Hamiltonian function

H̃(t, ρ, θ) = sgn (ρ)H(t,
√

2|ρ|eiθ),

for (t, θ, ρ) ∈ R× R2. Here, and in the following, we identify the plane R2 with the complex
plane C, so that we write eiθ ∈ C to denote the vector (cos θ, sin θ) ∈ R2.

Lemma 1.2.1. The function H̃(t, ρ, θ) is continuous, T -periodic in the first variable, and

the partial derivatives H̃ρ(t, ρ, θ), H̃θ(t, ρ, θ) exist and are continuous on R× R2.

Proof. The continuity, and T -periodicity in the first variable, of H̃, as well as the existence
and continuity of H̃θ, just follow from the assumptions on H (recall that we have assumed

H(t, 0) ≡ 0). For the same reason, H̃ρ(t, ρ, θ) exists and is continuous for ρ 6= 0. From (1.7),
moreover, we deduce that

H̃ρ(t, ρ, θ) =
1√
2|ρ|
〈∇zH(t,

√
2|ρ|eiθ) | eiθ〉 → 〈B(t)eiθ | eiθ〉

for ρ → 0, uniformly in (t, θ) ∈ R2. At this point, l’Hopital theorem implies that H̃ρ(t, 0, θ)

exists (and H̃ρ(t, ·, θ) is continuous by construction). The continuity of H̃ρ with respect to
the full variable (t, ρ, θ) is easily seen to be satisfied, too.

We can thus consider the associated Hamiltonian system

ρ′ = H̃θ(t, ρ, θ) = sgn (ρ)
√

2|ρ|〈∇zH(t,
√

2|ρ|eiθ) | Jeiθ〉

θ′ = −H̃ρ(t, ρ, θ) =


− 1√

2|ρ|
〈∇zH(t,

√
2|ρ|eiθ) | eiθ〉 if ρ 6= 0

−〈B(t)eiθ | eiθ〉 if ρ = 0,

(1.8)

for (t, ρ, θ) ∈ R× R2.

Lemma 1.2.2. The uniqueness and the global continuability for the solutions to the initial
value problems associated with (1.8) are guaranteed.

Proof. Fix t0 ∈ R and consider the Cauchy problem (ρ(t0), θ(t0)) = (ρ, θ).
If ρ = 0, a standard application of Gronwall’s lemma, using (1.7), implies that ρ(t) ≡ 0 (in-
deed, from (1.7) we deduce that for every m > 0 there exists Cm > 0 such that |∇zH(t, z)| ≤
Cm|z| for |z| ≤ m). Since θ′(t) = −〈B(t)eiθ(t) | eiθ(t)〉, the global Lipschitz continuity of the
right-hand side implies that θ(t) is uniquely globally defined, too.
If ρ 6= 0, simple calculations show that the function z(t) =

√
2|ρ(t)|eiθ(t) is a local solution

to (1.5), with z(t0) =
√

2|ρ(t0)|eiθ(t0) ∈ R2
∗. Indeed, from (1.8) we obtain

Jz′(t) = 〈∇zH(t, z(t))|Jeiθ(t)〉Jeiθ(t) + 〈∇zH(t, z(t))|eiθ(t)〉eiθ(t)

and using the fact that, for every t, {eiθ(t), Jeiθ(t)} is an orthonormal bases of R2, we conclude.
Since the initial value problems associated with (1.8) have a unique solution and the map
(ρ, θ) ∈ R∗ × R 7→

√
2|ρ|eiθ ∈ R2

∗ is a local homeomorphism, we deduce that θ(t), ρ(t) are
locally uniquely defined. Moreover, since z(t) can be globally extended, never reaching the
origin, we deduce that θ(t), ρ(t) can be globally extended too.
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Let us now denote by (r(·; ρ, θ), ϕ(·; ρ, θ)) the unique solution to (1.8) such that

(r(0; ρ, θ), ϕ(0; ρ, θ)) = (ρ, θ).

Observe that, along the proof of Lemma 1.2.2, we have showed that

z(t;
√

2|ρ|eiθ) =
√

2|r(t; ρ, θ)|eiϕ(t;ρ,θ), for every ρ 6= 0. (1.9)

Moreover, with similar arguments it is possible to see that, denoting by zB(·; z̄) the unique
solution to the linear Hamiltonian system Jz′ = B(t)z with zB(0; z̄) = z̄, it holds that

zB(t; eiθ) = exp

(∫ t

0

〈B(s)eiϕ(s;0,θ)|Jeiϕ(s;0,θ)〉 ds
)
eiϕ(t;0,θ) (1.10)

We are now almost in a position to conclude. Indeed, let us define the Poincaré operator as-
sociated with (1.8), that is, Ψ̃ : R2 3 (ρ, θ) 7→ (r(T ; ρ, θ), ϕ(T ; ρ, θ)). The following properties
hold true.

• Ψ̃ is an area-preserving (by Liouville’s theorem) homeomorphism of the plane; more-

over, in view of the 2π-periodicity of H̃(t, ρ, ·), it has the form (1.2);

• in view of Lemma 1.2.2, r(t; 0, θ) ≡ 0 and r(t; ρ, θ) > 0 for every t whenever ρ > 0 (so

that Ψ̃(H+) ⊂ H+).

The same structural conditions, moreover, are satisfied by the maps

Ψ̃k,j : R2 3 (ρ, θ) 7→ (r(kT ; ρ, θ), ϕ(kT ; ρ, θ) + 2πj),

for k, j integer numbers. In view of (1.9) and (1.10), and recalling Definition 8, we have, for
ρ > 0,

Ψ̃k,j(ρ, θ) = (r(kT ; ρ, θ), θ + 2π(j − Rot (z(t;
√

2ρeiθ); [0, kT ]))),

and
Ψ̃k,j(0, θ) = (0, θ + 2π(j − Rot (zB(t; eiθ); [0, kT ]))).

It is clear that, if (ρ, θ) ∈ ]0, R[×R is a fixed point of Ψ̃k,j , then z(t;
√

2ρeiθ) is a kT -periodic
solution to (1.5); moreover, we further know that

Rot(z(t;
√

2ρeiθ); [0, kT ]) = j.

We can thus state the following result.

Theorem 1.2.2. Assume (C1), (C2) to be satisfied and let z(·; z̄), zB(·; z̄) be defined as in
the previous discussion; moreover, let k ∈ N∗ and j ∈ Z. Suppose that there exists z∗ ∈ R2,
with |z∗| = 1, such that

Rot (zB(t; z∗); [0, kT ]) < j

and that, for a suitable R̃ > 0,

Rot (z(t; z̄); [0, kT ]) > j, for every z̄ ∈ R2 with |z̄| = R̃.

Then there exists a kT -periodic solution zk,j(t) to (1.5), such that

Rot (zk,j(t); [0, kT ]) = j.
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We also point out that, combining the previous discussion with Theorem 1.1.2 (see also
[108, 118] for further details), it is possible to state the following result, dealing with Hamil-
tonian systems satisfying condition (C2), obtained via the classical version of the Poincaré-
Birkhoff theorem.

Theorem 1.2.3. Assume (C1), (C2) to be satisfied and let z(·; z̄), zB(·; z̄) be defined as in
the previous discussion; moreover, let k ∈ N∗ and j ∈ Z. Suppose that

Rot (zB(t; z̄); [0, kT ]) < j, for every z̄ ∈ R2 with |z̄| = 1,

and that, for a suitable R̃ > 0,

Rot (z(t; z̄); [0, kT ]) > j, for every z̄ ∈ R2 with |z̄| = R̃.

Then there exist two kT -periodic solutions z
(1)
k,j(t), z

(2)
k,j(t) to (1.5) such that

Rot (z
(1)
k,j(t); [0, kT ]) = Rot (z

(2)
k,j(t); [0, kT ]) = j.

1.3 Topological horsehoes: the SAP Method

In this section, we present a result about the existence and multiplicity of fixed points and
periodic points for planar maps introduced by Papini and Zanolin in [138] and developed
in some subsequent papers [139, 140]. Within the same framework one also gets complex
dynamics (in a sense that will be made precise in Definition 1.3.1 below). The approach
is linked to the theory of topological horseshoes [36, 101], a topic of dynamical systems
which has been widely investigated in the past two decades in an attempt to weaken the
hyperbolicity assumptions involved in the classical theory of Smale’s horseshoes.

The abstract theory we are going to present can be developed in the frame of continuous
maps in metric spaces. However, in view of the applications to planar Hamiltonian systems,
we restrict ourselves to the case of continuous maps of the plane. For more details and full
proofs of the results in their broader generality, we refer the interested reader to [129, 141].

Definition 1.3.1. Let Ψ : R2 → R2 be a continuous map. We say that Ψ induces chaotic
dynamics on two symbols if there exist two nonempty disjoint compact subsets K0,K1 ⊂ R2

such that:

(i) for each two-sided sequence (si)i∈Z ∈ {0, 1}Z, there exists a sequence (zi)i∈Z ∈ (R2)Z

such that, for every i ∈ Z,

zi ∈ Ksi and zi+1 = Ψ(zi); (1.11)

(ii) for every k ∈ N∗ and for every k-periodic sequence (si)i∈Z ∈ {0, 1}Z, there exists a
k-periodic sequence (zi)i∈Z ∈ (R2)Z satisfying (1.11).

When we want to emphasize the role of the sets Kj , we also say that Ψ induces chaotic
dynamics on two symbols relatively to K0 and K1.
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Point (i) of our definition of chaotic dynamics corresponds to the concept of chaos in the
coin-tossing sense [103]; namely, for each sequence (si)i of two symbols (“0” and “1”) there
exists a trajectory (zi)i of Ψ (i.e. a sequence (zi)i such that zi+1 = Ψ(zi)) which follows the
preassigned sequence of symbols, that is, zi is in K0 when si = 0 and zi is in K1 if si = 1.
As pointed out by Smale [154], the possibility of reproducing all the possible outcomes of a
coin-flipping experiment is one of the paradigms of chaos.
Besides the coin-tossing feature, our definition is enhanced, at point (ii), with respect to
the existence of periodic trajectories for Ψ. Indeed, given an arbitrary periodic sequence of
symbols (si)i (including the constant ones), we have guaranteed not only the existence of
a trajectory (zi)i wandering from K0 to K1 in a periodic fashion, but also the fact that,
among such trajectories, at least one is made by periodic points. Hence, for every k ∈ N∗,
Ψ has at least 2k k-periodic points (for k = 1, this in particular means that Ψ as at least
two fixed points); moreover, the minimal period of such periodic points coincides with the
minimal period of the k-periodic sequence of symbols (si)i . We stress that such a property
about periodic orbits is not an intrinsic aspect of the coin-tossing dynamics (see the examples
[45, p.369] and [101, Example 10], where coin-tossing dynamics without periodic points are
produced), although it has a strong relevance from the point of view of the applications.
In this direction, some topological tools based on Conley index, Lefschetz number, fixed
point index or topological degree have been developed by various authors (see, for instance,
[131, 155, 171, 172] and the quotations in [129, 140, 141]).
As a further consequence of Definition 1.3.1 it follows that if Ψ is one-to-one on K0 ∪ K1 (a
situation which always occurs for the Poincaré map), there exists a nonempty compact set
Λ ⊂ K0 ∪K1 which is invariant under Ψ (i.e., Ψ(Λ) = Λ) and such that Ψ|Λ is semiconjugate
to the two-sided Bernoulli shift σ on two symbols

σ : Σ2 3 (si)i∈Z 7→ (si+1)i∈Z ∈ Σ2,

according to the commutative diagram2

Λ Λ

Σ2 Σ2

-Ψ

?

g

?

g

-
σ

being g : Λ→ Σ2 a continuous and surjective function. Moreover, the subset of Λ consisting
of the periodic points of Ψ is dense in Λ and the preimage (by g) of any periodic sequence in
Σ2 contains a periodic point of Ψ having the same fundamental period (we refer to [129, 141]
for more details). Note that the semiconjugacy to the Bernoulli shift is one of the typical
requirements for chaotic dynamics as it implies a positive topological entropy for the map
Ψ|Λ [161]. This also shows that Ψ is chaotic in the sense of Block and Coppel (see again
[129] and the references therein). Such kind of chaotic dynamics was already considered in
[131, 155, 171, 172], quoted above.

2Recall that Σ2 = {0, 1}Z (the set of two-sided sequence of two symbols) is a compact metric space with

the distance d(s′, s′′) =
∑
i∈Z

|s′i−s
′′
i |

2|i|
for s′ = (s′i)i and s′′ = (s′′i )i .
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A little bit of terminology is now needed. By a path γ in R2 we mean a continuous
mapping γ : [t0, t1] → R2, while by a sub-path σ of γ we just mean the restriction of γ to a
compact subinterval of [t0, t1]. As a domain for a path, we will often take (without loss of
generality) [t0, t1] = [0, 1]. By an oriented rectangle we mean a pair

R̃ = (R,R−),

being R ⊂ R2 homeomorphic to [0, 1]2 (namely, a topological rectangle) and

R− = R−1 ∪R
−
2

the disjoint union of two compact arcs (by definition, a compact arc is a homeomorphic image
of [0, 1]) R−1 ,R

−
2 ⊂ ∂R. The boundary ∂R is a Jordan curve and therefore ∂R\ (R−1 ∪R

−
2 )

is the disjoint union of two open arcs. We denote the closure of such open arcs by R+
1 and

R+
2 . According to the Jordan-Schoenflies theorem, we can always label the compact arcs R±i

(i = 1, 2) and take a homeomorphism h of the plane onto itself, such that h([0, 1]2) = R and
the left and right sides of [0, 1]2 are mapped to R−1 and R−2 while the lower and upper sides
of [0, 1]2 are mapped to R+

1 and R+
2 , respectively.

The core of the stretching along the paths method is given by the following definition.

Definition 1.3.2. Let Ψ : R2 → R2 be a continuous map, Ã = (A,A−) and B̃ = (B,B−)

oriented rectangles and H ⊂ A a compact subset. We say that (H,Ψ) stretches Ã to B̃ along
the paths and write

(H,Ψ) : Ã m−→B̃

if for every path γ : [0, 1] → A such that γ(0) ∈ A−1 and γ(1) ∈ A−2 (or γ(0) ∈ A−2 and
γ(1) ∈ A−1 ), there exists a subinterval [t′, t′′] ⊂ [0, 1] such that

γ(t) ∈ H and Ψ(γ(t)) ∈ B, for every t ∈ [t′, t′′],

and, moreover, Ψ(γ(t′)) and Ψ(γ(t′′)) belong to different components of B−.

Based on this definition, we have the following theorem, proved by Pascoletti and Zano-
lin [143]. It basically relies on a Crossing Lemma of Planar Topology, which, in turns, is
equivalent to the planar case of the Poincaré-Miranda theorem.

Theorem 1.3.1. Let Ψ : R2 → R2 be a continuous map and let P̃ = (P,P−) be an oriented
rectangle. Suppose that there exist two compact disjoint subsets K0,K1 ⊂ P such that

(Ki,Ψ) : P̃ m−→P̃, for i = 0, 1. (1.12)

Then Ψ induces chaotic dynamics on two symbols relatively to K0 and K1. Moreover, for
each sequence of two symbols s = (si)i∈N∗ ∈ {0, 1}N∗ , there exists a compact connected set
Cs ⊂ Ks0 , with

Cs ∩ P+
1 6= ∅ and Cs ∩ P+

2 6= ∅,

such that, for every w ∈ Cs, there exists a sequence (yi)i∈N∗ with y0 = w and, for every
i ∈ N∗,

yi ∈ Ksi and Ψ(yi) = yi+1.
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Figure 1.2: A graphical description of Theorem 1.3.2. Two rectangles P and O are oriented by selecting
two opposite sides. In both the figures, the [·]−-components of the boundaries are indicated with a bold line.
Any path γ(t) connecting in P the opposite sides of P− contains two sub-paths, with support respectively in
K0 and K1, which are expanded by Ψλ across O into two sub-paths of Ψλ(γ(t)), which join the two opposite
sides of O− (the upper figure). In the figure below, the action of Ψµ is depicted as well. Here, any path γ(t)
connecting in O the opposite sides of O− contains a sub-path whose image is a sub-path of Ψµ(γ(t)) in P,
joining the opposite sides of P−.



14 Preliminaries

In this thesis, we will use the following special case of Theorem 1.3.1, which occurs when
Ψ splits as the composition of two maps: the first one stretches an oriented rectangle P̃ across
another one Õ, while the second one comes back from Õ to P̃. Precisely (see again [143]),
we have:

Theorem 1.3.2. Let Ψλ,Ψµ : R2 → R2 be continuous maps and let P̃ = (P,P−), Õ =
(O,O−) be oriented rectangles. Suppose that:

(Hλ) there exist compact disjoint subsets K0,K1 ⊂ R2 such that, for i = 0, 1,

(Ki,Ψλ) : P̃ m−→Õ;

(Hµ) (O,Ψµ) : Õ m−→P̃.

Then (1.12) is satisfied for the map Ψ = Ψµ ◦ Ψλ and therefore the conclusion of Theorem
1.3.1 holds.

A graphical explanation of Theorem 1.3.2 can be found in Figure 1.2.



Part I

Solutions which wind around
the origin





Chapter 2

Planar Hamiltonian systems
with a center type dynamics

This chapter, which is based on [26, 27, 29, 30], deals with the planar Hamiltonian system

Jz′ = ∇zH(t, z), (2.1)

where H : R× R2 → R is a given (regular enough) function, T -periodic in the first variable.
The existence of an equilibrium point - for simplicity the origin, i.e., ∇zH(t, 0) ≡ 0 - is always
assumed and we look for periodic solutions (harmonic and subharmonic) winding around it.

Just to motivate the forthcoming results, we can consider the autonomous Hamiltonian
system

Jz′ = ∇H(z). (2.2)

It is easily seen that, if H(z) is a C1-function with

〈∇H(z)|z〉 > 0, for z 6= 0, and lim
|z|→+∞

H(z) = +∞,

then the phase-portrait associated with (2.2) is that of a global center around the origin:
namely, all the nontrivial solutions to (2.2) are periodic; moreover, their orbits are strictly
star-shaped Jordan curves around the origin, covered in the clockwise sense. In this situation,
an elementary approach to the problem of the existence and multiplicity of periodic solutions
of fixed period is available. Indeed, the map which associates to a value c > infR2 H(z)
the minimal period of the orbit lying on the energy line H−1(c) (the so called time-map)
is continuous [98]; accordingly, by simple continuity-connectedness arguments, kT -periodic
solutions (k ∈ N∗) appear whenever the minimal period of “small” solutions is different
enough from the minimal period of “large” solutions1. Notice, in particular, that the greater is
the gap between the minimal periods, the larger is the number of periodic solutions obtained.

1Such a technique has been widely employed especially in the case of second order scalar ODEs, where a
simple integral formula for the time-map is available (we will use explicitly this tool in Section 4.1; see also
[52] for a general survey on the subject).
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The goal of the chapter is to study the nonautonomous Hamiltonian system (2.1), via a
suitable version of the Poincaré-Birkhoff fixed point theorem, Theorem 1.1.3. The underlying
general technique used to estimate the number of revolutions around the origin of “small”
and “large” solutions to (2.1) is that of comparing the nonlinear Hamiltonian system (2.1),
both at zero and at infinity, with Hamiltonian systems of the kind

Jz′ = ∇V (z), (2.3)

being V : R2 → R a C1-function satisfying

0 < V (λz) = λ2V (z), for every λ > 0, z ∈ R2
∗. (2.4)

Such systems have the property that their (nontrivial) solutions are periodic solutions around
the origin, with the same minimal period (i.e., the origin is an isochronous center for (2.3)).
On the lines of [170], we define a “modified rotation number” associated with a function V
satisfying (2.4) - relating it to the classical one - and we use it to count the turns around the
origin of the solutions to (2.1).

Our multiplicity results concern three different situations:

(i) a problem semilinear at infinity, i.e., when large solutions to (2.1) perform, in a fixed
time interval, a finite number of revolutions around the origin. Our main results give
the existence of a finite number of T -periodic solutions (Theorem 2.3.1 and Theorem
2.3.2), according to the wideness of the “gap” between the dynamics at zero and at
infinity, and subharmonics of large period (Theorem 2.3.5).

(ii) a problem sublinear at infinity, i.e., when large solutions to (2.1) do not complete, in a
fixed time interval, a full revolution around the origin. Here, we obtain the existence
of a finite number of subharmonic solutions of order k (making few turns around the
origin) provided that k is large enough (Theorem 2.3.6).

(iii) a problem superlinear at infinity, i.e., when large solutions to (2.1) perform an arbi-
trarily large number of turns around the origin. We obtain, for every integer k, the
existence of infinitely many subharmonic solutions of order k, growing in norms towards
infinity and making a great number of revolutions around the origin (Theorem 2.3.8).

More comments on the relationships between our results and the existing literature are
found along the chapter. It has to be noted that, when dealing with (planar) first order
differential systems, there are no standard definitions of sublinearity and superlinearity2. Our
conditions, which are based on the comparison of the nonlinear system (2.1) with positively
homogeneous Hamiltonian systems like (2.3), are quite general, generalizing the standard
assumptions of sublinearity and superlinearity for the second order scalar differential equation
u′′ + f(t, u) = 0 (namely, f(t, x)/x→ 0 and f(t, x)/x→ +∞ for |x| → +∞, respectively).

The plan of this chapter is as follows. In Section 2.1, we define our modified rotation
number and we prove some crucial properties about it. In Section 2.2, we prove the technical
estimates concerning the rotation numbers of small and large solutions to (2.1). Finally, in
Section 2.3 we state and prove our multiplicity results.

2Incidentally, we observe that, when dealing with Hamiltonian systems, the terms subquadraticity and
superquadraticity are often employed, referring to the hypotheses on the Hamiltonian.
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2.1 The V -rotation numbers

From now on, we denote by P the class of the C1-functions V : R2 → R which are positively
homogeneous of degree 2 and strictly positive, i.e., for every λ > 0 and for every z ∈ R2

∗,

0 < V (λz) = λ2V (z).

It is easy to see that, if V ∈ P, then lim|z|→+∞ V (z) = +∞ and Euler’s formula

〈∇V (z)|z〉 = 2V (z), for every z ∈ R2,

holds true. These properties imply that, for every c > 0, the open set {V < c} = {z ∈ R2 |
V (z) < c} is a bounded neighborhood of the origin, with boundary

∂{V < c} = V −1(c) ⊂ R2
∗

which turns out to be a strictly star-shaped Jordan curve around the origin.
Henceforth, let V ∈ P. First of all, recall that, as a consequence of [151, Corollary 1], there
is uniqueness for the Cauchy problems associated with

Jz′ = ∇V (z). (2.5)

Secondly, the Hamiltonian structure implies that every nontrivial solution to (2.5) lies on a
level curve V −1(c): thus, it is globally defined and periodic; moreover, it is easy to see that
each orbit is covered in the clockwise sense. Denoting by ϕV (t) the solution to (2.5) such
that ϕV (0) ∈ R+

∗ × {0} and

V (ϕV (t)) =
1

2
, for every t ∈ R, (2.6)

and by τV its minimal period, we can finally define the map ΠV : R→ V −1(1/2), by setting

ΠV (θ) = ϕV

(
−τV

2π
θ
)
.

It is easy to see that ΠV is a covering projection. Therefore, the standard theory of covering
spaces [94] ensures that, for every absolutely continuous path z : [t1, t2] → R2 such that
z(t) 6= 0 for every t ∈ [t1, t2], the path

[t1, t2] 3 t 7→ z(t)√
2V (z(t))

∈ V −1(1/2)

can be lifted to the covering space (R,ΠV ) of V −1(1/2), namely, there exists an absolutely
continuous path θV : [t1, t2]→ R such that

z(t)√
2V (z(t))

= ΠV (θV (t)), for every t ∈ [t1, t2].

Moreover, standard calculations show that, for almost every t,

θ′V (t) = −2π

τV

〈Jz′(t)|z(t)〉
2V (z(t))

.

In conclusion, we are led to give the following definition (compare with [170]).
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Definition 2.1.1. The (clockwise) V -rotation number (around the origin) of an absolutely
continuous path z = (x, y) : [t1, t2] → R2, such that z(t) 6= 0 for every t ∈ [t1, t2], is the
number

RotV (z(t); [t1, t2]) =
θV (t1)− θV (t2)

2π
,

that is, equivalently,

RotV (z(t); [t1, t2]) =
1

τV

∫ t2

t1

〈Jz′(t)|z(t)〉
2V (z(t))

dt =
1

τV

∫ t2

t1

y(t)x′(t)− x(t)y′(t)

2V (x(t), y(t))
dt.

Note that, as usual, the definition does not depend on the choice of the lifting θV .

For the sequel, it is also useful to use Gauss-Green formula in order to compute τV as
follows. Set

AV =

∫
{V≤1}

dx dy;

then we have, using (2.6),

AV = 2

∫
{V≤1/2}

dx dy =

∫
V −1(1/2)+

(x dy − y dx) =

∫ τV

0

〈Jϕ′V (t))|ϕV (t)〉 dt

=

∫ τV

0

〈∇V (ϕV (t))|ϕV (t)〉 dt = 2

∫ τV

0

V (ϕV (t)) dt = τV .

Incidentally, we notice that this straightly implies that, for every λ > 0,

RotλV (z(t); [t1, t2]) = RotV (z(t); [t1, t2]).

We now investigate the relation of a V -rotation number as defined before with the standard
one (compare with (8) of the introductory section “Notation and Terminology”), that is,
the V -rotation number for V (x, y) = 1

2 (x2 + y2) (in such a case, indeed, τV = 2π; we will
continue to denote this rotation number simply by Rot(z(t); [t1, t2])). To begin with, we have
the following lemma.

Lemma 2.1.1. The map ΛV : R→ R defined by

ΛV (θ) =
π

τV

∫ θ

0

dω

V (cosω, sinω)

is an increasing C1-homeomorphism of R, such that, for every θ ∈ R and for every k ∈ Z,

ΛV (θ + 2kπ) = ΛV (θ) + 2kπ. (2.7)

In particular, for every k ∈ Z,
ΛV (2kπ) = 2kπ. (2.8)

Proof. Since

Λ′V (θ) =
π

τV

1

V (cos θ, sin θ)
> 0,
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we have that ΛV is strictly increasing. Moreover, the 2π-periodicity of the integrand implies
that, for every θ ∈ R and for every k ∈ Z,

ΛV (θ + 2kπ) = ΛV (θ) + kΛV (2π);

so that the computation in polar coordinates

AV =

∫ 2π

0

(∫ 1/
√
V (cosω,sinω)

0

ρ dρ

)
dω =

1

2

∫ 2π

0

dω

V (cosω, sinω)
=
τV
2π

ΛV (2π)

implies (2.7). On the other hand, passing to the limit in (2.7) we conclude that ΛV (θ)→ ±∞
for θ → ±∞ and so ΛV is a homeomorphism of R. Finally, (2.8) follows from (2.7) and the
fact that ΛV (0) = 0.

Using the change of variables ΛV , we can compute a V -rotation number starting from
the knowledge of the standard one. Precisely, we have the following proposition.

Proposition 2.1.1. Let z : [t1, t2]→ R2 be an absolutely continuous path, such that z(t) 6= 0
for every t ∈ [t1, t2], and let θ : [t1, t2]→ R be an absolutely continuous function such that

z(t) = |z(t)|(cos θ(t), sin θ(t)), for every t ∈ [t1, t2].

Then

RotV (z(t); [t1, t2]) =
ΛV (θ(t1))− ΛV (θ(t2))

2π
.

Proof. Let ΘV : [t1, t2]→ R be the path defined by

ΘV (t) = ΛV (θ(t)).

Since θ(t) is absolutely continuous and ΛV is of class C1, standard properties of absolutely
continuous functions imply that ΘV (t) is absolutely continuous too; moreover, for a.e. t ∈
[t1, t2],

Θ′V (t) = Λ′V (θ(t))θ′(t).

By a simple computation

Θ′V (t) = Λ′V (θ(t))θ′(t)

= − π

τV

1

V (cos θ(t), sin θ(t))

〈Jz′(t)|z(t)〉
|z(t)|2

= −2π

τV

〈Jz′(t)|z(t)〉
2V (z(t))

,

whence the conclusion.

As a consequence, we can deduce the following fundamental properties. Roughly speaking,
we can say that RotV counts the same number of complete clockwise turns around the origin
as Rot. The easy proof is omitted (see [26, Proposition 2.1]).

Proposition 2.1.2. Let z : [t1, t2]→ R2 be an absolutely continuous path, such that z(t) 6= 0
for every t ∈ [s1, s2], and j ∈ Z. Then:

RotV (z(t); [t1, t2]) < j ⇐⇒ Rot(z; [s1, s2]) < j; (2.9)

RotV (z(t); [t1, t2]) > j ⇐⇒ Rot(z; [s1, s2]) > j. (2.10)
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Remark 2.1.1. A very useful choice of V is given by the quadratic form

V (x, y) =
x2

c
+
y2

d
(2.11)

for some c, d > 0; in this case, clearly, AV = (
√
cd)π. The asymmetric case

V (x, y) =

(
x+

c1
− x−

c2

)2

+

(
y+

d1
− y−

d2

)2

(being x+ = max{x, 0} and x− = max{−x, 0}) for some c1, c2, d1, d2 > 0 can be considered
as well. In particular, in the case of a diagonal quadratic form (2.11), the symmetries of V
imply that the homeomorphism ΛV satisfies the extra property

ΛV

(
k
π

2

)
= k

π

2
, for every k ∈ Z.

From this fact we can easily deduce that∣∣∣RotV (z(t); [t1, t2])− Rot(z(t); [t1, t2])
∣∣∣ < 1

4
. (2.12)

Rotation numbers of this kind have been often considered in literature (at least implicitly,
as in [65]) and a systematic treatment is given in [152], where relations (2.9), (2.10) and
(2.12) are proved with different arguments. Some other remarks concerning the V -rotation
numbers can be found in [26].

We conclude this section by describing the dynamics of Hamiltonian systems of the form

Jz′ = γ(t)∇V (z), (2.13)

with V ∈ P and γ(t) > 0 a scalar function. As before, we denote by ϕV (t) the solution
to (2.5), such that ϕV (0) is on the positive x semi-axis and V (ϕV (t)) ≡ 1/2, and by τV its
minimal period.

Lemma 2.1.2. Assume that γ : R → R is a continuous and T -periodic function, with
γ(t) > 0 for every t ∈ [0, T ] and

1

T

∫ T

0

γ(t) dt = 1. (2.14)

Set Γ(t) =
∫ t

0
γ(s) ds; then:

• there is uniqueness and global continuability for the solutions to the Cauchy problems
associated with (2.13);

• every solution to (2.13) lies on a level curve of V and can be written as

z(t) = CϕV (Γ(t) + θ), (2.15)

for suitable constants C ≥ 0, θ ∈ [0, τV [ .



2.1 The V -rotation numbers 23

Notice that assumption (2.14) is not restrictive, up to relabeling V .

Proof. We first prove that (even if (2.13) is not an autonomous Hamiltonian system) V is
preserved along the solutions; indeed

d

dt
V (z(t)) = 〈∇V (z(t))|z′(t)〉 = −γ(t)〈∇V (z(t))|J∇V (z(t))〉 = 0.

As a consequence, every solution lies on a level curve of V ; this ensures the global continua-
bility, since the level lines of V are compact.
We now prove the uniqueness. Let us suppose, by contradiction, that there exist two solutions
z1(t), z2(t) of (2.13) defined in a neighborhood of t0 ∈ R and such that z1(t0) = z2(t0) =
z0 ∈ R2

∗; by the conservation of V and Euler’s formula, we get

〈Jz′1(t)|z1(t)〉 = 〈Jz′2(t)|z2(t)〉 = 2γ(t)V (z0) 6= 0. (2.16)

Let us define, for (r, s) in a neighborhood of (1, t0), the C1 function P (r, s) = rz2(s) ∈
R2. We have that P (1, t0) = z0, while (2.16) implies that the Jacobian matrix P ′(1, t0)
is invertible. Then, the local inversion theorem gives the existence of C1 maps r(t), s(t),
defined in a neighborhood of t0 and with values in a neighborhood of 1 and t0 respectively,
such that, locally, z1(t) = P (r(t), s(t)) = r(t)z2(s(t)). The conservation of the energy and
the homogeneity of V imply that r(t) = 1; hence z1(t) = z2(s(t)). On the other hand,
differentiating this last equality and using relation (2.16), we obtain, since s(t0) = t0, s(t) = t.
In conclusion, z1(t) = z2(t). The observation that every positive energy level set does not
contain the origin implies the uniqueness for z0 = 0 too.
Finally, every z(t) of the form (2.15) is a solution (as it is easily verified). Conversely, since,
the map [0, τV [3 t 7→ CϕV (t) describes a strictly star-shaped curve around the origin in the
plane, fixed t0 ∈ R and z̄ ∈ R2 there exists a solution of the form (2.15) starting from z̄ at
the time t = t0.

In the autonomous case (namely, γ(t) ≡ 1), Lemma 2.1.2 implies that every nontrivial
solution to (2.13) is periodic and has minimal period τV as well, so that the origin is an
isochronous center (see Figure 2.1). In the nonautonomous case, we restrict our attention to
the existence of kT -periodic solutions, with k an integer number. Then, it is easy to see that
equation (2.13) has a nontrivial kT -periodic solution if and only if kT/τV ∈ N. In this case,
all the nontrivial solutions of (2.13) are kT -periodic and make exactly kT/τV turns around
the origin in the time [0, kT ]. In such a situation, we say that (2.13) is at resonance. It is
well-known that the study of perturbations of resonant equations is usually more difficult,
since in general no kT -periodic solutions exist (see, for instance, [67, 71, 74] for perturbations
of positively homogeneous Hamiltonian systems, the case we are dealing with). Notice that
this concept of resonance includes the classical one for linear scalar second order equations

u′′ + λu = 0, λ > 0. (2.17)

Indeed, (2.17) is written as the first order planar system Jz′ = ∇Vλ(z), for Vλ(z) = 1
2y

2+ λ
2x

2.
By evaluating the minimal period of Vλ, one can see that (2.17) has nontrivial kT -periodic

solutions if and only if λ =
(

2jπ
kT

)2
, for a suitable positive integer j. Throughout this chapter,

in particular, we use the notation

λj =

(
2jπ

T

)2

,
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i.e., λj is the j-th eigenvalue of the differential operator u 7→ −u′′ with T -periodic boundary
conditions.

Figure 2.1: The phase portrait of the autonomous Hamiltonian system Jz′ = ∇V (z), with V (x, y) =

x2 +y2 +
2xy(x2−y2)
x2+y2

∈ P. Notice that the homogeneity of V implies that all the orbits can be obtained from

a fixed one (like, for instance, the one painted in a darker color) via a dilatation. For our dynamical analysis,
the essential feature (depending on the exact degree - two - of homogeneity) is that the period is the same
for each orbit.

2.2 Some technical estimates

In this section, we perform some estimates for the rotation numbers of both small and large
solutions to a planar system. Since the Hamiltonian structure does not play a role at this
step, we consider a general first order system like

Jz′ = Z(t, z), (2.18)

being Z : R × R2 → R2 an L1-Carathéodory function, T -periodic in the first variable.
However, we write our system in the form (2.18), namely with the symplectic matrix J
at the left-hand side, in order to better compare with the Hamiltonian problem (namely,
Z(t, z) = ∇zH(t, z)), treated in Section 2.3. Corollaries are derived for the second order
scalar differential equation

u′′ + f(t, u) = 0, (2.19)

with f : R× R→ R an L1-Carathéodory function, T -periodic in the first variable.
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2.2.1 The nonresonant case

The estimated developed in this subsection essentially refer to a nonresonant situation. We
start with a very simple observation; throughout this subsection, k ∈ N∗.

Lemma 2.2.1. Let V ∈ P, 0 ≤ r < R ≤ +∞ and β : R × {z ∈ R2 | r < |z| < R} → R
an L1-Carathéodory function, T -periodic in the first variable. The following statements hold
true.

• Assume:

- for almost every t ∈ [0, T ] and for every r < |z| < R,

〈Z(t, z)|z〉
2V (z)

≥ β(t, z); (2.20)

- for every z : [0, kT ]→ R2 solving (2.18), with r < |z(t)| < R for every t ∈ [0, kT ],
it holds

1

kT

∫ kT

0

β(t, z(t)) dt > 1. (2.21)

Then, for every z : [0, kT ]→ R2 solving (2.18), with r < |z(t)| < R for every t ∈ [0, kT ],
it holds

Rot (z(t); [0, kT ]) >

⌊
kT

τV

⌋
.

• Assume:

- for almost every t ∈ [0, T ] and for every r < |z| < R,

〈Z(t, z)|z〉
2V (z)

≤ β(t, z); (2.22)

- for every z : [0, kT ]→ R2 solving (2.18), with r < |z(t)| < R for every t ∈ [0, kT ],
it holds

1

kT

∫ kT

0

β(t, z(t)) dt < 1. (2.23)

Then, for every z : [0, kT ]→ R2 solving (2.18), with r < |z(t)| < R for every t ∈ [0, kT ],
it holds

Rot (z(t); [0, kT ]) <

⌈
kT

τV

⌉
.

Proof. We prove the first statement. For z : [0, kT ]→ R2 solving (2.18), with r < |z(t)| < R
for every t ∈ [0, kT ], we have, in view of (2.20) and (2.21),

RotV (z(t); [0, kT ]) =
1

τV

∫ kT

0

〈Jz′(t)|z(t)〉
2V (z(t))

dt =
1

τV

∫ kT

0

〈Z(t, z(t))|z(t)〉
2V (z(t))

dt

≥ 1

τV

∫ kT

0

β(t, z(t)) dt >
kT

τV
≥
⌊
kT

τV

⌋
.

Hence, the conclusion follows in view of Proposition 2.1.2. The proof of the second statement
is analogous, using (2.22) and (2.23).



26 Planar Hamiltonian systems with a center type dynamics

As a first consequence, we give a corollary which can be applied when system (2.18) can
be compared with a system of the form Jz′ = γ(t)∇V (z), with V ∈ P, either at 0 or at +∞,
in a suitable weak sense. In order to give a unifying statement, we will denote by the symbol
� either 0 or +∞.

Proposition 2.2.1. Let V ∈ P and γ ∈ L1
T , with

1

T

∫ T

0

γ(t) dt = 1. (2.24)

Moreover, if � = 0, assume that Z(t, 0) ≡ 0. The following statements hold true.

• If

lim inf
|z|→�

〈Z(t, z)|z〉
2V (z)

≥ γ(t), uniformly for a.e. t ∈ [0, T ], (2.25)

then there exists ρ > 0 such that, for every z : [0, kT ]→ R2 solving (2.18) and satisfying,
for every t ∈ [0, kT ], 0 < |z(t)| < ρ if � = 0, or |z(t)| > ρ if � = +∞, it holds

Rot (z(t); [0, kT ]) > E−
(
kT

τV

)
.

• If

lim sup
|z|→�

〈Z(t, z)|z〉
2V (z)

≤ γ(t), uniformly for a.e. t ∈ [0, T ], (2.26)

then there exists ρ > 0 such that, for every z : [0, kT ]→ R2 solving (2.18) and satisfying,
for every t ∈ [0, kT ], 0 < |z(t)| < ρ if � = 0, or |z(t)| > ρ if � = +∞, it holds

Rot (z(t); [0, kT ]) < E+

(
kT

τV

)
.

Proof. We will only prove the first statement for � = 0, the other cases being analogous.
Define, for δ > 0 small, the function Vδ ∈ P as Vδ(z) = (1 − δ)V (z) Clearly, uniformly for
almost every t ∈ [0, T ],

lim inf
|z|→0

〈Z(t, z)|z〉
2Vδ(z)

≥ 1

1− δ
γ(t). (2.27)

Since 1
T

∫ T
0

1
1−δ γ(t) dt > 1, we can fix ε > 0 such that 1

T

∫ T
0

1
1−δ (γ(t)− ε) dt > 1. In view of

(2.27), there exists ρ > 0 such that, for almost every t and every 0 < |z| < ρ,

〈Z(t, z)|z〉
2Vδ(z)

≥ 1

1− δ

(
γ(t)− ε

)
,

so that, from Lemma (2.2.1), we infer that, for every solution z(t) satisfying 0 < |z(t)| < ρ,

Rot (z(t); [0, kT ]) >

⌊
kT

τVδ

⌋
.

Since

τVδ =
1

1− δ
τV ↘ τV

for δ → 0, the conclusion follows.
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Remark 2.2.1. Notice that the equality involving γ(t) assumed in (2.24) is just a matter of

normalization, provided that
∫ T

0
γ(t) dt > 0 (however, γ(t) is allowed to change sign), since

(2.25) and (2.26) are invariant under the dilatation

γ(t) 7→ λγ(t), V (z) 7→ 1

λ
V (z), for λ > 0.

Remark 2.2.2. Observe that hypotheses (2.25) and (2.26) can be weakened to hold in an
L1-sense. Precisely, focusing for instance on (2.25) with � = 0, we can require the following:

• for every ε > 0 there exist rε > 0 and ηε ∈ L1
T , with

∫ T
0
|ηε(t)| dt ≤ ε, such that, for

almost every t ∈ [0, T ] and every 0 < |z| < rε,

〈Z(t, z)|z〉
2V (z)

≥ γ(t)− ηε(t).

We now turn our attention to possible corollaries of Lemma 2.2.1 for the scalar second
order equation (2.19). The first one concerns a nonresonant case. Again, � will denote either
0 or +∞. We postpone our comments after the statement.

Proposition 2.2.2. If � = 0, assume f(t, 0) ≡ 0. The following statements hold true.

• Assume that there exists p ∈ L1
T such that

lim inf
|x|→�

f(t, x)

x
≥ p(t), uniformly for a.e. t ∈ [0, T ]. (2.28)

If there exists j ∈ N∗ such that√
λj

k
< sup

ξ>0

1
T

∫ T
0

min{p(t), ξ} dt
√
ξ

, (2.29)

then there exists ρ > 0 such that, for every u : [0, kT ]→ R solving (2.19) and satisfying,
for every t ∈ [0, kT ], 0 < u(t)2 +u′(t)2 < ρ2 if � = 0, or u(t)2 +u′(t)2 > ρ2 if � = +∞,
it holds

Rot ((u(t), u′(t)); [0, kT ]) > j;

• Assume that there exists q ∈ L1
T such that

lim sup
|x|→�

f(t, x)

x
≤ q(t), uniformly for a.e. t ∈ [0, T ]. (2.30)

If there exists j ∈ N∗ such that

inf
ζ>0

1
T

∫ T
0

max{q(t), ζ} dt
√
ζ

<

√
λj

k
, (2.31)

then there exists ρ > 0 such that, for every u : [0, kT ]→ R solving (2.19) and satisfying,
for every t ∈ [0, kT ], 0 < u(t)2 +u′(t)2 < ρ2 if � = 0, or u(t)2 +u′(t)2 > ρ2 if � = +∞,
it holds

Rot ((u(t), u′(t)); [0, kT ]) < j.
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Proof. We will only prove the first statement, the second being similar. Anyway, the cases
� = 0 and � = +∞ are slightly different, so we will prove both of them. Set z = (x, y),
Z(t, z) = (f(t, x), y) and choose ξ, ε > 0 such that, in view of (2.29),√

λj <
1
T

∫ T
0
kmin{p(t)− ε, ξ} dt

√
ξ

. (2.32)

Set V (x, y) = 1
2k

√
λjξ
(
x2 + 1

ξ y
2
)

; computing τV , it is easy to see that kT
τV

= j.

Assume � = 0. Setting

β(t) = k
min{p(t)− ε, ξ}√

λjξ
,

we have, in view of (2.32), that 1
kT

∫ kT
0

β(t) dt > 1. On the other hand, by (2.28), there exists
ρ > 0 such that, for almost every t ∈ [0, T ] and every |x| < ρ,

f(t, x)x ≥ (p(t)− ε)x2.

For 0 < |z| < ρ, it follows that

〈Z(t, z)|z〉
2V (z)

= k
f(t, x)x+ y2√
λjξ
(
x2 + 1

ξ y
2
)

≥ k
min{p(t)− ε, ξ}x2 + 1

ξ min{p(t)− ε, ξ}y2√
λjξ
(
x2 + 1

ξ y
2
)

≥ k
min{p(t)− ε, ξ}√

λjξ
= β(t),

whence the conclusion by Lemma 2.2.1.

Assume now � = +∞. Using (2.28) and the fact that f(t, x) is L1-Carathéodory, there
exists r ∈ L1

T such that, for almost every t ∈ [0, T ] and every x ∈ R,

f(t, x)x ≥ (p(t)− ε)x2 − r(t).

Setting, for t ∈ R and z 6= 0,

β(t, x, y) = k

min{p(t)− ε, ξ}√
λjξ

− r(t)√
λjξ
(
x2 + 1

ξ y
2
)
 ,

we see, in view of (2.32), that it is possible to choose ρ > 0 sufficiently large such that

1

kT

∫ kT

0

β(t, u(t), u′(t)) dt > 1,

for every u : [0, kT ] → R solving (2.19) such that u(t)2 + u′(t)2 > ρ2. On the other hand,
with computations similar as before, we have, for almost every t ∈ [0, T ] and every z 6= 0,
that

〈Z(t, z)|z〉
2V (z)

≥ β(t, z),

whence the conclusion by Lemma 2.2.1.
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Remark 2.2.3. Conditions (2.29) and (2.31), this last with λj replaced by λj+1, were
introduced by Fabry [65], for a nonlinearity satisfying

p(t) ≤ lim inf
|x|→+∞

f(t, x)

x
≤ lim sup
|x|→+∞

g(t, x)

x
≤ q(t), (2.33)

in order to ensure the solvability of the kT -periodic problem associated with (2.19). Here,
we have seen a separate interpretation of each of the inequalities in (2.33) in terms of the
rotation number, and we have shown that the estimates can be carried out in an analogous
way both at 0 and at +∞. We highlight the two following special cases of conditions (2.29)
and (2.31), referring for simplicity to the case k = 1:

1) if

ess inf[0,T ] p(t) > 0 and
√
λj <

√
ess inf[0,T ] p(t), (2.34)

then (2.29) is satisfied. Indeed, we have√
ess inf[0,T ] p(t) ≤ sup

ξ>0

1
T

∫ T
0

min{p(t), ξ} dt
√
ξ

,

as it can be seen taking ξ = ess inf[0,T ] p(t) in the right-hand side. Analogously, if

ess sup[0,T ] q(t) > 0 and
√

ess sup[0,T ] q(t) <
√
λj , (2.35)

then (2.31) is satisfied. Conditions (2.34) and (2.35) are standard nonresonance condi-
tions with respect to λj ;

2) if

ess sup[0,T ] p(t) > 0 and
√
λj <

1
T

∫ T
0
p(t) dt√

ess sup[0,T ] p(t)
,

then (2.29) is satisfied. Indeed, we have

1
T

∫ T
0
p(t) dt√

ess sup[0,T ] p(t)
≤ sup

ξ>0

1
T

∫ T
0

min{p(t), ξ} dt
√
ξ

,

as it can be seen taking ξ = ess sup[0,T ] p(t) in the right-hand side. Analogously, if

ess inf[0,T ] q(t) > 0 and
1
T

∫ T
0
q(t) dt√

ess inf[0,T ] q(t)
<
√
λj ,

then (2.31) is satisfied. This shows, in particular, that conditions (2.29) and (2.31)
allow f(t, x)/x to cross an arbitrary number of eigenvalues.

As a second corollary of Lemma 2.2.1, we give another sufficient condition to achieve
the same conclusion, which is independent of the previous one. Again, we postpone our
comments after the statement; for simplicity, moreover, we deal only with the case k = 1.
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Proposition 2.2.3. If � = 0, assume f(t, 0) ≡ 0. Assume that there exist p, q ∈ L1
T such

that

p(t) ≤ lim inf
|x|→�

f(t, x)

x
≤ lim sup
|x|→�

f(t, x)

x
≤ q(t), uniformly for a.e. t ∈ [0, T ]. (2.36)

The following statements hold true.

• If there exists j ∈ N∗ such that

λj ≤ p(t), with λj <
1

T

∫ T

0

p(t) dt, (2.37)

then there exists ρ > 0 such that, for every u : [0, T ]→ R solving (2.19) and satisfying,
for every t ∈ [0, T ], 0 < u(t)2 +u′(t)2 < ρ2 if � = 0, or u(t)2 +u′(t)2 > ρ2 if � = +∞,
it holds

Rot ((u(t), u′(t)); [0, T ]) > j.

• If there exists j ∈ N∗ such that

q(t) ≤ λj , with
1

T

∫ T

0

q(t) dt < λj , (2.38)

then there exists ρ > 0 such that, for every u : [0, T ]→ R solving (2.19) and satisfying,
for every t ∈ [0, T ], 0 < u(t)2 +u′(t)2 < ρ2 if � = 0, or u(t)2 +u′(t)2 > ρ2 if � = +∞,
it holds

Rot ((u(t), u′(t)); [0, T ]) < j.

Proof. We will only prove the first statement, the second being similar. Anyway, the cases
� = 0 and � = +∞ are slightly different, so we will prove both of them. Set z = (x, y),

Z(t, z) = (f(t, x), y) and V (x, y) = 1
2 (
λj
k x

2 + y2); it is easy to see that kT
τV

= j. Moreover,

write p(t) = λj + η(t), so that η(t) ≥ 0 and 1
T

∫ T
0
η(t) dt > 0.

Assume first � = 0.

Claim. There exist σ, r > 0 such that, for every u : [0, T ] → R solving (2.19) with 0 <
u(t)2 + u′(t)2 < r2 for every t ∈ [0, T ], it holds∫ T

0

η(t)u(t)2

λju(t)2 + u′(t)2
dt ≥ σ.

By contradiction, assume that there exists a sequence of functions un(t) solving (2.19), with
0 < un(t)2 + u′n(t)2 < 1/n for every t ∈ [0, T ], such that

I(un) =

∫ T

0

η(t)un(t)2

λjun(t)2 + u′n(t)2
dt→ 0,

for n→ +∞. Set
vn(t) = un(t)

‖un‖C1
,
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and observe that, for every n,

v′′n(t) + h(t, un(t))vn(t) = 0, (2.39)

with

h(t, x) =


f(t, x)

x
if x 6= 0

0 if x = 0.

Since un(t) has at most a finite number of zeros (otherwise it would have a double zero, which
is impossible since un(t)2 +u′n(t)2 > 0 for every t ∈ [0, T ]), it is easy to see that h(t, un(t)) is
measurable, for every n. Moreover, hypothesis (2.36) ensures that there exists α ∈ L1(0, T )
such that, for almost every t ∈ [0, T ] and every |x| < 1,

|h(t, x)| ≤ α(t). (2.40)

As |un(t)| < 1, then, by the Dunford-Pettis theorem (see [63]) there exists a ∈ L1(0, T ) such
that, up to subsequences, h(t, un(t)) ⇀ a(t) in L1(0, T ). On the other hand, a standard
argument based on (2.40), on the Dunford-Pettis theorem and on Ascoli’s theorem ensures
the existence of a nonzero v ∈ W 2,1(0, T ) such that, up to subsequences, vn → v strongly
in C1([0, T ]) and weakly in W 2,1(0, T ) (see [30, Proposition 3.3] for details). Passing to the
limit in (2.39), it follows that v(t) satisfies the linear equation

v′′ + a(t)v = 0,

so that, by the uniqueness of the associated Cauchy problem, v(t) has a finite number of zeros,

all of them simple. Consequently, I(v) is well defined, and, since η(t) ≥ 0 and 1
T

∫ T
0
η(t) dt >

0, we deduce that

I(v) =

∫ T

0

η(t)v(t)2

v(t)2 + v′(t)2
dt > 0.

On the other hand, since vn → v in C1([0, T ]),

I(un) = I(vn)→ I(v) = 0,

a contradiction which proves the claim.
We now show that Lemma 2.2.1 implies the conclusion. Fix 0 < ε < λjσ: by assumption
(2.36), there exists 0 < ρ < r such that, for almost every t ∈ [0, T ] and for every |x| < ρ,

f(t, x)x ≥ (λj + η(t)− ε)x2.

Hence, defining, for 0 < |z| < ρ,

β(t, x, y) = 1 +
(η(t)− ε)x2

λjx2 + y2
,

the hypotheses of Lemma 2.2.1 are satisfied, whence the conclusion in the case � = 0.
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Assume now � = +∞.

Claim. There exist σ,R > 0 such that, for every u : [0, T ] → R solving (2.19) with u(t)2 +
u′(t)2 > R2 for every t ∈ [0, T ], it holds∫ T

0

η(t)u(t)2

u(t)2 + u′(t)2
dt ≥ σ.

By contradiction, assume that there exists a sequence of functions un(t) solving (2.19), with
un(t)2 + u′n(t)2 > n for every t ∈ [0, T ], such that

I(un) =

∫ T

0

η(t)un(t)2

λjun(t)2 + u′n(t)2
dt→ 0,

for n→ +∞. Set
vn(t) = un(t)

‖un‖C1
,

and observe that, for every n,

v′′n(t) + h(t, un(t))vn(t) +
r(t, un(t))

‖un‖C1

= 0,

with

h(t, x) =


f(t, x)

x
if |x| ≥ 1

(x+ 1)

2
f(t, 1)− (x− 1)

2
f(t,−1) if |x| ≤ 1,

and r(t, x) = f(t, x)−h(t, x)x. Since h(t, x) and r(t, x) are L1-Carathéodory, h(t, un(t)) and
r(t, un(t)) are measurable for every n. Moreover, by (2.36), there exists α ∈ L1(0, T ) such
that, for almost every t ∈ [0, T ] and every x ∈ R,

|h(t, x)| ≤ α(t), |r(t, x)| ≤ α(t).

Similarly as in the case � = 0, we conclude the validity of the claim.
Fix now 0 < ε <

λjσ
2 : by assumption (2.36), and the fact that g(t, x) is L1-Carathéodory,

there exists r ∈ L1
T such that, for almost every t ∈ [0, T ] and every x ∈ R,

f(t, x)x ≥ (λj + η(t)− ε)x2 − r(t).

Now, choose ρ ≥ R such that, if x2 + y2 > ρ2,

1

λjx2 + y2

∫ T

0

r(t) dt <
σ

2
.

Defining, for |z| > ρ,

β(t, x, y) = 1 +
(η(t)− ε)x2 − z(t)

λjx2 + y2
,

the hypotheses of Lemma 2.2.1 are satisfied, so that the conclusion follows.
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Remark 2.2.4. Conditions (2.37) and (2.38), this last with λj replaced by λj+1, were first
introduced by Mawhin and Ward [126], for a nonlinearity satisfying

p(t) ≤ lim inf
|x|→+∞

f(t, x)

x
≤ lim sup
|x|→+∞

f(t, x)

x
≤ q(t),

ensuring the solvability of (2.19). This situation is usually referred to as nonuniform nonres-
onance. Again, here we have seen an interpretation of each of such inequalities in terms of the
rotation number, and we have shown that the estimates can be carried out in an analogous
way both at 0 and at +∞.

2.2.2 The resonant case: the Landesman-Lazer conditions

In this section, we consider again the system (2.18), focusing on the role played by a
Landesman-Lazer type condition [106, 107] in the estimate of the rotation number of large
solutions, when (2.18) is asymptotic, at infinity, to a resonant system of the type Jz′ =
γ(t)∇V (z), with V ∈ P. Notice that the choice of an L2-framework (namely, with Z(t, z)
an L2-Carathéodory function) would be more typical when dealing with Landesman-Lazer
conditions (see Remark 2.2.5), but we emphasize that, for our purposes, it is possible to work
in an L1-setting, as well.

Proposition 2.2.4. Let V ∈ P, with T/τV ∈ N. Moreover, assume that there exist a
continuous and T -periodic function γ : R→ R, with γ(t) > 0 for every t ∈ [0, T ] and

1

T

∫ T

0

γ(t) dt = 1, (2.41)

and an L1-Carathéodory function R : R× R2 → R2, T -periodic in the first variable, with

lim
|z|→+∞

R(t, z)

|z|
= 0, uniformly for a.e. t ∈ [0, T ], (2.42)

such that
Z(t, z) = γ(t)∇V (z) +R(t, z). (2.43)

Set Γ(t) =
∫ t

0
γ(s) ds. The following statements hold true.

• Assume:

- for almost every t ∈ [0, T ], for every z ∈ R2 with |z| ≤ 1 and for every λ > 1,

〈R(t, λz)|z〉 ≥ η(t); (2.44)

for a suitable η ∈ L1(0, T ),

- for every θ ∈ [0, T ],∫ T

0

lim inf
(λ,ω)→(+∞,θ)

〈R(t, λϕV (Γ(t) + ω))|ϕV (Γ(t) + ω)〉 > 0. (2.45)
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Then there exists ρ > 0 such that, for every z : [0, T ] → R2 solving (2.18), with
|z(t)| > ρ for every t ∈ [0, T ], it holds

Rot (z(t); [0, T ]) >
T

τV
.

• Assume:

- for almost every t ∈ [0, T ], for every z ∈ R2 with |z| ≤ 1 and for every λ > 1,

〈R(t, λz)|z〉 ≤ η(t), (2.46)

for a suitable η ∈ L1(0, T );

- for every θ ∈ [0, T ],∫ T

0

lim sup
(λ,ω)→(+∞,θ)

〈R(t, λϕV (Γ(t) + ω))|ϕV (Γ(t) + ω)〉 < 0. (2.47)

Then there exists ρ > 0 such that, for every z : [0, T ] → R2 solving (2.18), with
|z(t)| > ρ for every t ∈ [0, T ], it holds

Rot (z(t); [0, T ]) <
T

τV
.

Proof. We prove the first statement. For z : [0, T ]→ R2 solving (2.18) and such that z(t) 6= 0
for every t ∈ [0, T ], we have, in view of Euler’s formula and (2.41),

RotV (u(t)) =
1

τV

∫ T

0

〈Jz′(t)|z(t)〉
2V (z(t))

dt =
1

τV

∫ T

0

〈Z(t, z(t))|z(t)〉
2V (z(t))

dt

=
1

τV

∫ T

0

γ(t)
〈∇V (z(t))|z(t)〉

2V (z(t))
dt+

1

τV

∫ T

0

〈R(t, z(t))|z(t)〉
2V (z(t))

dt

=
T

τV
+

1

τV

∫ T

0

〈R(t, z(t))|z(t)〉
2V (z(t))

dt.

In view of Proposition 2.1.2, to conclude the proof it is sufficient to show that there exists
ρ > 0 such that ∫ T

0

〈R(t, z(t))|z(t)〉
2V (z(t))

dt > 0,

for every z : [0, T ] → R2 solving (2.18) and such that |z(t)| > ρ for every t ∈ [0, T ]. Let us
suppose by contradiction that there exists a sequence of functions zn(t) solving (2.18) such
that |zn(t)| → +∞ uniformly, with∫ T

0

〈R(t, zn(t))|zn(t)〉
2V (zn(t))

dt ≤ 0. (2.48)
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We set vn(t) = zn(t)
‖zn‖L∞ ; since

Jv′n = γ(t)∇V (vn) +
R(t, zn(t))

‖zn‖L∞
, (2.49)

it follows from (2.42) that there exists α ∈ L1(0, T ) such that, for almost every t ∈ [0, T ],

|v′n(t)| ≤ α(t). (2.50)

This implies the equicontinuity of the family {vn(t)}n, so that, by Ascoli’s theorem, there
exists a nonzero v ∈ C([0, T ];R2) such that, up to subsequences, vn(t)→ v(t) uniformly. On
the other hand, in view of (2.50), the Dunford-Pettis theorem (see [63]) applies, yielding the
existence of w ∈ L1(]0, T [ ;R2) such that (up to subsequences) v′n ⇀ w in L1(]0, T [ ;R2). It is
now easy to see that v ∈ W 1,1(]0, T [ ;R2), with v′ = w. Passing to the limit in (2.49), then,
we get, in view of (2.42), Jv′ = γ(t)∇V (v), implying, by Lemma 2.1.2, that

v(t) = CϕV (Γ(t) + θ),

for suitable constants C > 0 and θ ∈ [0, τV [ . Performing the change of variables

zn(t) = rn(t)ϕV (Γ(t) + θn(t)),

with θn(0) ∈ [0, τV [ for every n, it follows that

rn(t)

‖zn‖L∞
→ C, uniformly in t ∈ [0, T ], (2.51)

and it can be seen (see [72]) that

θn(t)→ θ, uniformly in t ∈ [0, T ].

Multiplying (2.48) by ‖zn‖L∞ , we get∫ T

0

〈R(t, rn(t)ϕV (Γ(t) + θn(t)))|ϕV (Γ(t) + θn(t))〉
2 rn(t)
‖zn‖L∞ V (ϕV (Γ(t) + θn(t)))

dt ≤ 0.

Using Fatou’s lemma, thanks to (2.44), and noticing that V (ϕV (Γ(t) + θn(t))) ≡ 1
2 , we get∫ T

0

lim inf
n→+∞

〈R(t, rn(t)ϕV (Γ(t) + θn(t)))|ϕV (Γ(t) + θn(t))〉
rn(t)
‖zn‖L∞

dt ≤ 0.

In view of (2.51) and using standard properties of the inferior limit, we infer that∫ T

0

lim inf
(λ,ω)→(+∞,θ)

〈R(t, λϕV (Γ(t) + ω))|ϕV (Γ(t) + ω)〉 dt ≤ 0,

a contradiction.
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Remark 2.2.5. Condition (2.44)-(2.45) (resp., (2.46)-(2.47)) was recently introduced by
Fonda and Garrione [72] - in an L2-framework - as a planar version of the scalar Landesman-
Lazer condition (2.54)-(2.55) (resp., (2.56)-(2.57), see Corollary 2.2.5) by Fabry [66]. In
[72] (see also [78]) it has been used to ensure, for instance, the solvability of the T -periodic
problem associated with (2.18) with Z(t, z) of the form (2.43). The main point here, of
course, is the integral condition (2.45), while (2.44) is a technical assumption, needed in
order to apply Fatou’s lemma, and it is satisfied, in particular, when R(t, z) is bounded.
Here we have analyzed the relationships between such Landesman-Lazer condition and the
rotation number of large-norm solutions of (2.18).

Remark 2.2.6. Notice that, similarly as in Remark 2.2.2, hypothesis (2.42) can be weakened
into the following L1-condition:

• for every ε > 0, there exists bε ∈ L1(0, T ) such that, for almost every t ∈ [0, T ] and
every z ∈ R2,

|R(t, z)| ≤ ε|z|+ bε(t).

Indeed, this is enough to carry out the same proof, in particular to pass to the limit in (2.49).

Let us now focus on the second order case (2.19). As a corollary of Proposition 2.2.4, we
have the following result.

Proposition 2.2.5. Assume that there exist j ∈ N∗ and µ, ν > 0, with

π
√
µ

+
π√
ν

=
T

j
, (2.52)

such that, uniformly for almost every t ∈ [0, T ],

lim
x→+∞

f(t, x)

x
= µ, lim

x→−∞

f(t, x)

x
= ν. (2.53)

The following statements hold true.

• Assume:

- for almost every t ∈ [0, T ], and every x ∈ R,

sgn (x)(f(t, x)− µx+ + νx−) ≥ η(t), (2.54)

for a suitable η ∈ L1(0, T );

- for every φ(t) nontrivial solution (defined on [0, T ]) to u′′ + µu+ − νu− = 0,∫
{φ>0}

lim inf
x→+∞

(f(t, x)−µx)φ(t) dt+

∫
{φ<0}

lim sup
x→−∞

(f(t, x)−νx)φ(t) dt > 0. (2.55)

Then there exists ρ > 0 such that for every u : [0, T ] → R solving (2.19), with u(t)2 +
u′(t)2 > ρ2 for every t ∈ [0, T ], it holds

Rot ((u(t), u′(t)); [0, T ]) > j.
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• Assume:

- for almost every t ∈ [0, T ], and every x ∈ R,

sgn (x)(f(t, x)− µx+ + νx−) ≤ η(t), (2.56)

for a suitable η ∈ L1(0, T );

- for every φ(t) nontrivial solution (defined on [0, T ]) to u′′ + µu+ − νu− = 0,∫
{φ>0}

lim sup
x→+∞

(f(t, x)−µx)φ(t) dt+

∫
{φ<0}

lim inf
x→−∞

(f(t, x)−νx)φ(t) dt < 0. (2.57)

Then there exists ρ > 0 such that for every u : [0, T ] → R solving (2.19), with u(t)2 +
u′(t)2 > ρ2 for every t ∈ [0, T ], it holds

Rot ((u(t), u′(t)); [0, T ]) < j.

Proof. Setting z = (x, y), Z(t, z) = (f(t, x), y), V (x, y) = 1
2 (y2 + µ(x+)2 + ν(x−)2) and

γ(t) ≡ 1, we briefly show that the hypotheses of Proposition 2.2.4 (actually, in the weaker
version of Remark 2.2.6) are satisfied. Using (2.52), it is easy to see that T

τV
= j. Moreover,

(2.53) and the Carathéodory assumption imply that, fixed ε > 0, there exists bε ∈ L1(0, T )
such that

|f(t, x)− µx+ + νx−| ≤ ε|x|+ bε(t),

from which the condition of Remark 2.2.6 follows. Finally, (2.54) implies (2.44), and (2.56)
implies (2.46), while for the proof that (2.55) and (2.57) imply (2.45) and (2.47), respectively,
we refer to [72, Propositions 3.1-3.2].

Remark 2.2.7. Observe that, in this case, it is considered the more general situation of
resonance with respect to the Dancer-Fučik spectrum (see [83]), i.e., the spectrum of the
asymmetric equation

u′′ + µu+ − νu− = 0, µ, ν ≥ 0, (2.58)

where u+ = max{u, 0}, and u− = max{−u, 0}. Indeed, when (2.52) holds, all the nontrivial
solutions to (2.58) are T -periodic, and have 2j zeros in the interval [0, T [ . When µ = ν,
(2.52) implies µ = λj , so that we recover the well known linear theory.

Remark 2.2.8. We do not know if a condition of Landesman-Lazer type can be formulated
at zero, to control the behavior of small solutions (clearly, the natural one obtained by the
mere replacement of ∞ with 0 is senseless). To this aim, to the best of our knowledge,
rougher sign conditions are usually employed.

2.3 Multiplicity results

In this final section, we apply the estimates developed in Section 2.2, together with the
Poincaré-Birkhoff fixed point theorem, Theorem 1.1.3, in order to give some multiplicity
results for periodic solutions (winding around the origin) to the planar Hamiltonian system

Jz′ = ∇zH(t, z). (2.59)
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Throughout the section, H : R×R2 → R is a function which is T -periodic in the first variable
and differentiable in the second one, with ∇zH(t, z) an L1-Carathéodory function such that
∇zH(t, 0) ≡ 0. Notice that, even if the results of Section 2.2 are valid in the general context
of planar systems, now we need the Hamiltonian structure in order to apply the Poincaré-
Birkhoff fixed point theorem. In particular, this is the case for the second order undamped
equation (2.19), with H(t, x, y) = 1

2y
2 +

∫ x
0
f(t, ξ) dξ.

All our statements exploit both an assumption at zero and an assumption at infinity
among the ones previously introduced (so that, for related comments, we refer the reader
back to the corresponding sections), in order to show that a twist condition is satisfied.
We remark that we limit ourselves to a few combinations of them (including in particular
semilinear, sublinear, superlinear problems), but it will be clear that several other statements
could be obtained, in the same way. We postpone a sketch of the (standard) proofs in the
final part of the section.

2.3.1 Semilinear problem

Our first result deals with a nonresonance situation.

Theorem 2.3.1. Assume the uniqueness and the global continuability for the solutions to
the Cauchy problems associated with (2.59). Moreover, assume:

(H0) ∇zH(t, 0) ≡ 0 and there exist V0 ∈ P and γ0 ∈ L1
T , with 1

T

∫ T
0
γ0(t) dt = 1, such that

lim inf
|z|→0

〈∇zH(t, z)|z〉
2V0(z)

≥ γ0(t), uniformly for a.e. t ∈ [0, T ];

(H∞) there exist V∞ ∈ P and γ∞ ∈ L1
T , with 1

T

∫ T
0
γ∞(t) dt = 1, such that

lim sup
|z|→∞

〈∇zH(t, z)|z〉
2V∞(z)

≤ γ∞(t), uniformly for a.e. t ∈ [0, T ].

Finally, assume that there exist j0, j∞ ∈ N∗ such that

T

τV∞
< j∞ ≤ j0 <

T

τV0

. (2.60)

Then, for every integer j ∈ [j∞, j0], there exist two T -periodic solutions z
(1)
j (t), z

(2)
j (t) to

(2.59) such that

Rot (z
(1)
j (t); [0, T ]) = Rot (z

(2)
j (t); [0, T ]) = j.

Notice that a symmetric statement can be obtained when we assume a lim sup-inequality
in (H0) and a lim inf-inequality in (H∞), giving the existence of solutions for any integer
j ∈ [j0, j∞] (when j0 ≤ j∞). As a consequence, when

lim
|z|→0

〈∇zH(t, z)|u〉
2V0(z)

= γ0(t), lim
|z|→∞

〈∇zH(t, z)|z〉
2V∞(z)

= γ∞(t),
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and
T

τV0

/∈ N,
T

τV∞
/∈ N,

the statement provides the existence of

2

∣∣∣∣⌊ T

τV0

⌋
−
⌊
T

τV∞

⌋∣∣∣∣
T -periodic solutions. Notice that this, in particular, holds when

∇zH(t, z) = γ0(t)∇V0(z) + o(|z|), for |z| → 0,

∇zH(t, z) = γ∞(t)∇V∞(z) + o(|z|), for |z| → ∞.

The spirit of this kind of results is similar to the ones of [71, Theorem 6], [73, Theorem 1.1].
When (2.59) is asymptotically linear at zero and at infinity, moreover, multiplicity results
have been given by Margheri, Rebelo and Zanolin [118], in terms of the Conley-Zehnder
indexes of the limit systems (see Remark 1.1.2).

Now we pass to consider a resonant (at infinity) situation, i.e., when, with the previous
notation,

T

τV∞
= j∞ ∈ N.

Of course, in this case, Theorem 2.3.1 can still be applied, giving T -periodic solutions with
rotation number equal to j for every j ∈ [j∞ + 1, j0] (if any). However, the existence of
solutions making exactly j∞ revolutions is no longer guaranteed. To recover it, we add a
Landesman-Lazer condition.

Theorem 2.3.2. Assume the uniqueness for the solutions to the Cauchy problems associated
with (2.59). Moreover, assume:

(H0) ∇zH(t, 0) ≡ 0 and there exist V0 ∈ P, j0 ∈ N∗ and γ0 ∈ L1
T , with

T

τV0

> j0,
1

T

∫ T

0

γ0(t) dt = 1,

such that

lim inf
|z|→0

〈∇zH(t, z)|z〉
2V0(z)

≥ γ0(t), uniformly for a.e. t ∈ [0, T ];

(H∞) there exist V∞ ∈ P, j∞ ∈ N∗, γ∞ ∈ CT with γ∞(t) > 0 for every t ∈ [0, T ], such that

T

τV∞
= j∞,

1

T

∫ T

0

γ∞(t) dt = 1,

and an L1-Carathéodory function R∞ : R × R2 → R2, T -periodic in the first variable,
with

lim
|z|→+∞

R∞(t, z)

|z|
= 0, uniformly for a.e. t ∈ [0, T ],
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such that
∇zH(t, z) = γ∞(t)∇V∞(z) +R∞(t, z).

Moreover, setting Γ∞(t) =
∫ t

0
γ∞(s) ds, suppose that:

- for almost every t ∈ [0, T ], for every z ∈ R2 with |z| ≤ 1 and for every λ > 1,

〈R∞(t, λz)|z〉 ≤ η(t),

for a suitable η ∈ L1(0, T );

- for every θ ∈ [0, T ],∫ T

0

lim sup
(λ,ω)→(+∞,θ)

〈R∞(Γ∞(t), λϕV∞(Γ∞(t) + ω))|ϕV∞(Γ∞(t) + ω)〉 < 0.

If j∞ ≤ j0, then, for every integer j ∈ [j∞, j0], there exist two T -periodic solutions z
(1)
j (t)

and z
(2)
j (t) to (2.59) such that

Rot (z
(1)
j (t); [0, T ]) = Rot (z

(2)
j (t); [0, T ]) = j.

Remark 2.3.1. We remark that, in Theorems 2.3.1 and 2.3.2, γ0(t) and γ∞(t) are positive
functions, at least in mean value. It would be possible to consider negative functions, as well,
possibly giving the existence of T -periodic solutions rotating counterclockwise. For the sake
of brevity, however, and since this is not possible for the second order scalar equation when
written in the standard phase plane setting, we have chosen to present our results from this
simpler point of view.

For the second order equation (2.19), we have the following results, which are the coun-
terparts of Theorems 2.3.1 and 2.3.2. Theorem 2.3.3 below can be seen as a more applicable
version of the results by Zanini [167].

Theorem 2.3.3. Assume the uniqueness and the global continuability for the solutions to
the Cauchy problems associated with (2.19). Moreover, assume:

(f0) f(t, 0) ≡ 0 and there exist j0 ∈ N∗ and q0 ∈ L1
T with

sup
ξ>0

1
T

∫ T
0
{min q0(t), ξ} dt
√
ξ

>
√
λj0 ,

such that

lim inf
x→0

f(t, x)

x
≥ q0(t), uniformly for a.e. t ∈ [0, T ];

(f∞) there exist j∞ ∈ N∗ and q∞ ∈ L1
T with

inf
ζ>0

1
T

∫ T
0

max{q∞(t), ζ} dt
√
ζ

<
√
λj∞ ,

such that

lim sup
|x|→+∞

f(t, x)

x
≤ q∞(t), uniformly for a.e. t ∈ [0, T ].
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If j∞ ≤ j0, then, for every integer j ∈ [j∞, j0], there exist two T -periodic solutions u
(1)
j (t)

and u
(2)
j (t) to (2.19) having exactly 2j zeroes in [0, T [ .

Finally, Theorem 2.3.4 deals with the situation when the nonlinearity interacts, at infinity,
with the Dancer-Fučik spectrum. Even if assumption (f0) of Theorem 2.3.3 is still suitable,
this time we propose a nonuniform nonresonance condition.

Theorem 2.3.4. Assume the uniqueness for the solutions to the Cauchy problems associated
with (2.19). Moreover, assume:

(f0) f(t, 0) ≡ 0 and there exist j0 ∈ N∗ and q0 ∈ L1
T , with

q0(t) ≥ λj0 and
1

T

∫ T

0

q0(t) dt > λj0 ,

such that

lim
x→0

f(t, x)

x
= q0(t), uniformly for a.e. t ∈ [0, T ];

(f∞) there exist j∞ ∈ N∗ and µ, ν > 0, with

π
√
µ

+
π√
ν

=
T

j∞
,

such that:

- uniformly for almost every t ∈ [0, T ],

lim
x→+∞

f(t, x)

x
= µ, lim

x→−∞

f(t, x)

x
= ν,

- for almost every t ∈ [0, T ], and every x ∈ R,

sgn (x)(f(t, x)− µx+ + νx−) ≥ η(t),

for a suitable η ∈ L1(0, T ),

- for every φ(t) nontrivial solution (defined on [0, T ]) to u′′ + µu+ − νu− = 0,∫
{φ>0}

lim sup
x→+∞

(f(t, x)− µx)φ(t) dt+

∫
{φ<0}

lim inf
x→−∞

(f(t, x)− νx)φ(t) dt < 0.

If j∞ ≤ j0, then, for every integer j ∈ [j∞, j0], there exist two T -periodic solutions u
(1)
j (t)

and u
(2)
j (t) to (2.19) having exactly 2j zeroes in [0, T [ .

We finally show that, whenever any kind of gap between 0 and ∞ is assumed, it is still
possible, exploiting a number theory argument developed in [58], to prove the existence of
subharmonics of order k, for every k large enough.

Theorem 2.3.5. Assume the uniqueness and the global continuability for the solutions to
the Cauchy problems associated with (2.59). Moreover, suppose:
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(H0) ∇zH(t, 0) ≡ 0 and there exist V0 ∈ P and γ0 ∈ L1
T , with 1

T

∫ T
0
γ0(t) dt = 1, such that

lim inf
|z|→0

〈∇zH(t, z)|z〉
2V0(z)

≥ γ0(t), uniformly for a.e. t ∈ [0, T ];

(H∞) there exist V∞ ∈ P and γ∞ ∈ L1
T , with 1

T

∫ T
0
γ∞(t) dt = 1, such that

lim sup
|z|→∞

〈∇zH(t, z)|z〉
2V∞(z)

≤ γ∞(t), uniformly for a.e. t ∈ [0, T ].

Finally, assume that
T

τV∞
<

T

τV0

. (2.61)

Then, for every r ∈ N∗, there exists an integer k∗(r) such that, for every k ≥ m∗(r), there
exist 2r subharmonics of order k, two by two non belonging to the same periodicity class,
solving (2.59).

We remark that condition (2.61) is not sufficient to obtain the existence of a T -periodic
solution, since there could be no integers in the interval

]
T
τV∞

, T
τV0

[
(compare with (2.60)).

Moreover, observe that, fixed k ∈ N∗, we are not showing the existence of infinitely many
subharmonics of order k; nevertheless, we have subharmonics for any k large enough, and
such a number increases with k. Of course, Theorem 2.3.5 just describes a model situation,
and the more complicated cases previously considered could also be taken into account.

2.3.2 Sublinear problem

Our main result is the following.

Theorem 2.3.6. Assume the uniqueness and the global continuability for the solutions to
the Cauchy problems associated with (2.59). Moreover, assume:

(H0) ∇zH(t, 0) ≡ 0 and there exist V0 ∈ P and γ0 ∈ L1
T , with 1

T

∫ T
0
γ0(t) dt = 1, such that

lim inf
|z|→0

〈∇zH(t, z)|z〉
2V0(z)

≥ γ0(t), uniformly for a.e. t ∈ [0, T ];

(H∞) there exist sequences (V n∞)n ⊂ P, (γn∞)n ⊂ L1
T , with 1

T

∫ T
0
γn∞(t) dt = 1, such that

lim
n→+∞

1

τV n∞
= 0

and, for every n ∈ N∗,

lim sup
|z|→+∞

〈∇zH(t, z)|z〉
2Vn(z)

≤ γn∞(t), uniformly for a.e. t ∈ [0, T ].
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Then there exists k∗ ∈ N∗ such that, for every integer k ≥ k∗, there exists an integer j∗(k)
such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ j∗(k), system
(2.59) has at least two subharmonic solutions z1

k,j(t), z
2
k,j(t) of order k (not belonging to the

same periodicity class) with

Rot(z
(1)
k,j(t); [0, kT ]) = Rot(z

(2)
k,j(t); [0, kT ]) = j.

Moreover, we have the estimate

j∗(k) ≥ E−
(
kT

τV0

)
. (2.62)

It can be worth noticing some special features of the subharmonic solutions provided
by Theorem 2.3.6. First of all, they are accompanied with a sharp nodal characterization.
Observe in particular that j∗(k)→ +∞ for k → +∞ and that, taking j = 1, Theorem 2.3.6
ensures the existence of subharmonic solutions of order k for every k large enough: in this
case kT is the “true” minimal period (namely, not only the minimal one in the class of integer
multiples of T ). As pointed out in [40, p. 428], this is a sharper conclusion with respect to
those of papers using variational techniques, when typically only a sequence of solutions with
minimal periods tending to infinity is provided. Secondly, notice that from (2.62) we can
estimate the order of the subharmonics found. In particular, k∗ = 1 is not excluded (this
being the case when j∗(1) ≥ 1), yielding the existence of j∗(1) pairs of T -periodic solutions.

Assumption (H∞) of Theorem 2.3.6 is our (weak) sublinearity condition for ∇zH(t, z).
Indeed, it is verified in the case

lim sup
|z|→+∞

〈∇zH(t, z)|z〉
|z|2

≤ 0, uniformly for a.e. t ∈ [0, T ], (2.63)

by taking V n∞(z) = |z|2/n and γn∞(t) ≡ 1, for every n. On the other hand, it also covers some
cases when (2.63) is not fulfilled. It is worth noticing, for instance, that (2.63) always fails
in the case of (2.19) (since H(t, x, y) grows quadratically in the y-variable), while (H∞) is
satisfied whenever f(t, x)/x→ 0 for |x| → +∞ (see [26, Corollary 3.1] and [27, Corollary 1.1],
taking into account Remark 2.2.2). Accordingly, Theorem 2.3.6 has the following counterpart
for the second order scalar equation (2.19).

Theorem 2.3.7. Assume the uniqueness and the global continuability for the solutions to
the Cauchy problems associated with (2.19). Moreover, assume:

(f0) there exists q0 ∈ L∞T with
∫ T

0
q0(t) dt > 0 such that

lim inf
x→0

f(t, x)

x
≥ q0(t), uniformly in t ∈ [0, T ];

(f∞) it holds

lim sup
|x|→+∞

f(t, x)

x
≤ 0, uniformly in t ∈ [0, T ].
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Then there exists k∗ ∈ N∗ such that, for every integer k ≥ k∗, there exists an integer j∗(k)
such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ j∗(k), equation

(2.19) has at least two subharmonic solutions u
(1)
k,j(t), u

(2)
k,j(t) of order k (not belonging to the

same periodicity class) with exactly 2j zeros in the interval [0, kT [ . Moreover, we have the
estimate

j∗(k) ≥ E−
(
k

2π
sup
ξ>0

∫ T
0

min{q0(t), ξ} dt
√
ξ

)
.

Notice that, when q0 ∈ L∞T with
∫ T

0
q0(t) dt > 0, then

sup
ξ>0

∫ T
0

min{q0(t), ξ} dt
√
ξ

≥
∫ T

0
q0(t) dt√

ess sup[0,T ] q0(t)
> 0,

so that j∗(k)→ +∞ for k → +∞. Results about subharmonic solutions of sublinear second
order equations like (2.19) were given (pairing the sublinearity assumption with Landesman-
Lazer type conditions) by Ding and Zanolin [59], Fonda, Schneider and Zanolin [77], Fonda
and Ramos [75]. However, these subharmonics grow in norm as k approaches to infinity: on
the contrary, this is not the case for Theorem 2.3.7, whose subharmonics can be quite small
(see Chapter 4 for various examples in this direction).

Example 2.3.1. Theorem 2.3.7 straightly applies to the Sitnikov equation. For a detailed
description of this classical problem in Celestial Mechanics, as well as of some classical and
recent results, we refer to [136]. Here we just recall that such a problem leads to the following
equation

u′′ +
u

(u2 + r(t, e)2)3/2
= 0, (2.64)

being e ∈ [0, 1[ the eccentricity of the orbits described by the primaries and r(·, e) implicitly
defined by

r(t, e) =
1

2
(1− e cos v(t)), v(t)− e sin v(t) = t.

The possibility of achieving multiplicity results for (2.64) via the Poincaré-Birkhoff theorem
is suggested in [167, Example 1], but only a semi-abstract result in term of the weighted
eigenvalues of u′′ + λ u

r(t,e)3 = 0 is given there. Here, we can get the following.

Corollary 2.3.1. For every k ∈ N∗ and for every integer j relatively prime with k and such
that

1 ≤ j ≤ k
(

2

1 + e

) 3
2
,

equation (2.64) has at least two 2kπ-periodic solutions (not 2lπ-periodic for l = 1, · · · , k− 1)
with exactly 2j zeros in [0, 2kπ[ .

We point out that the conclusion is optimal for the circular Sitnikov problem (i.e., the
autonomous case e = 0), while subharmonics with larger number of zeros seem to be lost for
greater values of e. This fact seems to be strictly related to the question raised in [136, p.
731].
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Remark 2.3.2. A more general version of Theorem 2.3.6 is given in [26, Theorem 4.1], by
considering Hamiltonian functions satisfying condition (H∞) only in an angular region of the
plane (that is, for z = ρeiθ with θ ∈ [θ1, θ2], being 0 < θ2 − θ1 < 2π). As a consequence, one
can prove that Theorem 2.3.7 still holds true if the sublinearity condition (f∞) is replaced
by the one-side assumption

lim sup
x→+∞

f(t, x)

x
≤ 0, uniformly in t ∈ [0, T ]

(see also Lemma 4.2.6 for a proof of this fact). Such an improved version of Theorem 2.3.6
also applies to Lotka-Volterra type planar systems, as described in [26, Section 5].

2.3.3 Superlinear problem

Our main result is the following.

Theorem 2.3.8. Assume the uniqueness and the global continuability for the solutions to
the Cauchy problems associated with (2.59). Moreover, assume:

(H0) ∇zH(t, 0) ≡ 0 and there exist V0 ∈ P and γ0 ∈ L1
T , with 1

T

∫ T
0
γ0(t) dt = 1, such that

lim inf
|z|→0

〈∇zH(t, z)|z〉
2V0(z)

≤ γ0(t), uniformly for a.e. t ∈ [0, T ];

(H∞) there exist sequences (V n∞)n ⊂ P, (γn∞)n ⊂ L1
T , with 1

T

∫ T
0
γn∞(t) dt = 1, such that

lim
n→+∞

1

τV n∞
= +∞

and, for every n ∈ N∗,

lim sup
|z|→+∞

〈∇zH(t, z)|z〉
2Vn(z)

≥ γn∞(t), uniformly for a.e. t ∈ [0, T ].

Then, for every k ∈ N∗, system (2.59) has infinitely many kT -periodic solutions. More
precisely, for every k ∈ N∗, there exists an integer j∗(k) such that, for every integer j
relatively prime with k and such that j ≥ j∗(k), system (2.59) has at least two subharmonic
solutions z1

k,j(t), z
2
k,j(t) of order k (not belonging to the same periodicity class) with

Rot(z
(1)
k,j(t); [0, kT ]) = Rot(z

(2)
k,j(t); [0, kT ]) = j.

Moreover, for every k ≥ 1 and i = 1, 2,

lim
j→+∞

|z(i)
k,j(t)| = +∞, uniformly in t ∈ [0, kT ],

and we have the estimate

j∗(k) ≤ E+

(
kT

τV0

)
. (2.65)
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Notice that condition (H0) of Theorem 2.3.8 is very mild, since it is satisfied, for instance,
whenH(t, z) is twice differentiable in the second variable, withD2

zH(t, z) an L1-Caratheodory
function. Using the more general version of the Poincaré-Birkhoff fixed point theorem recalled
in Remark 1.1.1, one could show that the assumption at zero can be removed at all (up to
loosing, of course, estimate (2.65)). Therefore, Theorem 2.3.8 is valid for planar Hamiltonian
systems satisfying assumption (H∞), without requiring ∇zH(t, 0) ≡ 0: we refer to [29,
Theorem 2.3] for the precise statement of such a more general result. It can be seen as the
Hamiltonian version of a result by Capietto, Mawhin and Zanolin [43, Theorem 4], which
proves the existence of a T -periodic solution for a superlinear (in general, non-Hamiltonian)
planar system (as remarked in [43, p. 389], in the general case no more than one T -periodic
solution can be expected).

Assumption (H∞) of Theorem 2.3.8 is our (weak) superlinearity condition for ∇zH(t, z)
and it is more general than the Ambrosetti-Rabinowitz condition (0 < k < 1/2, R ≥ 0)

0 < H(t, z) ≤ k〈∇zH(t, z)|z〉, for every t ∈ [0, T ], |z| ≥ R, (2.66)

which is often employed when system (2.59) is treated with variational techniques (see for
instance [2, 13]). Indeed, from (2.66) we get that H(t, z) ≥ a|z|1/k for every t ∈ [0, T ], |z| ≥ R
(with a > 0), so that (H∞) is satisfied with V n∞(z) = n|z|2 and γn∞(t) ≡ 1.
Notice also that (H∞) can be considered as the dual version of the sublinearity condition of
Theorem 2.3.6 and, similarly as before, is satisfied in case of (2.19), whenever f(t, x)/x→ +∞
for |x| → +∞ (see [29, Remark 2.4], taking into account Remark 2.2.2). We do not write
here explicitly the counterpart of Theorem 2.3.8 for the second order scalar equation (2.19),
since it is a well known result, going back to Hartman and Jacobowitz [97, 99].

Remark 2.3.3. It could look very restrictive to assume the global continuability for the
solutions in a superlinear context. Actually, this is not the case since the asymptotic dynamics
of (2.59) is of center type. For instance, it is possible to see that the following mild assumption
suffices:

• the function H(t, z) is of class C1, with

lim
|z|→+∞

H(t, z) = +∞, uniformly in t ∈ [0, T ],

and, for suitable constants c,M > 0,∣∣∣∣ ∂∂t H(t, z)

∣∣∣∣ ≤ cH(t, z), for every t ∈ [0, T ], |z| ≥M.

For a proof of this fact, as well as for other conditions ensuring the global existence of
solutions, we refer to [25, Remark 2.5].

2.3.4 Proofs

All the proofs are based on Theorem 1.1.3, using the estimates developed in Section 2.2.

Indeed, the uniqueness for the initial value problems is always assumed; on the other
hand, the global continuability is required in Theorems 2.3.1, 2.3.3, 2.3.5, 2.3.6, 2.3.7 and
2.3.8, while it follows from (H∞) in Theorem 2.3.2 and (f∞) in Theorem 2.3.4.
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As for the estimates of the rotation numbers of small and large solutions to (2.59), we use
Proposition 2.2.1, at zero and at infinity, for Theorems 2.3.1, 2.3.6 and 2.3.8, Propositions
2.2.1 and 2.2.4 for Theorem 2.3.2, Proposition 2.2.2 for Theorems 2.3.3 and 2.3.7, Proposition
2.2.3 and Proposition 2.2.5 for Theorem 2.3.4. The possibility of transferring estimates for
solutions which are, respectively, uniformly (i.e., for every t ∈ [0, kT ]) small and large to
estimates for solutions departing, respectively, from a small and a large circumference with
center the origin is ensured by the following facts, usually referred to as “elastic property”:

Lemma 2.3.1. The following hold true:

(E0) for every k ∈ N∗ and for every r > 0, there exists 0 < ρi < r such that, if |z̄| = ρi, then
0 < |z(t; z̄)| < r for every t ∈ [0, kT ];

(E∞) for every k ∈ N∗ and for every R > 0, there exists ρo > R such that, if |z̄| = ρo, then
|z(t; z̄)| > R for every t ∈ [0, kT ].

Property (E0) is a simple consequence of the fact that ∇zH(t, 0) ≡ 0, together with the
uniqueness for the Cauchy problems, while (E∞) follows from the global continuability, via
a compactness argument (see, for instance, [152, Lemma 10]). Even more refined versions of
Lemma 2.3.1 will be given in Section 4.2 (see Lemma 4.2.3) and in Section 6.1 (see Lemma
6.1.2).

Finally, the proof of Theorem 2.3.5 requires some more work; we sketch here the argument.
It has to be shown that, for every r ∈ N∗, there exists k∗(r) such that, for every k ≥ k∗(r),

there exist r integers j
(k)
1 , . . . , j

(k)
r , each one relatively prime with k, and such that, for every

i = 1, . . . , r,

T

τV0

<
j

(k)
i

k
<

T

τV∞
.

In view of Theorem 2.3.1, this gives, for every i = 1, . . . , r, the existence of two kT -periodic

solutions making j
(k)
i turns around the origin, whence the conclusion. Dividing the interval]

T
τV∞

, T
τV0

[
into r subintervals, without loss of generality it is possible to assume r = 1. In this

case, the argument to achieve the conclusion is based on some properties of prime numbers,
and can be found in the proof of [58, Theorem 2.3].

For complete details, we refer to the corresponding proofs in [26, 27, 29, 30].
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Chapter 3

Combining Poincaré-Birkhoff
Theorem, coincidence degree
and lower/upper solutions
techniques

This chapter, whose material is based on [33], proposes a general strategy to find, via the
Poincaré-Birkhoff theorem, periodic solutions to second order scalar differential equations of
the type

u′′ + f(t, u) = 0, (3.1)

being f : R × R → R a continuous function, T -periodic in the first variable, in presence of
lower/upper T -periodic solutions.

To motivate our discussion, we can consider the autonomous equation

u′′ + a sinu = 0, a > 0. (3.2)

Phase plane analysis (see Figure 3 below) shows that the origin is a local center for (3.2):
“small” solutions are periodic, winding around the origin in the clockwise sense. These
periodic solutions persist until the two heteroclinic orbits joining the (unstable) equilibria
(−π, 0) and (π, 0) are reached. Using the fact that the minimal period of the periodic solutions
approaches infinity as the energy goes to the critical value corresponding to the heteroclinic
trajectories, time-map arguments (compare with the introduction of Chapter 2) give the
existence of periodic solutions, confined in the strip {−π < x < π} of the phase plane, of
every period large enough (the lower bound for their number depending on the parameter
a > 0). Such a dynamics is reminiscent of that of a sublinear problem (i.e., when large
solutions do not complete, in a fixed time interval, a full turn around the origin); however,
in this situation the conclusion is completely independent of the asymptotic properties of
the nonlinear term f(x) = a sinx, simply relying on the existence of the equilibrium points
(±π, 0).
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Figure 3.1: The phase portrait of the autonomous equation u′′+a sinu = 0, with a = 1. Periodic solutions
(around the origin) of arbitrarily large minimal period are found in the region bounded by the two heteroclinic
trajectories (painted with a darker color) joining the equilibria (−π, 0) and (π, 0).

The aim of the present chapter is to show that, in the nonautonomous case (3.1), the same
dynamical scenario appears when (keeping an assumption at the origin which gives a local
dynamics of center type) the given equation possesses a negative T -periodic lower solution
α(t) or a positive T -periodic upper solution β(t). Indeed, standard truncations lead to an
equivalent one-sided sublinear problem at infinity; according to Theorem 2.3.7 and Remark
2.3.2, the Poincaré-Birkhoff twist theorem now yields the existence of subharmonic solutions
of any order, making few turns around the origin. We stress that the result is essentially local
in nature, since we do not have conditions on the behavior of the nonlinear term at infinity,
and the subharmonic solutions provided lie in a suitable vertical strip of the phase plane.

This technique, although very simple, seems to apply to a variety of different situations
and the second part of the chapter provides some examples in this direction. The appli-
cations proposed concern parameter dependent pendulum type equations and two different
Ambrosetti-Prodi problems, before considered in [18, 48, 163] and [69, 152], respectively.
The analysis is performed in two main steps. First, we prove the existence of a T -periodic
solution to (3.1), say u∗(t), via Mawhin’s coincidence degree [120] (see also [122] for a modern
presentation of the theory): such a solution becomes the “equilibrium” in order to enter in
the setting of unforced equations previously introduced in Chapters 1 and 2. It is clear that a
suitable localization of u∗(t) has to be provided as well, since we need to show that the local
dynamics around it is of center type (providing the inner boundary of the annulus to which
the Poincaré-Birkhoff theorem applies). Second, we prove the existence of lower and upper
T -periodic solutions, thus having the possibility to conclude (via a truncation argument) as
described above.
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The plan of this chapter is as follows. In Section 3.1 we present our results, Theorems
3.1.1 and 3.1.2, dealing with subharmonic solutions to (3.1) in presence of lower/upper T -
periodic solutions. Section 3.2 and Section 3.3 are devoted to the applications: in the first
one we consider pendulum type equations, in the second one we give some Ambrosetti-Prodi
type results.

3.1 Subharmonic solutions between lower and upper so-
lutions

In this section, we are concerned with the second order scalar equation (3.1), proving the
existence of subharmonic solutions in presence of lower/upper T -periodic solutions. For
simplicity, we always assume that f(t, x) is continuous with continuous partial derivative
∂f
∂x (t, x). Notice, on the other hand, that we are not assuming the condition f(t, 0) ≡ 0.

Here is our main result.

Theorem 3.1.1. Let us suppose that:

(A1) there exists a T -periodic solution u∗(t) to (3.1) satisfying∫ T

0

∂f

∂x
(t, u∗(t)) dt > 0; (3.3)

(A2) there exists a T -periodic function α(t), of class C2, such that

α′′(t) + f(t, α(t)) ≥ 0, for every t ∈ [0, T ]; (3.4)

(A3) there exists a T -periodic function β(t), of class C2, such that

β′′(t) + f(t, β(t)) ≤ 0, for every t ∈ [0, T ]. (3.5)

Assume, moreover, that

α(t) < u∗(t) < β(t), for every t ∈ [0, T ]. (3.6)

Then there exists k∗ ∈ N∗ such that, for every integer k ≥ k∗, there exists an integer j∗(k)
such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ j∗(k), equation

(3.1) has at least two subharmonic solutions u
(1)
k,j(t), u

(2)
k,j(t) of order k (not belonging to the

same periodicity class) such that, for i = 1, 2, u
(i)
k,j(t) − u∗(t) has exactly 2j zeros in the

interval [0, kT [ and

α(t) ≤ u(i)
k,j(t) ≤ β(t), for every t ∈ R. (3.7)

Proof. Define the function f̃ : R× R→ R by setting

f̃(t, x) =


f(t, α(t)) if x ≤ α(t)

f(t, x) if α(t) < x ≤ β(t)

f(t, β(t)) if β(t) < x
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Being α(t) < β(t) for every t ∈ R, we have that f̃(t, x) is well defined, T -periodic in the first
variable, continuous and locally Lipschitz continuous in x and globally bounded. Moreover,

by the regularity assumption on f(t, x), the partial derivative ∂f̃
∂x (t, x) = ∂f

∂x (t, x) exists in a
neighborhood of (t, u∗(t)). We further claim the following:

Claim: if u(t) is a kT -periodic solution to

u′′ + f̃(t, u) = 0 (3.8)

such that u(t)− u∗(t) has at least one zero in R, then α(t) ≤ u(t) ≤ β(t) for every t ∈ R, so
that u(t) solves (3.1) as well.

We prove that u(t) ≤ β(t), the other inequality being analogous. Let us suppose by con-
tradiction that, for some t∗ ∈ R, β(t∗) < u(t∗) and define [t−, t+] to be the largest interval
containing t∗ and such that β(t) < u(t) for every t ∈ ]t−, t+[ . Since u∗(t) < β(t) and, by
kT -periodicity, u(t) − u∗(t) has at least one zero in every interval of length kT , we deduce
that −∞ < t− < t+ < +∞. We clearly have

(u− β)(t−) = (u− β)(t+) = 0 (3.9)

and
(u− β)′(t−) ≥ 0 ≥ (u− β)′(t+); (3.10)

moreover, for every t ∈ ]t−, t+[ ,

(u− β)′′(t) = u′′(t)− β′′(t) ≥ −f̃(t, u(t)) + f(t, β(t))

= −f(t, β(t)) + f(t, β(t)) = 0.

Together with (3.9) and (3.10), this implies that (u − β)(t) = 0 for every t ∈ ]t−, t+[ , a
contradiction.
According to the above discussion, to conclude it is enough to prove the existence of subhar-
monic solutions u(t) to (3.8) such that u(t)− u∗(t) changes sign. We proceed as follows: set,
for (t, x) ∈ R× R,

g(t, x) = f̃(t, x+ u∗(t))− f̃(t, u∗(t))

and consider the equation
v′′ + g(t, v) = 0. (3.11)

Since g(t, 0) ≡ 0, this is an unforced equation (like those in Chapter 2) and, as it is clear, v(t)
is a solution to (3.11) if and only if u(t) = u∗(t)+v(t) is a solution to (3.8). As a consequence,
the global continuability for the solutions to (3.11) holds. Moreover, it is easy to see that v(t)
is a sign-changing subharmonic of order k to (3.11) if and only if u(t) is a subharmonic of
order k to (3.1) such that u(t)−u∗(t) changes sign. To conclude, we are going to use Theorem

2.3.7. Indeed, the regularity of f̃(t, x) ensures that the uniqueness for the solutions to the

Cauchy problems holds; moreover, since f̃(t, x) is bounded, condition (f∞) of Theorem 2.3.7
holds true. Finally, we check that (f0) holds true with the choice q(t) = ∂f

∂x (t, u∗(t)). Indeed,

since there exists ∂f̃
∂x (t, x) = ∂f

∂x (t, x) in a neighborhood of (t, u∗(t)), Langrange theorem
implies

g(t, x)

x
=
f̃(t, x+ u∗(t))− f̃(t, u∗(t))

x
=
∂f

∂x
(t, ξ(t, x)),
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for a suitable ξ(t, x) such that |ξ(t, x) − u∗(t)| ≤ |x|. Letting x → 0, in view of the uniform
continuity of ∂f

∂x (t, x) on compact subsets, we get

∂f

∂x
(t, ξ(t, x))→ ∂f

∂x
(t, u∗(t)) = q(t), uniformly in t ∈ [0, T ],

and hence g(t, x)/x→ q(t) for x→ 0, as desired.

Remark 3.1.1. A T -periodic function satisfying the differential inequality (3.4) (resp.,
(3.5)) is usually referred to as a (classical) lower solution (resp., upper solution) to the T -
periodic problem associated with equation (3.1) (weaker concepts of lower/upper solutions
could be introduced as well). Notice that in Theorem 3.1.1 we assume the existence of a
T -periodic solution u∗(t) satisfying (3.6) and it is well known that between a lower solution
α(t) and an upper solution β(t) satisfying α(t) ≤ β(t) a T -periodic solution always exists (see,
for instance, [55]). Nevertheless, to our purposes the explicit knowledge of u∗(t) is essential
in view of the assumption (3.3), while, on the other hand, the existence of α(t) and β(t) only
plays the role of an additional information which allows to perform a suitable truncation.
In this regard, it can be noticed that this fact also allows us to provide a localization of
the subharmonic solutions produced, which indeed lie in a vertical strip of the phase plane
determined by α(t) and β(t) (see (3.7)). Observe finally, that, if α(t) is a solution, then the

uniqueness for the solutions to the Cauchy problems further implies that α(t) < u
(i)
k,j(t) for

every t ∈ R. Analogously, u
(i)
k,j(t) < β(t), whenever β(t) is a solution.

Remark 3.1.2. Another fact that it may be worth mentioning here is related to the in-
stability property of the periodic solutions obtained via the lower/upper solutions technique.
Indeed, according to [160] (see also [54] for previous results in this direction), under the
assumptions of Theorem 3.1.1 and when at least one between α(t) and β(t) is not a solution
to (3.1), there exists a T -periodic solution to (3.1), satisfying (3.6), which is unstable both
in the past and in the future. On the other hand, according to [134, 135], our condition (3.3)
is not incompatible with the stability of the solution u∗(t) itself: this is not a contradiction.
In fact, in our setting α(t) and/or β(t) may well be solutions to (3.1) (indeed, this will occur
in some of the applications of Sections 3.2 and 3.3); moreover, we require the existence of
a T -periodic solution u∗(t) satisfying (3.3), but this does not prevent the existence of other
(possibly unstable) T -periodic solutions.

We now state a variant of Theorem 3.1.1 in which we assume solely the existence of an
upper solution β(t); clearly, a dual result, in presence of a lower solution α(t), could be
obtained as well. For our theorem we suppose that the global continuability for the solutions
to (3.1) is ensured (see Remark 3.1.3 below).

Theorem 3.1.2. Assume (A1) and (A3) of Theorem 3.1.1 and suppose that

u∗(t) < β(t), for every t ∈ [0, T ].

Then the same conclusion of Theorem 3.1.1 holds, with (3.7) replaced by

u
(i)
k,j(t) ≤ β(t), for every t ∈ R.
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Proof. The proof is similar to that of Theorem 3.1.1, using the truncation

f̃(t, x) =

{
f(t, x) if x ≤ β(t)

f(t, β(t)) if β(t) < x

and the variant of Theorem 2.3.7 described in Remark 2.3.2.

Remark 3.1.3. The hypothesis of global continuability for the solutions to (5.2) is needed
only to ensure that such a property holds for the solutions to the truncated equation

u′′ + f̃(t, u) = 0. (3.12)

Notice that this request was not made in Theorem 3.1.1 because in the corresponding proof we
have performed a two-sided truncation, obtaining f̃(t, x) bounded and thus having guaranteed
the continuability of the solutions to (3.12). In this regard, we could replace the global
existence hypothesis of Theorem 3.1.2 by other conditions ensuring the global continuability
for the solutions to (3.12). For instance, a simple possible alternative condition could be the
following:

• there exist three constants A,B, d > 0 such that

|f(t, x)| ≤ A|x|+B, for every x ≤ −d, t ∈ [0, T ].

It is rather easy to produce examples of differential equations satisfying the above one-
sided growth assumption and possessing, at the same time, solutions which are not globally
defined on R. Other, more refined conditions could be given as well (see, among others,
[49, 68, 78, 97]).

We conclude this section with a few examples in which our results immediately apply.
It is worth mentioning that both the equations (3.13) and (3.16) considered below deal
with nonlinearities f(t, x) which are odd functions in the x-variable. Accordingly, solutions
always occur in pairs (u(t),−u(t)) and we cannot exclude, in the situation, for instance, of

Theorem 3.1.1, that u
(1)
k,j(t) ≡ −u

(2)
k,j(t). This fact, however, is purely accidental and does not

affect the conclusion of Poincaré-Birkhoff twist theorem asserting, in general, the existence
of pairs of fixed points. Indeed, after Example 3.1.1 and Example 3.1.2 we will propose some
straightforward generalizations to second order equations with no symmetry conditions.

Example 3.1.1. Consider a frictionless unforced simple pendulum with a periodically mov-
ing support (which can be equivalently described as a pendulum with a stationary support
in a space with a periodically varying constant of gravity [57]). Mechanical models of this
type lead to differential equations of the form

u′′ + a(t) sinu = 0, (3.13)

where a : R→ R is a continuous and T -periodic function. In this case we can apply Theorem
3.1.1, by taking u∗(t) ≡ 0, α(t) ≡ −π and β(t) ≡ π. With this choice of u∗(t), condition (3.3)

is satisfied if and only if ā = T−1
∫ T

0
a(t) dt > 0. Therefore, the following result holds.
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Corollary 3.1.1. Suppose that ā > 0. Then there exists k∗ ∈ N∗ such that, for every integer
k ≥ k∗, there exists an integer j∗(k) such that, for every integer j relatively prime with k and

such that 1 ≤ j ≤ j∗(k), equation (3.13) has at least two subharmonic solutions u
(1)
k,j(t), u

(2)
k,j(t)

of order k (not belonging to the same periodicity class) such that, for i = 1, 2, u
(i)
k,j(t) has

exactly 2j zeros in the interval [0, kT [ and

−π < u
(i)
k,j(t) < π, for every t ∈ R.

The case in which ā < 0 follows again from Theorem 3.1.1, by starting from u∗(t) ≡ π,
α(t) ≡ 0 and β(t) ≡ 2π. In this situation, the solutions found rotate around (π, 0) in the
phase plane, with the dynamics of an inverted pendulum. Notice also that, in view of the
estimate for j∗(k) provided by Theorem 2.3.7, here the following lower bound can be given:

j∗(k) ≥ E−
(
kT

2π

ā√
max[0,T ] a(t)

)
.

We point out that, even if Corollary 3.1.1 applies to the unforced pendulum type equation
(3.13), we do not need many special features of the sine function (in particular, its oddness
and the fact that it has zero mean value in a period). Indeed, with the same argument, we
can derive an application of Theorem 3.1.1 to an equation of the form

u′′ + a(t)g(u) = 0, (3.14)

with g : R→ R a 2L-periodic function of class C1 and such that

g(0) = 0 and g′(0) > 0. (3.15)

Indeed, from the periodicity of g(x) and (3.15), we obtain that g(x) vanishes at some points in
]−2L, 0[ as well as at some points in ]0, 2L[ .Hence the constants L− = max{x < 0 | g(x) = 0},
L+ = min{x > 0 | g(x) = 0} are well defined and, by construction, g(x) < 0 for x ∈ ]L−, 0[
and g(x) > 0 for x ∈ ]0, L+[ . Note that, with this approach, the periodicity of the potential
G(x) =

∫ x
0
g(ξ) dξ is not required. For other results concerning (3.14) with g(x) having a

periodic potential, see [124, 153].

Example 3.1.2. As a second example, we consider a model studied by Belmonte-Beitia
and Torres [16] arising from the search for some special solutions to a nonlinear Schrödinger
equation. The equation under consideration takes the form

u′′ + µu− p(t)u3 = 0, (3.16)

where µ > 0 and p : R → R is a strictly positive, continuous and T -periodic function
(comparing with the notation in [16], we have µ = −2λ and p(t) = 2g(x), for t = x).
Following [16] we introduce the constants

ξ1 =

√
µ

min[0,T ] p(t)
, ξ2 =

√
µ

max[0,T ] p(t)
.

A simple computation shows that ξ2 is a constant lower solution and ξ1 is a constant upper
solution to equation (3.16). By symmetry, also the constant functions −ξ1 and −ξ2 are,
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Combining Poincaré-Birkhoff Theorem, coincidence degree and lower/upper

solutions techniques

respectively, a lower and an upper solution to the same equation. A direct application of
Theorem 3.1.1 can then be given with the following choices: u∗(t) ≡ 0, α(t) ≡ −ξ1 and
β(t) ≡ ξ1 . Observe that the average condition (3.3) is automatically satisfied, since µ > 0.
Therefore, the following result holds.

Corollary 3.1.2. With the above positions, there exists k∗ ∈ N∗ such that, for every integer
k ≥ k∗, there exists an integer j∗(k) such that, for every integer j relatively prime with k and

such that 1 ≤ j ≤ j∗(k), equation (3.16) has at least two subharmonic solutions u
(1)
k,j(t), u

(2)
k,j(t)

of order k (not belonging to the same periodicity class) such that, for i = 1, 2, u
(i)
k,j(t) has

exactly 2j zeros in the interval [0, kT [ and

−ξ1 ≤ u(i)
k,j(t) ≤ ξ1, for every t ∈ R. (3.17)

If we like to improve estimate (3.17), we can take advantage of the fact, as proved in
[16], there exist two T -periodic solutions to (3.16), say ρ−(t) and ρ+(t), such that, for every
t ∈ [0, T ],

−ξ1 ≤ ρ−(t) ≤ −ξ2, ξ2 ≤ ρ+(t) ≤ ξ1

With this further information, we can apply Theorem 3.1.1 with α(t) = ρ−(t) and β(t) =
ρ+(t) and obtain the sharper estimate

ρ−(t) < u
(i)
k,j(t) < ρ+(t), for every t ∈ R.

Moreover, as in Example 3.1.1, we can provide a lower bound for j∗(k) as follows:

j∗(k) ≥ E−
(
kT
√
µ

2π

)
.

Again, we have not used the oddness of the nonlinearity and our result easily extends to the
more general equation

u′′ + µu− p(t)g(u) = 0, (3.18)

with g : R→ R a C1-function such that g(x)x > 0 for x 6= 0, g′(0) = 0 and lim|x|→∞ g(x)/x =
+∞. Arguing like in [16], we can prove the existence of a maximal negative T -periodic solu-
tion ρ−(t) and a minimal positive T -periodic solution ρ+(t) (this follows using a lower/upper
solutions technique). Now we can apply Theorem 3.1.1 with the positions u∗(t) ≡ 0,
α(t) = ρ−(t) and β(t) = ρ+(t). As before, the average condition (3.3) is automatically
satisfied since µ > 0. In this manner, we can extend Corollary 3.1.2 to the nonsymmetric
case of equation (3.18).

3.2 Second order ODEs of pendulum type

In this section, we propose to develop a consequence of Theorem 3.1.1 which applies to forced
pendulum type equations. As ideal model for our investigation, we consider the equation

u′′ + µ sinu = e(t), (3.19)
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where µ > 0 and e : R → R is a continuous and T -periodic function. For what follows it is
also convenient to split e(t) as

e(t) = ē+ ẽ(t), with ē =
1

T

∫ T

0

e(t) dt.

Integrating both sides of (3.19), we see that a necessary condition (see [124, 127]) for the
existence of kT -periodic solutions, k ∈ N∗, to (3.19) is ē ∈ [−µ, µ]. On the other hand, it is
well known that, if

ē ∈ ]− µ, µ[ ,

then, for every sufficiently small ẽ(t), equation (3.19) has at least two T -periodic solutions
(geometrically distinct, i.e., non differing by a multiple of 2π). Precisely, considering the two
solutions of the equation

µ sinx = ē, with x ∈ ]π, π],

namely

x0 = arcsin(ē/µ) and x1 =

{
π − x0 if x0 ≥ 0

−π − x0 if x0 < 0,

one can prove (via degree theory) that, whenever ẽ(t) is small, T -periodic solutions to (3.19)
exist near x0 and x1, respectively (see, for instance, [44, 85, 122]). Usually, the smallness of
ẽ(t) is expressed in terms of its L1-norm on [0, T ] or of the oscillation of some of its primitives
(and, clearly, such a bound depends on µ: the smaller is µ, the larger upper bound for ẽ(t)
is available).

In such a framework, our aim is to prove a result about subharmonic solutions. More in
general, starting from an autonomous equation of the form

u′′ + µh(t, u) = 0,

for which we assume the existence of three constant solutions N−, 0, N+, with N− < 0 < N+

(which mimic the three consecutive constant solutions −π, 0, π of u′′ + µ sinu = 0), we
are going to show the existence of infinitely many subharmonic solutions to the perturbed
equation

u′′ + µh(t, u) = e(t), (3.20)

provided that e(t) is sufficiently small. We will make the convenient assumption that∫ T

0

e(t) dt = 0 (3.21)

and, accordingly, we will denote by E(t) the unique T -periodic function such that

E ′′(t) = e(t) and ‖E‖∞ =
1

2
Osc(E),

being Osc(E) = max[0,T ] E(t)−min[0,T ] E(t).
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With these preliminaries, we can state the following result.

Theorem 3.2.1. Let h : R×R→ R be a continuous function, T -periodic in the first variable
and with continuous partial derivative ∂h

∂x (t, x), and let e : R → R be a continuous and T -
periodic function satisfying (3.21). Suppose that, for suitable real numbers N−, A,B,N+ and
a constant δ > 0 satisfying

N− + δ ≤ A < 0 < B ≤ N+ − δ,

the following conditions hold true:

- for every t ∈ [0, T ],
h(t,N−) = h(t, 0) = h(t,N+) = 0; (3.22)

- for every t ∈ [0, T ] and x ∈ [N± − δ,N± + δ],

h(t, x)(x−N±) ≤ 0; (3.23)

- for every t ∈ [0, T ] and x ∈ ]A, 0[∪ ]0, B[ ,

h(t, x)x > 0; (3.24)

- for every t ∈ [0, T ] and x ∈ ]A,B[ ,

∂h

∂x
(t, x) > 0. (3.25)

Finally, assume that
Osc(E) < min{δ,−A,B}. (3.26)

Then there exists µ∗ > 0 such that, for every µ ∈ ]0, µ∗]:

i) there exists a T -periodic solution u∗(t) to (3.20) such that

A < u∗(t) < B, for every t ∈ R;

ii) there exist two T -periodic solutions u−(t), u+(t) to (3.20) such that

N± − δ < u±(t) < N± + δ, for every t ∈ R;

iii) there exists k∗µ ∈ N∗ such that, for every integer k ≥ k∗µ there exists an integer mk,µ

such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ mk,µ,

equation (3.20) has at least two subharmonic solutions u
(1)
k,j(t), u

(2)
k,j(t) of order k (not

belonging to the same periodicity class) such that u
(i)
k,j(t)−u∗(t) has exactly 2j zeros in

the interval [0, kT [ and

u−(t) < u
(i)
k,j(t) < u+(t), for every t ∈ R.



3.2 Second order ODEs of pendulum type 59

Proof. First, define

M = max
(t,x)∈[0,T ]×[A,B]

|h(t, x)|

and choose µ∗, R > 0 so that

µ∗MT 2

12
< R < min

{
−A

2
− ‖E‖∞,

B

2
− ‖E‖∞

}
. (3.27)

Such a choice is possible, in view of (3.26). Now, fix µ ∈ ]0, µ∗].

We first show that the conclusion at point i) holds true, by proving that there exists a
T -periodic solution x∗(t) to

x′′ + µh(t, x+ E(t)) = 0, (3.28)

such that

A+ ‖E‖∞ < x∗(t) < B − ‖E‖∞, for every t ∈ R.

Setting u∗(t) = x∗(t) + E(t), this implies the conclusion.
Our argument is closely related to the one in [169]. Let CT be the Banach space of the
continuous and T -periodic functions x : R → R, with the norm ‖x‖∞ = maxt∈[0,T ] |x(t)|;
moreover, for x ∈ CT , set x̄ = 1

T

∫ T
0
x(t) dt and x̃(t) = x(t)− x̄. Define the open set

Ω =

{
x ∈ CT | x̄ ∈

]
A

2
,
B

2

[
, ‖x̃‖∞ < R

}
and observe first of all that, if x ∈ Ω, then relation (3.27) implies that

A+ ‖E‖∞ < x(t) < B − ‖E‖∞, for every t ∈ [0, T ]. (3.29)

We are going to show, via coincidence degree’s theory, that equation (3.28) has a solution
x∗ ∈ Ω. In view of [122, Theorem 2.4], this is true if:

a) for every α ∈ ]0, 1[ , the equation

x′′ + αµh(t, x+ E(t)) = 0, (3.30)

has no T -periodic solutions x ∈ ∂Ω;

b) it holds that ∫ T

0

µh

(
t,
A

2
+ E(t)

)
dt 6= 0 6=

∫ T

0

µh

(
t,
B

2
+ E(t)

)
dt;

c) it holds that

degB

(
x 7→

∫ T

0

µh(t, x+ E(t)) dt,

]
A

2
,
B

2

[
, 0

)
6= 0,

where “degB” denotes the (one-dimensional) Brouwer degree.
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Conditions b) and c) follow from (3.24). Indeed, suppose that s = B/2. In this case we have

0 < s+E(t) < B, so that h(t, s+E(t)) > 0 for every t ∈ [0, T ]. Therefore,
∫ T

0
µh(t, s+E(t)) dt >

0. Similarly, one can check that
∫ T

0
µh(t, s + E(t)) dt < 0 for s = A/2. As consequence, b)

holds and c) is satisfied with degree equal to one.
For what concerns condition a), observe first of all that whenever x(t) is a T -periodic solution
to (3.30) (0 < α < 1) such that (3.29) holds true, in view of the Sobolev inequality (see [128])
and since x(t) + E(t) ∈ [A,B] for every t ∈ [0, T ], we have

‖x̃‖2∞ ≤ T

12

∫ T

0

x′(t)2 dt = − T
12

∫ T

0

x′′(t)x̃(t) dt =

=
T

12

∫ T

0

αµh(t, x+ E(t))x̃(t) dt ≤ µ∗MT 2

12
‖x̃‖∞ < R‖x̃‖∞.

From such a priori bound we conclude that in order to show condition a) it is sufficient to
prove that (3.30) has no T -periodic solutions x(t) such that x̄ = A

2 or x̄ = B
2 with ‖x̃‖∞ < R.

Assume to the contrary that this is the case and, just to fix the ideas, that x̄ = B
2 . Then

‖E‖∞ <
B

2
−R < x(t) = x̄+ x̃(t) <

B

2
+R < B − ‖E‖∞,

so that 0 < x(t) + E(t) < B for every t ∈ [0, T ], a contradiction in view of (3.24) (just

integrate (3.30) and divide by α > 0 to get 0 =
∫ T

0
h(t, x(t) + E(t)) dt).

The conclusion at point ii) follows in a direct way from the lower/upper solutions tech-
nique. Indeed, in view of (3.26) and (3.23), it is easy to verify that the functions

α−(t) = N− − δ

2
+ E(t), β−(t) = N− +

δ

2
+ E(t)

are, respectively, a lower and an upper solution to (3.20) with a−(t) ≤ β−(t). Hence, the
existence of a T -periodic solution u−(t) to (3.20) satisfying, for t ∈ [0, T ],

N− − δ < N− − δ

2
+ E(t) ≤ u−(t) ≤ N− +

δ

2
+ E(t) < N− + δ,

follows immediately. A symmetric argument shows the existence of u+(t).

Finally, the conclusion at point iii) follows from Theorem 3.1.1, with the choice α(t) =
u−(t) and β(t) = u+(t). Indeed, (3.3) follows from (3.25), since A < u∗(t) < B for every
t ∈ [0, T ].

When applied to the forced pendulum equation (3.19), Theorem 3.2.1 immediately gives
the following:

Corollary 3.2.1. Assume that e : R→ R is a continuous and T -periodic function satisfying
(3.21) and

Osc(E) <
π

2
. (3.31)

Then there exists µ∗ > 0 such that, for every µ ∈ ]0, µ∗]:
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i) there exists a T -periodic solution u∗(t) to (3.19) such that

−π
2
< u∗(t) <

π

2
, for every t ∈ R;

ii) there exist a T -periodic solutions u−(t) to (3.19) such that

−3

2
π < u−(t) < −π

2
, for every t ∈ R;

iii) there exists k∗µ ∈ N∗ such that, for every integer k ≥ k∗µ there exists an integer mk,µ

such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ mk,µ,

equation (3.19) has at least two subharmonic solutions u
(1)
k,j(t), u

(2)
k,j(t) of order k (not

belonging to the same periodicity class) such that u
(i)
k,j(t)−u∗(t) has exactly 2j zeros in

the interval [0, kT [ and

u−(t) < u
(i)
k,j(t) < u−(t) + 2π, for every t ∈ R.

Proof. It is enough to apply Theorem 3.2.1 with the positions N− = −π,A = −π2 , B =
π
2 , N

+ = π and δ = π
2 . Notice that here, in view of the 2π-periodicity of x 7→ sinx, the

solution lying near π is just u+(t) = u−(t) + 2π.

Existence results for pendulum type equations based on upper bounds on Osc(E) have
been previously obtained. For instance, using topological degree methods, the condition

Osc(E) ≤ π, (3.32)

paired with other assumptions, has been used to obtain existence results [53, 121]. Our con-
dition (3.31) is clearly more restrictive than (3.32); however, it allows to obtain a multiplicity
result for subharmonic solutions as well. Note also that, according to (3.27), an estimate for
µ∗ can be given, in the sense that our result is true for

µ <
6

T 2

( π
2
−Osc(E)

)
.

We stress that, in spite of an enormous amount of literature dealing with the existence of T -
periodic solutions to the forced pendulum equation (3.19) (see for instance the survey [124]),
far fewer results are available for subharmonic solutions [79, 153, 166]. In particular, [79, 153]
provide generic type results under suitable nondegeneracy conditions on the associated energy
functionals, while [166] is closer in spirit to Corollary 3.2.1, showing the existence of infinitely
many subharmonics for e(t) small in the L2-norm. Even if our assumption (3.31) is in
general not comparable with the ones in [166], Corollary 3.2.1, as usual when trying to make
a comparison between variational methods and the Poincaré-Birkhoff theorem, provides a
sharper conclusion for what concerns the multiplicity, minimal period and localization of the
subharmonics found.
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3.3 Some Ambrosetti-Prodi type results

In this final section, we propose to study, via Theorem 3.1.2, the existence of harmonic
and subharmonic solutions to second order scalar parameter dependent ordinary differential
equations of the form

u′′ + g(u) = λ+ e(t), (3.33)

being g : R→ R a C1-function, e : R→ R a continuous and T -periodic function with∫ T

0

e(t) dt = 0 (3.34)

and λ ∈ R a parameter. Observe that, in this setting, (3.34) is not restrictive, up to relabelling
e(t) and λ. Throughout the section, given a continuous T -periodic function u : R→ R, we set

(as before) ū = 1
T

∫ T
0
u(t) dt, ũ(t) = u(t)− ū and ‖u‖LpT =

(∫ T
0
|u(t)|p dt

)1/p

(for p = 1, 2).

Our goal is to find, for every λ in a suitable interval, a T -periodic solution uλ(t) to (3.33)
which plays the role of u∗(t) in Theorem 3.1.2. More precisely, we will look for some uλ(t)
such that the following property is satisfied:

(P) There exists k∗λ ∈ N∗ such that, for every integer k ≥ k∗λ there exists an integer j∗(k, λ)
such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ j∗(k, λ),

equation (3.33) has at least two subharmonic solutions u
(1)
k,j,λ(t), u

(2)
k,j,λ(t) of order k

(not belonging to the same periodicity class) such that, for i = 1, 2, u
(i)
k,j,λ(t)−uλ(t) has

exactly 2j zeros in the interval [0, kT [ .

As in Section 3.2, coincidence degree will be the main tool to find and localize (in depen-
dence of λ) such a solution uλ(t). To this aim, we present a preliminary result, Lemma 3.3.1
below, which deals with the case when g(x) is strictly increasing on a half-line. Our result,
although technical, permits a unifying treatment of the forthcoming applications.

Lemma 3.3.1. Assume that there exists d ∈ R such that g(x) is strictly increasing on [d,+∞[
(respectively, on ]−∞,−d]). Moreover, suppose that there exists K > 0 such that:

• for every λ ∈ [g(d), g(+∞)[ (resp., λ ∈ ]g(−∞), g(−d)]), for every α ∈ ]0, 1[ and for
every T -periodic solution u(t) to

u′′ + αg(u) = α(λ+ e(t)) (3.35)

satisfying u(t) > d (resp., u(t) < −d) for every t ∈ [0, T ], it holds that

‖u′‖L1
T
< K.

Then there exists λ∗ ∈ [g(d), g(+∞)[ (resp., λ∗ ∈ ]g(−∞), g(−d)]) such that, for every λ ∈
[λ∗, g(+∞)[ (resp., λ ∈ ]g(−∞), λ∗]), there exists a T -periodic solution u∗λ(t) to (3.33) such
that u∗λ(t) > d (resp., u∗λ(t) < −d) for every t ∈ R. Moreover, for λ→ g(+∞), it holds that

u∗λ(t)→ +∞, uniformly in t ∈ [0, T ], (3.36)

(resp., u∗λ(t)→ −∞, uniformly in t, for λ→ g(−∞)).
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Proof. For every λ ∈ [g(d), g(+∞)[ , let us denote by xλ the unique real number in [d,+∞[
such that g(xλ) = λ; clearly, xλ → +∞ for λ → g(+∞). Let us choose now λ∗ ≥ g(d) so
large that xλ∗ −K > d and fix λ ∈ [λ∗, g(+∞)[ .
Let CT be the Banach space of the continuous and T -periodic functions u : R→ R, with the
norm ‖u‖∞ = maxt∈[0,T ] |u(t)|, and, for a, b ∈ R with a < b, consider the open set

Ω(a, b) = {u ∈ CT | a < u(t) < b, for every t ∈ R}.

We are going to show that equation (3.33) has a solution u∗λ ∈ Ω for

Ω = Ω(a, b) with a = xλ −K, b = xλ +K.

By [122, Theorem 2.4], this is true if:

a) for every α ∈ ]0, 1[ , the equation (3.35) has no T -periodic solutions u(t) such that
a ≤ u(t) ≤ b for every t ∈ R and u(t̃) ∈ {a, b} for some t̃ ∈ [0, T ];

b) it holds that ∫ T

0

(g(a)− λ− e(t)) dt 6= 0 6=
∫ T

0

(g(b)− λ− e(t)) dt;

c) it holds that

degB

(
x 7→

∫ T

0

(g(x)− λ− e(t)) dt, ]a, b[ , 0

)
6= 0,

where “degB” denotes the (one-dimensional) Brouwer degree.

Indeed, conditions b) and c) follow easily from the fact that g(x) is strictly increasing on
[d,+∞[ and the choice of λ. We prove condition a). Let u(t) be a T -periodic solution of
(3.35) such that u(t) ≥ xλ −K > d; then, for every s, t ∈ [0, T ],

|u(s)− u(t)| =
∣∣∣∣∫ s

t

u′(τ) dτ

∣∣∣∣ ≤ ∫ T

0

|u′(t)| dt < K. (3.37)

On the other hand, integrating equation (3.35) and dividing by α > 0, we get

1

T

∫ T

0

g(u(s)) ds = λ,

which implies that, for some t∗ ∈ [0, T ], g(u(t∗)) = λ. Since u(t∗) > d, we get u(t∗) = xλ.
On the other hand, by assumption we know that u(t̃) ∈ {xλ−K,xλ+K} for some t̃ ∈ [0, T ].
Hence

|u(t∗)− u(t̃)| = K,

in contradiction with (3.37). Finally, (3.36) follows from the fact that xλ − K ≤ u∗λ(t) ≤
xλ +K, since xλ → +∞. The proof of the symmetric case follows a similar argument.
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Combining Poincaré-Birkhoff Theorem, coincidence degree and lower/upper

solutions techniques

Our first application deals with a problem previously considered by Cid-Sanchez, Ward
and Bereanu-Mawhin [18, 48, 163]. The general framework is that of a bounded nonlinearity
g(x) satisfying the basic assumption:

g(x) > 0, for every x ∈ R, and lim
|x|→+∞

g(x) = 0. (3.38)

In such a situation, the results in [18, 48, 163] guarantee the existence of two T -periodic
solutions for small positive values of the parameter λ. Our goal is to show that, by adding
an asymptotic condition on the derivative g′(x), such harmonic solutions can be localized in
a precise manner, and they are accompanied by the existence of infinitely many subharmonic
solutions with prescribed nodal properties.

Theorem 3.3.1. Assume (3.38) and suppose that there exists d > 0 such that

g′(x) > 0, for every x < −d, and g′(x) < 0, for every x > d. (3.39)

Set M = maxR g(x). Then there exists λ∗ ∈ ]0,M ] such that, for every λ ∈ ]0, λ∗]:

i) there exists a unique T -periodic solution u+
λ (t) to (3.33) such that u+

λ (t) > d for every
t ∈ R;

ii) there exists a T -periodic solution u−λ (t) to (3.33) such that u−λ (t) < −d for every t ∈ R;

iii) property (P) holds with respect to u−λ (t), with

u
(i)
k,j,λ(t) < u+

λ (t), for every t ∈ R.

Moreover, for λ→ 0+,
u+
λ (t)→ +∞ and u−λ (t)→ −∞,

uniformly in t ∈ R.

Proof. We split our arguments into three steps.

First of all, we prove that, for λ > 0 sufficiently small, there exists a unique T -periodic
solution u+

λ (t) of (3.33) such that u+
λ (t) > d for every t ∈ R. To this aim, let us denote by

xλ the unique real number in [d,+∞[ such that g(xλ) = λ; moreover, let E(t) be the unique

T -periodic function such that E ′′(t) = e(t) and
∫ T

0
E(t) dt = 0. For λ > 0 small enough, we

have xλ > d+ 2‖E‖∞; accordingly, choose m,M > 0 such that

d < m− ‖E‖∞ ≤ m+ ‖E‖∞ ≤ xλ ≤M − ‖E‖∞.

An appropriate choice can be m = xλ − ‖E‖∞ and M = xλ + ‖E‖∞ . It is easy to see that
the T -periodic functions

α+(t) = m+ E(t), β+(t) = M + E(t)

are such that d < α+(t) < β+(t) and are, respectively, a lower and an upper solution to
equation (3.33). The existence of a T -periodic solution u+

λ (t) > d follows then from the
lower/upper solution method. Moreover, by the same estimates it follows that u+

λ (t)→ +∞
uniformly in t ∈ [0, T ]. Finally, the uniqueness of u+

λ (t) follows from a direct argument using
g′(x) < 0 for x > d.
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Secondly, we show that the condition at point ii) holds true. To this aim, we are going to
use Lemma 3.3.1. Indeed, g(x) is strictly increasing on ]−∞,−d]. Moreover, for λ ∈ ]0,M ],
α ∈ ]0, 1[ and every T -periodic solution u(t) to (3.35) satisfying u(t) < −d for every t ∈ R,
it holds that

‖u′′‖L1
T
≤ 2M + ‖e‖L1

T
.

Letting t∗ ∈ [0, T ] an instant such that u′(t∗) = 0, the previous relation implies that, for
every t ∈ [0, T ],

|u′(t)| =
∣∣∣∣∫ t

t∗
u′′(s) ds

∣∣∣∣ ≤ 2M + ‖e‖L1
T
,

so that the assumption of Lemma 3.3.1 is satisfied by choosing K > (2M + ‖e‖L1
T

)T .

Finally, the conclusion at point iii) follows from Theorem 3.1.2, with the choice u∗(t) =
u−λ (t) and β(t) = u+

λ (t). Indeed, (3.3) follows from (3.39) since u−λ (t) < −d for every
t ∈ R.

Notice that the uniqueness of u−λ (t) is not guaranteed, in general. However, it can be
achieved by adding some conditions on g(x) (for instance we could suppose that 0 < g′(x) <(

2π
T

)2
for every x < −d).

Our second application deals with a classical situation first considered by Fabry, Mawhin
and Nkashama [69]. Basically, we have in mind to consider the case when

lim
|x|→+∞

g(x) = +∞ (3.40)

In such a situation, the results in [69] ensure the existence of two T -periodic solutions to
(3.33) for large values of λ. Here, again, by adding conditions on g′(x) we provide further
information about the localization of such T -periodic solutions, as well as the existence of
subharmonic solutions with prescribed nodal properties. It is worth noticing that results
providing the existence of subharmonic solutions for (3.33) in case when (3.40) is satisfied
can be deduced also from [152, Theorem 10]. We postpone more comments about this point
after the statement of our result.

Theorem 3.3.2. Assume (3.40) and suppose that there exist d > 0 and 0 < l <
(

2π
T

)2
such

that

g′(x) < 0, for every x < −d, and 0 < g′(x) ≤ l, for every x > d. (3.41)

Then there exists λ∗ > 0 such that, for every λ ≥ λ∗:

i) there exists a unique T -periodic solution u−λ (t) to (3.33) such that u−λ (t) < −d for every
t ∈ R;

ii) there exists a unique T -periodic solution u+
λ (t) to (3.33) such that u+

λ (t) > d for every
t ∈ R;

iii) property (P) holds with respect to u+
λ (t), with

u−λ (t) < u
(i)
k,j,λ(t), for every t ∈ R.
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Moreover, for λ→ +∞,

u+
λ (t)→ +∞, and u−λ (t)→ −∞,

uniformly in t ∈ R.

Proof. Similarly as in the proof of Theorem 3.3.1, we split our arguments into three steps.

The existence and uniqueness of a T -periodic solution u−λ (t) of (3.33) such that u−λ (t) <
−d for every t ∈ R follows in a similar way as in the proof of point i) of Theorem 3.3.1 (using
upper and lower solutions techniques like in [69] and the fact that g′(x) < 0 for x < −d).

To show the conclusion at point ii), we use again Lemma 3.3.1; indeed, g(x) is strictly
increasing on [d,+∞[ with g(+∞) = +∞. For simplicity of notations, we set gλ(x) = g(x)−λ.
Assume now that λ ≥ g(d), α ∈ ]0, 1[ and u(t) is a T -periodic solution u(t) of (3.35) such
that u(t) > d for every t ∈ R. Multiplying equation (3.35) by ũ(t) and integrating, we get∫ T

0

u′(t)2 dt = α

∫ T

0

gλ(u(t))ũ(t) dt− α
∫ T

0

e(t)ũ(t) dt

= α

∫ T

0

(gλ(u(t))− gλ(ū))ũ(t) dt− α
∫ T

0

e(t)ũ(t) dt.

On the other hand, since u(t), ū > d and g(x) is strictly increasing on [d,+∞[ , Lagrange
theorem implies that

gλ(u(t))− gλ(ū) = g′λ(ξ(t))(u(t)− ū) = g′λ(ξ(t))ũ(t)

for a suitable ξ(t) > d. Hence we get

‖u′‖2L2
T
≤ l‖ũ‖2L2

T
+ ‖e‖L1

T
‖ũ‖∞,

which implies, in view of the Sobolev and Wirtinger inequalities (see [128]), that(
1− l

(
T

2π

)2
)
‖u′‖2L2

T
≤
(
T

12

)1/2

‖e‖L1
T
‖u′‖L2

T
.

In conclusion, ‖u′‖L2
T

is bounded so that ‖u′‖L1
T

is bounded too and the assumption of Lemma

3.3.1 are satisfied. Finally, the uniqueness of u+
λ (t) comes from the fact that 0 < g′(x) <

(
2π
T

)2
for x > d, by a direct argument.

Finally, the conclusion at point iii) follows from the dual version of Theorem 3.1.2, with
the choice u∗(t) = u+

λ (t) and α(t) = u−λ (t). Indeed, according to Remark 3.1.3, the global
continuability for the solutions to the modified equation

u′′ + f̃(t, u) = 0,

where f(t, x) = g(x)− λ− e(t) and

f̃(t, x) =

{
f(t, x) if x ≥ u−λ (t)

f(t, u−λ (t)) if x < u−λ (t),

is guaranteed since |g′(x)| is uniformly bounded for x > d. Moreover (3.3) follows from (3.41)
since u+

λ (t) > d for every t ∈ R.
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As already anticipated, the problem of the existence of subharmonic solutions for (3.33)
in case when (3.40) is satisfied has been analyzed in [152]. In particular, the following result
can be deduced from [152, Theorem 10].

Proposition 3.3.1 (From [152]). Assume (3.40); moreover, suppose that:

0 < lim inf
x→+∞

g′(x) ≤ lim sup
x→+∞

g′(x) < +∞.

Then for every r there exists k∗r such that, for every k ≥ k∗r there exists λ∗r,k such that, for
λ > λ∗r,k, equation (3.33) has at least 2r subharmonics of order k.

Trying to make a comparison between such a result and our Theorem 3.3.2, the following
facts may be emphasized.

• The assumption on the derivative g′(x) considered in Theorem 3.3.2 does not prevent
the possibility that lim infx→+∞ g′(x) = 0, which is excluded in [152, Theorem 10].

• For a fixed (large) value of λ, the subharmonics found in Theorem 3.3.2 have a sharper
nodal characterization with respect to the ones in [152, Theorem 10]. Indeed, we
find subharmonic solutions rotating around the fixed harmonic solution u+

λ (t), whose
existence is not considered in [152].

Remark 3.3.1. Combining our argument with [168, Theorem 2.1], the same conclusion of
Theorem 3.3.2 can be proved assuming, instead of (3.41), the following condition:

• there exist d, k > 0 such that g′(x) < 0 for x < −d and

lim
x→+∞

g′(x) = k 6=
(

2πm

T

)2

, for every m ∈ N∗.

We point out that a nonresonance condition is really needed to prove that u+
λ (t)→ +∞ for

λ→ +∞. To see this, consider the equation

u′′ + k|u| = λ+ sin(
√
kt), (3.42)

with k =
(

2πm
T

)2
for some m ∈ N∗. We claim that, for every λ > 0, equation (3.42) has no

positive T -periodic solutions. Indeed, suppose that a positive T -periodic solution u(t) exists.
Then, multiplying (3.42) by sin(

√
kt) and integrating on [0, T ], we get∫ T

0

u′′(t) sin(
√
kt) dt+ k

∫ T

0

u(t) sin(
√
kt) dt =

∫ T

0

sin2(
√
kt) dt;

integrating twice by parts the first term on the left-hand side, we find

0 =

∫ T

0

sin2(
√
kt) dt,

a contradiction.
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Combining Poincaré-Birkhoff Theorem, coincidence degree and lower/upper

solutions techniques



Chapter 4

Pairs of sign-changing solutions
to parameter dependent second
order ODEs

This chapter, coming from [34], deals with sign-changing T -periodic solutions to the second
order scalar differential equation

u′′ + λf(t, u) = 0, (4.1)

being f : R× R→ R a continuous function T -periodic in the first variable, with f(t, 0) ≡ 0,
and λ > 0 a real parameter. We are interested in the situation in which the nonlinear term
f(t, x) satisfies growth conditions, at zero and at infinity, of supersublinear type1, namely

lim
|x|→0

f(t, x)

x
= lim
|x|→+∞

f(t, x)

x
= 0, uniformly in t ∈ [0, T ]. (4.2)

Boundary value problems associated with (parameter dependent) supersublinear differ-
ential equations have become very popular after the pioneering work by Rabinowitz [147],
proving the existence of a pair of positive solutions to the Dirichlet problem associated with
(4.1) when λ > 0 is large enough (actually, the Dirichlet problem for the PDE−∆u = λf(x, u)
is considered in [147]; on the other hand, more restrictive conditions on the nonlinear term
are required). As a matter of fact, the existence of two positive T -periodic solutions cannot
be guaranteed for (4.1) under the same conditions: we refer to Section 6.1 for a complete
discussion and some results in this direction [31, 32].

As for sign-changing solutions in the ODEs setting (4.1), the only result we know is the
one by Rabinowitz [148], dealing again with the Dirichlet problem and showing the existence

1The choice of this terminology, which is not completely standard, is due to the fact that a possible
function f(t, x) satisfying (4.2) behaves, in the x-variable, like xα with α > 1 near zero and like xβ with
0 ≤ β < 1 near infinity. It is also consistent with the analogous situation for the Dirichlet problem, where the
term supersublinear is referred to a function having slope less than the first eigenvalue at zero and at infinity
[55, p. 361].
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of unbounded connected components of (nodal) solution C±k ⊂ R×C1([0, T ]). More in detail,
for every positive integer k, there exists Λk > 0 such that for every λ > Λk there exist at least
two distinct points (λ, u), (λ, v) ∈ C±k with u(t), v(t) solutions to (4.1) vanishing at t = 0 and
t = T and having precisely k zeros in ]0, T [ . Moreover u′(0), v′(0) > 0 for (λ, u), (λ, v) ∈ C+

k

and u′(0), v′(0) < 0 for (λ, u), (λ, v) ∈ C−k . The assumptions on f(t, x) in [148] are essentially
the same as those considered in [147] for the case of positive solutions (and they now regard
two-sided conditions on f(t, x), with x ∈ R); precisely, a superlinear condition at zero

lim
x→0

f(t, x)

x
= 0, uniformly in t ∈ [0, T ], (4.3)

a sign condition,

f(t, x)x > 0, for t ∈ [0, T ], 0 < |x| < r0, (4.4)

and a strong sublinearity condition at infinity given by

f(t, x)x < 0, for t ∈ [0, T ], |x| > r1. (4.5)

The aim of this chapter is to provide a similar result for the periodic problem. Actually,
we are able to prove our theorem for a wider class of nonlinearities, by relaxing the above
conditions (4.3) and (4.5) into one-sided growth restrictions on f(t, x) at zero and infinity
(that is, only for x > 0 or for x < 0, and for x near zero or for x near infinity, in all the possible
combinations), and by replacing the sign condition (4.4), which is uniform with respect to
t ∈ [0, T ], with a weaker one. This, in particular, permits us to obtain some applications to
equations with sign-indefinite weight (i.e., when f(t, x) = q(t)g(x) and q(t) is of nonconstant
sign), thus providing a connection with the results in Chapter 6.

Our proof relies again on the Poincaré-Birkhoff fixed point theorem, Theorem 1.1.3. Com-
pared to the results in Chapter 2, where periodic solutions are provided by exploiting a gap
between the number of revolutions around the origin of “small” and “large” solutions to (4.1)
(coming from different growth conditions for the nonlinear term at zero and at infinity), the
situation here is rather different. Indeed, the supersublinear assumption (4.2) (or one of its
more general one-sided versions given along the chapter) implies that small solutions behave
like large solutions, and they both do not complete a full turn around the origin in a fixed
time interval. On the other hand, our sign-condition allows us to prove that “intermediate”
solutions perform, when λ → +∞, an arbitrarily large number of turns around the origin.
Accordingly, it is possible to apply twice, on a small and on a large annular region, the
Poincaré-Birkhoff fixed point theorem, giving pairs of sign-changing periodic solutions to (6);
see also Figure 4 below.

The plan of the chapter is the following. In Section 4.1 we analyze the second order
conservative equation u′′ + λg(u) = 0 by a standard phase plane approach based on time-
map techniques. Section 4.2 is split into three parts. In the first one we state (with a few
comments) our main result. In the second part we develop some technical estimates for the
rotation numbers; one of these results requires a modified version of a classical theorem on
flow-invariant sets [7] which is presented with all the details in Section 4.4. The last part of
Section 4.2 is devoted to the proof of the main result. Finally, in Section 4.2 we show some
applications and propose a few variants which can be easily derived from the main result.
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We remark that, on the lines of [148], Sturm-Liouville boundary value problems associated
with (4.1) are worth to be investigated, as well. Even if, in this dissertation, we have preferred
to focus on the case of periodic solutions only, analogous results can be provided for separated
boundary conditions (including Dirichlet and Neumann ones) by combining the estimates of
Section 4.2 with a shooting argument (we refer to [34] for the precise statements of the results,
as well as for complete proofs). We also emphasize that, on the lines of Section 6.2 and
using the estimates developed therein, we could provide a result about chaotic-like dynamics
(including the existence of infinitely many subharmonics) for sign-changing solutions to (4.1)
for λ > 0 large enough. This investigation, however, is postponed to a future work.

Figure 4.1: A numerical simulation describing the crucial geometrical features of supersublinear problems
like (4.1). In particular, in the figure it is shown the manner in which an half-line from the origin is deformed

by the Poincaré map Ψ associated with the planar Hamiltonian system x′ = y, y′ = −λf(x), for f(x) = 4x3

1+x4

and T = 1. For the value λ = 50, the positive x-axis is transformed into a double spiral winding around the
origin. More precisely, the image of the segment 0A through Ψ is the small spiral-like arc connecting 0 to
A′, while the image of the segment AB is the large spiral-like arc connecting A′ to B′. Notice that the six
nontrivial intersections of Ψ(0B) with the x-axis correspond to six nodal solutions to the Neumann problem
associated with u′′ + λf(u) = 0, starting with a positive initial value x(0) with (x(0), 0) ∈ 0B. Indeed, we
have two solutions with respectively: one zero, two zeros, three zeros in ]0, T [ (exactly). For each pair of such
solutions, one is with a “small” initial value (namely with (x(0), 0) ∈ 0A) and the other is with a “large”
initial value (namely with (x(0), 0) ∈ AB). Other six solutions can be obtained from initial points on the
negative x-axis. The spiral will make more winds around the origin as λ grows, thus producing more pairs
of solutions to the Neumann problem. Along the chapter, we will prove that such kind of geometry provides
multiple pairs of T -periodic solutions, as well.
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4.1 The autonomous case: a time-map approach

In this section, we focus our attention on the autonomous differential equation

u′′ + λg(u) = 0, (4.6)

being λ > 0 a parameter and g : R→ R a continuous function satisfying the sign condition

g(x)x > 0, for every x 6= 0. (4.7)

Our analysis of the solutions to (4.6) will be performed by means of the study of the planar
Hamiltonian system {

x′ = y
y′ = −g(x),

(4.8)

using the simple observation that a solution (x(t), y(t)) to (4.8) corresponds to a solution
u(t) = x(

√
λt) to (4.6).

We first recall that, in view of (4.7), the uniqueness for the Cauchy problems associated
with (4.8) is ensured [151]. Set

G(x) =

∫ x

0

g(ξ) dξ;

as well known, each solution to (4.8) lies on a level line of the energy function

E(x, y) =
1

2
y2 +G(x),

so that the global structure of the phase portrait associated with (4.8) is affected by G(±∞).
We are now going to define some time-map functions associated with (4.8). For every real
number c > 0, define ]ω−(c), ω+(c)[ as the maximal interval such that

G(x) <
c2

2
, for every x ∈ ]ω−(c), ω+(c)[ ,

and set, noticing that ω−(c) < 0 < ω+(c),

τ−(c) =

∫ 0

ω−(c)

dξ√
c2 − 2G(ξ)

, τ+(c) =

∫ ω+(c)

0

dξ√
c2 − 2G(ξ)

.

Since the integrand is nonnegative, using Lebesgue integration theory we have that τ−(c)
and τ+(c) are well defined, as functions with values in the set ]0,+∞]. We have the following
scenario:

• if G(+∞) = +∞, then ω+(c) ∈ ]0,+∞[ and the map c 7→ ω+(c) is continuous; as a
consequence (using standard properties of Lebesgue integrals) τ+(c) ∈ ]0,+∞[ and the
map c 7→ τ+(c) is continuous, as well;

• if G(+∞) < +∞, we distinguish two cases:

- if c ∈ ]0,
√

2G(+∞)[ , then ω+(c) ∈ ]0,+∞[ and the same considerations as before
hold true;



4.1 The autonomous case: a time-map approach 73

- if c ≥
√

2G(+∞), then ω+(c) = +∞ and τ+(c) = +∞.

A symmetric situation holds with respect to ω−(c) and τ−(c), depending whether G(−∞) =
+∞ or G(−∞) < +∞.

Set
c−∞ =

√
2G(−∞), c+∞ =

√
2G(+∞), c∞ = min{c−∞, c+∞}.

If c < c+∞ (resp., c < c−∞), then τ+(c) (resp., τ−(c)) is the time needed by a solution to
(4.8) to cover, in the clockwise sense, the piece of orbit from (0, c) to (ω+(c), 0) (resp., from
(ω−(c), 0) to (0, c)). Hence, the origin is a local center for the solution to (4.8). Indeed, every
nontrivial small solution is periodic, winding around the origin in the clockwise sense. In
detail, for every c ∈ ]0, c∞[ the energy level line

Γc = {(x, y) ∈ R2 | E(x, y) = c2/2}

is a closed orbit surrounding the origin with minimal period

τ(c) = 2(τ−(c) + τ+(c)).

Notice that the center is global if and only if c∞ = +∞. On the other hand, if c∞ < +∞,
some of the energy level lines are unbounded. More precisely, let us suppose that c+∞ < +∞.
In this case the solution of (4.8) departing for the point (0, y0) with y0 > 0, meets again the
y-axis (at the symmetric point (0,−y0) if and only if y0 < c+∞ . Otherwise, if y0 ≥ c+∞ , the
corresponding solution (x(t), y(t)) of (4.8) lies on the unbounded line y =

√
y2

0 − 2G(x) in
the first quadrant and hence x(t) is a positive decreasing function with x(∞) ≥ 0 and such
that 2G(x(∞)) = y2

0 . Similar considerations apply when c−∞ < +∞; see Figure 4.1.

Figure 4.2: Example of energy level lines when c−∞ = +∞ and c+∞ < +∞. Here g(x) = 5x3/(1 + x4) for
x ≤ 0 and g(x) = x2/(1 + x4) for x ≥ 0.

Our aim now is to use the time-maps τ± as a tool to provide multiplicity results for
periodic solutions to (4.6). To this end, we propose a unified approach which is independent
of the finiteness of the values c±∞. From this point of view, we need to take into account both
the cases in which the time-maps are finite or are associated with an unbounded semi-orbit
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and thus are infinite. Hence we compactify R to the extended real line R = R ∪ {−∞,+∞}
by introducing the distance

dR(x, y) = | arctan(x)− arctan(y)|,

where we agree that arctan(±∞) = ±π2 . Clearly, the relative topology induced by dR on

R ⊂ R coincides with the standard topology. With these preliminaries, we have the following.

Lemma 4.1.1. The maps τ−, τ+ : R+
∗ → R are continuous.

Proof. Let us fix c0 > 0; we prove the continuity of τ+ at c0, the other case being analo-
gous. In view of the previous discussion, the only situation to analyze is when c0 = c+∞ =√

2G(+∞). In this case, τ+(c) = +∞ for c ≥ c0, so that the continuity in a right neigh-
borhood of c0 is ensured. The continuity in a left neighborhood follows from Fatou’s lemma;
indeed, since ω+(c)→ +∞ for c→ c−0 , we have

+∞ =

∫ +∞

0

1√
c20 − 2G(ξ)

dξ =

∫ +∞

0

(
lim
c→c−0

χ[0,ω+(c)](ξ)√
c2 − 2G(ξ)

)
dξ

≤ lim inf
c→c−0

∫ +∞

0

χ[0,ω+(c)](ξ)√
c2 − 2G(ξ)

dξ = lim inf
c→c−0

τ+(c).

This ends the proof.

We now introduce suitable conditions for the behavior of g(x) at zero and at infinity
among which we are going to select the hypotheses for our theorem. Namely, we set

(g+
0 ) lim

x→0+

g(x)

x
= 0,

(g−0 ) lim
x→0−

g(x)

x
= 0,

(g+
∞) lim

x→+∞

g(x)

x
= 0,

(g−∞) lim
x→−∞

g(x)

x
= 0.

In the sequel, we say that g(x) satisfies (g0) if at least one of the two conditions (g±0 ) holds.
A similar convention is applied to define (g∞). The following preliminary results are classical
(see, for instance, [133]); we give the proofs for completeness.

Lemma 4.1.2. Assume (g+
0 ) (resp., (g−0 )). Then

lim
c→0+

τ+(c) = +∞, (resp., lim
c→0+

τ−(c) = +∞).
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Proof. Let us fix ε > 0; there exists δ > 0 such that g(x) ≤ εx for x ∈ ]0, δ]. For c small
enough, one has ω+(c) ≤ δ, so that, for every ξ ∈ [0, ω+(c)],

c2 − 2G(ξ) = 2(G(ω+(c))−G(ξ)) = 2

∫ ω+(c)

ξ

g(x) dx ≤ ε(ω+(c)2 − ξ2).

Hence, for every c small enough,

τ+(c) ≥ 1√
ε

∫ ω+(c)

0

dξ√
ω+(c)2 − ξ2

=
π

2
√
ε
,

whence the conclusion for ε→ 0+.

Lemma 4.1.3. Assume (g+
∞) (resp., (g−∞)). Then

lim
c→(c+∞)−

τ+(c) = +∞, (resp., lim
c→(c−∞)−

τ−(c) = +∞).

Proof. When c+∞ < +∞ the conclusion follows from Lemma 4.1.1, since τ+(c+∞) = +∞.
Assume now c+∞ = +∞. Let us fix ε > 0; there exists M > 0 such that g(x) ≤ εx for x ≥M .
For c large enough, one has ω+(c) ≥ 2M , so that, for ξ ∈ [M,ω+(c)],

c2 − 2G(ξ) = 2(G(ω+(c))−G(ξ)) = 2

∫ ω+(c)

ξ

g(x) dx ≤ ε(ω+(c)2 − ξ2).

Hence, for every c large enough,

τ+(c) ≥ 1√
ε

∫ ω+(c)

M

dξ√
ω+(c)2 − ξ2

=
1√
ε

(
π

2
− arcsin

(
M

ω+(c)

))
≥ 1√

ε

(
π

2
− arcsin

(
1

2

))
,

whence the conclusion for ε→ +∞.

We are now in the position to state and prove our main result for this section.

Theorem 4.1.1. Assume (4.7), (g0), (g∞) and fix T > 0. Then, for every integer m ≥ 1,
there exists Λ∗m > 0 such that, for every λ > Λ∗m, equation (4.6) has at least 2m T -periodic
solutions. Precisely, for every j = 1, . . . ,m, there are at least two T -periodic solutions having
exactly 2j zeros in [0, T [ ; for one of such solutions |u(t)|+ |u′(t)| is “small” and for the other
one |u(t)|+ |u′(t)| is “large”.

Proof. At first, we fix c∗ ∈ ]0, c∞[ ; for an integer m ≥ 1, we define

Λ∗m =

(
2m

T
(τ+(c∗) + τ−(c∗))

)2

. (4.9)
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Fix now λ > λ∗m and j ∈ {1, . . . ,m}; it is easy to see that a T -periodic solution uj(t) to
(4.6), with exactly 2j zeros in [0, T [ , exists if and only if

2j√
λ

(
τ+(c) + τ−(c)

)
= T, (4.10)

for a suitable c > 0. In view of (4.9), it holds that

2j√
λ

(
τ+(c∗) + τ−(c∗)

)
< T ;

on the other hand, in view of Lemma 4.1.2 and of Lemma 4.1.3, there exist c1, c2 > 0, with
c1 < c∗ < c2 < c∞ , such that (according to whether (f+

0 ) or (f−0 ) is satisfied)

T <
2√
λ
τ+(c1) < +∞ or T <

2√
λ
τ−(c1) < +∞

and (according to whether (f+
∞) or (f−∞) is satisfied)

T <
2√
λ
τ+(c2) < +∞ or T <

2√
λ
τ−(c2) < +∞.

Summing up, we have

2j√
λ

(
τ+(c∗) + τ−(c∗)

)
< T <

2√
λ

(
τ+(c1) + τ−(c1)

)
and

2j√
λ

(
τ+(c∗) + τ−(c∗)

)
< T <

2√
λ

(
τ+(c2) + τ−(c2)

)
.

By Bolzano theorem, we get the existence of c#1 ∈ ]c1, c
∗[ and c#2 ∈ ]c∗, c2[ satisfying (4.10),

giving the two T - periodic solutions to (4.6), with exactly 2j zeros in [0, T [ , as desired.

Observe that, since (4.6) is an autonomous equation, every T -periodic solution gives rise
to a whole family of T -periodic solutions (all its time translations). More precisely, in the
nonautonomous case, we will show the existence of four (two small and two large) T -periodic
solutions with exactly 2j zeros, for every j = 1, . . . ,m (see Theorem 4.2.1).

Remark 4.1.1. We remark that conditions (g0) and (g∞) are just some natural assumptions
which guarantee that the time-maps go to infinity at zero and at infinity, respectively. They
are, however, not the optimal conditions and known sharper assumptions are available. For
instance, according to Opial [133], the conclusion of Lemma 4.1.3 is still true if we assume,
instead of (g∞), the more general hypothesis

(G∞) lim
x→+∞

G(x)

x2
= 0 or lim

x→−∞

G(x)

x2
= 0.

Remark 4.1.2. The sign condition (4.7) is assumed, in this introductory section, only for
the sake of simplicity. It could be replaced by the following local hypothesis:
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• there exists δ > 0 such that g(x)x > 0 for 0 < |x| ≤ δ.

In this case, we can take a maximal open interval ]x∗, x
∗[ with −∞ ≤ x∗ < −δ < 0 < δ <

x∗ ≤ +∞ such that g(x)x > 0 on ]x∗, x
∗[ \{0}. If x∗ < +∞ (resp., x∗ > −∞) we must

have g(x∗) = 0 (resp., g(x∗) = 0). Then we can modify g(x) to a new function g̃(x) which
coincides with g(x) on ]x∗, x

∗[ and vanishes elsewhere. The phase plane analysis for the
truncated equation u′′ + λg̃(u) = 0 can be performed with some minor modifications with
respect to the arguments exposed above. An elementary maximum principle reasoning allows
to conclude that the solutions found have range in [x∗, x

∗] and, therefore, are solutions to
our original equation as well (for further details, see Corollary 4.3.2).

4.2 The main result

In this section, we state and prove our main results for the second order scalar differential
equation

u′′ + λf(t, u) = 0, (4.11)

being λ > 0 a parameter and f : R × R → R a continuous function, T -periodic in the first
variable and such that f(t, 0) ≡ 0. Our goal is to extend the result of Section 4.1 to the
nonautonomous equation (4.11).

4.2.1 Assumptions and statement

At first we introduce a sign condition which generalizes (4.7). Our hypothesis is of local
nature in x and nonuniform in t. More precisely, we assume:

(fg) there exist δ > 0, two continuous functions g1, g2 : [−δ, δ]→ R, with

0 < g1(x)x ≤ g2(x)x, for every 0 < |x| ≤ δ,

and a nondegenerate compact interval I0 such that

g1(x)x ≤ f(t, x)x ≤ g2(x)x, for every t ∈ I0, |x| ≤ δ.

Note that in the special case f(t, x) = g(x), the above condition is fulfilled if and only if
g(x)x > 0 for 0 < |x| ≤ δ and we can take g1 = g2 = g on [−δ, δ]. If, moreover, the function
f(t, x) takes the form

f(t, x) = q(t)g(x),

with q : R → R continuous and T -periodic, then the condition (fg) is satisfied provided
that q(t0) > 0 for some t0 ∈ R and g(x)x > 0 for all 0 < |x| ≤ δ. Indeed, in such a
situation, we can choose as I0 a suitable interval (containing t0) such that 0 < minI0 q(t)
and take g1(x) = (minI0 q(t))g(x), g2(x) = (maxI0 q(t))g(x). In the following, without loss of
generality (just replace f(t, x) with f(t− inf I0, x)), we assume that

I0 = [0, τ ] ⊂ [0, T ].

Next, we introduce some growth assumptions for f(t, x) at zero and at infinity which
represent a natural generalization to the nonautonomous case of the conditions (g0) and
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(g∞) considered above. Precisely, and similarly as before, by (f0) we mean that at least one
of the two conditions

(f+
0 ) lim sup

x→0+

f(t, x)

x
≤ 0, uniformly in t ∈ [0, T ],

(f−0 ) lim sup
x→0−

f(t, x)

x
≤ 0, uniformly in t ∈ [0, T ],

holds. In the same way, by (f∞) we express the fact that at least one of the two conditions

(f+
∞) lim sup

x→+∞

f(t, x)

x
≤ 0, uniformly in t ∈ [0, T ],

(f−∞) lim sup
x→−∞

f(t, x)

x
≤ 0, uniformly in t ∈ [0, T ],

holds. Notice that, due to the local and nonuniform nature of the sign condition (fg), the
above growth restrictions look more general than the corresponding hypotheses considered in
Section 4.1. It is clear however that, in the special case when f(t, x) = g(x) with g(x)x > 0
for every x 6= 0, the new growth conditions coincide with the previous ones. We also observe
that (f∞) is fulfilled whenever

f(t, x)x ≤ 0, for t ∈ [0, T ] and x positive (or negative) with |x| large,

a generalization of condition (4.5) considered in [148, Theorem 3].

To conclude with the list of the hypotheses for our main result, we add a technical
condition which is required by the particular approach that we follow. Namely, we suppose
that

• the uniqueness and the global continuability for the solutions to the Cauchy problems
associated with (4.11) are ensured.

In order to propose a few explicit assumptions which guarantee the above requirement for the
solutions of the initial value problems, we suppose that f(t, x) is locally Lipschitz continuous
in x and grows at most linearly at infinity. This latter assumption can be replaced by the
knowledge of some specific properties, e.g. the existence of a negative lower solution or a
positive upper solution or some information about the sign of f(t, x) for |x| large; see Section
4.3 for a discussion about this topic, accompanied by the presentation of some examples.
However, as explained in [104, 170], there are several situations in which an explicit reference
to the uniqueness and global continuability can be omitted, since we can enter in the required
setting via standard tricks.

In such a framework the following result holds.

Theorem 4.2.1. Assume (fg), (f0), (f∞). Then, for every integer m ≥ 1, there exists
Λ∗m > 0 such that, for each λ > Λ∗m , equation (4.11) has at least 4m T -periodic solutions.
Precisely, for every j = 1, . . . ,m, there are at least four T -periodic solutions having exactly
2j zeros in [0, T [ ; for two of such solutions |u(t)| + |u′(t)| is “small” and for the other two
|u(t)|+ |u′(t)| is “large”.
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The terms “small” and “large” referred to the solutions in the theorem can be expressed
in a form which is precisely described in the corresponding proof. The constants Λ∗m depend
(besides, of course, on m) only on g1(x), g2(x) and the length of the interval I0 .

Dealing with the nonautonomous equation (4.11), we have assumed the continuity of the
function f(t, x). The results could be extended in the L∞-Carathéodory setting (compare
with (i) in Remark 6.1.2).

4.2.2 Technical estimates

We prove here some technical estimates for the rotation numbers of the solutions to the
second order scalar differential equation

x′′ + w(t, x) = 0, (4.12)

being w : R× R→ R a continuous function such that w(t, 0) ≡ 0. With this, we mean that
(4.12) is written as the planar Hamiltonian system{

x′ = y
y′ = −w(t, x),

(4.13)

and we evaluate the rotation number of the planar path (x(t), x′(t)), being x(t) a solution
to (4.12) (so that (x(t), x′(t)) solves (4.13)). For further convenience, we also observe that,
passing to standard polar coordinates, system (4.13) is transformed into

ρ′ = R(t, ρ, θ) = (ρ cos θ − w(t, ρ cos θ)) sin θ

θ′ = Θ(t, ρ, θ) = − sin2 θ − w(t, ρ cos θ) cos θ

ρ
.

(4.14)

As usual we assume that the uniqueness and the global continuability for the solutions to
the Cauchy problems associated with (4.12) are guaranteed. Notice that in (4.12) we have
suppressed the parameter λ > 0; indeed, an equation like (4.12) will be obtained from (4.11)
after a rescaling in the time variable (see the beginning of the next subsection for the details).

A preliminary simple fact is expressed in the next lemma. It asserts that the rotation
numbers of solutions to equations like (4.12) is bounded from below (the precise lower bound
being given by −1/2) independently of the time interval on which the solution is considered.

Lemma 4.2.1. Let x : R→ R be a solution to (4.12) and t0, t1 ∈ R with t0 < t1. Then

Rot ((x(t), x′(t)); [t0, t1]) > −1

2
.

Proof. The result follows by observing that θ′(t) < 0 whenever θ(t) = π
2 + jπ for some

j ∈ Z. This makes the sets {(ρ, θ) ∈ R+
∗ × R | θ ≤ π

2 + jπ} positively invariant (according to
Definition 4.4.1) relatively to the open domain R+

∗ × R and with respect to the differential
system (4.14). See [59, Lemma 2.3] or [60, Step 3] for similar considerations.
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Our next result guarantees that, under some weak sign conditions, the rotation number
can become arbitrarily large provided that the time interval on which the solutions are
considered is broad enough. Precisely, we have the following.

Lemma 4.2.2. Let δ > 0 and let g1, g2 : [−δ, δ]→ R be two continuous functions such that

0 < g1(x)x ≤ g2(x)x, for every x 6= 0. (4.15)

Then, for every integer j ≥ 1, there exist τ∗j > 0 and r∗j ∈ ]0, δ[ such that, for every τ > τ∗j
and for every continuous function w : R× R→ R, with w(t, 0) ≡ 0 and such that

g1(x)x ≤ w(t, x)x ≤ g2(x)x, for every t ∈ [0, τ ], x ∈ [−δ, δ], (4.16)

it holds that, for every x : R→ R solution to (4.12) with x(0)2 + x′(0)2 = (r∗j )2,

Rot ((x(t), x′(t)); [0, τ ]) > j. (4.17)

Remark 4.2.1. Notice that the constants τ∗j and r∗j depend only on j, the comparison
functions g1(x), g2(x) and the the size τ of the time interval on which (4.16) is satisfied,
namely, our estimate is uniform with respect to all the functions w(t, x) which are bounded
by the same comparison functions.

Proof. We are going to prove a local result, that is to say, concerning solutions in a neigh-
borhood of the origin. For technical reasons, however, it will be convenient to suppose that
g1(x), g2(x) are defined on the whole real line, satisfying (4.15) and

lim
|x|→+∞

G1(x) = lim
|x|→+∞

G2(x) = +∞, (4.18)

being G1(x) =
∫ x

0
g1(ξ) dξ and G2(x) =

∫ x
0
g2(ξ) dξ. Moreover, we define the energy functions

EG1
(x, y) =

1

2
y2 +G1(x), EG2

(x, y) =
1

2
y2 +G2(x),

respectively. Finally, for further convenience we set, for t ∈ R and (x, y) ∈ R2
∗,

S(t, x, y) =
(x− w(t, x))y

x2 + y2
, U(t, x, y) = −y

2 + w(t, x)x

x2 + y2
,

so that, comparing with (4.14), we have

R(t, ρ, θ) = ρS(t, ρ cos θ, ρ sin θ), Θ(t, ρ, θ) = U(t, ρ cos θ, ρ sin θ). (4.19)

The proof follows an argument previously employed in [59, 68, 78, 97]. It consists in
constructing some spiral-like curves in the phase plane which bound from above and from
below the trajectories of (4.12). With the aid of such curves one can prove that if a solution
z(t) = (x(t), y(t)) to (4.13) has a certain gap in amplitude, expressed by | |z(s1)| − |z(s0)| |,
then it must have performed a certain number of turns around the origin. Such a fact is
justified by the analysis of the energy levels associated with the comparison systems

x′ = y, y′ = −g1(x)
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and

x′ = y, y′ = −g2(x),

which, according to our preliminary analysis in Section 4.1, are closed curves around the ori-
gin. Roughly speaking, this argument goes as follows: let z(t) = (x(t), y(t)) be a (nontrivial)
solution to (4.13) such that |x(t)| ≤ δ for every t ∈ [s0, s1] ⊂ [0, τ ]. By simple computations,
one can see that

d

dt
EG1

(z(t)) ≤ 0, for x(t)y(t) ≥ 0, and
d

dt
EG1

(z(t)) ≥ 0, for x(t)y(t) ≤ 0,

and, symmetrically,

d

dt
EG2(z(t)) ≥ 0, for x(t)y(t) ≥ 0, and

d

dt
EG2(z(t)) ≤ 0, for x(t)y(t) ≤ 0.

As a consequence, in order to bound z(t) from below, we can use the level lines of EG2
in

the first and the third quadrant and those of EG1
in the second and the fourth quadrant.

Analogously, the level lines of EG1 in the first and the third quadrant and those of EG2 in
the second and the fourth quadrant can be used to obtain upper bounds for z(t). Taking
into account that z(t) winds around the origin in the clockwise sense, we can define two
spirals departing from (x(0), y(0)) which provide a control for the solution. Such spirals are
constructed by gluing level lines of EG1

and EG2
in alternate manner (see [68, Figure 2]).

Although we believe that the argument exposed above is sufficiently convincing, we prefer to
present all the details in a more formal proof, by passing to the polar coordinates and using
the theory of positively invariant sets.

We introduce the auxiliary functions M±(x, y) : R2
∗ → R, defined as

M+(x, y) =


(g1(x)− x)y

g1(x)x+ y2
if xy ≤ 0

(g2(x)− x)y

g2(x)x+ y2
if xy ≥ 0

and

M−(x, y) =


(g1(x)− x)y

g1(x)x+ y2
if xy ≥ 0

(g2(x)− x)y

g2(x)x+ y2
if xy ≤ 0

and consider the associated first order differential equations

dr

dθ
= rM+(r cos θ, r sin θ), (r, θ) ∈ R+

∗ × R, (4.20)

dr

dθ
= rM−(r cos θ, r sin θ), (r, θ) ∈ R+

∗ × R. (4.21)
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For every (θ0, ρ0) with θ0 ∈ R and ρ0 > 0, we denote, respectively, by r+(·; θ0, ρ0) and
r−(·; θ0, ρ0) the solutions to (4.20) or (4.21) satisfying the initial condition r(θ0) = ρ0 . The
geometrical meaning of these solutions is the following: the maps

R 3 θ 7→ (r±(θ; θ0, ρ0) cos θ, r±(θ; θ0, ρ0) sin θ)

parameterize two spiralling curves in the plane, passing through

(x0, y0) = (ρ0 cos θ0, ρ0 sin θ0)

and obtained by alternating (along the motion from one quadrant to another) level curves of
EG1

and EG2
. Such spirals are precisely the ones needed to bound (from below and above)

in the plane the solutions to (4.13). The uniqueness of the solutions r±(θ) follows at once
from the fundamental theory of ODEs if we assume g1(x), g2(x) continuously differentiable.
One could prove the uniqueness under the sole assumption of continuity thanks to the sign
condition (4.15), arguing like in [151]. On the other hand, (4.15) jointly with (4.18) guarantee
the global existence of the solutions. The 2π-periodicity of M± in the θ-variable implies that,
for every θ, θ0 ∈ R and ρ0 > 0,

r±(θ; θ0 + 2π, ρ0) = r±(θ + 2π; θ0, ρ0).

Notice that, from the sign condition (4.16), we deduce that
U(t, x, y) < 0

M−(x, y) ≤ S(t, x, y)

U(t, x, y)
≤M+(x, y),

for t ∈ [0, τ ], |x| ≤ δ, y ∈ R, x2 + y2 > 0. (4.22)

At this point, we define, for every integer j ≥ 1 and for every ρ0 > 0 , the parameters

m∗j (ρ0) = inf
θ0∈[0,2π[

θ∈[θ0−2jπ,θ0]

r+(θ; θ0, ρ0), M∗j (ρ0) = sup
θ0∈[0,2π[

θ∈[θ0−2jπ,θ0]

r−(θ; θ0, ρ0).

The number M∗j (ρ0) provides an upper bound for the modulus of a spiral associated with
(4.21) and departing from the circumference ρ = ρ0 , while performing an angular displace-
ment of 2jπ. Similarly, m∗j (ρ0) gives a lower bound for the modulus of the spiral associated
with (4.20). For δ > 0 as in (4.16) and any fixed j ≥ 1, we choose r∗j ∈ ]0, δ[ such that

M∗j+1(r∗j ) < δ.

Subsequently, we fix two numbers řj and r̂j such that

0 < řj < m∗j+1(r∗j ) ≤ r∗j ≤M∗j+1(r∗j ) < r̂j < δ. (4.23)

Once we have chosen r̂j and řj , we can define

δ∗j = inf
řj≤
√
x2+y2≤r̂j

g1(x)x+ y2

x2 + y2
> 0.

At last, we set

τ∗j =
2πj

δ∗j

and, finally, we are in the position to verify that the conclusion of the lemma holds true.



4.2 The main result 83

Fix τ > τ∗j and w(t, x) as in the statement; moreover, let x(t) be a solution to (4.12) with

x(0)2 + x′(0)2 = (r∗j )2. For simplicity of notation, we set z(t) = (x(t), x′(t)). Passing to the
polar coordinates

x(t) = ρ(t) cos θ(t), x′(t) = ρ(t) sin θ(t), (4.24)

we have ρ(0) = r∗j and, without loss of generality, θ(0) = θ0 ∈ [0, 2π[ . With these positions,
(4.17) turns out to be equivalent to

θ(τ)− θ(0) < −2jπ. (4.25)

Define σ ∈ ]0, τ ] as the maximal number such that

řj ≤ ρ(t) = |z(t)| ≤ r̂j , for every t ∈ [0, σ].

By the choice of r̂j we have also that |x(t)| < δ for all t ∈ [0, σ] and therefore we can take
advantage of the assumption (4.16) as long as t ∈ [0, σ].

We now argue differently according to the fact that σ = τ or σ < τ.

• Suppose that σ = τ. In this case, we directly obtain that

Rot (z(t); [0, τ ]) =
1

2π

∫ τ

0

x′(t)2 + w(t, x(t))x(t)

x(t)2 + x′(t)2
dt

≥ 1

2π

∫ τ

0

x′(t)2 + g1(x(t))x(t)

x(t)2 + x′(t)2
dt ≥ δ∗j

τ

2π
> δ∗j

τ∗j
2π

= j

and hence the thesis follows.

• Assume that σ < τ. In this case, the maximality of σ implies that

řj ≤ ρ(t) ≤ r̂j , for every t ∈ [0, σ], and ρ(σ) ∈ {řj , r̂j}.

We consider that case in which ρ(σ) = r̂j ; the treatment of the other situation is completely
symmetric (involving the consideration of r+ instead of r−) and thus is omitted.

We want to prove that
θ(σ)− θ(0) < −2(j + 1)π (4.26)

holds. Indeed, from (4.26) one can conclude easily by observing that θ(τ) − θ(σ) < π (as a
consequence of Lemma 4.2.1) and therefore θ(τ)− θ(0) < −2jπ − π, yielding (4.25).

If, by contradiction, we suppose that (4.26) is not true, from θ′(t) < 0 for all t ∈ [0, σ],
we obtain

−2(j + 1)π < θ(t)− θ(0) < 0, for every t ∈ ]0, σ[ .

Let γ : R→ R+
∗ be the solution to (4.21) with r(θ0) = r∗j , that is γ(θ) = r−(θ; θ0, r

∗
j ). From

the definition of M∗j (ρ0) and the choice of r̂j in (4.23), we can find ε > 0 such that

γ(θ) < r̂j , for every θ ∈ ]θ0 − 2(j + 1)π − ε, θ0 + ε[ .

Moreover, from (4.19) and (4.22) it follows that

R(t, γ(θ), θ) ≤ γ′(θ)Θ(t, γ(θ), θ), for every t ∈ [0, τ ], θ ∈ ]θ0 − 2(j + 1)π − ε, θ0 + ε[ ,
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so that, using Corollary 4.4.1 with the positions θ1 = θ0 − ε, θ2 = θ0 + 2(j + 1)π + ε and
I = [0, σ], we easily conclude that

ρ(t) ≤ γ(θ(t)), for every t ∈ [0, σ],

and hence
ρ(t) < r̂j , for every t ∈ [0, σ],

thus contradicting the hypothesis that ρ(σ) = r̂j .

Our final results show that, under conditions like (f0) (respectively, (f∞)), for any fixed
time interval, small solutions (respectively, large solutions) cannot complete a turn. Both
Lemma 4.2.4 and Lemma 4.2.6 below (as well as their symmetric versions) rely on the follow-
ing well known estimate, the so called “elastic property” as it refers to the fact that solutions
departing small (respectively, large) remain small (respectively, large) in a uniform manner.
Precisely, (E0) below follows from the fact that w(t, 0) ≡ 0, together with the uniqueness of
the solutions to the Cauchy problems, while (E∞) relies on a compactness argument in view
of the global continuability. For more details, see [31, Lemma 3.1].

Lemma 4.2.3. In the above setting, there exist two continuous functions η, ν : R+
∗ → R,

with 0 < η(s) ≤ s ≤ ν(s) for all s > 0, such that for every x : R → R solution to (4.12) we
have:

(E0) for every r > 0,

min
t∈J

√
x(t)2 + x′(t)2 ≤ η(r) =⇒ max

t∈J

√
x(t)2 + x′(t)2 ≤ r;

(E∞) for every R > 0,

max
t∈J

√
x(t)2 + x′(t)2 ≥ ν(R) =⇒ min

t∈J

√
x(t)2 + x′(t)2 ≥ R.

We consider at first the case of rotation numbers for small solutions.

Lemma 4.2.4. Let J ⊂ R be a compact interval and suppose that

lim sup
x→0+

w(t, x)

x
≤ 0, uniformly in t ∈ J. (4.27)

Then, there exists r0 > 0 such that, for every x : R → R nontrivial solution to (4.12) such
that

min
t∈J

√
x(t)2 + x′(t)2 ≤ r0,

it holds that
Rot ((x(t), x′(t)); J) < 1,

If, moreover, for some t′ ∈ J it holds that x(t′) ≥ 0 and x′(t′) ≤ 0, then

Rot ((x(t), x′(t)); J ∩ [t′,+∞[) < 1/4.
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Proof. By (4.27) we have that for every ε > 0 there exists δε > 0 such that

w(t, x)x ≤ εx2, for every t ∈ J, x ∈ [0, δε].

Let x(t) be a nontrivial solution to (4.12) satisfying

|x(t)| ≤ δε, for every t ∈ J. (4.28)

Passing to polar coordinates as in (4.24) we study the angular variation of the solution in
order to show that the rotation number must be small if we take care of choosing ε sufficiently
small. To this aim, we prove the following claim.

Claim. Let us fix α ∈ ]0, π/2[ . Then there exists ε∗ = ε∗α > 0 such that, for each nontrivial
solution satisfying (4.28) for ε ≤ ε∗ , the set θ(J) does not contain any interval of the form
[θ1, θ2] for some θ1 = θ(t1) ∈ [−π/2 + 2kπ, 2kπ], θ2 = θ(t2) ∈ [2kπ, π/2 + 2kπ] (with k ∈ Z),
for t1 < t2 and θ2 − θ1 = α.

Suppose, by contradiction, that there exist t′, t′′ ∈ J (t′ < t′′) and a pair θ1, θ2 as above such
that

θ(t′) = θ1 , θ(t
′′) = θ2 and θ(t) ∈ ]θ1, θ2[ , for t ∈ ]t′, t′′[ .

By the choice of [θ1, θ2], we have that x(t) = ρ(t) cos θ(t) ∈ [0, δε], for all t ∈ [t′, t′′]. Therefore,
from (4.14), we have, for every t ∈ [t′, t′′],

θ′(t) ≤ sin2 θ(t) + ε cos2 θ(t),

that is
θ′(t)

sin2 θ(t) + ε cos2 θ(t)
≤ 1. (4.29)

Let us introduce the auxiliary function

Ψ(θ) =

∫ θ

0

dξ

sin2 ω + ε cos2 ω
,

so that (4.29) writes as

Ψ′(θ(t))θ′(t) ≤ 1, for every t ∈ [t′, t′′].

An integration over [t′, t′′] gives

Ψ(θ(t′′))−Ψ(θ(t′)) ≤
∫ t′′

t′
dt ≤ t′′ − t′ ≤ |J |,

that is ∫ θ2=θ(t′′)

θ1=θ(t′)

dθ

sin2 θ + ε cos2 θ
= Ψ(θ2)−Ψ(θ1) ≤ |J |.

On the other hand,∫ θ2

θ1

dθ

sin2 θ + ε cos2 θ
=

1√
ε

(
arctan(ε−1/2 tan θ2)− arctan(ε−1/2 tan θ1)

)
= φθ1,θ2(ε).
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At this point, we recall that

tan θ1 ≤ 0 ≤ tan θ2, with θ2 − θ1 = α > 0.

Then, an analysis for the search for the minimum of the function

[−α/2, α/2] 3 s 7→ arctan
(
ε−1/2 tan(s+ α

2 )
)
− arctan

(
ε−1/2 tan(s− α

2 )
)

shows that

φθ1,θ2(ε) ≥ 1√
ε

min
{

2 arctan
(
ε−1/2 tan(α2 )

)
, arctan

(
ε−1/2 tan(α)

)}
.

The above minimum can be achieved by the first function or the second one, depending
whether 0 < ε < 1 or ε > 1. In any case,

lim
ε→0+

φθ1,θ2(ε) = +∞,

uniformly on θ1 ≤ 0 and θ2 ≥ 0 with θ2 − θ1 = α. In particular, if 0 < ε < 1, we find

φθ1,θ2(ε) ≥ α√
ε
.

Thus a contradiction is achieved provided that ε ∈ ]0, 1[ is chosen so small that ε < (α/|J |)2.

Let us fix now α = π/4 and take 0 < ε ≤ ε∗. Suppose, by contradiction, that x(t) is a
nontrivial solution satisfying (4.28) and such that Rot ((x(t), x′(t)); J) ≥ 1. Then, from the
definition of rotation number, it follows that θ(max J)−θ(min J) ≥ 2π and, consequently, the
interval [θ(min J), θ(max J)] (contained in θ(J)) must contain (mod 2π) at least one interval
between [−π/4, 0] and [0, π/4]. This clearly contradicts the Claim (thanks to the choice of ε).
Finally, we invoke the first part of Lemma 4.2.3, which guarantees that the choice r0 = η(δε)
is sufficient for the conclusion to hold. The proof of the second part of the lemma is omitted
as it follows from the Claim using an analogous argument.

A symmetric version of our result reads as follows.

Lemma 4.2.5. Let J ⊂ R be a compact interval and suppose that

lim sup
x→0−

w(t, x)

x
≤ 0, uniformly in t ∈ J.

Then, there exists r0 > 0 such that, for every x : R → R nontrivial solution to (4.12) such
that

min
t∈J

√
x(t)2 + x′(t)2 ≤ r0,

it holds that
Rot ((x(t), x′(t)); J) < 1,

If, moreover, for some t′ ∈ J it holds that x(t′) ≤ 0 and x′(t′) ≥ 0, then

Rot ((x(t), x′(t)); J ∩ [t′,+∞[) < 1/4.
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We consider now the rotation numbers of large solutions.

Lemma 4.2.6. Let J ⊂ R be a compact interval and suppose that

lim sup
x→+∞

w(t, x)

x
≤ 0, uniformly in t ∈ J. (4.30)

Then, there exists R0 > 0 such that, for every x : R→ R solution to (4.12) such that

max
t∈J

√
x(t)2 + x′(t)2 ≥ R0,

it holds that
Rot ((x(t), x′(t)); J) < 1,

If, moreover, for some t′ ∈ J it holds that x(t′) ≥ 0 and x′(t′) ≤ 0, then

Rot ((x(t), x′(t)); J ∩ [t′,+∞[) < 1/4.

Proof. By (4.30) we have that for every ε > 0 there exists Mε > 0 such that

w(t, x)x ≤ εx2 +Mε, for every t ∈ J, x ≥ 0.

Let x(t) be a solution to (4.12) such that, for z(t) = (x(t), x′(t)),

|z(t)|2 ≥ Mε

ε
, for every t ∈ J. (4.31)

Passing again to the polar coordinates as in (4.24) we prove the following claim.

Claim. Let us fix α ∈ ]0, π/2[ . Then there exists ε∗ = ε∗α > 0 such that, for each solution
satisfying (4.31) for ε ≤ ε∗, the set θ(J) does not contain any interval of the form [θ1, θ2] for
some θ1 = θ(t1) ∈ [−π/2 + 2kπ, 2kπ], θ2 = θ(t2) ∈ [2kπ, π/2 + 2kπ] (with k ∈ Z), for t1 < t2
and θ2 − θ1 = α.

Suppose, by contradiction, that there exist t′, t′′ ∈ J (t′ < t′′) and a pair θ1, θ2 as above such
that

θ(t′) = θ1 , θ(t
′′) = θ2 and θ(t) ∈ ]θ1, θ2[ , for t ∈ ]t′, t′′[ .

By the choice of [θ1, θ2], we have that x(t) = ρ(t) cos θ(t) ≥ 0, for all t ∈ [t′, t′′]. Therefore,
from (4.14), it holds that, for every t ∈ [t′, t′′],

θ′(t) ≤ sin2 θ(t) + ε cos2 θ(t) +
Mε

ρ(t)2
.

Using (4.31) for 0 < ε < 1, so that Mε/|z(t)|2 ≤ sin2 θ(t) + ε cos2 θ(t), we obtain

θ′(t) ≤ 2(sin2 θ(t) + ε cos2 θ(t)).

From now on, the proof of the Claim proceeds like that of the analogous Claim in Lemma
4.2.4 and we skip the details. A contradiction is achieved provided that ε ∈ ]0, 1[ is chosen
so small that ε < (α/2|J |)2.
Let us fix now α = π/4 and take 0 < ε ≤ ε∗. Suppose, by contradiction, that x(t) is a
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solution to (4.12) such that, for z(t) = (x(t), x′(t)), (4.31) holds true and Rot (z(t); J) ≥ 1.
Then, from the definition of rotation number, it follows that θ(max J)− θ(min J) ≥ 2π and,
consequently, the interval [θ(min J), θ(max J)] (contained in θ(J)) must contain (mod 2π) at
least one interval between [−π/4, 0] and [0, π/4]. This clearly contradicts the Claim (thanks
to the choice of ε). Finally, we invoke the second part of Lemma 4.2.3, which guarantees that
the choice

R0 = ν

((
Mε

ε

)1/2
)

is sufficient for the conclusion to hold. The proof of the second part of the lemma is omitted
as it follows from the Claim using an analogous argument.

Symmetrically, we also have the following.

Lemma 4.2.7. Let J ⊂ R be a compact interval and suppose that

lim sup
x→−∞

w(t, x)

x
≤ 0, uniformly in t ∈ J.

Then, there exists R0 > 0 such that, for every x : R→ R solution to (4.12) such that

max
t∈J

√
x(t)2 + x′(t)2 ≥ R0,

it holds that
Rot ((x(t), x′(t)); J) < 1,

If, moreover, for some t′ ∈ J it holds that x(t′) ≤ 0 and x′(t′) ≥ 0, then

Rot ((x(t), x′(t)); J ∩ [t′,+∞[) < 1/4.

4.2.3 Proof

First of all, for λ > 0 and (t, x) ∈ R× R, we set

w(t, x, λ) = f

(
t√
λ
, x

)
.

The function w(t, x, λ) is
√
λT periodic in the first variable and all the hypotheses on f(t, x)

now are transferred to the function w(t, x, λ); in particular, we have

g1(x)x ≤ w(t, x, λ) ≤ g2(x)x, for every t ∈
√
λI0 = [0,

√
λτ ], |x| ≤ δ,

for the same functions g1(x), g2(x) as in (fg). Observe, moreover, that if (x(t), y(t)) is a
solution to the planar Hamiltonian system{

x′ = y
y′ = −w(t, x, λ),

(4.32)

then u(t) = x(
√
λ t) is a solution to (4.11); moreover x(t) is

√
λT periodic if and only if u(t)

is T -periodic. We are going to use Theorem 1.1.3 to prove the existence (when λ is large)
of
√
λT -periodic solutions to (4.32): that is, we look for fixed points of the Poincaré map

Ψλ : R2 3 z̄ 7→ z(
√
λT ; z̄), being z(·; z̄) the solution to (4.32) satisfying z(0; z̄) = z̄.
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For an integer m ≥ 1, let us define

Λ∗m =

(
τ∗m+1

|I0|

)2

,

where τ∗m+1 is the constant given by Lemma 4.2.2. Now we fix λ > Λ∗m; we will apply Lemma

4.2.2 with I =
√
λI0 and the subsequent lemmas with J = [0,

√
λT ].

By the choice of Λ∗m we have that, for every z̄ ∈ R2 with |z̄| = r∗m+1,

Rot (z(t; z̄); I) > m+ 1.

Using Lemma 4.2.1, we find

Rot (z(t; z̄); J) = Rot (z(t; z̄); I) + Rot (z(t; z̄); [
√
λτ,
√
λT ]) > (m+ 1)− 1

2
> m.

Assumption (f0) permits to apply Lemma 4.2.4 or Lemma 4.2.5. In any case, there exists
r0 > 0 such that, for every z̄ ∈ R2 with 0 < |z̄| ≤ r0, it holds

Rot (z(t; z̄); J) < 1.

Note that r0 depends on λ and, moreover, r0 < r∗m+1 . Then, from Theorem 1.1.3, we get, for

every j = 1, . . . ,m, the existence of at least two
√
λT -periodic solutions z

(1)
j (t) and z

(2)
j (t)

to (4.32) such that (i = 1, 2) r0 < |z(i)
j (0)| < r∗m+1 and

Rot (z
(i)
j (t); J) = j.

As remarked at the beginning of the subsection, this implies the existence, for every j =

1, . . . ,m, of at least two T -periodic solution u
(1)
j (t) and u

(1)
j (t) to (4.11) having precisely 2j

zeros in [0, T [ .

On the other hand, assumption (f∞) permits to apply Lemma 4.2.6 or Lemma 4.2.7. In
any case, there exists R0 > 0 such that, for every z̄ ∈ R2 with |z̄| ≥ R0, it holds:

Rot (z(t; z̄); J) < 1.

Also the constant R0 depends on λ. Moreover, we have R0 > r∗m+1 . In this manner, again

from Theorem 1.1.3, we get, for every j = 1, . . . ,m, the existence of at least two
√
λT -periodic

solutions ž
(1)
j (t) and ž

(2)
j (t) to (4.32) such that (i = 1, 2) r∗m+1 < |ž

(i)
j (0)| < R0 and

Rot (ž
(i)
j (t); J) = j.

That is, for every j = 1, . . . ,m, we have found two T -periodic solution ǔ
(1)
j (t) and ǔ

(2)
j (t) to

(4.11) having precisely 2j zeros in [0, T [ .

Summarizing, we have found 4m T -periodic solutions of (4.11); precisely, for each j =
1, . . . ,m there are at least four with exactly 2j zeros in [0, T [ : two small solutions and two
large solutions.
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4.3 Variants of the main result, remarks and applica-
tions

In this section, we propose some applications of Theorem 4.2.1; our model case here is the
differential equation with weight

u′′ + λq(t)g(u) = 0, (4.33)

being q : R → R a continuous and T -periodic function and g : R → R a locally Lipschitz
continuous function with g(0) = 0. Our main interest concerns the assumption of global
continuability for the solutions, which will be no longer explicitly required.

At first, we consider the following Landesman-Lazer type condition:

(LL) Let d > 0 and let γ1, γ2 : [0, T ]→ R be continuous functions, with∫ T

0

γ1(t) dt ≤ 0 ≤
∫ T

0

γ2(t) dt,

such that, for every t ∈ [0, T ],

f(t, x) ≤ γ1(t), for all x ≤ −d, and f(t, x) ≥ γ2(t), for all x ≥ d.

As proved in [59, 60], condition (LL), when paired with a one-sided sublinear growth at
infinity (in particular, (f∞) is enough), guarantees the global continuability of the solutions.
We can therefore deduce the following Corollary for equation (4.33).

Corollary 4.3.1. Suppose that g(x)x > 0 for x 6= 0; moreover,

lim
x→0+

g(x)

x
= 0 or lim

x→0−

g(x)

x
= 0

and

lim
x→+∞

g(x)

x
= 0 or lim

x→−∞

g(x)

x
= 0.

Finally, assume that q(t) ≥ 0 for every t ∈ [0, T ], with q(t) 6≡ 0. Then the conclusion of
Theorem 4.2.1 holds for equation (4.33).

Proof. By the assumptions, it is obvious that (f0) and (f∞) hold for f(t, x) = q(t)g(x).
Moreover, the global continuability of the solutions is guaranteed because f(t, x) satisfies a
(LL)-type condition with γ1(t) = γ2(t) ≡ 0. Finally, the sign condition (fg) is fulfilled as
explained at the beginning of Section 4.2.

The assumption on g(x)/x at ±∞ could be replaced by

lim
x→+∞

G(x)

x2
= 0 or lim

x→−∞

G(x)

x2
= 0,

for G(x) =
∫ x

0
g(ξ) dξ (in this case, instead of using Lemma 4.2.6 and Lemma 4.2.7, the proof

that large solutions have small rotation numbers follows from a result in [59]).
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Corollary 4.3.1 extends to (4.33) the result obtained in Section 4.1 for the autonomous equa-
tion u′′ + λg(u) = 0. Examples of equations to which Corollary 4.3.1 applies are given, for
instance, by

u′′ + λq(t)|u|p(expu− 1) = 0,

for p > 1 and q(t) ≥ 0, not identically zero.

A different possibility (of purely local nature) to satisfy both the assumption of global
continuability and (f∞) is based on some truncation arguments using lower/upper solutions
techniques. Such a procedure has been already developed in Chapter 3 with all the details;
here we limit ourselves to emphasize the following corollary, dealing with equation (4.33).

Corollary 4.3.2. Suppose that g(x)x > 0 for 0 < |x| ≤ δ and

lim
x→0+

g(x)

x
= 0 or lim

x→0−

g(x)

x
= 0.

Moreover, let exist x∗ < −δ and x∗ > δ such that

g(x∗) = g(x∗) = 0.

Finally, assume that q(t0) > 0 for some t0 ∈ [0, T ]. Then the conclusion of Theorem 4.2.1
holds for equation (4.33) and all the corresponding solutions take value in the open interval
]x∗, x

∗[ .

Proof. Fefine g̃(x) = g(min{x∗,max{x∗, x}}), so that g̃(x) = g(x) on [x∗, x
∗] and g̃(x) van-

ishes elsewhere; we look for solutions to the truncated equation

u′′ + λq(t)g̃(u) = 0. (4.34)

The uniqueness and global continuability are obviously guaranteed. Since g̃(x) = g(x) for
|x| ≤ δ and maxt∈[0,T ] q(t) > 0, we have (fg) and (f0) satisfied, as well. Finally, (f∞) trivially
holds since g̃(x) = 0 for |x| large. Then Theorem applies to (4.34) and an elementary direct
argument (see the proof of Theorem 3.1.1) ensures that the solutions produced take values
in ]x∗, x

∗[ and hence they solve (4.33) as well.

Examples of equations to which Corollary 4.3.2 applies are given, for instance, by

u′′ + λq(t)|u|p sinu = 0,

for p > 1 and max[0,T ] q(t) > 0. Notice that the weight function q(t) can here change its sign,
thus providing a link between the results of this chapter and those in Chapter 6.

4.4 Appendix: a result on flow-invariant sets

The proof of one of our key lemmas for the rotations numbers (Lemma 4.2.2) is based on a
comparison argument which is justified by a result on flow-invariant set for nonautonomous
differential system. In order to make our work self-contained we present here some specific
details on the subject; similar results can be also found in [7, 70].
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Throughout the section, Ω ⊂ RN will denote an open set and Ξ : J0 × Ω → RN a
continuous function with J0 ⊂ R an interval (that will be not restrictive to assume open).
We are interested in conditions ensuring the (positive) invariance of a set M ⊂ Ω, for the
solutions to the differential system

ξ′ = Ξ(t, ξ), (4.35)

according to the following definition.

Definition 4.4.1. LetM⊂ Ω. We say thatM is positively invariant for (4.35) if, for every
ξ : dom(ξ)→ Ω solution to (4.35) (being dom(ξ) ⊂ J0 an interval) and t0 ∈ dom(ξ),

ξ(t0) ∈M =⇒ ξ(t) ∈M, for every t ∈ ]t0,+∞[∩ dom(ξ).

In the above definition, we have denoted by dom(ξ) any interval on which a solution ξ(t)
is defined (not necessarily a maximal one). We remark that, in literature, various concepts
of (positive) invariance have been considered by different authors. In some classical results
(like, for instance, the Nagumo theorem) a weaker form of invariance is considered, namely,
that for any initial point belonging to M at least one local solution exists belonging to M
in the forward time. Our definition refers to all the possible solutions. Clearly, such different
points of view coincide when the (forward) uniqueness for the solutions to the initial value
problems is guaranteed.

In the following, the topological notions of interior, boundary and closure ofM will always
be meant in the subspace topology; moreover, for p ∈ RN and ε > 0, we will denote by B(p, ε)
the open ball of center p and radius ε.

Lemma 4.4.1. Let M ⊂ Ω be closed. Assume that, for every point p ∈ ∂M, there exist
εp > 0 with B(p, εp) ⊂ Ω and a C1-function Vp : B(p, εp)→ R such that:

(i) M∩B(p, εp) = {q ∈ B(p, εp) | Vp(q) ≤ 0},

(ii) for every t ∈ J0, there exists a right neighborhood It of t such that

〈∇Vp(q) | Ξ(s, q)〉 ≤ 0, for every s ∈ It, q ∈ B(p, εp) \M.

Then M is positively invariant for (4.35).

Proof. Assume, by contradiction, that there exists ξ : dom(ξ) → Ω solution to (4.35) and
t0, t1 ∈ dom(ξ), with t0 < t1, such that ξ(t0) ∈ M, ξ(t1) /∈ M. The set J = {s ∈ [t0, t1] |
ξ(s) ∈ M} is compact and nonempty; set t∗ = max J < t1 and p∗ = ξ(t∗). Since p∗ ∈ ∂M
and ξ(t) /∈M for t ∈ ]t∗, t1], assumption (ii) implies that

〈∇Vp∗(ξ(t)) | Ξ(t, ξ(t))〉 ≤ 0, for every t ∈ ]t∗, t∗ + δ],

being δ > 0 so small that [t∗, t∗ + δ] ⊂ It∗ and ξ(t) ∈ B(p∗, εp∗) for every t ∈ ]t∗, t∗ + δ].
Hence,

Vp∗(ξ(t
∗ + δ))− Vp∗(ξ(t∗)) =

∫ t∗+δ

t∗
〈∇Vp∗(ξ(t)) | Ξ(t, ξ(t)) dt ≤ 0. (4.36)

On the other hand, (i) implies that Vp∗(ξ(t
∗)) ≤ 0 < Vp∗(ξ(t

∗+ δ)), contradicting (4.36).
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We now turn our attention to the case in which the set M is a sublevel set of a scalar
function V. This situation occurs in various applications where V is a Lyapunov tpe function.
Accordingly, let us suppose that

M = {p ∈ Ω | V (p) ≤ 0}, (4.37)

for a function V : Ω→ R of class C1. Notice that, in view of the continuity of V , M⊂ Ω is
a closed set (relatively to Ω).

Proposition 4.4.1. Suppose that the uniqueness for the Cauchy problems associated with
(4.35) is ensured and let M⊂ Ω be defined as in (4.37). Moreover, assume that:

• ∇V (p) 6= 0, for every p ∈ ∂M;

• for every t ∈ J0 and for every p ∈ ∂M,

〈∇V (p) | Ξ(t, p)〉 ≤ 0. (4.38)

Then M is positively invariant for (4.35).

Proof. When (4.38) is satisfied with the strict inequality, the thesis follows directly from
Lemma 4.4.1 (even without assuming the uniqueness for the Cauchy problems). Indeed,
taking, for every p ∈ ∂M, εp > 0 small enough and Vp = V |B(p,εp), one has that (i) is clearly
satisfied, while (ii) follows from (4.38), using the continuity of V .
We now show the conclusion in the general case. Assume, by contradiction, that ξ : dom(ξ)→
Ω is a solution to (4.35), t0, t1 ∈ dom(ξ) with t0 < t1 and ξ(t0) ∈ M, while ξ(t1) /∈ M.
Consider the differential system

ξ′ = Ξn(t, ξ) = Ξ(t, ξ)− 1

n
∇V (ξ). (4.39)

Since Ξn(t, ξ)→ Ξ(t, ξ) uniformly on compact subsets of J0×Ω, the general theory of ODEs
implies that, for every n large enough, (4.39) has a (not necessarily unique) solution ξn(t)
defined on [t0, t1] and such that ξn(t0) = ξ(t0); moreover, since we are assuming that the
Cauchy problems associated with (4.35) have a unique solution, ξn(t) → ξ(t) uniformly on
[t0, t1]. For every t ∈ J0 and for every p ∈ ∂M, it holds

〈∇V (p) | Ξn(t, p)〉 = 〈∇V (p) | Ξ(t, p)〉 − 1

n
|∇V (p)|2 < 0.

Hence, in view of the first part of the proof, ξn(t1) ∈M. Passing to the limit, we get - since
M is closed in Ω - ξ(t1) ∈M, a contradiction.

Remark 4.4.1. We recall that, whenM⊂ Ω is defined as in (4.37), one has ∂M⊂ V −1(0),
the equality being satisfied whenever 0 is a regular value of V, i.e., ∇V (p) 6= 0 for every
p ∈ V −1(0). Hence, the conclusion of Proposition 4.4.1 holds true in the particular case
when 0 is a regular value of V and (4.38) is fulfilled for every t ∈ J0 and p ∈ V −1(0). See [7]
for similar results in the autonomous case.
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We finally give a corollary of Proposition 4.4.1 which will be directly applied in Section
4.2. Let us consider the differential system{

ρ′ = R(t, ρ, θ)
θ′ = Θ(t, ρ, θ),

(4.40)

being R,Θ : [0, τ ]× R+
∗ × ]θ1, θ2[→ R continuous functions (with −∞ ≤ θ1 < θ2 ≤ +∞). In

this situation, we have the following.

Corollary 4.4.1. Suppose that the uniqueness for the Cauchy problems associated with (4.40)
is ensured and let γ : ]θ1, θ2[→ R be a function of class C1, with γ(θ) > 0 for every θ ∈ R.
Assume

R(t, γ(θ), θ) ≤ γ′(θ)Θ(t, γ(θ), θ), for every t ∈ [0, τ ], θ ∈ ]θ1, θ2[ . (4.41)

Then, for every (ρ, θ) : I → R+
∗ × ]θ1, θ2[ solution to (4.40) (being I ⊂ [0, τ ] an interval) and

t0 ∈ I,
ρ(t0) ≤ γ(θ(t0)) =⇒ ρ(t) ≤ γ(θ(t)), for every t ∈ ]t0,+∞[∩ I.

Proof. Set Ω = R+
∗ × ]θ1, θ2[ and V (ρ, θ) = ρ − γ(θ). Since ∇V (ρ, θ) = (1,−γ′(θ)), one has

that 0 is a regular value of V ; moreover (4.41) implies (4.38). Hence, the thesis follows from
Proposition 4.4.1, taking into account Remark 4.4.1.



Part II

Solutions which do not wind
around the origin





Chapter 5

Planar Hamiltonian systems
with an equilibrium point of
saddle type

In this chapter, coming from [28], we deal again with the planar Hamiltonian system

Jz′ = ∇zH(t, z), (5.1)

being H : R×R2 → R a function T -periodic in the first variable and such that ∇zH(t, 0) ≡ 0.
The general idea is that a dynamics of saddle type (with a slight abuse in terminology, see
Section 5.2) at the origin, matched with an asymptotic dynamics of center type, gives rise to
T -periodic solutions which do not wind around the origin.

Our results are mainly motivated by the problem of the existence of one-signed (i.e.,
positive or negative) T -periodic solutions to the second order scalar ordinary differential
equation

u′′ + f(t, u) = 0, (5.2)

where f : R × R → R is a continuous function, T -periodic in the first variable, such that
f(t, 0) ≡ 0. Probably, the most classical approach in the search for one-signed solutions
to boundary value problems is based on the use of some forms of the Krasnoselskii fixed
point theorem on compression and expansion of cones. As explained in [159, Introduction],
such a technique, which requires the conversion of the differential equation (5.2) into an
integral equation via the Green’s function, is particularly well suited for separated boundary
conditions, but presents some difficulties when dealing with the periodic problem. Indeed,
the differential operator u 7→ −u′′ is not invertible with T -periodic boundary conditions, so
that one is usually led to study equations of the form

u′′ + a(t)u+ g(t, u) = 0,

with u 7→ −u′′ − a(t)u invertible, by imposing suitable conditions both on the sign of the
Green’s function and on the nonlinear term g(t, x) or its potential G(t, x) =

∫ x
0
g(t, ξ) dξ,
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near zero and infinity (see, for instance, [12, 116, 159] and the references therein). Such
conditions, however, are often not so nicely recognized, when referred to (5.2).

On the other hand, considering the autonomous case f(t, x) = f(x), one sees that there
is a natural way to ensure the existence of one-signed T -periodic solutions. Indeed, if we
assume that f(x) is of class C1 in a neighborhood of x = 0 and satisfies

f ′(0) < 0 and lim inf
|x|→+∞

f(x)sgn (x) > 0, (5.3)

then f(x) has both a positive and a negative zero on the real line and such zeros are, of
course, constant one-signed T -periodic solutions. In particular, by looking at the phase
plane portrait (see Figure 5 below) of the autonomous equation u′′ + f(u) = 0, with f(x)
satisfying (5.3), we see that the origin is a (local) saddle equilibrium point, while “large”
solutions wind around the origin in the clockwise sense.

Figure 5.1: The phase portrait of the autonomous equation u′′ + f(u) = 0, with f(x) = −x + x3. The
origin is a local saddle, with two homoclinic orbits (painted with a darker color). “Small” periodic solutions,
which do not wind around the origin, are found in the regions bounded by the two homoclinic orbits, both in
the left and in the right halfplane of the phase-plane. Moreover, “large” periodic solutions around the origin
appear, as well.

In this chapter, we deal with the nonautonomous case (5.2) and we use a recent modified
version of the Poincaré-Birkhoff fixed point theorem, Theorem 1.2.2, to detect such kind of
“twist dynamics” between zero and infinity1. Our main results, Theorem 5.1.1 and Theorem

1It is worth noticing that the classical version of the theorem can not succeed, since - in order to have
satisfied the boundary twist condition leading to one-signed T -periodic solutions - one should have to show
that small solutions to (5.2) move in the counterclockwise sense in the phase-plane. But, also in the simple
situation in which (5.2) has, near the origin, the linearized equation u′′+ q0u = 0 (with q0 < 0), one is led to
consider - switching to polar coordinates - the equation −θ′ = sin2 θ + q0 cos2 θ, which always has solutions
with θ′ > 0 as well as solutions with θ′ < 0.
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5.1.2, are based on two mutually independent generalizations of (5.3) to the nonautonomous
case. They both exploit an assumption near x = 0 (see hypothesis (f0) of Section 5.1),
which generalizes in a natural way the condition f ′(0) < 0. Such a condition provides
information on the behavior of the solutions to the linearization (at the origin) of equation
(5.2) and, accordingly, implies the inner boundary twist condition of the (modified) Poincaré-
Birkhoff theorem. On the other hand, the behavior of large solutions to (5.2) (that is, the
outer boundary twist condition) is ruled by a classical Landesman-Lazer condition (with
respect to the principal eigenvalue λ0 = 0 of the periodic problem, see condition (f1

∞))
in Theorem 5.1.1 and by a comparison with a linear (possibly, sign-indefinite) problem in
Theorem 5.1.2 (see condition (f2

∞)). We stress that, besides one-signed T -periodic solutions,
we also get the existence of infinitely many sign-changing subharmonic solutions (with a
precise nodal characterization), as the qualitative analysis of the autonomous case suggests.
It has to be noticed that the proof of the existence of subharmonic solutions is more standard
and it simply relies on more classical versions of the Poincaré-Birkhoff fixed point theorem,
(precisely, Theorem 1.2.3).

The plan of the chapter is the following. In Section 5.1, we state and prove our main
results, Theorem 5.1.1 and Theorem 5.1.2. In Section 5.2, we propose (partial) extensions
of the results to the planar Hamiltonian system (5.1), when the existence of an equilibrium
point of saddle type is assumed (see condition (H0)). In particular, Theorem 5.2.2 is on the
lines of Theorem 5.1.1, using a recent generalization of the Landesman-Lazer condition to
planar systems [87] (see (H1

∞)), while Theorem 5.2.1 is the counterpart of Theorem 5.1.2
and it is based on the comparison of the nonlinear system (5.1) with positively homogeneous
Hamiltonian systems (see (H1

∞)), similarly as in Chapter 2.

5.1 One-signed solutions to second order ODEs

In this section, we state and prove our main results (Theorem 5.1.1 and Theorem 5.1.2) deal-
ing with the existence of one-signed harmonic (i.e., T -periodic) solutions and sign-changing
subharmonic solutions to the second order scalar ordinary differential equation

u′′ + f(t, u) = 0. (5.4)

We first give the statement of both the results, together with some brief comments on the
assumptions and on the relationship with the existing literature; the proofs are postponed at
the end of the section.

Henceforth, f : R × R → R is a continuous function, which is T -periodic in the first
variable. Moreover, we assume the following condition:

(f0) f(t, 0) ≡ 0 and there exists a continuous and T -periodic function q0 : R→ R, with

q0(t) ≤ 0, for every t ∈ [0, T ], and

∫ T

0

q0(t) dt < 0,

such that

lim
x→0

f(t, x)

x
= q0(t), uniformly in t ∈ [0, T ].
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Writing equation (5.4) in Hamiltonian form, we immediately see that assumption (C2) of

Section 1.2 is fulfilled with B(t) =

(
q0(t) 0

0 1

)
.

We state the first main result.

Theorem 5.1.1. Suppose that the uniqueness for the solutions to the Cauchy problems as-
sociated with (5.4) is guaranteed. Moreover, assume condition (f0) and

(f1
∞) it holds that

lim
|x|→+∞

f(t, x)

x
= 0, uniformly in t ∈ [0, T ], (5.5)

and ∫ T

0

lim sup
x→−∞

f(t, x) dt < 0 <

∫ T

0

lim inf
x→+∞

f(t, x) dt. (5.6)

Then the following conclusions hold true:

i) there exist a positive T -periodic solution up(t) and a negative T -periodic solution un(t)
to (5.4);

ii) there exists k∗ ∈ N∗ such that, for every integer k ≥ k∗, equation (5.4) has at least two

subharmonic solutions u
(1)
k (t), u

(2)
k (t) of order k (not belonging to the same periodicity

class) with exactly two zeros in the interval [0, kT [ .

Assumption (5.5) is a sublinearity condition, in the x-variable, for the nonlinear term
f(t, x) (and we recall that it implies the global continuability for the solutions to (5.4)), while
(5.6) is the well known Landesman-Lazer condition (with respect to the principal eigenvalue
λ0 = 0 of the T -periodic problem, compare with Section 2.2). Notice that, in order for the
integrals in (5.6) to make sense, it is implicitly assumed that there exists η ∈ L1(0, T ) such
that

f(t, x)sgn (x) ≥ η(t), for every t ∈ [0, T ], x ∈ R.

Under similar assumptions to those of Theorem 5.1.1, the existence of two nontrivial T -
periodic solutions to (5.4) is proved by Su and Zhao [156, Theorem 1] via Morse theory
techniques, but no information concerning their sign is given.

We now state the second main result.

Theorem 5.1.2. Suppose that the uniqueness and the global continuability for the solutions
to the Cauchy problems associated with (5.4) are guaranteed. Moreover, assume condition
(f0) and

(f2
∞) there exist q∞ ∈ L∞T , with

∫ T
0
q∞(t) dt > 0, such that

lim inf
|x|→+∞

f(t, x)

x
≥ q∞(t), uniformly in t ∈ [0, T ]. (5.7)

Then the following conclusions hold true:
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i) there exist a positive T -periodic solution up(t) and a negative T -periodic solution un(t)
to (5.4);

ii) there exists k∗ ∈ N∗ such that, for every integer k ≥ k∗, there exists an integer j∗(k)
such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ j∗(k),

equation (5.4) has at least two subharmonic solutions u
(1)
k,j(t), u

(2)
k,j(t) of order k (not

belonging to the same periodicity class) with exactly 2j zeros in the interval [0, kT [ ;
moreover, we have the estimate

j∗(k) ≥ nk = E−
(
k

2π
sup
ξ>0

∫ T
0

min{q∞(t), ξ} dt
√
ξ

)
. (5.8)

Assumption (5.7) has to be compared with condition (f0) of Theorem 2.3.7 (see also
Remark 2.2.3); notice that only a condition on the mean value of the weight function q∞(t)
is required. In the definite-sign case q∞(t) ≥ 0 (together with an assumption near the
origin related to (f0)), the existence of one-signed T -periodic solutions to (5.4) is proved by
Gasiński and Papageorgiou [88, Proposition 3.3]. Moreover, in [88, Theorem 4.1], some other
T -periodic solutions are provided. Theorem 5.1.2 gives more information in this direction.
Indeed, from (5.8) it is possible to estimate in a sharp way the order of the subarmonics
produced, so that multiple sign-changing T -periodic solutions can appear depending on the
“size” of the weight function q∞(t). In particular, we can state the following corollary.

Corollary 5.1.1. Suppose that the uniqueness and the global continuability for the solutions
to the Cauchy problems associated with (5.4) are guaranteed. Moreover, assume condition
(f0) and, for a suitable integer m ≥ 1 and q∞(t) ≡ q∞ > 0,

lim inf
|x|→+∞

f(t, x)

x
≥ q∞ > λm, uniformly in t ∈ [0, T ],

being λm =
(

2mπ
T

)2
the m-th eigenvalue of the differential operator u 7→ −u′′ with T -periodic

boundary conditions. Then, equation (5.4) has a positive T -periodic solution, a negative T -
periodic solution and, for every integer j with 1 ≤ j ≤ m, two sign-changing T -periodic
solutions with exactly 2j zeros in the interval [0, T [ .

Remark 5.1.1. In [88], the emphasis is on the case when double resonance at infinity occurs,
namely when

λh ≤ lim inf
|x|→+∞

f(t, x)

x
≤ lim sup
|x|→+∞

f(t, x)

x
≤ λh+1,

for some integer h ≥ 1. When the existence and multiplicity of periodic solutions to equations
like (5.4) is studied with functional analytic techniques, this situation presents peculiar diffi-
culties due to a lack of compactness, so that some additional conditions (like the Landesman-
Lazer one) have to be added. We stress that, with the Poincaré-Birkhoff fixed point theorem
approach, the situation is very different since the estimates of the rotation numbers can be
performed in any case, and no nonresonance assumptions are needed. However, as shown
in Section 2.2, the Landesman-Lazer condition can be useful to obtain sharper multiplicity
results. For instance, according to Proposition 2.2.5, the conclusion of Corollary 5.1.1 still

holds true whenever lim|x|→+∞
f(t,x)
x = λm and a Landesman-Lazer condition, with respect

to the m-th eigenvalue, is fulfilled.
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Remark 5.1.2. As for the existence of one-signed T -periodic solutions, a common interpre-
tation of both Theorem 5.1.1 and Theorem 5.1.2 is provided by the concept of nonresonance
with respect to the principal eigenvalue λ0 = 0 of the T -periodic problem. From this point
of view, (f0) is a nonuniform nonresonance assumption at the origin (see [126] and Remark
2.2.4), while (f1

∞), (f2
∞) both require f(t, x) to be nonresonant with respect to λ0 at infin-

ity. In particular, (f2
∞) directly imposes that f(t, x)/x is “far away” from zero for |x| large

(even if in a quite mild sense), while in (f1
∞) a Landesman-Lazer condition is added in the

sublinear case f(t, x)/x→ 0. Results providing the existence of positive solutions to second
order differential equations in terms of nonresonance conditions with respect to the principal
eigenvalue are very common in literature, dealing with the Dirichlet problem [56, 117].

We now give the proofs of the results.

Proof of Theorem 5.1.1 and Theorem 5.1.2. We first state, in three separate claims, some
consequences of (f0), (f1

∞) and (f2
∞) from the point of view of the rotation numbers of the

solutions. The technical proofs are postponed at the end of the section. To this aim, let
g : R × R → R be a continuous function, T -periodic in the first variable. For simplicity of
exposition, we will always assume that g(t, 0) ≡ 0 and that the uniqueness and the global
continuability for the solutions to the Cauchy problems associated with

u′′ + g(t, u) = 0 (5.9)

are guaranteed.

Claim 1. For every integer k ≥ 1 and for every u : R → R solving u′′ + q0(t)u = 0, it holds
that

Rot((u(t), u′(t)); [0, kT ]) < 1; (5.10)

moreover, if |u(0)| = 1 and u′(0) = 0, then

Rot((u(t), u′(t)); [0, T ]) < 0. (5.11)

Claim 2. Let g(t, x) satisfy assumption (f1
∞). Then there exist an integer k∗ ∈ N∗ and

R̃ > 0 such that, for every integer k ≥ k∗ and for every u : R → R solving (5.9) with

u(0)2 + u′(0)2 = R̃2, it holds that

Rot((u(t), u′(t)); [0, kT ]) > 1; (5.12)

moreover, there exists R > 0 such that, for every u : R→ R solving (5.9) with u(0)2+u′(0)2 =
R2, it holds that

Rot((u(t), u′(t)); [0, T ]) > 0. (5.13)

Claim 3. Let g(t, x) satisfy assumption (f2
∞). Then there exist an integer k∗ ∈ N∗ such that,

for every integer k ≥ k∗, there exists R̃k > 0 such that for every u : R → R solving (5.9)

with u(0)2 + u′(0)2 = R̃2
k, it holds that

Rot((u(t), u′(t)); [0, kT ]) > nk ≥ 1; (5.14)
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moreover, there exists R̂ > 0 such that, for every u : R→ R solving (5.9) with u(0)2+u′(0)2 =
R̂2, it holds that

Rot((u(t), u′(t)); [0, T ]) > 0. (5.15)

We are now ready to prove Theorem 5.1.1 and Theorem 5.1.2.

We first deal with conclusion i), both in case of Theorem 5.1.1 and Theorem 5.1.2, proving
the existence of a positive T -periodic solution up(t); the existence of a negative T -periodic
solution un(t) follows using a similar argument. Define the function

f̃(t, x) = sgn (x)f(t, |x|) =

{
f(t, x) if x ≥ 0

−f(t,−x) if x < 0

and consider the auxiliary equation

u′′ + f̃(t, u) = 0. (5.16)

Notice that f̃(t, x) satisfies assumption (f0) - with the same q0(t) - as well. In view of (5.11)
and (5.13) for Theorem 5.1.1, and of (5.11) and (5.15) for Theorem 5.1.2, the existence of a
T -periodic solution, say up(t), to (5.16) satisfying

Rot((up(t), u
′
p(t)); [0, T ]) = 0 (5.17)

follows from Theorem 1.2.2, for k = 1 and j = 0. Moreover, (5.17) implies that up(t) has

constant sign and, since f̃(t, x) is odd in the x-variable, we can assume that it is positive.
Hence up(t) solves (5.4), thus concluding the proof.

We now pass to conclusion ii). In the case of Theorem 5.1.1, the thesis follows directly
by applying Theorem 1.2.3, with k ≥ k∗ and j = 1, to equation (5.4), in view of (5.10)
and (5.12). In the case of Theorem 5.1.2, the thesis follows again from Theorem 1.2.3, with
k ≥ k∗ and 1 ≤ j ≤ nk, to equation (5.4), in view of (5.10) and (5.14).

We end the section with the proofs of our technical claims.

Proof of Claim 1. The proof of (5.10) is quite classical (following from the fact that q0(t) ≤ 0)
and it will be omitted; see also Proposition 2.2.2. Concerning (5.11) (and focusing, for
instance, on the case u(0) = 1), we preliminarily observe that u(t) has to be convex on [0, T ].
Indeed, setting J = {s ∈ [0, T ] | u′′(t) ≥ 0, t ∈ [0, s]}, it is clear that J is a nonempty (since
0 ∈ J) closed interval. Suppose by contradiction that t∗ = sup J < T ; then u(t∗) ≥ 1, so
that u(t) > 0 in a right neighborhood of t∗. Accordingly, u′′(t) = −q(t)u(t) ≥ 0 in a right
neighborhood of t∗, a contradiction. As a consequence, u(t) ≥ 1 and u′(t) ≥ 0 for every
t ∈ [0, T ], so that

u′(T ) = −
∫ T

0

q0(s)u(s) ds > 0,

from which the claim follows.
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Proof of Claim 2. For the proof of (5.12), we refer to [77, Lemma 4.3] (see also [60]). For
the proof of (5.13), we first recall that from (5.6) we can deduce, using the definition of
inferior limit and the monotone convergence theorem, the existence of a constant M > 0 and
functions h+, h− ∈ L1(0, T ), with∫ T

0

h−(t) dt < 0 <

∫ T

0

h+(t) dt, (5.18)

such that

g(t, x)x ≥ h+(t)x+ − h−(t)x−, for every |x| ≥M (5.19)

(being, as usual, x+(t) = max{x(t), 0} and x−(t) = max{−x(t), 0}). In view of (E∞) of
Lemma 2.3.1, it is enough to prove the existence of R∗ > 0 such that (5.13) holds true
whenever u(t)2 + u′(t)2 ≥ (R∗)2 for every t ∈ [0, T ]. To see this, assume by contradiction
that there exists a sequence of functions un(t) solving (5.9), with un(t)2 + u′n(t)2 ≥ n2 for
every t ∈ [0, T ], such that, for n large enough,

2πRot((un(t), u′n(t)); [0, T ]) =

∫ T

0

g(t, un(t))un(t) + u′n(t)2

un(t)2 + u′n(t)2
dt ≤ 0. (5.20)

Setting xn(t) = un(t)
‖un‖C1

, we have that xn(t) solves

x′′n(t) +
g(t, un(t))

‖un‖C1

= 0.

By standard arguments, in view of (5.5), it is seen that there exists a nonzero x ∈ H2(0, T )
such that, up to subsequences, xn → x strongly in C1([0, T ]), with x(t) solving the equation
x′′(t) = 0. We deduce that it has to be x(t) = at+ b, for suitable a, b ∈ R with a2 + b2 > 0.
We now distinguish two cases. If a 6= 0, then we have that∫ T

0

u′n(t)2

un(t)2 + u′n(t)2
dt =

∫ T

0

x′n(t)2

xn(t)2 + x′n(t)2
dt→

∫ T

0

x′(t)2

x(t)2 + x′(t)2
dt > 0

and, using (5.5) again,∫ T

0

g(t, un(t))un(t)

un(t)2 + u′n(t)2
dt =

∫ T

0

g(t, un(t))xn(t)

‖un‖C1(xn(t)2 + x′n(t)2)
dt→ 0.

Recalling (5.20), we get a contradiction.
If a = 0 (and assuming for instance that b > 0), we have that un(t) → +∞ uniformly so
that, using (5.19), we get, for n large,

0 ≥ 2πRot((un(t), u′n(t)); [0, T ]) ≥
∫ T

0

g(t, un(t))un(t)

un(t)2 + u′n(t)2
dt

≥
∫ T

0

h+(t)un(t)

un(t)2 + u′n(t)2
dt.
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Multiplying by ‖un‖C1 and passing to the limit, we obtain

0 ≥ lim inf
n→+∞

∫ T

0

h+(t)xn(t)

xn(t)2 + x′n(t)2
dt =

1

b

∫ T

0

h+(t) dt,

which is a contradiction in view of (5.18).

Proof of Claim 3. It follows from Proposition 2.2.2, taking into account (E∞) of Lemma
2.3.1 again.

5.2 The planar Hamiltonian system

In this section, we give partial generalizations of the results of the previous Section 5.1 to a
planar Hamiltonian system

Jz′ = ∇zH(t, z), (5.21)

being H : R×R2 → R a function continuous and T -periodic in the first variable, and such that
∇zH(t, z) exists and is continuous on R×R2. Moreover, we assume the following condition:

(H0) ∇zH(t, 0) ≡ 0 and there exist a continuous and T -periodic function B : R → Ls(R2)
(we denote here by Ls(R2) the vector space of real 2 × 2 symmetric matrices) and
z∗ ∈ R2, with |z∗| = 1, such that

〈B(t)z∗|z∗〉 < 0, for every t ∈ [0, T ], (5.22)

and

lim
z→0

∇zH(t, z)−B(t)z

|z|
= 0, uniformly in t ∈ [0, T ]. (5.23)

Some remarks about this hypothesis are in order. First of all, condition (5.23) just means that
the Hamiltonian system (5.21) can be linearized at zero (that is, condition (C2) of Section
1.2). On the other hand, (5.22) specifies the nature of z = 0 as an equilibrium point of (5.21).
In particular, notice that when B(t) ≡ B ∈ Ls(R2), then (5.22) is satisfied if and only if at
least one of the (real) eigenvalues of the symmetric matrix B is negative. In this case, one
can have two possibilities:

• both the eigenvalues are nonpositive, so that the solutions to the linear autonomous
Hamiltonian system Jz′ = Bz are equilibrium points or rotate around the origin coun-
terclockwise;

• one eigenvalue is negative and the other one is positive, so that the origin is a saddle
equilibrium point for the system Jz′ = Bz.

From our point of view, the common feature of this two different dynamical scenarios is that
not all the solutions to Jz′ = Bz move in the clockwise sense; anyway, the second possibility
seems to be the most interesting so that, with slight abuse in terminology, we will say that
systems satisfying (H0) have an equilibrium point of saddle type.
Notice that, when (5.21) comes from the second order equation (5.4), then condition (H0) is a

strengthening of condition (f0)of Section 5.1: indeed, it is satisfied for B(t) =

(
q0(t) 0

0 1

)
and z∗ = (1, 0), provided that q0(t) < 0 for every t ∈ [0, T ].
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Remark 5.2.1. It can worth recalling that to every linear Hamiltonian system Jz′ = B(t)z
(even in dimension greater than two) can be assigned an integer number i(−B), the Conley-
Zehnder index [50] (see Remark 1.1.2; we write here i(−B) to be consistent with the definition
of the Conley-Zehnder index as given in [2], where the Hamiltonian system is written with
the symplectic matrix on the right-hand side). In the particular case of planar Hamiltonian
systems and in the T -nonresonant case (i.e., when the only T -periodic solution to Jz′ = B(t)z
is the trivial one) a detailed analysis of the relationship between the Conley-Zehnder index
and the rotation numbers of the solutions in the plane is available [118]. In particular,
according to [118, Lemma 4], we can deduce that (5.22)-(5.23) imply that i(−B) ≤ 0 (indeed,
from i(−B) ≥ 1 follows that every solution to Jz′ = B(t)z has a negative rotation number,
and we will show - see Claim 1 at the end of the section - that this is not the case).

We now state our first main result. As in Section 2.1, let us denote by P the class of the
C1-functions V : R2 → R which are positively homogeneous of degree 2 and strictly positive,
i.e., for every λ > 0 and for every z ∈ R2

∗,

0 < V (λz) = λ2V (z);

moreover, recall that the origin is a global isochronous center for the autonomous Hamiltonian
system

Jz′ = ∇V (z), V ∈ P, (5.24)

that is to say, all the nontrivial solutions to (5.24) are periodic - around the origin - with
the same minimal period τV (and rotate in the clockwise sense, see Section 2.1 again for
more details). Theorem 5.2.1 below combines, for the nonlinear planar Hamiltonian systems
(5.21), an equilibrium point of saddle type with an asymptotic dynamics like that of (5.24)
and it can be seen as the counterpart of Theorem 5.1.2 for a planar Hamiltonian system.
Notice, however, that here, at point i), only one T -periodic solution is obtained.

Theorem 5.2.1. Suppose that the uniqueness and the global continuability for the solutions
to the Cauchy problems associated with (5.21) are guaranteed. Moreover, assume condition
(H0) and

(H2
∞) there exist V∞ ∈ P and γ∞ ∈ L1

T , with
∫ T

0
γ∞(t) dt = 1, such that

lim inf
|z|→∞

〈∇zH(t, z)|z〉
2V (z)

≥ γ∞(t), uniformly in t ∈ [0, T ].

Then the following conclusions hold true:

i) there exists a T -periodic solution z0(t) to (5.21) such that

Rot(z0(t); [0, T ]) = 0;

ii) there exists k∗ ∈ N∗ such that, for every integer k ≥ k∗, there exists an integer j∗(k)
such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ j∗(k),

system (5.21) has at least two subharmonic solutions z
(1)
k,j(t), z

(2)
k,j(t) of order k (not

belonging to the same periodicity class) with

Rot(z
(1)
k,j(t); [0, kT ]) = Rot(z

(2)
k,j(t); [0, kT ]) = j.
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Moreover, we have the estimate

j∗(k) ≥ nk = E−
(
kT

τV∞

)
. (5.25)

We now state our second main result. To this aim, we denote by P∗ the class of the
C1-functions V : R2 → R which are positively homogeneous of degree 2 and nonnegative,
i.e., for every λ > 0 and for every z ∈ R2

∗,

0 ≤ V (λz) = λ2V (z).

Of course, P ⊂ P∗. Systems of the type

Jz′ = ∇V (z), V ∈ P∗ \ P, (5.26)

have been recently considered by Garrione [87] as a possible generalization of the scalar
second order equation u′′ = 0 which, indeed, turns out to be equivalent to system (5.26)
with V (x, y) = 1

2y
2 ∈ P∗ \ P. In [87, Theorem 3.2], a Landesman-Lazer type condition is

introduced to ensure the solvability of the T -periodic problem associated with a sublinear
perturbation of (5.26). Here we show - in the spirit of Proposition 2.2.4 - that such a condi-
tion provides enough information about the rotation numbers of large solutions to nonlinear
Hamiltonian systems which are asymptotic at infinity to systems of the type (5.26). Accord-
ingly, combining again with assumption (H0), we get the existence of a nontrivial T -periodic
solution with zero rotation number.

Theorem 5.2.2. Suppose that the uniqueness for the solutions to the Cauchy problems as-
sociated with (5.21) is guaranteed. Moreover, assume condition (H0) and

(H1
∞) there exists V ∈ P∗, with ∇V (z) locally Lipschitz continuous, such that

lim
|z|→+∞

∇zH(t, z)−∇V (z)

|z|
= 0, uniformly in t ∈ [0, T ]. (5.27)

Moreover, setting R(t, z) = ∇zH(t, z)−∇V (z), suppose that:

- for every t ∈ [0, T ], for every z ∈ R2 with |z| ≤ 1 and for every λ > 1,

〈R(t, λz)|z〉 ≥ η(t), (5.28)

for a suitable η ∈ L1(0, T ),

- for every ξ ∈ R2 \ {0} satisfying ∇V (ξ) = 0,∫ T

0

lim inf
(λ,η)→(+∞,ξ)

〈R(t, λη)|η〉 > 0. (5.29)

Then there exists a T -periodic solution z0(t) to (5.21) such that

Rot(z0(t); [0, T ]) = 0.

Theorem 5.2.2 is a partial generalization of Theorem 5.1.1. Indeed, (5.29) is a Landesman-
Lazer type condition; in particular, according to [87, Remark 4.1], assumption (H1

∞) implies
assumption (f1

∞). However, only one T -periodic solution is obtained and no conclusions
about subharmonic solutions are provided, at all.
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We now sketch the proofs of our results.

Proof of Theorem 5.2.1 and Theorem 5.2.2. Similarly as in the proofs of Theorems 5.1.1 and
5.1.2, the conclusions now follow from the following claims. The main difference is that here
we always work directly on (5.21) (and, as a consequence, only one T -periodic solution is
obtained).

Claim 1. For every integer k ≥ 1 and for every z : R→ R solving Jz′ = B(t)z, it holds that

Rot(z(t)); [0, kT ]) <
1

2
; (5.30)

moreover, if z(0) = z∗, then
Rot(z(t); [0, T ]) < 0. (5.31)

To see this, we just write the solution z(t) as z(t) =
√

2ρ(t)eiθ(t), with ρ(t), θ(t) of class C1

and ρ(t) > 0 (compare with (8) of the introductory section “Notation and Terminology”),
and set z∗ = eiθ

∗
, with θ∗ ∈ [0, 2π[ . In view of (1.8), assumption (H0) implies that −θ′(t) < 0

whenever z(t) = λz∗ for λ 6= 0, namely θ(t) ≡ θ∗modπ. As a consequence, θ(t2) < θ(t1) + π
for every t1, t2 ∈ R with t1 < t2, so that (5.30) follows. With the same arguments, we also
deduce the validity of (5.31).

Claim 2. Let H(t, z) satisfy assumption (H1
∞). Then there exists R > 0 such that, for every

z : R→ R solving (5.21) with |z(0)| = R, it holds that

Rot(z(t); [0, T ]) > 0. (5.32)

Observe first that, in view of (E∞) of Lemma 2.3.1 (the global continuability for the solutions
to (5.21) follows from (5.27), since ∇V (z) grows at most linearly), it is enough to show that
there exists R∗ > 0 such that (5.32) holds true whenever |z(t)| ≥ R∗ for every t ∈ [0, T ].
To see this, assume by contradiction that there exists a sequence of functions zn(t) solving
(5.21), with |zn(t)| ≥ n for every t ∈ [0, T ], such that, for n large enough,

2πRot(zn(t); [0, T ]) =

∫ T

0

〈∇V (zn(t)) +R(t, zn(t))|zn(t)〉
|zn(t)|2

dt ≤ 0. (5.33)

For further convenience, recall also that, in view of Euler’s formula, we have∫ T

0

〈∇V (zn(t)) +R(t, zn(t))|zn(t)〉
|zn(t)|2

dt =

∫ T

0

2V (zn(t))

|zn(t)|2
dt (5.34)

+

∫ T

0

〈R(t, zn(t))|zn(t)〉
|zn(t)|2

dt.

Setting wn(t) = zn(t)
‖zn‖∞ , the function wn(t) satisfies

Jw′n(t) = ∇V (wn(t)) +
R(t, zn(t))

‖zn‖∞
,

and, by standard arguments using (5.27), it is seen that there exists 0 6≡ w ∈ H1(]0, T [ ;R2)
such that wn → w uniformly, with w(t) solving Jw′(t) = ∇V (w(t)). Notice that, since
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∇V (z) is locally Lipschitz continuous and w(t) 6≡ 0, it has to be w(t) 6= 0 for every t ∈ [0, T ];
moreover, ∇V (w(t)) = 0 if and only if V (w(t)) = 0.
We now distinguish two cases. If w(t) is nonconstant, then, using (5.27), we get∫ T

0

〈R(t, zn(t))|zn(t)〉
|zn(t)|2

dt =

∫ T

0

〈R(t, zn(t))|wn(t)〉
‖zn‖∞|wn(t)|2

dt→ 0.

On the other hand, since V (w(t)) ≡ V (w(0)) > 0 (otherwise w(0) would be an equilibrium
point for Jz′ = ∇V (z) and, by uniqueness, w(t) should be constant), we have∫ T

0

2V (zn(t))

|zn(t)|2
dt =

∫ T

0

2V (wn(t))

|wn(t)|2
dt→

∫ T

0

2V (w(t))

|w(t)|2
dt > 0.

In view of (5.33) and (5.34), we have a contradiction.
If w(t) is constant, it has to be w(t) ≡ ξ, for a suitable ξ ∈ R2 \ {0} such that ∇V (ξ) = 0.
In this case, we have, using (5.34) and the nonnegativeness of V ,

0 ≥ 2πRot(zn(t); [0, T ]) ≥
∫ T

0

〈R(t, zn(t))|zn(t)〉
|zn(t)|2

dt.

Multiplying by ‖zn‖∞, we get

0 ≥
∫ T

0

〈R(t, ‖zn‖∞wn(t))|wn(t)〉
|wn(t)|2

dt,

so that, since wn(t)→ ξ uniformly, using (5.28) and Fatou’s lemma we obtain

0 ≥
∫ T

0

lim inf
n→+∞

〈R(t, ‖zn‖∞wn(t))|wn(t)〉 dt,

contradicting (5.29).

Claim 3. Let H(t, z) satisfy assumption (H2
∞). Then there exist an integer k∗ ∈ N∗ such

that, for every integer k ≥ k∗, there exists R̃k > 0 such that, for every z : R → R solving
(5.21) with |z(0)| = R̃k, it holds that

Rot(z(t); [0, kT ]) > nk ≥ 1;

moreover, there exists R̂ > 0 such that, for every z : R → R solving (5.21) with |z(0)| = R̂,
it holds that

Rot(z(t); [0, T ]) > 0.

This just follows from Proposition 2.2.1, taking into account (E∞) of Lemma 2.3.1.
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Chapter 6

Positive solutions to parameter
dependent second order ODEs
with indefinite weight:
multiplicity and complex
dynamics

In this chapter, based on [25, 31, 32], we are concerned with positive periodic solutions to
second order scalar differential equations of the type

u′′ + q(t)g(u) = 0, (6.1)

where q : R→ R is a bounded and T -periodic function which changes its sign and g : R→ R
is a locally Lipschitz continuous function such that g(0) = 0 and g(x)x > 0 for x 6= 0.

Boundary value problems associated with equations like (6.1) are called - referring to the
fact that q(t) assumes both positive and negative values and therefore does not have a definite
sign - “indefinite”. They have been widely investigated in the past fifty years, starting with
the works by Kiguradze and Waltman [102, 162], devoted to the study of the oscillatory
behavior of the solutions to the superlinear equation u′′ + q(t)u2n−1 = 0 (see also [165] for
extensions to more general nonlinearities and a rather exhaustive list of references on the
subject). In particular, the periodic problem for (6.1) was considered by Butler [38, 39] for
g(x) having superlinear growth at infinity or sublinear growth at zero, respectively. Further
results in this direction have been obtained in [137, 158]; in both papers solutions with a
large number of zeros in the intervals of positivity of the weight were produced. This, in
turn, led to the study of chaotic dynamics [42, 158] for (6.1) as well as for

u′′ + cu′ + q(t)g(u) = 0;

precisely, the authors obtained solutions to (6.1) globally defined on R and, again, with a
complex oscillatory behavior expressed in terms of their number of zeros.



112
Positive solutions to parameter dependent second order ODEs with indefinite

weight: multiplicity and complex dynamics

On the other hand, starting with the nineties, various authors have investigated the
existence of positive solutions to boundary value problems (typically, the Dirichlet or the
Neumann one) associated with the nonlinear elliptic partial differential equation

∆u− ku+ q(x)g(u) = 0, x ∈ Ω ⊂ RN , (6.2)

with a sign changing q(x) (see, among others, [4, 8, 14, 15, 20]; a large list of references
on the subject is contained in [140]); in particular, multiplicity results for positive solutions
to equation (6.2), with Dirichlet boundary conditions on a bounded domain Ω, have been
obtained in [24, 47, 89, 90, 91, 93, 114] in the superlinear case. When k = 0, however, the
Neumann problem for (6.2) as well as the periodic problem for (6.1) exhibit some peculiar
features which prevent, for certain classes of nonlinearities g(x), the existence of positive
solutions. In particular, the following two facts are worth to be emphasized here:

• if g′(0) = 0, then the linearization at zero of (6.1) is resonant with respect to the
principal eigenvalue k0 = 0 of both the Neumann and the periodic problem, and no
positive solutions in general exist (see [31, Proposition 2.2]);

• if g(x) is of class C1 on R+
∗ and g′(x) > 0 for x > 0, then positive solutions (for both

the Neumann and the periodic problem) can exist only if∫ T

0

q(t) dt < 0. (6.3)

This is easily seen (see [15] and [31, Proposition 2.1]), since - using the fact that
g(u(t)) > 0 and integrating by parts, in view of the boundary conditions -

−
∫ t

0

q(t) dt =

∫ T

0

u′′(t)

g(u(t))
dt =

∫ T

0

g′(u(t))

(
u′(t)

g(u(t))

)2

dt > 0.

The aim of this chapter is to show that, due to the complex dynamics of (6.1), multiple
positive periodic solutions can appear in some cases. In our analysis, which is performed via
phase plane techniques, the weight function q(t) plays a special role. In particular, according
to the previously mentioned nonexistence results, we assume that q(t) takes the form

q(t) = aλ,µ(t) = λa+(t)− µa−(t), (6.4)

being λ, µ > 0 real parameters and a+(t), a−(t) the positive and the negative part of a (sign-
indefinite) weight function a(t), and we obtain multiplicity results for λ, µ in suitable ranges
of values.

More precisely, the plan of the chapter is the following. In Section 6.1, we analyze a
supersublinear problem (namely, when g(x) satifies (6.7); compare with the introduction of
Chapter 4), obtaining the existence of two positive T -periodic solutions, positive subharmon-
ics of any order as well as a complex dynamics of coin-tossing type entirely generated by
positive solutions to (6.1), when - in (6.4) - λ, µ are large. Our main tool here is a recent
result (coming from the theory of topological horseshoes) about fixed points, periodic points
and chaotic dynamics for a planar map, see Section 1.3. In Section 6.1, we study a superlinear
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problem (namely, for g(x) fulfilling (6.32)), obtaining the existence of multiple positive T -
periodic solutions when - in (6.4) - µ is large (λ > 0 is fixed) and aλ,µ(t) satisfies a symmetry
condition. Solutions are found here by solving, via an elementary shooting technique in the
phase-plane, an auxiliary Neumann problem. More detailed descriptions and motivations for
both problems can be found in the corresponding sections.

We emphasize that the study of (6.1) with respect to the existence and multiplicity of
positive periodic solutions appears rather new from the point of view of the existing literature
and various interesting issues seem to be worth to be investigated.

6.1 Supersublinear problem: chaotic dynamics via topo-
logical horseshoes

Our research, in this section, is partially inspired by a classical result by Rabinowitz [147],
dealing with multiple positive solutions to the Dirichlet problem associated with

∆u+ λf(x, u) = 0, x ∈ Ω ⊂ RN . (6.5)

The basic hypotheses on (6.5) require f(x, z)/z → 0 for z → 0+ uniformly in x ∈ Ω and,
moreover, assumptions like f(x, z) ≥ 0 and 6≡ 0 on Ω × [0, z̄], as well as f(x, z) ≤ 0 on

Ω× [z̄,∞). Pairs of positive solutions appear for λ > λ̂ > 0 (see [147, Corollary 1.34] and also
[5, 6, 56, 64, 110] for related results). The hypothesis f(x, z) ≤ 0 on large values of z can be
replaced by other conditions ensuring the existence of a priori bounds for the solutions [147,
Remark 1.14], implying (roughly speaking) that f(x, z) has sublinear growth at infinity in
the z variable.

Such considerations lead us to the search for positive periodic solutions to

u′′ + aλ,µ(t)g(u) = 0, (6.6)

being:

• aλ,µ(t) = λa+(t) − µa−(t), with a+(t), a−(t) the positive and the negative part of a
(sign-indefinite) continuous and T -periodic function a : R→ R,

• g : R+ → R a locally Lipschitz continuous function, with g(0) = 0 and g(x) > 0 for
x > 0, satisfying

lim
x→0+

g(x)

x
= lim
x→+∞

g(x)

x
= 0. (6.7)

The results in [147] for (6.5), jointly with the necessary condition (6.3) when g′(x) > 0,
suggest that multiple positive periodic solutions can appear for λ, µ both large enough.

To perform our analysis we adopt a dynamical systems approach by looking for fixed
points and periodic points of the Poincaré map Ψλ,µ associated with the planar Hamiltonian
system equivalent to (6.6). The different qualitative behavior of the solutions to (6.6) when
aλ,µ(t) ≥ 0 (center type dynamics) and when aλ,µ(t) ≤ 0 (saddle type dynamics) produces
a rich dynamics for Ψλ,µ, so that we can apply Theorem 1.3.2, which ensures not only the
existence of at least two fixed points for Ψλ,µ in the right half-plane (which correspond to
initial points of two positive T -periodic solutions) but also the presence of a full symbolic
dynamics on two symbols.
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The plan of the section is the following. In Subsection 6.1.1 we state our main result
(Theorem 6.1.1), while Subsection 6.1.2 is devoted to the proof. Finally, in Subsection 6.1.3
we give a further result for (6.6), obtained via a variational approach.

6.1.1 Statement of the main result

Let a(t), g(x) be as before; moreover, for technical convenience, from now on we will identify
g(x) with its null extension1

g0(x) = g(x+) =

{
g(x) if x ≥ 0

0 if x < 0.
(6.9)

As usual, we write (6.6) as the equivalent planar Hamiltonian system{
x′ = y
y′ = −aλ,µ(t)g(x).

(6.10)

By the assumptions on g(x) and a(t) the uniqueness and the global continuability of the
solutions to the Cauchy problems associated with (6.10) are guaranteed. Thus we can define
the Poincaré map

Ψλ,µ : R2 3 z 7→ ζλ,µ(T ; 0, z),

where, for every s ∈ [0, T ] and z ∈ R2, ζλ,µ(·; s, z) denotes the solution to (6.10) satisfying
the initial condition ζλ,µ(s; s, z) = z. By the fundamental theory of ODEs, Ψλ,µ turns out to
be a global homeomorphism of the plane onto itself and a two-sided trajectory (zi)i of Ψλ,µ

(that is, zi+1 = Ψλ,µ(zi)) corresponds to a globally defined solution ζ(t) to (6.10) such that
ζ(iT ) = zi for every i ∈ Z. Moreover, by the T -periodicity of a(t), a k-periodic trajectory
(with k ∈ N∗) corresponds to a kT -periodic solution.

Here is the statement of our main result.

Theorem 6.1.1. Let g : R+ → R be a locally Lipschitz continuous function such that
g(0) = 0 and g(x) > 0 for x > 0. Suppose that:

(g0) lim
x→0+

g(x)

x
= 0;

1Dealing with such an extension, it is useful to prove the following simple result.

Lemma 6.1.1. Let u(t) be a solution to

u′′ + aλ,µ(t)g0(u) = 0, (6.8)

such that u(tj) ≥ 0, for a two-sided sequence (tj)j∈Z with tj → ±∞ for j → ±∞. Then u(t) ≥ 0 for every
t ∈ R. In particular, every kT -periodic solution to (6.8) different from a nonpositive constant is a nontrivial
nonnegative solution to (6.6).

Proof. Let us suppose by contradiction that u(t̃) < 0 for some t̃ ∈ R and, just to fix the ideas, let us
assume that u′(t̃) ≤ 0 (if u′(t̃) ≥ 0 the argument is completely symmetric). Define t∗ = sup{t ≥ t̃ | u(s) <
0 for every s ∈ [t̃, t[}; by continuity of u(t), t̃ < t∗. Moreover, u′′(t) = 0 for a.e. t ∈ ]t̃, t∗[ , which implies that

u(t) = u′(t̃)(t− t̃) + u(t̃), for every t ∈ [t̃, t∗[ .

By the assumptions, t∗ < +∞ since t∗ ≤ tj for some j. Then u(t∗) < 0; by continuity u(t) < 0 in a right
neighborhood of t∗, a contradiction.
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(g∞) lim
x→+∞

g(x)

x
= 0 and lim inf

x→+∞
g(x) > 0.

Moreover, assume that, for some τ ∈ ]0, T [,

(a∗)
a(t) ≥ 0, for every t ∈ [0, τ ], with

∫ τ
0
a(t) dt > 0,

a(t) ≤ 0, for every t ∈ [τ, T ], with
∫ T
τ
a(t) dt < 0.

Then there exists λ∗ > 0 such that, for every λ > λ∗, there exist two disjoint compact subsets
K0,K1 of the first quadrant (with 0 6∈ K0∪K1) and there exists µ∗(λ) > 0 such that, for every
µ > µ∗(λ), the conclusion of Theorem 1.3.1 holds true for the Poincaré map Ψλ,µ associated
with (6.10). In particular, Ψλ,µ induces chaotic dynamics on two symbols relatively to K0

and K1.

We now give an interpretation of the result in terms of the dynamical properties of the
solutions. On one hand, for each two-sided sequence (si)i with si ∈ {0, 1}, there exists a
solution ζ(t) = (u(t), u′(t)) to (6.10) (so that u(t) solves (6.6)) such that

ζ(iT ) ∈ Ksi , for every i ∈ Z. (6.11)

Notice that, in view of Lemma 6.1.1 and the uniqueness for the solutions to the Cauchy prob-
lems, such solutions satisfy u(t) > 0 for all t ∈ R and hence correspond to positive solutions
to equation (6.6).
On the other hand, given a k-periodic sequence (si)i with si ∈ {0, 1}, there exists a kT -
periodic solution ζ(t) to (6.10) satisfying (6.11) and, again, corresponding to a positive solu-
tion to (6.6). In particular, if k ≥ 2 is the minimal period of (si)i, then ζ(t) is not lT -periodic
for any l = 1, . . . , k − 1, that is ζ(t) is a subharmonic solution of order k to system (6.10).
Hence, Theorem 6.1.1 provides the existence of at least two positive T -periodic solutions to
equation (6.6), as well as the existence of positive subharmonics of order k for every k ≥ 2.
By the sign assumptions on the coefficient a(t), we also know that such solutions u(t) are
concave on [iT, τ + iT ], convex on [τ + iT, (i+ 1)T ]; furthermore, u′(t) vanishes at least once
in ]iT, τ + iT [ and at least once in ]τ + iT, (i+ 1)T [ .

For the proof of Theorem 6.1.1, we will apply Theorem 1.3.2 by splitting Ψλ,µ as

Ψλ,µ = Ψµ ◦Ψλ , (6.12)

where Ψλ and Ψµ are the homeomorphisms defined by

Ψλ : R2 3 z 7→ ζλ,µ(τ ; 0, z), Ψµ : R2 3 z 7→ ζλ,µ(T ; τ, z), (6.13)

with τ ∈ ]0, T [ as above. Note that, from the assumptions on the weight a(t), it follows that
a(t) = a+(t) on [0, τ ] and a(t) = −a−(t) on [τ, T ]. Hence (consistently with the notation
used) Ψλ does not depend on µ and, similarly, Ψµ does not depend on λ.

Remark 6.1.1. Without loss of generality, and for convenience in view of the proof, we
suppose that τ ∈ ]0, T [ is chosen so that

−
∫ τ+η

τ

a(t) dt =

∫ τ+η

τ

a−(t) dt > 0

for every η ∈ ]0, T − τ ].
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6.1.2 An auxiliary lemma and proof of the main result

Some more specific notation is useful in this section. First of all, for every z ∈ R2
∗, we

routinely pass to standard polar coordinates z = ρ(cos θ, sin θ); we also often identify the
plane R2 with the complex plane C, thus writing z = ρeiθ. Given θ ∈ ]− 2π, 2π[ , we denote
by L(θ) and L[θ] respectively the open and closed half lines

L(θ) = {z = ρeiθ ∈ R2
∗ | ρ > 0}, L[θ] = L(θ) ∪ {0}.

For θ1, θ2 ∈ [−2π, 2π] with 0 < θ2−θ1 < 2π, we denote by S(θ1, θ2) and S[θ1, θ2] respectively
the open and closed angular sectors

S(θ1, θ2) = {z = ρeiθ ∈ R2
∗ | ρ > 0, θ1 < θ < θ2},

S[θ1, θ2] = {z = ρeiθ ∈ R2
∗ | ρ > 0, θ1 ≤ θ ≤ θ2} ∪ {0}.

Moreover, given 0 ≤ r1 ≤ r2, we denote by A[r1, r2] the closed annulus centered ad the origin
and of radii r1, r2, that is

A[r1, r2] = {z ∈ R2 | r1 ≤ |z| ≤ r2}.

To begin with, before passing to the proof of Theorem 6.1.1, we first develop some esti-
mates for the solutions to parameter dependent supersublinear equations like

u′′ + λf(t, u) = 0. (6.14)

These results will be applied to the study of equation (6.6) in the time interval [0, τ ], namely
for f(t, x) = a+(t)g(x); nevertheless, we give them in a slightly more general context than
needed, since we think that they may have some independent interest. In particular, our
analysis leads us to a two-solutions theorem (Proposition 6.1.1) for a special Sturm-Liouville
problem associated with equation (6.14), which will play an important role in the proof of
Theorem 6.1.1.

To be more precise, in the following f : [0, τ ] × R → R will be an L∞-Carathéodory
function, locally Lipschitz continuous in the x-variable, that is:

• for every x ∈ R, f(·, x) ∈ L∞([0, τ ]);

• for every r > 0, there exists χr ∈ L∞([0, τ ],R+) such that, for a.e. t ∈ [0, τ ] and for
every x, y ∈ [−r, r],

|f(t, x)− f(t, y)| ≤ χr(t)|x− y|.

Moreover, we will suppose that:

(f0) f(t, 0) ≡ 0 and lim
x→0

f(t, x)

x
= 0, uniformly for a.e. t ∈ [0, τ ];

(f∞) lim
|x|→+∞

f(t, x)

x
= 0, uniformly for a.e. t ∈ [0, τ ].
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For every s ∈ [0, τ ] and for every z = (x, y) ∈ R2, we denote by uλ(·; s, z) the unique solution
to the Cauchy problem {

u′′ + λf(t, u) = 0
(u(s), u′(s)) = (x, y).

By the assumption (f∞), uλ(·; s, z) is globally defined on [0, τ ]. Moreover, we define the
continuous map [96]

ϕλ : [0, τ ]× [0, τ ]× R2 3 (t, s, z) 7→ (uλ(t; s, z), u′λ(t; s, z)).

We rephrase here the “elastic property” (see Lemma 4.2.3) in a form which will be particularly
suited for the rest of the proof.

Lemma 6.1.2. Assume (f0) and (f∞). Then, the following hold true:

(E0) for every r > 0, there exists η(r) ∈ ]0, r] such that, for every s, t ∈ [0, τ ],

|z| ≤ η(r) =⇒ |ϕλ(t, s, z)| ≤ r;

(E∞) for every R > 0, there exists ν(R) ∈ [R,+∞[ such that, for every s, t ∈ [0, τ ],

|z| ≥ ν(R) =⇒ |ϕλ(t, s, z)| ≥ R.

For the following, it is useful to express the solutions to (6.14) in polar coordinates. To
this aim, we preliminarily observe that the fact that f(t, 0) ≡ 0 (together with the uniqueness
for the Cauchy problems) implies that ϕλ(t; s, z) 6= 0 for every s, t ∈ [0, τ ], provided that
z 6= 0. Then, for every z = reiα, with r = |z| > 0 and α ∈ ]− π, π[ , and for every s ∈ [0, τ ],
we denote by θλ(·; s, α, r) the unique continuous function with

θλ(s; s, α, r) = α ∈ ]− π, π[ (6.15)

and such that

ϕλ(t; s, z) = |ϕλ(t; s, z)|eiθλ(t;s,α,r) , for every t ∈ [0, τ ]. (6.16)

We also set,
ρλ(t; s, α, r) = |ϕλ(t; s, z)|.

By the continuity of ϕλ(t, s, z) and standard results on the theory of paths lifting [94], we
know that ρλ(t; s, α, r) and θλ(t; s, α, r) depend continuously on (t, s, α, r), for s, t ∈ [0, τ ],
r > 0 and α ∈ ]− π, π[ .

The next lemma gives a first result about the angular coordinate θλ(t; s, α, r) for α = 0
and for small or large values of r. The details of the proof are omitted, since they are very
similar to the ones leading to Lemma 4.2.4 and Lemma 4.2.6 (see, however, [32, Lemma 3.2]).

Lemma 6.1.3. Assume (f0) and (f∞). Then, for every ε > 0 and for every λ > 0, there
exist r∗, r

∗ with 0 < r∗ < r∗ such that, for every r ∈ ]0, r∗[∪ ]r∗,+∞[ and for every s ∈ [0, τ ],
it holds

ϕλ(t; s, (r, 0)) ∈ S(− arctan ε, arctan ε)

for every t ∈ [0, τ ].
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Combining Lemma 6.1.2 with Lemma 6.1.3, we get the following corollary.

Corollary 6.1.1. Assume (f0), (f∞). Then for every λ > 0 and for every α ∈]− π, π[ with
α 6= 0, there exist r, r with 0 < r < r, such that for every r ∈ ]0, r[∪ ]r,+∞[ and for every
s ∈ [0, τ ], it holds that

ϕλ(t; s, reiα) /∈ L[0]

for every t ∈ [0, τ ].

Proof. Choose ε > 0 so small that arctan ε < |α| and let r∗ > 0 be given by Lemma 6.1.3.
By Lemma 6.1.2, there exists r > 0 such that

r ∈ ]0, r] =⇒ |ϕλ(t; s, reiα)| < r∗, for every s, t ∈ [0, τ ].

Suppose by contradiction that, for some s1, t1 ∈ [0, τ ], we have ϕλ(t1; s1, re
iα) ∈ L[0], that

is ϕλ(t1; s1, re
iα) = (ρ, 0) for some ρ ≥ 0. The fact that ϕλ(t; s, 0) = 0 implies that ρ 6= 0;

moreover, ρ < r∗. Hence, by Lemma 6.1.3,

reiα = ϕλ(s1; t1, ϕλ(t1; s1, re
iα)) ∈ S(− arctan ε, arctan ε),

a contradiction. The existence of r > 0 can be proved in an analogous way, using r∗.

Finally, assuming more information about the sign of f(t, x), we get a two-solutions
theorem, which can be compared with the one in [147].

Proposition 6.1.1. Assume (f0) and (f∞). Moreover, suppose that

f(t, x) ≥ 0 for a.e. t ∈ [0, τ ], for every x ∈ R

and that, for some m > 0, 0 < d0 < d1 and 0 ≤ s0 < s1 ≤ τ ,

(f+) f(t, x) ≥ m, for a.e. t ∈ [s0, s1], for every x ∈ [d0, d1].

Then there exists λ∗ > 0 such that, for every λ > λ∗, there exists ε∗(λ) > 0 such that, for
all θ1, θ2 ∈ [π2 ,

π
2 + ε∗(λ)[, equation (6.14) has at least two solutions u1(t), u2(t) with (for

i = 1, 2) max[0,τ ] ui(t) > 0 and satisfying the boundary conditions

(ui(0), u′i(0)) ∈ L(θ1) and (ui(τ), u′i(τ)) ∈ L(−θ2).

Proof. Let us define

s∗ =
s0 + s1

2
, δ =

s1 − s0

4

and consider the solution uλ(·) = uλ(·; s∗, (d1, 0)) to the Cauchy problem{
u′′ + λf(t, u) = 0
(u(s∗), u′(s∗)) = (d1, 0);

clearly, uλ(t) is defined on the whole interval [0, τ ]. Choose λ∗ > 0 so large that

δ ≥ 1√
λ∗

∫ d1

d0

dξ√
2m(d1 − ξ)

, d0 −
√

2λ∗m(d1 − d0) δ ≤ 0 (6.17)
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and fix λ > λ∗. We split our proof into some steps.

Step 1. First of all, we claim that uλ(0) < 0, u′λ(0) > 0 and uλ(τ) < 0, u′λ(τ) < 0. To see
this, we recall first of all that, by f ≥ 0 and (f+),

uλ(t) < uλ(s∗) = d1, sgn(t− s∗)u′λ(t) < 0

for every t ∈ [0, τ ], with t 6= s∗. Let [s′, s′′] ⊂ [0, τ ] be the maximal interval containing s∗

such that d0 ≤ uλ(t) for every t ∈ [s′, s′′]. We observe that

s0 + δ < s′ and s′′ < s1 − δ.

In fact, if we assume by contradiction that s′ ≤ s0 + δ, so that d0 ≤ uλ(s0 + δ) < uλ(t) <
uλ(s∗) = d1 , for every t ∈ ]s0 + δ, s∗[ , we have that, for for a.e. t ∈ [s0 + δ, s∗],

d

dt

(
1

2
u′λ(t)2 + λmuλ(t)

)
= u′λ(t)(u′′λ(t) +m)

= λu′λ(t)(−f(t, uλ(t)) +m) ≤ 0.

Hence, the map t 7→ 1
2u
′
λ(t)2 + λmuλ(t) is weakly decreasing on [s0 + δ, s∗] and, therefore,

1

2
u′λ(t)2 ≥ λm(d1 − uλ(t)), for every t ∈ [s0 + δ, s∗],

that is
u′λ(t)√

2mλ(d1 − uλ(t))
≥ 1.

An integration on [s0 + δ, s∗] implies

1√
λ

∫ s∗

s0+δ

u′λ(t)√
2m(d1 − uλ(t))

dt ≥ s∗ − s0 − δ = δ .

Using this last inequality and recalling the choice of λ > λ∗, with λ∗ as in (6.17), we find

1√
λ∗

∫ d1

d0

dξ√
2m(d1 − ξ)

≤ δ ≤ 1√
λ

∫ s∗

s0+δ

u′λ(t)√
2m(d1 − uλ(t))

dt

≤ 1√
λ

∫ d1

uλ(s0+δ)

dξ√
2m(d1 − ξ)

≤ 1√
λ

∫ d1

d0

dξ√
2m(d1 − ξ)

,

a contradiction. With a completely symmetric argument it is possible to show that s′′ < s1−δ.
In this manner, we have found a maximal interval [s′, s′′] ⊂ ]s0 + δ, s1− δ[ , with s′ < s∗ < s′′,
such that uλ(t) ∈ [d0, d1] for every t ∈ [s′, s′′] and, moreover,

uλ(s′) = uλ(s′′) = d0 and u′λ(s′) > 0 > u′λ(s′′).
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By the assumption f ≥ 0, we also know that uλ(t) < d0 , u
′
λ(t) ≥ u′λ(s′) for every t ∈ [0, s′[

and uλ(t) < d0 , u
′
λ(t) ≤ u′λ(s′′) for every t ∈ ]s′′, τ ].

Repeating the same computations as above, for t ∈ [s′, s∗], we obtain

d

dt

(
1

2
u′λ(t)2 + λmuλ(t)

)
= u′λ(t)(u′′λ(t) +m)

= λu′λ(t)(−f(t, uλ(t)) +m) ≤ 0,

which implies that
u′λ(s′) ≥

√
2λm(d1 − d0).

Hence (from f ≥ 0) we deduce that

u′λ(t) ≥
√

2λm(d1 − d0) , for every t ∈ [0, s′].

By another integration and using f ≥ 0 again, we have

uλ(0) = uλ(s′)−
∫ s′

0

u′λ(t) dt ≤ d0 −
√

2λm(d1 − d0)s′

< d0 −
√

2λm(d1 − d0)(s0 + δ) < d0 −
√

2λ∗m(d1 − d0) δ ≤ 0.

We have thus proved that uλ(0) < 0 and u′λ(0) > 0. A completely symmetric argument shows
that uλ(τ) < 0 and u′λ(τ) < 0.

Step 2. From now on, λ > λ∗ is fixed and we can define

ε∗ = ε∗(λ) = min{arctan |uλ(0)/u′λ(0)| , arctan |uλ(τ)/u′λ(τ)|} > 0.

Then we choose θ1, θ2 such that

θ1 , θ2 ∈
[π

2
,
π

2
+ ε∗(λ)

[
and we claim that there are at least two solutions to (6.14) as required in the statement of
the theorem. To this aim, we turn to consider the angular coordinate θλ(t; s, α, r) as defined
in (6.15), (6.16). Here, moreover, we also notice that the fact that f ≥ 0 implies that

−π < θλ(t; s, α, r) < π, for every s, t ∈ [0, τ ].

The results of the first step of the proof, together with this remark, imply that

θλ(0; s∗, 0, d1) ≥ π

2
+ ε∗, θλ(τ ; s∗, 0, d1) ≤ −π

2
− ε∗.

On the other hand, Lemma 6.1.3 implies that there exist r∗, r
∗ > 0 such that, for every

r ∈ ]0, r∗[∪ ]r∗,+∞[ ,

−π
2
< θλ(0; s∗, 0, r), θλ(τ ; s∗, 0, r) <

π

2
.

Then, we have that{
θλ(0; s∗, 0, d1) > θ1, θλ(0; s∗, 0, r) < θ1,
θλ(τ ; s∗, 0, d1) < −θ2, θλ(τ ; s∗, 0, r) > −θ2,

for every r ∈ ]0, r∗[∪ ]r∗,+∞[ .
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We produce a first solution (which will be the “smaller” one). By applying the intermediate
value theorem to the continuous function

[r∗/2, d1] 3 r 7→ min{θλ(0; s∗, 0, r)− θ1,−θλ(τ ; s∗, 0, r)− θ2},

we find a maximal value r̃ with r̃ ∈ [r∗, d1[ such that

θλ(0; s∗, 0, r̃) = θ1 or θλ(τ ; s∗, 0, r̃) = −θ2.

If both the equations are satisfied, we are done. Just to fix the ideas, assume that we have
θλ(0; s∗, 0, r̃) = θ1, while θλ(τ ; s∗, 0, r̃) < −θ2. Consider now the function r 7→ θλ(τ ; 0, θ1, r).
Denoting by

r̂ = ρλ(0; s∗, 0, r̃),

we know that
θλ(τ ; 0, θ1, r̂) < −θ2.

On the other hand, Corollary 6.1.1 and the fact that θλ(τ ; τ, θ1, r) = θ1 > 0 imply that there
exists r > 0 such that

θλ(τ ; 0, θ1, r) > 0 > −θ2 for every r ∈ ]0, r[ .

Hence, applying the Bolzano theorem again we find ř ∈ [r, r̂[ such that

θλ(τ ; 0, θ1, ř) = −θ2.

In conclusion, for u1(t) = uλ(t; 0, ž), with ž = řeiθ1 , we have that

(u1(0), u′1(0)) ∈ L(θ1), (u1(τ), u′1(τ)) ∈ L(−θ2).

From the proof it follows also that u1(t) is concave on [0, τ ] and max[0,τ ] u1(t) ≤ r̃ < d1. The
second solution (which will be the “larger” one) is obtained following a symmetric argument
and the details are omitted. In particular, for such a solution we have max[0,τ ] u2(t) > d1

and hence u1(t) 6≡ u2(t).

Now, we are ready to pass to the proof of Theorem 6.1.1.

Proof of Theorem 6.1.1. The proof will be divided into three main steps.

Step 1: Study of system (6.10) in the interval [0, τ ]

In this first step of the proof, we study the dynamical properties (in the phase plane) of the
solutions to system (6.10) in the time interval [0, τ ]. The final goal will be the definition

of an oriented rectangle P̃ (included in the first quadrant of the plane) and of two disjoint
compact subsets K0,K1 ⊂ P.

To this aim, we will extensively use the previous results of this subsection. Indeed, we
preliminarily observe that, setting f(t, x) = a+(t)g(x) for (t, x) ∈ [0, τ ] × R, we have that
f ≥ 0 and the assumptions (f0), (f∞) are satisfied. Moreover, thanks to the continuity of
a+(t) and g(x), also (f+) holds true. So, keeping the previous notation, we still denote,
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for every s ∈ [0, τ ] and for every z = (x, y) ∈ R2, by uλ(·; s, z) the solution to the Cauchy
problem {

u′′ + λa+(t)g(u) = 0
(u(s), u′(s)) = (x, y),

which is unique and globally defined on [0, τ ]; moreover, we set

ζλ(·; s, z) = (uλ(·; s, z), u′λ(·; s, z)).

Clearly, we have

Ψλ(z) = ζλ(τ ; 0, z), for every z ∈ R2,

where Ψλ is defined in (6.13).

We are particularly interested in the manner in which Ψλ rotates points of the first
quadrant. Then, we continue to denote, for every r > 0 and α ∈ ]−π, π[ , by θλ(t; s, α, r) the
angular coordinate associated with ζλ(t; s, reiα), as defined in (6.15), (6.16). We recall that
such a function satisfies the property:

θλ(t∗; s, α, r) ≤ π

2
=⇒ θλ(t; s, α, r) ≤ π

2
, for every t ≥ t∗. (6.18)

Moreover, the fact that f(t, x) = 0 for every (t, x) ∈ R× ]−∞, 0] implies that

−π < θλ(t; s, α, r) < π, for every s, t ∈ [0, τ ]. (6.19)

From this remark, we in particular infer that, for every z /∈ L[−π] (z = reiα with r > 0 and
α ∈ ]− π, π[) and α1, α2 ∈ ]− π, π[ with α1 < α2,

Ψλ(z) ∈ S[α1, α2]⇐⇒ α1 ≤ θλ(τ ; 0, α, r) ≤ α2. (6.20)

The next two results (Lemma 6.1.4 and Lemma 6.1.5) provide a precise description of the
rotation properties associated with Ψλ. In Lemma 6.1.4 we construct two arcs of the first
quadrant S[0, π2 ] which are moved by Ψλ to arcs of the third quadrant S[−π,−π2 ].

Lemma 6.1.4. There exists λ∗ > 0 such that for every λ > λ∗ there exist two arcs β0, β1 :
[0, 1]→ R2

∗ such that, for i = 0, 1:

i) βi(0) ∈ L(0), βi(1) ∈ L(π2 );

ii) βi(σ) ∈ S[0, π2 ] for every σ ∈ [0, 1];

iii) β0([0, 1]) ∩ β1([0, 1]) = ∅;

iv) Ψλ(βi(σ)) ∈ S[−π,−π2 ] for every σ ∈ [0, 1].

Proof. Fix λ∗ > 0 as in Proposition 6.1.1 and take λ > λ∗. Next, select θ̃, θ̂ ∈ ]π2 ,
π
2 + ε∗(λ)[ ,

with θ̃ 6= θ̂, and consider the continuous function given by

R+
∗ 3 r 7→ θλ(0; τ,−θ̃, r).
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Corollary 6.1.1 and the fact that θλ(0; 0,−θ̃, r) = −θ̃ < 0 imply that there exists r > 0 such
that

θλ(0; τ,−θ̃, r) < 0, for every r ∈ ]0, r[ .

On the other hand, an application of Proposition 6.1.1 with θ1 = π
2 and θ2 = θ̃ gives the

existence of a solution u(t) (actually, two solutions) to u′′ + λa+(t)g(u) = 0, with

(u(0), u′(0)) ∈ L(π2 ), (u(τ), u′(τ)) ∈ L(−θ̃).

Hence, for some r̃ > 0, θλ(0; τ,−θ̃, r̃) = π
2 + 2kπ for some k ∈ Z. By the fact that −π <

θλ(0; τ,−θ̃, r̃) < π, we conclude that k = 0, namely θλ(0; τ,−θ̃, r̃) = π/2. By standard
connectivity arguments we deduce the existence of an interval [r1, r2] such that

θλ(0; τ,−θ̃, r1) = 0, θλ(τ ; 0,−θ̃, r2) =
π

2

and
0 < θλ(0; τ,−θ̃, r) < π

2
, for every r ∈ ]r1, r2[ .

Set, for 0 ≤ σ ≤ 1,

β0(σ) = ϕλ(0; τ, (r1 + σ(r2 − r1))e−iθ̃).

Then i) and ii) of the statement are clearly satisfied. Moreover, for every σ ∈ [0, 1],

Ψλ(β0(σ)) = ϕλ(τ ; 0, β0(σ)) = (r1 + σ(r2 − r1))e−iθ̃,

which implies that also iv) holds true.

Repeating the previous arguments for θ̂, we get the existence of β1.
Finally, iii) follows from the uniqueness for the solutions to the Cauchy problems.

From now on (and without loss of generality) we label β0 and β1 in such a manner that
β0(0) < β1(0), so that β1 is external with respect to β0 (and viceversa).

Now we fix λ > λ∗ and ε > 0 small. The next lemma shows that small and large points
of the first quadrant S[0, π2 ], on the contrary, rotate little with Ψλ.

Lemma 6.1.5. There exist r < min[0,1] |β0| and R > max[0,1] |β1| such that for every z ∈
S[0, π2 ] with |z| = r or |z| = R, it holds

Ψλ(z) ∈ S[− arctan ε, π2 ].

Proof. Let ε > 0 be fixed as above and consider the corresponding r∗ > 0 given by Lemma
6.1.3. Lemma 6.1.2 implies that there exists r > 0 such that

|z| ≤ r =⇒ |ζλ(t; 0, z)| < r∗, for every t ∈ [0, τ ]. (6.21)

Now, let z ∈ S[0, π2 ] with |z| = r (that is, z = reiα with 0 ≤ α ≤ π
2 ) and consider the angular

coordinate θλ(t; 0, α, r). We claim that

− arctan ε ≤ θλ(τ ; 0, α, r) ≤ π

2
,
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which, in view of (6.20), implies the conclusion. Indeed, being 0 ≤ α ≤ π
2 , from (6.18) we

deduce that θλ(τ ; 0, α, r) ≤ π
2 .

Suppose by contradiction that θλ(τ ; 0, α, r) < − arctan ε. Then, it has to be θλ(t̃; 0, α, r) = 0
for some t̃ ∈ [0, τ ], namely ζλ(t̃; 0, z) = (r̃, 0) for some r̃ > 0. Now, from (6.21) we have that
r̃ < r∗ and so, using Lemma 6.1.3, we get

ζλ(τ ; 0, z) = ζλ(τ ; t̃, ζλ(t̃; 0, z))) ∈ S(− arctan ε, arctan ε),

a contradiction. With a similar argument, we prove the existence of R.

We are now ready to define the first oriented rectangle. Set P̃ = (P,P−), where

P = A[r,R] ∩ S[0, π2 ]

and P− = P−1 ∪ P
−
2 is defined by

P−1 = A[r, r] ∩ S[0, π2 ], P−2 = A[R,R] ∩ S[0, π2 ].

Moreover, we define K0,K1 ⊂ P to be the compact regions of P internal to β̄0 = β0([0, 1])
and external to β̄1 = β1([0, 1]) respectively, as in Figure 6.1. We end this first part of the
proof by defining

r∗ = inf
{
|ζλ(t; 0, z)|

∣∣∣ t ∈ [0, τ ], z ∈ A[r,R] ∩ S[0, π2 ]
}
> 0,

R∗ = sup
{
|ζλ(t; 0, z)|

∣∣∣ t ∈ [0, τ ], z ∈ A[r,R] ∩ S[0, π2 ]
}
< +∞.

(6.22)

Step 2: Study of system (6.10) in the interval [τ, T ]

In this second step, we pass to study the dynamical properties of the solutions to system
(6.10) in the time interval [τ, T ]. This will lead us to the definition of an oriented rectangle

Õ, contained in the fourth quadrant S[−π2 , 0].

For every s ∈ [τ, T ] and for every z = (x, y) ∈ R2, let us denote by uµ(·; s, z) the solution
to the Cauchy problem {

u′′ − µa−(t)g(u) = 0
(u(s), u′(s)) = (x, y),

which is unique and globally defined on [τ, T ]; moreover, we set

ζµ(·; s, z) = (uµ(·; s, z), u′µ(·; s, z)).

Clearly, we have
Ψµ(z) = ζµ(T ; τ, z), for every z ∈ R2,

where Ψµ is defined in (6.13). Finally, let λ, ε > 0 be fixed as in the previous step and define,
for simplicity of notation,

Γ = L[− arctan ε] ∩ A[r∗, R
∗], (6.23)

being r∗, R
∗ defined in (6.22).
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We will be mainly interested in the expansion properties of the map Ψµ. In particular,
Lemma 6.1.6 below shows that points of Γ are mapped by Ψµ into points of the first quadrant
of large norm.

Lemma 6.1.6. There exists µ∗1(λ) > 0 such that for every µ > µ∗1(λ) and for every z ∈ Γ,
it holds

uµ(T ; τ, z) ≥ R and u′µ(T ; τ, z) ≥ R.

Proof. We preliminarily observe that, for every z ∈ Γ,

rε =
r∗√

1 + ε2
≤ uµ(τ ; τ, z) ≤ R∗√

1 + ε2
= Rε,

and
−εRε ≤ u′µ(τ ; τ, z) = −εuµ(τ ; τ, z) ≤ −εrε.

Define r0 = rε/2 and set
gr0 = min

x≥r0
g(x) > 0.

Step 1. We claim that, if µ is sufficiently large, then uµ(t; τ, z) ≥ r0 for every t ∈ [τ, T ].
By contradiction, let t̃ ∈ [τ, T ] be the first instant such that uµ(t̃; τ, z) = r0. Then, we have,
for every t ∈ [τ, t̃],

u′µ(t; τ, z) = u′µ(τ ; τ, z) + µ

∫ t

τ

a−(s)g(uµ(s; τ, z)) ds

≥ u′µ(τ ; τ, z) ≥ −εRε.

Integrating the above inequalities between τ and t̃, we get

r0 − rε ≥ uµ(t̃; τ, z)− uµ(τ ; τ, z) ≥ −εRε(t̃− τ),

which implies that
rε − r0

εRε
≤ t̃− τ. (6.24)

On the other hand we have

0 ≥ u′µ(t̃; τ, z) = u′µ(τ ; τ, z) + µ

∫ t̃

τ

a−(s)g(uµ(s; τ, z)) ds

≥ −εRε + µgr0

∫ t̃

τ

a−(s) ds,

which implies that

µgr0

∫ t̃

τ

a−(s) ds ≤ εRε.

Combining the above inequality with (6.24), we get

µgr0

∫ τ+
rε−r0
εRε

τ

a−(s) ds ≤ µgr0
∫ t̃

τ

a−(s) ds ≤ εRε.
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Since
∫ t̃
τ
a−(s) ds > 0 by Remark 6.1.1, we get a contradiction if µ is large enough.

Step 2. Being uµ(t; τ, z) ≥ r0 for every t ∈ [τ, T ], we have, for every t ∈ [τ, T ],

u′′µ(t; τ, z) = µa−(t)g(uµ(t; τ, z)) ≥ µgr0a−(t);

setting A−(t) =
∫ t
τ
a−(s) ds and integrating we get, for every t ∈ [τ, T ],

u′µ(t; τ, z) ≥ −εRε + µgr0A
−(t). (6.25)

In particular,
u′µ(T ; τ, z) ≥ −εRε + µgr0A

−(T ) ≥ R
if µ is sufficiently large. Finally, (6.25) implies that

uµ(T ; τ, z) = uµ(τ ; τ, z) +

∫ T

τ

u′µ(s; τ, z) ds

≥ rε − εRε(T − τ) + µgr0

∫ T

τ

A−(t) dt ≥ R

for µ large enough.

In our last technical result we look for points of the fourth quadrant which are moved by
Ψµ to L(0). Actually, we show that points of the compact region A[0, R∗] ∩ S[−π2 , 0] which
are moved by Ψµ onto L(0) actually can reach L(0) only in a small neighborhood of the
origin.

Lemma 6.1.7. There exists µ∗2(λ) > 0 such that for every µ > µ∗2(λ) and for every x ≥ r,
it holds

uµ(τ ;T, (x, 0)) ≥ R∗ + 1 and u′µ(τ ;T, (x, 0)) ≤ −(R∗ + 1).

Proof. Defining as above gr = minx≥r g(x), by convexity, we get

uµ(t;T, (x, 0)) ≥ x ≥ r, for every t ∈ [τ, T ].

Moreover, defined B−(t) =
∫ T
t
a−(s) ds, we have for every t ∈ [τ, T ]

u′µ(t;T, (x, 0)) = u′µ(T ;T, (x, 0))− µ
∫ T

t

a−(s)g(uµ(s;T, (x, 0))) ds

≤ −µgrB−(t).

In particular
u′µ(τ ;T, (x, 0)) ≤ −µgrB−(τ) ≤ −(R∗ + 1)

if µ is large enough (being B−(τ) > 0). Finally, integrating we get

uµ(τ ;T, (x, 0)) = uµ(T ;T, (x, 0))−
∫ T

t

u′µ(s;T, (x, 0)) ds

= x−
∫ T

t

u′µ(s;T, (x, 0)) ds

≥ r + µgr

∫ T

τ

B−(s) ds ≥ R∗ + 1
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if µ is large enough.

Set µ∗(λ) = max(µ∗1(λ), µ∗2(λ)) and fix µ > µ∗(λ). We conclude this second step by

defining a second oriented rectangle Õ = (O,O−). We set

O = A[r∗, R
∗] ∩ S[−π2 ,− arctan ε],

with O− = O−1 ∪ O
−
2 given by

O−1 = Γ, O−2 = L[−π2 ] ∩ A[r∗, R
∗]

(recall the definition of Γ in (6.23); see Figure 6.1).

Figure 6.1: A graphical comment to the definition of the sets P and O. The sets K0 and K1 are painted
with a darker color. The parts of the boundaries corresponding to P− and O− are drawn with bold lines.

Step 3: Conclusion

We are in the position to conclude the proof, by applying Theorem 1.3.2 to the Poincaré
map Ψλ,µ of (6.10). As in (6.12), we have

Ψλ,µ = Ψµ ◦Ψλ.

We claim that (Hλ) of Theorem 1.3.2 holds, that is, for i = 0, 1,

(Ki,Ψλ) : P m−→O.

We prove our assertion for the compact set K0; for K1 the argument is very similar and the
details will be omitted. Let γ : [0, 1] → P be a path such that |γ(0)| = r and |γ(1)| = R.
Recalling the definition of r∗ and R∗ in (6.22), we get

r∗ ≤ |Ψλ(γ(σ))| ≤ R∗ , for every σ ∈ [0, 1]. (6.26)



128
Positive solutions to parameter dependent second order ODEs with indefinite

weight: multiplicity and complex dynamics

Now, let α : [0, 1] → R be the unique continuous functions with α(σ) ∈ [0, π2 ] for every

σ ∈ [0, 1] and such that γ(σ) = |γ(σ)|eiα(σ). Consider the continuous function

[0, 1] 3 σ 7→ θλ(τ ; 0, |γ(σ)|, α(σ)).

Let [0, σ1] be the maximal interval such that γ(σ) ∈ K0 for every σ ∈ [0, σ1]. From Lemma
6.1.4 and Lemma 6.1.5 we deduce that

Ψλ(γ(0)) ∈ S[− arctan ε, π2 ] and Ψλ(γ(σ1)) ∈ S[−π,−π2 ].

In view of (6.20), this means that

− arctan ε ≤ θλ(τ ; 0, |γ(0)|, α(0)) ≤ π

2
and − π ≤ θλ(τ ; 0, |γ(σ1)|, α(σ1)) ≤ −π

2
,

which in particular imply that

θλ(τ ; 0, |γ(σ1)|, α(σ1)) < −π
2
< − arctan ε < θλ(τ ; 0, |γ(0)|, α(0)).

By standard connectivity arguments, there exists a subinterval [σ2, σ3] ⊂ [0, σ1] such that

θλ(τ ; 0, |γ(σ2)|, α(σ2)) = − arctan ε, θλ(τ ; 0, |γ(σ3)|, α(σ3)) = −π
2

and
−π

2
< θλ(τ ; 0, |γ(σ)|, α(σ)) < − arctan ε, for every σ ∈ ]σ2, σ3[ .

Being
Ψλ(γ(σ)) = ϕλ(τ ; 0, γ(σ)) = |ϕλ(τ ; 0, γ(σ))|eiθλ(τ ;0,|γ(σ)|,α(σ))

and in view of the radial estimate (6.26), the claim follows.

We claim that (Hµ) of Theorem 1.3.2 holds, that is

(O,Ψµ) : O m−→P.

Indeed, take γ : [0, 1] → O such that γ(0) ∈ O−2 and γ(1) ∈ O−1 = Γ. Writing the angular
coordinate θµ(t; s, α, r) associated with ζµ(t; s, reiα), the fact that g(x) = 0 for x ≤ 0 implies
that relations (6.18), (6.19) hold true for such a coordinate. In particular, we infer that

Ψµ(γ(σ)) ∈ S(−π, π2 ), for every σ ∈ [0, 1] (6.27)

and, moreover,
Ψµ(γ(0)) ∈ S(−π,−π2 ).

On the other hand, Lemma 6.2.3 implies that

Ψµ(γ(1)) ∈ [R,+∞[×[R,+∞[ .

By the intermediate value theorem, and writing Ψµ = (Ψ1
µ,Ψ

2
µ), there exists a subinterval

[σ1, σ2] ⊂ [0, 1] such that

Ψ2
µ(γ(σ1)) = 0, Ψ2

µ(γ(σ2)) = R
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and
0 < Ψ2

µ(γ(σ)) < R, for every σ ∈ ]σ1, σ2[ . (6.28)

Moreover, we have
Ψ1
µ(γ(σ1)) < r;

indeed, if we suppose r ≤ Ψ1
µ(γ(σ1)), then Lemma 6.1.7 would imply that

|γ(σ1)| = |ζµ(τ ;T, ζµ(T ; τ, γ(σ1)))| = |ζµ(τ ;T,Ψµ(γ(σ1)))| ≥ R∗ + 1,

a contradiction. Finally, (6.27) and (6.28) imply that

0 < Ψ1
µ(γ(σ)), for every σ ∈ [σ1, σ2],

and the claim is proved.

The conclusion of the proof of Theorem 6.1.1 now follows from Theorem 1.3.2.

A visual description of the above proof is contained in Figure 6.2.

Figure 6.2: A graphical comment to the proof of Theorem 6.1.1. In the left side of the figure, we see a path
γ(t) joining the opposite sides of P− and its image through Ψλ, σ(t) = Ψλ(γ(t)). The two sub-paths of γ(t)
in purple color are mapped into the orange sub-paths of σ(t), so that (Ki,Ψλ) : P m−→O for i = 1, 2. In the
right side of the figure we see the image of σ(t) through Ψµ. The sub-paths in yellow color are mapped into
the pink sub-paths, showing that (O,Ψµ) : O m−→P. In conclusion, (Ki,Ψλ,µ) : P m−→P for i = 1, 2, obtaining
a “horseshoe geometry”.

Remark 6.1.2. We notice that the estimates performed along the proof of Theorem 6.1.1
and its preliminary lemmas allow the following extensions, without significant modifications
in the arguments.
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(i) Instead of the continuity of a(t), we can suppose a : R→ R measurable, bounded and
T -periodic, provided that there exist δ > 0 and [σ, ρ] ⊂ [0, τ ] such that

a(t) ≥ δ, for a.e. t ∈ [σ, ρ],

and, of course, with (a∗) of Theorem 6.1.1 satisfied for almost every t. In particular, a
piecewise continuous weight a(t) satisfying (a∗) is allowed in Theorem 6.1.1.

(ii) Since both the claims of Step 3 above are stable with respect to small perturbations of
the Poincaré maps Ψλ and Ψµ , we have that Theorem 6.1.1 holds true for the perturbed
equation

u′′ + aλ,µ(t)g(u) + εh(t, u, u′) = 0

for |ε| smaller than a constant depending on (λ, µ) (one has just to repeat the same
arguments as in [142, pp.200-202]). Thus, in particular, one can add a small friction
ε cu′ in (6.6).

(iii) We can also deal with differential equations involving nonlinear differential operators,
as

(φ(u′))′ + aλ,µ(t)g(u) = 0,

with φ : R → R an odd increasing homeomorphism satisfying upper and lower σ-
conditions at the origin and at infinity, like in [86]. Hypotheses (g0) and (g∞) have to
be modified accordingly as, in the new version, they will involve corresponding limits
at zero and at infinity for g(x)/φ(x).

6.1.3 A further result via critical point theory

Theorem 6.1.1 provides a quite rich set of information about the dynamical properties of the
solutions to (6.6). The prizes which have to be paid are the choice of a simple nodal config-
uration for the weight function a(t) (that is, (a∗) of Theorem 6.1.1; we claim, however that
more complicate configurations could be assumed at the expense of heavier computations)
and the (not sharp) choice of a large µ > 0. A natural question is whether such restrictions
can be removed; Theorem 6.1.2 below provides a partial answer in this direction.

Theorem 6.1.2. Let a : R → R be a continuous and T -periodic function of nonconstant
sign and let g : R+ → R be a continuous function, with g(0) = 0 and g(x) > 0 for x > 0,
such that:

(g0) there exists α > 1 such that

lim
x→0+

g(x)

xα
= lα > 0;

(g∞) there exists 0 ≤ β < 1 such that

lim sup
x→+∞

g(x)

xβ
< +∞ and lim

x→+∞

G(x)

x2β
= +∞.



6.2 Superlinear problem: multiple solutions via a shooting technique 131

Then there exists λ∗ > 0 such that, for every λ > λ∗ and for

µ > λ

(∫ T
0
a+(t) dt∫ T

0
a−(t) dt

)
, (6.29)

equation (6.6) has at least two positive T -periodic solutions.

Remark 6.1.3. Conditions (g0) and (g∞) of Theorem 6.1.2 imply that g(x) satisfies (6.7).
Notice that (g∞) may be seen as a generalized Ahmad-Lazer-Paul (nonresonance) condition
at infinity [157] for the potential energy F (t, x) = a(t)G(x). Recall that the classical Ahmad-
Lazer-Paul condition [3] (see also [128, Theorems 1.5 and 4.8] for the periodic problem),

read in our context, requires that
∫ T

0
F (t, x) dt → ±∞ for x → ∞, with f(t, x) = ∂

∂xF (t, x)
bounded, i.e., (g∞) with β = 0. Observe also that (g∞) is satisfied when g(x) has a precise
(sublinear) power-growth at infinity, namely if, for some 0 ≤ β < 1,

(g′∞) lim
x→+∞

g(x)

xβ
= lβ > 0.

Indeed, in this case, l’Hopital rule implies that G(x)
xβ+1 → lβ

β+1 for x→ +∞.

Notice that, since

µ > λ

(∫ T
0
a+(t) dt∫ T

0
a−(t) dt

)
⇐⇒

∫ T

0

aλ,µ(t) dt < 0,

the choice for µ in (6.29) is sharp, see (6.3). The existence of positive subharmonic solutions
to (6.6) under this sharp assumption is still to be investigated.

The proof of Theorem 6.1.2 uses a variational approach on the Sobolev space H1
T = W 1,2

T

of locally absolutely continuous and T -periodic functions with a locally L2-derivative. Indeed
(see for example [128, Corollary 1.1]), T -periodic solutions to (6.6) correspond to critical
points of the C1 functional Iλ,µ : H1

T → R defined by

Iλ,µ(u) =
1

2

∫ T

0

u′(t)2 dt−
∫ T

0

aλ,µ(t)G(u(t)) dt.

Roughly speaking, a first solution can be characterized as a global minimum point for Iλ,µ

on H1
T , while a second one can be provided by a classical Mountain Pass procedure [10].

By maximum-principle arguments, both these solutions can be shown to be nontrivial and
positive. For the complete details of the proof, we refer to [31].

6.2 Superlinear problem: multiple solutions via a shoot-
ing technique

In this section, we address our investigation to the existence of positive periodic solutions to
(6.1), when g′(0) = 0 and g(x) is superlinear at infinity; as far as we know, this problem has
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never been considered explicitly in literature. However, as remarked in the introduction of
the chapter, analogies can be found with the Neumann problem associated with the elliptic
partial differential equation

∆u+ q(x)g(u) = 0, x ∈ Ω ⊂ RN . (6.30)

In the model case g(x) = xγ+1 with γ > 0, problem (6.30) has been extensively studied,
with variational methods strongly depending on the homogeneity of the nonlinear term, by
Berestycki, Capuzzo-Dolcetta and Nirenberg [20], who proved the existence of at least one
positive solution under the mean value condition

∫
Ω
q(x) dx < 0 (compare with (6.3)). The

same conclusion is achieved in [4, 19], for a more general superlinear nonlinearity satisfying
suitable extra assumptions at zero and at infinity (the first paper is based on variational
techniques again, while the second relies on a priori estimates, degree theory and bifurcation
arguments). These results have been subsequently extended to more general equations in-
volving the p-Laplacian operator [145]. However, to the best of our knowledge, no multiplicity
results in the general setting are available in literature.

Our aim is to show that multiple positive T -periodic solutions can appear for

u′′ + aµ(t)g(u) = 0, (6.31)

being:

• aµ(t) = a+(t)−µa−(t), with a+(t), a−(t) the positive and the negative part of a (sign-
indefinite) continuous, T -periodic and even-symmetric function a : R→ R

• g : R+ → R a locally Lipschitz continuous function, with g(0) = 0 and g(x) > 0 for
x > 0, satisfying

lim
x→0+

g(x)

x
= 0, lim

x→+∞

g(x)

x
= +∞. (6.32)

Similarly as in Section 6.1, solutions are found when µ is large enough2 .

Our symmetry condition on the weight function aµ(t) allows us to find T -periodic solution
starting from solutions to an (indefinite superlinear) Neumann problem on [0, T/2]. We then
use shooting type arguments (inspired from a paper by Gaudenzi, Habets and Zanolin [89],
dealing with a Dirichlet problem), combining the oscillatory properties of the solutions in
the intervals of positivity of the weight function with blow-up phenomena in the intervals of
negativity, to analyze the Neumann problem.

The plan of the section is the following. In Subsection 6.2.1 we state our main result
(Theorem 6.2.1), together with some brief comments on the assumptions. Subsection 6.2.2
is devoted to the proof.

6.2.1 Statement of the main result

The main result of the section is the following.

2Comparing with (6.4), we have set here λ = 1, since such a parameter does not play a role.



6.2 Superlinear problem: multiple solutions via a shooting technique 133

Theorem 6.2.1. Let g : R+ → R be a locally Lipschitz continuous function such that
g(0) = 0 and g(x) > 0 for x > 0. Setting G(x) =

∫ x
0
g(ξ) dξ, let us assume that:

(g0) lim
x→0+

g(x)

x
= 0;

(g∞) lim
x→+∞

g(x)

x
= +∞ and

∫ +∞ dx√
G(x)

< +∞;

(g∗∞) lim sup
x→+∞

∫ +∞

x

dξ√
G(ξ)−G(x)

< +∞.

Moreover, let a : R→ R be a continuous, even-symmetric and T -periodic function such that,
for some σ, τ with 0 < σ < τ < T/2,

a(t) ≥ 0, for every t ∈ [0, σ], with
∫ σ

0
a(t) dt > 0,

a(t) ≤ 0, for every t ∈ [σ, τ ], with
∫ τ
σ
a(t) dt < 0,

a(t) ≥ 0, for every t ∈ [τ, T/2], with
∫ T/2
τ

a(t) dt > 0.

Then there exists µ∗ > 0 such that, for every µ > µ∗, equation (6.31) has at least three
positive, even-symmetric, T -periodic solutions.

A few comments about the assumptions are in order. Hypothesis (g0) and the first
condition in (g∞) correspond to (6.32). The second requirement of (g∞) is the well known
Keller-Osserman condition and, according to [37, Theorem 2], it is a necessary condition for
the existence of a solution to (6.31) which blows up in an interval of negativity of aµ(t).
Finally, hypothesis (g∗∞) is a time-map assumption for the autonomous equation

u′′ − g(u+) = 0. (6.33)

In fact, it is immediate to check that (g∗∞) holds true if and only if

lim sup
c→−∞

√
2

∫ +∞

G−1(−c)

dξ√
G(ξ) + c

< +∞ (6.34)

and the integral in (6.34) is just the time for the orbit of (6.33) passing through the point
(G−1(−c), 0). As proved in [137, Appendix], (g∗∞) is fulfilled whenever (g∞) holds true and
one of the following conditions is satisfied:

• for every x large, g(x) ≥ h(x), for some continuous and monotone function h : R+ → R
satisfying (g∞);

• there exists a constant k > 1 such that

lim inf
x→+∞

G(kx)

G(x)
> 1.

It is worth noticing that this last condition is related to the Karamata’s theory of slowly
varying functions [21]. Needless to say, the model nonlinearity g(x) = xγ+1 (with γ > 0)
satisfies all such assumptions (g0), (g∞), (g∗∞).
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6.2.2 Proof of the main result

First of all, we observe that, if u(t) (t ∈ [0, T/2]) is a positive solution to the Neumann
problem {

u′′ + aµ(t)g(u) = 0
u′(0) = u′(T/2) = 0,

(6.35)

then the function defined (with a slight abuse in notation) by u(t) = u(|t|) for t ∈ [−T/2, T/2]
and extended by T -periodicity is a positive and even-symmetric T -periodic solution to (6.31).
Hence, we are going to prove the existence of three positive solutions to (6.35).

Let us fix ρ ∈ ]σ, τ [ and ε, δ > 0 such that

a−(t) ≥ δ, for every t ∈ [ρ− ε, ρ]; (6.36)

as in Section 6.1, moreover, we will identify g(x) with its null extension g0(x), defined in
(6.9). We split our proof into three steps.

Step 1: Forward shooting

For every x ≥ 0 and µ ≥ 0, let uµ(·;x) be the solution to the Cauchy problem{
u′′ + aµ(t)g(u) = 0
(u(0), u′(0)) = (x, 0)

(6.37)

and denote by [0, t+µ (x)[ its maximal interval of (forward) continuability in [0, T/2]; it is a
well known fact in the theory of initial value problems for ODEs that the function x 7→ t+µ (x)
is lower semicontinuous. Set

D+
µ = {x ≥ 0 | t+µ (x) > ρ}

and define the translation operator

ϕµ : D+
µ 3 x 7→ (uµ(ρ;x), u′µ(ρ;x)).

We recall that, for every S ⊂ D+
µ , S and ϕµ(S) are homeomorphic. The final goal of this first

step of the proof is to construct two disjoint intervals contained in D+
µ , whose images under

ϕµ are contained in the right half-plane and connect the y-axis with (+∞,+∞). Precisely,
we will prove the following.

Lemma 6.2.1. There exists µ∗1 > 0 such that, for every µ > µ∗1, there exist ξ1, ξ2, ξ3 with
0 < ξ1 ≤ ξ2 < ξ3 such that:

• [0, ξ1[∪ ]ξ2, ξ3] ⊂ D+
µ ;

• for every x ∈ ]0, ξ1[∪ ]ξ2, ξ3[ , uµ(t;x) > 0 for every t ∈ [0, ρ];

• ϕµ(0) = (0, 0) and ϕµ(ξ3) = (0, R) with R < 0;

• limx→ξ−1
ϕµ(x) = limx→ξ+2

ϕµ(x) = (+∞,+∞).
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The proof of such a lemma is based on a careful study of the behavior of the solutions to
(6.37) in the time interval [0, ρ]. In particular, a special care has to be paid to the blow-up
properties of such solutions. Hence, before passing to the proof of Lemma 6.2.1, we establish
the following auxiliary results.

Lemma 6.2.2. There exist x∗, µ
∗
1 > 0 such that:

i) t+0 (x) = T/2 for every x ≥ 0 and u0(t;x) > 0 for every t ∈ [0, ρ] and x ∈ ]0, x∗];

ii) for every µ ≥ 0, it holds that t+µ (x) > σ for every x ≥ 0 and uµ(t;x) > 0 for every
t ∈ [0, ρ] ∩ [0, t+µ (x)[ and x ∈ ]0, x∗];

iii) for every µ > µ∗1, it holds that t+µ (x∗) ≤ ρ.

Proof. We prove separately the different claims.

The fact that t+0 (x) = T/2 for every x ≥ 0 follows from the observation that g(x) = 0
for every x ≤ 0 and, by concavity, u0(t;x) ≤ x for every t ∈ [0, t0(x)[. Next, define x∗ small
enough such that, for every x ∈ ]0, x∗],

sup
t∈[0,σ],x∈ ]0,x∗]

a+(t)
g(x)

x
<

(
π

2ρ

)2

.

Let us suppose by contradiction that, for some x ∈ ]0, x∗], there exists t∗ ∈ [0, ρ] such that
u0(t∗;x) = 0. Without loss of generality, we can suppose that u0(t;x) > 0 for every t ∈ [0, t∗[ ;
moreover, as observed above, we have that u0(t;x) ≤ x for every t ∈ [0, t∗]. Setting ω = π

2t∗

(and supposing t∗ ∈ [σ, ρ], the other case being even simpler), we get

0 =

[
ωu0(t;x) sin(ωt) + u′0(t;x) cos(ωt)

]t∗
t=0

=

∫ t∗

0

[
ω2 − a0(t)

g(u0(t;x))

u0(t;x)

]
u0(t;x) cos(ωt) dt

=

∫ σ

0

[
ω2 − a+(t)

g(u0(t;x))

u0(t;x)

]
u0(t;x) cos(ωt) dt+

+

∫ t∗

σ

ω2u0(t;x) cos(ωt) dt

≥
∫ σ

0

[(
π

2ρ

)2

− a+(t)
g(u0(t;x))

u0(t;x)

]
u0(t;x) cos(ωt) dt > 0,

which is a contradiction.

Fix µ ≥ 0 and x ≥ 0. Similarly as above, since uµ(t;x) ≤ x for every t ∈ [0, σ]∩ [0, t+µ (x)[
and g(x) = 0 for x ≤ 0, we deduce that t+µ (x) > σ. Moreover, it is clear that uµ(t;x) =
u0(t;x), u′µ(t;x) = u′0(t;x) for every t ∈ [0, σ]. Hence, since u′′µ(·;x) ≥ 0 on [σ, ρ]∩ [σ, t+µ (x)[ ,
we have that uµ(t;x) ≥ u0(t;x) for every t ∈ [0, ρ] ∩ [0, t+µ (x)[ . The conclusion now follows
from point i).
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Let x∗ be as before and suppose by contradiction that there exists µk → +∞ such that
t+µk(x∗) > ρ. As observed in the proof of point ii), and using the fact that u0(·;x∗) is non
increasing and concave, we get that, for every k,

uµk(t;x∗) ≥ u0(t;x∗) ≥ u0(ρ;x∗), for every t ∈ [σ, ρ].

and
u′µk(t;x∗) ≥ u′0(t;x∗) = u′0(σ;x∗), for every t ∈ [σ, ρ].

Set
m = inf

x≥u0(ρ;x∗)
g(x) > 0;

then we have, for every k and for every t ∈ [σ, ρ− ε],

u′µk(t;x∗) = u′µk(σ;x∗) +

∫ t

σ

u′′µk(s;x∗) ds

≥ u′0(σ;x∗) + µk

∫ t

σ

a−(s)g(uµk(s;x∗)) ds

≥ u′0(σ;x∗) + µkm

∫ t

σ

a−(s) ds.

Setting A−(t) =
∫ t
σ
a−(s) ds and integrating on [σ, ρ− ε], we have moreover, for every k,

uµk(ρ− ε;x∗) ≥ uµk(σ;x∗) + u′0(σ;x∗)(ρ− ε− σ) + µkm

∫ ρ−ε

σ

A−(s) ds

≥ u0(σ;x∗) + u′0(σ;x∗)(ρ− ε− σ) + µkm

∫ ρ−ε

σ

A−(s) ds.

Being, in view of (6.36), a−(ρ−ε) ≥ δ, we have that
∫ ρ−ε
σ

A−(s) ds > 0 and
∫ ρ−ε
σ

a−(s) ds > 0;
then we can conclude that

lim
k→+∞

uµk(ρ− ε;x∗) = +∞, (6.38)

lim
k→+∞

u′µk(ρ− ε;x∗) = +∞.

In particular, for k large enough and for every t ∈ ]ρ− ε, ρ],

u′µk(t;x∗) > u′µk(ρ− ε;x∗) ≥ 0. (6.39)

Hence, we get, for every t ∈ ]ρ− ε, ρ],

d

dt

(
1

2
u′µk(t;x∗)

2 − µkδG(uµk(t;x∗)

)
= u′µk(t;x∗)(u

′′
µk

(t;x∗)− µkδg(uµk(t;x∗)))

≥ u′µk(t;x∗)(u
′′
µk

(t;x∗)− µka−(t)g(uµk(t;x∗)))

= 0.

Integrating between ρ− ε and t ∈ [ρ− ε, ρ], we obtain

1

2
u′µk(t;x∗)

2 − µkδG(uµk(t;x∗)) ≥ −µkδG(uµk(ρ− ε;x∗)),
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that is (since, from (6.39), G(uµk(t;x∗)) > G(uµk(ρ− ε;x∗)) for t ∈ ]ρ− ε, ρ])

u′µk(t;x∗)√
2µkδ(G(uµk(t;x∗))−G(uµk(ρ− ε;x∗))

≥ 1.

Then we have

ε =

∫ ρ

ρ−ε
dt ≤

∫ ρ

ρ−ε

u′µk(t;x∗)√
2µkδ(G(uµk(t;x∗))−G(uµk(ρ− ε;x∗))

dt

=

√
1

2µkδ

∫ uµk (ρ;x∗)

uµk (ρ−ε;x∗)

dξ√
G(ξ)−G(uµk(ρ− ε;x∗))

≤
√

1

2µkδ

∫ +∞

uµk (ρ−ε;x∗)

dξ√
G(ξ)−G(uµk(ρ− ε;x∗))

.

Taking into account assumption (g∗∞) and (6.38), we get a contradiction for k large enough.

Lemma 6.2.3. There exists a positive solution (i.e, u(t) > 0 for every t ∈ [0, σ[) to the
boundary value problem {

u′′ + a+(t)g(u) = 0
u′(0) = 0, u(σ) = 0.

(6.40)

Proof. Being a+(t) continuous, with a+ ≥ 0 and a+ 6≡ 0 on [0, σ], [105, Corollary 3.6] implies
that there exists a nontrivial solution to (6.40) such that u(t) > 0 for every t ∈ ]0, σ[ . The
uniqueness for the solutions to the Cauchy problems implies that u(0) > 0, too.

Proof of Lemma 6.2.1. Fix µ > µ∗1. By point ii) of Lemma 6.2.2, t+µ (x) > σ for every x ≥ 0
and hence the set

Eµ = {x > 0 | uµ(t; y) > 0, for every t ∈ [0, σ], y ∈ ]0, x]}

is well defined. Moreover, Eµ is nonempty, since x∗ ∈ Eµ, as a consequence of point ii) of
Lemma 6.2.2 again. Set ξ = sup Eµ; in view of Lemma 6.2.3, x∗ < ξ < +∞. Next define the
set

Fµ = {x ∈ [0, ξ] | t+µ (x) ≤ ρ};
again this set is nonempty since x∗ ∈ Fµ, as consequence of point iii) of Lemma 6.2.2. Set
ξ1 = inf Fµ and ξ2 = supFµ. Since t+µ (x) is lower semicontinuous, Fµ is a closed set; being
0, ξ /∈ Fµ, we deduce that 0 < ξ1 ≤ x∗ ≤ ξ2 < ξ. Moreover, by construction it holds that
[0, ξ1[∪ ]ξ2, ξ] ⊂ D+

µ and, in view of point ii) of Lemma 6.2.2, we know that uµ(t;x) > 0, for
every t ∈ [0, ρ] and x ∈ ]0, ξ1[ . We claim that

lim
x→ξ−1

ϕµ(x) = lim
x→ξ+2

ϕµ(x) = (+∞,+∞). (6.41)

Just to fix the ideas, we prove the relation for x→ ξ+
2 . We first verify that limx→ξ+2

uµ(ρ;x) =

+∞. Let us suppose by contradiction that, for a sequence xk → ξ+
2 , uµ(ρ;xk) ≤ M and fix

η > 0 small. Since uµ(·;xk)→ uµ(·; ξ2) in C1([0, σ]), we have that, for k large enough,

|uµ(σ;xk)− uµ(σ; ξ2)| ≤ η, |u′µ(σ;xk)− u′µ(σ; ξ2)| ≤ η.
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By convexity arguments, it is easy to see that, for k large enough and for every t ∈ [0, ρ],

(u′µ(σ; ξ2)− η)(ρ− σ) + uµ(σ; ξ2)− η ≤ uµ(t;xk) ≤ max(ξ2 + η,M); (6.42)

hence, the sequence uµ(·;xk) is uniformly bounded on [0, ρ]. Moreover, since u′′µ(t;xk) =

aµ(t)g(uµ(t;xk)) and u′µ(t;xk) =
∫ t

0
u′′µ(s;xk) ds, we conclude that uµ(·;xk) is bounded in

C2([0, ρ]). Hence, up to subsequences, uµ(·;xk) converges (weakly in W 2,2(0, ρ) and strongly
in C1([0, ρ])) to a function uµ(t) with uµ(0) = ξ2, u′µ(0) = 0 and such that

u′′µ(t) + aµ(t)g(uµ(t)) = 0, for every t ∈ [0, ρ].

Since ξ2 ∈ Fµ (recall that Fµ is a closed set), this is a contradiction. To conclude the proof
of (6.41), it is sufficient to observe that, by convexity of uµ(·;x) on [σ, ρ],

u′µ(ρ;x) ≥ uµ(ρ;x)− uµ(σ;x)

ρ− σ

and that the right-hand side goes to infinity as x→ ξ+
2 , since 0 < uµ(σ;x) ≤ x. Notice that

for x→ ξ−1 the proof is even simpler because, in (6.42), we know that uµ(t;xk) > 0 for every
t ∈ [0, ρ] and every xk < ξ1.
Observe now that relation (6.41) implies that uµ(t;x) > 0 for every t ∈ [0, ρ] and for x in a
right neighborhood of ξ2. Indeed, if uµ(t̃;x) ≤ 0 for some t̃ ∈ [0, ρ], then uµ(ρ;x) ≤ 0 too.
Thus, the set

Gµ = {x ∈ ]ξ2, ξ] | uµ(t; y) > 0, for every t ∈ [0, ρ], y ∈ ]ξ2, x]}

is nonempty and we set ξ3 = supGµ. It is easily seen that ξ2 < ξ3 < ξ and that ϕµ(ξ3) = (0, R)
with R < 0. Moreover, by definition, uµ(t;x) > 0 for every t ∈ [0, ρ] and for every x ∈ ]ξ2, ξ3[ .
Recalling (6.41), the proof is concluded.

Step 2: Backward shooting

This second step is completely symmetric to the previous one. Define, for x ≥ 0 and µ ≥ 0,
vµ(·;x) as the unique backward solution to the Cauchy problem{

v′′ + aµ(t)g(v) = 0
(v(T/2), v′(T/2)) = (x, 0)

and denote by ]t−µ (x), T/2] its maximal interval of (backward) continuability in [0, T/2]. Then
x 7→ t−µ (x) is upper semicontinuous and we can define the set

D−µ = {x ≥ 0 | t−µ (x) < ρ}

and the translation operator

ψµ : D−µ 3 x 7→ (vµ(ρ;x), v′µ(ρ;x)).

We can prove the following analogous of Lemma 6.2.1.
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Lemma 6.2.4. There exists µ∗2 > 0 such that, for every µ > µ∗2, there exist η1, η2, η3 with
0 < η1 ≤ η2 < η3 such that:

• [0, η1[∪ ]η2, η3] ⊂ D−µ ;

• for every x ∈ ]0, η1[∪ ]η2, η3[ , vµ(t;x) > 0 for every t ∈ [ρ, T ];

• ψµ(0) = (0, 0) and ψµ(η3) = (0, S) with S > 0;

• limx→η−1
ψµ(x) = limx→η+2

ψµ(x) = (+∞,−∞).

Step 3: Conclusion

Define µ∗ = max{µ∗1, µ∗2} and fix µ > µ∗. By standard connectivity arguments, the fol-
lowing facts hold true:

• ϕµ(]0, ξ1[) intersects ψµ(]η2, η3[);

• ψµ(]0, η1[) intersects ϕµ(]ξ2, ξ3[);

• ϕµ(]ξ2, ξ3[) intersects ψµ(]η2, η3[).

These intersection points are pairwise distinct because of the uniqueness for the solutions to
the Cauchy problems and it is clear that each of them corresponds to a value (u(ρ), u′(ρ)) of
a positive solution to the Neumann problem (6.35).

A numerical simulation is plotted in Figure 6.2.2 below.

Figure 6.3: A numerical experiment, plotting the three solutions to the Neumann problem on [0, T/2]
associated with u′′ + (a+(t) − µa−(t))g(u) = 0. Here, T = 6, g(x) = x2, µ = 15, a+(t) = 0.9 sin(πt) for
0 ≤ t ≤ 1, = 0 for 0 ≤ t ≤ 2, = sin(πt) for 2 ≤ t ≤ 3 and a−(t) = 0 for 0 ≤ t ≤ 1, = − sin(πt) for 0 ≤ t ≤ 2,
= 0 for 2 ≤ t ≤ 3. Solutions are plotted in the phase-plane {(u, u′)} (figure on the left) and in the plane
{(t, u(t))} (figure on the right).
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[23] G.D. Birkhoff, An extension of Poincaré’s last geometric theorem, Acta Math. 47 (1926), 297–311.

[24] D. Bonheure, J.M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems
with sign-changing weight, J. Differential Equations 214 (2005), 36–64.

[25] A. Boscaggin, A note on a superlinear indefinite Neumann problem with multiple positive solutions,
J. Math. Anal. Appl. 377 (2011), 259–268.

[26] A. Boscaggin, Subharmonic solutions of planar Hamiltonian systems: a rotation number approach,
Adv. Nonlinear Stud. 11 (2011), 77–103.

[27] A. Boscaggin, Subharmonic solutions of planar Hamiltonian systems via the Poincaré-Birkhoff theo-
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[51] F. Dalbono and C. Rebelo, Poincaré-Birkhoff fixed point theorem and periodic solutions of asymptot-
ically linear planar Hamiltonian systems, Rend. Sem. Mat. Univ. Politec. Torino 60 (2002), 233–263.

[52] W. Dambrosio, Time-map techniques for some boundary value problems, Rocky Mountain J. Math.
28 (1998), 885–926.

[53] E.N. Dancer, On the use of asymptotics in nonlinear boundary value problems, Ann. Mat. Pura Appl.
(4) 131 (1982), 167-185.

[54] E.N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions, J. Dynam.
Differential Equations 6 (1994), 631–637.

[55] C. De Coster and P. Habets, Two-point Boundary Value Problems: Lower and Upper Solutions,
Mathematics in Science and Engineering 205, Elsevier B. V., Amsterdam, 2006.

[56] D.G. De Figueiredo, Positive solutions of semilinear elliptic problems, Differential equations (São
Paulo, 1981), pp. 34–87, Lecture Notes in Math. 957, Springer, Berlin-New York, 1982.

[57] J.P. Den Hartog, Mechanical Vibrations, Dover, New York, 1985.



144 BIBLIOGRAPHY

[58] T. Ding, R. Iannacci and F. Zanolin, Existence and multiplicity results for periodic solutions of semi-
linear Duffing equations, J. Differential Equations 105 (1993), 364–409.

[59] T. Ding and F. Zanolin, Subharmonic solutions of second order nonlinear equations: a time-map
approach, Nonlinear Anal. 20 (1993), 509–532.

[60] T. Ding and F. Zanolin, Periodic solutions and subharmonic solutions for a class of planar systems of
Lotka-Volterra type, World Congress of Nonlinear Analysts ’92, Vol. I-IV (Tampa, FL, 1992), 395–406,
de Gruyter, Berlin, 1996.

[61] W.Y. Ding, Fixed point of twist mappings and periodic solutions of ordinary differential equations,
Acta Math. Sinica 25 (1982), 227–235 (Chinese).
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(2006), 1097–1098.
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[92] C. Golé, Symplectic twist maps. Global variational techniques, Advanced Series in Nonlinear Dynamics
18, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.
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“La vita è una lunga lezione di umiltà.” (J.M. Barrie)
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un po’ mio;

grazie a mio nonno Giovanni e ai suoi ragù;
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