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Introduction

Motivation

The study of knotted polymers dates back to the early sixties when Frisch and Wasser-
man [38] and Delbriick [26] published two important papers in which they discussed
the possible occurrence and consequences of knots in circular synthetic polymers and in
biopolymers. In particular they correctly conjectured (see ref. [131]) that the knotting
probability of a polymer goes to one with increasing polymer length. The subsequent
discovery of circular [30, 152, [144] and knotted DNA [69, [68] [68], 123] showed that knots
are indeed common in biopolymers, and raised a great interest in understanding their
physical and functional implications. In the years following those seminal studies, the
improvement of electrophoretic techniques allowed researchers to estimate the probability
of formation of different kinds of knots [129] [54], 147], i.e. the knot spectrum, under
several conditions. Using the information from the knot spectrum it was possible to un-
derstand the mechanism by which several enzymes process DNA [150, 127, 126, 122, [14],
the value of DNA effective radius as a function of the concentration of monovalent
counterions [120], 123], and more recently even the properties of DNA encapsidated in
some bacteriophage capsids [9] 8, 80].

Nowadays, thanks to the advent of micromanipulation techniques, experimentalist are
able to tie knots in single polymers and study their effects on the polymer properties
as well as their mobility along the polymer backbone. Using optical tweezers, Arai and
coworkers were able to tie knots in actin filaments [5]. Testing the filaments resistance
to stretching they found that knots tighten under stretching, causing the rupture of
the filament as suggested by the numerical investigation of Saitta et al. [121]. As a
consequence, the tensile resistance of a polymer is severely decreased by the presence of
a knot. Furthermore Bao and Quake [13] showed how knots diffuse along stretched DNA

and rationalized the results on the basis of reptation theory.

Given the difficulty of an analytical treatment of knotting, theoretical studies on knots
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in polymer have been mainly computational] Since the first seminal studies on knotting
probabilities [148], numerical simulations of polymer rings have been used to characterize
the knotting probability for polymer rings of increasing contour length [60], 137, [102]
under several physical conditions (e.g. polymer thickness, degree of confinement, globular
polymers, etc.) [89, 59 120, [74, [8, 9], 86, 87, [80]. Those studies have been proved to be
of fundamental importance in conjunction with experimental knot spectra to ascertain
DNA characteristics in several conditions.

Computational studies have been widely adopted to investigate the influence of knots on
polymers as well. Geometrical properties like the radius of gyration of polymer rings have
been shown to be topology dependent for short rings [109] [54] as well as highly charged
rings like DNA, a fact which can be used to characterize electrophoresis results [129, [147].
On the other hand very long polymer rings seems to behave like unknots, a fact which
can be explained with knots becoming localized along the ring [100, I0I]. This knot
localization has been recently experimentally confirmed for adsorbed double-stranded
DNA [33].

Simulations of tensioned DNA [I5], 84], 48] showed that knots can diffuse along tensioned
filaments, with a diffusion coefficient arguably depending on the tightness of the knot.
Computationally it has also been demonstrated that knots affect polymer translocation
through a pore [114], possibly affecting genome ejection from bacteriophages |81, 80]

The historical perspective we presented highlights a two-way relationship between
physical and topological properties of polymers. On one hand, physical interactions and
geometrical constraints affect polymers knotting probabilities, measured by the knot
spectrum. On the other hand, we saw that the presence of a knot on a polymer affects
its physical and geometrical properties.

In this thesis we investigate numerically the relationship between topological and
geometrical entanglement and their relationship with physical properties of biopolymers,
particularly DNA. Since many biopolymers and particularly DNA are often subject both
to confinement inside regions with calliper size that is smaller than their contour length
(e.g. the Eukariotic nucleus, mitochondria, bacteria, bacteriophage capsids..) and to
geometrical entanglement due to the presence of other polymers in high density solutions,
we will dedicate particular effort to clarify the relationships between topological and

geometrical /physical properties of polymers in these two situations. A key element of

!Notably, one of the few analytical results is the theorem by Sumners and Whittington, proving that
with increasing polymer length the probability of finding a knot goes to one [I31]

vi



our study will be the characterization of the degree of localization (tightness) of the knot

in all the considered circumstances.

Outline of the Thesis

We provide hereafter a summary of the Thesis organization. Chapter [I] contains a short
introduction to the mathematical theory of knots. Starting from the mathematical
definition of knotting, we introduce the fundamental concepts and knot properties used
throughout this Thesis.

In chapter [2| we tackle the problem of measuring the degree of localization of a knot.
This is in general a very challenging task, involving the assignment of a topological state
to open arcs of the ring. To assign a topological state to an open arc, one must first close it
into a ring whose topological state can be assessed using the tools introduced in chapter
Consequently, the resulting topological state may depend on the specific closure scheme
that is followed. To reduce this ambiguity we introduce a novel closure scheme, the
manimally-interfering closure. We prove the robustness of the minimally-interfering
closure by comparing its results against several standard closure schemes.

We further show that the identified knotted portion depends also on the search
algorithm adopted to find it. The knot search algorithms adopted in literature can be
divided in two general categories: bottom-up searches and top-down searches. We show
that bottom-up and knot-down searches give in general different results for the length of
a knot, the difference increasing with increasing length of the polymer rings. We suggest
that this systematic difference can explain the discrepancies between previous numerical
results on the scaling behaviour of the knot length with increasing length of polymer
rings in good solvent.

In chapter [3| we investigate the mutual entanglement between multiple prime knots
tied on the same ring. Knots like these, which can be decomposed into simpler ones, are
called composite knots and dominate the knot spectrum of sufficiently long polymers [131].
Since prime knots are expected to localize to point-like decorations for asymptotically
large chain lengths, it is expected that composite knots should factorize into separate
prime components [101], [82] [43| [IT]. Therefore the asymptotic properties of composite
knots should merely depend on the number of prime components (factor knots) by which

they are formed [101], 82], 43| 11| and the properties of the single prime components should
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be largely independent from the presence of other knots on the ring. We show that this
factorization into separate prime components is only partial for composite knots which
are dominant in an equilibrium population of Freely Jointed Rings. As a consequence
the properties of those prime knots which are found as separate along the chain depend
on the number of knots tied on it. We further show that these results can be explained
using a transparent one-dimensional model in which prime knots are substituted with
paraknots.

Chapters [] [f] and [6] are dedicated to investigate the interplay between topological
entanglement and geometrical entanglement produced either by surrounding rings in a
dense solution or spherical confinement.

In chapter [4] we investigate the equilibrium and kinetic properties of solutions of
model ring polymers, modulating the interplay of inter- and intra-chain entanglement by
varying both solution density (from infinite dilution up to ~ 40% volume occupancy) and
ring topology (by considering unknotted and trefoil-knotted chains). The equilibrium
metric properties of rings with either topology are found to be only weakly affected
by the increase of solution density. Even at the highest density, the average ring size,
shape anisotropy and length of the knotted region differ at most by 40% from those
of isolated rings. Conversely, kinetics are strongly affected by the degree of inter-chain
entanglement: for both unknots and trefoils the characteristic times of ring size relaxation,
reorientation and diffusion change by one order of magnitude across the considered range
of concentrations. Yet, significant topology-dependent differences in kinetics are observed
only for very dilute solutions (much below the ring overlap threshold). For knotted rings,
the slowest kinetic process is found to correspond to the diffusion of the knotted region
along the ring backbone.

In chapter [5| we study the interplay of geometrical and topological entanglement in
semiflexible knotted polymer rings under spherical confinement. We first characterize
how the top-down knot length [, depends on the ring contour length, L. and the radius of
the confining sphere, R.. In the no- and strong-confinement cases we observe weak knot
localization and complete knot delocalization, respectively. We show that the complex
interplay of [, L. and R. that seamlessly bridges these two limits can be encompassed
by a simple scaling argument based on deflection theory. We then move to study the
behaviour of the bottom-up knot length [, under the same conditions and observe
that it follows a qualitatively different behaviour from [, decreasing upon increasing

confinement. The behaviour of [ is rationalized using the same argument based on
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deflection theory. The qualitative difference between the two knot lengths highlights a
multiscale character of the entanglement emerging upon increasing confinement.

Finally, in chapter [6] we adopt a complementary approach, using topological analy-
sis (the properties of the knot spectrum) to infer the physical properties of packaged
bacteriophage genome. With their um long dsDNA genome packaged inside capsids
whose diameter are in the 50 — 80 nm range, bacteriophages bring the highest level of
compactification and arguably the simplest example of genome organization in living
organisms [31], 40]. Cryo-em studies showed that DNA in bacteriophages epsilon-15 and
phi-29 is neatly ordered in concentric shells close to the capsid wall, while an increasing
level of disorder was measured when moving away from the capsid internal surface. On
the other hand the detected spectrum of knots formed by DNA that is circularised
inside the P4 viral capsid showed that DNA tends to be knotted with high probability,
with a knot spectrum characterized by complex knots and biased towards torus knots
and against achiral ones. Existing coarse-grain DNA models, while being capable of
reproducing the salient physical aspects of free, unconstrained DNA, are not able to
reproduce the experimentally observed features of packaged viral DNA. We show, using
stochastic simulation techniques, that both the shell ordering and the knot spectrum
can be reproduced quantitatively if one accounts for the preference of contacting DNA
strands to juxtapose at a small twist angle, as in cholesteric liquid crystals.

The material presented in this thesis is largely based on the following articles:

e L. Tubiana, E. Orlandini and C. Micheletti, Probing the entanglement and locating
knots in ring polymers: a comparative study of different arc closure schemes,
Progress of Theoretical Physics Supplement 191, 192-204, December 2011.

e A. Rosa, E. Orlandini, L. Tubiana and C. Micheletti, Structure and dynamics of
ring polymers: entanglement effects because of solution density and ring topology,
Macromolecules 44, 8668-8680, October 2011.

e L. Tubiana, E. Orlandini and C. Micheletti, Multiscale entanglement in ring poly-
mers under spherical confinement, Physical Review Letters 107, 188302-188306,
October 2011.

e D. Marenduzzo, E. Orlandini, A. Stasiak, D.W. Sumners, L. Tubiana and C.
Micheletti, DNA-DNA interactions in bacteriophage capsids are responsible for the
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observed DNA knotting, Proceedings of the National Academy of Sciences of the
U.S.A. 106, 22269-22274, December 2009.



Chapter 1

A short introduction to knot theory

1.1 Basic introduction to knot theory

In this section we provide a basic introduction to knot theory, tailored on the topics of
interest in this thesis. For an extensive introduction to the subject we refer the interested
reader to the books by Adams [I], Livingston [70] and Cromwell [24].

1.1.1 Knot definition

From our daily experience, we are used to think of knots as entanglements in ropes,
made by tying or interweaving a rope so that it can bind to itself. On the other hand in
defining a knot mathematically one wants to preserve its fundamental properties, dictated
by the way it is tied, abstracting away all those physical properties which depend on
particular conditions like the thickness of the rope, its friction coefficient, the tightness
of the knot, etc. To do so imagine to tie a knot in a very thin string made of highly
deformable, frictionless rubber and then glue the ends of the string together, as depicted
in Fig. Now the knot is trapped in the rubber ring. No matter how we deform the
rubber ring, we can not untie the knot or change it to another knot without cutting
open the ring. If we take the rubber ring to be infinitely thin and perfectly flexible,
we have abstracted away all physical properties related to the string. Similarly a knot
can be defined mathematically as an embedding of the circle S! in euclidean space R3.
Two embeddings are said to be equivalent and to describe the same knot if there exists
an ambient isotopy transforming one into the other. An ambient isotopy of a space
X C R® — R3 is an isotopy of R? that carries X with it. To picture it, imagine the knot
as a thin thread embedded in a viscous fluid, like honey. Stirring the honey causes the

thread to move and change conformation in response [24]. The use of ambient isotopies
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Figure 1.1: To be suitable to mathematical analysis a physical knot (depicted on the left) must
be closed. Knot theory works on idealized knots like the one depicted on the right.

guarantees that pathological behaviours such as the unknotting depicted in Fig. [1.2] are

|
@ DT S

Figure 1.2: Bachelors’ unknotting: a continuous isotopy which makes a knot vanish into a
point.

avoided.

The definition of knot we introduced is very general and allows also for knots which
can not be tied with “real” ropes or threads, such as the one in Fig. Such knots are
known as “wild knots”. To avoid such pathological behaviour while at the same time
being able to describe all physically representable knots, knots which can be tied with
physical objects such as strings or polymers, one restricts the set of admissible curves.

It is intuitive and it can be proved [24], that all physically representable knots, known
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limit point

b)

Figure 1.3: a) A trivial knot, K,, made by n repetitions of the tangle shown in the box.
Clearly, even if the pattern is repeated an infinite number of times the resulting knot will still
be trivial. b) A wild knot, K, made by repeating the tangle an infinite number of times
while reducing it by a constant factor. In this case it is possible to prove that K., is not a
trivial knot [24].

as tame knots, can be described using piecewise-linear curves. We therefore limit our

definition of knot to the following.
Definition 1 (Knot). A knot is a simple closed polygonal curve in R3.

Here simple means that no intersections of edges are possible apart for the intersection

of two successive edges at each vertex of the polygon.

1.1.2 Knot tabulation

At the heart of knot theory lies the task of distinguishing and tabulating knots. Knots
can be represented pictorially through (regular) knot diagrams, planar projections of the
three-dimensional embedding, whose only singular points are transverse double points
where two strands cross each other. Underpassing strands in every crossings are drawn
interrupted in order to carry the information on the relative height of the strands, as in
Fig. [1.1] (c)f]

The same knot can be represented by infinitely many diagrams, as every change of its

three-dimensional embedding produces a different projection. It is possible to show that

More generally, a (non-regular) knot diagram can involve singular points which are not double points.
It can be proven that tame knots always have a regular knot diagram. Therefore in the following we
will tacitly assume we are working with regular knot diagrams.
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Figure 1.4: a) Reidemeister moves. b) Diagram equivalence relations through Reidemeister
moves. The two diagrams on the left both represent the unknot and can be transformed
one into the other trough a sequence of Reidemeister moves. The same is true for the two
diagrams on the right, representing a trefoil knot. No set of Reidemeister moves exists which
can transform one of the diagrams on the left (right) into one of the diagrams on the right

(left).

type 1

two diagrams represent the same knot through the use of Reidemeister moves. These
three moves, represented in Fig[l.4] together with an isotopy of the plane, cover all
possible topology preserving deformations of a knot diagram. It can be proved that two
knots are equivalent if and only if their diagrams can be made identical in this way.
Knots can be characterised through topological invariants, whose values depend only
on the kind of knot but not on its geometrical representation or projection. There are
several kinds of topological invariants, the most famous one being the minimal crossing
number C' of a knot, which is defined as the minimum number of crossings appearing in
any diagram of the knot. The knot diagram having the minimum number of crossing is
called the minimal diagram of the knot. Knots are conventionally tabulated according to
their crossing number, as in Fig. [[.5] Knots with the same crossing number are labelled

with an increasing index to distinguish them, like for example knots 5; and 5,.

1.1.3 Prime and composite knots

Knots can be added up trough a procedure called connected sum, which is equivalent to
tie several knots on the same rope (see Fig[L.5]b)). It is intuitive and it can be proved

that it is not possible to reduce a knot to a trivial knot 0; by summing another knot to
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Figure 1.5: a) Knot diagrams of simple knots up to crossing number 6. A broken line in a
diagram indicates where a part of the curve underpass another part. b) Knot diagrams of
two composite knots with two components.

it, so no “antiknot” exists. A knot 7#7’ obtained by the connected sum of knots 7 and
7’ is called a composite knot, while 7 and 7" are called factor knots of 7#71’. Clearly the
trivial knot 0; is a factor knot of all knots: 7#0; = 7. A knot 7 which admits as factor
knots only itself and the trivial knot is called a prime knot in analogy to prime numbers.
Knot composition has the following important properties: i) it is associative, ii) it is
commutative, 747" = 7'#7 and iii) every composite knot admits a unique decomposition

in prime factor knots.

1.1.4 Some properties of knots

Different knots can show different properties and can be divided in families on the basis
of the properties they share. In this thesis we will consider in particular the concept of
chirality of knots, as well as torus and twist knot families.

A knot is said to be chiral if there exist no ambient isotopy bringing an embedding of
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the knot to its specular image. A typical example is the trefoil knot (see Figll.6). On
the other hand a knot whose embeddings can always be transformed into their specular
images is called achiral. Between the simple knots reported in Fig. only knots 4; and

65 are achiral. When working with simple knots with less than eight crossings there is a

Figure 1.6: The two enantiomers of trefoil knot are topologically distinct.

straightforward method to distinguish the two enantiomers. First attach an orientation
to the knot diagram. The crossings of an oriented diagram can be only of the two kinds
shown in Fig. [I.1.4] called positive or negative according to the right-hand rule. Summing
+1 for all positive crossings of a knot diagram and —1 for all negative crossings one can
assign a + or — sign to the knot, distinguishing its chirality, as in Fig. [I.6] For knots
with 8 or more crossings this algorithm is not guaranteed to work anymore, as in the
case of the famous Perko knots, which have been found to be different diagrams of the

same knot.

Torus knot are characterized by the fact that they can be drawn as a nonintersecting
continuous closed curve on the surface of a standardly embedded torus (see Fig. [1.§]).

Torus knots have many important properties, in particular all torus knots are chiral.

Twist knots can be tied by twisting a ring n times and then clamping the free loops
together (see Fig. . In Fig. twist knots are 31, 41, 52 and 6;.Twist knots can be

either chiral or achiral.
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k i i k

(+) (-)

Figure 1.7: Positive and negative crossings are defined through the right-hand rule. Labels
are used for the computation of the Alexander Polynomial.

Figure 1.8: The two torus knots with less than 7 crossings: 31 (left) and 5; (right).

0 () ()

Figure 1.9: Twist knots can be tied by taking a ring (a), twisting it keeping two loops (b) and
clamping together the two loops (c).

1.1.5 The Alexander Polynomial

As we pointed out in § it is crucial to be able to distinguish different knots
from each others, independently of their particular embedding. Several topological

invariant have been devised during the past years, the most used in numerical studies
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Figure 1.10: Computing the Alexander polynomial for two different knots. A 3; on the left
and an unknot on the right. Note that the unknot diagram is not minimal.
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being algebraic invariants like knot groups, Vassiliev invariants, Jones, HOMFLY and

Alexander polynomials. In this thesis we often use the Alexander polynomial to distinguish

simple knots from each others. The Alexander polynomial is defined for a regular knot

diagram in terms of a single variable ¢ and can be implemented on a computer using the

following algorithm (see for example [148§]).

1.

Assign an orientation to the knot diagram and establish the sign of each crossing
following the right-hand rule as in Fig. [1.1.4]

Starting from an arbitrary non-crossing point of the diagram, 0, follow the ring

orientation and assign an increasing numbering index to all the undercrossings.

Consider arcs as going from an undercrossing to the next one. Starting from point
0 and following the orientation, assign an increasing numbering index to all the

arcs in the diagram.

Define an n x n matrix M(t, 7). The rows of M correspond to the crossings of the
diagram, the columns to the arcs. For every crossing x we assume for definiteness
that the arc ¢ passes over arcs j and k. The matrix is constructed starting from
a matrix with all entries equal to zero and summing the following values for the
entries M(x, 1), M(z, j), M(z, k) of all crossings .

o If = is a positive crossing, M(z,i) = +1 —t, M(z,j) = —1, M(x, k) = +t
e If x is a negative crossing, M(z,i) = +1 — ¢, M(z,j) = +t, M(z, k) = —1.
e Ifi=Fkori=j, M(z,j) =1 and M(z, k) = —1 irrespective of the crossing’s

sign.

Compute any minor of order n — 1 of the matrix M and multiply it by a quantity
+t™, —m € N in such a way that the resulting polynomial does not contain
negative powers, and has a positive constant term. Such a minor is the (irreducible)

Alexander polynomial A(t;7) of the knot 7.

The calculation of the Alexander polynomial for a 4; knot and for a trivial knot with a

similar projection is reported in Fig. [I.10] The Alexander polynomial does not depend

on the particular knot diagram used to calculate it, but only on the knot type and is

therefore a topological invariant [2].
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Exchanging positive and negative crossings for all crossings, does not change the
resulting Alexander polynomial, which therefore is unable to distinguish between two
enantiomers of a chiral knot, like (4)3; and (—)3;. Another useful property of the
Alexander polynomial is that for a composite knot A(t; mi#7) = A(t; 7)) A(t; 7).

The Alexander polynomial is not a very powerful discriminator, as several knots can
have the same polynomial. This is true for all known knot polynomials although some are
more powerful than others in discriminating different knots. Between the simple knots
with less than eleven crossings only six of them share the same Alexander polynomial,
making it a convenient topological discriminator for numerical works thanks to its small
computational cost. In this thesis the Alexander polynomial is used to distinguish knots
with less than eight crossings, for which there is no ambiguity. As in many computation
works, we will not compute the whole polynomial, but rather its values in £ = —1 and
t = -2, A(—1) and A(—2) which allow one to distinguish the first 84 prime knots [2].

We note here that the computational cost of computing the Alexander matrix grows
with the number of crossings in a projection. To reduce this cost it is customary to
transform knots projections into equivalent ones with fewer crossings, for example by using
Reidemeister moves. Another possible approach is to transform the three-dimensional
embedding of the knot in a simpler one without changing its topology. Working with
piecewise linear knots, i.e. polygons, one can considerably reduce the complexity of
their projections by reducing the number of edges of the polygons without changing the
topology of the knots. In this thesis we follow this latter approach. Our simplification
scheme is a generalization of the well known rectification scheme [60], 137, 132} 145] and
is described in detail in §

10



Chapter 2

Probing the entanglement and locating knots

in ring polymers

It is known that the global topological state of a ring polymer affects its salient physical
properties such as its size [27],02] sedimentation velocity, gel-electrophoretic mobility [129]
151), T03], resistance to mechanical stretching [121, 5], and velocity of translocation
through a pore [114].

While a comprehensive understanding of this phenomenon is still lacking, it is often
explicitly or implicitly acknowledged that topology-dependent physical properties arise
because of a sophisticated interplay of polymer geometry and topology. In other words,
the global topological state affects the average geometrical properties of the polymer,
which in turn directly impact various physical properties such as those mentioned above.

A vivid illustration of this relationship is offered by the mechanical resistance of a
knotted polymer that is pulled at both ends. The breaking force depends on the topological
state of the polymer. Indeed, the rupture point is invariably in correspondence of the
knot [121], 5] which is progressively tightened by the pulling action. The above example
highlights a very important player in the relationship between the topological, geometrical
and physical properties of a ring polymer (or a polymer with constrained ends), namely
the degree of localization of the topologically-entangled region [99]. While locating a
tight knot on a rope by visual inspection is straightforward, to locate a generic, possibly
loose knot on a polymer of known topology can be highly challenging. To accomplish this
task one needs to assign a topological signature to any portion, or arc, of the polymer
and then select the shortest arc(s) whose topology matches that of the whole ring. Such
procedure presents two difficulties. The first and more obvious one is that assigning a
topology to a subportion of a polymer presents the same ambiguities faced in assigning a

topology to an open polymer. In order to do so one has to close the arc into a ring in
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Chapter 2 Probing the entanglement and locating knots in ring polymers

a suitable way and measure the topology of such ring. This operation can itself alter
the measured topology if the closure interferes with the arc to be closed, for example by
piercing through a loop. The second, more subtle, difficulty lies in the way one looks for
the smallest arc having the same topology of the whole polymer. As we will see for the
case of polymer rings different algorithms to locate the knotted portion result in different
entanglements being measured. This fact may explain some of the discrepancies in the

known results on knot localization.

In this chapter we tackle both difficulties involved in locating the knotted portion
of a knotted ring polymer. We start in § by introducing the minimally-interfering
closure scheme, a new fast and robust algorithm we developed to assign a topological
status to open chains. In § [2.2] we compare the minimally-interfering closure against
three different closure schemes of common use: the direct bridging closure, the radial
closure [75] and the stochastic closure [90]. The comparison is performed by computing
the knot matrix of three trefoil knotted freely jointed rings of increasing compactness
and geometrical complexity. From the comparative investigation we ascertain that for
the ring with the least degree of compactness (spatially unconstrained), the various
closure schemes yield consistent results. For the higher level of compactness noticeable
differences emerge between the direct bridging method and the other schemes. Notably,
despite their different formulation, the stochastic closure and the computationally faster
minimally-interfering closure appear to be well consistent for all the considered levels of
ring compactification. This is an important result as it gives an a posterior: indication of
an overall consensus of unrelated methods about the topological state of various portions

of rings with different geometrical complexity.

In section § we tackle the second difficulty, namely the knot search algorithm,
showing that several knot-searching algorithms introduced in literature can be divided
into two broad categories, which we call “bottom-up” and “top-down” search schemes.
We describe two algorithms, one for each category and compare them against each other,
showing that in general they give different results for the length of the knotted portion.
We then apply our algorithms to study knot localization on infinitely thin trefoil knotted
rings and find that while both methods confirm that knot are localized on very long
rings, they result in two different approaches to this localized state. In fact, we observe
that the difference in the average knot length measured by the two algorithms increases

with increasing length.
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2.1 Knotting of open chains: closure schemes

(a) (b)

Figure 2.1: Three closure schemes proposed in recent years. (a) Direct bridging of the two
termini, (b) radial closure and (c) stochastic closure. Closing segments are drawn in green.
In (b) the green sphere represents the position of the center of mass of the arc to be closed.
This and some other images in this chapter have been adapted from ref. [139].

2.1 Knotting of open chains: closure schemes

Defining the knot status of open chains is in general a challenging problem. As we already
pointed out, to apply the mathematical definition of knot and knot theory tools it is first
necessary to close the chain into a ring. To do so, several viable arc closure schemes can
be used and they can result in different knots being measured on the same arc. This
is especially the case for rings under geometrical confinement [90, 102], [76]. The most
widely used closure schemes at the moment of writing this thesis are the direct bridging
closure [145], the radial closure |75, 145)] and the stochastic closure [90)].

Direct closure The chain ends are directly joined by a straight line as in Fig. [2.1] (a).

13



Chapter 2 Probing the entanglement and locating knots in ring polymers

Radial closure Each chain end is prolonged outwards along the line connecting the
center of mass of the chain to that end (see Fig. (b)). The prolonged segments
are then joined by an arc on a sphere centered on the center of mass of the chain

and having radius much larger than the dimensions of the chain (infinite radius).

Stochastic (MDS) closure One starts by computing the smallest enclosing sphere for
the chain to be closed and rescales its radius by a large factor (10 in the present
study). The two chain ends are connected by a random point drawn with uniform
distribution on this sphere as in Fig. (c). The closure is repeated a large number
of times with different random points, resulting in a knot spectrum for the chain.
The topological state with the largest statistical weight is identified and if the
weight exceeds a preassigned threshold, g, it is taken as the topological state of the
chain. Otherwise the topology of the chain is considered to be ambiguous and it is

left unassigned. Typical threshold values are ¢ = 50% and ¢ = 90%.

Every scheme has its advantages and disadvantages. The direct closure is the easiest
to implement, and it can be safely used to study the statistical properties of loose linear
polymers, for which it gives results qualitatively compatible with those given by a radial
closure [I45]. On the other hand the direct closure is not reliable for studying globular
proteins or confined polymers. When their ends are on the outside of globule, a case often
encountered for proteins in the pdb, the direct closure greatly interferes with the chain
to be closed. As a result spurious topologies are often measured. Some knotted proteins
in the pdb, for example, are seen as unknotted by the direct closure schemes. The radial
closure scheme, on the other hand, implicitly assumes that the chain ends are not buried
within the rest of the polymer. While this is a good assumption for loose and #-point
polymers, its validity is questionable for polymers which are either collapsed or under
geometrical confinement. Finally the stochastic closure is based on a radically different
concept. It generates a spectrum of possible knots for the chain to be closed and therefore
permits a statistical analysis of its knotting status. The price to be paid for this greater
detail lies in much longer computational times compared to non-stochastic schemes. In
numerical studies nonetheless there is often the necessity to assess the topological status
of hundreds of thousands of chains, which translate into the necessity of having a closure

scheme which is not only reliable but also computationally efficient.
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2.1 Knotting of open chains: closure schemes

Figure 2.2: a) direct closure. b) Convex-hull closure. The minimally interfering closure choose
either a) or b) to close a chain on the basis of an estimate of their relative interference with
the chain to be closed.

Minimally-interfering closure The requirements of reliability and computational
efficiency motivated us to develop a new closure scheme, designed to be more reliable
than both the direct and radial closure schemes, while remaining computationally efficient

to be used in extensive studies on large datasets.

The rationale behind this scheme, which we call minimally-interfering closure, is that
the degree of interference introduced by non-stochastic closure schemes can be intuitively
related to the distance travelled by the closing arcs amidst the chain. It is then natural to
try to reduce this distance. In order to do so the minimally-interfering closure computes
the convex hull enclosing the chain to be closed and seeks to minimize the distance
spanned by the closing arc(s) inside it. To do so the sum of the distances from each
end to the surface of the convex hull, d,,, is computed and compared to the distance
between the two chain ends, d;,. If d,, < d;, the two ends are prolonged to infinity
through their nearest points on the surface of the convex hull and joined on a sphere

much larger than the convex hull. If d;, < d,,; the chain ends are directly connected.

This procedure leads to a closure scheme which is more reliable than both the radial
and direct closures, as a direct or an outward closure are chosen appropriately to reduce
the closure interference, and computationally very efficient requiring the topological

evaluation of only one ring.
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Chapter 2 Probing the entanglement and locating knots in ring polymers

2.2 Comparison of different closures

2.2.1 Knot matrices

To compare the minimally-interfering closure scheme against the other closure schemes
introduced in § we use knot matrices. Given a ring I' = {r}, 7, ..., 7N, TNy1 = T1}
with N vertices, its knot matrix is a N x N matrix formed by assigning a topological
state to every open subportion of the ring (arc). In the following we will denote by
I';; = {ri,...,7;} the arc comprising all edges from vertex i to vertex j (including
the endpoints i and j). The orientation of I';; follows the one given by the increasing
numbering of the nodes on the full ring.

To construct the knot matrix of a ring I' we consider all possible N(N — 1) oriented
arcs, I';;, with ¢ # j. After circularization, the topological state of each arc is established
using the Alexander determinants computed in —1 and —2 (see §. By convention
the diagonal of the matrix is taken to correspond to the whole ring. The knot matrix
entries, which take on discrete values reflecting the variety of knots trapped in the arcs,
are conveniently conveyed in color-coded graphical representations, see Fig. [2.3] The
graphical representation adopted here follows the indexing convention first introduced by
Yeates et al. to highlight the presence of slipknots in naturally-occurring proteins [58].

As illustrated in Fig. by analysing the knot matrix it is possible to recover a wealth
of information about the interplay of the geometrical and topological entanglement of
the ring. In particular, as we will see in §[2.3] it is possible to locate the position of a

knot on a chain and characterize its degree of tightness.

2.2.2 Polymer model

The degree of entanglement is measured for the simplest model of ring polymers, that
is freely-jointed rings (FJRs). These rings are fully-flexible equilateral polygons and no
excluded volume interaction is introduced between the ring edges or vertices.

It is known that the global topological complexity of the rings is strongly influenced by
the level of imposed spatial confinement. Typically, a higher degree of ring compactifica-
tion leads to more complex knots. This aspect was initially investigated by Michaels and
Wiegel [89] and more recently by other studies [8, 86, 87, 80] in biologically-motivated
contexts, see refs. [78] and [85] for two recent reviews.

It is therefore envisaged that, by focusing on conformations having a specific topological
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Figure 2.3: A ring of NV edges is associated to N x N knot matrix. Unlike the case of open
chains [58] the matrix is periodic. To each entry, 7, j of the matrix is associated an oriented
arc I'; ; of the ring going from 7; to ;. This is illustrated in panel (a), where the arcs
associated to the two different marked entries are highlighted on the matrix diagonal. The
topological state of an arc is encoded by the color of the corresponding matrix entry. In
the example shown in panel b white is used for the unknot and green for the trefoil knot.
In general, although the ring has only one topology, several topologies can be assigned to
different arcs of a ring. Knotted arcs with a different topology than that of the ring from
which they are taken are known as ephemeral knots.

state (such as trefoil knots) and different degree of compactness, one might observe a
very different level of geometrical complexity, i.e. local entanglement, associated to the

same knot type.

We have consequently mapped in detail the topological entanglement for all subportions
of three equilateral rings of N = 100 edges of unit length. The ring configurations are
picked randomly from a pool of Monte-Carlo equilibrated structures subject to three
different isotropic confining pressures. Specifically, one configuration was picked from
the unconstrained ensemble (zero confining pressure), which is largely dominated by
unknotted rings. The radius of the smallest sphere that is centred on the ring centre
of mass and that encloses all ring vertices is R. = 4.8. The second configuration has
enclosing hull radius equal to R. = 4.1. This hull radius is close to the value of R, for
which the probability of observing a trefoil in rings with N = 100 edges is maximum,
see ref. [86]. The third configuration has hull radius equal to R, = 2.5 and was picked
at higher values of the confining pressures, where the knot spectrum was dominated by

knots with topology more complex than the trefoil one.
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Chapter 2 Probing the entanglement and locating knots in ring polymers

2.2.3 Unconstrained ring

We start by discussing the knot matrices for the unconstrained ring in Fig. 2.4l From
an overall visual inspection, the various knot matrices appear largely consistent and the
topologies of most arcs correspond to either unknots or trefoil knots.

Yet, as it is visible in panels (b), (¢), (e) and (f), a limited occurrence of complex knots,
either composite knots or prime knots having more than 6 minimal crossings, is found
for arcs of various lengths. These instances are manifestly ephemeral knots because their
topological state differs from the global one of the ring, which is the trefoil.

Note that for this ring, all schemes are basically consistent. This fact is compatible
with the finding of ref. [90] that, for unconstrained rings, the dominant knot type found
with the stochastic closures with threshold ¢ = 50% is usually the same one obtained
with the direct closure scheme.

Regarding the robustness of the closure scheme in terms of the threshold, g, we report
that for ¢ = 90% about 15% of the entries are marked as undetermined knots (grey
color). These undetermined arcs represent cases where the details of the closure scheme
can likely yield different results. It is interesting to observe that across panels (b), (c),
(e) and (f) most arcs whose topology is not the trefoil or the unknot, correspond to
undetermined entries in panel (d).

It should also be noted that the direct bridging closure scheme introduces “jagged”
boundaries separating the trefoil and unknotted regions. Sharper boundaries are instead
found for the stochastic closure (¢ = 50%), the radial closure and the minimally-interfering

closure.

2.2.4 Spatially-confined rings

The analysis presented above was repeated for the more compact configuration depicted
in Fig. 2.5

The increased level of geometrical complexity compared to the unconstrained case is
conveyed by the fact that a much larger fraction of the matrix entries (~ 45%) have
an undetermined topological state according to the stochastic closure scheme with the
stringent ¢ = 90% threshold. This is because the geometrical complexity characterizing
more compact structures prevents the occurrence of a single highly-dominant knot type.

A related aspect is that the knot matrix obtained with the direct bridging closure,

see panel (b), is considerably noisier than the knot matrices obtained with the tolerant
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Figure 2.4: Large panel: spatially-unconstrained trefoil-knotted ring of NV = 100 edges. The
indices (numbering) of subsets of vertices are shown explicitly; the first vertex is highlighted
with a yellow sphere. Other panels: knot matrices of the ring obtained by using 5 different
closure schemes: (b) direct closure, (c) radial closure, stochastic closure at infinity with
threshold (d) ¢ = 90% and (e) ¢ = 50%, (f) minimally-interfering closure. Different topologies
are color-coded according to the legend at the bottom.
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Figure 2.5: Mildly-confined trefoil-knotted ring of N = 100 edges (top-left panel) and associ-
ated knot matrices displayed and coloured as in Fig.

20



2.2 Comparison of different closures

1 20 40 60 80 100
: 11

1
2 | 1920
40 L 40
60 | 160
80 Al 180
100 22 T N 100

1 20 40 60 80 100

(c)

11 20 40 60 80 100

20

40

60

80

100 5l 100
1 20 40 60 80 100
(d) (e) (f)

1 20 40 60 &0 10011 20 40 60 80 100 11 20 40 60 80 100

20 | 20 | 20 |

40 |

40 | 40 |

60 | 60 | 60 |

80 t 80 |

100 | Iifsbapmssppey | 100 | T h 100|— 100
1 20 40 60 80 100 1 20 40 60 80 100 1 20 40 60 80 100

80 |

O (] ] O 1] O [ ] ] [ ] L]
01 31 41 51 52 61 62 63 complex 77

Figure 2.6: Strongly confined trefoil ring of N = 100 edges (top-left panel) and associated
knot matrices displayed and coloured as in Fig.
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Chapter 2 Probing the entanglement and locating knots in ring polymers

(¢ = 50%) stochastic closure the radial closure and the minimally-interfering one, see
panels (c), (d) and (f).

Notably, the visual inspection of panels (d) and (f) indicates that the responses of
these two methods remain highly compatible notwithstanding the increased geometrical
complexity. The radial closure, while showing an acceptable agreement with the 50%
stochastic closure and the minimally-interfering closure, tends to find several knotted
arcs in region where the other two closure schemes only see unknotted arcs.

All the above considerations hold also for the ring with highest level of compactification
shown in Fig.

In summary, at all the three levels of compactness a high consistency is found between
the tolerant stochastic closure and the minimally-interfering one. Given the different
spirit of these two methods this accord is both pleasing and important, because it provides
a posteriori confidence that a consensus indication of the topological state of various arcs
of a ring can be achieved with these two different closure methods.

It is important to point out that, despite returning consistent results, these two methods
are very different in terms of the computational expenditure, because the stochastic
closure scheme is based on a collection of several (in our case 1000) random closures
per arc, whereas only two closures per arc are involved in the minimally-interfering
scheme. The latter scheme appears therefore to be preferable when one seeks to establish
the local level of entanglement over a large ensemble of rings or open chains (as for
large-scale surveys for detecting and locating knots in all available structures of globular
proteins [58), 107].) The former, however, has the advantage of providing a quantitative

control of the statistical weight associated to the dominant knot type for every arc.

2.3 Identifying the knotted portion

Locating the knot can be a highly challenging task. To start, one needs to establish the
kind of entanglement “trapped” in any subportion, or arc, of the ring or chain under
study, a task requiring the analysis of open knots, and then select the shortest arc whose
topological state matches that of the whole chain or ring.

As we already anticipated, apart from the ambiguities arising from the definition of an
open knot, there is another ambiguity in locating the knotted portion of a ring. Here

we will show that the measured degree of localization of a knot depends on the way one
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Figure 2.7: An example of how a bottom-up (b) and a top-down search (c) on the trefoil
knotted arc shown in (a) give rise respectively to the shortest knotted arc (blue curve in (b))
and to the shortest C-knotted arc (red curve in (c)).

looks for the knotted portion, or equivalently on the definition of smallest knotted portion

one implements.

2.3.1 Knot searching algorithms

A few different procedures have been proposed so far to localize the shortest knotted
portion of a ring with non-trivial topology [56, [76, 73 9T]. They can be divided into two
main categories depending on the strategy used to identify the “shortest knotted portion”.
In the first category we have those searches which start from a small unknotted arc and
subsequently look for the knot in arcs of increasing length. In the second category we
have those searches in which one starts by considering large knotted arcs of the ring and
try to reduce their size until the knot is lost, then keep the previous to last (knotted) arc.
Here we call these two approaches “bottom-up” and “top-down” respectively.

We illustrate two possible implementations of those methods, considering a trefoil knot

in a ring of N vertices.

Bottom-up search The purpose is to identify the shortest portion of the ring that
has the same topology of the whole ring. One starts by sorting all subportions of the ring
(arcs) by increasing arc length. Arcs with the same lengths are sorted according to the
index of their starting vertex. The shortest arc in the listﬂ is then closed and its topology
measured. If the arc’s topology does not match that of the whole ring the next arc in
the list is analyzed, otherwise the knot is located on the arc under analysis. We shall
refer to this arc as the shortest knotted arc (also called “bottom-up” knotted arc in this

thesis). It is important to stress that the returned shortest knotted arc may correspond

!No knots can be tied with less than 5 segments, so all arcs shorter than 5 segments can be safely
discarded from the analysis.
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Chapter 2 Probing the entanglement and locating knots in ring polymers

to an ephemeral knot. These are arcs with non-trivial topology that are contained in
longer arcs with a different topology (which, in turn, can be contained inside arcs with a
different topology etc.) [91]. Using the alternative knot matrix of Fig. (b) this arc
corresponds to the lowest point of the matrix having the topology of the whole ring,
highlighted with a red circle.

Top-down search In this case we look for the shortest knotted portion of the ring
that (i) cannot be further shortened without losing the knot and (ii) can be extended
continuously to encompass the whole ring. To do so, one begins by setting [ = 1 and
considers all arcs of length N — [ and discards those that are not trefoil-knotted. Then [
is increased by one unit and, inside the survived arcs, one looks for trefoil-knotted arcs
of length N — [. Those that are not trefoil-knotted are discarded and the procedure is
repeated until at a certain value of | = [ no trefoil-knotted arc is found. The trefoil-
knotted arc (or arcs in case of degeneracy) that survived at the previous iteration step
(the one(s) with length N — (I 4+ 1)) provides the desired ring portion accommodating
the knot. We shall refer to such arc(s) as the shortest continuously-knotted (“top-down”
knotted) portion of the ring, or shortest C-knotted portion for brevity. This portion
can be located on the alternative knot matrix by looking for the lowest point which has
the same topology as that of the whole ring and which can be connected to the top row
with a continuous line going either down or right at every step and passing only through

points having the same topology of the whole ring. The point and line are highlighted in
red in Fig. (b).
The knotted portions identified by the two procedures are not necessarily the same, as

illustrated in Fig. 2.7 and Fig. 2.8 (b). From the two definitions it follows that the length
of the shortest C-knotted arc cannot be smaller than that of the shortest knotted arc.

Both methods are applied and compared here and in the following, but with one
important addition with respect to the procedure described above. The modification
follows the observation that a satisfactory location of the trefoil knot in a specific arc,
r

I'j;, is unknotted. Therefore the test for “trefoil-knottedness” in the previous schemes,

ij» of the ring should be accompanied by the condition that the complementary arc,

consists in the stringent requirement that upon closure I';; is trefoil knotted and its

complementary arc, I';; is unknotted.
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Figure 2.8: (a) An example knot matrix for a trefoil knotted ring and (b) its alternative
representation where instead of mapping the starting and ending points of all arcs we map
the starting point and length of the arcs. The top row correspond to the diagonal of the knot
matrix in (a). The shortest knotted arc is given by the lowest point having the same topology
of the whole ring (circled in blue). The shortest C-knotted arc is identified by the lowest
point which has the correct topology and can be connected to the top row with a continuous
curve going either down or right at every step and passing only through points having the
same topology of the whole ring.

2.3.2 Knotted portions: test cases

To locate the trefoil knot within each of the three rings under analysis we processed the
associated knot matrices obtained by applying the minimally-interfering closure. We
use both the top-down and the bottom-up approaches to locate the knot. The results
are described hereafter and reported graphically in Fig. 2.9 The application of the
two algorithms on the knot matrices obtained from the tolerant stochastic closure gave
practically identical results.

For the unconstrained knot, the two search methods identify the same arc, see Fig. [2.9]
as the region that accommodates the knot.

This is not the case for the two more compact rings. In particular, for the ring shown
in Fig. the shortest knotted arc corresponds to I's715 (highlighted in blue in the
figure), while the shortest C-knotted arc corresponds to the much longer arc I's; 16 shown
in red.

Finally, for the most compact ring, the shortest knotted arc is found to be I'ss 95, while
the shortest C-knotted arc is found to be I'gg 1, see Fig. . In this case the comparison
between the two knot localization methods reveals a notable hierarchy of ephemeral

knots. In fact, while arc I'ss 5 is trefoil knotted, the longer arcs from I'gs 96 up to I'se g9
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Figure 2.9: The smallest knotted portion (left column) and smallest C-knotted portion (right
column) are highlighted in blue and red respectively for, (a), the unconstrained trefoil ring of
Fig. (b), the mildly confined ring of Fig. and, (c), the strongly confined trefoil ring
of Fig. [2.6] The central column reports the alternative representation of the knot matrices of
the three rings. The first ring in the left column is not shown as the two knot definitions give
the same result in this particular case.

26



2.3 Identifying the knotted portion

27 9 17 16 51 87 97
e " | 1 o Un
16 " " m 3
7 [ A n 7 1
’ . | 8 4
87 .
16 m SN —— o 5
" am 5
= 2
51 “:_- 51 o 6
13 r.-- u 62
51 87 . 187 B 63
(L[] ] [l
o7 | ler mn6
43 ' 16 51 87 97

Figure 2.10: (a) Original and (b) simplified ring after the rectification procedure. The original
index (numbering) of a subset of vertices is shown explicitly. The first vertex is highlighted
with a yellow sphere. The knot matrix of the simplified ring is shown in panel (¢). The full
knot matrix of the original ring is shown in Fig. panel (f).

are unkotted and still longer arcs, such as I'ss 1, are trefoil-knotted again.

It therefore appears that the increased geometrical complexity of the rings resulting
from the isotropic spatial confinement produces a non-trivial interplay of geometry and
topology, which manifests in the sensitive dependence of the knot location on the search

strategy that is used. The implications of this finding are discussed in particular in

§ 2.3.4 and in chapter [5]

2.3.3 Effect of simplification on the search for the knotted

portion

In the attempt to reduce the heavy computational cost of locating the knot either in rings
or linear chains, several groups have avoided the extensive topological profiling of all arcs
of the ring and have instead mapped out the topology of a simplified representation of
it [60], 132, [145].

The simplification, or rectification procedure entails the removal of those ring vertices
which can be made collinear with their neighbouring pair along the ring through a
continuous local deformation (morphing) of the ring that does not lead to any edge
crossing. Such rectification operations clearly preserve the topology of the ring and can
considerably reduce the number of ring vertices, and hence the linear size of the knot

matrices.
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Chapter 2 Probing the entanglement and locating knots in ring polymers

Here we discuss the effect of rectification procedure on the bottom-up and top-down
knot location schemes.

In order to ensure the most uniform level of simplification, we subjected each ring on
N edges to several simplification rounds. At each stage of the procedure we disallow the
removal of ring vertices that would introduce a gap larger than a given integer, s, in the
original index of consecutive surviving beads. Because of the ring periodic boundary
conditions, we employ the modulus operation on s. By starting with s = 2, we carry out
N statistically-independent attempts at bead removal (sweep). Then s is increased by
one and another sweep of vertices elimination is attempted. The procedure is carried on
until no vertex can be further removed within a sweep. Notice that more beads might be
removed by allowing s to increase more rapidly at each sweep, for example by doubling
it. These more aggressive rectifications are not considered in the present section.

Reducing the number of beads of the ring has two distinct effects. First, the linear
dimensions of the knot matrix are reduced. Second, the topological entanglement of the
remaining subportions might be different from the one measured for the corresponding
subportions of the original ring. Regarding the first aspect we recall that we establish
the entanglement trapped in the arcs of the surviving nodes by closing the arcs with the
same ends on the original, unsimplified ring. As a consequence the knot matrix of the
simplified ring is a subset of the original full knot matrix, obtained by restricting to the
rows and columns pertaining to the surviving ring vertices. This procedure is illustrated
in Fig. [2.10]

Notice that since the simplified knot matrix is a subset of the original knot matrix,
the length of the shortest knotted arc measured on the simplified ring can not be smaller
than the length of the shortest knotted arc measured on the unsimplified ring. On the
other hand no such reasoning can be made for the shortest C-knotted arc.

The rectification procedure clearly brings about a simplification of the geometrical
complexity of the ring. As a consequence, the difference between the shortest knotted
arc and shortest C-knotted arc will likely decrease after rectification but it will not be
obliterated for sufficiently entangled rings. This is illustrated by the rectification of the
ring with intermediate compactness, whose simplified knot matrix is shown in Fig. 2.10]
The shortest knotted arc on the simplified ring goes from node 87 to node 16. The
inspection of the matrix reveals that from the point (87, 16), corresponding to the shortest
knotted arc I'g7 16, one cannot find a connected path through points corresponding to

longer and longer trefoil-knotted arcs (even disregarding the unknottedness requirement
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2.3 Identifying the knotted portion

on the complementary arcs) that reaches out to the whole ring. This clarifies that I's7 16
does not correspond to the shortest C-knotted arc, and hence the two methods for knot

detection do necessarily not coincide even after simplification.

2.3.4 Application to scaling analysis of knot lengths

The study of the scaling of knot length with increasing ring length is motivated by the
observation that, if one fixes the topology of a knotted ring and increases its length, then
the ring becomes more and more similar to an unknotted one, suggesting that the knotted
portion becomes negligible compared to the rest of the ring [100} I0T]. This possibility
was studied directly only in recent years, mainly through numerical investigations. Let
us call It a generic length of the knotted portion. Upon increasing the ring contour
length, N, three different scenarios can occur for (lg,o¢): 1) (lknot) increases more slowly
than any power of N. In this case the knot is said to be strongly localized; ii) (lxnor)
grows like N® with 0 < o < 1. The knot is said to be weakly localized; iii) (lgn¢) is
proportional to N, the knot is said to be delocalized. While a complete delocalized knot
can be expected to affect the ring geometrical properties independently of N, in cases
i) and ii) one has that lknot/N — 0 with N — o0, so the knotted portion is expected to
behave like a point-like decoration on the ring in the asymptotic limit.

All the studies performed up to now on loose three dimensional polymers agree that
the knot is localized on the chain. Nonetheless they differ substantially both in the
kind of localization found, strong [91] or weak |76, [36], 145, [73], and in the latter case
in the measured exponent «. Farago et al. [30] reported o = 0.4 for trefoil knotted
polymers, Marcone et al. [T6] o = 0.75, Virnau et al. a = 0.65 [145], Mansfield and
Douglas [73] reported o = 0.54 and Millett recently reported a bounded behaviour of
(lknot) in FJRs with N > 500, compatible with a strong localization of the knot. The
studies [I45] and [36] are somehow different from the others in that they consider knotted
linear chain-of-beads polymers. In particular in [36] the value of « is obtained studying
force-extension curves for a knotted polymer without using any knot location algorithm.
The other studies we reported considered trefoil knotted rings and used either a top-down
knot location scheme (ref. [76]) or a bottom-up knot location scheme (ref. [73, 91]) to
identify the length of the knotted portion. We argue that the discrepancies in their
results can be explained by the inherent difference in these two knot location schemes.

To support our argument, we investigate the behaviour of the knot lengths measured by
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Figure 2.11: Numerical data for [ (blue circles) and I (red squares) and their fitting
functions.

bottom-up and top-down schemes, which we will call Iy, and [} from now on, for infinitely

thin trefoil rings of increasing length N, up to N = 1000.

Trefoil rings were extracted a posteriori from a pool of FJRs using the KNOTFIND
routine implemented in the KNOTSCAPE package [47]. The KNOTFIND routine
efficiently simplifies the diagrammatic representation of a knot and compares it against a
look-up table of diagrams of prime knots with less than 17 minimal crossings. When a
positive match is found, the topological state of the ring is unambiguously established.
If no match is found (due to genuine excessive complexity of the knot or to insufficient

classification) the topological state is regarded as undetermined.

In order to reduce the computational time required by the knot location algorithms,
we used the simplification procedure described in § 2.3.3] Simplified rings were about
~ 20 edges long. Our results, presented in Fig. clearly show that while both [, and
lr grow like N with 0 < a < 1, they diverge with increasing N. A fit of the data with
fitting function y = cx® gives a = 0.58 £ 0.01 for I, and o = 0.73 +0.01 for I. Although
we do not aspire to give definite values for «, it is interesting to compare our values with

previously obtained ones. The scaling exponent we obtain for [, is in good agreement
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2.3 Identifying the knotted portion

with the one obtained by Marcone et al. [76], who used a conceptually similar method.
As for lg, we do not observe any plateau, contrary to what observed in [91]. We think
that this difference can be due to the fact that we used a stronger condition than previous
studies to check the knottedness of a ring portion, by requiring that the complementary
arc of the knotted portion must remain unknotted. Without this further requirement
it is easier to exchange ephemerally knotted arcs for the “genuine” knotted portion of
the ring. Given the nature of the bottom-up scheme this results in smaller length being
measured. It must be noted that the other study using bottom-up approach [73] did
not find any plateau for l,.;, and the authors report a value o = 0.54, which is more
compatible with our results than with those of [91]. We think this is due to the fact that
the authors of that study, in locating knots, considered only arcs of the rings which had
both ends near the surface of a ball enveloping the ring. This was done in order to avoid

considering ambiguous knots and could in fact avoid measuring ephemeral knots as well.
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Chapter 3

Mutual entanglement of prime components in

composite knots

As we saw in [[.1.3] several knots can be tied on the same rope or ring, resulting in a
composite knot. This is indeed what happens in sufficiently long polymers. Increasing the
polymers length the knot spectrum gets dominated by composite knots to the point that
prime knots are exponentially rare [I31]. Despite their ubiquity, only few studies so far
were dedicated to investigate the characteristics of composite knots more complex than
the simplest ones, 3;#3; and 3;#4, [137, 5], 10T, 82, 43| 1T], 88]. The main result from
these studies is that for three dimensional rings, following the weak localization of prime
knots (see § , every prime component of a composite knot becomes localized, so
that for asymptotically large chain lengths all prime components behave like independent
point-like decorations on the ring (see Fig. (f)). As a consequence, the asymptotic
properties of composite knots should merely depend on the number of prime components
(factor knots) by which they are formed [101, 82], 43 [11].

Here we investigate how this factorization into independent separate prime components
is reached for increasing ring length and how one can describe the behaviour of composite
knots before this factorization takes place. Do the geometric characteristics of relatively
short knots, like their lenghts and their distribution along the ring, depend on the
number of knots tied on the ring or their relative distance? This is a relevant question to
understand whether specific polymeric and biopolymeric systems of known length should
be considered as a series of independent prime knots or if it will be necessary to account
for the mutual entanglement and possibly interaction of different factor knots.

In order to have a simple reference system, we model our knotted rings as equilateral
freely jointed rings (FJRs), as we did in§ to study knot length scaling behaviour.We

study composite knots with 2,3 and 4 prime components. Using the tools introduced
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51 5,

Figure 3.1: Prime knots considered in this work. (a) 31, (b) 41, (¢) 51, (d) 52. Panel (e) shows
a simple composite knot with two components, 3;4;. (f) In the limit of infinite length all
component are expected to localize and behave like independent point like decorations along
the ring.

in chapter [2] we are able to identify the factor knots and investigate their geometric
properties like their linear dimension, disposition along the ring and mutual entanglement.
In particular we are able to characterize the frequency with which composite knots are
found with all their prime components separate along the ring as a function of ring length.
We find that at ring lengths where the composite knots we study dominate the knot
spectrum, there is not a complete factorization into separate prime components. Even
for the simplest composite knot, 3;#3; we find that the probability of having two or
more prime components entangled with each other is at least ~ 10% in the range of ring
lengths considered, which spans rings of length up to two order of magnitude greater

than the typical (most probably) knot length of a trefoil ring.

Finally, we show that the above mentionend results can be qualitatively reproduced
using a transparent one dimensional model, in which factor knots are substituted by
randomly arranged paraknots (loops on a ring formed by a sliplink [82], 83]) having
lengths sampled from the knot length distribution of their corresponding prime knots.
The agreement between this simple model and simulations suggest that the properties of
composite knots follow a simple statistic even in absence of a complete factorization into

separate prime components.
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3.1 Simulation: model and methods

3.1.1 Chain model

We generate Freely Jointed Rings of contour length N = 100, 200, ..., 1000 using the
crankshaft rotation algorithm [4]. For every contour length N we generated ~ 107
independent configurations without constraining ring topology.

As reported in Fig. the range of lengths considered spans the crossover from a knot
spectrum dominated by prime knots to one dominated by composite knots. In this chain
model composite knots starts to dominate for N ~ 400. From the figure it is evident how
the spectrum of composite knots is dominated by knots with 2, 3 and 4 components in the
range of length we consider. As composite knots formed by the simplest prime knots 31,
41, 51 and 5, dominate the spectrum we focused on the following topologies: 3131, 3144,
3151, 3152, 313131, 313141, 313151, 313152, 31313131, 31313141 (here and in the following
we have dropped the # to ease the notation). As in § we used the KNOTFIND
routine implemented in KNOTSCAPE [47] to extract rings with the desired topologies.
For every topology and every value of N we collected several hundreds to thousands of

independent configurations.

3.1.2 Identification of separate prime-knotted components

Let us consider a rope with n knots tied on it. Intuitively we can say that a knot is
“separate” from all the others if we can cut it away from the rope and join the rope back
together leaving the others n — 1 knots unchanged. In analyzing composite knots we want
to implement the same procedure numerically. We start by identifying the portion of the
ring which accommodates the whole composite knot (shown in green in Fig. (a), (b),
and (c)). In this region we look for those factor knots which can be “cut away” without
changing the topology of the others n — 1 factor knots. So in the example of Fig. (a)
our scheme identifies two prime factor knots, in (b) one factor knot, and in (c) zero as
the two factor knots are too intermingled with each other to be distinguishable.

To assign a topological state to open arcs we close them using the minimally-interfering
closure introduced in and analyze their topology using the Alexander determinants
A(—1) and A(-2).

We consider a factor knot of topology 7; of a composite knot of topology Teomp =

Ti...Ti_1TiTiy1 - - - Tn t0 be separate from the others if we can identify an arc of the ring
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Figure 3.2: Probabilities of composite knots and prime knots for increasing length of the
rings, measured using KNOTFIND. Curves for composite knots with different number of
components are reported as well. Note that the probability curve of composite knots is not
exponential. This can be ascribed to the fact that with increasing ring length also the fraction
of knots which are too complex to be identified by KNOTFIND increases. We can expect
many of those unidentified knots to be composite.

such that its topology is measured to be 7; while its complementary arc on the ring has
topology Teomp \ Ti = T1 .- - Ti—1Tit1 - - - Tn. Fig. [3.3] (c) shows an example configuration in
which two factor knots are entangled to the point that it is not possible to find two arcs

satisfying the two conditions which characterize a separate prime component.

We look for separate factor knots only inside the knotted portion. The ring portion
accommodating the composite knot is identified using the bottom-up approach described
in [2.3] To identify all separate factor knots we proceed in the following way: we begin by
ordering all the subarcs of the knotted arc for increasing length. Then, starting from the
shortest arc we check if it is a prime factor knot of the composite knot. If this is the
case and an arc is found to accommodate a factor knot, all the arcs overlapping it are
removed from the list of arcs to be analyzed. This guarantees that in a situation like
that depicted in Fig. [3.3| (b) only one component is seen as separate, while the larger one
is discarded as it includes the smaller knot and therefore can not be removed without

removing the other knot along with it.

36



3.1 Simulation: model and methods

Figure 3.3: (a) A 3;3; with both factor knots separate. (b) A 3;3; knot with one factor
knot included inside the other. Since we look for factor knots only inside the ring portion
accommodating the composite knot (marked in green) we find only one separate prime
component. (¢) A configuration with both factor knots so entangled that they can not be
separated from one another. The magnification on the right shows that it is not possible to
close the red component without unknotting the blue one and vice versa. The length of the
composite knot is shown in green in panels (a), (b), (c).
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Ring simplification

In order to reduce both the computational cost of locating the knots and the incidence of
ephemeral knots (see chapter , we apply the topology-preserving simplification procedure
described in This procedure has the advantage that it allows a fine tuning of
the simplification stride, s, by bounding the maximum distance allowed between two
remaining vertices on the simplified chain. The greater the stride, the faster the analysis,
but the poorer its geometrical accuracy. While this inaccuracy is of no much importance
when studying the statistical properties of prime knots, it can not be overlooked when
trying to distinguish factor knots tied on the same ring, as the simplification may often
result in an aliasing effect. In order to compromise between the time required to complete
the analysis and its accuracy we impose a maximum stride s,,,, = 15, which is comparable
to the characteristic length of trefoil knots on FJR [73] (see also Fig. B.9). The effects of
ring simplification on the results are further discussed in § [3.2.3]

3.2 Simulation Results

3.2.1 Probability of factorization into separate prime

components

Based on the fact that knots become localized for long chains we expect a progressive
factorization of composite knots into separate prime factor knots. To investigate whether
and to what extent this factorization sets in with increasing ring length N, we study
the probability, Pscy™, of having all factor knots of a composite knot separate along the
chain as a function of the ring length N. We estimate Pscy™" as the ratio between the
number of configurations of topology 7.om, in which all factor knots have been identified
and the total number of configurations of that topology. Results are plot in Fig. as a
function of N and show that for every fixed topology the probability of having two or
more factor knots mutually entangled, 1 — Psgs™, is not negligible for all composite knots
in the length range we investigated. Taking into account the knot spectrum of Fig. [3.2]
this result suggests that composite knots taken from an equilibrium sample of rings in
good solvent will not show a complete factorization into separate prime components.
This is arguably due to the fact that knot length distributions of prime knots, although

being peaked around [ ~ 10 independently of N, have very long tails which give origin
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Figure 3.4: Probabilities of configurations with all components being isolated as a function of
ring length N for different topologies and number of components.

to the sublinear growth of the average knot length with NV (see Fig. for an example).
From Fig. [3.4] is also clear that the probability of having all factor knots separate
depends on their minimum crossing number, as there is no difference in the probabilities

involving either a 5; or a 55 factor knot.

3.2.2 Knot lengths

Looking at the average length of single factor knots (li), reported in fig (3.5 (a), we
observe that factor knots size is influenced by the number of factor knots on the whole
range of ring length considered. Even the average length of factor knots in a 313; knot is
still lower than that of a prime 3; knot, while in the asymptotic limit one would expect
the length of factor knots to be independent of their number.

We now characterize the average total knot length of the composite knot, (I;"""),
which is the length of the shortest portion of the ring including all the factor knots.
As reported in Fig. 3.5 (b) ([;”"") grows linearly in N, as expected if the knots were
random point-like decorations on the rings. The slopes of the fitting lines are reported in
table Although their values are not strictly compatible within the given errors, they

seem to depend basically on the number of factor knots forming the composite knots. If
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Figure 3.5: (a) From top to bottom, average knot lengths l; of prime trefoil knots and of
trefoil factor knots in knot with 2, 3 and 4 components. The average is computed only on
isolated components. (b) From top to bottom, average lengths (I,”") of composite knots
with 4, 3 and 2 components. Knots composed only of trefoils are reported in blue, knots
including a 4; factor in green, a 5; factor in orange and a 5y factor in red. Lines correspond
to linear regression for N > 400.

the knots were point-like decorations on the ring, the knot length (I;"™) would be given
by the largest arc containing all the points. The expectation value of this knot length
can be computed analytically and it results to be igpoints = 1/4L, ngoints = 7/18L and
l_4pm-nts = 23/48L for two, three and four points placed randomly on a circle of contour
length L. The slopes obtained from our simulations are larger than those factors, showing

that finite size effects are still important in the range of ring lengths considered.

The linear growth of (I;") with N is compatible with factor knots being randomly
distributed along the ring. There is still the possibility that when two factor knots
come close to each other they feel the presence of the other knot. If this is the case, we
expect that its effects will be visible in the distribution of factor knot lengths at different
separations of two factor knots along the chain. Factor knots could for example exchange
length when they come close to each other or feel some repulsion due to the topological
interaction of their loops. To investigate such effects we consider those configurations in
which all factor knots are separate. Going clockwise along the ring, for every couple of
adjacent factor knots we compute their separation along the ring s4%, from the ending
point of one knot to the starting point of the next one and the sum of their knot lengths

A8 = [ +1B. We then average all lengths /¥ over bins of length 10 in s7 to observe
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Table 3.1: Slopes of lines fitting (I;"""")(N)(®)

Topology Slope
3131 0.271 £ 0.005
3144 0.290 £ 0.004
3151 0.294 £ 0.006
3152 0.308 £ 0.006

313131 0.414 £ 0.003
313144 0.423 £ 0.003
313151 0.427 4+ 0.008
313159 0.433 £ 0.006

31313131 0.504 = 0.004
3131314 0.519 £ 0.003

(@) Fits obtained by linear regression for N > 500. The correlation coefficient is ~ 0.999 for all
fitting lines.

if the average knot length of two adjacent components depends on their separation. The
results for rings of length N = 1000 are shown in Fig. [3.6l From them we can see that
going from small separations s4Z to large separations, the length < [% > has at first a
pronunciated peak, followed by a mild decrease which becomes more pronunciated when
s4B — N. This may be explained simply by the fact that large knots must stay closer to

each other than small knots, as in both cases the total length of the ring is the same.

3.2.3 Effects of ring simplification

As we pointed out in[3.1.2] the simplification procedure, unavoidable from a computational
point of view, may introduce systematic errors in the quantities we measure. To obtain
an estimation of such errors we repeated the previous analysis with maximum stride
Smaz = 4 and $,,,, = 00 on small sets of hundreds of configurations for each topology
and ring length. Comparing the results we obtain for s,,,, = 4 and $,,,, = 0o with
those obtained in [3.2.1] and [3.2.2] we see that increasing simplification stride introduces a

systematic effect in the measured probabilities P and in the knot length of the factor

knots, but not on the lengths of the total composite knots, which remain compatible

within the errors.
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Figure 3.6: Average total length of two factor knots < lfB > as a function of their separation
s4B along the ring for three different composite knots on rings with N = 1000 edges.
Horizontal dashed lines correspond to the values 2 * () reported in Fig.

In the case of the Pi;™ we see from Fig. that an increasing simplification stride
lowers the measured probabilities, but the maximum error is ~ 10% for 3,3:3;3;. As for
the length of the factor knots, higher simplification stride results in larger lengths being
measured, the total error between measures obtained with s,,,, = 4 and $,,4, = 15 being

on the order of a few ring edges.

3.3 Insight from a one-dimensional model

We now show how the previous results can be interpreted with the aid of a transparent

one-dimensional model, based on the following assumptions.

1. Entangled configurations like the one depicted in Fig. [3.3| (¢) are very rare and, to
a first approximation, can be neglected. With this approximation, two factor knots

can only be either separate on the ring or nested. (see Fig. (a)).

2. The probability that a factor knot 7 has length [, depends on the presence of
other knots only through the imposition of the previous condition, which sets

an upper bound on possible knot lengths. In sufficiently long rings the length
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Figure 3.7: Different measures of Pj., done on smaller sets of configurations with different
simplification strides. The difference between the probabilities measured with different strides
increases with the number of factor knots, but remains between ~ 10%.

43



Chapter 3 Mutual entanglement of prime components in composite knots

distribution of factor knots can be considered to be practically identical to that of

their corresponding prime knots.
3. All factor knots are placed randomly on the ring.

According to the first assumption we describe factor knots as paraknots. Each paraknot
is identified by a sliplink placed on the ring, joining two distant vertices of it. Every
sliplink identifies a loop. No sliplink can be placed so to join a point inside a paraknot
with one outside it. Configurations like that depicted in the bottom row of Figl3.§
are therefore forbidden. According to our second hypothesis, we impose the length

distribution of those paraknots to be the same as that of the prime knots they model.

3.3.1 1D model implementation

As 3; and 4; prime knots are those for which we have more statistics, we consider the
topologies 3131, 3141, 313131, 313141, 31313131 and 3131314;. We use the bottom-up knot
location scheme to compute the empirical knot length distributions, P(ls, N), of prime
knots 3; and 4; extracted from the pool of FJRs (see Fig. .

Starting from the empirical knot length distributions we proceed as follow to generate
paraknots configurations with n paraknots on a polygon with N edges. First we pick
randomly n edges of the polygon. Those points correspond to the starting points of
the arcs which represent paraknots (in a clockwise direction). To every starting point
we associate a length picked randomly from the length distribution P(ls, N) of the
corresponding factor knot (3; or 41) and compute the ending points of the arcs, taking
into account the periodicity of the polygon. Finally, all configurations in which two or
more arcs overlap without one being strictly included into the other are rejected as they

cannot correspond to a paraknots configuration (see for example bottom row of Fig. .

Analysis in the 1D model

For each topology and ring length we generate several thousands paraknots configurations.
On these configurations we perform the same analysis we performed on the data from
the simulation.

To identify the knotted portion of the polygon occupied by the “composite knot” in
the one dimensional model we consider that by definition all topological entanglement

reside in the sliplinks. A polygon with n sliplinks placed on it is therefore divided in 2n
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Figure 3.8: Column (a): from top to bottom, the composite knots with two, one and zero
isolated components shown also in Fig. Column (b): equivalent configurations of random
arcs placed on a polygon. Column (c): paraknots configurations equivalent to the knot config-
urations of column (a), obtained from the random arcs model by rejecting all configurations
where two arcs overlaps without one being included into the others. Configurations with no
isolated components are therefore forbidden.
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Figure 3.9: Knot length distribution for trefoil knots tied on rings of increasing length N.
Note that all distributions are peaked on the same value [ ~ 10 while they differ because of
their tails.

unknotted arcs (see for example Fig. 3.8 (¢)). The knotted portion is the complement
of the longest of such arcs. This knotted portion does not necessarily include all the
paraknots (for example when the longest arc is a loop identified by one of the paraknots).
In the so identified knotted region we count as isolated those paraknots which do not

include any other paraknot.

3.3.2 Comparison with simulations

We now compare the results obtained from our one dimensional model with those reported
in § 3.2l For the case of the probability of having all factor knots separate along the
chain, P, reported in Fig. , we observe that there is qualitative agreement with
the simulation, while the differences between the results from simulations and those from
the model differ by a quantity comparable to the estimated systematic error induced by
the simplification procedure. We observe the same kind of qualitative agreement for the
lengths of the single factor knots, reported in Fig (a). While in the case of Pk, the
quantities obtained from the model are systematically higher than those obtained from
simulations, in the case of the length of factor knots they are systematically lower. This

is compatible with a systematic error in the simulation data due to the simplification

46



3.3 Insight from a one-dimensional model

(a) 1 T (b) 1 T T T T T
0.8 0.8 —
L L ]
& 06 = ™ = & 06 —
oL PR I - s %
Ir
s L * % 0313131 ] 02 [=/p® o 33141
i © 31313131 | i © 31313144 |
0 $ | 1 | 1 | 1 | 1 | 0 I | 1 | 1 | | | | |
0 200 400 600 800 1000 0 200 400 600 800 1000
N N

Figure 3.10: Comparison between the probabilities Psp, obtained from the simulations (points)
and from the 1D model (lines) for composite knots made only of 3; knots (a) and composite
knots including a 4; factor (b).
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Figure 3.11: Comparison between results from simulations (points) and 1D model (lines). (a)
Length of factor knots l;. (b) Total length of composite knots, (I;°"*").
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Figure 3.12: Comparison between simulation and 1D model for the distribution of total knot
length (l,fB ) of couples of adjacent factor knots separate by a distance s4B along the ring, for
rings of length N = 500 (a) and N = 1000 (b). Green, blue and red lines report simulation
data for 3131, 313131, 31313131 topologies. Light green, cyan and orange lines report data for
the same topologies obtained from the model.

procedure. Indeed the simplification procedure results indeed in a slight overestimation
of the lengths of knots. Consequently two factor knots which are very close to each other
along the chain may be seen as not being separate, lowering Pis.,. The underestimation
is expected to increase for increasing number of components, as observed in Fig. |3.10]
The agreement between our model and simulation data becomes quantitative when we
compare the average length of the whole composite knots, (I;”"") (see Fig. (b)) and
the distribution of total factor knots lengths, ({%), as a function of the linear separation
between adjacent couple of factor knots, sap, see Fig. [3.12] These quantities are less

influenced by the simplification procedure.

3.4 Summary

In this chapter we saw that a complete factorization of a composite knot into separate
prime components is not to be expected for the range of lengths considered. Taking into
account the knot spectrum of Fig. [3.2] we suggest that the same behaviour observed here
can be expected in general for composite knots extracted from an equilibrium population
of ring polymers circularized in good solvent. This is because with increasing ring length,

composite knots with an increasing number of prime components dominate the knot
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spectrum, and as we saw from Fig. the probability Pis,(/N) decreases with the number
of prime components tied on a ring of length V.

We observed that several characteristics of composite knots are still compatible with
a random placement of their prime factor knots along the ring. Starting from this
observation we rationalized the simulation results using a simple one-dimensional model,
in which factor knots are substituted with paraknots of appropriate lengths placed
randomly along the ring. We think that this model will prove useful to study the
behaviour of composite knots in the presence of more complex physical interactions (e.g.

electrostatic, excluded volume) or geometrical confinement [8§].
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Chapter 4

Entanglement effects in solutions of polymer

rings of different topology

4.1 Introduction

From this chapter we begin to study the interplay between topological properties and
externally imposed geometrical or physical constraints, such as geometrical confinement
or the influence of surrounding rings in a solution of unconcatenated ring polymers.

Characterizing the equilibrium and kinetic properties of semi-dilute solutions of ring
polymers is one of the major remaining challenges in theoretical and experimental polymer
physics [117,, 20} 04 ©95], 53], [44], 45, T11]. One aspect of these systems that is very actively
investigated regards how intra-chain and inter-chain entanglement reverberate on physical
properties of rings solutions. Unlike the case of linear chains, entanglement effects in
solutions of ring polymers must take into account topological constraints which are
quenched during system preparation, such as the rings topological status (intra-chain
entanglement) and relative linking status (inter-chain entanglement). In particular a melt
obtained by increasing the density of a solution of unlinked rings will be composed only
of unlinked rings. Those topological constraints deeply affect the statics and dynamics of
ring polymer solutions which are therefore substantially different from those of solutions
of linear polymers.

Static properties of melts of unknotted and unlinked rings have been studied numerically
by several groups. Cates and Deutsch [20] and Miiller et al. [94] have suggested that strong
inter-chain topological interactions lead to pronounced chain compaction of unlinked and
unknotted rings in semi-dilute solutions, and that the typical chain configuration should
resemble a branched polymer (akin to a lattice animal) [94]. Further studies both by

Miiller et al. and Vettorel et al. showed that increasing ring length, rings acquire a more
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Chapter 4 Entanglement effects in solutions of polymer rings of different topology

compact structure [95], 44], compatible with a “crumple-globule” regime [42] 44, [45]. In
the latter regime, each ring portion is highly compact and minimally intermingling with
the rest of the chain [42], similarly to dense systems of long biopolymers in vivo, such as
eukaryotic chromosomes [115].

The influence of topological constraints on the dynamics of molten ring polymers is
highlighted by the qualitative and fundamental difference in their kinetics compared to
that of linear chains. The kinetics of linear chains in melt is described by the so-called
Edwards-DeGennes reptation model |28, 25]. According to this model, each chain is
confined inside a tube-like region resulting from the excluded-volume interactions with
the neighboring chains. The motion of each chain therefore consists of a one-dimensional
diffusion along the tube centerline resulting from the “inchworm movements” of small
sub-chain loops. This type of local motion is found also in polymer rings moving through
a fixed array of obstacles [I17]. However, the asymptotic standard diffusive behavior
of polymer chains in melt depends on the ongoing process of “tube renewal” which
results from the fact that the two polymer ends are practically free and hence capable
of exploring and realizing new configurations [28] 25, 10] B34], 1411 [63]. This mechanism,
which has received striking experimental confirmations as being the dominant kinetic
process in dense polymer melts [I53], explicitly builds on the linear character of the chains
in solution. Hence, it is not applicable, at least in its conventional formulation, to ring
polymers. The latter must consequently relax and move in dense solution according to
different kinetic mechanisms [20], which are only recently being characterized by means of
computationally-intensive molecular dynamics simulations |50} 1306, [49] 44 [45] 1111 [1T0].

Here we use stochastic molecular dynamics simulations to investigate complementary
aspects of the effects that intra- and inter-chain topological constraints have on kinetic
and equilibrium properties of solutions of model ring polymers. Specifically, we consider
systems in which the contour length of the rings is fixed while the solution density is
varied so to cover an appreciable range of inter-chain entanglement. The study is carried
out for monodisperse solutions of unknotted rings as well as trefoil-knotted ones. To
have a better insight into topological effects on the statics and dynamics of knotted rings
we look also at the knotted portion of the ring using the tools introduced in chapter [2]

To the best of our knowledge this is the first time that a systematic off-lattice study of
kinetic and equilibrium properties of rings with non-trivial topology and of their knotted
portions has been carried out.

By first exploring the metric and shape properties of equilibrated rings in solution we
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find that their behavior depends appreciably on ring topology and that not only it differs
from the one seen for linear polymers of equivalent contour length in solutions but even
from other physical realizations of dense ring polymers. Specifically, unlike what has
been observed in collapsed knotted rings 76, [12] and in confined ones [138], the average
size of the knotted portion of a ring in solution is only weakly affected by the increase
(for increasing monomer concentration) of the system’s geometrical entanglement. In
particular, by increasing the solution density, no crossover to delocalized knots is observed,
as well as no multiscale behavior of the entanglement, at variance with what we will
observe in chapter [5] for spherically confined trefoil knotted rings.

The presence of topological constraints makes the dynamics of rings in solution an even
richer phenomenon whose understanding requires a full knowledge of the relationship
between the spatial motion of a ring in a melt and the motion of its knotted portion along
the ring backbone. By using the knot location tool previously mentioned, and considering
dynamic observables commonly used in polymer contexts we show that several time
scales are at play: the autocorrelation time of ring configurations, the time required by
the rings to diffuse over regions comparable to their average size and — for knotted rings —
the time required by the knot to diffuse over the ring contour.

Various relaxation properties of the entire ring are found to change by one order of
magnitude across the considered density range. The slowest kinetic process is associated
with the diffusion along the backbone of the knotted region. This property, that to the
best of our knowledge has not been pointed out before, seamlessly integrates with the
other kinetic aspects thus offering a consistent picture for polymer relaxation in solutions
of topologically constrained rings.

The author of this thesis contributed to this work by developing the knot location
tools and performing part of the analysis. Simulations were performed by a collaborator,
A. Rosa.

4.2 Model and methods

4.2.1 The model

To model the rings in solution, we use the bead-spring polymer model introduced by
Kremer and Grest [62]. The model accounts for the connectivity, bending rigidity,

excluded volume and topology conservation of polymer chains.
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Specifically, the intra-chain energy consists of the following terms:

N
Hintra = Z[UFENE(i>’i +1) + (4.1)
i=1
N
S Upyi ) (4.3)
j=i+1

where n is the total number of beads per ring, and ¢ and j run over the indices of the
beads. The latter are assumed to be numbered consecutively along the ring from one
chosen reference monomer. The modulo-n indexing is implicitly assumed because of the
ring periodicity.

From now on we shall take the nominal bead diameter, o, as the unit length and adopt
the following notation: the position of the center of the ith beads is indicated by 7; while
the pairwise vector distance of beads ¢ and j is denoted as ci:] = 7; — 7; and its norm
simply as d; ;.

With this notation the chain connectivity term, Uppng(i,i + 1) is expressed as:

2
—% RjIn [1 - (CIR—(TI> :|7dz‘,i+1 < Ry
0 i1 > Ry

UFENE(i7i+1) = (44)

where Ry = 1.50, k = 30.0¢/0? and the thermal energy kpT equals 1.0¢ [62]. The
bending energy has instead the standard Kratky-Porod form (discretized worm-like

chain):

Up(i,0+ 1,04+ 2) =

KgT¢, (1 B CZ;,i—H : J;+1,i+2> (4.5)

g di,i-l—l di+1,i+2

where ¢, = 4.50 is the nominal persistence length of the chain [118]. Polymer chains
are significantly bent by thermal fluctuations at contour lengths larger than by, where
bx = 2¢, = 9.00 is the Kuhn length of the chain [28] [118§].

The excluded volume interaction between distinct beads (including consecutive ones)

corresponds to a purely repulsive Lennard-Jones potential:

del(o/dij)"? = (0/diz)° +1/4], dij < 02V/°

4.6
0, d@j > o21/6 ( )

Urs(i,j) = {
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This repulsive interaction controls the inter-chain excluded volume too:

N-1 N
Hinter = Z Z ULJ(iaj) (47)
I1=1 J=I+1

where N is the number of rings in solution and the index i [j] runs over the beads in
chain I [J].

4.2.2 Simulation details

We consider solutions of N = 64 rings, each consisting of n = 216 beads (i.e., the ring
contour length, L. = 2160 corresponds to 24bx) at six different monomer densities, p:
po® = 0.010,0.025,0.050 < p*o3, po = 0.100 and po? = 0.200, 0.400 > p*o3.

The chosen densities span from a dilute situation to one where the inter-chain entan-
glement is significant and yet the solution is isotropic [142]. The lowest monomer density
is much smaller than the one at which one expects significant ring overlap. The overlap
density is estimated as [2§],

Pt —<é§<30/2 . (4.8)
where <R§> is the mean square radius of gyration of an isolated ring. Using the Zimm-
Stockmayer estimate for the isolated ring size [154], (R2) = L2 ~ 1620 yields p*0® ~ 0.1,
which is an order of magnitude larger than the minimal monomer density considered
here.

Above this density, significant mutual entanglement of the chains is expected. For
dense solutions of linear polymers, the intricacy of the melt [25, 28] and the resulting
physical properties [34] 142] are captured by the entanglement length, L.. Roughly
speaking, this quantity corresponds to the typical chain arclength separation between two
consecutive topological constraints (known as entanglements) arising from inter-chain
uncrossability. It has been recently proposed [142] that the relationship tying L., b
and the solution density, p is adequately captured by the following phenomenological

expression:

L

T (0.06 (po bx?))"%° + (0.06 (po bx?)) 2 (4.9)
K

Using the previous expression, one has that the interval of p considered here corresponds

to a wide range of L. for the equivalent system of linear chains. Indeed, for po? going
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Chapter 4 Entanglement effects in solutions of polymer rings of different topology

from 1072 to 0.4 we have that L./bg spans from ~ 400 to ~ 1. In the latter situation, the
entanglement length is approximately equal to the Kuhn length, and hence the system
is at the crossover from the loosely- to the tightly-entangled regimes (i.e. the chain is
nearly straight between two consecutive entanglements [93]). Higher densities are not
considered, because for po® > 0.5 the onset of the Onsager isotropic/nematic transition

[142] is expected to break the spatial isotropy of the solution.

For reference, we also consider isolated rings, and solutions of N = 21 rings in very
dilute conditions (po® = 0.003).

The equilibrium and kinetic properties of these systems are studied using fixed-volume
and constant-temperature Molecular Dynamics (MD) simulations. MD simulations have
been performed by A. Rosa using the LAMMPS engine [105] with Langevin thermostat
(target temperature = 1.0 LJ-units). The elementary integration time step is chosen
equal to At = 0.01273p, where 7y;p = o(m/e)'/? is the Lennard-Jones time, m is the
bead mass and the friction coefficient, -y, corresponds to v/m = 0.57;,}, [62]. We stress
that, because we are dealing with model polymers, the solvent is not explicitly included in
our simulation. The polymer-solvent interaction is effectively accounted for only through

the Langevin thermostat and related friction term.

Preparation of initial configurations

At each density, we consider monodisperse solutions, consisting either of unknotted (Un)

or trefoil-knotted (3;) rings.

The system initialization consists of placing a template unknotted or trefoil-knotted
ring at the center of a cubic cell with periodic boundary conditions. The template
configuration is replicated 4 times along each spatial direction. The linear dimension of
the cubic cell is large enough to avoid overlap and linking between the template copies and
yields an initial monomer density of about po® ~ 5-1073. Prior to the production runs,
the cell is first evolved at constant pressure until the desired target density is reached and
is subsequently equilibrated for a time span of about 1057,;p. At all considered densities,
this time span exceeds the time required by one ring to diffuse over distances larger
than its typical size. Production runs have a typical duration of 6 - 10%7);p. Typical

equilibrated configurations at two different densities are shown in Fig. [£.1]
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& &

Figure 4.1: Typical configurations of ring polymer solutions, at po® = 0.025 (a) and po?® = 0.4
(b), and corresponding selected rings with trefoil-knotted (¢ and d, right) and unknotted
topologies (c and d, left). This and some other images in the present chapter have been
adapted from reference [1106]

4.2.3 Ring geometrical properties
Shape and size

Ring shape and size are characterized through the gyration tensor, Q. The entries of

this 3 x 3 matrix are given by:

n

1
a,B — _;a — 7 @ _; — 7 s 4.10
Qap = > (Fra = Forra) (Fip — Fous) (4.10)

i=1

where o and 3 run over the three Cartesian components and 7y = %Z?:l 7; is the
spatial location of the ring center of mass. The non-negative eigenvalues of Q, ranked
with decreasing magnitude, A;, Ay and A3z correspond to the square length of the principal
axes of the ring gyration ellipsoid. Accordingly, their relative magnitude conveniently
captures the overall spatial anisotropy of the rings, while their sum yields the ring square

radius of gyration:

3
R;=TrQ=> A, (4.11)
a=1
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Chapter 4 Entanglement effects in solutions of polymer rings of different topology

where T'r is the trace operator. To measure the typical size and anisotropy of the ensemble
of rings in solution, we compute the averages (R2) and (A;_;23) where the brackets (...)

denote averaging over all rings of all system snapshots at a given solution density.

Identifying the knotted portion of the rings

Because of the chain connectivity constraint, the global topological state of the rings is
preserved in the course of the MD evolution. As we saw in chapter [2| the interplay of
geometrical and topological entanglement can be aptly described by the linear dimension
of the knotted portion. Furthermore the top-down and bottom-up knot location scheme
give in general different knot lengths, which we call [, and [, respectively. As we saw in
§ in the case of FJRs of increasing length the magnitude of the difference I, — [

seems to be related with the geometric entanglement of the chains.

Surface accessible area

The rings surface accessible area was computed using the SAS routine of the GROMACS
package [32, [46] using a probe sphere of diameter equal to the bead diameter, o. The
computed surface area includes contributions from inner cavities of the ring conformations

that are large enough to accommodate the probe sphere.

4.3 Results and discussion

4.3.1 Geometric properties of the rings

We first report on how various equilibrium metric properties of the rings depend on their
topology and solution density. In a progression from global to finer aspects, we shall
consider the rings size, shape, exposed surface area, the mean-square distance of points
at increasing arclength separation and the degree of localization of the knotted portion
in 3; knotted rings.

For reference, we provide in Table the average values of the square radius of
gyration, <RZ>, and the eigenvalues of the gyration tensor for isolated unknotted and
trefoil-knotted rings. Analogous quantities are reported for an equivalent freely-jointed
ring (FJR) and Gaussian ring (GR) of L./bx = 24 bonds [28]. The FJR data are obtained
by a Markovian exploration of FJRs, while the GR data are obtained by stochastic
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4.3 Results and discussion

Table 4.1: Average value of the mean square radius of gyration and eigenvalues of
the gyration tensor for unkontted and trefoil-knotted isolated rings.(®

(RJ) (A1) (A2) (As)
UN 1754+ 0.6 116.3+0.6 439+0.1 152+0.1
31 120.8 0.7 77907 306=£01 123+£0.1
FJR 168.7£0.4 1085+£04 421+0.2 181+0.1
GR 161.6 £0.7 106.1£0.6 39.7+0.1 16.2+0.1

(@) Analogous quantities are also shown for an equivalent freely-jointed ring (FJR) and
Gaussian ring (GR) of 24 bonds. The FJR bond length and the GR root-mean square bond
length are equal to bxg = 90. All values are in units of 2.

molecular dynamics simulations. Table conveys the effect that intra-chain constraints
(excluded volume and fixed topology) have on the overall size and shape of rings at
infinite dilution. Both types of constraints are absent in the FJR and the GR. Notice,
that the FJR and GR quantities are typically within 10% of those of unknotted rings.
The difference with analogous quantities for trefoil-knotted rings is substantially larger.
These results reflect the fact that, for the considered values of L. and by, unknotted
rings dominate the equilibrium ensemble of infinitely-thin (FJR) or Gaussian rings with
unrestricted topology. Trefoil-knotted rings therefore possess a degree of entanglement
that would be atypical in rings circularized in equilibrium. The presence of the non-trivial
topological constraint causes such rings to be tighter and slightly more isotropic than
unknotted ones. This result is consistent with the intuitive notion that a certain arclength
of trefoil-knotted rings is “used up” [90] in the non-trivial entanglement (in fact the
minimal ropelength required to tie trefoil-knotted rings is larger than for unknotted

ones).

Ring size and shape

Table reports the same metric properties of Table [4.1], but calculated for rings in
solution. The data suggest that, for both topologies, the ring size decreases with the
monomer density, p. Specifically, going from po® =107 to po® = 0.4 it is seen that R’
decreases from the typical value of isolated rings down to about half of it. The decreasing

trend of the average extension results from the non-concatenation constraint of the rings,
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Table 4.2: Mean square radius of gyration, (Rg) and average shape parameters of
the simulated rings.(®

monomer (R2) (A1)/(A3) (A2)/(Ag)

density

po3 UN 31 UN 31 UN 31
0.010 165.594+0.37  116.07+£0.01  7.45 £0.05  6.11840.001  2.77 £0.01  2.415140.0004
0.025 150.554+0.39  108.234+0.08 7.21 +0.03  5.91 4+0.01  2.63 £0.02  2.335 40.003
0.050 134.6440.06 ~ 97.264+0.05 7.07 +£0.02  5.80 +0.01  2.530+0.003  2.266 +0.006
0.100 115.6340.09  85.6240.19  7.00 £0.03  5.95 £0.02  2.44 +£0.07  2.244 £0.004
0.200 98.6440.10  77.9440.22 7.02 £0.02  6.29 £0.03  2.385+0.006 2.260 =+0.008
0.400 86.3240.85  70.11£0.06 7.46 £0.13  6.84 £0.03  2.41 +£0.01  2.318 £0.008

(@) Shape parameters expressed as the ratios (A;)/(Az) and (A2)/(A3), where (Aq—123) are
the three average eigenvalues of the gyration tensor, Eq. (Rg} values are in units of o2.
For very dilute conditions (po® = 0.010), the calculated quantities are close to the theoretical

values for ideal semi-flexible rings (see Table .

consistent with previous numerical findings [94] [95]. It should also be noted that the
monomer density attained by each ring is much smaller than the density of the entire
solution. In fact, even in the densest case po® = 0.4 the individual ring density — defined
as the number of ring monomers divided by the volume of the average gyration ellipsoid —
is only ~ 0.050 2 for unknots and ~ 0.060 2 for trefoil-knotted rings. These findings
suggest that an increase of solution density promotes extensive chain intermingling as
opposed to tight compaction of the individual rings.

A further indication that an increase of the solution density affects only weakly the
metric properties of each ring is given by looking at the typical ring shape. For this
purpose, following previous studies of either closed or open chains [16, 119, 3], we calculate
the average eigenvalues (A,—123) of the gyration tensor, Eq. which are shown in
Table[1.2] We note that the ratios (A1)/(A3) and (As)/(As) fluctuate by a few percent
throughout the explored range of solution densities and remain close to the overall
anisotropy expected for equivalent, isolated FJRs (see Table .

Exposed surface.

To complete the statistical characterization of ring conformations we next focus on the

average exposed surface area of each ring. This is an important geometric indicator that
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aptly complements the radius of gyration [94] 05] 44l 45, 42] in describing the overall
degree of ring compactness attained in solutions of increasing density. We stress that,
because the purpose is to characterize the properties of individual rings, the exposed
surface per bead is calculated separately for each ring, i.e. without taking into account
the burial effect due to the surrounding chains. Furthermore, the exposed surface is

calculated by taking into account voids (cavities) possibly present in a ring (see Methods,

Sec. .

The varying degree of exposure of the beads in a ring is illustrated in Fig. [4.2b: the
profile pertains to the unknotted ring conformation in panel (a) (picked at po® = 0.4),
where the beads are color coded according to the degree of exposure. For reference, in
panel (b) it is also shown the value of the exposed surface per bead in a perfectly straight
chain configuration. For the case shown in panels (a-b), highly exposed beads nearly
approach this reference value, while the most buried ones have an exposed surface equal
to about 1/3 of the reference value. The distributions of the total exposed surface per
ring are shown in panel (c): in particular, we notice that the ring exposed surface covers
a moderately narrow interval. Nevertheless, the exposed area for trefoil-knotted rings
is generally smaller than for the unknots (at the same monomer concentration, p), and
the mean value of the exposed surface per bead (averaged over all beads of all rings in

various configurations at fixed density) is a decreasing function of solution density.

Finally, it is interesting to correlate the decrease of the surface area with the decrease
of the ring radius of gyration observed for increasing density. This relationship is shown
in panel (d) of Fig. . By taking into account the different scales and offsets of the two
axes in the graph it is realized that unknotted and trefoil rings at the same monomer
concentration differ appreciably by average size (see also Table though not by
exposed surface. Secondly, the density-dependent decrease of the radius of gyration is not
paralleled by an analogous decrease of the exposed surface. In fact, with respect to the
diluted case, the latter diminishes by less than 5% up to po® = 0.2 and by less than 10%
up to po? = 0.4. We note that simple dimensional considerations would have suggested,
instead, a proportional dependence of the surface accessible area on (Rg). The failure
of the simple dimensional analysis suggests that, despite ring sizes that are, on average,
smaller at higher densities, the corresponding configurations are still sufficiently exposed
to the solvent and maintain around each bead enough “free room” to accommodate the

probe sphere used to measure the accessible surface.
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Figure 4.2: (a) The shaded region outlines the accessible surface of the shown ring configuration.
This is calculated using the SAS routine of the GROMACS package [46], 32] with a probe
sphere of diameter equal to the bead diameter, . Monomer beads are colored from red
to cyan for increasing degree of their surface exposure, shown in panel (b) with the same
coloring scheme. (c) Probability distribution functions of the total accessible surface per ring,
for different solution densities and chain topologies. (d) Average accessible surface per ring as
a function of the ring average size, for different solution densities and chain topologies.
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Figure 4.3: Average square spatial distance R2, between ring monomers as a function of their
(normalized) contour length separation, ¢/L., along the chain: results for (a) unknotted and
(b) trefoil-knotted ring polymers at increasing monomer densities.

Geometry of ring portions.

The results presented so far address properties of entire rings. We shall next examine how
various ring portions, or arcs, are affected by intra-chain and inter-chain entanglement.
We first report on how the mean square end-to-end distance, R2 (¢) of arcs of contour
length ¢, depends on the solution density and ring topology. Furthermore, for rings
with non-trivial topology we shall identify the smallest arc accommodating the knot and
examine how its contour length depends on the monomer density.

The density-dependent behavior of R% (¢) is shown in Fig. 4.3l The data for knotted
and unknotted rings are presented in two separate panels. For reference, in each panel we

include the graph for the mean square end-to-end distance for a worm-like chain (WLC):

b [ 20 20
Reewio(l) = % [E +exp <——> — 1} : (4.12)

The analogous expression for a worm-like ring (WLR) is closely approximated by:

1

1 1
R?, l) = + : (4.13
wir() (Rge,WLC(@ Rze,WLC<Lc - g)) )

The latter expression is obtained by matching analytically the exact, small-¢ (stiff) and

large-¢ (flexible) limiting behaviors for a ring polymer.
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Fig. shows that for both unknotted and trefoil-knotted rings at all densities, the
WLC (and WLR) behavior is followed closely only for arclengths smaller than about by
(corresponding to ¢/ L. ~ 0.04). Beyond this arclength, the WLR behavior is followed well
by unknotted rings in dilute solutions. Noticeable differences from the WLR trend occur
for both unknotted and knotted rings at densities larger than p*o® = 0.1. The deviations
grow with: (i) increasing solution density at fixed topology and arclength separation; (ii)
increasing arclength separation at fixed topology and density; (iii) changing ring topology
from unknotted to trefoil-knotted at fixed density and arclength separation. In summary,
departures from the WLR trend are seen upon increasing either the inter-chain (solution

density) or the intra-chain (topological) entanglements.

Properties of the knotted portion of 3; rings.

We conclude the analysis of the equilibrium properties by examining how density influences
the top-down (I;) and bottom-up (l4) lengths of the ring portion accomodating the knot.

The analysis is motivated by recent studies which showed that the typical value of Iy,
is substantially larger for collapsed rings than for unconstrained or swollen ones [76], [12].
In addition it is possible that a change in the ring properties will result in a multiscale
behaviour, characterised by the two knot localization schemes giving very different value
for the length of the knotted portion.

In the present context, we observe that the average values of [, and [y, remain fairly
constant and close to each other, although above the overlap density p* their difference
increases with increasing solution density, see Fig. £.4, Looking at the knot length
distributions above the overlap density, p*, (see Fig. we note that while tighter
knots become more probable according to both knot location schemes, the probability
distribution function of the top-down knot length acquires a larger tail for high values of
/L.

Given the compatibility of the two measures in the following we will always use the

bottom-up approach to locate the knotted portion.

4.3.2 Dynamical properties

The growing level of entanglement found in solutions of increasing density is expected to
strongly impact the ring dynamics. By analogy with the case of linear polymers melts

[28, [62), 34], 140, [63], multiple dynamical regimes are expected. For the latter system, it
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Figure 4.5: Probability distribution function of the normalized knot lengths I /L. and I/ L.
computed with the bottom-up (a) and the top-down (b) knot location schemes, at different
monomer concentrations.
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Chapter 4 Entanglement effects in solutions of polymer rings of different topology

is known that at times longer than the slowest chain relaxation time, the motion of the
chain center of mass follows the standard diffusion while at smaller times the kinetics is
dominated by the slow chain reptation inside the tube created by inter-chain constraints
[62].

We accordingly monitor several observables:
1. The typical time scale for ring diffusion in space;
2. The time scales dominating the fluctuations in rings size and orientation;

3. Finally, for rings with non-trivial topology, we examine how the knotted portion

moves both in space and along the ring backbone.

Some of the above mentioned quantities have been considered before in studies on melts of
unknotted rings [143], 94], 95 [45], in lattice models of isolated knotted rings [109] 64, O8],
and in polymer models of knot diffusion along DNA [I3] [146]. The present context
therefore offers an opportunity to examine the impact of both solution density and ring

topology on dynamics and compare the time-scales associated to the various phenomena.

Time autocorrelation function for the radius of gyration.

We start by considering the time autocorrelation function of an internal (i.e. independent
of the ring absolute space position and orientation) quantity, namely the radius of

gyration:

(Ry(t) Ry(0)) — (Ry)*
() — (R,)? . (4.14)

where the brackets, (...), denote the average over simulation time and over rings. The

Cg,(t) =

behavior of Cg,(t) was considered in recent lattice studies of isolated, unconstrained
knotted and unknotted rings [64], 98]. These investigations showed that Cr, decays with
a characteristic time, 75, that is larger for knotted rings than for unknotted ones [64} 98].
The effect reflects the enhanced self-hindrance of rings with non-trivial topology; consider,
for instance, that the minimal number of crossings observed in any two-dimensional
projection of an unknotted ring is zero, while it is three for trefoil-knotted rings (which
hence must necessarily wind on themselves more than unknots).

Investigating the decay properties of Cg,(t) in the present context serves a twofold

purpose. On the one hand, it can clarify whether the above-mentioned lattice results
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Figure 4.6: Radius of gyration time correlation function Cg,(t) (Eq. for unknots (red
symbols) and trefoils (green symbols). (a): Result for isolated rings (open symbols) and rings
in very dilute conditions with po® = 0.003 (filled symbols). The long time behavior of Cg, (t)
for 31 rings deviates from the Cr,(t) for the unknots, and shows a longer exponential tail,
in agreement with previous studies of isolated ring polymers on lattice [109] [64], 98]. (b):
Results for po® = 0.01 (open symbols) and po3 = 0.4 (filled symbols).

apply to off-lattice contexts, too. On the other hand, by analyzing the dependence of
CRr,(t) on solution density, it is possible to assess if, and to what extent, the increased
intra-chain and inter-chain entanglement affect differently the size relaxation times of

unknotted and knotted rings.

According to this plan we first compute Cg, from simulations of isolated knotted and
unknotted rings. The results are shown in Fig. (open symbols) and fully support the
lattice results regarding the slower relaxation of trefoils compared to unknots. For rings
in solutions, at all considered densities (po® = 0.01 — 0.4), one is surprised to find that
the Cg, curves for trefoils and unknots display much smaller differences compared to
the isolated case, see Fig. [L.6b. Indeed, a behavior quantitatively similar to the isolated
The
effect is quantitatively captured by calculating the effective relaxation time, 7z , given
by the integral of Cg, (), see Table . The data in the table illustrate vividly that

the density-dependent increase of the intra- and inter-chain entanglement obliterates

case is found only at densities lower than po® = 0.003, as shown in Fig. [4.6h.

differences in the average kinetic behavior of rings with different topological state. For
both unknots and trefoils, 7z, has an order of magnitude increase over the considered
range of solution density, p. Notice that upon increasing p, the value of 7, for unknots

overtakes the one of trefoils (see also the order of the red and green curves in panels a
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Chapter 4 Entanglement effects in solutions of polymer rings of different topology

Table 4.3: Correlation times TR, and Tdmm(a)

monomer TR, Tdiam TOM
density (102701 ] (102701 ] [10270p]
p03 UN 31 UN 31 UN 31
Single ring 6.6 £0.6 79+0.6 28 +1 16 +£1 31 22
0.003 7.0+0.6 7.0+0.6 27 +1 16 £1 34 24
0.010 81+0.6 7.34+0.6 27 +4 16 +3 48 36
0.025 11 £1 7.8 0.6 28 +4 16 +3 48 36
0.050 16 =£1 10 +1 31 £4 17 +3 60 36
0.100 27 +1 15 +£1 39 +4 22 +3 72 48
0.200 47 +1 26 +1 61 +4 33 £3 120 72
0.400 125 +1 73 +1 159 +4 92 +4 390 220

(@) Correlation times were calculated by numerical integration of the respective time correlation

functions Cg,(t) (Eq. 4.14) and Cgiam(t) (Eq. [4.15). Numerical integration is limited to
the time interval where correlation functions are > 1072. 7y, is defined as the typical time
required by rings to transverse a region of linear size comparable to the ring average gyration
radius, i.e. 0rd, (Tom) = <R3> (see Bq. [4.16)). All times are expressed in units of 10*73/p.

and b in Fig. 4.6).

Reorientation time.

We now turn to consider kinetic properties that do depend on the absolute orientation of
rings in space. For linear polymers, it is customary to consider the autocorrelation function
of the end-to-end vector [28] which, for closed chains, admits several generalizations [45].

The one considered here is the time correlation of the ring diameter vector:

- -

o) )

—

Cdiam (t) = < dP

where d is the vector joining two monomers that are “diametrically opposite” on the ring
backbone, i.e. monomers with the largest possible chemical distance, L./2. Here the
brackets (- - - ) denote a multiple average: over the dynamical trajectory and over each pair
of diametrically opposite beads for every ring in solution. Notice that Cy;,,, is sensitive
to both changes in modulus of the diameter vector and to its absolute orientation. For

this reason, Tyium, the characteristic decay time of Cyiap, (t) is customarily referred to as
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Figure 4.7: Ring diameter time correlation function Cyiay, (t) (Eq. [4.15)) for the unknots (red
symbols) and trefoils (green symbols). (a): po® = 0.01 (open symbols) and po? = 0.025 (filled
symbols). (b): po? = 0.1 (open symbols) and po3 = 0.4 (filled symbols).

the reorientation time.

Fig. [4.7 portrays Cyjam(t) for unknots (red symbols) and 3; knots (green symbols)
at different monomer concentrations. Analogously to 7g,, we define the corresponding
Taiam @s the numerical integral of Cy;.n(t). Final results are reported in Table . As for
CRr, (t), the asymptotic decay time of Cgiqpm(t) depends on ring topology and is faster for
trefoils than unknots. To the best of our knowledge this effect, that holds at all densities,
was neither pointed out nor addressed before. Extending this analysis and considerations
to rings with more complicated knot types could represent an interesting avenue for

further investigations.

Diffusion of the ring center of mass.

Because trefoils are more compact than unknots they should diffuse faster in the solution,
analogously to what they do in other types of media [41, [I51]. This intuitive expectation
is indeed confirmed by inspecting Fig. [4.8| which portrays the mean square displacement

of the ring center of mass, drZ,,(t), for time lags of increasing duration, ¢:

0rgns(t) = ((Fea () — Tou(0))%). (4.16)

The displacement data given in Fig. pertain to po? = 0.2; similar plots are obtained
for different values of p. It is seen that over the time-span covered by the simulations,

both unknotted and trefoil rings diffuse over distances that exceed by several orders of
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Figure 4.8: (a): Comparison between the time mean-square displacement of the rings center
of mass (672%,,(t), Eq. for unknots (red symbols) and trefoils (green symbols) and
the corresponding average square gyration radii (horizontal lines), for po® = 0.2. Within
the considered time-span, rings diffuse over distances much larger than their typical sizes.
(b): Diffusive motion of the center of mass of a randomly selected trefoil, for po® = 0.2. The
red bar denotes the average ring size, (Rg)l/ 2. Corresponding plots at different monomer
densities look qualitatively similar.

magnitude their average size. For traveled distances larger than the average ring size,
the motion of the center of mass follows standard diffusion. The corresponding diffusion
time 7oy, defined as 01, (Tear) = (R2), is given in Table (4.3] Notice, that the values of
Tom are comparable to the values of 744, at the same solution density, consistently with

the case of linear polymers [2§].

Motion of the knot along the chain contour

Finally, we examine the dynamics in space and along the ring backbone of the knotted
portion of the trefoils. This is a computationally-demanding task, because the numerically-
costly identification of the knotted portion must be carried out for each ring of all sampled
system snapshots.

For simplicity, the instantaneous position of the knot on the ring is taken to coincide
with the chemical coordinate of the midpoint of the knotted portion (defined with respect
to the absolute monomer indexing of the ring set at the beginning of the simulation).
The instantaneous knot midpoint position, si(t) is recorded at fixed time intervals,

t

At = 1207)/p. The incremental knot displacement between time snapshots n (: E) and
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Figure 4.9: (a) Time behavior of the knot midpoint position along the ring contour. Midpoint
coordinates are defined with respect to a reference monomer chosen at the beginning of
the simulation. On the right, four ring configurations sampled at different times along
the trajectory, with the corresponding knotted portions marked in red. (b) Mean square
displacement of the knot along the ring contour, §s2(t) (Eq. , at density po3 = 0.1. The
proportional dependence on time (red line passing through the origin) can be expressed as 2Dy,
where Dy, is the one-dimensional diffusion coefficient: for the case shown, Dy = 0.2102%/7/p
(see Table for a list of diffusion coefficients at all monomer concentrations). Inset: The
Gaussian distribution (red curve) associated with the model one-dimensional diffusion process
matches well the numerical distribution (black line) of incremental knot displacements, dj,

(Eq. .

n+ 1, di(n), is computed using the expression:

d(n) = { [sk(t +AL) — si(t) + SL} mod LC} - % (4.17)

where “mod” denotes the modulus operation. The previous expression ensures that the
displacement is mapped in the [—L./2, L./2] interval. The value of At is sufficiently
small that, at all considered densities, the occurrence of large “jumps” (say equal or larger
than L./4 in modulus) is rare. This is illustrated in the inset of Fig. [4.9] (for po® = 0.1)
which further highlights the Gaussian character of the distribution.

The knot mean square displacement on the ring contour, §s?(¢), is defined by

Ssp(t =1i- At) = <<i dk(j)> > : (4.18)
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Chapter 4 Entanglement effects in solutions of polymer rings of different topology

Table 4.4: Diffusion coefficients, D; for the motion of the knotted portion along
the ring contour length(®

Monomer density D, Th

P03 [02/TMD] [TMD]

0.010 0.18 +0.01 2.1 x 104
0.025 0.19 4+ 0.01 2.0 x 104
0.050 0.19 +0.01 2.0 x 104
0.100 0.21 +0.01 1.8 x 10*
0.200 0.23 £+ 0.01 1.6 x 10*
0.400 0.16 +0.02 2.3 x 104

% The value of Dy, corresponds to half the slope of the line that, passing through the origin,
provides the best interpolation to §s2(t) vs t. The typical diffusion (sliding) time, 74, is defined
as the time required to diffuse by a backbone distance equal to the typical knot contour length

(~ 40% of the ring contour length, see Fig. [4.4).

where the summation index runs over consecutive displacements, and the average (...) is
taken (1) over the trajectory and (2) over the rings ensemble. Fig. illustrates that a
linear relationship holds between ds%(t) and time, indicating that the knot sliding on the
ring backbone can be treated as a one-dimensional diffusion process. The corresponding
diffusion coefficients, Dy, calculated at different solution densities are given in Table
which also reports the typical time, 7, required by the knot to diffuse by its average
length on the ring backbone. Interestingly, 7, is almost unaffected by increasing monomer

concentration. In addition, for a given solution density, 7, exceeds all other characteristic
times given in Table [4.3

Motion of the knotted portion in space.

The above observation indicates that the knot location on the ring backbone is practically
quenched as a ring diffuses in space over a distance equal to its size. This suggests that
the three-dimensional motion of the knotted portion should be akin to the one of a fixed,
tagged, portion of the ring of comparable size.

This observation was verified by considering the time dependence of the mean-square
displacement of the knot center of mass, defined (analogously to Eq. as:

orrenr (t) = ((Frear(t) — Frear(0))%). (4.19)
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Figure 4.10: (a) Comparison between the mean-square displacement of the center of mass of
trefoils (0r2,,(t), Eq. green symbols) and the center of mass of their knotted portion
(67200 (1), Eq. [4.19], brown symbols). The motion of the knotted portion is sub-diffusive
at short times, and follows the chain global displacement at larger times. (b) Comparison
between the mean-square displacement of the center of mass of unknots (6r2,,(t), Eq. |4.16
green symbols) and the center of mass of a tagged portion (brown symbols) of linear size
equal to the average knot length on 3; rings (=~ 0.4L., Fig. [4.4).

Fig. (left panel) shows that the diffusive behavior of the observable 7oy sets in at
times larger than the relaxation time of the whole chain (compare to Fig. |4.8)), while a
subdiffusive behavior ~ t* with o /= 0.7 is seen at smaller times. Notice that the same
exponent, a & 0.7 was previously observed by looking at the stochastic dynamics of the
center of mass of the knotted portion in isolated self-avoiding polygons on a cubic lattice
[98]. Analogous plots at different monomer densities show the same subdiffusive behavior
with an exponent « that decreases slightly with p (not shown). We have then calculated
the mean square displacement of a randomly-picked ring portion spanning 40% of the
contour length (the typical size of the knotted portion, fig. of the unknotted ring.
As shown in Fig. it was found that the tagged portion moves very compatibly with
the motion of the knotted part, showing an analogous crossover from a diffusive to a
subdiffusive behavior. This suggests that the underlying mechanism of the subdiffusive
regime of the “quenched” knotted part is similar to the one that governs the subdiffusive
behavior of any other (topologically trivial) tagged subregion of the ring. Note, however,
that the effective length of the rings considered here is very small compared to the one of

the lattice rings studied in [98], and no simple argument is presently available to predict
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Chapter 4 Entanglement effects in solutions of polymer rings of different topology

if the o = 0.7 exponent is expected to be maintained for increasing contour lengths where
the size of the knotted portion is supposed to be negligible with respect to the one of the
whole ring.

In conclusion, the above results provide a vivid picture of the key features of the
dynamics of the knotted region. Specifically, they illustrate that the displacement of the
knot center of mass follows “passively” the one of the whole ring because of the very long

times required by the knot to slide along the ring.

4.4 Summary

In this chapter we reported on a systematic computational study of the equilibrium
and dynamics of solutions of unconcatenated ring polymers with different knot topology.
Specifically, molecular dynamics simulations (with no explicit treatment of the solvent)
at fixed-volume and constant temperature were carried out on bead-spring models of
semiflexible unknotted and trefoil-knotted rings for several solution densities. This
framework was used to explore the extent to which the interplay between topological
constraints (knotting) and the geometrical self (intra-chain) and mutual (inter-chain)
entanglements affect both the equilibrium and the dynamical properties of the rings. The
study complements previous investigations of dense solutions of unlinked and unknotted
ring polymers of various contour lengths.

Regarding the equilibrium metric properties it is found that changes of the inter-chain
or intra-chain entanglement operated by varying the solution density and/or ring topology,
affect modestly the average ring size and shape compared to the infinitely-diluted case.
Specifically, the root mean radius of gyration of both unknotted and trefoil rings at the
highest solution densities (occupied volume fraction equal to 0.4) are at most about 40%
smaller than in the unconstrained case. At all densities, trefoils are smaller (between 10%
and 20% in linear size) and slightly more globular than unknots. Yet the average exposed
surface of rings with different topology is practically the same and about constant at
all densities. These results offer an interesting insight regarding the compactness of the
rings and, in particular, they indicate that the moderate decrease in ring size following
the increasing intra- and inter-chain entanglement does not preclude the persistence of
voids and cavities within the rings convex hull so that the exposed surface area is about

the same as for unconstrained isolated rings.
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4.4 Summary

The weak dependence of the overall ring geometric features on solution density prompts
the question of whether, for knotted rings, the metric properties of the knotted ring
portion are weakly affected too. By knotted ring portion we refer to the shortest arc that
accommodates the knot. It is found that the length of the average size of the knotted
ring portion is practically insensitive to density variations.

While ring equilibrium metric properties are only weakly affected by variations of
solution density and ring topology, the opposite holds for kinetic properties. The
characteristic times of ring size relaxation, reorientation, and center of mass diffusion
change by one order of magnitude across the considered density range.

Further topology-dependent aspects of ring kinetics were highlighted by monitoring
various kinetic observables of the ring knotted portion. Specifically we focused on how
such region displaces in space and along the ring contour. The backbone motion is found
to follow standard one-dimensional diffusion and the corresponding diffusion coefficient
is smaller (much smaller at low concentrations) than the one of the ring center of mass.
Consequently, for time scales over which a ring moves appreciably in space, its knotted
portion remains practically quenched and, as we verified, diffuses in space as any other
equally-long tagged portion of the ring.

In summary, the results presented here offer novel insights into the impact of intra-chain
and inter-chain entanglement in solutions of ring polymers. The mild dependence of
equilibrium metric properties on both the above-mentioned effects has no parallel with
the behavior of dense systems of rings obtained by three-dimensional spatial (spherical)
confinement. This suggests that an interesting novel avenue to address in future work
would be to examine analogous effects for dense systems of rings obtained by two-and
one-dimensional confinement (slabs and channels), which are increasingly adopted for
advanced polymer micromanipulations. By converse, the sensitive dependence of various
ring kinetic properties on solution density and ring topology suggests that both effects
should be relevant to the studies of rheology and transport properties in semi-dilute

solutions of circular polymers.
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Chapter 5

Multiscale entanglement in spherically

confined knotted rings

It is a well known fact that wires and cables that are packaged disorderly tend to be badly
entangled and knotted. This common experience bears analogies with numerical and
experimental studies on the knotting probabilities of geometrically confined polymers (see
[78] for a review). Since many biopolymers and particularly DNA are often subject to
confinement inside regions with calliper size that is smaller than their contour length (e.g.
the Eukariotic nucleus, mitochondria, bacteria, bacteriophage capsids..), it is interesting
to study the relationship and interplay between spatial confinement and topological
entanglement. In this chapter we address this interplay for spherically confined polymers.

A first breakthrough in the problem could be made by establishing what portion of
a spherically confined knotted polymer ring is occupied by the knot. As we have seen
in § this fraction can be measured in two different ways, which convey different
information about the entanglement related to the knot. The bottom-up knot location
scheme, on one hand, gives the length, [, of the shortest knotted arc having the same
topology of the whole chain. On the other hand the top-down knot location scheme
gives the length, i, of the shortest knotted arc which not only has the same topology
of the whole ring, but can be continuosly extended to encompass the whole of it. The
difference (or lack of) between [}, and [y, therefore gives further insight into the degree of
entanglement of knotted polymer rings.

As a prototypical context to examine this problem we consider semi-flexible, self-
avoiding rings of cylinders with the simplest knotted topology, a 3; knot, and subject to
isotropic spatial confinement. In such a system, by varying the size of the confining region,
the degree of geometrical complexity can be changed and related to the equilibrium

properties of the knotted ring portion.
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Chapter 5 Multiscale entanglement in spherically confined knotted rings

As the bottom-up knot length [,; can correspond to the length of ephemeral knots on
the ring, we start our investigation by studying the top-down knot length [. In §
we characterize how the knot length [, depends on the ring contour length, L. and the
radius of the confining sphere, R.. In the no- and strong-confinement cases we observe
weak knot localization and complete knot delocalization, respectively. In § we show
that the complex interplay of [, L. and R, that seamlessly bridges these two limits can
be encompassed by a simple scaling argument based on deflection theory. Finally in
§ we consider the behaviour of the bottom-up knotted portion as well and show
that its length [, has a qualitatively different behaviour upon increasing confinement
of the rings, leading us to the conclusion that topological entanglement in spherically

confined rings has a multiscale character.

5.1 Methods

5.1.1 Model

We shall consider ring polymers modelled as flexible rings of cylinders and subject them
to spherical confinement. For definiteness, the properties of the model rings are set to
match those of dsDNA. Specifically, the cylinder diameter and long axis are set equal to
d = 2.5nm and b = 10nm, respectively. The latter quantity is ten times smaller than the
DNA Kuhn length (equal to twice the persistence length, [, = 50nm), thus ensuring a
fine discretization of the model DNA. The system energy includes steric hindrance of
non consecutive cylinders plus a bending potential.

We denote the coordinate of the ring vertices by 7,7, ..., 7y11 = 7. Bond vectors
are defined as t_; = Ti41 — T;, again with {N+1 = #,. Steric hindrance is enforced by
penalizing with a large (practically infinite) energy cost all configurations in which two
non-consecutive cylinders come too close. The bending rigidity potential has the standard
Kratky-Porod form
N
B, = —K,,T%’ z; t -t (5.1)

with temperature 7T set to 300K.
We consider rings of N = 50,...250 cylinders, corresponding to contour lengths,
L. = Nb ranging from 500 nm to 2.5 pm. This range allows for probing changes in knot

localization going from semiflexible to fully-flexible rings [3], as well as for examining
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R.=21

Figure 5.1: Typical configurations of trefoil-knotted rings with N = 200 cylinders at different
levels of confinement. The encapsidated configurations for R, = 6 and R, = 3 are magnified
for ease of visualization. The top-down knotted portion of the rings is shown in red. This
and other images in this chapter have been adapted from ref. [I38§].

the effect of the interplay between L., [, and the radius of the confining sphere, R.. For

simplicity of notation in the following all lengthscales are expressed in units of b.

5.1.2 Sampling

Because compact ring configurations are entropically disfavoured with respect to uncon-
strained ones, simple stochastic sampling schemes cannot be effectively used to generate
spatially confined rings [85]. An analogous entropic attrition works against having a
sizeable population of knots of a given type, trefoils in our case, at all levels of confine-
ment [85]. To overcome these two difficulties we used a biased Multiple-Markov-chain
sampling scheme designed after the procedure adopted in [86, 87| and described in detail
in the review of ref. [85].

In short, a series of 24 markovian replicas is run in parallel by evolving different
stochastic trajectories of closed rings. For each replica, ring configurations are evolved
using crankshaft and hedgehog Monte Carlo moves [59]. The moves preserve the length
of the rings, but not the topology, consistently with ergodicity requirements [4], 85].
In fact, even when the configurations before and after the move are self-avoiding, the
move itself may involve self-crossings of the chain. For each replica a newly generated

ring, I' = {7, 7s,...,7n,"ns1 = 71} s accepted according to the standard Metropolis
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algorithm with generalised canonical weight
W(I') = exp[Ey(T') + p Re(T') + A (I)].

In this expression R, is the radius of the sphere containing I' (calculated as the largest
distance of the cylinder vertices from the ring geometric center) and p is a pressure-
like parameter whose value is set differently for different replicas, so to sample rings
with varying degree of confinement. A, (I") is a topology-dependent potential energy
introduced to reject knots with more than 7 minimal crossings (according to the Alexander
determinants in —1 and —2 see § [1.1.5). A,(T) takes the value 0 for ring configurations
with 7 crossings or less or a very large, practically infinite value, for rings with more
complex topologies. To sample more efficiently the configuration space at different
levels of compactification, swaps of configurations between replicas are proposed and
accepted /rejected on the basis of the generalized metropolis criterion described in ref. [133],
89).

For each value of N the procedure is used to generate at least ~ 107 configurations
with varying compactness and topology. For the a posterior: data analysis we pick, out
of the generated rings, an uncorrelated subset with 3; topology (positively established
with the KNOTFIND algorithm [47]).

A thermodynamic reweighting technique [86] is applied to the set of trefoil rings to
remove the pressure bias p and obtain canonical averages for the observables of an

equilibrated set of rings confined within a sphere of radius R..

5.1.3 Identifying the knotted portions

As in previous chapters we use the top-down and bottom-up knot location schemes
introduced in § and denote the obtained knot lengths [, and [l respectively. To
determine the topology of open ring subportions we close them using the minimally-
interfering closure(see § and compute the Alexander determinants in (—1) and (—2)
of the resulting ring.

Thanks to the reliability of the minimally-interfering closure (see § the above
scheme for locating the knot can be seamlessly and robustly applied at all levels of ring

compactification.
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Figure 5.2: (a) Knot length [}, (according to the top down scheme) as a function of progressive
confinement 1/r. for different ring lengths. (b) Scaling of [ in the limiting cases of no
confinement (R, > 1, blue circles) and strong confinement (R, — 0.5, red squares).

5.2 Results and discussion

5.2.1 Behaviour of /; for increasing confinement

The behaviour of [, with increasing confinement 1/r. is reported in Fig. |5.2 (a). Two
important facts emerge: for a given ring contour length, L., the increased confinement
is parallelled by an increase of the length of the knotted arc, l; at the same time, for
a given size of the confining sphere one has that [, increases with L.. The growth of
Iy, with /Rr. is characterized by a mild growth for low confinement, followed by a sharp
increase as the confining radius is further reduced. Finally, for R. approaching 0.5, the
maximum attainable compression of a ring of cylinders of length b, [, reaches a plateau
whose value depends on L..

As a first step towards a comprehensive rationalization of the results we examine the
[, versus L. behaviour in the no- and strong-confinement limits, R. > 1 and R. — 0.5,
which are shown in Fig. 5.2 (b). In the unconstrained case, it is seen that [; increases
as a power of L. lj(R. — o0) o< LY with o« = 0.75 £ 0.02 compatibly with the value
reported in § . As we saw there, the sublinear increase implies that [ /L. vanishes
for increasing L., resulting in a weak knot localization Consistent with previous results
on knot localization for unconstrained rings both on- and off-lattice [76], 145, [73].

To obtain the values of [, in the limit of strong confinement, we fit the curves of

Fig. 5.2| (a) with the function y = ag — a1e~"*2 to extract the value of I, on the plateau,
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Chapter 5 Multiscale entanglement in spherically confined knotted rings

I = ap. A power-law dependence of [, on L. provides a good fit of the data for strong
confinement too but in this case a = 1.09 £ 0.07. This is compatible with a linear
dependence of [, on L. thus implying a full delocalization of the knot in equilibrated
rings subject to severe three-dimensional confinement. To the best of our knowledge
this fact has not been established before. However, it is worth pointing out that knot
delocalization has been previously observed for 6-collapsed knotted rings |76, 145, [73].
The analogy with our findings is noteworthy since the ring metric properties are dictated
purely by equilibrium thermodynamics for collapsed rings while spatial constraints are

also at play for confinement.

5.2.2 Rationalization: arc deflection length

Having characterized the limiting behaviour of [, for no- and strong-confinement we
turn our attention to the intermediate regime intervening between the no- and strong-
confinement limits and show that the complex behaviour of Fig. (a) can be rationalized
in terms of a surprisingly simple relationship involving the length scales L., R. and
. To this purpose we first observe that upon increasing confinement the geometric
characteristics of the rings come to resemble those of uniformly filled spheres. We consider
in particular the eigenvalues of the tensor of gyration (see eq. . Fig. (a) shows that
for increasing confinement 1/r. they become close to the eigenvalue of a uniformly-filled
sphere of radius R..

The approximately uniform filling of the confining sphere by mildly- or strongly-
confined rings is illustrated also by the mean squared end-to-end separation, R2 , of
ring portions of different arclength, s, reported in Fig. (b). The profile of R?(s)
is noticeably flattened and its plateau value is about 6/5R2, which is the mean square
distance of two points inside a spherical volume of radius R..

Following those observations, in analogy with the deflection argument originally
introduced for polymers in channels [97], we define a deflection arclength s as the
value of s at which the squared end-to-end distance of a Kratky-Porod chain equals the

plateau value 6/5R? characteristic of a uniformly filled sphere:
2 (= - b —-£ 6 o
R%(5) = 20,5 |1 — 2 (1 —e lp) 2R (5.2)
5

5 is the nominal arclength of unrestricted ring-portions that are just long enough to hit
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Figure 5.3: (a) Average eigenvalues of the rings gyration matrix, A;, A2, A3 (largest to smallest),
shown as a function of the radius of the confining spherical cavity R.. Errorbars report

the standard deviation around the average value. The inset shows the data for high spatial

confinement. (b) Mean squared end-to-end distance, RZ,, of arcs of length s in rings of

N = 150 cylinders at different levels of confinement. The dashed horizontal line indicates
the reference value equal to 6/5R? while the continuous line shows the expected R2, for
an unconstrained, non-self-avoiding Kratky-Porod (KP) chain. The intersection of these
reference lines determines the nominal deflection arclength, s highlighted by the dropline.

the sphere boundary and, by inverting ({5.2]), can be expressed in terms of the principal
branch of the Lambert W function [23],

5/l,=14+y+ W(—exp[-1—y]) (5.3)

where y = 3R3/5l§.

The deflection arclength is crucial for rationalizing the results of Fig.[5.2| (a) and (b).
In particular it is plausible that confined rings that experience the same nominal number
of deflections at the spherical hull boundary should have statistically similar knot lengths
once rescaled by 5. This conjecture is supported by the scatter plot of Fig. where the
rescaled knot length is plotted against the number of nominal deflections L./§ for rings

of all considered lengths, 50 < N < 250, and degrees of confinement.

Despite the heterogeneity of the original data sets (see Fig.|5.2 (a)), the plot displays
a striking collapse of the data points. A broadening of the curves is seen only in the
limit of unconstrained rings, where indeed, the deflection length looses meaning. We
stress that, because § is calculated deterministically, no single adjustable parameter was
introduced to obtain the collapse in Fig.[5.2] The collapsed curve exhibits an asymptotic

linear trend thus reinforcing the delocalization result of Fig. [5.2| (b).
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Figure 5.4: Collapse of the same data points as in Fig. [5.2| (a) obtained by rescaling [}, and
L. by 5. The slope of the line fitting the data for % > 40 is 1.09 £ 0.02.

5.2.3 Multiscale character of the knot length: [, and [

Apart from the top-down knot length [, considered up to here, we saw that another
length, the “bottom-up” knot length [y, can be associated to a knotted portion. We
recall that while [; is the length of the shortest portion of the ring which shares the
same topology of the whole ring and can be extended to encompass the whole ring, this
latter requirement is not enforced for the knotted arc identified by the bottom-up scheme,
which can consequently correspond to an ephemeral knot (because it can be contained in

a longer arc with different topology, e.g. an unknot) [91].
In § we saw that the knot lengths [, and [y diverge for increasing ring length. It

is intriguing to correlate such divergence with an increasing geometrical entanglement of
the longer rings. On the other hand, we saw in § [£.2.3] that the increase in geometrical
entanglement caused by the presence of other rings in solution does not reflect in a
difference between [ and [4. It is therefore interesting to compare the results given by
the two schemes in the present contest, in which trefoil rings are subject to increasing

geometrical entanglement due to spherical compactification.

The difference between the knotted portions identified by the two schemes is clearly
exemplified in Fig. [5.5] which reports the knotted portions identified by the top-down and
the bottom-up schemes for a confined ring of 250 edges. While the top-down knotted

portion takes almost the whole ring, the bottom-up knotted portion is seen to be formed
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Figure 5.5: The knotted portions identified by the top-down scheme (Red) and the bottom-up
scheme (blue) for a compact ring with 250 edges.

by a short trefoil-knotted arc, which is repeatedly threaded through by the rest of the

chain and may therefore correspond to an ephemeral knot.

Fig. 5.6 illustrates how the length of the shortest knotted arc, ls;, behaves for increasing
confinement and compares it with [,. It is seen that for no- or mildly-constrained rings,
when the ring geometrical entanglement is minimal, the two measures are in good accord.
However, upon increasing confinement they progressively diverge. Compared with the
divergence observed in §[2.3.4] for rings of increasing length, the divergence we observe
here is not only quantitative, but qualitative as well. While [, saturates at almost the
whole ring length in the limit of strong confinement this is not the case for l;;. On the
contrary, it is clear from Fig. that the knotted portion measured by the bottom-up
scheme becomes smaller and smaller with increasing compactification, much below the

typical dimension of the knots in unconstrained rings.

Recalling that [, and [, provide lower and upper limits to the range of arclengths
over which non-trivial topological entanglements (after arc closure) are observed, the
divergence of the two metrics indicates that the entanglement cannot be described by a

single length scale but it displays a multiscale behaviour that amplifies upon increasing
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Figure 5.6: Top panel: dependence of knot length, [, and the shortest knot length, [s, on
confinement for rings of N = 150 cylinders. Bottom panels: probability distributions of the
knot lengths Ig, Iy, for three different values of R..
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Figure 5.7: (a) Dependence of bottom-up knot length Is on the confinement 1/r. for different
length of the confined ring. (b) Scatter plot of l5/s versus L./s for rings of all lengths and
degree of confinement.

confinement.

Similarly to the case of the proper knot length, I, the concept of deflection arclength
is useful for rationalizing the interplay of I, R. and L.. In fact, [, expectedly results
from the balance between (a) the increasing probability that a knot can be tied with a
minimal (nominal) number of deflected segments/cylinders for longer and more confined
rings and (b) the decreasing probability that the complementary arc is unknotted.

In the plot of Fig. (b) it is seen that, for increasing L., the [;/s data tend to
approach a limiting curve that has a linear dependence on L./s. The results indicate that
for medium and strong confinement the length of the smallest, and possibly ephemeral,
knot, l,, increases approximately linearly both with L. at fixed R. and with R, at fixed
L.. Together with the behaviour of [, the results provide a quantitative basis for the

multiscale character of the ring entanglement that sets in for increasing confinement.

5.3 Summary

To summarize, we used the top-down and bottom-up knot location schemes to characterize
the interplay between geometrical and topological entanglement in spherically confined
polymer rings. At variance with the case of ring solutions discussed in chapter 4l we found
that the ring compactification produced by spherical confinement results in a multiscale

character of the knotted portion. This is characterized by a qualitative divergence of
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Chapter 5 Multiscale entanglement in spherically confined knotted rings

the two knot lengths [, and [,: while [ follows a complete delocalization trend, the
bottom-up knot length [, becomes smaller and smaller for increasing confinement.

We further showed that the complex behaviour of [, and [, at moderate and high
degrees of confinement can be rationalised in terms of a deflection arclength. The
latter therefore appears to be a key quantity to characterize the complex interplay of
the geometry and topology in confined polymer rings, which reverberates in the above
mentioned multiscale entanglement. This observation prompts the question of whether an
analogous concept and scaling argument can be introduced to characterize and rationalize
the entanglement found in other systems of densely-packed circular polymers, such as for
example theta-collapsed rings [42], 145 [76].

Our results have direct bearings on the relevant problem of viral DNA ejection into
infected cells [8I]. This problem will be part of the focus of next chapter, in which we
will show that this crucial step of the viral infection is not hindered by the presence of

knots, in the packaged genome, because the latter are highly delocalized |78, [80].
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Chapter 6

DNA-DNA interactions and DNA knotting in

bacteriopaghes

[

In the previous chapters we studied how topological entanglement influenced phys-
ical properties of polymers by focusing on polymers with fixed topology. By varying
parameters like the polymer length or the degree of confinement (either geometrical
or due to the presence of other rings) we studied the effects of knots on the physical
properties of polymer rings. In this chapter we adopt a complementary approach, using
topological analysis (the properties of the knot spectrum) to infer the physical proper-
ties of packaged bacteriophage genome. With their um long dsDNA genome packaged
inside capsids whose diameter are in the 50 — 80 nm range, bacteriophages achieve the
highest level of compactification and arguably bring the simplest example of genome
organization in living organisms [31, 40]. Thanks to experimental advancements in
single-molecule manipulation and imaging techniques [125], many aspects of the process
of DNA loading inside the phage capsid, and its subsequent ejection are now understood
in detail [65], 40] 35, 19, [72]. Nevertheless, the problem of DNA organization and storage
inside the capsid (i.e. after completion of the loading process and before ejection) remains
elusive.

There are two main kinds of experimental assays for genome organization in bacte-
riophages, both giving important terms of reference for any study of dsDNA packaging.
These assays are cryo-electron microscopy (cryo-EM) probing the geometry and gel-

electrophoresis probing the topology of the confined genome.

!Originally published on PNAS 106, 2009, pages 22269-2274: DNA-DNA interactions in bacteriophage
capsids are responsible for the observed knotting. By D. Marenduzzo, E. Orlandini, A. Stasiak, D.W.
Sumners, L. Tubiana and C. Micheletti. Research originally designed by D.M., E.O., D.W.S. and
C.M.; simulations performed by D.M.; data analyzed by E.O., L.T. and C.M.
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Cryo-EM techniques allow to reconstruct the three-dimensional structure of packaged
dsDNA starting from electron-density distributions. Recent studies performed using
advanced cryo-EM techniques, that do not assume any a priori simmetry to perform
the three dimensional structure reconstruction, have revealed that close to the capsid
internal wall, the DNA of bacteriophages €15 [52] and ¢29 [22] is arranged in neatly
ordered concentric shells, each formed by stacked hoops of DNA. The distance between
neighbouring DNA hoops and shells have been measured to be 2.5nm equal to DNA
hydration radius. An increasingly disordered DNA arrangement, possibly due to the loss
of experimental resolution, was instead observed when moving toward the interior of the
capsid. This data therefore suggested a DNA arrangement compatible with the coaxial
inverse spool model.

Gel-electrophoresis analysis allows for establishing the topology of DNA rings by
correlating it to their migration velocity in an agarose gel under the influence of a uniform
electric field. Rings with different knots migrate at different velocities, giving origin to
distinct DNA bands, which can be weigthed to obtain the relative probability of different
knots [123, [129].

Gel-electrophoresis assays were carried out on specific mutants of the P2 and P4
bacteriophages. The P4 genome is a 10 — 11.6 Kb DNA molecule with 19-bp cohesive
ends. Cohesive ends are complementary sequences of single-stranded DNA that can
anneal together forming a nicked DNA ring and thus capturing any knot present in the
P4 genome. Once the ends anneal, their interaction is so stable that the topology of the
molecules is fixed during further experimental manipulation [149] 68 [67].

The analysis of the knot spectrum was performed both on mature phages where one
DNA end is kept within the collar of the phage, therefore preventing ends annealing
before extraction, and on tailless mutants in which both ends were free to meet and
anneal inside the capsid [9, §]. The knot spectrum obtained in those two cases provided
several important indications about genome organization within phages.

First, 47% of the DNA molecules were found to be knotted in mature P4 phages [9].
This already considerable fraction increases to a staggering 95% for molecules coming
from the tailless mutant [67, [9]. Second, measured knot resulted to be highly complex
as indicated by an average minimal crossing number of ~ 26. Minimal crossing number
ranging up to 40 were reported [9]. For comparison, the knotting probability of P4 DNA
circularized in solution is 3% with a knot spectrum characterized by simple knots with

average minimum crossing number of ~ 5 [9]. Finally, the population of the simplest
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types of knots was found to be strongly biased towards torus knots and against achiral
ones [8]. In particular, the populations of the achiral knot 4; and of the twist knot 59

were much smaller than those of the torus knots 3; and 5;.

The observed knot spectrum provides an important, albeit indirect, indication of DNA
arrangement, as it cannot be explained by simple models for semiflexible polymers subject
to spatial confinement. For example, the extremely high (95%) knotting probability is at
odds with predictions from DNA-packaging models where ordered and mostly unknotted
spools are obtained as a result of minimization of the bending energy [7]. Accounting for
thermal disorder in semiflexible polymers confined in a spherical cavity produces, on the
other hand, highly entangled configurations [37]. While the resulting disorder reflects in
a high fraction of knots and high knot complexity, it fails to account for the observed
bias among the simplest types of knots [80] [87]. Arsuaga et al. observed that the latter
can been qualitatively reproduced in simulations of mildly confined ring polymers, either
sampled with a preferential bias for configurations with high writhe [§] or generated in
spool like configurations [6]. In this regard, it is important to observe that both the
writhe and the spooling provide a quantitative measure of global geometric properties.
This leads to the question of what plausible local DNA interactions are responsible for
the observed knot spectrum (possibly, but not necessarily, also resulting in the proposed

biases).

In this chapter we show that several experimentally accessible features of viral genome
packaging can be reproduced and understood via a suitable mesoscopic model of double-
stranded DNA which can be studied by computer simulations. In addition to accounting
for the well known bending rigidity and thickness of the DNA, our model incorporates a
crucial phenomenological aspect, the fact that contacting DNA segments are chiral and
meet with a preferred twist angle. To the best of our knowledge, this interaction has
not been previously considered in models for DNA organisation inside bacteriophages,
although it is known to be ultimately responsible for the appearance of cholesteric phases

in dense suspensions of DNA segments [112, [17, 128, [61].
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6.1 Model and methods

6.1.1 DNA model

We model dsDNA as a open semiflexible chain of N spherical beads of diameter o = 2.5
nm (each bead therefore comprises slightly less than 8 base pairs). The P4 genome we
study consists of 10 kilo-base pairsﬂ (kb) and hence is modelled with chains of 1360 beads.
Mutant phages with 4.7 kb-long genome were simulated using chains of 640 beads. The

P4 capsid is approximated as a non-deformable sphere with a diameter of 45nm [29].

In the following we shall indicate with 7; the position of the center of the ith bead and

with EZ = ;.1 — 7; the virtual bond vector connecting beads ¢ and 7 + 1.

The connectivity of the chain is treated within the finitely-extensible nonlinear elastic
(FENE) model [62], and by further requiring that the bond length is never either smaller
than 0.7 o or larger than 1.3 o.

The bending rigidity of DNA is captured with a standard Kratky-Porod potential:

N—1 = -
b - by
Vbend Z 22 (61)
i=1 b z+1|

and the bending energy amplitude is set so to reproduce the known persistence length (1,
= 50nm) of unconstrained DNA [I8|, x, = K57 /s, where Kp is the Boltzmann constant
and T'= 300 K is the temperature. .

The mesoscopic DNA model includes three types of chain self-interaction, namely Van
der Waals, screened electrostatic and cholesteric interactions [I30]. The Van der Waals

interaction is modelled using a pairwise Lennard-Jones potential

YL {Z [( U|> B (\%06

2,7>1

4

+f}ﬂr—fmﬂ (6.2)

—

where € = % kgT, and 7;; = 7; — 7.
Like previous work (see e.g. [8, 87, 87, 57, 108, [77, T04]) we build on the notion that
viral capsids are permeable to ions in solution [66] which effectively screen electrostatic

interactions inside the capsid. Screened electrostatic interactions are accounted for via a

2Corresponding to mutant P4virl del 22 strain
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Debye-H uckel potential,

KpTo? 1 7
yPH — Ba—QlB Z Z ﬁe(*\m\/lp) (6.3)
ij

i J>1

where [ is the Bjerrum length (0.7 nm in water), a is the distance between two elementary
charges (0.34 nm for B-DNA| see e.g. [106} 37]), and [p is the Debye length, which we
take equal to 0.9 nm (corresponding to 0.1 M solution of monovalent counterions such as
NaCl).

The potential energy terms introduced above are known to be sufficient to account
with remarkable detail for the main conformational properties for unconstrained DNA in
solutions of high ionic strength [120)].

We note that this model does not account either for DNA torsional rigidity or for
desolvation effects. The latter are very important in systems where DNA strands are
packed at interaxial distances smaller than 3 nm [130]. For the particular systems
considered here model calculations [108, [51] indicate that the expected average separation
of the packaged DNA ought to be larger than this spatial threshold (see Fig. and
therefore, to maintain the model complexity at a minimal level, no attempt is made to

incorporate effects resulting from interaction with the solvent.

Cholesteric interaction

As discussed later, the ingredients introduced thus far alone are not sufficient to reproduce
either the cryo-EM or the P4 DNA knotting data. To make contact with these experiments
we include another crucial term in our short-ranged potential, which introduces a preferred
“twist angle” between DNA segments that are close in space (Fig. . This cholesteric,
twist, interaction has a strong phenomenological basis, and leads to the onset of cholesteric
phases in dense solutions of DNA fragments, typically for DNA densities between about
160 and 380 mg/ml [71]. Accounting for the cholesteric interaction appears, therefore,
mandatory for systems where the DNA density is larger than ~150 mg/ml. This is the
case for several phages, including P4 where a lower bound for the DNA density is ~200
mg/ml (calculated assuming homogeneous density). Microscopically, the interaction
results from an interplay of the helical nature of DNA (which favors the juxtaposition
of contacting DNA segments at an angle reflecting the groove “inclination”) and the

interaction between the effective electrostatic charges on the double-helical molecule [21].
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Figure 6.1: (a) The cholesteric interaction between contacting portions of DNA is introduced
by favoring a preferential twist angle, ag, between virtual bonds that have a close spatial
separation. The figure highlights the pairs of consecutive beads (shown as spheres) bridged
by the virtual bonds. The directionality of the latter is shown with colored sticks. The
twist angle is calculated accounting for the non-oriented character of dsDNA.(b) Plot of the
strength f;; of the cholesteric potential as a function of the distance between two strands.This
and some other images in the present chapter have been adapted from ref. [80]

|dij]

Finally, the cholesteric, twist, interaction potential is:

Ve=>">" kea—a)f(dy) (6.4)

i j>itl
where 7
1 if |di;| <A
4) — ) ij 6.5
f(di) {6—2(|dij|_A)/(A) otherwise (0:)

where d_;;j = (73 + Tig1 — 75 — Tj41)/2 is the distance between the centers of mass of the
two bonds and A is the spatial range of the interaction. The twist angle, «, formed by
two bonds, b; and l;j is defined by

- —

tan o = [(1_7; x b;) - dl]]/[(gz .

!

=

i1 (6.6)

With this definition of a the cholesteric interaction is apolar, i.e. insensitive to the reversal
l;@- — —I;l- of any of the two bonds l;l and I;j. The apolarity is required in consideration of
the symmetry of the DNA double-helix. The preferential twist angle is indicated as «y.

The above potential arguably represents the simplest, phenomenological, way to account

for the preferential twist-angle formed by contacting DNA segments, in a chain-of-beads
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DNA model. This interaction, which is responsible for the well-documented phenomenol-
ogy of cholesteric phases of DNA [TT], results from the complex interplay of various atomic

interactions which only in recent years are being systematically addressed [61], [134].

Viable values for the phenomenological parameters k. and ag can be obtained from
available estimates of k; and kyy measured and computed for dsSDNA cholesteric phases.
Specifically, it is found that «q should be of the order of 1° [134] though larger values
could be obtained if the capsid is permeated by polycations. In addition, considering the
energy associated to the introduction of a cholesteric twist in an hexagonal arrangement
of parallel DNA strands [61] one has k. ~ 1KgT at T = 300K. Finally, the interaction
range A is expected to be ~ 3-5 nm [61], 21].

6.1.2 Kink-jump dynamics.

The simulations were performed using the constant-temperature kink-jump stochastic
dynamics scheme [79]. This algorithm consists of the Metropolis acceptance/rejection of
attempted local polymer deformations. The elementary move entails a displacement of
randomly-picked bead by a fraction of its diameter. The time step associated to each kink-
jump move can be mapped to the time span of 1-5 ns over which an isolated bead would
diffuse over a length comparable to such a fraction. At all stages of the loading process,
one end of the DNA is held fixed at a specific “portal motor” position on the surface of
the spherical capsid (45nm diameter) confining the beads. The progressive insertion of
the genome performed by the motor is described by the occasionally attempted addition
of beads at the free end of DNA until the desired length of the chain inside the capsid
is reached. The half-P4 genome packaging process lasts several ms consistent with the
time-span covered by other DNA packaging simulations [104], 113]. The chain growth
process is expected to capture the realistic aspects of the DNA insertion inside the capsid

which is expected to mostly progress by reptation [39].

Simulations of spontaneous (free) ejection are carried out within the kink-jump scheme
by modifying the potential field so that there is a hole (radius 5 nm) on the surface of
the capsid from which DNA can exit. To model the presence of a collar in the phage,
beads close to the opening are subjected to an harmonic potential towards the center of

the opening.
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6.1.3 DNA circularization and topological analysis

Packaging simulations are performed using an open chain which eventually must be closed
in order to identify its topological (knotted) state. Virtually all configurations produced
with this scheme had their ends at the surface, hence their topology is unambiguously
identified by any outward closure like the radial closure and the minimally-interfering
closure described in §

Ring topology have been established using the KNOTFIND routine implemented in
the KNOTSCAPE package [47]. Knot degree of localization have been measured using
the top-down and bottom-up schemes described in § 2.3

6.2 Results and Discussion

6.2.1 DNA organization inside the capsid

In the absence of the cholesteric term, the configurations generated by packaging the full
P4 genome have the typical appearance shown in Fig. (a). The highly disordered
organization of the DNA at the inner surface of the capsid is apparent, at odds with the
cryo-EM experiments.

Introducing the cholesteric orienting potential, with the interaction strength, range
and amplitude of the angular bias deduced from available data [128| 21], 134], results
in a dramatic change of DNA ordering at the surface (see Fig. (b)). Projection
views of the resulting arrangement, shown in Fig. convey a level of order consistent
with cryo-EM observations of various bacteriophages [52), 22]. This provides a strong
indication that the introduction of this potential profoundly affects the organization of
DNA inside the capsids. While the arrangement of Fig. (b) resembles an inverse spool,
the coloring scheme reveals both an appreciable degree of interweaving of the layers
and the occurrence of hairpin defects. In particular, it is observed that there is (i) no
systematic progression of the chain from bottom to top (or vice-versa) of the capsid and
(ii) no unique winding directionality. These aspects, particularly (ii), reflect the apolar
character of the cholesteric interaction since the symmetry of the DNA double-helix
implies that the potential bias is insensitive to the directional orientation of interacting
DNA segments.

The analysis of the DNA packaging process reveals that initially the DNA chain tends
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Figure 6.2: Model conformations of the fully-packaged 10kb-long P4 genome in the (a) absence
and (b) presence of the cholesteric potential (of strength k. = 1 KpT range A=3nm and
biasing angle ap = 1°). In each of the two panels, the first two images present front and top
views of DNA arrangement. In both cases a rainbow coloring scheme (red — yellow — green
— blue) is used to follow the indexing of the chain beads (the red end is the one rooted at
the portal motor location). The progression of the DNA chain, and its winding directionality
is also highlighted in the bottom images where an oriented arrow is used to represent each
triplet of beads. 97
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Figure 6.3: Projection view of the fully-packaged model P4 genome configuration shown in
Fig. (b). The configuration is represented with its projected centerline so to highlight the
arrangement of the chain in the capsid interior, in a fashion analogous to cryo-EM images
(where signal comes from all packed layers at the same time).

to form a coaxial spool, with loops having maximum (equatorial) diameter. As more
DNA is fed inside, the spool proceeds maintaining the initial winding directionality
(which can change from run to run) and moving away from the equatorial region towards
the poles. In doing so it attains tighter radii of curvature and the accompanying increase
in bending energy makes it possible for the chain to change winding directionality near
the poles producing hairpin defects, like the one shown in Fig. (b).

6.2.2 Knot spectrum

We now turn our attention to the second and key issue, namely the bias in the knot
spectrum of circularized DNA molecules. Characterizing the knot spectrum requires
the collection of hundreds of configurations where DNA is fully loaded inside the capsid.
The duration of each of the packaging simulations depends very strongly on the final
filling fraction of the capsid. In fact, the effective rate of DNA loading shows a noticeable
reduction upon increasing the fraction of packed genome. For reasons of computational
efficiency, we therefore took as term of reference not the knotting experiments on the full

P4 genome, but those on the half-P4 genome recently carried by Trigueros and Roca [135].
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Figure 6.4: (a) Distribution of the local density of DNA for fully-packaged configurations
of the entire P4 genome in the absence of the cholesteric potential. (b) Distribution of the
local density of DNA for fully-packaged configurations of the half P4 genome in the absence
of the cholesteric potential. In both cases a non negligibile part of the chain is packed at
densities inside the cholesteric range 160 — 380 mg/ml. This result indicates the necessity
of considering a cholesteric interaction between DNA strands. With reference to locally
hexagonal arrangements of dsDNA strands, the 160 — 380 mg/ml density range corresponds
to DNA interaxial distances going respectively from 4.9nm to 3.2nm.

In this study, the knotting of the 4.7kb-long DNA still occurred inside the P4 capsid and
produced a spectrum that, except for a decrease in the average level of knot complexity,
maintained the same biases of the full-genome case among the simplest types of knots.
As shown in Fig. [6.4] the shorter genome is still expected to attain local packing densities
in the cholesteric range and therefore provides an ideal, computationally viable (requiring
only 640 beads), testbed for the proposed model.

We generated several hundred configurations for various values of the cholesteric
potential strength k. (from 0.25 Kp T to 3.0K5 T'), for different values of the interaction
range A (from ~ 3 to 5 nm), and of the preferred twist angle ay (from 0° to 10°).
These values cover the range of available estimates for k., A and o [128] 21], 134].
In general, increasing the strength of the cholesteric interaction simplifies the average
topological complexity of the generated (closed) configurations. In spite of this, the
relative probability of occurrence of the simplest types of knots is found to be only mildly
affected by the specific parametrization of the cholesteric potential and was therefore
taken as a meaningful term of comparison against available experimental data. As, a

part for a difference in the average knot complexity, the key features of the half and full
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Figure 6.5: Knot spectrum: probability of occurrence of the simplest types of prime knots
in 4.7Kb-long DNA inside the P4 capsid obtained accounting for the cholesteric interaction.
Blue, green and red bars correspond to probabilities obtained for ag = 0°, ap = 1° and
agp = 10° respectively. The total knot population sizes in the three cases are 200, 250 and 300.
Error bars are calculated using poissonian statistics. Chiral and torus knots prevail in all
three cases, as evident from the predominance of 31, 51, 61 and 7; knots. Spectra obtained for
ag = 0° and ag = 1° are compatible within errors. The index 7, is used for the cumulative
set of 79, 73, 74 and 75 knots.

genome knot spectrum are consistent with each other, we take as reference the 10kb case,
for which finer experimental data are available [§]. As shown later, the best quantitative
agreement between the experimental and computed relative knot probabilities is found
for k.=1KgT, A =5nm and ag = 1°. Unless otherwise stated, the results presented
hereafter pertain to this choice of parameters.

The packaging dynamics was used to generate 250 configurations which, on average,
appear to be highly knotted (with ~ 70% of them being non-trivial knots). After
all possible geometrical simplifications, about 20% of the configurations remained too
complex to be correctly identified against a lookup table of knots having crossing number
smaller than 17.In particular, the average number of crossings after simplification is 12

(with about 25% of the knots with more than 14 crossings), consistently with experimental

100



6.2 Results and Discussion

Z 1550

g I ]
&~

21500 |- —
<)

= 0 | .
n 0

E i .
> 1400 —
+ B .
-

L1350 E % —
+ | -
3

1300 | -
> I ]

1250 | | | | |

3 4 5 6 7 8

Minimal crossing number

Figure 6.6: Average internal energy (with omission of the contribution from the chain con-
nectivity, FENE, potential) as a function of the topological complexity of the configurations
of the fully-loaded P4 half-genome. The topological complexity is conveyed by the minimal
number of crossings after geometrical simplification of the closed configurations. On average,
knots with 3, 5 and 7 crossings (which are dominated by torus knots) appear energetically
favoured over non-torus knot types with comparable complexity.

findings on the half genome P4 [135]. Among the simplest types of knots, those with up
to 7 crossings, the most populated ones are torus knots. The probabilities of the simplest
knots for three different choices of the preferential twist angle g, g = 0°,1° and 10°
(with A = 5nm and k.=1K,T ) are reported in the histogram of Fig. 6.5 From it we
can see that in all three cases the achiral knot 4; is severely suppressed when compared
to both the simpler torus knot 3; and the more complex torus knot 5;. The latter is,
furthermore, in excess of its by counterpart, reversing the trend observed in models of
confined self-avoiding flexible polymers [8, 87]. Overall, at least 20% of the conformations
correspond to the torus knots 31, 51, 71, 819, 91 and 10794 which, in fact, appear to
possess an average lower energy than knots type of comparable complexity, as shown in
Fig. [6.6]

For the purpose of a comparison with the experimental data of ref. [§] we recall that

the experimental relative population of 31, 4;, 5; and 55 knots were 57%, 3.8%, 39%
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and < 1%, respectively. Within estimated uncertainties, the knots populations obtained
for ap = 1° (in green in Fig. [6.5] ) are in good agreement with the above data as their
relative probability profile is the following: 51% for 3,, 8% for 4,, 36% for 5; and 5% for
5. The comparison indicates a level of accord with experiments which was not achieved
in previous studies where both equilibrium and dynamical processes were used to sample
compact configurations of DNA models of varying complexity [8], [7], [86], [87].

Our results therefore suggest that the knot spectrum can be used to discriminate the
viability of several force fields for DNA interactions in confined geometries. Indeed, as
expected, simulations with k. = 0, when compared with the experimental data, lack the
characteristic bias towards torus knots and provide too complex a knot spectrum. We
also performed simulations with self-attractive force fields (coming e.g. from multivalent
counterions in the buffer) which led to better spooling but, once more, produced a knot
spectrum qualitatively different from the experimental one.

It is worth pointing out that the bias in favor of torus knots is not accompanied by a
detectable bias on the geometrical writhe which has an average value compatible with
0 (see table [6.1). A related observation is that no statistically-significant difference
is observed between the types of handedness of the occurring torus knots. These two
aspects reflect the small bias angle ay = 1° of the cholesteric interaction which, on the
lengthscale given by the capsid size, essentially promotes a nematic, collinear ordering of
contacting packaged strands. In fact, as shown in Fig. the knot spectra obtained for
ap = 1° or ap = 0° (nematic ordering) are compatible withing the given uncertainties.
Furthermore, in spite of the apolar character of the interaction, it is found that most
pairs of contacting strands are co-directional (assume that orientation is given by chain
indexing) so that pronounced differences in the handedness of torus knots are observed
upon using larger absolute values of . For example ay = 10° produces an appreciable
majority of right-handed torus knots, as reported in table The results suggest that
future experiments where the handedness of torus knots in circularised P4 DNA is probed
in dependence of the concentration of polycations (which can modulate the biasing angle)

would be valuable to confirm the present findings.

6.2.3 DNA ejection

The spatial organization of the DNA in the capsid reproduced by our model can also
explain the apparent contradiction between the occurrence of highly knotted DNA
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Table 6.1: Knot handedness for different values of «.(®

Qo left-handed right-handed

0 0.56 = 0.10 0.44 £0.09
1 0.49 £ 0.04 0.51 £ 0.04
10 0.24 + 0.06 0.76 £ 0.11

(@) Fraction of left-handed and right-handed knots among the set of torus knots. Analyzed
configurations included knots of up to 16 crossings after simplification that were either prime
torus knots or prime components of composite knots where all factors were torus knots. Errors

denote the uncertainty obtained using the binomial statistics. A highly significant bias is

observed only for ag = +10°.

configurations inside the mutant phage capsids and the necessity of a highly efficient
delivery, by ejection, of the wild-type genome into the cytoplasm of the infected cell [40, 57,
108, 124, [39]. In this respect it is important to recall that, though most of the experiments
on the knotting of the P4 DNA have been carried out for the P4 tailless mutant, a
non-negligible fraction of knots (47%) was found also for the wild-type mature P4 phage.
In this case only one of the DNA ends is inside the capsid, while the other is anchored to
the phage tail. At variance with the mutant case, the annealing of the two cohesive ends
occurs outside the phage after the destruction of the capsid. Considering that a partial
DNA relaxation occurs between the extraction of the DNA and its circularization (which
“traps” its knotted state), the fact that a substantial fraction of knotted DNA is still
found under these conditions is therefore indicative of two facts. First, DNA is highly
entangled inside the wild-type virus. As these viruses are infective, the second conclusion

is that the entanglement does not hinder the ejection of DNA into the host cell.

Our study provides valuable insight into both these aspects. Consistent with the first
observation, we have verified that both in the wild-type case where one end of the DNA
is kept anchored at the portal motor location or the mutant case when both ends are
free to reptate and anneal inside the capsid, the majority of the configurations are found

to be knotted upon an outward closure.

The implications of our results for the ejection process are best discussed in relation
to the geometrical properties of the occurring knots. Analyzing the knot lengths with
both the bottom-up and top-down knot location schemes (see § we found that knot

are highly delocalized according to both schemes. For example, for the most abundant

103



Chapter 6 DNA-DNA interactions and DNA knotting in bacteriopaghes

100
' I T I wad
- ) WW’MWWMWWNWMWH |
e
\d

= unknot
— O 1

complex knot

Percentage of ejected genome

L | . | . |
0 1e+07 2e+07 3e+07
time (MC steps)

Figure 6.7: Percentage of ejected genome as a function of time (in simulation steps, each step
corresponds to about 1-5 ns), for three different starting configurations of the fully-loaded
half-P4 genome. The initial configurations correspond to an unknot (black curve), a 9; knot
(red curve) and a knot which was too complex to be identified against a lookup table of prime
knots of up to 16 crossings (green curve). The ejection proceeds in a fashion that is largely
independent of the initial knotted state. A slowing down of the ejection is seen after 70%
of the genome has ejected. The ejection speed up for the very last portion of the genome is
ascribable to the entropic pulling of the expelled chain (this regime is expected to be sensitive
to various details such as the presence of phage tail). For snapshots of the ejection process
for the 9; initial knot, see bottom panel.
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simple knot types, 3; and 51, the knotted portion of the chain [75] is on average ~ 50%.
This indicates a very high degree of delocalization, as 3; and 5; knots can be tied very
tightly with as little as ~ 5% of the chain, as well as an “ordering” effect of the cholesteric
potential, highlighted by small incidence of multiscalar behaviour of the knot length,
in contrast to what observed in § [5.2.3] Based on this quantitative observations we
formulate the proposal that the delocalization of the knots is a key factor for avoiding
ejection slow-down which can occur in the presence of tight knots [81]. A recent study on
the pore translocation of knotted DNA has further indicated that, besides knot tightness,
a further important player is the force which draws the knotted DNA out of the cavity
from a narrow pore. In fact, tight knots can slow down the pore-translocation process
but not necessarily halt it, unless the driving force is sufficiently high [1T4].

In principle, knot delocalization and the absence of complex multiscalar behaviour of
the knot length may not be sufficient to ensure an effective delivery of the genome, as
even delocalized knots may be badly entangled geometrically and slow down ejection.
We have verified that this is not the case for the knotted configurations generated with
our model. To establish this point we have performed a series of simulations where
the fully-loaded chains with different topological state (upon closure) were left free to
diffuse out of the capsid by taking advantage of thermodynamic forces which disfavor the
confined packaged state [96]. The ejection kinetics was found to be largely independent of
the initial topological state and all the configurations are ejected without any significant

geometrical or topological hindrance, see Fig. [6.7]

6.3 Summary

We have presented a theoretical study of several aspects of DNA packaging in viral
capsids for which experimental measurements are available and that were unaccounted
for by previous theoretical and computational investigations of the problem. The typical
mesoscopic description of DNA employed by such studies was that of a self-avoiding
semiflexible chain. This treatment is highly successful in reproducing the observed features
of unconstrained DNA [120]. Our findings show that the known rich phenomenology of
densely-packed DNA inside phages can be satisfactorily reproduced by accounting for
the known preference of contacting DNA portions to meet with a preferred twist angle,

without the necessity to postulate biases resulting from out of equilibrium effects.
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Our approach allow us to reproduce the salient features of the spectrum of knots
observed experimentally for P4 DNA and are also consistent with the cryo-EM data
which show regular organization close to the surface of the capsid. This is at odds with
most previous simulation data on bacteriophage DNA which show much more disordered

packing if, as we do here, a buffer with monovalent counterions is considered.
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In this thesis we presented a numerical investigation of the interplay between physical,
geometrical and topological properties of polymer rings in several cases of relevance for
biophysics. Since many biopolymers, and particularly DNA, are often confined within
regions having calliper size smaller their contour length, or are found in dense solutions,
we dedicated most of this Thesis to the investigation of the interplay between topological
and geometrical/physical properties in dense systems of polymer rings, focusing in
particular on the localization properties of the knots (their tightness) in relation with

the geometrical entanglement of the chains.

In order to study the degree of localization of knots in highly entangled polymer rings,
in chapter [2| we introduced a novel closure scheme, termed the minimally-interfering
closure, to assign a topological state to open subportions of a ring. We proved that the
manimally-interfering closure is computationally fast, yet robust and accurate compared
to other schemes, particularly when applied to compact polymers. Furthermore we showed
that the degree of localization of a knot depends in general on the searching algorithm
adopted to locate the knot on the chain. Search algorithms usually adopted in literature
can be divided into two broad categories: bottom-up schemes, and top-down schemes.
The former start from a small unknotted subportion of the ring and subsequently look
for the knot in subportions of increasing length. The latter on the other hand start by
considering large knotted subportions of the ring and try to reduce their size until the
knot is untied, keeping the previous to last (knotted) arc. we showed that while this two
kinds of knot location algorithms produce consistent results on simple, unconstrained
polymer rings, their result diverge with increasing ring compactness and ring length. We
observed that this divergence can explain the different results reported in literature for

the scaling behaviour of the knot length with increasing length of polymer rings.

We devoted chapter |3|to the study of the mutual entanglement between the prime com-
ponents of a composite knot. For asymptotically large chain lengths, prime components

are expected to behave like point-like decorations and be completely independent from
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one another. We showed that this is not the case for the most probable composite knots
extracted from an equilibrium population of rings where, on the contrary, we observed
a significant degree of entanglement between different prime components . We found
that prime components are often nested one inside the other and the properties of those
prime knots which are found as separate along the chain depend on the number of knots
tied on it. We further showed that the properties of this mutual entanglement can be
qualitatively reproduced using a transparent one-dimensional model in which knots are
substituted with paraknots.

Starting from chapter [4] we tackled the interplay between topological properties and
physical confinement. In chapter {4 we investigated the equilibrium and kinetic properties
of solutions of model ring polymers, by varying both solution density and ring topology.
We observed that while the equilibrium metric properties of unknot and trefoil knotted
rings are only weakly affected by the increase of solution density, kinetics properties are
strongly affected by the degree of inter-chain entanglement, with characteristic times of
ring size relaxation, reorientation and diffusion changing by one order of magnitude across
the considered range of concentrations. Yet, significant topology-dependent differences
in kinetics were observed only for very dilute solutions. For knotted rings, the slowest
kinetic process was found to correspond to the diffusion of the knotted region along the
ring backbone.

In chapter |5 we studied the interplay of geometrical and topological entanglement
in semiflexible knotted polymer rings under spherical confinement. In particular we
characterized how the top-down and bottom-up knot lengths depend on the ring contour
length, L. and the radius of the confining sphere, R.. We observed that the entangle-
ment acquires a multiscale character upon increasing confinement and showed how the
complex interplay of both top-down and bottom-up knot lengths with L. and R, can be
encompassed by a simple scaling argument based on deflection theory.

Finally, we used topological analysis to infer the physical properties of dsDNA packaged
in bacteriophage capsids. Cryo-em studies showed that DNA in bacteriophages epsilon-
15 and phi-29 is neatly ordered in concentric shells close to the capsid wall, while an
increasing level of disorder was measured when moving away from the capsid internal
surface. On the other hand the detected spectrum of knots formed by DNA that is
circularised inside the P4 viral capsid showed that DNA tends to be knotted with high
probability, with a knot spectrum characterized by complex knots and biased towards

torus knots and against achiral ones. In chapter [6| we showed, that both the shell ordering
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and the knot spectrum can be reproduced quantitatively if one accounts for the preference
of contacting DNA strands to juxtapose at a small twist angle, as in cholesteric liquid

crystals.
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