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Chapter 1

Introduction

The problems of quantum gravity have been in the core of research in theoretical high
energy physics for last 50 years. During the course of time various approaches and meth-
ods were developed. These developments resulted in increase of understanding, not only
problems in quantum gravity, but also in gauge theory and quantum �eld theory in gen-
eral. Despite any direct experimental proof of quantum gravity prediction, research in
this �eld have been intense and focused mainly on theoretical aspects. One of the earli-
est noticed problem of quantum gravity was the observation that in a simplest version it
is a nonrenormalizable theory (due to the dimensionful coupling constant). Namely not
all divergences in Einstein-Hilbert gravitation quantized perturbatively and covariantly
around �at Minkowski spacetime can be absorbed in the rede�nion of couplings present
in the action. Therefore quantum gravity needs nontrivial UV completion. To �nd a
self-consistent UV-complete theory of quantum gravity is a very di�cult task. This is
the reason, why in the meantime many simpli�ed toy-models have been analyzed, which
supposed to capture some of the important features of quantized gravity. However per-
turbative problems of quantum gravity in deep UV didn't pose an obstacle in analysis
and application of low-energetic version of the theory. At low energy (much lower than
the Planck scale) a marriage of quantum mechanics and general relativity was successful,
especially if understood in terms of e�ective �eld theory of gravitational interactions.
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In analysis of the UV behaviour of quantum gravity, one of the most useful tool re-
vealed to be Renormalization Group methods. Understanding that couplings in quantum
�eld theory exhibit dependence on the momentum scale of the process was one of the
major achievements in �eld theory. Generically in any quantum �eld theory which is not
conformal, coupling parameters are not constants and are running functions of energies.
The same concerns quantum gravity, where the running of gravitational couplings was not
commonly established even till recently. When speaking about RG �ows we can distin-
guish various types, di�ering slightly in the underlying physical ideas. The simplest RG
�ow is given by perturbative analysis around gaussian �xed point, where the values of the
couplings vanish. This is given by Callan-Symanzik �ow in standard perturbative QFT.
Another type of the RG �ow we obtain by analyzing change of the average e�ective action
with RG scale. This last e�ective action interpolates between bare action in UV and quan-
tum e�ective action in IR. In this approach, which was termed �functional� or �exact� RG,
we don't rely on perturbativity of coupling parameters. Therefore one of the advantages
is that we can describe RG running of couplings around nontrivial FP of RG. This brings
the connection with conformal �eld theories, which describe physics at FP. Brand new
type of RG �ow derives from holography. Although it is motivated by famous AdS/CFT
correspondence, the application of holographic ideas go far beyond the original domain. It
is remarkable that d+1-dimensional holographic spacetime can possess a knowledge about
RG running of couplings in d-dimensional �eld theory living on boundary or a brane. On
the other hand this bulk spacetime can be understood as a geometrization of RG �ow. All
these three types of RG �ows are closely related. The evidence come from nongravitational
quantum �eld theories as well as from �eld theories with dynamical gravitation.

There are basically two main ways, how the theory of quantum gravitational pertur-
bations around �at spacetime can be completed in UV. First is that the problems of
perturbatively nonrenormalizable quantum �eld theories are solved by inclusion of new
heavy degrees of freedom. These new quanta do not appear in low-energetic spectrum
and only high energetic perturbations can excite them. Moreover their interactions (with
known degrees of freedom and between themselves) are tightly constrained. In the result
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the theory enjoys new dynamics at high energy, which solves the renormalizability and
unitarity issues. The best studied example of such version of UV completion is given by
W bosons model for 4-fermion interactions and for quantum gravity by string theory. In
the latter example to the low energy spectrum of quantum gravity with massless graviton,
is added whole in�nite tower of heavy higher spin �elds. The other possibility opens up
when in the UV theory �ows to a nontrivial FP of RG. If additionally the critical surface,
on which this FP exists, is �nite dimensional, then the theory doesn't lose its predictive
power. In this case we have the notion of nonperturbative renormalizability. If the pa-
rameters of the theory are chosen in such a way, that e�ective action lies on an RG safe
trajectory, then during the RG evolution, the theory and quantum divergences are under
control. There is a strong hope, that such asymptotically safe in UV theory, can heal itself
from the perturbative problems present at low energy. A third hypothetical option for UV
completion is one of the non-Wilsonian type. Some special theories may avoid perturbative
problems of quantized versions by invoking production of special classical con�gurations
at high energy. This is the most recent proposal and it was dubbed as classicalization. It
was conjectured that Einstein gravity is self-complete and in this way classicalization is
implemented there via production of black holes at trans-Planckian energy. It might be
true, that there is some relation between all these three mechanisms of UV completion.

Independently of the UV completion, quantum gravity gives some unambiguous pre-
dictions at low energy. To some extent it is a unique, universal and predictive theory of
massless quanta of gravitational interactions. This is the best understood in the frame-
work of e�ective �eld theories. The low energetic action contains only terms with the
smallest number of derivatives, so only the simplest Einstein-Hilbert Lagrangian is used.
In this e�ective theory there exist observables, which do not depend on the particular
way of UV completion. Although their experimental con�rmation is still very far, they
are genuine predictions of quantum gravity. There are di�erent ways, by which, one can
obtain quantum e�ective action in infrared limit. However it is without any doubt that
low-energetic predictions of quantum gravity are calculable and solid, regardless of any
complicated dynamics which saves the theory in UV.
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The plan for this thesis is as follows. In the �rst part we discuss the relation between two
di�erent RG �ows: functional and holographic one. The bigger emphasis is put on the novel
holographic RG �ow and we devote full third chapter for studying holographic RG �ow
geometries. We are not only interested in �ows for gravitational couplings, we also consider
standard RG �ows from �eld theories with matter. The second part of this work is divided
into two chapters. In the fourth chapter we study classicalization for nonlinear sigma model
understood as a toy example before attacking more di�cult problems of full quantum
gravity. We also point there possible relations between classicalization and asymptotic
safety as between two similar in some conditions mechanisms for UV completion. In
the �fth chapter we consider universal 1-loop e�ective action in system of gravitating
scalar �eld. We use new methods to derive its IR limit and we compute few low-energetic
observables in such e�ective �eld theory of gravitational interactions. Finally in the sixth
chapter we shortly collect main obtained results and conclude. The material presented in
this work is partially based on two scienti�c articles [42] and [63], I published during my
PhD studies.
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Part I

Holographic vs. Exact RG Flows
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Chapter 2

Planck mass and Higgs VEV in
Holographic vs. Exact 4D RG

2.1 Motivation

In this chapter we describe in details the computation of the scale-dependence of the
Planck mass and of the vacuum expectation value of the Higgs �eld using two very di�erent
renormalization group methods: a �holographic� procedure based on Einstein's equations
in �ve dimensions with matter con�ned to a 3-brane, and a �functional� procedure in four
dimensions based on a Wilsonian momentum cuto�. Both calculations lead to very similar
results, suggesting that the coupled theory approaches a non-trivial �xed point in the
ultraviolet.

One of the most remarkable recent developments in quantum �eld theory is the real-
ization that the coupling of a theory to gravity in d+ 1 dimensions can yield information
about the renormalization group (RG) running of couplings in that particular theory in d
dimensions. This idea is contained in the famous construction by Randall and Sundrum [1],
and has been sharpened in a number of subsequent publications [3, 4, 5, 6, 7, 8]. While the
notion of �holography� has come to have a rather speci�c meaning closely related to Quan-
tum Gravitation and the famous AdS/CFT correspondence [9, 10], here we will generically
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call �holographic RG� the �ow of couplings of a d-dimensional theory, which is obtained
by viewing it as living on a (d − 1)-brane coupled to gravity in (d + 1) dimensions, and
identifying the transverse coordinate with the RG scale.

In a di�erent vein, there have been various signi�cant developments in the use of �func-
tional RG equations�, i.e. equations which describe in a single stroke the running of in-
�nitely many couplings [11, 12]. This method has proved particularly helpful in the study
of perturbatively nonrenormalizable theories with the aim of establishing (or refuting) the
existence of non-trivial UV �xed points (FPs) of Renormalization Group, that could be
used for a fundamental (and not depending on perturbative scheme) de�nition of the the-
ory [13], a property that has become known as �asymptotic safety� (AS) [14]. Successful
attempts to �renormalize the nonrenormalizable� quantum �eld theories have been �rst
reported in [15], with subsequent works using the functional RG largely focusing on grav-
ity [16, 17, 18] and more recently also on electroweak physics [19, 20, 21]; see [22] for an
overview. It must be added here, that theory of strong interactions - QCD is asymptoti-
cally safe, because asymptotic freedom is a special case of AS with vanishing FP values of
the couplings. Functional RG methods have been successfully applied also to this theory
in the infrared limit giving one of its nonperturbative description [24]. It still remains a
challenge to solve functional RG �ows equations exactly as this is equivalent to solving
the full interacting quantum theory. But a particular strength of the exact RG is its �exi-
bility allowing for a variety of systematic approximations and truncations adapted to the
problem at hand, which has led to new insights [23].

To the extent that holographic and functional RG are equivalent descriptions of the
same physics, they must be related in some way. There has been some work in this direction
[25, 26, 27], but clearly much remains to be done. In this chapter, instead of exploring this
relation from �rst principles, we evaluate similarities and di�erences of the two methods
for a sample theory, which still incorporates some basic features of Nature and has some
phenomenological signi�cance in particle physics. The toy model to be considered is a
SO(N) non-linear sigma model coupled to gravity with an Euclidean action of the form
S = Sg + Sm, where the gravitational action is in the form of Einstein-Hilbert:
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Sg = m2
P

∫
d4x

√
g R (2.1)

with m2
P = 1/(16πG) and Sm is the matter action minimally coupled to gravitational

background. The matter action, for the SO(N) non-linear sigma model can be obtained
by a limiting procedure from the corresponding linear theory, which contains a multiplet
of N real scalars φa with an action

Sm =

∫
d4x

√
g

(
1

2

N∑
a=1

gµν∂µφ
a∂νφ

a + V (ρ2)

)
, (2.2)

where the square of the radius equals ρ2 =
∑N

a=1 φ
aφa, and the potential is in the form of

Higgs potential V = λ(ρ2 − υ2)2 with υ2 = 〈ρ2〉. The action (2.2) represents Higgs model
in linear representation, which is invariant under global special orthogonal transformations
from SO(N) group. In a phase with spontaneous symmetry breaking, we have υ2 > 0.
Without loss of generality we can assume that the background �eld is φα = 0 for α =

1 . . . N − 1 and φN = υ. (Therefore we choose Higgs vev pointing exactly in the last N -th
direction in the �eld space and with such pattern the model possesses only SO(N − 1)

as the remaining symmetry group.) Then the N − 1 �elds φα are the Goldstone bosons,
while the radial mode δρ = φN − υ corresponds to the physical Higgs �eld. The square
of the mass of the radial mode is given by m2 = 8λυ2, whereas N − 1 Goldstone modes
remain massless. Note that the potential is always zero at the minimum; here we will not
discuss the running of the cosmological constant. The non-linear sigma model is achieved
in the limit λ→∞ with υ kept constant. Then the potential becomes a constraint for ρ:
ρ2 = υ2, which can be solved to eliminate one scalar �eld and describe the theory in terms
of the remaining dynamical N − 1 �elds ϕα transforming non-linearly under SO(N) - the
coordinates on the sphere SN−1. (In particular there exist coordinate choices for which
one can identify ϕα = φα.) In this limit physical Higgs �eld becomes in�nitely heavy, so
decouples from the system of interacting Goldstone bosons and the theory is perturbatively
non-unitary. Later we will see, how this can be healed. In an arbitrary coordinate system,
the action becomes
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Sm =
1

2
υ2

∫
d4x

√
g gµν∂µϕ

α∂νϕ
βhαβ(ϕ) , (2.3)

where hαβ denotes the general, positive de�nite metric on the target space of nonlinear
sigma model. Our toy model contains two dimensionful couplings m2

P and υ2, which we
identify with the square of the Planck mass and of the Higgs VEV. They appear in a very
similar manner as prefactors of the respective terms in the Lagrangian. From here on we
will consider their inverses as the couplings in our model.

There are two main motivations for choosing this model as opposed to gravitation
coupled to linearly transforming scalars. Firstly, in the absence of gravity and in four
dimensions, the linear scalar theory displays a unique Gaussian FP, and it is perturbatively
renormalizable and trivial. On the other hand the non-linear model has a coupling constant
with inverse mass dimension and is power-counting nonrenormalizable, similar to gravity
itself. It also su�ers from violation of unitarity at high energy. Recent studies showed
that it displays an UV FP [19, 28], with, incidentally, identical critical exponents as found
within pure Einstein gravity [17]. It has therefore been suggested that, quite independently
of gravity, a strongly interacting Goldstone boson sector may exist, able to overcome its
perturbative issues in a dynamical way [19, 20, 21].

Secondly, given the existing evidences for asymptotic safety of the non-linear scalar
theory and gravity separately, one may expect to �nd a non-trivially interacting FP also
for the coupled theory. This would provide an alternative to the scenario discussed in
[29, 30], where a �Gaussian matter FP� was found, with asymptotically free scalar matter
but non-trivial gravitational couplings. This scenario has been used to put new bounds
on the mass of the Higgs particle [31], which agree remarkably well with the experimental
measurements of recently discovered particle. Although now collected evidences show
undeniably the existence of Higgs particle in the Standard Model, still usage of the non-
linear theory may be considered for explanation, how in a gauge-invariant way the masses
are provided for the W and Z bosons. We can also treat it as a simple toy model.
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2.2 Holographic RG in pure AdS

In this section we evaluate the running of the two dimensionful couplings m2
P and υ2 of

the four-dimensional toy model using a holographic technique. Following [1], we consider
a 5-dimensional spacetime with coordinates ym = (xµ, t), µ = 1, 2, 3, 4 and metric Gmn.
Set of coordinates xµ will describe 4-dimensional leaves with usual Minkowskian metric's
signature (+−−−), while the t coordinate is a transverse direction to this foliation. The
gravitational part of the action is

Sgrav =

∫
d5y

√
−G(2M3R− Λ) , (2.4)

where M is the 5-dimensional Planck mass and Λ < 0 is the bulk cosmological constant.
These parameters of the 5-dimensional theory are not dynamical and they do not undergo
RG evolution. We make a particular ansatz for the metric of the form

ds2 = e2tḡµν(x)dx
µdxν + r2

cdt
2 . (2.5)

Using the 5-dimensional Einstein equations we get the AdS solution with ḡµν = ηµν , where
we have identi�ed the arbitrary length scale rc with the AdS radius

√
24M3/|Λ|. We can

make the coordinate transformation t = − log (z/rc), which brings the metric to the form

ds2 =
r2
c

z2
(ηµνdx

µdxν + dz2) . (2.6)

This is the AdS metric in the so called Poincarè patch, as mostly used in cosmology. From
its form we easily read out information about conformal structure of the AdS spacetime.
We note that the hypersurface z = 0 corresponds to a conformal boundary at t = ∞.
In the holographic interpretation of the 5-dimensional metric such as the RS model, the
5-th dimension is identi�ed with the (logarithm of the) RG scale k [25] of the quantum
4-dimensional theory living on a 3-brane. Following [6, 5, 33], we make the identi�cation
z = 1/k, which implies t = log(krc), independently of the number of dimension of AdS
spacetime. This provides a precise mapping between 5d calculations and 4d interpretations
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in terms of RG �ow. We choose the origin of t coordinate to correspond to the electroweak
scale k0 = υ0 = 246GeV, which implies rc = 1/υ0 for the AdS radius. It is convenient, for
future purposes, to introduce also dimensionful radial coordinate r = rct.

To read o� the β-functions of matter couplings we imagine putting a test brane at a
given value of t. As noticed in [4], the use of a brane provides information on the quantum
behaviour of the matter couplings themselves, as well as on gravity coupled to matter.
Dimensionless couplings in general run logarithmically. All masses in the 4-dimensional
matter theory are proportional to υ, whose running is governed by the formula

υ(t) = υ0 e
t . (2.7)

In other words the scale-dependence is given by the exponential warping factor et, which
was present in the AdS metric (2.5). This result is completely general: any mass parameter
on the 3-brane, in the fundamental higher-dimensional theory will correspond to a RG
rescaled mass according to the formula above, when measured with the metric ḡµν [2].
This is the metric that appears in the e�ective Einstein action. All operators on the
boundary get rescaled according to their four-dimensional energy dimensions. Note that,
there is a freedom in choosing normalization of t. The choice, we made in (2.5) for the
AdS metric, is such that all dimensionful couplings (except gravitational ones) scale like at
FP of RG. This choice doesn't depend on the dimension of spacetime. In this way we set
the normalization of distances in transverse direction to the brane. The AdS solution thus
corresponds to linear running of υ with RG momentum scale k, which is a manifestation
of the quadratic divergences in the running (mass)2 in the underlying �eld theory.

Next we can obtain holographic RG running of the gravitational coupling constant
mP . To do this we consider small metric perturbations ḡµν = ηµν + h̄µν on the 3-brane
and couple them to energy-momentum tensor of the matter living there. These are the
massless gravitational �uctuations about our classical AdS solution and they will provide
the gravitational �elds for our e�ective theory. They are the zero-modes of our classical
solution, and take the form
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ds2 = e2t
(
ηµν + h̄µν

)
dxµdxν + r2

cdt
2 . (2.8)

The four-dimensional e�ective theory now follows by inserting the ansatz (2.5) in the action
(2.4) and we �nd that the action for the metric ḡµν(x) is equal to

Sgrav = 2M3 rc

∫ t

dt′e2t′
∫
d4x

√−ḡR̄ . (2.9)

Here the warping factor enters in the form as it is originally in the metric ansatz (2.5),
regardless of the dimensionality of the e�ective gravitational coupling constant. We denote
by R̄ curvature scalar of the metric ḡµν in contrast to the �ve-dimensional Ricci scalar,
R, made out of metric Gmn. The relation connecting the 4-dimensional Planck mass mP

and the 5-dimensional parameter M is obtained by performing in (2.9) the integral over
t′ explicitly and then comparing with the e�ective 4-dimensional action in the form (2.1).
This leads to

m2
P (t) = m2

P (0) +
M3 rc

2

[
e2t − 1

]
, (2.10)

independent of the lower end of integration in (2.9).
The requirement that m2

P (t) be positive for all t implies m2
P (0) > M3rc/2. Equation

(2.10) contains the unobservable �ve-dimensional Planck mass. We can rewrite it in terms
of four-dimensional measurable quantities as follows. We assume that the Planck mass at
the TeV scale is not so di�erent from the measured value at macroscopic scales (deep IR
limit) mP (0) ≈ mP (−∞). Then, knowing the empirical values of υ0 and mP (0) we have
tP = t(k = mP (0)) ≈ 38. Furthermore we de�ne the coe�cient cP =

(
mP (tP )
mP (0)

)2

− 1, which
measures the relative change of the e�ective Planck mass between the TeV and (the initial)
Planck scale mP (0). We expect the value of cP to be of order one. Since M3 rc > 0 we
must have cP > 0. We note, that since the AdS curvature υ2

0 is much smaller than the
�ve-dimensional Planck scale M2, it is justi�ed to treat the �ve-dimensional gravitational
�eld classically. From the de�nition of cP and the assumption that mP (0) À υ0 we get the
relation M3 rc = 2 cP υ

2
0 with the help of which we can rewrite formula (2.10) as
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m2
P (t) = m2

P (0) + cP υ
2
0

[
e2t − 1

]
, (2.11)

where we have replaced the 5-dimensional parameters M and rc by the Higgs VEV υ and
the parameter cP .

We observe that equation (2.7) describes a mass that scales with the cuto� exactly as
dictated by dimensional analysis m ∼ k. Therefore, when the mass is measured in units
of the cuto� k, it is constant. If we regard this mass as the (inverse) coupling constant of
the non-linear sigma model (2.3), we are at a FP. Likewise, when t→∞, also the Planck
mass scales asymptotically in the same way, so if we regard it as the (inverse) gravitational
coupling, (2.11) describes an RG trajectory where gravity (coupled to matter) approaches
a non-trivial FP. Interestingly, in this limit the decoupling of gravity G→ 0 can be viewed
as a consequence of a non-trivial FP. It is worthy to emphasize that only in four spacetime
dimension equation for RG running of a power of the e�ective Planck scale (2.11) describes
in the UV limit FP for this dimensionful coupling. In complete generality in equation (2.10)
we have always e2t factor appearing from our AdS metric ansatz, however the power of the
e�ective Planck mass on the left hand side of this equation is given by d−2, where d is the
dimensionality of the brane. In higher dimensions the action for gravitation contains higher
powers of the Planck mass in contrast to the second power of cuto� momenta originated
from the warping factor, so in such circumstances holographic method doesn't con�rm the
existence of nontrivial FP of RG for dimensionful gravitational constant. This �nishes the
discussion of RG running of dimensionful couplings (of matter and gravitational character)
from the holographic perspective in pure AdS spacetime.

2.3 Functional RG

In this section we evaluate the scale-dependence of m2
P and υ2 directly in the four-

dimensional theory. To do this we will use techniques of functional (also known as exact)
Renormalization Group. Our starting point is the �average e�ective action� Γk, a coarse-
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grained version of the e�ective action, which interpolates between some microscopic action
at k = k0 and the full quantum e�ective action at k = 0. The RG momentum scale k
is introduced at the level of the functional path integral by adding suitable momentum-
dependent kernels Rk(q

2) to the inverse propagators of all propagating �elds, which for
bosonic �elds take the standard q2 form at high energy. These kernels must decrease
monotonically with k2, tend to 0 for k2/q2 → 0 (in order to leave the propagation of large
momentum modes intact), and tend to k2 for q2/k2 → 0 (in order to suppress the low
momentum modes). The change of Γk with logarithmic RG �time� t = log(k/k0) is given
by a functional di�erential equation [12]

∂tΓk =
1

2
STr

(
Γ

(2)
k +Rk

)−1

∂tRk . (2.12)

Here, Γ
(2)
k denotes the matrix of second functional derivatives with respect to all propagat-

ing �elds, and the supertrace stands for a sum over all modes including a minus sign for
�elds of fermionic type. The RG �ow (2.12) is an exact functional identity, which derives
from the path-integral representation of the theory in the vicinity of a gaussian �xed point.
The �ow reduces to the Callan-Symanzik equation in the special limit where Rk becomes
a simple mass term k2, and is related to the Wilson-Polchinski RG [11] by a Legendre
transform. Most importantly, the functional �ow is �nite and well-de�ned for all �elds
including the UV and IR ends of integration, which makes it a useful tool for our purposes.
The requirements of di�eomorphism or gauge invariance of the average e�ective action are
implemented with the help of the background �eld technique [34]. For optimized choices of
the momentum cuto� all the operator traces can be performed analytically [35], also using
the heat kernel methods.

We want to calculate the RG �ow of Γk for the system described by the classical action,
whose two pieces were given in (2.1) and (2.3). This type of calculation for pure gravity
was �rst described in [36, 37, 17] and in [19] for the non-linear sigma model. Here we
apply the same technique to the coupled system starting with Γk = Sg + Sm + Sgf + Sgh,
where it is understood that the couplings in the RHS are replaced by running couplings
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(k-dependent), evolving under the RG �ow (2.12). Since the classical action is invariant
under di�eomorphisms, we have introduced a gauge-�xing term Sgf and a ghost term Sgh

in addition to the gravitational action (2.1) (for vanishing cosmological constant) and the
matter action (2.2). Using the split of the metric and the scalar �elds into background
�elds gµν , φa and quantum �elds hµν , ηa, the gauge �xing term reads

Sgf =
m2
P

2α

∫
d4x

√
gχµg

µνχν (2.13)

with χµ = ∇νhνµ + 1
2
∇µh. The trace of the metric perturbations computed using back-

ground value of metric gµνhµν we denoted by h. The corresponding Faddeev-Popov ghost
action is

Sgh =

∫
d4x

√
gC̄µ(−∇2δνµ −Rν

µ)Cν . (2.14)

Below we work in Feynman gauge (α = 1) for simplicity, but this is not essential. In order
to �nd terms in (2.12) we have to invert the matrix (Γ

(2)
k + Rk) in �eld space. For the

Einstein-Hilbert action we can follow the procedure of [38], Section IV B. Expanding the
matter action up to quadratic order in the �uctuation �elds δφa = ηa and hµν , the second
variation S(2)

m reads

1

2

∫
d4x

√
g

[
V

(
1

4
h2 − 1

2
hµνhµν

)
+ 2V ′φaδφah+ δφa

(−∇2δab + 2V ′δab + 4V ′′φaφb
)
δφb

]
.

(2.15)
Separating the radial mode ρ from the Goldstone modes, and splitting the graviton

�eld into traceless, transverse part and other �elds ξ and σ as hµν = hTTµν +∇µξν +∇νξµ +

∇µ∇νσ − 1
4
gµν∇2σ + 1

4
gµνh, where ∇µhTTµν = 0, ∇µξµ = 0, the expansion of the average

e�ective action Γk to quadratic order in the �uctuations becomes

Γk|quad =
1

2

∫
d4x

√
g
[1

2
m2
Ph

TTµν

(
−∇2 +

2

3
R− V

m2
P

)
hTTµν +m2

P ξ̂

(
−∇2 +

1

4
R− V

m2
P

)
ξ̂

+
3

8
m2
P σ̂

(
−∇2 − V

m2
P

)
σ̂ − 1

8
m2
Ph

(
−∇2 − V

m2
P

)
h+ δρ

(−∇2 + 2V ′ + 4υ2V ′′) δρ
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+2V ′υ hδρ+ δϕα
(−∇2 + 2V ′) δϕα

]
+ Sgh|quad , (2.16)

where we have de�ned hatted variables by �eld rede�nitions according to the formulas
ξ̂µ =

√
−∇2 − R

4
ξµ, σ̂ =

√−∇2

√
−∇2 − R

3
σ. We observe that the radial mode δρ = ρ−υ

mixes with the trace h, whereas the Goldstone bosons do not. However, it is easy to see
that this mixing is absent once the background scalar is at the minimum of its potential.
Then (2.16) is already diagonal in �eld space and the inversion of the matrix (Γ

(2)
k + Rk)

becomes straightforward. De�ning the graviton �anomalous dimension� η = ∂tm
2
P/m

2
P , the

�ow equation (2.12) reads

∂tΓk =
1

2
Tr(2)

∂tRk + ηRk

Pk + 2
3
R

+
1

2
Tr′(1)

∂tRk + ηRk

Pk + 1
4
R

+
1

2
Tr(0)

∂tRk + ηRk

Pk

+
1

2
Tr′′(0)

∂tRk + ηRk

Pk
− Tr(1)

∂tRk

Pk − 1
4
R
− Tr′(0)

∂tRk

Pk − 1
2
R

+
N − 1

2
Tr(0)

∂tRk

Pk
+

1

2
Tr(0)

∂tRk

Pk + 8λυ2
, (2.17)

where Pk ≡ −∇2 + Rk(−∇2). For a de�nition of the remaining (primed and unprimed)
traces over the various tensor, vector and scalar modes, we refer to [38]. The �rst six terms
originate from the gravitational sector and the ghosts while the last two terms come from
the Goldstone bosons and the radial mode, respectively.

We make an ansatz for Γk of the form Sg + Sm + Sgf + Sgh, where Gk, λk and υk

are k-dependent coupling constants in our model. The β-functions for the couplings are
obtained from (2.17) by projection onto the truncation ansatz for the action as given in
Γk. To that end we polynomially expand the functional �ow on both sides about R = 0

and ρ2 = υ2. The �ow for the inverse gravitational coupling m2
P , the quartic coupling

λ, and for the vacuum expectation value υ2 are then given by d
dR

(∂tΓk), 1
2
( d
dρ2

)2∂tΓk and
− d
dρ2
∂tΓk/(2λ) at R = 0 and ρ2 = υ2, respectively. For completeness we have listed

here also the RG �ow for coupling λ, although it doesn't appear in the �nal formulation
of nonlinear sigma model. In the following we will neglect the terms linear in η on the
RHS of (2.17). Moreover we work on one-loop level (if we were to refer to perturbative
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computations in QFT), therefore as a �rst approximation we forget about the e�ects driven
by the graviton anomalous dimension. Using the heat kernel expansion together with an
optimized cuto� function [35] Rk(z) = (k2 − z)θ(k2 − z) with Heaviside θ step function,
the β-function for λ reads

∂tλ =
λ2

2π2

(
N − 1 +

9

(1 + m̃2)3

)
+ G̃ λ

5 + 6m̃2 + 3m̃4

(1 + m̃2)2
, (2.18)

where we have introduced the square of the Higgs mass in units of the RG scale, m̃2 =

8λυ2/k2 and G̃ = Gk2. The terms proportional to λ2 contains the contributions of the
N − 1 Goldstone modes and the Higgs �eld. Notice the threshold behaviour of the Higgs
contribution at the Higgs mass m2 ≈ k2. The last term is the leading gravitational correc-
tion. The β-function of υ2 is

∂tυ
2 =

k2

16π2

(
N − 1 +

3

(1 + m̃2)2

)
. (2.19)

It receives contributions from the Higgs and the Goldstone bosons, but, remarkably, not
from the �uctuations of the metric �eld. Now we take the non-linear limit λ → ∞ (or
m̃2 → ∞) with υ2 held constant. In this limit (2.18) becomes useless, the Higgs �eld
becomes in�nitely massive and the radial mode contribution to (2.19) drops out. The
Goldstone bosons remain fully dynamical, in fact their action is completely una�ected by
the limit. We end up with

∂tυ
2 = BHk

2 ; BH =
N − 1

16π2
, (2.20)

∂tm
2
P = BPk

2 ; BP =
Nc −N

96π2
, (2.21)

where we have just de�ned the critical number of �elds in SO(N) model equal to Nc =

109/4. The dependence of the result on the number of Goldstone modes is simple to
understand. In (2.20), only the Goldstone modes contribute to the running of the VEV. In
the running for e�ective 4-dimensional Planck mass (equation (2.21)), the contribution from
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the Goldstone modes compete with this originating from the graviton self-interaction. For
N < Nc, the gravitons keep the lead and the combined e�ect is to increase mP (BP > 0)
with increasing RG time t. In the opposite regime the Goldstone modes take over and
change the sign of the coe�cient BP . More generally, matter �eld can contribute to (2.21)
with either sign and hence the global sign of RG running will depend on the number of
scalars, spinor, or vector �elds coupled to gravity [29]. This pattern is similar to scale-
dependence of strong coupling in QCD (where we have asymptotic freedom for su�ciently
small number of fermions) and its dependence on the number of fermionic quark species.
We will later come back to the issue of results' dependence on the number of �elds N .

For a better understanding of the system of our nonlinear sigma model coupled to
Einstein-Hilbert gravitation it is convenient to use the inverses G = 1/(16πm2

P ), f 2 = 1/υ2,
and to introduce dimensionless couplings υ̃2 = υ2/k2, f̃ 2 = f 2k2, m̃2

P = m2
P/k

2, G̃ = Gk2.
This is because the perturbative analysis of the sigma model and gravitational theory is
an expansion in the couplings f̃ 2 and G̃, respectively. Their β-functions are given by

∂tG̃ = 2G̃−BP G̃
2 (2.22)

∂tf̃
2 = 2f̃ 2 −BH f̃

4 . (2.23)

Also on this level we observe a lot of similarities. Each one of these β-functions admits
two FPs: an IR FP at zero coupling and an UV FP at �nite coupling f̃ 2 = 2/BH and
G̃ = 2/BP respectively. The gravitational FP is in the physical domain provided the
number of Goldstone modes is small enough, or else the FP turns negative and cannot be
reached, because in the RG evolution we cannot cross zero value of the coupling.

The two couplings have completely independent but very similar behaviour. For k ¿ υ

(so in the deep infrared limit of energies), υ̃ is close to the Gaussian FP. This is the domain,
where the dimensionful coupling υ is nearly constant, the dimensionless υ̃ has an inversely
linear �classical� running with energy (derived from the canonical energy dimension of υ),
and perturbation theory is rigorously applicable. Then for higher energies there is a regime
where υ̃ is nearly constant and close to the non-trivial FP, while the dimensionful υ scales
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linearly with energy. Note that on such trajectories it never happens that k À υ. The
transition between the two regimes alluded before is near the scale determined by υ, so
this is way below in energies than the Planck scale. These considerations can be repeated
verbatim for mP , the sole di�erence being that the RG scale, where the transition from
�classical running� to non-classical behaviour driven by quantum e�ects occurs, will be
near the Planck scale. Thus, there are three regimes: the low energy regime k ¿ υ ¿ mP ,
where both G and f are constant, the intermediate regime where f̃ has reached its FP
value but G is still constant and the FP (high energy) regime, where both dimensionless
couplings have reached the FP.

2.4 Comparison between holographic and functional RG
results

In the previous two sections we obtained results for the RG running for coupling param-
eters in the nonlinear sigma model and in the gravitation computed using two conceptually
completely di�erent methods. In this section we try to draw a comparison between these
results. To �nd a relation between them is the main goal of this chapter. For the sake
of comparison with the results of the holographic procedure, we can write the general
solutions of equations (2.20), (2.21) from the previous section as:

υ2(t) = υ2
0 +

1

2
BH(k2 − k2

0) = υ2
0

[
1 +

1

2
BH(e2t − 1)

]
, (2.24)

m2
P (t) = m2

P0 +
1

2
BP (k2 − k2

0) = m2
P0 +

1

2
BPυ

2
0(e

2t − 1) , (2.25)

where we have de�ned, in accordance with the de�nitions in Section 2.3, k(t) = υ0e
t,

k0 = k(0) = υ0, and υ0, mP0 are the values of the respective couplings at k0. Strictly
speaking, when all dimensionful parameters of the theory undergo RG running, the only
physical and measurable parameter of the theory is the ratio of the mass scales, which are
present,
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α(t) ≡ mP (t)

υ(t)
. (2.26)

The plot of its natural logarithm logα(t) is shown on Fig. 2.1 and illustrates the three
regimes of the theory alluded to in the end of the preceding section. We may already analyze
the behaviour of this ratio computed on the basis of exact (functional) RG. Namely for
t → ∞ the square of the ratio tends, for all trajectories, to the constant value BP/BH ,
while for t→ −∞ it tends to a number that depends on the initial conditions and is equal
to

lim
t→−∞

α(t) =
m2
P0 − 1

2
BPυ

2
0

υ2
0

(
1− 1

2
BH

) . (2.27)

After neglecting BPυ
2
0 with respect to m2

P0 we can conclude that this number is of order
m2
P0/υ

2
0, so roughly of 1033 magnitude. We must be however careful here, because the

precise value of the limit depends strongly on the value of the coe�cient BH and is singular
for it equal 2.

Returning to equations (2.24) and (2.25), we see that if we could set BH = 2 and
BP = 2cP , they would agree with the �ow obtained by the holographic method as encoded
in formulas (2.7) and (2.11). There is a di�erence here between the holographic RG �ows
of υ and mP : whereas cP is a free parameter in the holographic model for the running of
the gravitational coupling, which can be adjusted to match the result of the functional RG,
there is no corresponding free parameter for υ. One is thus left with a prediction for the
parameter BH , that does not seem to match the result of the functional RG, which shows
explicitly dependence on N . One could try to exploit the fact that the parameter BH is
scheme-dependent, to try and force a match, however this could not hide the important
di�erence that whereas in the functional RG there are in�nitely many trajectories for both
υ and mP , parametrized by their values at k0, in the holographic RG there is a single
trajectory for υ characterized by the initial value υ0 and the �xed value of the coe�cient
BH = 2.

To clarify this di�erence further, we observe that if we set BH = 2, as the pure AdS
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Figure 2.1: The running of the mass ratio α(t) de�ned in (2.26), for N = 4, on a logarithmic
scale as a function of t. Solid curve: solution of the functional RG; dashed curve: solution
of the holographic RG. For large t the curves tend to the value 0.13.

holographic RG seems to demand, υ tends not to �nite value υ0

√
1−BH/2, but to zero

in the IR and therefore α diverges. The ratio α in the far IR grows linearly to +∞.
This is shown by the dashed line in Fig. 2.1. Thus, the holographic description of the
preceding section agrees well with functional RG in the second and third regime, but fails
to reproduce even at a qualitative level the generic low-energy regime of the theory. This
is due to the fact, that the holographic RG trajectory is such that υ tends to zero in the
IR, which is just one amongst in�nitely many RG trajectories allowed in (2.24), that would
tend to di�erent �nite limits in the IR. In contrast, m2

P can have an arbitrary limit in the IR
m2
P0− cPυ2

0: this is due to the freedom of choosing the parameter cP . The di�erence in the
behaviour of the two couplings can be traced back to the fact, that in the �ve-dimensional
description, gravity is free to propagate in all directions, whereas all the other matter �elds
are con�ned to the 3-brane.
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Here we also want to touch on the issue, which is of great importance for the question
of UV completion of quantum gravity. Namely we will shortly discuss the running of the
Planck scale. We know, from macroscopic physics, that IR (classical) value of parameter
setting the strength of gravitational interactions is �nite. We call it here Planck constant
and denote by mP IR. Due to quantum e�ects this parameter, as any other in the La-
grangian, exhibits scale-dependence. From the energy range explored so far in particle
physics (up to TeV scale), we conclude that this running Planck scale runs very weakly
and that it is justi�ed there to neglect gravitational e�ects. However still we can consider
function mP (t) giving us the RG running of Planck scale at di�erent energies k = υ0 exp t.
Let us call the energy scale, at which gravitational interactions are becoming important
for quantum physics of elementary particles, a proper Planck scale. This is a scale, which
can be determined quite uniquely. It is very important that the proper Planck scale mP∗

doesn't run under RG transformation of scales. It is an RG-invariant in the same way as
masses of the physical particles (the latter are determined from poles of the exact quantum
propagators). The fact, that the Planck scale, describing the strength of gravitation, mea-
sured by a dimensionless product k2m−2

P , undergoes RG running in an e�ective �eld theory
approach, means in this context only that an IR estimation for the proper Planck scale
(mP∗ ≈ mP IR) must be corrected. Quantum e�ects in gravity make it antiscreening, so the
correction is positive. This means that at k = mP IR we don't meet an outset of quantum
gravity for elementary particles. The energy scale must be raised. At new increased energy
k we check for the running value of Planck scale and compare it with k - by this way we
decide, whether the energy must be raised again and so on. The non-iterative solution
to this problem comes after noticing that the proper Planck scale is a mathematical �xed
point of the function mP (k), this is

mP∗ = mP (k = mP∗) . (2.28)

If we know, the running of Planck scale (analytically or numerically mP (k)) over some
energy scale range, then it is easy to �nd such �xed point. It is at the section of a curve
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mP (k) with a line showing relation mP = k. For monotonic RG runnings such �xed
point is determined uniquely. All this considerations are in perfect analogy to the issue
of determining masses of W and Z bosons. Their masses can be traced back from the
low-energetic interactions of weak and neutral currents. However their IR value must
be renormalized at higher energy scale to give the proper values at physical poles in the
corresponding propagators. Here we may interpret the proper Planck scale as a mass
present in the denominator of some exact quantum 2-point function. This is really like
that, because in some theories physical masses of heavy particles, which appear in UV
completions, are proportional to the proper Planck scale. Parameters determining the
strengths of interactions do run, masses of related particles do not, however these two facts
do not contradict for the existence of connecting the two relation.

In our case from equation (2.25) we see that the unique answer for the square of the
proper Planck scale is given by

m2
P∗ =

m2
P0

1− 1
2
BP

=
m2
P0

1− cP
, (2.29)

when we neglected a constant term 1
2
BPυ

2
0 as smaller compared to m2

P0. We easily see
that the sensible solution exists only for cP < 1. The best picture we get, when we plot
m2
P versus k2. Then the RG running of Planck scale and mP = k are given by straight

lines. For cP > 1 two straight lines cross for negative value of energy scale k. This result is
nonsensical on physical grounds and means that simply mP∗ doesn't exist. For higher and
higher energies two lines diverge and this is means that iterative correction to the proper
Planck scale are bigger and bigger, when the energy is raised. In that case quantum gravity
never becomes signi�cant in the interaction of elementary particles and there is no new
characteristic quantum gravity scale. When cP = 1 exactly, then the lines meet at in�nity
(are parallel) and indeed mP∗ = +∞ is a limiting solution for the mathematical �xed
point of the function mP (k). In the remaining case cP < 1 lines cross for �nite positive k
and there exists a �nite solution for the proper Planck scale (2.29). Summarizing, when
cP < 1, proper scale of quantum gravity exists and in some theories of quantum gravity
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one can expect there appearing of new physics (i.e. new degrees of freedom). However
for cP ≥ 1 UV completion can be achieved only by requiring existence of nontrivial FP of
RG. Moreover in the RG �ow of couplings we demand to remain on the RG safe trajectory
towards this FP. With other small technical details this is the idea of asymptotic safety
for quantum gravitation. We remind here that value of the coe�cient cP is equal to the
inverse UV FP value of the dimensionless gravitational constant G̃∗. This means that the
above given conditions can be phrased equivalently in terms of the details of the FP in
UV and in this way we can avoid studying the RG �ow at intermediate energies (around
k = mP0), where we are not sure about full dynamics of the gravitational system.

Whole asymptotic safety program concerns UV limit of energies and as such is not
sensitive to the particular behaviour of couplings in a range between υ0 and mP0 scales
(as in original de�nition of cP ). We give as a partial evidence for asymptotic safety the
fact, that for Einstein-Hilbert system the values of G̃∗ at UV FP are smaller than unity
(in type II and III cuto� scheme). When running of cosmological constant is also included,
then G̃∗ < 1 in all types of cuto� (beyond 1-loop approximations) [38]. This reinforces
asymptotic safety conjecture, because running of Planck scale in the vicinity of hypothetical
UV FP is consistent with the absence of any new energy scale for quantum gravity. When
extrapolating RG running equations from UV to intermediate energy scale, we don't meet
any new scale, so the existence of nontrivial FP of RG in UV is inevitable, if our theory is
to be fully consistent. When in asymptotic safety scenario, RG safe trajectory reaches FP
in UV, then there exists an energy scale, at which RG �ows enters into FP regime. From
equation (2.25) we see that this scale is set by mP0

cP
, which is smaller than mP0 for cP > 1.

However this is not a new mass scale in the sense explained above. We must add here,
that asymptotic safety scenario as a possible UV completion for quantum gravity works
also for cP < 1, however the evidences for it are not so strong in this case.

The behaviour of the proper Planck scale with changes of the coe�cient cP can be
understood very intuitively. We recall that this coe�cient measure the changes in the
running Planck scale between υ0 and mP0 scales. When this change is small cP < 1, then
we expect correction to mP0 to be small and soon we should converge with the �nite value
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of mP∗. In opposite case, when the change is bigger than the initial estimate for proper
Planck scale (mP∗ ≈ mP0), then our procedure gives a divergent result and there is no a
crossing point. We want also to remark here, that the above presented analysis for the
proper Planck scale is insensitive to any IR modi�cation of the �ows, because our iterative
procedure starts at k = mP0, which is very high energy compared to k = υ0. If cP > 1,
then above the scale k = mP0, we are with big con�dence in a �xed point regime of the
�ow, when our �ow equation (2.24), (2.25) hold true. When cP < 1, then probably more
detailed analysis is required especially in the intermediate region of energies.

In the description of Fig. 2.1 we said, that it was prepared for value N = 4 for the
solution of the functional as well as holographic RG. Solid curve (from exact RG) was
indeed obtained for such input data, however the dashed one symbolizing the results of
holography was obtained for cP ≈ 1.292. There is no any N -dependence in holographic
running of υ or mP , the only parameter governing RG �ow of mP is cP and we can adjust
only its value. Later we considered the possibility of having the agreement of two RG
�ows, from which one of the �rst implications is that the coe�cient cP as a function of N
is given by the formula cP = Nc−N

6(N−1)
and this evaluated for N = 4 gives mentioned above

numerical value of it. To get this conclusion we must have used formulas (2.20) and (2.21).
For these values of the parameters (N and cP ), describing the two curves, we get that both
at +∞ tend to the same value 1

2
log cP , which is numerically, what we found as 0.13.

Lastly, the second implication of our matching holography with functional RG methods
is that we are forced to admit, that BH = 2. With this, from formula (2.20) we can �nd
that N ≈ 316.8. This is the value for which problems described above arise (N > Nc,
so cP is negative!) and this is a determined �nite number of matter �avors, which could
be present in our theory. We wouldn't expect, that by forcing matching of two RG �ows,
we could �nd the unique value of N (which is by the way wrong, because for it cP < 0).
We share the opinion, that it shall remain free, not determined, parameter of our model.
Formulas (2.20) and (2.21) were used to determine cP , for some value of N , knowing that
it must be equal from the matching to the ratio BP

BH
. But in the same moment we were able

in principle to use the full conditions of matching (BH = 2 and BP = 2cP ) to determine
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the value of N from (2.20). The only cure for all these issues are the modi�cations for both
RG �ows, which we will describe further in this and next chapter.

We can modify the holographic RG to resemble more closely the functional one by
stopping the �ow of υ at k = υ0. From Fig. 2.1 we notice, that without such modi�cation,
holographic RG �ow is good only for energy scales much bigger than masses. This can be
achieved by putting a source brane at t = 0 with action

√
6M3 |Λ|

∫
d5y δ(t) . (2.30)

Therefore we generalise the ansatz (2.5) by replacing e2t with more general warping factor
e2A(t). Then solving the �ve-dimensional Einstein equations with this source gives a second
order di�erential equation for the warp factor A′′ = − V rc

12M3 δ(t). Since we want to have
A(t) = t for t > 0, we get from the equation above that A(t) = 0 for t < 0. Thus,
we have a solution where the brane at the origin joins continuously a �at spacetime for
k rc < 1 with AdS spacetime for k rc > 1, where we recall that t = log(k rc). By doing this
we have modi�ed signi�cantly only the IR part of holographic geometry, so we changed
the RG running for couplings only in this regime. Since the Higgs VEV scales in general
as υ0e

A(t), we �nd that it becomes constant for t < 0. For the Planck mass the above
construction implies a weak, logarithmic running for t < 0, which would reduce it to zero
once tIR ∼ −1032. This is so far in the infrared that we can disregard this e�ect for all
practical purposes.

The behaviour of the couplings for t < 0 is not exactly the same as the solution that we
found from the functional RG, but it is qualitatively very similar. The comparison could
be improved further by making the model more realistic. Equations (2.24) and (2.25) show
that the running of the couplings continues all the way down to k = 0 without thresholds.
This is due to the fact that all degrees of freedom of the theory (gravitons and Goldstone
bosons) are massless. In the real world, the Goldstone bosons are coupled to gauge �elds
and are not physical degrees of freedom. Instead, they become the longitudinal components
of the W and Z bosons. These gauge �elds are massive and their contributions to the β-
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functions will exhibit threshold phenomena, whose e�ect is to switch o� the running of υ
below k0 = υ0 [20]. It appears therefore that branes can be naturally associated to the
presence of thresholds.

We conclude that with the addition of the source brane at t = 0 the �ve-dimensional
space has become very similar to the Randall�Sundrum one [1]. This can be generalised:
one can modify the holographic �ow by introducing branes at speci�c locations and with
speci�c cosmological constants, or more generally a continuous distribution of branes with
a given density. With placing a source brane at t = 0 and stopping the functional RG �ow
due to threshold phenomena, we can obtain a situation in which both �ows are qualitatively
very similar, but in the same time N -dependence in formulas (2.20) and (2.21) is not rig-
orously correct. The matching conditions and UV behaviour of RG runnings for particular
couplings are fortunately insensitive to these changes. Moreover in the next chapter we
will concentrate on the other distinct possible deformation of the RG �ow geometries, with
which most of the problems, we mentioned here, will �nd its �eld-theoretical solutions.

2.5 Discussion

In this section we would like to discuss some aspects of the considered model in the
light of found relation between holographic and functional Renormalization Group Flows.
The �rst issue concerns the physical meaning of a non-trivial FP for gravitation coupled
to a non-linear sigma model.

We have shown that in the simplest approximation, retaining only terms with two
derivatives of the �elds, the non-linear sigma model minimally coupled to gravity exhibits a
non-trivial, UV attractive FP, which could be used to de�ne this theory nonperturbatively
according to Asymptotic Safety proposal. Therefore we can hope that its perturbative
problems (like apparent violation of unitarity at high energy) can be solved if the theory is
on the RG safe trajectory. The functional RG calculation presented here can be easily ex-
tended beyond the one-loop level by keeping the back-coupling of the graviton �anomalous
dimension� η, which we neglected, and its analog for the non-linear sigma model. Similarly,
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the inclusion of a cosmological constant term in this framework is straightforward. These
extensions bring only relatively minor changes to the picture we have found here. Inclusion
of higher derivative terms would require a more signi�cant calculational e�ort but the ex-
isting results for gravity and the sigma model separately suggest that the non-trivial �xed
point should persist.

The physical application of our results is in the construction of an asymptotically safe
quantum �eld theory of all matter and gravitational interactions. Much work has gone
into trying to prove that gravity is asymptotically safe, but in order to be applicable to
the real world one would have to extend this result also to the other interactions. Strong
interactions are already asymptotically safe (as a particular case - they are asymptotically
free in UV) on their own, so presumably they pose the least problem. The main issues seem
to be in the electroweak sector, and in particular in the abelian and scalar subsectors. There
are mainly two ways in which these issues could be overcome. In the �rst, asymptotic safety
would be an essentially gravitational phenomenon: the standard model (or a grand uni�ed
extension thereof) coupled to gravity would not be UV complete and gravity would �x the
UV behaviour of all couplings, including the matter ones. In this case the matter theory
would be an e�ective �eld theory that need only hold up to the Planck scale; thereafter all
couplings would approach a FP together. This is probably the most preferred scenario due
to the lack of experimental hints beyond Standard Model of elementary partice physics.
This is the point of view that is implicit in [29, 39, 40]. Recent discovery of Higgs-like
particle in LHC at CERN reinforces the claim that sector of electroweak interactions is
perturbatively renormalizable, however really important issue become UV behaviours of
running electric charge and quartic coupling in the Higgs potential. One of the possibility
of securing UV limit of such theory is to require that these two couplings reach FP. This
is the second case, when each interaction would be asymptotically safe by itself, and each
coupling would reach the FP at a di�erent energy scale: the TeV scale for electroweak
interactions and the Planck scale for the gravitational interactions. This is the point of
view that we tried to propose by consideration of our model.

Taking this seriously, one is led to a non-standard picture of all interactions, where both
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electroweak and gravitational interactions would be in their respective �broken� phases,
characterized by non-vanishing VEVs, and carrying non-linear realizations of the respective
local symmetries. Gravitation is in broken phase due to nonvanishing value of spacetime
metric, when we are way from the topological phase. The theory as formulated does not
admit the possibility of symmetry restoration at high energy. In fact, rather than going to
zero, the Higgs VEV goes to in�nity asymptotically for t→∞. At high energy, when the
FP of RG is reached, symmetry of the theory is enhanced, because we have scale-invariance,
which can be enhanced even more to the full conformal symmetry. We can see it from the
behaviour of the ratio α, illustrated in Fig. 2.1, which characterizes the three regimes of
the theory, with the electroweak and gravitational interactions becoming scale-invariant
above their characteristic mass scales. The approach to the FP would �x the behaviour of
the electroweak Goldstone sector, in a way that is still to be understood in detail, but has
nothing to do with gravity. For the abelian gauge interaction one would have to invoke
uni�cation into a simple group, or gravity, as in [40].

We now come to the striking correspondence between the RG �ows computed by holo-
graphic and functional methods. Working examples of holography are hard to come by
outside the original domain of superstring theory, but in spite of this there seems to be
a trend towards viewing holography as a �eld-theoretic phenomenon [27]. In the famous
gauge/gravity duality the correspondence is conjectured between any quantum gravity the-
ory in the bulk and the boundary theory with some local symmetries. In some sense the
correspondence is surprising, because it is not a priori clear why the dynamics of gravity
in �ve dimensions should have anything to do with the RG in four dimensions understood
on the level of �eld theories. The idea of holography is often thought to be a fundamental
ingredient of the construction of consistent quantum gravity theory and it has a strong
support from open/closed string modes duality in string theory. On the other hand, our
understanding of holographic RG is based to a large extent on the AdS5 solution interpreted
in the framework of Randall-Sundrum model. Given that the isometry group of AdS5 is
the group SO(3, 2), which can be interpreted as the conformal group in four dimensions
with standard Minkowskian signature, it is not so surprising that this space can be used

36



to describe in geometric terms a theory at a FP. Our view here is therefore to interpret
the �ve-dimensional metric as a geometrization of the four-dimensional RG �ow at or near
FP. In opposite direction we read out here, from spacetime geometry, RG runnings for
couplings of four-dimensional theory following RS prescription, which is very similar to
general AdS/CFT recipes. In RS prescription running of matter dimensionful coupling is
derived from warping factor of the spacetime metric. Gravitational coupling on a 3-brane
is of di�erent nature and we obtain its scaling with energy by doing an integral over some
interval of radial coordinate in AdS-like spacetime. The brane introduced in section �2.2,
devoted for holographic RG, can be regarded as a true boundary of AdS located at some
small but �nite positive z. 1

In this chapter we have neglected completely holographic RG running for the cosmolog-
ical constant on the brane. The reason for this is quite technical. Despite the presence of
the bulk cosmological constant (giving the background AdS spacetime), on our �at probe
brane observer doesn't see any 4d-gravitational e�ect originating from vacuum energy. We
chose to foliate 5-dimensional spacetime using �at Minkowski slices. That's why the bulk
cannot induce any e�ect on the brane vacuum energy. Possible solutions would be to foliate
5-dimensional AdS using curved slices with maximal symmetry (dS4 and AdS4 for posi-
tive and negative 4-dimensional cosmological constant respectively), however this is not
always an option. Moreover another additional di�culty appears in such setup, because
then the value and the impact of the cosmological constant on the physics on the brane
is nonvanishing and �nite. In the true gravitational interactions (mediated by gravitons)
the strength of interactions can be tuned to be in�nitesimal, even for �nite value of the
coupling m2

P , if only the energy excitations on the brane carry in�nitesimal energy. This
is because the product m2

Pk
2, where k is the characteristic energy scale for matter pertur-

bations, measures that strength. This means that, the impact of such perturbations on
the background geometry of the brane can be safely neglected. Without back-reaction in

1For AdS to be a solution in the presence of such a boundary one has to add to the action the Gibbons-
Hawking boundary term [41], which in the present case just reduces to a cosmological constant on the
brane.
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this case we can study the linearized theory of gravitons (metric perturbations) and derive
their scaling with the radial dimension of AdS spacetime hµν = e2th̄µν . This was in the
core of our derivation of the holographic RG �ow for Planck mass. In the case of inter-
action with the brane cosmological constant, we don't have the possibility to turn o� this
coupling smoothly to zero and its e�ect on the background brane geometry is non negligi-
ble. It is incorrect to consider here the linearization around �at Minkowski background of
the 3-brane. 4-dimensional gravitation here must be treated nonperturbatively in order to
determine the correct background and the response for brane vacuum energy. Additionally
on the �eld theory side we would have to work in the quantum �eld theory on the curved
background. Nontrivial scaling with t of brane cosmological constant would correspond to
a foliation of bulk spacetime by leaves with changing internal curvature. This is much more
complicated setup for analyzing holographic RG �ows. Fortunately this problem doesn't
arise for holographic RG �ow of couplings in front of gravitational higher derivative terms.

From the four-dimensional perspective, the corresponding large but �nite value of t
de�nes a UV cuto�. Due to this boundary, �ve-dimensional graviton modes are normaliz-
able in the cut out region of AdS, and this setup describes gravity coupled to a conformal
�eld theory with a UV cuto� [7, 4]. This is exactly the construction as presented in [1].
In this connection, it is important to clarify the following point, which could be cause of
misunderstanding. In the limit z → 0 (conformal boundary of AdS) we have seen that
G→ 0, and for this reason it is usually said that gravity decouples. However, the strength
of gravitation in a certain process is measured by the dimensionless product Gp2, where
p2 is the characteristic momentum. In the vicinity of UV FP the following quantity If we
identify the cuto� k with the momentum p, the strength of gravity is given by G̃ = Gk2,
which in the limit z → 0 tends to a �nite constant (nb. this is the FP value of dimension-
less gravitational coupling). It is in this sense that the decoupling of gravity can be seen
as the consequence of a nontrivial FP for gravity.

It is not obvious at all that this �ve-dimensional theory has a dual CFT description.
If it exists, it must correspond to the putative nontrivial �xed point of the O(N) non-
linear sigma model coupled to gravitation. Note that the non-linear sigma model has a
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dimensionful coupling and therefore, for �xed coupling it is certainly far from conformal. It
is the quantum running of the coupling that would make it scale-invariant at the nontrivial
�xed point. It should be possible to describe this �xed point also in terms of an e�ective
Lagrangian containing only dimensionless couplings and also in terms of �elds suitable for
UV degrees of freedom. We will comment on this issue also in the next chapter.
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Chapter 3

Holographic RG �ow geometries for
gravitational coupling

3.1 Holographic setup

In this chapter we focus on the precise realisation of RG �ow geometries, which are
di�erent from pure AdS spacetime. Mainly we will consider �ow for the gravitational
coupling (which stands in front of the curvature scalar in Einstein-Hilbert action), but we
will say few words about RG �ow for ordinary matter couplings too. We will read RG �ows
from geometry following Randall-Sundrum prescription [1, 2], but in general geometries,
which admit foliation by 4-dimensional �at Poincarè slices. Moreover we demand that these
spacetimes asymptotically tend to AdS spacetime, so we will work with asymptotically
Anti-de Sitter (AAdS).
The main problem, we would like to address in this chapter is how to �nd holographic
geometries describing RG �ows of gravitational coupling, which we found primarily using
other methods (like functional RG).

For a scalar �eld with standard kinetic term and minimally coupled to gravitation,
the only place, where the di�erence between di�erent RG �ows originates, is a scalar
potential. Its shape V (Φ) determines the �ow completely. However the opposite is not
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always true, because the same con�gurations (scalar pro�les) can be solutions of various
potentials. We have only the equivalence between RG �ows and scalar pro�les. Giving
the potential completes the ingredients necessary for building the holographic description
of �ows. Hence the task of this chapter will be to �nd explicit 5-dimensional potentials
for explicit gravitational RG �ows. We will also describe quickly its impact on matter RG
�ows.

We will describe holographic geometries corresponding to RG �ows as solutions of
Einstein-Hilbert system with minimally coupled scalar �eld with a potential. For generality
we will study (d+1)-dimensional theory, of which our 5-dimensional description is a special
case, with the action of the form

S =

∫
dd+1x

√
gMd−1 (R + L) =

∫
dd+1x

√
gMd−1

(
R∓ 1

2
(∂Φ)2 − V (Φ)

)
, (3.1)

where M is the (d + 1)-dimensional Planck mass (constant gravitational coupling in the
bulk). We emphasise that the scalar �eld Φ is chosen to be dimensionless and also the
scalar potential V (Φ) has energy dimension equal to two, independent of d . Such choice
enables us for simultaneous studying of holo-duals in any bulk spacetime dimension d+ 1.
In Lagrangian L for scalar �eld we admit also the possibility, that scalar �eld has negative
sign of the kinetic term. Later we will decide and comment about it. We use the following
ansatz for the metric, which preserves full d-dimensional Poincarè symmetry of constant
r, �at Minkowski slices:

ds2 = e2A(r) ηij dx
idxj + dr2 i, j = 1, . . . , d . (3.2)

It means that spacetimes of our interest are warped (conformally scaled) d-dimensional
�at Minkowski slices with original metric ηij. We set all coordinates to have inverse energy
dimension, this establishes the proportionality relation between radial r coordinate in the
bulk of AdS and logarithmic RG time t. For de�niteness we assume that r = rc t, where
rc = 1/υ = (246 GeV)−1 is the length associated to the electroweak scale. It is also equal
to the AdS radius in far UV as chosen in [42]. The requirement that our holographic
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spacetimes are asymptotically AdS, when the radius r tends to plus or minus in�nity, is
satis�ed in situations, in which we have that A(r) → r/rc± in respective asymptotics in r.
rc± denotes here the radii of AdS in asymptotic region of spacetime, they must be di�erent
from each other, when we ask for nontrivial RG �ow. The direction of r coordinate, taking
values on whole real line, is such that decreasing its value corresponds to following RG �ow
from UV to IR FP's.

Now we are going to present the method, which allows us to �nd a scalar potential V (Φ)

for a given RG �ow. From our coupled system of classical equations of motion, we �rst
derive the scalar EOM in a fully generally covariant form ±∇2Φ− δV

δΦ
= 0, where ∇2Φ =

√
g−1 ∂µ

(√
g ∂µΦ

)
. For our spacetime metric ansatz (3.2) we have that √g = exp(dA).

We assume that our scalar pro�les vary only along the radial direction, being constant on
Minkowski sections. With this simpli�cation we have the scalar equation of motion given
by

± (Φ′′ + dA′ Φ′)− δV

δΦ
= 0, (3.3)

where by prime we denote radial derivatives ∂
∂r

= 1
rc

∂
∂t
. Our equations of motion take the

form of ordinary di�erential equation, where r is the independent variable. Warp function
A(r) contains all RG �ow data. However we don't want to solve (3.3) for scalar pro�le
Φ(r), but rather to �nd a potential V (Φsol) on a consistent solution Φsol(r) of the full
gravitating system, provided some boundary conditions are satis�ed in UV and IR limit of
r coordinate. To do this we need at least one equation of gravitational character, because
we don't know explicitly the scalar solution Φsol(r). If we knew this explicitly we could
invert the relation and plug r(Φsol) in the right side of the formula for the �rst derivative of
the scalar potential δV

δΦ
= ± (Φ′′(r) + dA′(r) Φ′(r)). Now integrating the RHS (understood

as a function of independent variable Φsol) over Φsol in some limits, we would get searched
potential V (Φsol). We will use a di�erent method, which doesn't use the explicit scalar
pro�le solution. Gravitational equations of motion must be exploited to reach this goal.

The Einstein tensor, of satisfying our metric ansatz spacetimes, contains only two
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interesting components Gr
r and Gi

j. We compute a mixed covariant-contravariant form
(to get rid of warping factor). We have explicitly interesting tensors: Rrr = −d(A′′ +A′2),
Rij = −e2A ηij(A′′ + dA′2) and R = −d (2A′′ + (d+ 1)A′2). With this we get two diagonal
components of Einstein tensor as

Gr
r =

d(d− 1)

2
A′2 and Gi

j =
d− 1

2
δij

(
2A′′ + dA′2

)
. (3.4)

For a pair of equal transverse spacetime indices (i.e. i, j = tM d-dimensional Minkowski
time), we see that it holds

GtM
tM −Gr

r = (d− 1)A′′ (3.5)

nicely relating geometrical structure on the manifold with the second derivative of the
warp factor. On the other side of Einstein equations of motion Gµν = M−(d−1) T̃µν , we
have energy-momentum tensor T̃µν of matter, which here is only in a form of scalar �eld Φ.
We are going to simplify the notation by rescaling energy-momentum tensor by M−(d−1),
which now has energy dimension equal to two and this is the most convenient choice for
dimensionless scalars. We denote it by Tµν . Then we have gravitational equations in the
simple form

Gµ
ν = T µν . (3.6)

From the action functional (3.1) we derive the energy-momentum tensor for the scalar �eld
Φ:

T µν = ±(∂µΦ)(∂νΦ)− δµνL, (3.7)

where the structure of the scalar Lagrangian L is not as crucial as the sign in front of the
kinetic term. Combining all three last numbered equations we arrive at the one, we really
need for our method, namely

(d− 1)A′′ = ∓Φ′2. (3.8)
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This last equation tells an interesting thing, that the convexity of warp factor is entirely
determined by the sign of the kinetic term for the scalar �eld. For RG �ows, which
corresponds to concave warp factor, we have standard positively de�ned kinetic term.
Those, for which A(r) is convex, may be described holographically by phantom scalar
�eld.

Now we parallel the derivation of a scalar potential V (Φ) based on the method of fake
superpotential. We must remark that the presence of supersymmetry in the bulk is by
no means a necessary assumption. We only borrow the method for �nding special scalar
potential from supergravity written in terms of superpotential. This is not completely
general potential, but one, which is a representative in a wider class of potentials solving
our issue. In this derivation we try to follow [46, 48, 47], where such potential was derived
in general Einstein-Hilbert system with standard sign of the kinetic term for the scalar
�eld, without at all invoking supersymmetry and for arbitrary dimension d+1. However we
must also modify the form of this derivation for case of the scalar �eld with negative kinetic
term. In the case of a single scalar �eld, when the target space metric is di�eomorphic to
a constant and V becomes a function of a single real variable we can write

V = −2(d− 1)2

(
δW

δΦ

)2

− 2d(d− 1)W 2. (3.9)

The corresponding form of the scalar potential for standard (not phantomic) scalar �eld
would satisfy the requirement of nonperturbative gravitational stability of AdS vacua (as
found in [56, 57]). This would easily translate itself into a condition of positive energy so-
lutions in the gravitational framework and preservation of null energy condition for matter
content of the bulk theory. The situation with phantomic scalar �eld is however di�erent
and this is why the sign is �ipped of the �rst term in (3.9). Next we note that

δV

δΦ
= 4(d− 1)

[
−(d− 1)

δ2W

δΦ2
− dW

]
δW

δΦ
, (3.10)

which tells us that AdS vacua are at points, where δ2W
δΦ2 = − d

d−1
W . In addition to such

would-be supersymmetric vacua in our theory we have also domain wall solutions. We
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will mainly focus on would-be BPS domain walls, which interpolate between two would-
be supersymmetric AdS vacua. The reason is that for them we are able to easily solve
resulting equations of motion.

Let us turn back to the integral (3.1) giving us the classical action of the whole system.
We plug there our ansatz for the metric (3.2) and the form of the gravitational Lagrangian
given by the curvature scalar. We already properly integrated it by parts from the initial
form R ∼= −d(d− 1)A′2 with total derivative term

(
2edAA′

)′ abandoned. After neglecting
the integration over transverse d-dimensional space we can rewrite the action integral as
the following energy functional in only one integration variable r as

E[A,Φ] = −
∫ ∞

−∞
dr edA

[
−1

2
Φ′2 − d(d− 1)A′2 + V

]
. (3.11)

With the use of (3.9) and Bogomol'nyi method this functional can be presented in the
following form

E = −
∫ ∞

−∞
dr edA

[
−1

2

(
Φ′ ∓ 2(d− 1)

δW

δΦ

)2

− d(d− 1) (A′ ∓ 2W )
2

]
±2(d−1)

[
edAW

]∞
−∞ .

(3.12)
We obtain so called BPS equations by requiring for extremisation of this expression with
respect to all A and Φ. In the result a pair of �rst-order di�erential equations is derived:

A′ = ±2W (3.13)

Φ′ = ±2(d− 1)
δW

δΦ
. (3.14)

A posteriori we check that solutions of these BPS equations indeed solve the full system
of equations of motion, given explicitly by:

d(d− 1)A′2 + Φ′2 + 2V = 0 (3.15)

2(d− 1)A′′ + d(d− 1)A′2 − Φ′2 + 2V = 0 (3.16)

−Φ′′ − dA′ Φ′ − δV

δΦ
= 0 . (3.17)
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Although in the BPS equations (3.14) we have two signs allowed, this ambiguity cancels,
when we go to the formula for the scalar potential representative written entirely using
derivatives of the warping factor:

V = −1

2
d(d− 1)A′2 − 1

2
(d− 1)A′′, (3.18)

where we also used the relation A′′ = 4(d− 1)
(
δW
δΦ

)2. This is valid for both signs in (3.14)
and was derived from (3.8). The formula (3.18) is a crucial step in our method for �nding a
scalar potential valid for given scalar con�gurations. By knowing spacetime dependence of
warping factor A(r) in this way we can �nd exact radial dependence of the scalar potential
V (r) understood as evaluated on particular solution Φsol(r), though we don't know it yet.

To �nd a unique function V (Φ) we must determine this scalar con�guration solution
and invert it:

V (Φ) = V (r(Φ)) for r(Φ) = (Φsol(r))
−1 . (3.19)

In this method one integration (over Φ variable) is avoided compared to the method pre-
viously suggested. We must note however, that these two methods are equivalent, because
they give the same answer for the potential. We must still �nd a solution Φsol(r). This can
be achieved by integration of equation (3.8) over radial coordinate. With obvious notation
we get that

Φ(r) = ΦUV −
∫ ∞

r

dr̃Φ′(r̃) = ΦUV −
∫ ∞

r

dr̃
√

(d− 1)A′′(r̃). (3.20)

If this integral can be done analytically and resulting function inverted, then equation
(3.19) will yield an analytic expression for the desired potential V (Φ).

3.2 Gravitational RG �ows

Main part of this section we will devote for the description of gravitational RG �ow
geometries in the holographic perspective. But before this, let us describe brie�y the
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RG runnning of ordinary matter couplings from the boundary theory. As it is common in
AdS/CFT we will describe the RG running of a scalar operator O, which triggers nontrivial
�ow and hence explicitly breaks the conformal invariance. According to the dictionary it
is dual to some scalar �eld in the bulk φ. Nontrivial radial dependence of this bulk �eld
φ(r) means that we have nonconformal RG �ow for our deformation O in the boundary
theory. Of course the �ow of such operator in the boundary theory can be interpreted as
the RG �ow of a coupling parameter g, which is used to couple it. This coupling possesses
such an energy dimension that the product gO has dimension d proper for the Lagrangian
in the boundary theory. Although to di�erent operators we have corresponding di�erent
bulk scalars, the RG running of those is read not from their corresponding pro�les, but
from the universal warp factor. Dynamics of all bulk �elds have the impact on the actual
form of the warping factor A(r) due to the gravitational sourcing. Following [58] and [42]
we accept the following identi�cation

k(r) = k0 e
A(r) (3.21)

between radial bulk direction and the momentum scale in the boundary theory. This is
the generalisation of the relation k(r) = k0 e

r
rc to bulk spacetimes di�erent from AdS,

but still having the appropriate properties in the transverse directions. We may write the
expression for the beta function of the coupling g:

βg = k
dg

dk
↔ 1

A′
φ′(r), (3.22)

where the �rst equality gives the �eld theory de�nition of such object, while the second
relation gives a holographic interpretation in the bulk spacetime. The most RHS of the
above equation can be rewritten further using equations of motion in the bulk and put
in a form, where there is only dependence on the bulk scalar φ. This correspondence can
be viewed as another fundamental formula in AdS/CFT duality relating boundary to bulk
quantities.

Now we come to discuss the scaling properties of dimensionful couplings in boundary
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theory. If in boundary �eld theory we are in FP regime, then this scaling is in the form of
a power law

gIR,UV(k) = g0

(
k

k0

)αUV,IR

. (3.23)

Conformal scaling dimensions αIR and αUV need not be identical, but they reach �xed
values at CFT FP's in IR and UV respectively. There we have valid the simple expression
for the beta function βg = αg. This agrees precisely with the way, how we have read the
scale-dependence in �2.2, when we assumed that our considered couplings come with some
de�ned scaling dimension α. Because in our model in infrared limit gaussian FP exists,
then the scaling dimensions αIR are given by classical energy dimension of couplings. To
leading order we continued with the assumption that they are not changed signi�cantly
in UV, in other words we neglected anomalous dimensions of these couplings. Namely we
stuck with UV dimensions 1 for Higgs vev and 2 for the square of the 4-dimensional Planck
mass. With this we were able to read correctly in �2.2 the RG running in holographic
method. In full generality we have running dimension α = α(k) interpolating between two
scaling dimensions of the same operator O in two CFTs. They do not have to correspond
to classical dimension of this operator. We use the following de�nition for varying α,
g(k) = g0

(
k
k0

)α
. In the intermediate region between two FPs of RG, we have an expression

for the beta function βg = g
(
α+ βα log k

k0

)
. We see that it was corrected by the beta

function of α itself multiplied by a logarithm of the energy scale. It often appears, when
we rescale a dimensionful coupling by power of energy scale with the classical dimension
in the exponent g̃ = g k−αcl . This removes powers of momentum from RG running and the
corresponding beta function equals βg̃ = g̃

(
α− αcl + βα log k

k0

)
.

Now we are in position to apply method, described in the previous section, for �nding
scalar potential for given RG �ows. We will consider a �ow of the gravitational coupling
in 4-dimensional boundary theory, whose tree level action (and also our truncation) is
Einstein-Hilbert for gravitation. We will consider an RG �ow of mP caused by quantum
e�ects. From here on we work explicitly in d = 4. The reason is that only in this dimension
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we have the correct description from holographic RG �ow as it was elucidated in the previ-
ous chapter. We adopt the following conventions for dimensionless gravitational couplings:
G̃ = Gk2 = k2(m2

P )−1, where k is the RG energy scale related to radial coordinate by
(3.21) [52]. Let us pay attention to the fact that dimensionful Newton's constant is given
by GN = (8πm2

P )
−1, so it is o� by numerical factors from the coupling G. In [45] was

derived a one-loop equation governing the RG �ow of G̃. This is in the form

dG̃

dt
= ˙̃G(t) = (d− 2)G̃+B1 G̃

2. (3.24)

The solution of this equation is given by

G̃(t) =
2G̃(0)e2t

2 +B1 G̃(0)(1− e2t)
. (3.25)

It is convenient (in four dimension) to analyse the RG running of the square of the e�ective
Planck mass. From (3.25) it is given by

m2
P (t) = m2

P (0) +
B1

2
r−2
c

(
1− e2t

)
. (3.26)

It is very important that all investigated types of cuto�s give negative values of the co-
e�cient B1. This signi�es that the e�ective 4-dimensional Planck mass grows, when the
energy scale increases. This means that quantum gravity perturbed around �at Minkowski
spacetime shows its antiscreening nature.

To �nd a holographic geometry, which gives rise to a valid description of such a �ow, we
recall how the running of e�ective couplings in gravitational theory living on hypothetical
brane of codimension 1 in the bulk, is seen from 5-dimensional perspective. This is basically
the argument presented by Randall and Sundrum in [1], which we showed already in �2.2.
Here it is generalised to a t-dependent conformal factor A(t). We have the action on a
probe brane, located at some position given by the RG time t,

Sgrav = m2
P (t)

∫
d4x

√−ḡ R̄, (3.27)
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where barred geometric quantities are induced on a brane from the bulk. An observer in
the bulk sees this action as resulting from integration of the gravitational action in the bulk
over some interval of radial coordinate (equivalently RG time t) according to the formula

Sgrav = M3 rc

∫ t

0

dt′ e2A(t′)
∫
d4x

√−ḡ R̄. (3.28)

From two above formula we derive that the holographic running of 4-dimensional m2
P is

expressed by

m2
P (t) = m2

P (0) +M3 rc

∫ t

0

dt′ e2A(t′). (3.29)

It means that roughly, when going in direction from IR to UV, the square of the Planck
mass gets increased by integrating always positive warping function eA(t). This is another,
holographic proof, of the character of running of this gravitational coupling parameter - it
is bigger at higher energy scales. By di�erentiating (3.29) we get

d

dt
m2
P (t) = M3 rc e

2A(t) (3.30)

and an explicit expression for the warping factor

A(t =
r

rc
) =

1

2
log

(
d
dt
m2
P (t)

M3 rc

)
. (3.31)

We see, that the whole construction of the holographic RG geometry is derived not from the
scale dependence of coupling itself, but from the beta function of the gravitational coupling.
This means, that holography is insensitive to any additive constant, which might be present
in explicit running m2

P (t). In order to read local curvature of AdS part of spacetime we
have to compute A′(r) with the help of

A′ =
m̈2
P

2rc ṁ2
P

. (3.32)

Constancy of the above quantity over some range of radial coordinate values means that
this region of spacetime is exactly a piece of AdS with given radius. However for a typical
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RG �ow such good situation does not happen and only in asymptotic limits r → ±∞ we
obtain constant value of local radius (A′)−1. Therefore we work only with asymptotically
AdS spacetimes.

It is easy to convince ourselves that the RG �ow as given by (3.26) is described by an
exactly a�ne function of the radial coordinate r: 2A(r) = 2 r

rc
+ log

(
−B1

(M rc)3

)
. However

recalling from [42] that −B1 = 2cP = (M rc)
3 we obtain linear radial dependence of the

warp factor A(r) = r
rc
, exactly like in AdS spacetime all the way along this RG �ow.

The AdS radius equals always to rc. We state this fact as that the one-loop perturbative
Einstein-Hilbert �ow is described by the pure AdS holographic spacetime. We are not
already at a conformal �xed point, because only at high energy we can neglect any ad-
ditive constant in the solution (3.26). In FP regime dimensionful Planck constant scales
according to m2

P (t) = G−1
∗ r−2

c e2t. That we are in pure AdS spacetime is not a surprise,
because in holographic construction in �2.2 this was exactly our initial assumption about
the bulk spacetime. We must consider this kind of �ow deeper. We have for it, that
∆A′ = 0, because A′ = r−1

c . This �ow (3.26) is valid for small (perturbative) values of
the dimensionless gravitational coupling G̃ and signi�cant corrections appear only, when
running G̃(t) is of order 1. So this happens for t around tP = −1

2
log G̃(0). (Knowing the

approximate experimental value of G at electroweak scale t = 0, we �nd that G̃(0) ≈ 10−33

and −1
2
log G̃(0) ≈ 38) As it stands this �ow of coupling possesses a nontrivial UV FP

with the �xed value of the coupling G̃∗ = − 2
B1

. Nevertheless we expect some changes to
details of this picture due to higher loops and nonperturbative corrections. This is because
close to this FP we are away from the regime of validity, where this �ow was derived. It
is important to analyse the limiting behaviours of this �ow in the UV and IR. Namely in
the UV regime we have that the �ow is approximated by

G̃(t) ≈ − 2

B1

(
1 +

2e−2t

B1 G̃(0)

)
, (3.33)

so we conclude, that the �xed limiting value of the coupling G̃∗ is reached exponentially
fast for t > tP . In the IR regime the �ow asymptotically coincides with the �ow from a
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gaussian (trivial) FP G̃(t) = G̃(0)e2t and is given by an approximate formula

G̃(t) ≈ 2G̃(0)

2 +B1 G̃(0)
e2t

(
1 +

B1 G̃(0)

2
e2t

)
(3.34)

and again we have the conclusion of exponentially fast reaching of IR FP regime in neg-
ative t variable. Of course in infrared the dimensionless constant has vanishing limit. In
the very far IR regime this �ow as well as gaussian one is a solution of a simpli�ed dif-
ferential equation ˙̃G = 2G̃. This equation just governs the behaviour at trivial FP, where
the dimensionless values of the couplings vanish. At this FP the dimensionful Planck
mass is exactly constant and this naively means the breakdown of holographic descrip-
tion, because the warping factor blows up (A = −∞) and we cannot de�ne the radius of
curvature. Indeed strong-weak duality arguments suggest that to in�nitesimally weakly
coupled boundary theory (as when originating from gaussian FP) corresponds in�nitely
high curved holographically dual spacetime. And such spacetime without including quan-
tum 5d gravitational corrections to bulk theory doesn't make much sense. This is one of
the problems we want to address by later modi�cation of the �ow given in (3.26).

It is not necessary to modify the RG �ow in the UV, because for general �ows ending at
nontrivial UV FP, we have the scale invariance of the gravitational coupling, which means
that m2

P (k) ∼ k2 and hence A′ = r−1
c . The exponent 2 in the formula (3.33) comes because

of such dimensionality of Newton's constant in four dimensions (negative to classical energy
dimension). We remind that here we have completely neglected the anomalous graviton
dimension. That the local radius of curvature equals to parameter rc, is a very robust
feature for all approximations to gravitational �ows near UV FP. For example for a �ow
obtained from the exact RG di�erential equation

dG̃

dt
= 2G̃+

B1 G̃
2

1 +B2 G̃
(3.35)

with constant coe�cients B1 and B2, we �nd the following high energy behaviour of the
warping factor
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A(r) =
r

rc
+

1

2
log

(−B1

2cP

(
1 +B2 G̃

))
. (3.36)

This expression near UV FP reduces to A(r) = r
rc
− 1

2
log

(
cP G̃∗

)
, because the �xed

point value of the coupling is given by the relation G̃∗ = − 2
B1+2B2

. This exact �ow,
although precisely is not as the �ow governed by the FP in formula (3.25), returns back
to it in the deep IR and UV. In IR it coincides precisely, because the e�ective value
of G̃ is small and we can neglect the denominator in (3.35). Hence we arrive at �ow
equation (3.24). In deep UV we have however only a quantitative di�erence between the
two �ows showing itself up in the presence of free term in the conformal factor for the latter
�ow in formula (3.36). Additionally there is a di�erence between values of the coupling
at �xed points. For our purposes improvement given by functional RG doesn't change
the qualitative characteristics of running of gravitational coupling with an energy scale.
Nevertheless we must note that the �ow, which is a solution of (3.35) (not existing in a
closed form) is truly an interpolating �ow between two almost identical CFT's. The only
di�erence between them is in the �xed values of dimensionless couplings (between G̃∗ = 0

and G̃∗ = − 2
B1+2B2

in UV). This is because in the limit r → ±∞ the inverse AdS radius
tends to the same value A′ → r−1

c . Moreover it seems, that their corresponding central
charges are the same! In global sense we have precisely that ∆A′ = 0 for the whole �ow.
But this and the continuity of the �ow implies that the sign of the second derivative A′′

is undetermined. So we arrive at the conclusion, that the local version of the c-theorem
doesn't hold here. And moreover in the holographic description of this �ow the sign of the
kinetic term for interpolating scalar �eld is undetermined too. It is fair to say that from
holographic perspective �ows given by (3.25) and solving (3.35) are closer to being at UV
FP (where A′ = r−1

c ) than at IR gaussian FP (with A = −∞). The conclusion might be
opposite, when looking naively for running of dimensionful gravitational coupling m2

P (t).
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3.3 Holographic description of the interpolating gravi-
tational �ow

To solve above mentioned problems with holographic interpretations, we may try to
modify the RG �ow only in the IR, not spoiling therefore nice properties of asymptotic
safety scenario holding in UV. We cannot allow the warping factor to be or to tend to minus
in�nity limit in the far IR region. We must include threshold e�ects and stop or better
neutralise the running in this low energetic regime. We obtain the most harmless running
derived from (3.29), when we put to zero the warping factor asymptotically for t → −∞.
If we put it to a negative value, then the running would be even smaller, but then we would
enter another nontrivial inverse FP regime. Namely in the deep IR Planck mass would
tend to zero value exponentially fast. And there wouldn't be a remnant non-zero value
for the e�ective Planck mass at IR limit - we want however opposite. Both these choices
of �ow's modi�cation lead to di�erent geometries in IR region of holographic spacetime.
But regardless of them we are forced to accept the global change of the inverse local AdS
radius to be positive ∆A′ > 0. This is a necessary consequence, when we want to soften
the �ow in the IR. The problem with the c-theorem can not be solved by this method. We
can achieve such a smooth change of warp factor that always A′′ > 0 and asymptotically
A′′ → 0. This means that in the holographic 5-dimensional description in the middle of our
interpolating geometry we excite a phantomic scalar �eld Φ (from formula (3.8)). With the
choice that A = A′ = 0 for deep IR we get the following �ow of the gravitational coupling
m2
P (t) = m2

P (0) + 2cP r
−2
c t. This is also a solution of an unautonomous �ow equation

dG̃
dt

= 2G̃
(
1− cP G̃ e

−2t
)
. We obtain the interpolating �ow between IR and UV by simply

adding and adjusting two limiting behaviours in the IR and UV. This is possible, because
in opposite limits each of these �ows is negligible with respect to the other one. In UV
limiting behaviour of the �ow is m2

P (t) = m2
P (0) + cP r

−2
c (e2t − 1) (compare with (3.26)).

The interpolating �ow has the explicit form
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m2
P (t) = cP r

−2
c

(
e2t + 2t− 1

)
+m2

P (0). (3.37)

This is the �ow, which we are going to analyse in this section looking for its fully-�edged
holographic description. We treat this particular �ow as an example, for which we are able
to bring the explicit computation of scalar potential to the very end. We must emphasize
here that this interpolating �ow (3.37) is not an outcome of exact renormalization group
methods. Our method for �nding holographic RG geometries is however general and works
also for other examples of gravitational RG �ows. The necessary ingredient is the explicit
form of the function mP (t).

We now come to the construction of a holographic RG �ow spacetime, which may be
understood as a geometrization of the above �ow. Equation (3.37) governs the running of
the dimensionful gravitational coupling: Planck mass square. In terms of dimensionless
coupling G̃ (convenient for describing physics from nontrivial UV FP perspective) the �ow
is expressed as

G̃(t) =
G̃(0) e2t

G̃(0) cP (e2t + 2t− 1) + 1
. (3.38)

For very small values of G̃(0) this �ow has a big variability around t = tP and this lasts
for around 5 units in logarithmic RG time t. Before this transition region the value of
G̃(t) almost vanishes and after it attains c−1

P equal to the �xed point value. Warping factor
function, because it gives the holographic description, is quite universal and doesn't depend
on speci�c parameters of the �ow expressed by its initial value G̃(0) and the rescaling
parameter cP . Hence, regardless of these parameters, for this type of �ow warping factor
equals to

A(t) =
1

2
log

(
1 + e2t

)
. (3.39)

It has required properties, which we described in the previous section, and this is easily
visible from the plot of A(t) shown on the left panel of Fig. 3.1. The value at the origin is
given by A(0) = 1

2
log 2 ≈ 0.35. The origin is also a point, where the two asymptotic limit
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Figure 3.1: On the left: Warping factor A(t) as a function of t. On the right: First (in
blue) and second (in red) derivative with respect to radial coordinate t of the warping
factor A(t).

of A(t) are joined smoothly. The �rst derivative of A(t) with respect to radial coordinate
r is a symmetric function interpolating between values of zero (in IR) and two (in UV).
The second derivative given by

A′′(t) =
2e2t

r2
c (1 + e2t)2 (3.40)

is an even and positive function (as we demanded) and its maximal value 1
2
r−2
c is reached

at the origin. In in�nity this function attains vanishing limits. Plots of the rescaled to be
dimensionless, �rst and second derivative are shown on the right panel of Fig. 3.1.

Now using formula (3.18) we have the explicit radial dependence of the scalar potential

V (t) = −3e2t (1 + 2e2t)

r2
c (1 + e2t)2 . (3.41)

This potential has vanishing IR limit VIR = 0. From more closer look we also see that
value of it at t = 0 equals to −9/4 = −2.25 and that UV limit is -6 in inverse square units
of radius of AdS rc. Plot of the radial dependence of the scalar potential (3.41) we present
on the left panel of Fig. 3.2 using blue curve.

Fortunately enough for this simple form of warp factor (3.39) we can integrate as
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in equation (3.20) and the resulting scalar pro�le of a solution has the following radial
dependence

Φsol(t) =
√

6 arctan et. (3.42)

Inverting this relation for �nding t as a function of Φ is an easy task equivalent to solving
this simple transcendental equation for t. We may do this analytically or in the last
part of the analysis we may resort to numerical results. Here we only want to add, that
monotonically increasing function (3.42) takes values between 0 (which we have chosen as
value of ΦIR) and Φmax =

√
6

2
π ≈ 3.85 (which must be the value of the scalar �eld reached

at UV FP) in a symmetric way around the origin. The red curve on the left panel of Fig.
3.2 shows, how this scalar pro�le changes, when we move in radial direction. From last
relation (3.42) we get that

et = tan

(√
6 Φsol

6

)
. (3.43)

Plugging this to the formula (3.41), we obtain an analytical shape of the scalar potential
as the function of Φ given by the following combination of trigonometric functions:

V (Φ) = − 3

2r2
c

sin2

(√
6 Φ

6

)(
3− cos

(√
6 Φ

3

))
. (3.44)

Using some trigonometric identities we rewrite this to the following simple form:

V (Φ) =
3

8r2
c

[
−7 + 8 cos

(√
6 Φ

3

)
− cos

(
2
√

6 Φ

3

)]
. (3.45)

This function is shown on the plot placed on the right panel of Fig. 3.2 at least over
the range of the scalar �eld values covered in the holographic �ow, i.e. from ΦIR = 0

to ΦUV = Φmax. Therefore we have produced an analytical result for the scalar potential
necessary to produce bulk geometry with conformal factor A(r) given by (3.39) as a solution
of the system consisted of Einstein gravity and bulk scalar �elds.

We can describe quantitatively few features of this potential. Firstly despite that it
is de�ned only for region of Φ between 0 and Φmax we can make it periodic. The proper
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Figure 3.2: On the left: Radial dependence of the scalar potential V (t) in blue and of the
scalar pro�le Φsol, which is a solution of EOM, in red. On the right: Scalar potential V as
a function of Φ. Scalar potentials are shown in units of r−2

c .

period in this case is exactly equal to 2Φmax as we can read from explicit analytic formula
(3.45). We chose the biggest proper period out of periods for trigonometric functions, which
appeared there. As a result this was the period of the second term in the square bracket
in this formula. Moreover we can extend potential's domain in such a way that the full
potential would be symmetric around points with values of ordinates ΦUV and ΦIR. To do
this we must re�ect the plot valid for the holographic RG �ow with respect to vertical axes
at its critical points or simply extend naturally the domain of the trigonometric functions.
We easily observe that the period of two trigonometric factors in (3.44) is identical and this
is the result for the period of the whole potential, which is equal to

√
6π ≈ 7.70. Obviously

from the equation (3.20) we have the shift symmetry Φ → Φ + Φ0 enjoyed by the scalar
EOM related to the free choice of initial value of the �eld for IR region. For holographic
purposes we chose ΦIR = 0, nevertheless we could equally well shift it by integer multiple
of the period. Secondly we don't have the possibility of adjusting the constant in the
potential, this is precisely determined by formula (3.18). This additive constant in the
potential is related to the already determined by the properties of FP in UV, value of the
cosmological constant in the bulk region Vcrit. Therefore we have monotonically decreasing
potential from value zero at ΦIR = 0 to the value VUV = −6r−2

c at the edge of RG �ow in
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UV for Φ = Φmax. Despite the fact that we were able to produce an analytic results for the
full form of the potential, it is still interesting and possible to consider limiting behaviours
around the IR and UV critical points. We will obtain these by a perturbative expansion
around these critical points. We de�ne deviations of the scalar �eld value from its critical
ones by δΦUV,IR = Φ − ΦUV,IR respectively for IR and UV FP's. We easily verify that in
expansions around the corresponding points odd powers of these deviations do not appear.
We can cast potential in the vicinity thereof into the following form given by a series

V (δΦ) = Vcrit +
1

2
m2(δΦ)2 +

1

24
λ(δΦ)4 + . . . , (3.46)

where formally in�nite set of parameters Vcrit, m2, λ, . . . parametrises dynamics of the
scalar pro�le near the corresponding critical points of CFT's. We have obviously that Vcrit

is the value of the cosmological constant in the corresponding to FP of RG AdS vacuum.
The mass parameter can be calculated from

m2 =
δ2V

δΦ2

∣∣∣∣
Φ=ΦUV,IR

=
1

Φ′
d

dr

(
1

Φ′
dV

dr

)∣∣∣∣
r→±∞

(3.47)

and similarly with the fourth power of the operator 1
Φ′

d
dr

for the quartic coupling λ. Here
Φ′ denotes the radial derivative of the scalar, which from (3.8) equals to

√
(d− 1)A′′,

where all functions are understood as functions of the independent variable r. As the
results of calculations we obtained for the masses m2

IR = −r−2
c , m2

UV = 3r−2
c and for the

quartic couplings λIR = −4
3
, λUV = −4. We are not afraid of negative values of the quartic

couplings here, because the standard problem of unboundedness of the potential doesn't
show up here. Scalar potential, which we found, is de�ned only on �nite interval of Φ, where
it is bounded function and never reaches large negative values. This remains obviously true,
if it is extended to be periodic. These negative values of quartic couplings are valid only
in the neighbourhoods of critical points of the potential and must be understood as the
�rst terms in series for the exact potential. We obviously see from the plot (and this also
con�rmed by the calculation of mass parameters), that the critical point in IR is unstable,
whereas the other in UV exhibits stability.
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3.4 Interpretation and discussion

Holographic interpretation of the �ndings from the last section is as follows. Standard
reason for start of a nontrivial RG �ow is that the boundary CFT is perturbed by some
relevant operator with respect to UV critical point. It has a conformal dimension ∆ < d in
order to be a relevant deformation. In holographically dual gravity description this operator
is dual to some bulk �eld. In the case of scalar deformation in CFT, this is precisely Φ,
and the conformal dimension of the operator is related to the mass of the bulk scalar by
the famous relation ∆(∆− d) = m2 (in units of r−2

c ). For asymptotic behaviour near UV
we have two solutions for conformal dimension of deformation δΦ, namely ∆± = 2 ±√7.
The scalar �eld near boundary will have two independent solutions

δΦ = et∆− Φ−(x) + et∆+ Φ+(x). (3.48)

Now because ∆UV are of opposite signs (as always for positive mass square parameter),
we have one normalizable and one nonnormalizable mode of the scalar near UV boundary.
Moreover we have that the standard choice ∆ = ∆+ of nonnormalizable mode corresponds
to an irrelevant operator, which is implied by the fact that ∆+ ≈ 4.65 > d = 4. This means
that the vev for the dual operator in the boundary theory is represented by not vanishing
coe�cient Φ+ ∼ 〈Φ〉bdy. However for normalizable mode et∆− we have decaying solution
with the coe�cient Φ− proportional to the vanishing coupling for the dual operator in the
boundary theory. For this mode we easily see that the conformal dimension −∆− ≈ 0.65

is precisely the exponent controlling asymptotic decay of this mode of δΦ. In this spirit
the operator, which triggers nontrivial RG �ow from UV FP to a critical point in the IR
is irrelevant from the viewpoint of UV FP and only its nonzero expectation value causes
the �ow.

Note that in the infrared limit we have m2
IR < 0 and hence the dual operator is always

irrelevant there (0 < ∆ < d) from the perspective of IR FP. We have explicitly that
∆± = 2±√3 and both modes in IR regime are normalizable and correspond to irrelevant
operators. The standard choice for a surviving mode is ∆ = ∆−, which signi�es, that the
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dual operator is relevant. The leading contribution in the asymptotic decay of deviations
δΦ means that the corresponding coupling is nonvanishing in the boundary theory. This is
a standard holographic interpretation of the �ow. From the boundary viewpoint we agree,
that the deformation in IR is relevant, because the inclusion of threshold phenomena
modi�es the �ow signi�cantly by softening it. In UV we see, as noticed previously, that
with running (3.38) we are already at FP and the deformation turning the �ow into the
direction of new IR FP is only irrelevant.

We can now come back shortly to the issue of a running of mass parameters in the
boundary theory, which are not of the gravitational type. Using equations (3.23) and
(3.39) we derive that all energy dependence is given by the root factor

√
1 + e2t =

√
1 + k2

υ2
0
.

Running of the Higgs vev is particularly simple here (because k0 = υ0) and is expressed
by formula υ(k) =

√
υ2

0 + k2. It is important to �nd UV limit of this formula. Here
is the result υ(k) = k

(
1 +

υ2
0

2k2

)
. We see explicitly that it scales asymptotically in UV

like in a nontrivial FP regime. For comparison we can mention here the running of other
mass parameter in a theory. It is given by M = M0 e

A(r), so in terms of energy scale
k it is expressed by the equation M(k) = M0

υ0

√
1 + k2

υ2
0
. In the UV regime this simpli�es

to kM0

υ0

(
1 +

υ2
0

2k2

)
. We derive the conclusion, that the running of all dimensionful matter

couplings, no matter what is their initial value, enters UV FP regime around the same
energy scale. This scale is given by the IR value of the Higgs vev υ0. These observations
may harmonise with recent �ndings in [83]. There authors pointed out, that the only scale
at which new physics beyond SM can reach nontrivial UV FP regime is the electroweak
scale.

Here we discuss some issues related to the proposed modi�ed RG �ow of gravitational
coupling in 4-dimensional theory and its holographic interpretation. Firstly in the holo-
graphic model with bulk phantomic scalar we were able to describe the dual RG �ow
geometry. We achieved softening of the �ow in IR, by including relevant deformations
caused by threshold phenomena. They hide some strongly interacting physics, because
this IR part of the spacetime is dual to a �at holographic spacetime. To do this softening
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of the �ow in IR, we had to use warp factor, which was convex as a function of radial
variable. Next the convexity of warp factor forced us to use the scalar �eld with wrong
sign of the kinetic term. However the formal calculation in the holographic framework can
still be carried on, even in this case. In the standard approach concavity of the warp factor
is closely related to the famous c-theorem. This originates from the duality between local
radius of curvature and the central charge of CFT. In holographic description of matter
couplings we have always that A′′ < 0, hence ∆A′ < 0 [47] and this perfectly agrees with
the local and global version respectively, of c-theorem ∆c < 0 between UV and IR, for
references look at [59, 60]. For those holographic gravitational �ows, which we considered
in previous sections, we found disagreement with the standard c-theorem. Maybe the ex-
planation for this is that gravitational interactions must be properly included and must
modify somehow standard CFT from �at spacetime.

This holographic construction is only one, indeed very interesting and enlightening,
way of describing e�ectively RG �ows in real 4-dimensional spacetime. We do not have
to attach physical reality to such holograms - they are good descriptions extending our
insights for the physics of the boundary theory. We do not claim, that 5-dimensional bulk
spacetime with phantomic scalar �eld is a real physical object, amenable to observations.
This construction should be understood merely as a geometrization of the RG �ow from 4-
dimensional boundary theory. It happens that we achieved this mathematical construction
by adding only one additional holographic dimension and this resembles very much ideas,
which are present in AdS/CFT conjecture. Our phantom �eld has a nontrivial potential
with two critical points (in the holographic domain) and the nontrivial RG �ow corresponds
to interpolating BPS domain wall solution for this potential. In our setup, where all
functions depend on only one variable - radial coordinate, our model of phantom dynamics
in such potential admits a nice classical mechanics analogy. A similar analogy occurs in the
cosmological in�ation, when the similar motion of a scalar �eld (in�aton) in the potential
resembles much rolling down the potential by a material point with friction given by the
Hubble parameter. In our case, from equation (3.3) in the phantom case, we see that when
we interpret negative to radial coordinate as the time parameter and value of the scalar
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�eld as the position coordinate, we obtain motion in the potential for a material point with
a negative inertial mass. This means that the acceleration is in opposite direction to the
applied force and the material point rolls up from Φ = Φmax to Φ = 0 during the time
evolution. We also have a velocity-dependent friction term caused by the curvature of bulk
spacetime. In this situation we can reverse direction of time and end up with perfectly
reasonable dynamics of normal material point starting its evolution in the critical point in
IR, rolling down and ending in UV with Φ = Φmax. This is one interpretation of our RG
�ow and its holographically dual description in terms of gravitation and phantomic scalar
in 5-dimensional bulk. We saw in the previous section, that thanks to the holographic
interpretation, we could �nd some interesting features of the gravitational RG �ows. The
examples here are the dimensionalities and characters of the operators, which caused the
non-trivial RG �ows from UV to IR and which deformed IR gaussian FP.

The scalar �eld in the bulk with the negative kinetic term may be also viewed as the
signal that the goal of the geometrization of gravitational RG �ow was not completed and
that such construction is not completely satisfactory. Usually in physics of curved space-
time phantomic �elds arise, when some high energy �elds were not properly integrated
out (when decoupling theorems didn't apply). This is the herald for new more rich dy-
namics, where the kinetic term of a single scalar must be understood only as an e�ective
description. However in our case further investigations do not con�rm such claim. In
more advanced models di�erent matter �elds may be excited in the bulk and the result-
ing AdS-like geometry exhibits concave warp factor functions only for standard positively
de�ned kinetic terms. This was for example checked for electromagnetic �eld in the bulk.
One way out is to consider nonminimal couplings to gravity or for the case of scalar �elds
nontrivial kinetic terms, hence resulting in nonlinear sigma models. However in these more
elaborated models, due to complicacy of �eld equations not much can be said beyond ex-
istence of such con�gurations and explicit solutions are very di�cult to �nd. Our model
for interpolating RG �ow was chosen because of its simplicity and availability for closed
form of exact explicit solutions. Moreover the phantomic nature of the scalar �eld excited
in the bulk, a�ects a lot conformal dimensions of the operator responsible for the �ow.
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Mass parameters are negative on �at spacetime in IR and this is even worse, because they
violate Breitenlohner-Freedman bound on AdS spacetime.

At the end we talk about some comments regarding asymptotic safety and its holo-
graphic interpretation in the light of just presented construction. A gaussian FP of RG
�ow of gravitational coupling in IR is to be understood as noninteracting free CFT on �at
spacetime, so it satis�es the description given above. At this FP Newton's constant G
rescaled by the square of the typical momenta tends to zero, gravity is decoupled, how-
ever in the holo-dual AdS-spacelike curvature is in�nite (there 5-dimensional Planck mass
M doesn't run). This CFT in IR FP is deformed by adding irrelevant operator (from
the IR FP perspective) m2

PR to the free action and therefore the gravitational couplings
are turned on. The nontrivial RG running for them starts. The holo-dual is no longer
AdS spacetime, but more complicated holographic RG geometry. Going towards UV we
integrate in interacting degrees of freedom - higher energetic gravitational modes, so the
corresponding c-function (if possible to construct) should grow monotonically. However
as we saw from holographic approach, this doesn't happen in the gravitational case, but
presumably usual arguments don't apply here. In UV limit we enter another FP region of
RG �ow, di�erent from one in (3.25). However there is an important di�erence, because
4-dimensional Newton's constant in units of momenta tends to a constant and Planck
constant grows without a bound. The UV theory is scale invariant; if at FP, it may be
conformally invariant, but surely it is not a standard CFT on �at spacetime.
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Part II

Classicalization and Quantum E�ective
Action
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Chapter 4

Classicalization in nonlinear sigma
model

4.1 Introduction

The nonlinear sigma model and Einstein's theory of gravity have many similar features.
At the kinematical level, both theories have nonlinear con�guration spaces, which make
their dynamics necessarily nonlinear too. There is no �zero �eld� limit and the quantization
procedure can be based on the use of the background �eld method. In both cases the degrees
of freedom can be viewed as Goldstone bosons 1 and their interactions involve derivatives.
Due to the nonpolynomial nature of the action, it is natural to think of the fundamental
�elds as being dimensionless. Aside from a vacuum term, the Lagrangian can be expanded
as

S =
∑

k

∑
n

ḡk,nOk,n , (4.1)

where Ok,n is an operator containing k derivatives and n powers of the �elds. 2 This
1In the case of gravity this is explained for example in [64].
2Usually k must be even.
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operator can be naturally a sum of �nitely many monomial terms in fundamental �elds
of the theory. In four spacetime dimensions and in natural units the coe�cients ḡ2,n have
dimension of mass squared and ḡ4,n are dimensionless. In order to de�ne a perturbative
expansion with a canonically normalized kinetic term, one usually rede�nes the �uctuation
�eld by a factor √g2,2 = m. Then one �nds that the role of the perturbative coupling is
played by 1/m. It has dimension of length, so these theories are power counting nonrenor-
malizable. Perhaps more urgently, perturbative scattering amplitudes grow like powers of
momentum and exceed the unitarity bound for momenta comparable to m. In fact, it is
more correct to say that the perturbative expansion parameter is the dimensionless ratio
p/m, where p is a typical momentum of the process under study, so that the perturbative
treatment is useful up to momenta of order m. The standard view is then to regard these
theories as e�ective �eld theories, valid at energy and momentum scales below m.

In principle, however, it is possible that some of these theories may heal themselves of
their perturbative problems. By including true quantum dynamical e�ects these theories
may somehow overcome problems of violation of unitarity and nonrenormalizability [82].
One possibility is that the growth of the e�ective couplings such as p/m terminates in the
ultraviolet limit. In �eld theory a growth of a relevant coupling without an upper bound
doesn't make much sense. This is not the case, if the theory approaches a �xed point
in the UV [65]. In particle physics and gravity this behaviour is also called �asymptotic
safety� [14]. There is by now signi�cant evidence for the existence of asymptotically safe
RG trajectories in gravity, see for example [66]; some work has also been done for the
nonlinear sigma models [67, 68] and in particular for the electroweak chiral model [69].
One expects that in such asymptotically safe theories the scattering amplitudes also stop
growing and respect the unitarity bounds, although no complete calculation of this type
has been performed so far.

More recently, a di�erent idea has been proposed, namely that the growth of the scat-
tering amplitudes is controlled by the formation of classical intermediate states. In this
picture, which has been called �classicalization�, a high energy quantum state with low
occupation number would evolve into a classical state (called a �classicalon�) with large

70



occupation number. This is conjectured to happen, when the radius of the con�guration,
during process like a collapse, becomes comparable to a characteristic radius r∗ called �clas-
sicalization radius�. The classicalization radius is a new length scale in the theory emerging
from nonlinear dynamics. The important point is that r∗ does not decrease with energy
as one might naively think, but rather grows with it or at least tends to a constant. We
will call these cases strong and weak classicalization, respectively. Therefore the standard
paradigm of high energy physics, that with the increase of energy of colliding wavepackets
we decrease the probing scale given by the corresponding Compton wavelength, breaks
down here. As a result, when the energy of the incoming states becomes greater than
the characteristic scale m, scattering is dominated by the formation of classicalons and
the cross section tends to the classical geometrical value r2

∗. In such conditions quantum
Compton wavelength ceases to be a resolving scale, instead its character is taken by the
classicalization radius. One of the necessary prerequisite for classicalization in �eld theory
is the high level of nonlinearity and corresponding self-sourcing. The idea of classicaliza-
tion emerged �rst in the case of gravity, where the classicalons would correspond to black
holes [70], but subsequently it has been recognized as a possible behaviour also in Gold-
stone bosons models [71, 72, 73, 74]. Other aspects of classicalization proposal have been
considered in [75, 76, 77, 78].

In spite of the evident di�erences between asymptotic safety and classicalization, one
wonders whether they might not be two ways of looking at the same phenomenon. If, for
example, the amplitude for Goldstone boson scattering unitarizes at high energy without
having to introduce new weakly coupled degrees of freedom, it would be surprising, if there
existed two independent mechanisms by which Nature could achieve this. If two expla-
nations are available, they might just be di�erent descriptions of the same phenomenon.
This is only a hypothesis, but still we believe, that in a fully consistent theory, Nature has
chosen de�nitively one unique mechanism, at whose two faces maybe we are looking now.

Motivated in part by this question, in this chapter we discuss aspects of classicalization
in the nonlinear sigma models. We extend previous analyses, done for scalar �elds, by
considering in some more detail the e�ect of the curvature of the target space. Much of the
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work, that had been done previously, had concentrated on a simple model of a single scalar,
and since a one dimensional space is �at, nontrivial interactions necessarily involve terms
with more than two derivatives. When the target space is curved, there are in�nitely many
interaction terms already at the two derivative level. We analyse the e�ect of these terms
�rst by themselves, and then in the presence of higher derivative interactions. In order to
be able to discriminate the e�ect of positive and negative curvature we shall consider both
spherical and hyperbolic target spaces. In a di�erent vein for nonlinear sigma model with
two derivatives and with positively curved target space, evidences in favour of nontrivial
FP of RG have been found recently [19]. This is why, exactly this model is under our
investigation in this chapter.

If one wants to compare classicalization to asymptotic safety, the �rst obvious di�erence
is the fact that asymptotic safety is based on renormalization group running, which is a
truly quantum e�ect. However classicalization, as the name may suggest, is related to the
formation of classical states and according to the classical dynamical evolution equations.
In order to disentangle classical from quantum e�ects we will work throughout in units
where ~ is not set equal to one.

Various signatures of the classicalization were outlined in the literature [73, 74, 77].
The phenomenon of classicalization is of highly nonperturbative nature and hence various
checks are useful to decide a priori about occurence or not of it. One of such check relies
on a change of the characteristic of the nonlinear PDE. If the classical equations of mo-
tion are put in the quasi-linear form and the characteristic of them changes sign at some
location, then this location is expected to be an onset of the classicalization. This way of
UV completion is strongly based on the classical states. Hence another requirement is the
existence and single-valuedness of the solutions in classical �eld theory, which must be de-
�ned on a whole spacetime. In this respect such classicalons are analogs to solitons, known
in nonlinear physics. In this chapter we will use another method for deciding about the
occurence of classicalization in our models. This method checks, whether the asymptotic
behaviour of the solutions is changed and whether there is a signi�cant deformations of the
wave pro�le of the incoming packet in the scattering process. This approach was pioneered
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in [72] and in the next sections we will follow closely these derivations. They are based
on tree level approximation of scattering phenomena (classical analysis) and �rst order in
perturbation theory to classical wave solutions.

In this chapter we consider the phenomenon of classicalization in nonlinear sigma mod-
els with both positive and negative target space curvature and with any number of deriva-
tives. We will introduce and describe a weak form of classicalization, putting special
attention to the dependence on the sign of the curvature. Nonlinear sigma models with
higher derivatives actions are also analyzed, where a strong form of this phenomenon oc-
curs and which is moreover independent of the sign of curvature. Finally we will argue
that weak classicalization may actually be equivalent to asymptotic safety, whereas strong
classicalization seems to be a genuinely di�erent phenomenon. We also discuss possible
ambiguities in the de�nition of the classical limit, which is in the very core of understanding
physical mechanisms lying behind classicalization. In this chapter we use the standard in
particle physics �at Minkowski spacetime in 4 dimensions with signature (+,-,-,-).

We conclude this introduction by outlining the content of the following sections. In
section 2 we review the notion of classicalization in the case of a simple theory of a single
Goldstone boson with arbitrary derivative interactions. In section 3 we discuss nonlinear
sigma models with values in maximally symmetric spaces with both positive and negative
curvature, and with two derivatives only. We �nd that a weak form of �classicalization�
happens. In section 4 we extend the analysis to include higher derivative terms. There we
�nd, that the classicalization radius grows with energy, regardless of the sign of the internal
space's curvature. In section 5 we return to the comparison between classicalization and
asymptotic safety and we draw our conclusions.

4.2 A single self-interacting Goldstone boson

In this section we begin by considering a model of a single Goldstone boson with higher
derivative interaction lagrangian of the form:
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L =
1

2
(∂φ)2 +

α4(m−1)

2m

(
(∂φ)2)m . (4.2)

Here m is an index counting the derivatives. The �eld has the canonical dimension
M1/2 L−1/2 and the coupling α (which was called L∗ in [71, 72, 73, 74]) has dimension
L3/4M−1/4. Later we will comment on the e�ect on classicalization of the presence of
terms with lower or higher number of derivatives, but for the moment we assume that
(4.2), with a �xed m, is the only interaction. Despite that we are mostly interested in
classicalization, which may occur in quantum dynamics of �elds, here we will analyze it
using methods and equations of classical �eld theory. The action given by (4.2) we view as
the bare action of our model subject to quantization procedure. Performing the full non-
perturbative calculation in quantum �eld theory is a very formidable task. Here we will
only incorporate quantum ideas about Compton wavelength and the quantum resolution
scale.

The equation of motion coming from the lagrangian (4.2) is

¤φ+ α4(m−1) ∂µ
[
∂µφ

(
(∂φ)2

)m−1
]

= 0 . (4.3)

In our setup we have wave incoming from in�nity and approaching the centre of our coordi-
nate frame. Assuming that free asymptotic states solving the equation ¤φ0 = 0 exist, the
solution of the nonlinear equation (4.3) can be constructed perturbatively. We consider so-
lutions with spherical symmetry. Then the divergence of a one-form vµ is ∂0v0− 1

r2
∂r(r

2 vr)

and the d'Alembertian is ¤ = ∂2
t − 1

r2
∂r(r

2 ∂r).
The initial ingoing unperturbed free wave has the form φ0(t, r) =

√
~ψ(ω(t + r))/r,

where ψ(z) = A sin(z) + B cos(z) is a dimensionless harmonic function in one dimension.
The general solution for the free massless wave equations of motion (without interactions)
we obtain by superposing waves with di�erent real coe�cients A and B as well as with
di�erent frequencies ω. (We threw away other solutions of free equations due to boundary
conditions at spatial in�nity). However in further analysis, for simplicity, we will stick to
a monochromatic wave. We will assume that the wavelength ω−1 is small compared to the
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radius r, so that we can think of this solution as a harmonic function with a slowly-varying
r-dependent amplitude. At large distances the e�ect of the interaction is negligible (because
of higher 1/r dependence of the interaction terms). This is why there the free wave solution
well approximates a solution of full theory and constitutes well-de�ned asymptotical state
of the theory. When considering solutions with spherical symmetry approaching central
region from radial in�nity, it is natural to assume that the characteristic classical length
of the con�guration is given by radius r.

Our equations of motion are nonlinear, this means that even free initial wave, when
approaching the centre develops a scattered component. We treat this scattering process
perturbatively. The equation for the �rst order perturbation φ1 is

(
1 + α4(m−1)((∂φ0)

2)m−1
)
¤φ1

+2(m− 1)α4(m−1)((∂φ0)
2)m−2 (∂µφ0 ∂

νφ0 ∂µ∂νφ1 + 2∂νφ0 ∂
ν∂µφ0 ∂µφ1)

= −2(m− 1)α4(m−1)((∂φ0)
2)m−2 ∂µφ0 ∂

νφ0 ∂µ∂νφ0 . (4.4)

We have written on the left hand side of the equation all the terms that contain derivatives
of φ1 and on the right a source term containing only φ0. This equation is still quite
complicated. However, we will see a posteriori that for the values of r, that we are interested
in (r À ω−1 and r →∞), the terms on the l.h.s. that come from the interaction are small
relative to ¤φ1. For our purposes it will therefore be su�cient to retain in the l.h.s. only
the term ¤φ1. 3

We make an ansatz for the form of the �rst perturbation:

φ1(t, r) =
√
~ f(r) η(ω(t+ r)) . (4.5)

This ansatz preserves spherical symmetry of the con�guration, and similarly to φ0 we chose
it in a separated form: oscillating function η(z) and radially dependent amplitude f(r). In
the approximation ωr À 1 we have that

3Alternatively one could observe that as long as φ1 is a small perturbation relative to φ0, the terms on
the l.h.s. coming from the interactions must be small relative to the source term on the r.h.s. .
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¤φ1 ' −2ω
√
~

r
η′ (fr)′ , (4.6)

where a prime denotes derivative of a function with respect to its argument. Then the
equation for φ1 in the leading order of our approximation is

− 2ω
√
~

r
η′ (fr)′ = −2m−1(m− 1)α4(m−1) ωm(

√
~)2m−1

r3m−1
ψm−1 ψ′m−2

[
ψψ′′ + 4ψ′2

]
. (4.7)

We easily see, that two functions f and η of independent variables r and z in above
equation separate thmeselves into two independent ordinary di�erential equations. The
full solution of this equation can be expressed as

φ1 = −2m−1 α4(m−1)Em−1
√
~

6r3m−2
η(ω(t+ r)), (4.8)

where E = ~ω and η(z) =
∫ z
ψm−1 ψ′m−2 [ψψ′′ + 4ψ′2] dz′. Note that for any m the inte-

grand is an odd and periodic function with period 2π and such that the integral over one
period is zero. Therefore the function η is again dimensionless and periodic with period
2π, which means that the scattered wave φ1 has the same frequency as the incoming one.
In the solution for η(z) function we neglect the constant of integration. In the solution of
radial equation for the function f(r) we do the same, because such constant only renor-
malizes the amplitude of the initial wave. In solving (4.7) we have restricted ourselves to
our ansatz (4.5) and a posteriori we con�rm its validity. Invoking uniqueness theorems,
well motivated by physical situation we are in, the form of the scattered component is to
leading order of our approximations given by (4.8). This is the deformation of the incoming
wave pro�le, that we were looking for. Now we will analyze it further.

Since η ∼ ψ ∼ 1, the ratio of the amplitudes of the �rst perturbation to the initial wave
can be expressed as

|f(r)r| ' α4(m−1) 2m−1Em−1

r3(m−1)
=

(r∗
r

)3(m−1)

, (4.9)
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where in the last step we de�ned the �classicalization radius� r∗ =
3
√

2α4E. Notice that
it does not depend on m. To obtain the ratio of amplitudes in our case, it is enough to
consider only radial dependence of initial and perturbed wave. Another useful quantity
could be the ratio of energies stored in respective waves averaged in time to leading order
in our approximations. It happens, that the squares of the oscillating parts averaged over
one period are of the same order. This implies, that the ratio of energies is basically the
square of the ratio (4.9). We can now see, that the interaction terms on the l.h.s. of
(4.4) are indeed negligible. For example the second term in the �rst bracket is of order
(E α4/r3)m−1, and when r À r∗ we have (E α4/r3) ¿ 1. Similar considerations apply to
the other terms.

We thus �nd that the scattering process becomes important at distances of order r∗,
where the ratio (4.9) is of order one. This behaviour must be put in contrast with the one
in λφ4 theory, where the characteristic radius is given roughly by λ/ω [72]. Normally one
would expect, with quantum intuition, that a scattering process involving particles with
energy E probes distances of order ω−1 = ~/E. When collapsing wave approaches radial
coordinate r = r∗, then the nonlinear modi�cations of the wave pro�le are so strong, that
the information about structures resolved by Compton wavelength is completely unavail-
able. We can only read out the structures at the characteristic scale r∗. The radius r∗ plays
the role of the resolution scale and determines the characteristic momentum of the process
as well as its cross section. This behaviour has been called �classicalization� in [71, 72, 73].

The meaning of the classicalization radius can be understood also as follows. First let
us de�ne a characteristic energy scale E∗ = 4

√
2 ~3/4 α−1, for which classicalization radius

equals to the Compton wavelenght ~/E. At low energy (i.e. E ¿ E∗) the theory can be
treated as an e�ective �eld theory. Due to the uncertainty relations, an incoming wave with
energy E can only probe distances of order ~/E. When one gets close to the characteristic
energy scale E∗ one would normally expect the e�ective �eld theory to break down. What
one sees here is that the scattered wave becomes signi�cant at radius of order r∗, and
therefore cannot resolve smaller distances. Since r∗ grows with energy, there is a turnover
energy where this bound becomes stronger than the one set by the uncertainty principle.
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At E > E∗ the resolving power decreases with energy. In this regime the scattering is
dominated by the production of classical states with high occupation number, which will
typically decay into many low energy particles [78]. The hard scattering of few particles into
few particles will be exponentially suppressed and unitarity will be restored [71, 72, 73, 74].
In this way classicalization may provide a form of UV completion of an e�ective �eld theory,
that does not necessitate the introduction of new weakly coupled degrees of freedom.

The non-spherically symmetric case has been discussed in [76]. For mild deformations,
it was found that the classicalization radius becomes smaller (larger) in regions where the
curvature of the incoming wave is smaller (larger). Since the preceding arguments were
order-of-magnitude estimates anyway, this does not change the conclusions. In the limiting
case, when the incoming wavefronts are �at, the classicalization radius goes to zero and
hence no classicalization occurs.

Let us now allow for the simultaneous presence of the interaction terms with di�erent
values of m. Motivated by e�ective �eld theory, we assume that all interactions are of the
form

Lint =
∑
m

cm α
4(m−1)

(
(∂φ)2)m (4.10)

To each interaction there corresponds a classicalization radius given by r3
∗ = 2E α4 m−1

√
2mcm.

Which one of these scales plays the dominant role depends on the dimensionless coe�-
cients cm. If cm ∼ 1/m, as we assumed earlier, they are all of the same magnitude and
therefore in principle all terms in the Lagrangian are equally important. On the other
hand if 4c2 >

√
6c3 >

3
√

8c4 > . . . , then the corresponding r∗ decreases with m, and the
four-derivative term is the most important one. For large m one could assume that the
coe�cients cm do not grow faster than exponentials of m (cm < am/2m for some a > 1).
(This condition is quite reasonable for e�ective �eld theories.) Under these conditions the
system will classicalize, when its size reaches the largest of all these possible classicalization
radii and the higher derivative interactions will not play any signi�cant role.
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4.3 Nonlinear sigma model with 2 derivatives

Now we start the analysis of nonlinear sigma models, which is the main task of this
chapter. When there is more than one Goldstone boson, the internal space of them can
be curved and moreover the theory admits interaction terms with just two derivatives. A
standard way of describing the dynamics is to package the kinetic and the two-derivative
interaction terms in the geometrical form

L =
1

2
hab ∂µφ

a∂µφb, (4.11)

where hab is a metric in the target space. In full generality this metric is a function of
coordinates on the internal space, here this role is played by �eld components φa. The
coe�cients of the Taylor expansion of the metric around a constant φ can be viewed as an
in�nite set of coupling constants. From this expansion we recover 2-derivative nonlinear
interaction terms. We will consider real, maximally symmetric target spaces, for which all
couplings are related and only the overall scale of the metric remains as a free parameter
of the theory. In such case there exist coordinates such that

hab = δab ± φaφb

f 2
φ ∓

−→
φ

2 , (4.12)

where the + and − signs correspond to positive and negative curvature of the target
space (sphere and hyperboloid) respectively. In the above formula fφ, which has the same
dimensions as the �eld, has the meaning of radius of the sphere or hyperboloid in �eld
space and −→φ 2

=
−→
φ · −→φ = δab φ

aφb is the usual �at Euclidean product. Moreover we used
�elds φa with covariant position of indices obtained by lowering them using the Kronecker
delta symbol. Later we will work only with this de�nition and we will never use the true
metric in the target space hab to lower indices on �elds. In following derivation Lorentz
indices will be suppressed, when this doesn't lead to confusion. We will use vector notation
for denoting the components in the �eld space and the centerdot for a scalar product in
this space. Exploiting the explicit form of the metric, the lagrangian (4.11) can be put in
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the form

L =
1

2


(∂

−→
φ )2 ± (

−→
φ · ∂−→φ )2

f 2
φ ∓

−→
φ

2


 (4.13)

The corresponding equations of motion are

¤φa ±
φa ∂

(−→
φ · ∂−→φ

)

f 2
φ ∓

−→
φ

2 ±
φa

(−→
φ · ∂−→φ

)2

(
f 2
φ ∓

−→
φ

2
)2 = 0 (4.14)

We obtained them in a contravariant form as viewed from the �at internal space perspective.
Therefore we treat the nonlinear structure in the kinetic term as the interaction, not as a
geometry in the target space. Due to this paradigm our equations of motion in (4.14) are
in a non-covariant form in a curved target space.

As in the preceding section, we are going to look for perturbative solution in the form
−→
φ =

−→
φ 0 +

−→
φ 1 + . . ., where −→φ 0 is a solution of the free wave equation: ¤−→φ 0 = 0. We

will study to which extent in spacetime evolution we can treat −→φ 1 as a small perturbation
solving approximately the nonlinear �eld equations with interactions. We will follow closely
the analysis of the preceding section in a very much the same set-up with spherical incoming
and scattered waves. In order to this, it is tempting to try and reduce the problem to a
single-�eld problem by assuming that only one component of the �eld is nonzero. The
equations of motion seem to retain much of their nonlinearity even in this case. This,
however, is an illusion that can be easily undone by a �eld rede�nition. For example, with
a single-�eld ansatz (φ1 = φ and φ2,3,... = 0) the Lagrangian (4.13) becomes

1

2
(∂φ)2 f 2

φ

f 2
φ ∓ φ2

(4.15)

and this can be recast as a free �eld Lagrangian for ϕ by the rede�nition φ = fφ sinϕ

(for the upper sign) or φ = fφ sinhϕ (for the lower sign). This means that, if we make a
single-�eld ansatz we will not be able to detect e�ects due to curvature, which is one of
our purposes. One-dimensional �eld space is di�eomorphic to a straight line and as such
is not characterized by any curvature. We must consider multi-�eld ansatz, possibly with
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isotropy in a target space. This is an additional di�culty, we must overcome, when working
with �elds taking their values in the nontrivial internal space (nonlinear sigma model).

Without much loss of generality we will work with a general spherically symmetric
unperturbed incoming wave φa0(r, t) =

√
~ψa(ω(t+ r))/r, where we assume, that all com-

ponents have the same frequency ω (monochromatic waves), and we assume ωr À 1, as
before. The �rst order perturbation will be written using the following form of the ansatz:
φa1(r, t) =

√
~ ηa(ω(t + r)) f(r). Later we will see, that it is consistent to assume that

all components of φa1 have the same radial dependence. However we allow for di�erent
oscillating functions ηa(z) for di�erent components in �eld space.

Linearizing the �eld equation around −→φ 0 we �nd

δab hbc ¤φc1 ±
2φa0

f 2
φ ∓

−→
φ

2

0

hbc ∂φ
b
0 ∂φ

c
1 ±

φa1

f 2
φ ∓

−→
φ

2

0

hbc ∂φ
b
0 ∂φ

c
0

+
2φa0(

f 2
φ ∓

−→
φ

2

0

)2




(
∂
−→
φ 0

)2

φb0 +
(−→
φ 0 · ∂µ−→φ 0

)
∂µφ

b
0 ± 2

(−→
φ 0 · ∂−→φ 0

)2

f 2
φ ∓

−→
φ

2

0

φb0


φ1 b

= ∓ φa0

f 2
φ ∓

−→
φ

2

0

hbc ∂φ
b
0 ∂φ

c
0 . (4.16)

Here the metric hab has to be regarded as a function of −→φ 0. We presented last equation in
a mixed form, where we used covariant metric in the target space as well as noncovariant
Euclidean products of �elds. The reason for this is that such form of the linearized equations
of motion emerges from fully covariant formalism in target space, when only the derivatives
of the target metric are expressed in terms of �elds. As we will see later it is useful to keep
the metric �eld unexpanded. As in the preceding section, higher interaction terms on the
l.h.s. can be neglected. We are left with the following form of the simpli�ed equation for
the �rst perturbation:

δab hbc ¤φc1 = ∓ φa0

f 2
φ −

−→
φ

2

0

hbc ∂φ
b
0 ∂φ

c
0 . (4.17)

To leading order in 1/rω we �nd equation in the target space covariant form:
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− 2ω
√
~

r
(fr)′ηa ′ = ∓2ω~3/2

f 2
φ r

4

ψa
(−→
ψ · −→ψ ′) (

hbc ψ
bψc

)2

(−→
ψ

2
)2 , (4.18)

which is equivalent to the following equation, when we explicitly expand the target space
metric

− 2ω
√
~

r
(fr)′ηa ′ = ∓2ω~3/2

f 2
φ r

4

ψa
(−→
ψ · −→ψ ′)

(
1∓ ~

−→
ψ

2

f2
φ r

2

)2 . (4.19)

We note right away that in contrast to equation (4.7) the ω-dependence will cancel out.
Instead, the behaviour of the solution is governed by the new dimensionless parameter
fφr/

√
~. As long as fφr/

√
~ À 1, the denominator in the r.h.s. can be approximated by

one and the equation can be solved by separation of variables. Now we can notice that in
this case, after separation the radial equation for f is the same for all components of φa1,
therefore the choice fa(r) = f(r) is justi�ed. The solution can be written in the form

φa1 = ∓
√
~

~
2f 2

φ r
3
ηa(ω(t+ r)) , (4.20)

where ηa(z) =
∫ z
ψa
−→
ψ · −→ψ ′

dz′. This �rst perturbation is again an oscillating function
with r-dependent amplitude, but in contrast to the case of the preceding section (4.8), the
amplitude of the oscillations of the scattered wave is independent of ω. The ratio between
the amplitude of the �rst perturbation and the incoming wave is

|f(r)r| = ~
2f 2

φ r
2

=
(r∗
r

)2

. (4.21)

From the above expression we see that we can de�ne a �classicalization radius� by

r∗ =

√
~√

2fφ
(4.22)

independent of the frequency or energy of the incoming wave packet. Again, incoming
waves with arbitrarily high frequency are unable to probe distances shorter than r∗, but in
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contrast to the preceding case r∗ does not increase with frequency. We thus have a weaker
form of classicalization (compare [74]).

Let us now consider the e�ect of curvature, which (aside from the immaterial overall
sign) is contained in the denominator of the r.h.s. of (4.19). We observe that since 0 ≤
−→
ψ

2 ≤ C, for some constant C of order one, the e�ect of the denominator is to enhance
the amplitude of the scattered wave for positive curvature (upper sign) and to decrease
it for negative curvature (lower sign). In fact, with the positive curvature the amplitude
reaches a pole for some r ≈ √

~/fφ, strengthening the case for classicalization of the
preceding analysis. In the case of negative curvature, rhe r.h.s. of (4.19) increases for
decreasing radius, but tends to a constant for r → 0. The argument for classicalization is
considerably weaker in this case.

This can also be seen in another way. The approximation leading to solution in a
form (4.20) corresponds to considering the theory with standard kinetic term and with
interaction Lagrangian

Lint = ±(
−→
φ · ∂−→φ )2

2f 2
φ

. (4.23)

Let us consider, what happens if we take as an interaction the next term in the expansion
of the denominator of Lagrangian in equation (4.13)

Lint = −
−→
φ

2
(
−→
φ · ∂−→φ )2

2f 4
φ

. (4.24)

From here one �nds instead of (4.19) the following approximate form of the equation of
motion for the �rst perturbation:

− 2ω
√
~

r
(fr)′ηa ′ = −2ω ~5/2

f 4
φ r

6
ψa
−→
ψ

2−→
ψ · −→ψ ′

, (4.25)

whose solution has a radial dependence such that

|f(r)r| = ~2

2f 4
φ r

4
. (4.26)
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This corresponds again to a classicalization radius of order
√
~/fφ. It is easy to see that

this is true for all the terms in the expansion, but when one takes them all into account
simultaneously, they appear all with negative sign, when the curvature is positive, but
with alternating signs, when the curvature is negative. Therefore in the case of positive
curvature of the target space, we have enhanced behaviour of the scattered wave amplitude
signalizing the occurence of the classicalization. For sigma models with negatively curved
internal space, these higher interaction terms are of the same order, but with alternating
signs. In the e�ect there are no evidences for strong deformation of initial wave pro�le and
classicalization does not occur. This dependence on the overall sign of interaction term in
(4.23) is in agreement with general conclusions derived in [72, 73]. Nonlinear sigma models
with these two di�erent signs are very di�erent also on the level of classical �eld theory
solutions.

For nonlinear sigma model with two derivatives we showed, that only in a case of
positive internal space curvature, classicalization happens. We must emphasize however
that it happens not in a strong form (where classicalization radius depends and grows
with the energy of the packet). In the case of two derivatives action, energy dependence
is removed and classicalization radius is a �xed length scale. In this aspect situation can
be similar to a linear sigma model with standard kinetic term written for a dimensionless
�elds. Then constant

√
~ f−1

φ plays very similar role like r∗ and is a �xed length scale.
But we know that in this �at case theory is free, without interactions, and that there is no
scattering. When target space is with positive curvature, then this length scale sets also
the characteristic length of the classicalization phenomenon.

In the case of an incoming plane wave, the ratio of the �rst perturbation to the initial
amplitude is independent both of ω and r. This gives no clue about classicalization. These
considerations in the planar wave case con�rms previous statement, that if classicalization
holds for NSM with 2 derivatives, it is in the weak form.
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4.4 Nonlinear sigma model with 2 and 4 derivatives

Now we want to add higher derivative terms to action of nonlinear sigma model and
check their impact on the analysis of scattering processes. In a maximally symmetric
nonlinear sigma model with a two-derivative Lagrangian (4.13), a general four derivative
interaction has the form

L(4)
int = g4(`1 habhcd + `2 hachbd)∂µφ

a ∂µφb ∂νφ
c ∂νφd , (4.27)

where `1 and `2 are dimensionless constants. In e�ective �eld theory framework we expect
them to be of order one. Expanding the metrics hab in Taylor series would yield in�nitely
many monomial operators with coe�cients g4,n. For the sake of comparison to section �4.2
we could write g4 = α4. In e�ective �eld theory one expects the coe�cients of operators
with di�erent number of derivatives to be all proportional to powers of the same mass
scale fφ in natural units. Then we would write alternatively g4 = ~/f 4

φ . We will follow this
notation here, but one can revert to α at any moment.

When this interaction is added to the two-derivative Lagrangian (4.13), applying the
same ansatz for the �elds as in the preceding section, neglecting −→φ 1 on the l.h.s. and
expanding in inverse powers of ωr we get to the leading order the following linear equation
for the �rst perturbation:

¤φa1 = ∓2ω~3/2

f 2
φ r

4

ψa
−→
ψ · −→ψ ′

(
1∓ ~

−→
ψ

2

f2
φ r

2

)2 (4.28)

−2ω2~5/2

f 4
φ r

5

[
(`1 + 3`2)ψ

a−→ψ ′2
+ (3`1 + 5`2)ψ

a ′−→ψ ′ · −→ψ + (`1 + `2)ψ
a−→ψ ′′ · −→ψ + `2ψ

a ′′−→ψ 2
]

Note that in the four-derivative terms the φ-dependent part of the metric gives subleading
contributions, so hab was already replaced by δab in (4.28).

This equation can only be solved by separation of variables, if one of the two terms on
the r.h.s of (4.28) can be neglected. However, we can get a reasonably good estimate of
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the terms involved by simply setting equal to one all the fastly oscillating factors η in the
l.h.s. and the terms involving ψ on the r.h.s.. The resulting equation for f(r)r can then
be easily integrated to yield

|f(r)r| = ∓ ~
2f 2

φr
2
− E~

3f 4
φr

3
− ~2

4f 4
φr

4
+ . . . = ∓

(r2∗
r

)2

−
(r4∗
r

)3

−
(r2∗
r

)4

+ . . . (4.29)

where the �rst and third term come from the expansion of the two-derivative term and the
second comes from the four-derivative term. Dots at the end of the formula correspond
to higher powers of dimensionless ratios, which give subleading contributions. We have
de�ned two classicalization radii by

r2∗ =

√
~

2f 2
φ

and r4∗ = 3

√
E~
3f 4

φ

. (4.30)

All the terms in the expansion of the two-derivative term correspond to the same
classicalization radius r2∗. These terms are dominant for E <

√
~fφ. For higher energy

the four-derivative terms dominate and the system behaves like some number of copies
of the single Goldstone boson model of section �4.2, in the special case with 2m = 4

derivatives. Note that if we use the notation α4 = ~/f 4
φ, we �nd that r4∗ = 3

√
Eα4/3,

which is the same formula that we found in section �4.2. Strong classicalization occurs for
ω > r−1

4∗ regardless of the sign of the curvature. This means, that adding four-derivative
interaction terms to the action of nonlinear sigma model makes it resembling very much
at high energy the ordinary sigma model with four-derivative interactions. The feature
of nonlinearity of kinetic term is not important in the context of high energy, when the
highest order derivative interaction terms dominate. Therefore our system exhibits exactly
the same properties as the system of single Goldston boson with higher derivatives studied
in �4.2.

In the case of a plane incoming wave we also have to distinguish two regimes. When
the two-derivative terms in (4.28) dominate, no clues of classicalization can be found, as
in section �4.3. When the four-derivative term dominates classicalization does not occur,
in agreement with the discussion in section �4.2 and with [76].
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4.5 Classicalization vs. asymptotic safety

In the preceding sections we have analyzed a hypothetical scattering process in nonlinear
sigma models with any number of derivatives and with positive, negative or zero target
space curvature. We have found that quite generally, an incoming spherical wave satisfying
the free wave equation will generate a strong scattered wave, when it reaches a size r∗, that
depends in general on the couplings of the theory and on the initial energy. Contrary to
naive expectation, this radius r∗ either increases with energy or is independent of it. As
discussed in [72], this is in sharp contrast to other �eld theories, such as a scalar with
a potential interaction, where the scattered wave only becomes important at a radius of
order ~/E. Following [71, 72, 73, 74], we call this phenomenon �classicalization�, and for
our purposes we distinguish a �weak classicalization�, when r∗ is independent of E, from
�strong classicalization� when r∗ grows with E. In both cases scattering processes cannot
actually probe distances shorter than r∗. The scattering process is softened and there is
a chance that, though perturbatively nonrenormalizable, the theory may actually be well
behaved at high energy.

As already mentioned in the introduction, this sounds su�ciently similar to the program
of asymptotic safety, that one may legitimately ask whether there is a relation between
the two phenomena. To further motivate this expectation, let us recall that in order to
avoid the complications due to redundant (or �inessential�) couplings, in the discussion of
asymptotic safety, it would be desirable to de�ne the couplings directly in terms of physical
observables [14]. Due to the di�culty of nonperturbatively computing observables in these
theories, so far e�orts have concentrated on the running of couplings de�ned as coe�cients
of operators in an e�ective Lagrangian. However, if there was a way of showing, for
example, that certain amplitudes have the right behaviour as functions of energy, then
one could show, that the couplings de�ned in terms of the corresponding exclusive cross
sections would reach a �xed point. This would give truly operational de�nition of couplings,
measured from experiment, not derived from some theoretical considerations. In this way
classicalization could turn out to be a valuable alternative tool for studying some issues
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about asymptotic safety.

Since asymptotic safety, if realized in nature, is clearly a quantum phenomenon, the
�rst priority is to understand, whether there is a way of viewing also classicalization as a
quantum phenomenon, in spite of its name. We believe, that the distinction between clas-
sical and quantum phenomena is not as clear cut as it seems. The real world is quantum in
nature and classical behaviour can only emerge in certain limits, but there are ambiguities
in the way these limits are taken. We refer to [84] for a recent discussion of this issue in
the context of QED. In order to introduce the issue in the context of the nonlinear sigma
model, let us go back to the parametrization where the �elds ϕa are dimensionless (which
is natural in view of the fact that they appear as arguments in nonpolynomial metric func-
tions hab, which has a geometrical meaning). The action can be expanded schematically
as in (4.1), where Ok,n ∼

∫
∂kϕn contains k derivatives and n powers of the �eld ϕ. The

dimensions of the couplings ḡk,n areM Lk−3, independent of n. For the sake of perturbation
theory, one has to separate the kinetic term from the interactions. De�ning a canonically
normalized �eld φa = ϕa

√
g2,2, of dimension

√
M/L, the action becomes

S =

∫ [
(∂φ)2 +

∑

k

∑
n>2

gk,n∂
kφn

]
(4.31)

where gk,n = ḡk,n(
√
g2,2)

n have dimensionM1−n/2 Lk−3+n/2. There is a theorem to the e�ect
that higher derivative corrections to the propagator can be eliminated by �eld rede�nitions,
order by order in perturbation theory [85], so we may assume, without loss of generality,
that gk,2 = 0 for k > 2. Assuming that a Z2 symmetry forbids the appearance of odd
powers of the �eld, the lowest interaction would be of the form g2,4φ

2(∂φ)2. Let us de�ne
g2,4 = f−2

φ , where fφ has the same dimensions as the �eld (it can be viewed as a kind of
VEV). Global symmetry then implies that g2,n ∼ f 2−n

φ (see for example (4.13)). In e�ective
�eld theory it seems reasonable to assume that all dimensionful couplings are proportional
to powers of fφ. (This is particularly clear in natural units, where fφ can be viewed as a
natural mass scale, and all couplings are proportional to powers of this mass.) Then we
would write gk,n = ck,nf

4−k−n
φ ~k/2−1, where ck,n are dimensionless.
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One can de�ne di�erent notions of classical limit, depending on which couplings are
being kept �xed. If one takes ~→ 0 keeping gk,n �xed, one obtains a classical �eld theory
with all the higher derivative terms; if one takes ~ → 0 keeping fφ and the ck,n �xed
one gets a classical �eld theory with the two-derivative terms only. How one de�nes the
classical limit obviously a�ects the interpretation of classicalization. In the former limit
the classicalization radius, when k > 2, is (gk,n)

2
n+2k−6E

n−2
n+2k−6 independent of ~ and is

therefore a truly classical notion [71]. In the latter limit, reexpressing gk,n in terms of
fφ and ~, the classicalization radius goes to zero and should therefore be regarded as a
quantum e�ect. The classicalization radius found in section �4.3, for the case k = 2, is
truly of quantum nature regardless which limit is taken. However as pointed out in [80, 81]
the emergence of the classicalization radius has to be understood as the macroscopic e�ect
of a quantum nonlinear dynamics of microscopic constituents of the system under question.
Hence according to authors of [80, 81] it has quantum origin.

Another potential source of ambiguity in the de�nition of the classical limit is the ques-
tion whether E or ω is to be held �xed [84]. In the latter case again the classicalization
radius 3

√
α4~ω vanishes in the classical limit. Since in this paper we are mainly interested in

scattering experiments, where the momenta of the external particles are known and �xed,
it seems more appropriate to stick to the case when E is kept �xed in the classical limit.
Furthermore, writing the couplings in terms of powers of a single coupling fφ is motivated
by perturbative arguments. Since both asymptotic safety and classicalization are nonper-
turbative notions, it is perhaps more appropriate to stick to the generic parameterization
(4.31) and to consider all couplings gk,n as truly independent. This is the notion of classical
limit which is implicitly assumed in [71, 72, 73, 74].

We now restrict ourselves to this particular notion of classical limit, and we try to
extract some conclusions from the results of the preceding sections. From the given ex-
pressions for r∗ we see that the weak classicalization, that was found in the two-derivative
models of section �4.3 is a quantum phenomenon, whereas the strong classicalization of the
higher derivative models of sections �4.2 and �4.4 are genuinely classical e�ects. There is
therefore a chance that weak classicalization has something to do with asymptotic safety,
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whereas strong classicalization seems to be a genuinely di�erent e�ect. There are then
some other suggestive facts. It was found in [67] that in the two-derivative truncation of
the nonlinear sigma model a non-trivial �xed point exists for positive curvature, but not for
negative curvature. This seems to agree with the result in section �4.3, according to which
the argument for (weak) classicalization is much more robust in the positive curvature case
than in the negative curvature case. On the other hand, no non-trivial �xed point seems
to exist in the S1-valued nonlinear sigma model, which corresponds to the single Gold-
stone boson model of section �4.2 [68]. And furthermore, we have found in section �4.4
that strong classicalization is completely insensitive to the sign of the curvature. Finally,
returning to natural units, the amplitude for scattering of two particles into two particles
in the two-derivative model with positive curvature behaves like p2/f 2

φ, where p is the mo-
mentum transfer. Since the latter is asymptotically of order r−1

∗ ∼ fφ, the amplitude tends
to a constant. When one identi�es the scale k with an external momenta p in a scattering
amplitude computed with the tree level EAA, then this leads to the result as one would
expect in an asymptotically safe theory. However this assumption is highly nontrivial and
it is veri�ed eventually a posteriori with other improved truncations.

In the case of gravity, it has been argued that classicalization is intimately related to
the notion of a minimal length [70]. This seems to be in contrast to the notion of a �eld
theoretic UV completion, where one talks of �arbitrarily high energy scales�. In fact it
had already been noted that in a certain sense a notion of minimal length is present in an
asymptotically safe theory of gravity [86]. We refer to [87] for further discussion of this
point.

We may comment here on the importance of weak and strong version of classicalization.
In [81] authors noticed, that the self-completion of a nonrenormalizable theory by classi-
calization manifests itself as the increase of number of degrees of freedom with energy in a
classical con�guration. It is this increase that replaces the notion of the usual Wilsonian
renormalization standard viewed as integration in some new weakly interacting degrees of
freedom. Moreover only in the case of strong classicalization r∗ = r∗(E), we get a growing
with energy number of degrees of freedom present in the con�guration and the portrait of
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the classicalon as a soliton can be correct. The conclusion is again, that weak and strong
classicalization are very di�erent and that way of UV completion by strong classicalization
doesn't have features similar with those present in asymptotically safe scenario.

All these facts reinforce the hypothesis, that weak classicalization may be a direct man-
ifestation of asymptotic safety in the scattering amplitudes whereas strong classicalization,
if true, would be a di�erent kind of e�ect. We also observe that, if we assume equivalence
between weak classicalization and asymptotic safety, the absence of classicalization in the
case of plane waves suggests that momentum transfer is more important than total energy
in these matters. In order to substantiate the preceding conclusions one would need to
directly calculate some amplitudes in an asymptotically safe theory.
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Chapter 5

1-loop e�ective action in system of
gravitating scalar

5.1 Truncation ansatz and 'inverse propagator'

In this chapter we will compute 1-loop e�ective action in a system, where we have
standard Einstein-Hilbert gravitation and minimally coupled scalar �eld. Standard com-
putation, known in the literature, are mainly based on perturbative quantization methods
and they exploit Feynman diagrams techniques. Here we will follow a di�erent route.
Namely we will obtain 1-loop quantum e�ective action as the e�ect of integrating average
e�ective action along the �ow trajectory from UV down to IR limit. Moreover in the core
of our calculation we will use non-local heat kernel techniques to evaluate some functional
traces. We will pay special attention to the appearance of nonlocal terms in the quantum
e�ective action. All the calculations will be performed in Euclidean spacetimes.

Now we want to introduce the notion of the average e�ective action (EAA). The EAA is
a scale-dependent generalisation of the standard e�ective action that interpolates smoothly
between the bare action for k →∞ and the standard quantum e�ective action for k → 0.
In this way, we avoid the problems of performing the functional integral. Instead they
are converted into the problem of integrating the exact �ow of the EAA from the UV to
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the IR. The EAA formalism deals naturally with several di�erent aspects of quantum �eld
theories. One aspect is related to the discovery of non-Gaussian �xed points of the RG
�ow. In particular, the EAA framework is a useful setting to search for Asymptotically
Safe theories, i.e. theories valid up to arbitrarily high energy scales. A second aspect, in
which the EAA reveals its big usefulness, is the domain of nonperturbative calculations.
In fact, the exact �ow that EAA satis�es is a valuable starting point for inventing new
approximation schemes.

In EAA the crucial point is the separation between high and small energy modes of
quantum �elds. The elimination of higher energy modes is performed by separating the
low energy modes, to be integrated out, from the high modes in a covariant way. To do this
we introduce a cuto� action constructed using the covariant d'Alambertian, that respects
the symmetries of the underlying theory. In full generality in order to construct EAA we
add to the bare action S an infrared (IR) �cuto�� or regulator term ∆Sk of the form:

∆Sk =
1

2

∫
ddx

√
gφRk(¤)φ . (5.1)

In above formula the operator kernel Rk is chosen in such a way to suppress the �eld modes
φn, eigenfunctions of the covariant second di�erential operator ¤, with eigenvalues smaller
than the cuto� scale νn < k2. Generic �elds of our quantum �eld theory are denoted
here by φ. We will call ∆Sk the cuto� action. The functional form of the cuto� kernels
Rk(z) is arbitrary except for the requirements that they should be monotonically decreasing
functions in both z and k arguments, i.e. rigorously that Rk(z) → 0 for z À k2 and that
Rk(z) → k2 for z ¿ k2. It is important to consider two limits of EAA. First in the IR
limit (k = 0) quantum e�ective action is obtained. On the other hand, when k →∞, then
EAA equals to the bare action of considered quantum theory. In this way we obtain the
scale dependent generalisation of the standard e�ective action, which interpolates between
the two.

Quantum gravity gives unambiguous predictions at low energy in the framework of
e�ective �eld theories. The low energetic action contains only the simplest Einstein-Hilbert
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term (with a possibility of adding a cosmological constant, which we however neglect here).
In this e�ective theory there exist observables, which do not depend on the particular
way of UV completion. They are genuine predictions of quantum gravity. The quantum
divergences, which must be absorbed in the renormalization procedure, are contained in
local, but not universal terms in the quantum e�ective action. We are mainly interested in
nonlocal term in quantum e�ective action. The reason for this is that they are universal
terms in low-energetic e�ective �eld theory of quantum gravity [95, 91]. They do not
depend on any speci�c way of UV completion of gravity. There are di�erent ways, by
which, one can obtain quantum e�ective action in infrared limit. However it is without
any doubt that low- energetic predictions of quantum gravity are calculable and solid,
regardless of any complicated dynamics, which saves the theory in UV. In our method
for integration the RG �ow we will use exact (also known as functional) Renormalization
Group equations. In integration of RG �ow of average e�ective action such nonlocal terms
originate from the part of integration done for the lowest momentum scales.

At the end of this chapter we will try to draw a comparison with a similar computation
done in the perturbative framework [96]. Our computation we will �nally perform entirely
in four spacetime dimension, however in the �rst sections we will be more general, working
with spacetime of any dimensionality.

We will use the following ansatz for the form of the action of our system

S =

∫
ddx

√
g

[
1

K2
R− 1

2
(∂φ)2 − V (φ)

]

− 1

2K2α

∫
ddx

√
gχ2 (5.2)

+

∫
ddx

√
g C̄µ (−¤δµν −Rµ

ν )C
ν .

where d'Alambertian is given by ¤ = ∇µ∇µ. Due to the gauge di�eomorphism symmetry
present in the system we are forced to introduce gauge �xing conditions necessary for
perturbative quantization of the system:

95



χµ = ∇νhµν − 1

2
∇µh . (5.3)

Moreover another consequence of this gauge redundancy in the system is that for consis-
tency, we also had to add vector ghosts denoted by Cµ in the third line of (5.2). In our
computation we use the background �eld method and we take the metric perturbations
in the form hµν = δgµν and in contracted version h = gµνhµν . All covariant derivatives
are with respect to the background metric. As we can see in the action (5.2) we included
minimally coupled scalar �eld φ and we allow for the existence of potential V (φ) for it.
Gravitational coupling appears there as K, which has the inverse energy dimension. In the
gravitational part of the action R is a curvature invariant built out of the full metric gµν
and Rµ

ν corresponding Ricci tensor. Additionally constant α is a gauge parameter in our
gauge �xing condition.

Now we are going to compute the bilinear part in �uctuations of action S, because this is
the main ingredient if we target on �nding the explicit form of the covariant d'Alambertian
operator. The bilinear part in the metric �eld of the gravitational part Sg of the e�ective
action is given by:

1

2
δ2Sg =

∫
d4x

√
g

1

K2

{
1

4
hαβ¤hαβ +

(
−1

4
+

1

8α

)
h¤h+

+
1

2

(
−1 +

1

α

) (
hµν∇µ∇αhνα − hαβ∇α∇βh

)
+

(
1

8
h2 − 1

4
hµνh

µν

)
R (5.4)

−1

2
hµνR

µνh+
1

2
hµρR

µνhρν +
1

2
hµνR

µανβhαβ

}

We are not interested in the ghost part here and we will not report corresponding results
for this part of the action. However we present the ghost functional derivative, which is
equal to

δ2S

δCµ(x)δC̄ν(x′)
= −¤δµν −Rµ

ν . (5.5)

Fixing α = 1 the second functional derivative of the gravitational part of the e�ective
action takes the following minimal form (summarised in pairs of indices (µ, ν) and (α, β)):
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δ2Sg
δhµν(x)δhαβ(x′)

=
1

K2

{
Cµν,αβ¤−Rα(µν)β − 1

2
gµνRαβ − 1

2
gαβRµν+

+
1

4
gαβgµνR + g(µ(αRβ)ν) − 1

2
gµ(αgβ)νR

}
, (5.6)

where Cµν,αβ = −1
2

(
1
2
gµνgαβ − gµ(αgβ)ν

)
is the contravariant DeWitt metric tensor.

In what follows, we will derive the operator of second variation needed for computation
of Schwinger-DeWitt technique, simultaneously correcting the misprints, which appeared
in [98]. This computation we will keep in general dimensionality, only later we will restrict
ourselves to d = 4. This is the novel feature of this work. The variation of the scalar �eld
away from the background �eld φ we denote by f . We note here the second variation of
the matter action Sm = − ∫

ddx
√
g

[
1
2
(∂φ)2 + V (φ)

]
with respect to all �uctuating �elds

ψA = (hµν , f) given by

δ2Sm
δf 2

= ¤− V ′′ , (5.7)

δ2Sm
δhµνδf

= −1

4
gµν (∇αφ)∇α +

1

2

(∇(µφ
)∇ν) − 1

2
gµνV ′, (5.8)

δ2Sm
δfδhµν

= +
1

4
gµν (∇αφ)∇α − 1

2

(∇(µφ
)∇ν) +

1

4
gµν¤φ− 1

2
∇µ∇νφ− 1

2
gµνV ′(5.9)

δ2Sm
δhµνδhρσ

= V Cµν,ρσ +
1

2

[
Cµν,ρσ (∇φ)2 +

1

2
gµν (∇ρφ) (∇σφ) +

+
1

2
gρσ (∇µφ) (∇νφ)− 2g(µ(ρ

(∇σ)φ
) (∇ν)φ

)]
. (5.10)

The linear matrix-di�erential operator FAB(∇) de�ned by the relation
δ2S = 1

2

∫
d4x

√
gψAFABψ

B is given by

FAB(∇) = CAB¤ + 2ΓσAB∇σ +WAB , (5.11)

where we order terms by number of covariant derivatives. Operator FAB is obviously equal
to the second variation δ2S

δψAδψB . The indices A, B take only two value 1 (for graviton) or
2 (for scalar) and all matrices with such indices have tensorial character with respect to
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di�eomorphism transformations. Due to the di�erent dimensionality of considered �uc-
tuations the energy dimensions of entries of matrix FAB(∇) are di�erent. The action of

the operator FAB(∇) on �uctuations is schematically depicted by (hµν , f)F


 hαβ

f


. By

explicit calculation, we get expressions for all tensors appearing in (5.11):

CAB =




1
K2C

µν,αβ 0

0 1


 , ΓσAB =


 0 Cµν,σρ∇ρφ

−Cαβ,σρ∇ρφ 0


 and (5.12)

WAB =


 Cµν,ρσHρσ

αβ −1
2
gµνV ′

−2Cαβ,ρσ∇ρ∇σφ− 1
2
gαβV ′ −V ′′


 . (5.13)

We want to emphasise that the matrixW is not symmetric in indices (A,B). The tensorial
expression Hρσ

αβ (which in [98] was called Pρσαβ) equals to

1
K2

[
−2R(ρ

αβ
σ) + 2δ

(α
(ρR

β)
σ) − δαβρσR− 2

d−2
gρσR

αβ − gαβRρσ + 1
d−2

gρσg
αβR

]
+

+1
2
δαβρσ (∇φ)2 − 2δ

(α
(ρ

(∇σ)φ
) (∇β)φ

)
+ V δαβρσ + 1

d−2
gρσ (∇αφ)

(∇βφ
)

+ (5.14)

+1
2
gαβ (∇ρφ) (∇σφ)− 1

2(d−2)
gαβgρσ (∇φ)2 ,

and therefore in the result of contraction we have that

Cµν,ρσHρσ
αβ =

1

K2

[
−Rα(µν)β − 1

2
gµνRαβ − 1

2
gαβRµν +

1

4
gαβgµνR + g(µ(αRβ)ν) − 1

2
gµ(αgβ)νR

]
+

+
1

2

[
Cµν,αβ (∇φ)2 +

1

2
gµν (∇αφ)

(∇βφ
)

+
1

2
gαβ (∇µφ) (∇νφ)− (5.15)

−2g(µ(α
(∇β)φ

) (∇ν)φ
)]

+ V Cµν,αβ .

Later we will need functional determinant of the operator F and such quantity is well-
de�ned (independent of chosen vector basis), if it has mixed position of indices. In order
to achieve this we multiply FAB(∇) by the inverse matrix CDA (CDACAB = δDB ), which is
equal to
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CDA =


 K2Cκλ,µν 0

0 1


 (5.16)

with Cκλ,µν = gκµgλν + gκνgλµ − 2
d−2

gκλgµν (this is not the version of Cκλ,µν with covariant
indices lowered by covariant metric tensor g, even for d = 4). The matrix CDA plays the role
of the contravariant metric in the vector space of �uctuations. Additionally we de�ne a set
of hatted quantities: Î = δAB, Γ̂σ = ΓσDB = CDAΓσAB, F̂ (∇) = F (∇)DB = CDAF (∇)AB

and Ŵ = WD
B = CDAWAB. With these de�nitions we have that

F̂ (∇) = Î¤ + 2Γ̂σ∇σ + Ŵ . (5.17)

It is much easier to compute determinants of the di�erential operators, which are in
the minimal form (no piece with one covariant derivative). We can use a new covariant
derivativeDµ = ∇µ+Γ̂µ, which is the old one∇µ shifted by the covariant vector Γ̂µ = gµνΓ̂

ν .
With this trick we absorb the part linear in derivative operators in F̂ (∇). Then our operator
takes the following minimal form

F̂ (D) = ÎgµνDµDν + P̂ − 1

6
ÎR , (5.18)

where the scalar curvature R of the metric g was extracted for reasons of convenience. Now
newly de�ned operator P̂ is expressed by the relation P̂ = Ŵ −

(
∇σΓ̂

σ
)
− Γ̂σΓ̂

σ + 1
6
ÎR.

The energy dimensions of diagonal elements of P̂ are equal to E2, while for P12 it is E
and for P21 is E3. The matrices of Γ̂σ and Ŵ act on �uctuations as given schematically by
(
h̃κλ, f

)
F̂


 hαβ

f


 with h̃κλ = K−2hµνC

µν,κλ. And they look as follows

Γ̂σ =


 0 K2δσρκλ∇ρφ

−Cαβ,σρ∇ρφ 0


 and (5.19)

Ŵ =


 K2Hκλ

αβ 2
d−2

K2gκλV
′

−2Cαβ,ρσ∇ρ∇σφ− 1
2
gαβV ′ −V ′′


 . (5.20)

We have interesting expressions for ∇σΓ̂
σ and Γ̂σΓ̂

σ explicitly equal to
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∇σΓ̂
σ =


 0 K2∇κ∇λφ

−Cαβ,σρ∇σ∇ρφ 0


 and (5.21)

Γ̂σΓ̂
σ =


 −1

4
K2

(
2δ

(α
(κ

(∇β)φ
) (∇λ)φ

)− gαβ (∇κφ) (∇λφ)
)

0

0 −K2 (∇φ)2


 . (5.22)

With this in mind we obtain the following matrix form of the P̂ operator (we change the
indices pair (κ, λ) to (µ, ν)):

P̂ =


 Aµν

αβ + 1/6Rδαβµν Bµν

Eαβ D + 1/6R


 . (5.23)

The coe�cient functions are given below

Aµν
αβ = K2Hµν

αβ +
1

2
K2δ

(α
(µ

(∇β)φ
) (∇ν)φ

)− 1

4
K2gαβ (∇µφ) (∇νφ) , (5.24)

Bµν =
2

d− 2
K2gµνV

′ −K2∇µ∇νφ , (5.25)

Eαβ = −1

2
∇α∇βφ+

1

4
gαβ¤φ− 1

2
gαβV ′ and (5.26)

D = −V ′′ +K2 (∇φ)2 . (5.27)

Note that the coe�cient 1
2
in front of the second derivative of the scalar potential in

coe�cient D was incorrect in [98].
Now we can compute the generalised curvature de�ned as the commutator of shifted

covariant derivatives [Dα,Dβ]ψ = R̂αβ ψ, where R̂αβ = Rαβ
A
B is understood as a 2x2

matrix. Using the de�nitions of Dα, we get the relation R̂αβ = R̂0
αβ + 2∇[αΓ̂β] + 2Γ̂[αΓ̂β],

where R̂0
αβ is the curvature for the ordinary spacetime covariant derivatives ∇α in the

matrix form. Only the (1, 1) element of the latter matrix is nonvanishing (when acting on
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a tensor of metric �uctuations hρτ ) and equals to [∇α,∇β]hρτ = Oρτ
µν
αβhµν . An operator

O is expressed by the Riemann tensor according to the formula Oρτ
µν
αβ = Rαβρ

(µδ
ν)
τ +

Rαβτ
(µδ

ν)
ρ . Covariant derivative commute when acting on a scalar, so all other components

of R̂0
αβ are zero. The generalised curvature acts in the following way on the �uctuations

(
h̃ρτ , f

)
R̂αβ


 hµν

f


. Now we write explicitly expressions appearing in the expansion of

the generalised curvature. We have that

∇[αΓ̂β] =


 0 K2δσλρτ gσ[β∇α]∇λφ

−Cµν,σλgσ[β∇α]∇λφ 0


 and (5.28)

Γ̂[αΓ̂β] = Γ[α
A
BΓβ]

B
C =


 −K2δσλρτ C

µν,εκgσ[αgβ]κ (∇λφ) (∇εφ) 0

0 −K2Cεκ,σλgσ[αgβ]κ (∇λφ) (∇εφ)




(5.29)

The last low entry in Γ̂[αΓ̂β] is equal to zero, because after doing the change of names of
dummy indices (ε, κ) ↔ (σ, λ) we get this term equal to −K2Cεκ,σλgσ[βgα]κ (∇λφ) (∇εφ).
And this means that this expression is symmetric in α, β indices. Adopting the following
convention for writing the matrix operator R̂αβ:

R̂αβ =


 Xρτ

µν
αβ Yρτ,αβ

Zµν
αβ 0


 (5.30)

we can read out the expression for X, Y and Z functions. Namely we have

Xρτ
µν
αβ = −2δ

(µ
(ρR

ν)
τ)αβ + 2k2δεκρτC

µν,σλgσ[αgβ]κ (∇λφ) (∇εφ) , (5.31)

Yρτ,αβ = −2k2δσλρτ gσ[α∇β]∇λφ and (5.32)

Zµν
αβ = −2Cµν,σλgσ[β∇α]∇λφ. (5.33)
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(In formulas (2.39-2.41) of [98] the overall sign was incorrect!). The energy dimensions of
these entries are respectively: E2, E and E3. Up to this moment every computation was
done under the assumption of the general dimensionality d of spacetime.

5.2 Local terms of one-loop e�ective action

First we will look for local terms in 1-loop e�ective action for our system. They are
related to UV divergences of the theory. In general these divergences give rise to the
renormalization of couplings in front of local terms. They are not universal and depend on
the precise way of UV completion. However we assume, that the bare action is given by
(5.2). At one loop order the quantum e�ective action is given by the integral

Γ[φ, g] = −1

2

∫ ∞

0

ds

s
Tr e−sŜ

(2)

, (5.34)

where Tr e−sŜ
(2) is the functional trace of some di�erential operator, which we are going

to compute with the heat kernel techniques. For our applications in the exponent of
heat kernel we use inverse propagator, found in the previous section, denoted here by
Ŝ(2) (second variational derivative of the action S with respect to all �uctuating �elds).
This operator, as other quantities with a hat over, is a matrix in �eld space of gravitons
and scalar �eld perturbations. In order to �nd logarithmically divergent part of one-loop
e�ective action to second order in curvature we can use the Schwinger-DeWitt method for
quadratic operators:

Tr e−sŜ
(2)

=
1

(4πs)d/2

∫
ddx

√
gtr

{
1̂ + sP̂ + s2

[
1

2
P̂ 2 +

1

12
R̂µνR̂µν+

+
1

180
Riem21̂− 1

180
RµνR

µν 1̂

]}
. (5.35)

We will restrict ourselves to second order contribution in operators P̂ , R̂µν and gravi-
tational curvatures. (We don't consider here application of this method to the ghost part
of the action, because we are mainly interested in nonminimally coupled matter terms.)
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Using Schwinger-DeWitt technique we reduced the functional trace to matrix traces. In
what follows, small traces denote the traces done in �eld space (of 2x2 matrices). One
�nds particular traces in forms given below. For a trace of quadratic scalar operator P̂ 2

we �nd:

1

2
trP̂ 2 =

3

2
Riem2 − 3Ric2 +

119

72
R2

+
11

8
K4∇αφ∇αφ∇βφ∇βφ− 1

4
K2∇2φ∇2φ+

1

2
K2∇β∇αφ∇β∇αφ

+K2

(
K2V (φ)− 5

12
R− V ′′(φ)

)
∇αφ∇αφ (5.36)

+K2V ′(φ)∇2φ+ 5k4V 2(φ)− 13

3
K2RV (φ)

−2k2V ′(φ)2 − R

6
V ′′(φ) +

(V ′′(φ))2

2
.

The trace of the contracted square of the generalised curvature R̂µνR̂µν amounts to:

1

12
trR̂µνR̂µν = −1

2
Riem2 +

1

6
K2Rαβ∇αφ∇βφ

−1

8
K4∇αφ∇αφ∇βφ∇βφ+

1

12
K2∇2φ∇2φ (5.37)

−1

3
K2∇β∇αφ∇β∇αφ+

1

12
K2R∇αφ∇αφ

Finally we report here for completeness the trace of the unity matrix 1̂ in �eld space:

tr1̂ =
d(d+ 1)

2
+ 1 = 11 for d = 4 . (5.38)

The last result is equal to the sum of the dimensionality of space of symmetric tensors, i.e.
metric perturbations and one-dimensional scalar perturbation.

Now we are going to compute traces of the various matrix-valued operators appearing
in the second variation of the action Γk. We have after summation that

trb4 =
11

180

(
Riem2 − Ric2

)
+

1

2
trP 2 +

1

12
R̂µνR̂µν

=
191

180
Riem2 − 551

180
Ric2 +

119

72
R2
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+5K4V 2(φ)− 2K2V ′(φ)2 − 13

3
K2RV (φ)− R

6
V ′′(φ) +

(V ′′(φ))2

2

+
5

4
K4∇αφ∇αφ∇βφ∇βφ (5.39)

−1

6
K2∇2φ∇2φ+

1

6
K2∇β∇αφ∇β∇αφ+

1

6
K2Rαβ∇αφ∇βφ

+K2

(
K2V (φ)− 1

3
R− V ′′(φ)

)
∇αφ∇αφ

+K2V ′(φ)∇2φ ,

where by b4 we denoted traditionally the expansion coe�cients of matrix trace in front
of the second power of s parameter. For any scalar �eld we have the following identity
originating from the commutation of the second covariant derivatives acting upon it:

1

6
Rαβ∇αφ∇βφ− 1

6
∇2φ∇2φ+

1

6
∇β∇αφ∇β∇αφ = 0 , (5.40)

Next we use the scalar equation of motion derived from the standard action. Here it is
given by

∇2φ− V ′(φ) = 0 . (5.41)

Then one is able to derive the following identity valid onshell (For the moment we put
scalar perturbations onshell, while keeping graviton perturbations completely general).

K2V ′(φ)∇2φ− 2k2V ′(φ)2 = −K2V ′(φ)2 . (5.42)

Exploiting this in our formula for tr b4 leads to the simpli�cation:

trb4 =
191

180
Riem2 − 551

180
Ric2 +

119

72
R2

+
5

4
K4∇αφ∇αφ∇βφ∇βφ

+K2

(
−1

3
R +K2V (φ)− 2V ′′(φ)

)
∇αφ∇αφ (5.43)

−13

3
K2RV (φ)− R

6
V ′′(φ) + 5k4V 2(φ)− 2k2V ′(φ)2 +

(V ′′(φ))2

2
.
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Now we decide about the form of the scalar potential V (φ). If we set it to contain only
the mass term V (φ) = m2

2
φ2, then we have:

trb4 =
191

180
Riem2 − 551

180
Ric2 +

119

72
R2

+
5

4
K4∇αφ∇αφ∇βφ∇βφ

+K2

(
−1

3
R +

1

2
K2m2φ2 − 2m2

)
∇αφ∇αφ (5.44)

−13

6
K2Rm2φ2 − 1

6
m2R +

5

4
K4m4φ4 − 2k2m4φ2 +

1

2
m4 .

In the last step we can put gravitational excitations on shell. For our result this means,
that we can use Euler identity relating squares of Riemann, Ricci and scalar curvatures
according to the formula Riem2 = 4Ric2 − R2 + E. We neglect the di�erence term E,
because it is a total derivative. After doing this, we arrive at a �nal result for the trace of
b4 coe�cient:

trb4 =
213

180
Ric2 +

213

360
R2

+
5

4
K4∇αφ∇αφ∇βφ∇βφ

+K2

(
−1

3
R +

1

2
K2m2φ2 − 2m2

)
∇αφ∇αφ (5.45)

−13

6
K2Rm2φ2 − 1

6
m2R +

5

4
K4m4φ4 − 2k2m4φ2 +

1

2
m4 .

This is the form of one-loop local terms for scalar �eld with mass (non self-interacting)
minimally coupled to Einstein-Hilbert gravitation in four spacetime dimensions. We ob-
tained an agreement with previous results found by others for local part of divergent part
of one-loop e�ective action [98, 99]. The contribution from the ghost part of the action has
the impact only on the �rst two coe�cients (in front of the quadratic curvature invariants).
This is so, because of the initial gauge choice we adopted, where the scalars do not appear.
However in this and in the later derivations we focus on the monomials from the matter
part, where the scalar �eld φ is present.
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5.3 Nonlocal terms and exact RG �ow equations

In order to go beyond Schwinger-DeWitt technique and �nd form of nonlocal part of
one-loop action we insert nonlocal structure functions. They are functions of s parameter
and box operator ¤ = ∇µ∇µ (acting under the integral) appearing in the combination
−s¤. We insert these structure functions between two matrix operators present at the
second order as in the detailed formula below

1

(4πs)d/2

∫
ddx

√
gs2tr

{[
P̂ fP (−s¤) P̂ + R̂µνfR (−s¤) R̂µν+

+P̂ fPR (−s¤)R +RfR (−s¤)R 1̂ +RµνfRic (−s¤)Rµν 1̂
]

+ ...
}
. (5.46)

It must be emphasised, that the leading order in s contribution is equal to constants as
written in the formulas (5.35) in section above (for P̂R operator this constant vanishes).
Moreover we have used the Euler identity relating contribution of the square of Riemann
tensor to quadratic expression in Ricci tensor and scalar according to the formula E =

Riem2− 4Ric2 +R2. By E we denote Euler characteristics of the spacetime manifold - this
is a topological quantity and doesn't in�uence local dynamics in the bulk of spacetime. The
traces of matrix terms of order curvature square are modi�ed with respect to expressions
given in previous section by the appearance of structure functions fP , fR, fPR, fR and
fRic. We have the results for the trace of the quadratic scalar operator P̂ 2:

trP̂ fP P̂ = 3Rµν fPR
µν +

11

72
RfPR

+
11

8
K4(∇αφ∇αφ)fP (∇βφ∇βφ)− 1

4
K2(∇2φ)fP (∇2φ) +

1

2
K2(∇β∇αφ)fP (∇β∇αφ)

+K4V (φ)fP (∇αφ∇αφ)− 5

12
K2RfP (∇αφ∇αφ)−K2V ′′(φ)fP (∇αφ∇αφ) (5.47)

+K2V ′(φ)fP (∇2φ) + 5k4V (φ)fPV (φ)− 13

3
K2RfPV (φ)

−2k2V ′(φ)fPV
′(φ)− R

6
fPV

′′(φ) +
1

2
V ′′(φ)fPV

′′(φ) .

The trace of the contracted square of the generalised curvature R̂µνR̂µν amounts to:
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trR̂µνfRR̂µν = −2Rµν fRRµν +
1

2
RfRR +

1

6
K2RαβfR(∇αφ∇βφ)

−1

8
K4(∇αφ∇αφ)fR(∇βφ∇βφ) +

1

12
K2(∇2φ)fR(∇2φ) (5.48)

−1

3
K2(∇β∇αφ)fR(∇β∇αφ) +

1

12
K2RfR(∇αφ∇αφ) .

At the end we report here for completeness the trace of the new operator P̂R equal to:

trP̂ fPRR = 2k2RfPR(∇αφ∇αφ) + 10k2RfPRV (φ)

−RfPRV ′′(φ)− 25

6
RfPRR . (5.49)

We proceed in a very similar way like in the last section. This time the only di�erence
is that we have to take care of nonlocal structure functions. Our previous results are still
valid, when we restrict ourselves to �rst terms in the expansion of these formfactors. After
summing all the terms we �nd the nonlocal equivalent of tr b4:

11

180
(3Rµν fRicR

µν −RfRR) + trP̂ fP P̂ + trP̂ fPRR + trR̂µνfRR̂µν =

= Rµν

[
33

180
fRic + 6fP − 24fR

]
Rµν

+R

[
− 11

180
fR +

11

36
fP + 6fR − 25

6
fPR

]
R

+K4(∇αφ∇αφ)

[
11

4
fP − 3

2
fR

]
(∇βφ∇βφ)

+K2(∇2φ)

[
−1

2
fP + fR

]
(∇2φ)

+K2(∇β∇αφ) [fP − 4fR] (∇β∇αφ)

+K2R

[
−5

6
fP + fR + 2fPR

]
(∇αφ∇αφ) (5.50)

+K2Rαβ [2fR] (∇αφ∇βφ)

+K4V (φ) [2fP ] (∇αφ∇αφ)−K2V ′′(φ) [2fP ] (∇αφ∇αφ)

+K2V ′(φ) [2fP ] (∇2φ) +K4V (φ) [10fP ]V (φ)
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K2R

[
−26

3
fP + 10fPR

]
V (φ)−K2V ′(φ) [4fP ]V ′(φ)

R

[
−1

3
fP − fPR

]
V ′′(φ) + V ′′(φ) [fP ]V ′′(φ) .

If we set the scalar potential to V (φ) = m2

2
φ2 and use scalar equations of motion in this

case, then we have some cancellations. We have even more cancellations and simpli�cations,
because obviously we have, that ¤m2 = 0 and this means, that the structure functions
with nonlocal pieces cannot be inserted between mass powers in mass terms. When we
exploit this fact, we arrive at the following �nal expression:

11

180
(3Rµν fRicR

µν −RfRR) + trP̂ fP P̂ + trP̂ fPRR + trR̂µνfRR̂µν =

= Rµν

[
33

180
fRic + 6fP − 24fR

]
Rµν +R

[
− 11

180
fR +

11

36
fP + 6fR − 25

6
fPR

]
R

+K4(∇αφ∇αφ)

[
11

4
fP − 3

2
fR

]
(∇βφ∇βφ) +K4m2φ2 [fP ] (∇αφ∇αφ)

+K4m4φ2

[
5

2
fP

]
φ2 +K2m4φ

[
−5

2
fP + fR

]
φ (5.51)

+K2(∇β∇αφ) [fP − 4fR] (∇β∇αφ) +K2R

[
−5

6
fP + fR + 2fPR

]
(∇αφ∇αφ)

+K2Rαβ [2fR] (∇αφ∇βφ) +K2m2R

[
−13

3
fP + 5fPR

]
φ2 .

Now we want to consider the exact RG �ow of EAA, which will be denoted here by
Γ̄k. As the ansatz for it we choose the expression above, understood that all the couplings
and structure functions now acquire dependence on the momentum scale k. The exact RG
�ow equation for the background e�ective average action (bEAA) is the following

∂tΓ̄k[φ, g] =
1

2
Tr
∂tRk(−D2)− ηRk(−D2)

−D2 +Rk(−D2)
− Tr

∂tRk(∆gh)

∆gh +Rk(∆gh)
. (5.52)

In the above formula D is a general operator of the covariant derivative and Rk are cuto�
kernels (suitably chosen functions of momenta to suppress the contributions from high
energy modes in the path integral). The anomalous dimension of propagating �elds is
denoted here collectively by η. We explicitly split the graviton and scalar part from the

108



ghost part in this equation. Our exact RG �ow equation describes the change of the bEAA
under the in�nitesimal change of the RG logarithmic scale t = log k. The r.h.s. of this
equation expresses itself by functional traces of some di�erential operators and the RG
time derivatives of cuto� kernels. We note that in the denominator we have di�erential
part D2 of our inverse propagator operator (second variation) (5.18), . The r.h.s. of the
�ow equation is then (neglecting the ghost contribution) and writing all terms

∂tΓ̄k[φ, g] =
1

(4π)d/2

∫
ddx

√
g

{
Rµν

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃a(s¤)

]
Rµν+

+R

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃b(s¤)

]
R +K4(∇αφ∇αφ)

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃c(s¤)

]
(∇βφ∇βφ) +

+K4m2φ2

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃d(s¤)

]
(∇αφ∇αφ) +K4m4φ2

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃e(s¤)

]
φ2 +

+K2m4φ

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃f (s¤)

]
φ+K2(∇β∇αφ)

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃g(s¤)

]
(∇β∇αφ)(5.53)

+K2R

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃h(s¤)

]
(∇αφ∇αφ) +K2Rαβ

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃j(s¤)

]
(∇αφ∇βφ) +

+K2m2R

[∫ ∞

0

ds h̃k(s) s
2− d

2 f̃l(s¤)

]
φ2

}
.

where the functions f̃a(x), f̃b(x), ..., f̃l(x) were derived combining non-local heat kernel
structure functions. The integrands above contain convolutions of structure functions
f̃i(s¤) with the anti-Laplace transform h̃k(s) of the function hk(z) = ∂tRk(z)

z+Rk(z)
and (2 − d

2
)

power of integration variable s. In the above equation we enlisted all monomial terms,
which appeared in (5.51). In the {RµνR

µν , R2, K4(∇αφ∇αφ)2, K4m2φ2(∇αφ∇αφ), K4m4φ4,

K2m4φ2, K2(∇β∇αφ)2, K2R(∇αφ∇αφ), K2Rαβ(∇αφ∇βφ), K2m2Rφ2} basis as in (5.51),
the corresponding functions for each monomial read explicitly:

f̃a =
33

180
fRic + 6fP − 24fR (5.54)

f̃b = − 11

180
fR +

11

36
fP + 6fR − 25

6
fPR (5.55)

f̃c =
11

4
fP − 3

2
fR (5.56)
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f̃d = fP (5.57)

f̃e =
5

2
fP (5.58)

f̃f = −5

2
fP + fR (5.59)

f̃g = fP − 4fR (5.60)

f̃h = −5

6
fP + fR + 2fPR (5.61)

f̃j = 2fR (5.62)

f̃l = −13

3
fP + 5fPR (5.63)

In [90] another basis for structure functions was used. The transformation between them
are linear and are given below:

fP = φ4 (5.64)

fR = φ5 (5.65)

fPR = φ3 (5.66)

fR = −180φ2 (5.67)

fRic = 60φ1 (5.68)

(5.69)

Above structure functions for Lagrangian monomials can be rewritten using φ1, . . . , φ5

structural functions coe�cients (being linear combination of fP , fR, fPR, fR and fRic).
Moreover we apply identity (5.40) to reduce one term. Then the form of the quadratic
part of the e�ective action is given by

11

180
(3Rµν fRicR

µν −RfRR) + trP̂ fP P̂ + trP̂ fPRR + trR̂µνfRR̂µν =

= (11φ1 + 6φ4 − 24φ5) Ric2 +

(
11φ2 − 25

6
φ3 +

11

36
φ4 + 6φ5

)
R2 +

+
5

2
φ4K

4m4φ4 −
(

5

2
φ4 − 3φ5

)
K2m4φ2 +

(
5φ3 − 13

3
φ4

)
K2m2Rφ2 − (5.70)
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−
(
φ3 +

1

3
φ4

)
m2R + φ4m

4 +

(
11

4
φ4 − 3

2
φ5

)
K4

(
(∇φ)2)2

+

+ (φ4 − 6φ5)K
2 (∇α∇βφ)2 +K2

(
φ4K

2m2φ2 +

(
2φ3 − 5

6
φ4 + φ5

)
R− 2m2

)
(∇φ)2 .

(If we use modi�ed version of the operator P̂ , where the mass for the scalar �eld is treated
exactly, not perturbatively, then instead of the last numerical coe�cient 2 in the last line
we have coe�cient equal to twice the fourth structure functions 2φ4.)

Since now we are already in d = 4. From formula (5.70) we read the coe�cients of
Lagrangian monomials in the di�erent (extended) basis for formfactors. We have them
explicitly:

fa = 11φ1 + 6φ4 − 24φ5 (5.71)

fb = 11φ2 − 25

6
φ3 +

11

36
φ4 + 6φ5 (5.72)

fc =
5

2
φ4 (5.73)

fd = −
(

5

2
φ4 − 3φ5

)
(5.74)

fe = 5φ3 − 13

3
φ4 (5.75)

[ff = −
(
φ3 +

1

3
φ4

)]
(5.76)

[fg = φ4] (5.77)

fh =
11

4
φ4 − 3

2
φ5 (5.78)

fj = φ4 − 6φ5 (5.79)

fl = φ4 (5.80)

fm = 2φ3 − 5

6
φ4 + φ5 (5.81)

[fn = 2(−2φ4)] (5.82)

Inside square brackets were written formfactors, for which only the constant term matters.
This is, because, when d'Alambertian operator acts on such expression, where the structure
functions are inserted in, it gives zero (presence of mass terms). Structure functions for such
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monomials do not contain any non-local part. Now we are working in the following basis of
12 Lagrangian monomials {RµνR

µν , R2, K4m4φ4, K2m4φ2, K2m2Rφ2, m2R, m4, K4((∇φ)2)2,

K2(∇α∇βφ)2, K4m2φ2(∇φ)2, K2R(∇φ)2, K2m2(∇φ)2}. Out of these monomials only 9
allow for the nonlocal form-factors functions depending on the operator ¤.

With the de�nition of the basic heat kernel non-local form factor f(x)

f(x) =

∫ 1

0

dξe−ξ(1−ξ)x (5.83)

and recalling the relations between structure functions and f(x)

φ1(x) =
f(x)− 1 + 1/6x

x2
(5.84)

φ2(x) =
1

8

[
1

36
f(x) +

f(x)− 1

3x
− f(x)− 1 + 1/6x

x2

]
(5.85)

φ3(x) =
1

12
f(x) +

1

2

f(x)− 1

x
(5.86)

φ4(x) =
1

2
f(x) (5.87)

φ5(x) = −1

2

f(x)− 1

x
(5.88)

we can extract the running of the structure functions (k is the momentum scale here!)
given by the following equation

∂tfI, k(−¤) =
1

(4π)d/2

∫ ∞

0

ds h̃(s) s2− d
2 fI(sx)

∣∣∣∣
x=−¤

, (5.89)

for I = a, b, ..., l(n). We must stress here, that the scale-dependent function fI on the
LHS is di�erent from that one on the RHS fI(sx). Index I counts the number of possible
monomials present in (5.51). We reserve letter k for momentum scale here and therefore it
is excluded from the possible values of the index I. The letter i is also excluded, in order
not to confuse with other notation.

Firstly our 9 non-local structure functions written in terms of f(x) function are given
below:

112



fa = 3f(x) +
−61 + 72f(x)

6x
+

11(f(x)− 1)

x2
(5.90)

fb = − 5

32
f(x) +

211− 222f(x)

48x
− 11(f(x)− 1)

8x2
(5.91)

fc =
5

4
f(x) (5.92)

fd = −5

4
f(x)− 3(f(x)− 1)

2x
(5.93)

fe = −7

4
f(x) +

5(f(x)− 1)

2x
(5.94)

fh =
11

8
f(x) +

3(f(x)− 1)

4x
(5.95)

fi =
1

2
f(x) +

3(f(x)− 1)

x
(5.96)

fl =
1

2
f(x) (5.97)

fm = −1

4
f(x) +

f(x)− 1

2x
. (5.98)

For each value of index I, above corresponding expression (5.89) can be rewritten in
terms of a combination of Q-functionals inside parametric integrals. We have for example

(4π)2 ∂tfb, k(x) = − 5

32

∫ 1

0

dξ Q0 [hk (z + xξ(1− ξ))]− 37

8x

∫ 1

0

dξ Q1 [hk (z + xξ(1− ξ))] +

+
211

48x
Q1 [hk (z)]− 11

8x2

{∫ 1

0

dξ Q2 [hk (z + xξ(1− ξ))]−Q2 [hk (z)]

}
(5.99)

The arguments of Q-functionals are given by the expression hk(z) = ∂tRk(z)
z+Rk(z)

. Now it is the
moment, we have to specify the cuto� function Rk(z). We use the optimised cuto� shape
function Rk(z) = (k2 − z)θ(k2 − z), as proposed in [35]. Next we use explicitly the values
of the Q-functionals as computed below

Q0 [hk(z)] = 2 (5.100)

Q1 [hk(z)] = 2k2 (5.101)
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Q2 [hk(z)] = k4 (5.102)

and their integrals over ξ variable inside the hk(z) functions:

∫ 1

0

dξ Q0 [hk (z + xξ(1− ξ))] = 2

[
1−

√
1− 4

u
θ(u− 4)

]
(5.103)

∫ 1

0

dξ Q1 [hk (z + xξ(1− ξ))] = 2k2

[
1− u

6
+
u

6

√
1− 4

u

3

θ(u− 4)

]
(5.104)

∫ 1

0

dξ Q2 [hk (z + xξ(1− ξ))] = 2k4

[
1

2
− u

6
+
u2

60
− u2

60

√
1− 4

u

5

θ(u− 4)

]
, (5.105)

where u = x
k2 . We have now, after the integration, a set of equations, which can be

generally put in the following general form

∂tfI, k(x) =
1

(4π)2 gI

( x

k2

)
, (5.106)

where the functions gI(u) are given for each monomial term respectively by

ga(u) =
71

30
+

(
−71

30
− 196

15u
− 88

15u2

) √
1− 4

u
θ(u− 4) (5.107)

gb(u) =
71

60
+

(
−71

60
+

29

5u
+

11

15u2

) √
1− 4

u
θ(u− 4) (5.108)

gc(u) =
5

2
− 5

2

√
1− 4

u
θ(u− 4) (5.109)

gd(u) = −2 +

(
2 +

2

u

) √
1− 4

u
θ(u− 4) (5.110)

ge(u) = −13

3
+

(
13

3
− 10

3u

) √
1− 4

u
θ(u− 4) (5.111)
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gh(u) =
5

2
+

(
−5

2
− 1

u

) √
1− 4

u
θ(u− 4) (5.112)

gi(u) = −4

u

√
1− 4

u
θ(u− 4) (5.113)

gl(u) = 1−
√

1− 4

u
θ(u− 4) (5.114)

gm(u) = −2

3
+

(
2

3
− 2

3u

) √
1− 4

u
θ(u− 4) . (5.115)

We now integrate the �ow equations from a UV scale Λ down to a generic IR scale k.
We have schematically that

fI,Λ(x)− fI, k(x) =
1

(4π)2

∫ Λ

k

dk′

k′
gI

( x

k′2

)
(5.116)

and after going to u variable we get

fI,Λ(x)− fI, k(x) =
1

(4π)2

∫ x/k2

x/Λ2

du

2u
gI (u) . (5.117)

In functions gI(u) we can isolate constant part gI,0 in perturbative expansion in u

around u = 0, by the relation gI(u) = gI,0 + g̃I(u). The constants gI,0 are equal to
ga,0 = 71

30
, gb,0 = 71

60
, gc,0 = 5

2
, gd,0 = −2, ge,0 = −13

3
, gh,0 = 5

2
, gl,0 = 1, gm,0 = −2

3
.

(Only those nonvanishing were listed here). We isolate the logarithmic divergences in the
following schematic way

fI,Λ(x)− fI, k(x) =
1

(4π)2 gI,0

(
log

Λ

k0

+ log
k0

k

)
+

1

(4π)2

∫ x/k2

x/Λ2

du

2u
g̃I (u) . (5.118)

We can renormalize the theory, imposing the following UV boundary conditions for the
�ow of formfactors:

fI,Λ(x) =
1

(4π)2 gI,0 log
Λ

k0

+ cI , (5.119)
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where cI 's are possible �nite renormalizations. The general form of the g̃I (u) function is
as follows:

g̃I (u) =

(
AI +

BI

u
+
CI
u2

) √
1− 4

u
θ(u− 4). (5.120)

Therefore the integral
∫ x/k2

x/Λ2
du
u
g̃I (u) amounts to

∫ x/k2

4

(
AI

u
+ BI

u2 + CI

u3

) √
1− 4

u
du. This in-

tegral solved equals to

2AI log


1 +

√
1− 4

u

2


 +

(
−2AI +

BI

6
+
CI
60

) √
1− 4

u
+

+

(
−2BI

3
+
CI
30

) √
1− 4

u

u
− 2CI

5u2

√
1− 4

u
+ AI log u

∣∣∣∣∣∣
u=x/k2

. (5.121)

It always happens, that the coe�cient AI is the negative of gI,0. With this simpli�cation
in mind we have the following answer for the structure functions fI, k(x) at momentum scale
k:

fI, k(x) =
1

32π2






−2AI log


1 +

√
1− 4k2

x

2


 +

(
2AI − BI

6
− CI

60

) √
1− 4k2

x

+

(
2BI

3
− CI

30

) k2
√

1− 4k2

x

x
+

2CIk
4

5x2

√
1− 4k2

x
(5.122)

−AI log

(
x

k2
0

)]
θ(x− 4k2)− AI log

(
k2

k2
0

)
θ(4k2 − x)

}
+ cI .

The �nite renormalization constants cI can be chosen to be equal precisely to− 1
32π2

(
2AI − BI

6
− CI

60

)
,

hence we don't get any cosmological constant. We skip here the explicit form of the struc-
ture functions for each nine cases. They can be easily recovered from the general expression
above, after plugging corresponding values of coe�cients AI , BI and CI for each value of
the index I.

We are interested in the e�ective action Γ = Γ|k=0. In general form the limits of
form-factors in one-loop quantum e�ective action (k → 0) are equal to
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fI,0(x) = − Ai
32π2

log

(
x

k2
0

)
=

gI,0
32π2

log

(
x

k2
0

)
, (5.123)

therefore the explicit form of this action is

Γ̄0

∣∣
R2 =

1

32π2

∫
d4x

√
g

{
71

30
Rµν log

(−¤
k2

0

)
Rµν +

71

60
R log

(−¤
k2

0

)
R+

+
5

2
K4m4φ2 log

(−¤
k2

0

)
φ2 − 2K2m4φ log

(−¤
k2

0

)
φ (5.124)

−13

3
K2m2R log

(−¤
k2

0

)
φ2 − 1

6
m2R +

1

2
m4 +

5

2
K4 (∇φ)2 log

(−¤
k2

0

)
(∇φ)2

+K4m2φ2 log

(−¤
k2

0

)
(∇φ)2 − 2

3
K2R log

(−¤
k2

0

)
(∇φ)2 −K2m2 (∇φ)2

}
,

where we have also added the nonlogarithmic contributions coming from constant terms
proportional to mass.

We note that the coe�cients in equation (5.70) are related to those in (5.124) in an
algebraic way. Finally we give the shortcuts assignments, which could give us the form of
the quantum e�ective action just from the form of trb4 with non-local heat kernel for this
particular choice of the cuto�. Therefore they are not universal. We saw that only gI,0

terms contribute to quantum e�ective action. If knowing all of them, we don't have to do
any integral over momentum. On the other hand the contributions to gI,0 come entirely
from ξ-integrals according to the following assignments:

∫ 1

0

dξ Q0 [hk (z + xξ(1− ξ))] → 2 (5.125)
∫ 1

0

dξ Q1 [hk (z + xξ(1− ξ))] → −1

3
(5.126)

∫ 1

0

dξ Q2 [hk (z + xξ(1− ξ))] → 1

30
. (5.127)

On the level of expressions with functions f(x) the nonvanishing contributions come only
from:
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f(x) → 2 (5.128)
f(x)

x
→ −1

3
(5.129)

f(x)

x2
→ 1

30
(5.130)

and this originates from the following assignments in terms of φ1,...,5 functions:

φ1 → 1

30
(5.131)

φ2 → − 1

90
(5.132)

φ3 → 0 (5.133)

φ4 → 1 (5.134)

φ5 → 1

6
. (5.135)

If we have the expression for tr b4 with non-local structure functions φi in monomials, the
shortest way to get quantum e�ective action is to use the above shortcut assignments.

5.4 Flat space limit and formfactors

The goal of this section is to compute one-loop corrections to three-point vertex from
quantum e�ective action. In the last section we computed it to the second order in operators
of heat kernel and we arrived at a nonanalytic expression with low-energetic logarithms.
We want to consider the simplest vertex of interaction within our theory. This is a vertex
with one gravitons and two scalar �eld. That's why we shall compute the third variational
derivative with respect to mentioned �uctuations. At the end we specify �at gravitational
background and vanishing background scalar �eld. Such third variational derivative equals
to double derivative of the matter energy-momentum tensor over scalar. We also prefer to
write the expression for the vertex in the momentum space.

The tree-level action on the general spacetime is:
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S[φ, g] =

∫
ddx

√
g

[
1

2
gµν∂µφ∂νφ+ V (φ)

]
(5.136)

We calculate the energy momentum tensor by varying the action with respect to the metric
and we �nd

δS[φ, g] =

∫
ddx

√
g

[
1

4
gαβ (∂φ)2 − 1

2
∂αφ∂βφ+

1

2
V (φ)gαβ

]
hαβ . (5.137)

Hence the expression for the energy-momentum tensor is

T µν = gµν
[
1

2
(∂φ)2 + V (φ)

]
− ∂µφ∂νφ . (5.138)

On �at Euclidean space (φ = 0, gµν = δµν) and in momentum representation we have:

δ2T µνx
δφx1δφx2

∣∣∣∣
φ=0, gµν=δµν

→ −pµ1pν2 − pν1p
µ
2 − δµν [−p1 · p2 − V ′′(φ)] . (5.139)

In the above formula we used the following substitutions for the derivatives of delta func-
tions in momentum space. We assume that particles 1 and 3 are ingoing, while 2 is the
only one outgoing out of the considered vertex. For ingoing particles' momentum we take
∂x,αδx,x1 → ip1,α and ∂x,αδx,x3 → ip3,α and for outgoing ∂x,αδx,x2 → −ip2,α .

Besides this in the local part of the e�ective action, we have the following three types
of operators

O0 =

∫
ddx

√
g φ2 (5.140)

O2 =

∫
ddx

√
g Rφ2 (5.141)

O3 =

∫
ddx

√
g R gµν∂µφ∂νφ (5.142)

and corresponding vertices in momentum space amount to
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δ3O0,x

δφx1δφx2δgµν,x3

= δµν , (5.143)

δ3O2,x

δφx1δφx2δgµν,x3

→ 2
[
p2

3δ
µν − pµ3p

ν
3

]
and (5.144)

δ3O3,x

δφx1δφx2δgµν,x3

→ 2
[
p2

3δ
µν − pµ3p

ν
3

]
(p1 · p2) . (5.145)

We used various kinematical relations between momenta (two ingoing ones and one for
outgoing graviton) to put the formulas in the above �nal forms.

In our quantum e�ective action, calculated using non-local heat kernel technique, we
are interested in operators, which give nonvanishing contribution to the vertex of our
interest. Such monomials must contain precisely two powers of scalar �elds (may be under
covariant derivatives) and not more than two gravitational curvatures. We easily see, that
from (5.124), three operators satisfy this criterion. They are listed below.

Õ1 = −2

∫
d4x

√
gK2m4φ log

(−¤
k2

0

)
φ (5.146)

Õ2 = −13

3

∫
d4x

√
gK2m2R log

(−¤
k2

0

)
φ2 (5.147)

Õ3 = −2

3

∫
d4x

√
gK2R log

(−¤
k2

0

)
(∇φ)2 (5.148)

The computation of 3-rd variational derivative for Õ1 gives as follows:

δ3Õ1,x

δφx1δφx2δgµν,x3

→ (−2)K2m4

[
δµν

2
log

(
p2

1p
2
2

k4
0

)
− pµ2p

ν
2

p2
1

− pµ1p
ν
1

p2
2

+
pµ3p

ν
2

2p2
1

− pµ3p
ν
1

2p2
2

+

+
pµ2p

ν
3

2p2
1

− pµ1p
ν
3

2p2
2

− δµν (p3 · p2)

2p2
1

+
δµν (p3 · p1)

2p2
2

]
. (5.149)

We used the fact that
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δ log

(−¤
k2

0

)
=
δ¤
¤ =

1

¤

(
−hµν∇µ∇ν − (∇µhµν)∇ν +

1

2
(∇αh)∇α

)
, (5.150)

where the last two terms come from the variation of the second covariant derivative acting
on the scalar. To other two vertices (coming from operators Õ2 and Õ3) part with the
variation of the logarithm doesn't contribute, because it is multiplied by scalar curvature
R and so vanishes in �at spacetime limit. We have respectively on �at spacetime that

δ3Õ2,x

δφx1δφx2δgµν,x3

→ −26

3
K2m2δx,x1δx,x2 log

(−¤
k2

0

) (−δµν∂2δx,x3 + ∂µ∂νδx,x3

)
and

(5.151)

δ3Õ3,x

δφx1δφx2δgµν,x3

→ −4

3
K2∂αδx,x1∂

αδx,x2 log

(−¤
k2

0

) (−δµν∂2δx,x3 + ∂µ∂νδx,x3

)
(5.152)

We integrate by parts in the above two expressions to �ip the logarithm of box operator
to act only on δx,x3 (third particle). This is justi�ed by the conservation of momentum for
the vertex and we perturb around �at spacetime, where ordinary momentum is conserved.
Corresponding vertices exhibit similar structure to (5.144) and (5.145) multiplied by two
characteristic logarithms. Namely we �nd that

Õ2 → −26

3
K2m2

[
p2

3δ
µν − pµ3p

ν
3

]
log

(
p2

3

k2
0

)
(5.153)

Õ3 → −4

3
K2

[
p2

3δ
µν − pµ3p

ν
3

]
(p1 · p2) log

(
p2

3

k2
0

)
. (5.154)

There is also a local nonlogarithmic term in the quantum e�ective action− ∫
d4x

√
gK2m2 (∇φ)2,

which is of our interest. Corresponding to it vertex has the following structure:

−K2m2
[
δµν(p1 · p2)− 2p

(µ
1 p

ν)
2

]
= −K2m2

[
−2P µP ν +m2δµν − 1

2

(
q2δµν − qµqν

)]

(5.155)
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Summing all these contributions we can write the form of three-point vertex coming
from our form of quantum nonlocal e�ective action to one loop.

Γ(2,1)
p1,p2,p3

[0, δ]µν = − K2

32π2

{
δµνm4

[
1 + 4 log

(
m

k0

)]
− 6m2P µP ν

+
[
q2δµν − qµqν

] (
−3

2
m2 +

(
10m2 − 2

3
q2

)
log

(
q2

k2
0

)}
, (5.156)

where we de�ned a momentum transfer fourvector q = p3 = p2 − p1 and a characteristic
momentum of the process P = 1

2
(p1 + p2). Moreover we used on-shell conditions for scalar

lines.
The most general form of the three-point vertex with two scalars and one graviton is

on the �at spacetime tightly constrained by Poincarè symmetry. Additional requirement
is put by the transversality of the vertex function, when one contracts with one index on
the graviton �eld. This leads to the expression

Γ(2,1)
p1,p2,p3

[0, δ]µν = − K2

32π2

{
2P µP νF1(q

2) +
[
q2δµν − qµqν

]
F2(q

2)
}
, (5.157)

where the formfactors F1(q
2) and F2(q

2) appeared as functions of only invariant quantity
q2. Now comparing above formula with (5.156) we get the explicit form of the gravitational
form-factors F1(q

2) and F2(q
2):

F1(q
2) = −3m2 (5.158)

F2(q
2) = −3

2
m2 +

(
10m2 − 2

3
q2

)
log

(
q2

m2

)
(5.159)

We also set the reference scale equal to the mass of the scalar k0 = m and neglect the
constant term proportional to δµν .

It is necessary to continue the same computation, but for the third order in gener-
alised heat kernel curvatures. The reason for this is that the simplest vertex in interacting
theory must contain three lines and hence it corresponds to the third variational deriva-
tive. When we set the background �elds to vanishing values, the contribution from the
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third order doesn't vanish. Only for the order of derivatives higher than three, we have
basically no contribution to three-point vertex. Additionally the mass parameter of the
scalar particle must be treated exactly to all orders. However it seems, that the second
order computation is not enough to capture the full result and this is only a part of the
�nal result. Here for completeness we show the results for form-factors computed by other
methods in perturbative e�ective �eld theory of gravity.

F1(q
2) = 1 +

K2

32π2
q2

(
−3

4
log(−q2) +

1

16

π2m√
−q2

)
(5.160)

F2(q
2) =

K2

32π2
m2

(
−4

3
log(−q2) +

7

8

π2m√
−q2

)
(5.161)

This was the result of one-loop computation carried out using Feynman diagram technique
and �rst reported in [95].

As a next step of investigation, we could touch on the issues of di�erent 2- and 3-point
functions computed from the one-loop e�ective action given in (5.124). Also in these cases
the comparison with standard perturbative approach using Feynman diagrams may be
desirable. Of course another direction is to extend the analysis and consider nonlocal terms
in bigger truncations for the form of EAA. Minimally coupled scalar �eld is the simplest
example of matter coupled to gravitation, however it is possible to consider di�erent matter
�elds and also with non-minimal couplings. Predictions in low-energetic quantum theory
of gravitation should be possible and calculable in these more sophisticated models too.
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Part III
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Chapter 6

Conclusions and summary

In this thesis we touched on many issues. These topics may seem to be unrelated, how-
ever the common point is their relation to Quantum Gravity and Renormalization Group
methods. Despite the fact, that Quantum Gravity is very vast �eld of research, we tried to
concentrate on this approach to it, which uses RG methods. We also attempted to show
this particular approach as seen from di�erent perspectives. This is the reason, why we
studied holography, classicalization and e�ective �eld theory of gravitational interactions.
This opens up the possibility that these powerful machineries could be brought to bear
on the issue of asymptotic safety. Here we want to summarise, what was obtained in this
research program and described in this thesis.

In the �rst part we concentrated on relations between holographic and exact functional
RG �ows. By considering simple Randall-Sundrum setup, with AdS5 spacetime in the bulk,
we were able to �nd agreement between two �ows. The common similarities of the �ows
were noticed for matter as well as for gravitational couplings. We found, that the best
agreement was at high energy in 4 dimensions, where holographic AdS spacetime corre-
sponded to our theory under RG �ow in the vicinity of the nontrivial �xed point. However
to account for threshold phenomena in the infrared limit, we had to modify holographic
�ow by introducing some sources. Then we went on constructing a 5-dimensional holo-
graphic model, which must be understood as a geometrization of the 4-dimensional RG
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�ow in the theory living on a brane. We achieved this by adding minimally coupled scalar
�eld to Einstein-Hilbert gravitation in the holographic bulk and solving resulting system
of classical coupled equation of motion. We found implicitly scalar pro�le for every RG
�ow of gravitational coupling and for particular interpolating RG �ow explicitly. Due to
the nature of running of 4-dimensional Planck mass, we had to choose a scalar �eld with
negative kinetic term in 5d action. In this way we discover a fully-�edged 5-dimensional
description of the physics described in di�erent language by 4d theory, where also gravi-
tation was present and dynamical. This was the novelty of this work. In a sense we used
holography in a very similar way like it is done for matter couplings in the framework of
AdS/CFT correspondence. Next using ideas from this conjecture we were able to derive
some interesting facts about gravitational RG �ows and asymptotic safety in the ultraviolet
limit.

We devoted the fourth chapter for studying the phenomenon of classicalization. Our
target model was a nonlinear sigma model, which shares a lot of common features with
4-dimensional gravity, but at the same time is much simpler. We studied maximally sym-
metric target spaces with positive and negative curvatures. The results for classicalization
depended strongly on the sign of the curvature and also on the number of derivatives
present in the action. For 2-derivatives (only nonlinear kinetic term) and model on a
sphere, we presented evidences in favour of weak classicalization. Our analysis of model on
a hyperboloid was inconclusive. In the case of four derivatives, we noticed the occurrence
of strong (standard) classicalization in similarity with model of single Goldstone bosons.
At the end we motivated the conjecture that weak classicalization is related to asymptotic
safety, because both have quantum origin.

In the last main chapter the issue of low-energetic quantum gravitational theory was
discussed. We recalled the signi�cance and origin of the local and non-local terms present
in the quantum e�ective action. We concentrated on the latter, because they are univer-
sal genuine prediction at low energy. We obtained the �rst few terms in an expansion in
powers of curvature of the quantum e�ective action for the system of minimally gravita-
tionally coupled scalar �eld in four spacetime dimension using a novel method. Namely
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we integrated the �ow of the e�ective average action over RG trajectory from UV down to
IR. Hence we derived the equations for non-local formfactors in quantum e�ective action.
The last step consisted of taking the �at spacetime limit in obtained covariant quantum
action and deriving the form of the simplest vertex with the inclusion of one-loop quantum
corrections. In this way we got �at spacetime formfactors of the gravitational interactions
with scalars and were able to compare them with perturbative computation, which used
Feynman diagrams techniques.
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