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grato. Mi piace pensare al Professor Cecotti più come al Maestro di un’Arte, che
come ad un supervisore di tesi: avere l’onore di essere stato compartecipe delle sue
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Abstract

Supersymmetric N = 2 theories in four dimensions are an interesting labora-
tory to understand Quantum Field Theory at strong coupling. In these theories
many interesting physical quantities are protected by supersymmetry, and hence
exactly calculable. One of the most remarkable aspects of extended supersymme-
try is the possibility of constructing and studying in detail many four–dimensional
SCFTs which do not have any (weakly coupled) Lagrangian formulation and hence
are intrinsically strongly coupled. These strongly interactingN = 2 systems can be
thought as the basic building blocks of the more general models, providing a gener-
alization of the concept of ‘matter’ in the non–Lagrangian setting. The prototype
of such systems is given by the Argyres–Douglas (AD) N = 2 models, which have
an ADE classification; in particular, those of type Dp (p = 2, 3, · · · ) have a SU(2)
global flavor symmetry that can be gauged. A first generalization of AD models
was given by Cecotti–Neitzke–Vafa with the (G,G′) SCFT’s labeled by pairs out
the ADE series. AD models belongs to this class: AD theories are the models of
type (G,A1). The purpose of this thesis is to generalize AD models outside the
(G,G′) class and to study the properties of the non–lagrangian N = 2 SCFTs that
results from such generalization. In particular, we will show that the BPS data are
enough to completely characterize a variety of such systems, provided they have
the BPS–quiver property. We will propose two different generalizations. The first
is that of Arnol’d–models. These models are constructed by geometric engineering
of the type IIB superstrings on singular Calabi–Yau hypersurfaces of C4 obtained
as the zero–locus of a quasi–homogenous element out of Arnol’d singularities lists.
AD models corresponds to the simple (or zero–modal or minimal) Arnol’d singular-
ities. In between the other Arnol’d models (i.e. models associated to singularities
with higher modality) there are many elements that are not of (G,G′) type, and,
in particular, we have examples of models that do not belong to class S. The
second and more interesting generalization brought us to the definition of Dp(G)
models (p = 2, 3, · · · ) that generalize the Dp Argyres–Douglas systems to (typi-
cally non–lagrangian) SCFTs with flavor group (at least) G. We construct Dp(G)
systems for all simple simply–laced Lie groups G and all p ≥ 2. Gauging the
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G flavor symmetries, these systems contributes to the Yang–Mills beta function
as (p − 1)/2p adjoint hypermultiplets: only very special elements in each infinite
Dp(G) class admit a lagrangian formulation. The construction of Dp(G) models
is made rigorous only via BPS–quivers using the categorial methods obtained by
Cecotti in his masterpiece about Categorical Tinkertoys. In particular, we provide
infinitely many examples of SCFTs with exceptional flavor groups. The Dp(G)
classification unveils Lie algebraic number theoretical aspects of many of the prop-
erties (flavor numbers, beta functions, superconformal central charges, ...) of the
SCFTs in this class. Motivated by the study of these systems, moreover, a new
perspective on BPS–quivers emerged, that of meta–quivers, that opens the doors
to wider generalizations: The meta–quiver approach makes the non–perturbative
completion possible via an application of homological mirror symmetry.
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A.3 The BPS spectrum of the Ĥ ⊠G models . . . . . . . . . . . . . . . 144

B More details about Dp(G) systems. 151
B.1 A further check of (3.91) . . . . . . . . . . . . . . . . . . . . . . . . 151
B.2 The proofs of eqns.(3.221)–(3.223) . . . . . . . . . . . . . . . . . . . 152
B.3 Mutation sequences for the MN theories . . . . . . . . . . . . . . . 154

C Technicalities about Arnold models 155
C.1 The E7 Y –system from the chamber (2.43) . . . . . . . . . . . . . 155
C.2 Periodicity of the Y –systems: the S11 example . . . . . . . . . . . . 156
C.3 Details on the Weyl–factorized sequences . . . . . . . . . . . . . . . 160
C.4 Mutation sequences for the exceptional bimodals . . . . . . . . . . . 167





Brief introduction and overview

During the last two decades, our perspective about Quantum Field Theory (QFT)
has changed quite radically, e.g. the simplest nontrivial QFT in four dimensions
is no more believed to be the theory of a scalar field with a φ4 interaction one
finds in chapter one of all field theory textbooks, but a N = 4 super-Yang-Mills
(SYM) model [1]. Wishing to understand a Theory, it is better to start from the
simplest examples at hand, and the requirement of space–time supersymmetry
(susy) is now well–understood to select for us the simplest QFT’s: susy quantum
field theories are the most interesting laboratory to understand Quantum Field
Theory at strong coupling. There are various tools of analysis that makes susy
field theories more accessible than other ordinary QFT’s. Schematically these are:
the interrelationships between susy and the geometry of target manifolds; the
(super)string various different engineering, either in terms of branes, or directly
from the internal geometry; the relations with different combinatoric objects;1 the
relations with integrable systems; and a quiver description.2 In this thesis we are
going to see manifestations of all of these aspects in the context of four–dimensional
N = 2 models.

For 4d N = 2 supersymmetric theories we have at our disposal many power-
ful techniques to address nonperturbative questions [2–6]. An especially simple
and elegant method is based on BPS–quivers [7, 8], which, for the convenience of
the reader, we will review in chapter 1 together with its (combinatorial) conse-
quences. In a sense, BPS–quivers behave like generalized Lagrangians for these
systems: one has graphical rûles to gauge a flavor symmetry, to perform a Higgs
decoupling limit, to integrate out some massive subsector... and these structures
carry over to intrinsically strongly coupled theories, provided they have a BPS–
quiver description, giving an interesting handle about them. Notice that, usually,
in QFT’s we define a model in terms of its UV data, while BPS–quiver theories

1 e.g. 5d N = 1 theories and (p, q)–webs; 4d N = 2 and pants decompositions of Riemann
surfaces; 4d N = 1 and bipartite graphs; 3d N = 2 and decompositions of 3d manifolds in
3-simplexes, ...

2As far as this last point is concerned, there are many possible ways to encode information
about a model in a quiver: for example, the spectrum of BPS–solitons of a 2d N = (2, 2) model
is encoded in a quiver, or a given representation of the quiver can be used to define the particle
and gauge content of a theory (e.g., 4d N = 1 quiver theories), or one constructs suitable maps
from the set of all possible representations to the set of BPS–states of the model, as we will do
in the following chapter for 4d N = 2 theories.

1
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are completely characterized by the infrared BPS–data. This is a very interesting
change of perspective about the physics of these models. However, a review of
the relation in between the BPS–quiver formalism and the ordinary formulation of
N = 2 QFT’s is out of the scope of the present dissertation: we refer the interested
reader to [8,10–12]. One of the most important consequences of the knowledge of
the BPS–quiver of the theory is that it allows to reduce the BPS spectral–problem
for models admitting finite chambers of hypermultiplets into the combinatorics of
(quantum) cluster algebras. The BPS–spectrum in all chambers is then captured
by a very interesting wall–crossing invariant, the quantum monodromy [13], that
can be explicitly computed by the mutation–method.

The preliminary step in this approach is to determine the BPS–quiver class
associated to the N = 2 quiver theory of interest. For 4d N = 2 theories that have
a Type IIB engineering the quiver class is determined by the 2d/4d correspondence:
the 4d N = 2 BPS–quiver, is the 2d N = (2, 2) BPS–quiver of a parent 2d system
with ĉ < 2, that, in principle, is what residues the 3–CY geometry after the
decoupling of gravity (i.e. in the large volume limit) [7,9,13]. The BPS–quiver class
includes (and explains) many interesting 4d N = 2 susy QFTs, but a criterion is
not known (yet) to understand whether a BPS–quiver exist for a theory of class
S:3 it is believed, however, that a sufficient condition would be that the theory
admits non exactly–marginal deformations.

In the first chapter of this thesis we introduce the reader to the BPS–quiver
theory of [8]. We start by a careful definition of the BPS–spectral problem, with
all the subtleties that are related to BPS–particles (wall–crossing phenomenon,
quantum Schottky problem...). We then introduce BPS–quivers, define their rep-
resentations, and reformulate the BPS–spectral problem in terms of representation
theory of quivers with (super)potentials, and discuss its solution via the mutation
method. In particular, in view of its applications, we will discuss a particular
property of finte BPS–spectra, the Coxeter–factorization property: for a Coxeter–
factorized BPS–chamber the charge lattice splits naturally in a direct sum of root
lattices of simply laced Lie algebras [14].

It has become clear that most of the 4d N = 2 theories do not admit any
weakly–coupled lagrangian description. Typically, these systems are interacting
quantum systems obtained by weakly gauging the flavor symmetries of strongly
interacting superconformal subsystems. The problem of classification of 4d N = 2
models is therefore reformulated as a problem of classification of these supercon-
formal strongly interacting ‘building blocks’, the tinkertoys [15, 16]. This struc-
ture has its own algebraic counterpart: the categorical tinkertoys of [10], that

3 Recall that a theory is in class S[g,Σ] iff it is obtained by the compactification of a 6d
N = (2, 0) theory of type g ∈ ADE on a Riemann surface Σ.
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allows for a reformulation of the classification program in a purely categorified
representation–theoretical spirit.

The rest of this thesis is devoted to the applications of the BPS–quivers method
to the study of strongly interacting 4d N = 2 SCFTs. The prototypical exam-
ple is that of Argyres–Douglas models [17, 18] obtained by Type IIB geometric
engineering on singular Calabi–Yau hypersurfaces of C4

WG(x, y) + u2 + v2 = 0

i.e. the zero locus of minimal singularities, which have an ADE classification. This
classification can be obtained from the BPS–quiver property, by declaring that a
model is of Argyres–Douglas type iff it has only finite BPS–chambers consisting
only of hypermultiplets.4 Argyres–Douglas models of type Dp (p = 2, 3, . . . ) have
an SU(2) flavor symmetry that can be gauged.

A larger family of 4d N = 2 SCFTs was obtained in [13] as part of the family of
‘direct sum’ SCFTs of type (G,G′). These are obtained by Type IIB engineering
onWG(x, y)+WG′(u, v) = 0 where both the polynomials are minimal singularities.
Notice that since a minimal singularity has ĉG < 1 the direct sum always has ĉ < 2,
and we obtain well defined four–dimensional models. We propose to search for 4d
N = 2 SCFTs that does not belong to the (G,G′) class.

The second chapter have appeared in the pubblications [14, 20]. There we
introduce Arnol’d models. These are superconformal systems engineered by type
IIB superstrings on local Calabi–Yau–hypersurfaces of C4 obtained out of the
quasi–homogenous elements of Arnol’d singularities lists. Singularities undergo
different possible classifications. A very interesting one is with respect to increasing
modality. By 2d/4d correspondence, the modality of a singularity is interpreted
as the number of marginal and irrelevant IR chiral operators of the parent 2d
N = (2, 2) ĉ < 2 system, i.e. it is the number of primary operators with dimension
q ≥ ĉ. Theories with zero modality correspond to 2d N = (2, 2) LG minimal
models: these are precisely the simple (or minimal) singularities. The associated
4d models are precisely the Argyres–Douglas SCFTs. Increasing in modality we
have the unimodal and bi–modal singularities, that are fully classified. In between
unimodal and bimodal Arnol’d models there are examples that are not of the
(G,G′) form. Moreover, for these models, we are able to handle the Quantum
Shottky problem with 2d renormalization group. These models are superconformal
and non–lagrangian: all the dimensions of the chiral primary operators are of
the form N/ℓ for some integer ℓ > 1. As we are going to show, if this is the

4 This is a theorem by Gabriel, but we find reference [19] more appropriate.
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case, the quantum monodromy operator is expected to be periodic of period ℓ.
By the correspondence in between cluster algebras and Y –systems, we predict
the existence of new periodic Y –systems, and this establishes a correspondence
in between periodic TBA integrable Y –systems and non–lagrangian 4d N = 2
SCFTs. We have substantiated this claim with explicit numerical checks.

In the third chapter we are going to construct and discuss all the properties
of the infinite class of Dp(G) models. These are models labeled by a positive
integer (p = 2, 3, . . . ) that generalize Argyres–Douglas Dp systems to SCFT’s with
arbitrary simple simply–laced flavor group G (more precisely, these models have
flavor symmetry at least G: as we will see, there are enhancements). The models
of type Dp(SU(2)) are precisely the Dp AD theories. In order to construct such
families of SCFT’s we will have to use the machinery of light subcategories that we
will carefully introduce. We are going also to give a long review of the properties
of the 4d N = 2 affine models in terms of the representation theory of Euclidean
algebras. The properties of the latter will be of fundamental importance for the
construction of the Dp(G) systems. Our strategy will be to construct, by 2d/4d

correspondence, the quivers with superpotential Ĥ ⊠ G. We will then show that
these models have a canonical S–duality frame in which are represented by a G
SYM sector weakly gauging theG flavor symmetry of someDp(G) systems. We will
study the limit gYM → 0 from the view point of the category of BPS–particles and
we will obtain the quiver with superpotential for the corresponding matter system.
The construction holds for all G simple and simply–laced.5 This construction
involves the use of the categorification of susy QFT. A new perspective emerges,
that of meta–quivers. As we will discuss, meta–quivers make the non–perturbative
completion possible by an application of homological mirror symmetry. This is,
perhaps, one of the most interesting applications of this formalism. Once we have
constructed the models, we move on to the computation of their invariants. By
a combination of representation–theoretical methods and 2d/4d correspondence,
we are able to compute all invariants one needs to completely characterize the
models: beta function of the G SYM sector, flavor charges, superconformal central
charges, order of the quantum monodromy... Moreover, we identify the Lagrangian
elements in the class, and this gives us very interesting checks of the computations
we have made. In particular, we are able to show that all the models of type
Ĥ ⊠ G admit Coxeter–factorized BPS–chambers. In the last part of the chapter
the D2(G) models are studied in details. In particular, we obtain the quivers for
all Minahan–Nemeshansky theories from their classification. Most of what written
in the third chapter of this thesis have appeared in [21,22].

In the last chapter of this thesis, as an application of the Dp(G) classification,

5 The author is currently working about the simple non–simply–laced generalization.
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we discuss the properties of the rank 1 4d N = 2 SCFTs that are engineered by
F–theory on Kodaira singular fibers. This chapter have appeared in [23].

Our results are a manifestation of the incredible power of the representation–
theoretical cluster–algebraic approach to 4d N = 2 theories that follows from the
BPS–quiver property. Clearly, a lot of work remains to be done in this field of
research. We have the feeling that what we have obtained is just the tip of the
iceberg that can eventually lead to the classification of 4d N = 2 SCFTs.





Chapter 1

Quivers, BPS–states, and all that

1.1. BPS-states over the Coulomb branch

1.1.1. The Coulomb branch. Consider a 4d N = 2 theory with gauge sym-
metry group G of rank r. The moduli space of vacua of such theory is divided
in branches, that are labeled Coulomb, Higgs or mixed-Higgs, according to the
infrared phase they describe: The model is in a Higgs phase if it has a mass gap,
it is in a Coulomb phase if it has a U(1)r abelian gauge interaction mediated by r
massless photons, and it is in a mixed-Higgs phase if it has a Coulomb sub–sector
with U(1)r−k massless photons with 0 < k < r. This fact is mirrored by the geom-
etry of the moduli: a Coulomb branch is a rigid special kähler manifold, a Higgs
branch is a hyperkähler manifold, while a mixed-Higgs branch is a direct product
of a rigid special kähler manifold times a hyperkähler one.

From now on, we will focus on the study of the Coulomb branch of the moduli
space. In addition, we will assume that, for generic values of the mass deforma-
tions, the system we are describing has a U(1)f global flavor symmetry. Notice
that, for special values of the Coulomb moduli and of the mass deformations, both
the gauge and the flavor symmetries can enhance to bigger non-abelian groups
(typically in presence of orbifold singularities on the moduli).

1.1.2. The charge lattice and the quantum torus. At a generic point of
the Coulomb branch the internal degrees of freedom of the N = 2 multiplets of
particles of the system are r electric, r magnetic, and f flavor charges, that are
conserved and quantized.1 Quantization of the charges implies that they are valued
in an integer lattice of rank D = 2r + f . Such a lattice is called the charge lattice
of the theory, and denoted Γ ≃ ZD. The elements of the charge lattice are called
charge vectors. PCT–symmetry acts as an involution on Γ: if a charge γ ∈ Γ
belongs to the spectrum, so does −γ. Since we have an abelian U(1)r theory, we
have that electric and magnetic charges obey the Dirac quantization condition, i.e.

1 In our conventions the external degrees of freedom of a multiplet are the ones associated
with 4d N = 2 supersymmetry: the spin, the mass and the U(2)R charges.

7
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there exist an antisymmetric integral pairing

⟨−,−⟩Dirac : Γ −→ Z (1.1)

that makes Γ into a symplectic lattice.2 From the definition of the Dirac pairing
it follows a natural characterization of the flavor charges of the system: A charge
γf ∈ Γ is a flavor charge if and only if it belongs to the radical of the Dirac pairing:

γ ∈ Γ is flavor ⇐⇒ γ ∈ rad ⟨−,−⟩Dirac (1.2)

This statement is at this moment just a tautology, but in the next chapters we will
see how to use it to compute the rank of the flavor symmetry group of 4d N = 2
non–lagrangian SCFT’s.

To any symplectic lattice (Γ, ⟨−,−⟩Dirac) is naturally associated an algebra,
TΓ(q), the quantum torus of Γ. This is an infinite dimensional algebra generated
as a vector space by elements Yγ for γ ∈ Γ with relations

YγYγ′ ≡ q⟨γ ,γ
′⟩Dirac Yγ′Yγ ∀ γ, γ′ ∈ Γ (1.3)

On the algebra TΓ(q) we have an additional group structure defined by the normal
ordered product N : TΓ(q)× TΓ(q)→ TΓ(q):

Yγ+γ′ ≡ N [Yγ, Yγ′ ] ≡ q−
1
2
⟨γ ,γ′,⟩Dirac YγYγ′ (1.4)

N [−,−] is associative and commutative and it induces a group homomorphism in
between (Γ,+) and (TΓ, N [−,−]) that will be very useful in what follows.

1.1.3. BPS–states. The central charge of the N = 2 superalgebra gives a linear
map Z : Γ −→ C that depends on all the parameters of the theory (couplings,
masses, Coulomb branch parameters, etc.), and hence encodes the physical regime
in which we study the theory. Let {ei}Di=1 be a set of generators of Γ. By linearity
a central charge is specified by its values Zi ≡ Z(ei). Let us denote by M(γ) the
mass of a multiplet of charge γ ∈ Γ: the representation theory of the 4d N = 2
superalgebra entails that all multiplets undergo the BPS–bound

M(γ) ≥ | Z(γ) | . (1.5)

States that saturates this bound (i.e. that have mass equal to | Z(γ) |) are called
BPS–states or BPS–particles. In particular, BPS–states come in short N = 2

2 Recall the definition of Dirac pairing: let us label e⃗ the electric charges, m⃗ the magnetic
ones and f⃗ the flavor ones, then ⟨(e⃗1, m⃗1, f⃗1), (e⃗2, m⃗2, f⃗2)⟩Dirac ≡ e⃗2 · m⃗1 − e⃗1 · m⃗2. The Dirac
quantization condition is the statement that the Dirac pairing is always an integer.
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multiplets. As SU(2)spin × SU(2)R representations the short multiplets can be
always decomposed as

[(2,1)⊕ (1,2)]⊗ ω (1.6)

where ω is the Clifford vacuum of the multiplet. Let us list some examples:

• ω = (1,1): the half–hypermultiplet (2,1)⊕ (1,2);

• ω = (1,1)⊕ (1,1): the hypermultiplet 2× [(2,1)⊕ (1,2)];

• ω = (2,1): the vectormultiplet (1,1)⊕ (3,1)⊕ (2,2);

and so on. In each case consistecy with PCT symmetry constraints the BPS–
particles charges.BPS–particles such that ω transforms in a non–trivial represen-
tation of SU(2)R are called exotic. The absence of exotics conjecture of [25] is
the assertion that at generic point of the Coulomb branch the Clifford vacuum is
always a singlet of SU(2)R.

3

1.1.4.Wall–crossing and quantum monodromy. Consider now a state with
charge γ = γ1 + γ2 where γ1 and γ2 are charges of other states of the model. We
have that, in general

M(γ) ≥| Z(γ) |=| Z(γ1 + γ2) |≥| Z(γ1) | + | Z(γ2) | . (1.7)

If γ, γ1, and γ2 are all BPS the stability of the particle of charge γ is controlled
by Pitagora’s theorem: if the central charges Z(γ1) and Z(γ2) are aligned, the
BPS–particle of charge γ becomes unstable and can decay in its constituents γ1
and γ2. This decay may occur if and only if the two charges are non–local, i.e.
⟨γ1 , γ2⟩Dirac ̸= 0. The condition that pairs of mutually non–local central charges
align defines real–codimension one loci in the space of all possible central charges
CD = (Γ⊗C)∨, called marginal stability walls (or walls of the first kind), that may
intersect. Marginal stability walls cuts CD into domains of the first kind {Da}a. In
the interior of each such domain, the theory is in a different phase, characterized
by a given spectrum of stable BPS–particles. The set of charges of such stable
particles is a BPS–chamber of the charge lattice Cb ⊂ Γ. Going across a wall of
marginal stability a phase transition occurs, the wall–crossing phenomenon, and
the BPS–chamber changes, typically in a very discontinuous way.

A first formulation of the BPS spectral problem would be the following: De-
termine the sets of charges γ ∈ Cb and Clifford vacua ωγ (for all possible distinct
chambers) together with the set of domains of the first kind Da such that Cb is the
set of charges of the stable BPS–particles in that infrared phase. Notice that PCT

3 Very recently, a proof of this conjecture has been sketched in [24].
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gives a Z2 involution on any BPS–chamber Cb. There are some crucial subtleties
we are neglecting here for simplicity. We will discuss them and give a second
formulation of the spectral problem in the following subsection.

Any solution of the BPS spectral problem can be encoded in special inner
automorphism of the TΓ(q) algebra of §.1.1.2. In abstract algebra, an inner auto-
morphisms is described in terms of the adjoint action of an appropriate operator.
In our case this operator is called quantum monodromy or Kontsevich–Soibelman
operator, and denoted by M(q) [13, 26]. Consider a domain of the first kind Da.
This domain specifies a chamber Cb in the charge lattice, toghether with an order-
ing of {argZ(γ) ∈ S1 , γ ∈ Cb}. For each γ ∈ Cb, let jγ denote the higher spin in
the Clifford vacuum ωγ, then

M(q) ≡
−−→∏
γ∈Cb

jγ∏
s=−jγ

Ψ(qsYγ; q)
(−)2s (1.8)

where Ψ(X; q) =
∏

n≥0(1 − qn+1/2X) is the quantum dilogaritm function of Fad-
deev.4 The product is taken over all charges in Cb, and is ordered according to
argZ(γ). The KS wall–crossing formula is the statement that the conjugacy class
of such operator and of all of its powers does not depend on the particular Da nor
on the particular Cb we use to compute it: M(q) is a wall–crossing invariant.

Notice that if a chamber Cb has a Zm involution,5 by linearity of the central
charges, the corresponding domain of the first kind inherits such a symmetry. Cb

splits into m (identical) subchambers Sb: Cb =
⨿m−1

k=0 VkSb. Then M(q) can be
factored as a product of 1/m–fractional monodromy Y(q)

Y(q) ≡ V−1 ◦
−−→∏
γ∈Sb

jγ∏
s=−jγ

Ψ(qsYγ; q)
(−)2s (1.9)

and we have
M(q) = Y(q)m (1.10)

Since physics is PCT symmetric, the half–monodromy operator K(q) is always
defined.

If we can represent TΓ(q) over the operators of a Hilbert space H, the inner
automorphism M(q) will correspond to a (discrete) symmetry in O(H) and the

4 This is true for the examples that we are going to consider, but can be generalized in many
ways, for a discussion about this the reader is referred to [13,27,28].

5i.e. a linear transformation V : Cb → Cb s.t. Vm = id
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statement that the conjugacy class of M(q) is wall–crossing invariant implies the
invariance of the trace TrH(M(q)). A very nice representation of TΓ(q) was found
in [13] that allows to interpret TrHM(q) as a topological partition function. Here
we closely follow [28]. Let the model flow to the UV conformal point where its
global U(1)R symmetry is restored, let R be the corresponding charge. Notice
that since we are discussing a topological partition function it won’t depend on
the moduli. A Melvin cigar is a 3-manifoldMCq defined as a quotient of C×S1 with
respect to the relation (z, θ) ∼ (qz, θ + 2π). Now, let HR denote the generator
of the Cartan of the SU(2)R symmetry of the 4d N = 2 model. Consider the
topologically twisted theory on the background MCq ×R S1, where the R-twist is
given by the identification of the R − HR charge with the holonomy around this
second S1. Notice that by doing this we are breaking 4 of the 8 supercharges of
4d N = 2 susy. Let us define

Z(t, q) ≡ TrMCq×RS1(−1)F tR−HR ≡ ⟨(−1)F tR−HR⟩MCq×RS1 (1.11)

In this background one obtains a representation of TΓ(q) from the reduction of
the BPS–line operators of the 4d N = 2 theory down to the 1d theory on the S1

R–circle.6 Moreover,

TrH [M(q)]k = Z(t = e2πik, q) = ⟨(−1)F exp(2πkR)⟩MCq×RS1 (1.12)

This representation of M(q) has many interesting facets, let us discuss the two we
are going to use. On one hand it is interpreted as the character of a 2d RCFT, as
we are going to discuss in chaper 3. On the other hand it corresponds to the vev
of the operator (−1)F exp(2πR) in the topological background we defined.

Now, if the SCFT has R–charges of the form N/ℓ, with ℓ > 1, we predict via

(1.12), that Ad[
(
M(q)

)ℓ
] = idTΓ(q). This fact can be used to give a very non–trivial

check of all of these ideas, through the prediction of a duality in between non–
lagrangian 4d N = 2 SCFT and periodic TBA Y –systems as we will see in the
next chapter.

The invariance of the conjugacy class of the quantum monodromy operator
with respect to wall–crossing gives an overdetermined set of equations that the
BPS spectra have to meet at walls of marginal stability, and this results in the
wall–crossing formulae. Two distinct domains of the first kind Da1 and Da2 can
intersect only along their common boundary ∂Da1 ∩∂Da2 , where the BPS–spectra
undergo the phase transition. Whenever the intersection is along a single marginal
stability wall characterized by the requirement

Z(γ1)/Z(γ2) ∈ R≥0 γ1, γ2 ∈ Γ, (1.13)

6 For a more detailed and intriguing description of this story we refer to the original paper [13]
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the wall–crossing phase transition is determined by ⟨γ1 , γ2⟩Dirac: on one side of the
wall there is a chamber in which γ1 and γ2 do not have any bound–state, while at
the other side of the wall there will be all possible bound–states of γ1 and γ2. In
the following examples the dots on the extreme left and on the extreme right stand
for the other charges of BPS particles, shared by the two chambers (for simlpicity
we write only the half–monodromy):

• | ⟨γ1, γ2⟩Dirac |= 1: pentagon wall–crossing ;

· · ·Ψ(Yγ1)Ψ(Yγ2) · · · ∼= · · ·Ψ(Yγ2)Ψ(Yγ1+γ2)Ψ(Yγ1) · · ·

• | ⟨γ1, γ2⟩Dirac |= 2: Kronecker wall–crossing ;

· · ·Ψ(Yγ1)Ψ(Yγ2) · · · ∼= · · ·

(−→∏
n↗

Ψ(Ynγ1+(n+1)γ2)

)
×

×Ψ(q−1/2Yγ1+γ2)
−1Ψ(q1/2Yγ1+γ2)

−1

(−→∏
m↙

Ψ(Y(m+1)γ1+mγ2)

)
· · ·

where n (resp.m) runs increasing (resp. decreasing) over all positive integers.

• | ⟨γ1, γ2⟩Dirac |= m ≥ 3: m–Kronecker wall–crossing ; nobody has ever
worked out the full wall–crossing formula in this case.7

In principle, having solved the BPS spectral problem in one given domain of
the first kind, by successive wall–crossings one can reach any other domain.

1.1.5. The quantum Shottky problem. In the above discussion we have com-
pletely missed one fundamental fact: the central charges are functions of the phys-
ical parameters of the theory. Let P be the subspace of the space of parameters of
the theory that corresponds to physically consistent quantum field theories. The
central charge Z define a map

ℑ : P → (Γ⊗ C)∨ ≃ CD λa 7→ Zi ≡ Z(ei) (1.14)

Each element of the space (Γ⊗ C)∨ gives a formal central charge: the only phys-
ically allowed ones are contained in ℑ(P). Under which condition ℑ(P) has
codimension zero? Assume for the moment that the theory admits a lagrangian

7 The formula is given implicitly: see [29]. This is a very active field of research: the last
pubblication about this problem is [30].
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formulation. The dimension of the parameter space, in this case, can be computed
as

dim P = #(gauge couplings) + dim (Coulomb branch) + #(masses)

= #(simple factors of G) + r + f
(1.15)

On the contrary the rank of the charge lattice is D = 2r + f . Thus

codim P = r −#(simple factors of G). (1.16)

This equality holds in a lagrangian corner of the parameter space: for a non–
lagrangian one we expect that it becames an inequality,

r −#(simple factors of G) ≤ codim P, (1.17)

since there could be more complicated mechanisms that lead to forbidden direc-
tions. From this fact it follows that for a given theory all possible chambers
corresponds to physically realized BPS chambers if and only if G = SU(2)k. Such
4d N = 2 systems are called complete for this reason. For all other 4d N = 2
theories ℑ(P) has non–zero codimension in (Γ ⊗ C)∨, and therefore not all pos-
sible chambers are physical. To determine if a chamber is physical or not is a
Schottky–like problem we will refer to as the quantum Schottky problem.

The refined formulation of the BPS spectral problem is the following: Deter-
mine the sets of charges γ ∈ Cb and Clifford vacua ωγ for the set of domains of the
first kind Da ⊂ (Γ ⊗ C)∨ such that 1.) ℑ(P) ∩ Da ̸= 0, and 2.) Cb is the set of
charges of stable BPS–states in that infrared regime.

1.2. The BPS–quiver property.

1.2.1. BPS–quivers. Following [7], we say that a 4d N = 2 theory has the BPS–
quiver property if it exists a set {ei}Di=1 of generators of its charge lattice Γ such
that the charge vectors γ ∈ Γ of all BPS–states satisfy

γ ∈ Γ+ or γ ∈ −Γ+ (1.18)

where Γ+ ≡
⊕D

i=1 Z≥0 ei is a strict convex cone in ZD. In a regime specified by
the central charge Z(·), without loss of generality by PCT–symmetry, the {ei}Di=1

are required
0 < argZ(ei) < π for all i. (1.19)

In a sense, Z(·) selects a preferred cone of particles Γ+, such that Z(Γ+) is strictly
contained in a convex domain of the upper half–plane ImZ ≥ 0. The requirements
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in eqns.(1.18)–(1.19) fixes the basis {ei}i [8] uniquely (up to permutation of the
elements), but, physics being PCT invariant, the splitting in between particles
and anti–particles of (1.19) is artificial:8 this ambiguity plays a crucial rôle in the
theory that will be discussed in §.1.3. In the rest of this section assume that we
have chosen the (1.19) splitting (i.e. the preferred cone Γ+).

Eqn.(1.18) is a non-empty requirement on the BPS–spectrum of the theory:
let us discuss a necessary condition. Let

Θ ≡
∪

γ∈ BPS

{argZ(γ)} ⊂ S1. (1.20)

The BPS–quiver property entails that Θ is not dense in S1. Counterexamples
exist even in the class of complete theories. Let Cg≥3,0 denote a Riemann surface
with genus g ≥ 3 and no boundaries nor punctures. All class S[A1, Cg>3,0] do not
have BPS–quivers, as follows from classification [7]. These theories are special
because all their deformations are in terms of purely marginal operators [6]. The
fact that a theory admit deformations that are not purely marginal seems to be
the condition that guarantees that there are regions of the moduli in which the
BPS–quiver property holds. A well–known example of this feature of 4d N = 2
systems is N = 4 SU(2) SYM. Such theory has a known BPS–spectrum such that
Θ is dense in S1, but, by giving a mass to the adjoint N = 2 hypermultiplet sitting
in the N = 4 SU(2) vectormultiplet, one flows to the N = 2∗ SU(2) theory, that,
in turn, has the BPS–quiver property.9

A sufficient (not–necessary) condition for the BPS–quiver property is that the
4d N = 2 system admits a geometric engineering in terms of type IIB superstrings.
This idea will be made precise in the next chapters.

A quiver is a quadruple Q ≡ (Q0, Q1, s, t) where Q0 and Q1 are two countable
discrete sets that we will call, respectively, the set of nodes and the set of arrows
of Q, while s, t are two maps from Q1 to Q0 that to each arrow α in Q1 associate,
respectively, the node where α starts, s(α), and the node where α terminates, t(α).
Sometimes it is convenient to represent Q with a drawing where the elements of
Q0 (resp.of Q1) are represented as points of a plane (resp.as arrows in between
these points). The BPS–quiver of the model is a quiver constructed as follows: to

8 To get an intuition about this one can think about the representation theory of Lie algebras:
Γ is the like a weight lattice, Γ+ is like a Weyl chamber of the weight lattice, and a BPS–chamber
is like the set of weights of an (irreducible) representation. The spectral problem is really a
problem in representation theory: each physical regime of the model corresponds to a possible
representation of it.

9 The quiver with superpotential for SU(2) N = 2∗ was determined in [8] and [12].
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each generator ei of Γ+ we associate a node, and we connect two nodes ei and ej
with

Bij ≡ ⟨ei , ej⟩Dirac (the exchange matrix) (1.21)

arrows that goes from ei to ej if Bij > 0, and in the opposite direction otherwise.

1.2.2. The path algebra of a quiver. Let a and b be two nodes of Q0: a path
from a to b is a sequence of arrows {αn}n=1,...,ℓ such that s(α1) = a, t(αℓ) = b, and
s(αn) = t(αn−1); it is denoted by (b | αℓ · · ·αnαn−1 · · ·α1 | a) (in the rest of this
thesis we will shall omit the extrema). The length of a path is the number ℓ of
elements of the sequence of arrows (counted with repetition). A path of length ℓ
from a node to itself is called an ℓ-cycle or simply a cycle. The set of all paths
in a quiver has the structure of an algebra, the path algebra of Q. Over the field
C the path algebra, denoted CQ, is the C-vector space generated by the set of all
paths of Q endowed with multiplication

(d | βℓ′ · · · β1 | c)(b | αℓ · · ·α1 | a) ≡ δbc(d | βℓ′ · · · β1αℓ · · ·α1 | a), (1.22)

If a path algebra has a cycle, then it is infinite dimensional as a C–vector space,
the typical example being the path algebra of the 1-loop quiver

C ( • Xee ) ≡ C[X] (1.23)

where C[X] is the algebra of polynomials in one complex variable. A representation
or a module X of CQ is simply the assignment of a C-vector space Xi to each node
i ∈ Q0 and of a morphism of vector spaces Xα : Xs(α) → Xt(a) for all α ∈ Q1.

10

The dimension vector of a representation X is

dimX ≡ (dim(Xi))i∈Q0 ∈ (Z≥0)
#Q0 (1.24)

LettingX,Y be two representations ofQ, amorphism f : Y → X is the assignment
of linear maps fa : Ya → Xa for all a ∈ Q0 such that the following diagram

Ys(α)
fs(a)

//

Yα
��

Xs(α)

Xα

��

Yt(α)
ft(a)

// Xt(α)

(1.25)

10Notice that CQ can be interpreted as a small category whose objects are the nodes and
whose morphisms are paths. A representation of CQ is then simply a functor from Q to the
category of C-vector spaces VectC that maps the nodes i ∈ Q0 to vector spaces Xi and arrows
i

α−→ j to elements in Hom(Xi, Xj), this point of view will turn out to be very useful when we
will get to the meta-quiver approach.
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commutes. A subrepresentation is an injective morphism. Notice that representa-
tions form an abelian category: rep(Q). Path of lenght zero are called lazy paths,
and corresponds to the primitive orthogonal idempotents of the algebra CQ: these
elements are denoted ei, i ∈ Q0 and the identity of the algebra can be written
uniquely as 1 =

∑
ei. The modules S(ei) ≡ Cei are the simple objects of rep(Q).

1.2.3. BPS–states and representations. Given the choice of the system of
generators of the charge lattice {ei}Di=1, let

γ =
D∑
i=1

Ni ei ∈ Γ+ (Ni ≥ 0) (1.26)

be the charge vector of a BPS particle. To study the properties of this particle, one
reduce the dynamics of the system on its world–line and studies the resulting 1d
quantum mechanics. The particle being BPS, one obtains a 1d super–quantum–
mechanics (SQM) with 4 supercharges. If the theory has the BPS–quiver property,
this 1d theory is a quiver SQM [8, 31], defined as follows: one has a gauge group
U(Ni) for each node ei of the quiver, and chiral (super)fields Φα in the bifunda-
mental representation (N i, Nj) for each arrow α : ei → ej. The kinetic term is
canonical and in addition one has Fayet–Ilyopoulos (FI) (complex) terms associ-
ated with the U(1) factors of the gauge groups.11 If Q contains a cycle αℓ · · ·α1,
the 1d N = 4 quiver SQM have non–trivial gauge invariant operators

tr[Φαℓ
· · ·Φα1 ]. (1.27)

In such a case, in addition to the FI terms, the 1d system can have a superpotential
V that is obtained as a linear combination with complex coefficients of terms like
(1.27) that correspond to cycles. In particular, for a generic superpotential V , the
2-cycles become mass terms, and the corresponding superfields can be integrated
out, being irrelevant for the description of the infrared properties of the model.
Notice that for this reason the BPS–quiver we defined are 2-acyclic, i.e. have no
1-cycles nor 2-cycles. We stress that V is not uniquely determined by the quiver.12

Typically, one has to check if the given superpotential reproduce the correct physics
for the 4d model.

The stability of the BPS–particle (1.26) is controlled by the FI terms of the
1d SQM: according to their value the model can have susy vacua or not. The
degrees of freedom of a BPS–particle of charge γ ∈ Γ+ arise quantizing the Kähler

11 The FI moduli of the 1d system are fixed by the central charge Z(γ).
12 As we are going to discuss in §.1.3.3, for a theory that admits a finite BPS–chamber made

only of hypermultiplets the quiver determines a generic V , i.e. one such that all 2–cycles can be
always integrated out.
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moduli spaceM(γ) of susy vauca of the 1d quiver SQM on its worldline: If the
1d system does not have susy vacua, we are in a phase of the theory in which the
BPS–particle of charge γ is unstable [31]. By standard geometric invariant theory,
M(γ) can be presented in two equivalent ways: either it is described as the solution
of the F–term and D–term equations of motion modulo the action of the unitary
gauge groups

∏D
i=1 U(Ni), or it is given as the solution of the F–term equations

modulo the action of the complexified groups
∏D

i=1GL(Ni,C) together with a
stability condition. This second point of view is the bridge with representation
theory: let us describe it in full details.

Let Q denote the BPS–quiver of the theory. The charge vector of the BPS–
state (1.26) is mapped in the dimension vector of a representation X ∈ rep(Q)
(Ni ≡ dim(Xi)). The complexified gauge groups are, from this point of view,
simply the possible rotations of the basis of the vector spaces Xi associated to the
nodes of Q:

GL(X) ≡
D∏
i=1

GL(dim(Xi),C). (1.28)

The “bosonic” part of the chiral fields Φα is the representation of an arrowXα. Two
representations are isomorphic iff they are in the same GL(X) orbit. Let V be the
superpotential of the 1d SQM. The F–term equations of motion can be interpreted
as relations in CQ that generate an ideal ∂W ⊂ CQ. X ∈ rep(Q) is a solution of
the F–term equations if X(∂W) = 0, in other words it is a representation of the
algebra CQ/∂W . The modules of CQ/∂W form an abelian subcategory of rep(Q)

rep(Q,W) ≡ {X ∈ rep(Q) such that X(∂W) = 0} . (1.29)

Forgetting about dimensions the 1d SQM superpotential V can be thought as a
representation of a superpotential W defined directly on CQ:

V (X) ≡ trX(W). (1.30)

TheW so defined is named after Derksen–Weyman–Zelevinsky in the math litera-
ture [32].13 We will call the pair (Q,W) a quiver with superpotential. The central

13 We stress that in full mathematical rigor one should not work with CQ/∂W, but with

P(Q,W), the completed path algebra ĈQ, modulo the closure of the jacobian ideal in the ℓ–adic

topology of ĈQ (ℓ is the lenght of a path). If there exist a n > 0 such that all paths of lenght
ℓ ≥ n of CQ belongs to ∂W, the two algebras coincide. Since this happens in most of the
applications discussed in this thesis, we will avoid to mention P(Q,W). The reader should just
remember that what we really mean with the category rep(Q,W) might not always coincide with
what is written in eqn.(1.29).
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charge of the 4d N = 2 superalgebra is extended by linearity to all representations
of Q:

Z(X) ≡ Z(dim(X)) ≡
D∑
i=1

dim(Xi) · Z(ei), (1.31)

and we say that X ∈ rep(Q,W) is stable iff

0 ≤ argZ(Y ) < argZ(X) < π ∀ 0 ̸= Y ⊂ X. (1.32)

A stable representation is, in particular, an indecomposable representation.14 Not
all indecomposables are stable: stability entails that an indecomposable represen-
tation is, moreover, a brick, that is,

X stable ⇒ EndX = C. (1.33)

Being a brick is also a sufficent condition for the given representation to be stable
in some chamber [33].

In a regime specified by the central charge Z(·), a stable BPS–state with charge
vector γ corresponds to the quantization of

M(γ) ≡
{
X ∈ rep(Q,W) stable and such that γ = dim(X)

}/
GL(X). (1.34)

In particular, the Clifford vacuum ωγ is given in terms of the Lefshetz and Hodge
SU(2) decompositions of Hp(M(γ),Ωq

M(γ)): the absence of exotics is equivalent

to the statement that only for p = q the above cohomology is non–trivial,15 and

ωγ = (dim(M(γ)) + 1,1) as a rep. of SU(2)spin × SU(2)R. (1.35)

Representations such thatM(γ) is a point are called rigid : since dim(M(γ)) = 0,
these corresponds to hypers. IfM(γ) ≃ P1, we have a vectormultiplet, and so on
for higher spin states. The BPS spectral problem is now formulated as a problem
in representation theory.

A last remark is in order: we are counting BPS–states up to PCT. This leads to
some subtleties that are better understood via some simple examples. The BPS–
hypers comes as a doublet of half–hypers to preserve PCT. We will have γ ∈ Γ+

and its anti–particle in −(Γ+). Quantizing M(γ) we will find ωγ = (1, 1). The
other direct summand in the Clifford vacuum is associated with the anti–particle
of charge −γ. If the model admits genuine half–hypers, they come in quaternionic
representations of G and we will see only half of their weights in Γ+, the other half
will be in −(Γ+). Of course the same is true for a vectormultiplet in the adjoint:
we will find P1–families of representations only for the positive roots of G.

14 i.e. it cannot be written as a direct sum. Indeed if X = X1 ⊕X2, then both X1 and X2 are
subrepresentations and Z(X) = Z(X1) + Z(X2), therefore X will never be stable.

15 A proof of this fact is non–trivial and it was sketched in [24]
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1.3. Mutations

As we have stressed in §.1.2.1 the definition of a BPS–quiver with superpotential
(Q,W) for a model depends on an arbitrary choice about the splitting of the
spectrum into particles and antiparticles. We are now in position to make that
dependence explicit. Suppose we have a 4d N = 2 model which has the BPS
quiver property. Let Γ be its rank D charge lattice. Fix a half–plane Hθ = {z ∈
C : Im(e−iθz) > 0} such that no BPS particle has central charge laying on its
boundary (θ ∈ S1 \Θ). We say (conventionally) that the BPS states with central
charges in Hθ are particles, while those with central charges in −Hθ are their
PCT–conjugate anti–particles. Each choice of Hθ leads to:

• a preferred choice of generators {e(θ)i }Di=1

• a strict convex cone Γθ ⊂ Γ that has the form Γθ ≃
⊕D

i=1 Z≥0 e
(θ)
i

• a quiver with superpotential (Qθ,Wθ) encoded by the exchange matrix

B
(θ)
ij ≡ ⟨e

(θ)
i , e

(θ)
j ⟩Dirac

The BPS particles (as contrasted with antiparticles) correspond to moduli spaces
of stable representations X ∈ rep(Qθ,Wθ). A representation X is stable iff, for all
non–zero proper subrepresentation Y , one has arg(e−iθZ(Y )) < arg(e−iθZ(X)),
where we take arg(e−iθHθ) = [0, π]. The charge γ ∈ Γθ of the BPS particle is given

by the dimension vector
∑

i dimXi e
(θ)
i of the corresponding stable representation

X. In particular, the representations Si with dimension vector equal to a generator
e
(θ)
i of Γθ are simple, and hence automatically stable for all choices of the function
Z(·) (consistent with the given positive cone Γθ ⊂ Γ): these BPS states necessarily
hypermultiplets, since Qθ has no loops.

Choosing a different angle θ′, we get a convex cone Γθ′ with a different set

of generators e
(θ′)
i , and correspondingly we get another quiver with superpotential

(Qθ′ ,Wθ′) and a different category of representations rep(Qθ′ ,Wθ′), but the physics
does not change: the BPS–spectrum of the chamber cannot depend on our choice
of θ. Therefore, the physics of the Coulomb phase of a 4d N = 2 model in a regime
specified by a central charge Z does not correspond to a unique pair (Q,W), but
to an equivalence class of such quivers with superpotentials. This fact is perfectly
consistent with physics: it is a Seiberg–like duality [34, 35] in the context of the
1d N = 4 quiver SQM systems.

Let us make more concrete the statements we have made above. The BPS
particle of larger (resp.smaller) arg(e−iθZ(γ)) has a charge γ which has to be
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a generator e
(θ)
i1

of Γθ (associated to some node i1 of Qθ). We may tilt clockwise

(resp.anti–clockwise) the boundary line ofHθ just past the point Z(e
(θ)
i1
), producing

a new half–plane Hθ′ . In the new frame the state with charge e
(θ)
i1

is an anti–

particle, while its PCT–conjugate of charge −e(θ)i1 becomes a particle, and in facts

a generator of the new positive cone Γθ′ . The generators e
(θ′)
i of Γθ′ are linear

combinations with integral coefficients of the old ones e
(θ)
i . For the 1d N = 4 SQM

this tilting of Hθ corresponds to a Seiberg–like duality, that in mathematics [32]
is called the basic quiver right (resp.left) mutation of Qθ at the i1 node, written
µRi1 (resp.µLi1). Notice that our conventions differs from those of [8].16 The explicit

expression of the e
(θ′)
i ’s in terms of the e

(θ)
i is

e
(θ′)
i = µRi1

(
e
(θ)
i

)
=

{
−e(θ)i1 if i = i1

e
(θ)
i +max{B(θ)

i1 i
, 0} e(θ)i1 otherwise.

(1.36)

for a right mutation, while for a left mutation one has

e
(θ′)
i = µLi1

(
e
(θ)
i

)
=

{
−e(θ)i1 if i = i1

e
(θ)
i +max{B(θ)

i i1
, 0} e(θ)i1 otherwise.

(1.37)

Notice that, as expected

µLi ◦ µRi = µRi ◦ µLi = idΓ. (1.38)

The mutated quiver Qθ′ = µi1(Qθ) is specified by the exchange matrix B
(θ′)
ij ≡

⟨e(θ
′)

i , e
(θ′)
i ⟩Dirac. One can check by direct computation that both for left and right

mutations at i1 we have

B
(θ′)
i j =

{
−B(θ)

ij if i = i1 or j = i1

B
(θ)
i j + sign(B

(θ)
i i1
)max{B(θ)

i i1
B

(θ)
i1 j
, 0} otherwise

(1.39)

where there is no summation over i1. This is expected: if we switch all particles
with antiparticles, the left mutation for the particles is the right mutation for the
antiparticles and viceversa. The operation (1.39) is called a basic quiver mutation
at the node i1, and denoted µi1 . Notice that, coherently with (1.38), we have

µi ◦ µi = idQ. (1.40)

We stress that while µ2
i is the identity at the quiver level, the square of a left

or a right mutation is a non–trivial transformation of Γ that leads to an element

16 We call a right mutation one that tilts the plane Hθ clockwise to the right, while in [8] this
is a left mutation because the particle rotates away from the left.
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of the mutation class that is clearly forbidden physically. For a generic quiver
superpotentialWθ, a basic quiver mutation µi1 coincide with a Seiberg–like duality
for the 1d N = 4 SQM (which is equivalent to the the DWZ rule [32]).17 Let us
recall it briefly:

• Start with the quiver (Qθ,Wθ), and reverse the orientation of all arrows
through the node i1

· · · α // i1
β

// · · · �� · · · i1
α∗

oo · · ·β∗
oo

• For all couples of such arrows add a new arrow to the quiver [βα] : s(α) →
t(β) (this is the meson field of Seiberg–duality) and replace in the superpo-
tential Wθ all occurences of the product βα with the corresponding meson
[βα]

• Add to the superpotential the term α∗β∗[βα] for each 3-cycle generated in
this way

• Integrate out all possible massive fields. If the superpotential Wθ is suf-
ficiently generic, one can integrate out all 2-cycles generated by the above
procedure, and the quiver obtained in this way is precisely Qθ′ = µi1(Qθ) [32].
The resulting on-shell superpotential is Wθ′ and one writes

(Qθ′ ,Wθ′) = µi1(Qθ,Wθ)

As we have discussed, if we move around in the moduli space, the central
charges vary. Fix a given Hθ. Walls of the first kind do not affect the quiver
description: we have simply a change in the stability conditions. But it may
happen that, moving along in the moduli space, the leftmost or the rightmost
generator exits Hθ. In such a case the quiver description we are adopting is no
longer valid and we have to mutate the quiver accordingly: different quivers with
superpotential related by mutation have to be adopted to give a description that
covers the whole moduli space. One can think of the various quiver descriptions
as if they are like local charts that describe several chambers, but not the totality
of them. Two quivers that can be reached through a sequence of mutations are
said to belong to the same mutation class. From the quantum Shottcky problem
we discussed in §.1.1.5, it follows that the moduli space is covered only by a
proper mutation–connected subspace of the quiver mutation class. Since, for non–
complete theories ℑ(D) has nonzero codimension, not all formal BPS–chambers

17The rule is similar to the one for 4d N = 1 (ordinary) quiver theories, but there are no
constraints from anomaly matching.
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in (Γ ⊗ C)∨ are physical, and therefore not all possible elements of the mutation
class can be ‘reached’ by crossing physical walls of the second kind. On contrast,
for complete theories that have the BPS–quiver property all possible elements of
the mutation class are physical. Indeed, complete theories have very special BPS–
quivers: a theory is complete if and only if its quiver has a FINITE mutation class,
and this property is strong enough to fully classify them [7].

1.3.1. Quantum mutations. In this section we work at a fixed θ. Let e
(θ)
i ≡ ei

and Bij ≡ B
(θ)
ij . Using the group homomorphism induced by the normal ordered

product (1.4) to embed Γ in TΓ(q), we see that the BPS–quiver property gives a
preferred minimal set of generators for Γθ in TΓ(q), Yi ≡ Yei , i = 1, ..., D, with
relations

Yi Yj = qBi jYj Yi (1.41)

By a quantum mutation of the quantum torus algebra we mean the composition
of an (ordered) sequence of elementary mutations at various nodes of Q. The
elementary quantum mutation, Qk, at the k–th node of the 2–acyclic quiver Q is
the composition of two transformations [13,36–39]:

(1) a basic mutation of the quiver at the k–th node, Q→ µk(Q) together with
a suitable mutation of the superpotential, W → µk(W) [32, 40, 41]. As we have
discussed the mutation of the quiver Q → µk(Q) follows from a change of basis
in the charge lattice Γ, which corresponds to choosing a different set of generators
of TΓ(q). Again via the group homomorphism induced by the normal ordered
product (1.4) we lift left and right mutations to the generators of the quantum
torus:

µRk (Yi) ≡ YµRk (ei) = q−
1
2
Bk j [Bk j ]+YiY

[Bk j ]+
k

µLk (Yi) ≡ YµLk (ei) = q−
1
2
Bk j [Bj k]+YiY

[Bj k]+
k

(1.42)

µk is not in general an automorphism of the quantum torus algebra; a compo-
sition of µk’s is an algebra automorphism iff it is the identity on the underlying
quiver Q since only in this case it leaves invariant the commutation relations.

(2) the adjoint action on Tq(Γ) of the quantum dilogarithm18 of Yk

Yγ 7→ Ψ(Yk; q)
−1 Yγ Ψ(Yk; q). (1.43)

Thus, explicitly, the elementary quantum cluster mutation at the k–th node is
(we leave as understood the left or right index)

Qk = Ad(Ψ(Yk)
−1) ◦ µk. (1.44)

18 The same specification we did in footnote 4 carries over to this case.
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We stress that while µ2
k is the identity at the quiver level, µ2

k(Q) ≡ Q, the
square of a left or a right mutation is a non–trivial transformation on the set of
generators:

(µR,Lk )2 : Yi 7→ q−(Bi k)
2/2 Yi Y

±Bi k
k ≡ Yei±Bi kek ≡ tR,Lk (1.45)

These are called the (right and left) Seidel–Thomas twists [39]. The elementary
quantum mutations, instead, are involutions of TΓ(q), i.e. one has the identity
[13,36–39]

Q2
k = identity on TΓ(q). (1.46)

Therefore, quantum mutations are the correct lift to the quantum torus of the
combinatoric (cluster) structure of basic mutations.

1.3.2. The mutation algorithm. Since the physics does not depend on the

conventional choice of the half plane Hθ, the e
(θ)
i ’s should always be charge vectors

of stable BPS hypermultiplets. The idea of the mutation algorithm is to get the
full BPS spectrum by collecting all states with charges of the form e

(θ)
i ’s for all θ.

It is easy to see that this gives the full BPS spectrum provided it consists only of
hypers (i.e. rigid reps) and their number nh is finite.

The mutation algorithm is the following. Chose a planeHθ and a corresponding
preferred set of generators of Γ, {e(θ)i }. Find the rightmost (resp.leftmost) state

in the corresponding Hθ plane. Do the right (resp. left) mutation at e
(θ)
i1
. The

new generators e
(θ′)
i are also charge vectors of stable hypers. We can reiterate the

procedure by mutating Qθ′ at the node i2 corresponding to the hypermultiplet
with maximal (resp.minimal) arg(e−iθ

′
Z(γ)). Again we conclude that the BPS

spectrum also contains stable hypers with charges e
(θ′′)
i . Now suppose that after

m right (resp. left) mutations we end up with the positive cone Γθ(m) ≡ −Γθ; we
conclude that θ(m) = θ + π and hence, with our sequence of m half–plane tiltings,
we have scanned the full complex half–plane Hθ, picking up all the BPS particles,
one at each step, according to their decreasing (resp.increasing) phase order in the
central charge plane. Thus, whenever this happens, we conclude that we have a
BPS chamber in which the BPS spectrum consists of precisely m hypermultiplets.
This happens iff there is a sequence of m quiver mutations such that [8]

µim ◦ µim−1 ◦ · · · ◦ µi2 ◦ µi1
(
e
(θ)
i

)
= −π

(
e
(θ)
i

)
∀ i, (1.47)

with ik ̸= ik+1 ∀ k = 1, ...,m − 1, and π a permutation of the D generators e
(θ)
i .

If, for the given quiver Qθ, we are able to find a sequence of quiver mutations
satisfying equation (1.47) (for some π ∈ GD) we may claim to have found a finite
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BPS chamber consisting of m hypermultiplets only, and list the quantum numbers
γℓ ∈ Γ of all BPS particles

γℓ = µiℓ−1
◦ µiℓ−2

◦ · · · ◦ µi1
(
e
(θ)
iℓ

)
ℓ = 1, 2, . . . ,m. (1.48)

In the the rest of this thesis we shall work always at fixed θ, and write the positive
cone generators simply as ei, omitting the angle.

For many purposes, it is convenient to rephrase the algorithm in the language
of the previous section. If the sequence of basic quiver mutations µia satisfies
eqn.(1.47), from the associated composition of basic quantum cluster mutations
one can read off directly the expression of the adjoint action of the half–monodromy
operator in that chamber

Qim ◦ Qim−1 ◦ · · ·Qi2 ◦ Qi1 = Iπ ◦ Ad(K(q)) (1.49)

where K(q) is the quantum half–monodromy and Iπ is the unitary operator acting
on the generators Yi of the quantum torus algebra of Qθ as

Iπ Yi I
−1
π = Y −1

π(i). (1.50)

The (finite) BPS spectrum may be read directly from the factorization of K(q) in
quantum dilogaritms [13], which is explicit in the lhs of eqn.(1.49).

There are a few strategies to find particular solutions to eqn.(1.47). An ele-
gant one is that of complete families of sink/source factorized subquivers of Qθ

introduced in [14]; this is particularly convenient when the factorized subquivers
are Dynkin ones endowed with the standard Coxeter sink/source sequences that
we are going to review in §.1.3.4

For general quivers Q, we may perform a systematic search for solutions on a
computer; Keller’s quiver mutation applet [42] is quite helpful for both procedures.
In doing this, it is convenient to rephrase eqn.(1.47) in terms of tropical y–seed
mutations [43–45]. We recall that the tropical semifield Trop(u1, u2, . . . , ur) is the
free multiplicative Abelian group generated by the indeterminates ui endowed with
the operation ⊕ defined by(∏

ulii

)
⊕
(∏

umi
i

)
=
∏

u
min(li,mi)
i . (1.51)

To a BPS state of charge
∑

i niei we associate the tropical y–variable
∏
uni
i ∈

Trop(u1, u2, . . . , ur). We start with the initial y–seed in which we assign to the
i–th node of Q the variable associated to the generator ei of the positive cone,
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namely yi(0) ≡ ui, and we perform the sequence of mutations in eqn.(1.47) on the
y–seed using the Fomin–Zelevinski rules

yj(s) =

yis(s− 1)−1 if j = is

yj(s− 1) yis(s− 1)[Bis j(s−1)]+

(
1⊕ yis(s− 1)

)−Bis j

otherwise.
(1.52)

(here s = 1, 2, . . . ,m, and [x]+ = max(x, 0)). Since the tropical variables yis(s− 1)
correspond to BPS particles with charges in the positive cone Γθ, one has 1 ⊕
yis(s− 1) ≡ 1, and eqn.(1.52) reduces to the transformation rule (1.36). In terms
of tropical y–variables, then eqn.(1.47) becomes

yj(m) = yπ(j)(0)
−1, (1.53)

supplemented by the condition that the tropical quantities yis(s−1) are monomials
in the ui’s.

In conclusion: given a solution to eqn.(1.47) we have determined a (maybe
formal) BPS chamber Cfin containing finitely many hypers, as well as the quan-
tum numbers Γ|Cfin

of all these hypers. In addition, the algorithm specifies the
(cyclic) phase order of the central charges Z(γ) of the BPS states. From this last
information we may read the domain Dfin ⊂ CD ≡ (Γ ⊗ C)∨ of central charges
Z(·) ∈ (Γ ⊗ C)∨ for which Cfin is the actual BPS chamber, that is, we may de-
termine the region in the space of the ‘physical’ parameters of the theory which
corresponds to the finite chamber Cfin: in the notation of §.1.1.5, it will be simply
ℑ(P) ∩ Dfin.

At a generic point in Dfin the unbroken flavor symmetry is just U(1)rankF . At
particular points in parameter space the flavor symmetry may have a non–Abelian
enhancement. Let Ffin be the flavor symmetry group at a point of maximal en-
hancement in the domain Dfin. Clearly, the BPS hypers of Cfin should form repre-
sentations of Ffin. The fact that they do is a non–trivial check of the procedure.

1.3.3. A remark on quiver superpotentials. Given a solution to (1.47) the
BPS–spectrum is determined implicitly in all other chambers by wall–crossing.
This is rather remarkable: We have seen that most representations of the quiver are
unphysical, since they do not solve the F–term equations of motion. In contrast,
the BPS–spectrum in a finite chamber made only of hypers has been determined
using only the combinatorics of quiver mutations that are independent of the
superpotential, unless the latter is not sufficiently generic. This entails that, for
theories that have finite chambers made only of hypermultiplets, the BPS–quiver
generic superpotential is in a sense ‘predicted’ by combinatorics.
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1.3.4. Factorized–sequences of mutations. A node of a quiver i ∈ Q0 is called
a source (resp.sink) if there is no arrow α ∈ Q1 such that t(α) = i (resp.s(α) =
i). Let us notice here that with our conventions (1.36)–(1.37) a right (resp.left)
mutation on a node i that is a sink (resp.source) have the only effect of reversing the
sign of the generator ei leaving all the other generators unchanged. A sequence
of nodes Λ = {i1, i2, · · · , ik} of a quiver Q is called a sink sequence (resp. a
source sequence) it the is node is a sink (resp. a source) in the mutated quiver
µis−1µis−2 · · ·µi1(Q) for all 1 ≤ s ≤ k. Let mΛ = µikµik−1

· · ·µi1 be the mutation
defined by the sequence Λ. A sink (resp. source) sequence Λ is called full if contains
each node of Q exactly once. If Q is acyclic, and Λ is a full source sequence, the
corresponding right mutation sequence acts on the generators of the charge lattice
as the Coxeter element ΦQ : Γ → Γ, while Λ−1 is a full sink sequence and the
corresponding right mutation sequence acts as the inversion.

Given a subset S of the set of nodes Q0, we introduce the notation Q|S to
denote the full subquiver of Q over the nodes S. Consider the node set Q0 as the
disjoint union of a family of sets {qα}α∈A:

Q0 =
⨿
α∈A

qα (1.54)

To each subset of nodes qα we associate the full subquiver Q|qα of Q. Given a node
i ∈ Q0, we will denote qα(i) the unique element in the family that contains node i.

Now, consider a finite sequence of nodes Λ = {i(1), i(2), . . . , i(m)}, i(ℓ) ∈ Q0

such that
mΛ ≡ µi(m) ◦ · · · ◦ µi(1) (1.55)

is a solution to (1.47). Λ is said to be source-factorized of type {Q|qα}α∈A if

i) For all ℓ = 1, 2, ...,m, the ℓ-th node in the sequence i(ℓ) is a sink in

µi(ℓ−1) ◦ · · · ◦ µi(1)(Q)
∣∣
{i(ℓ)}∪Q0\qα(i(ℓ))

(1.56)

ii) For all ℓ = 1, 2, ...,m the ℓ-th node in the sequence i(ℓ) is a source in

µi(ℓ−1) ◦ · · · ◦ µi(1)(Q)
∣∣
qα(i(ℓ))

(1.57)

In our conventions (1.36)–(1.37) source factorized sequences of mutations are ap-
propriate for right mutations. For the dual left mutations one shall invert sources
with sinks in i) and ii) above.19

19 For saving time and print in view of the applications that we have in mind, here we give
just a simplified version: the interested reader is referred to the original paper [14] for the whole
beautiful story.
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A source-factorized sequence is in particular Coxeter-factorized of type (Q|qα)α,
provided all Q|qα are Dynkin ADE quivers with alternating orientation. If this
is the case, let us denote by Gα the alternating quiver Q|qα . A sequence of right
mutations that is Coxeter–factorized is automatically a solution of (1.47). In
particular, if all the alternating ADE subquivers of the family are equal to a given
G, one has a 1/h(G) fractional monodromy. For a Coxeter–factorized source–
sequence, by the right mutation rule (1.36) combined with i), ii), each element of
the sequence corresponds to the action of the simple Weyl reflection

si(ℓ) ∈Weyl(Q
∣∣
qα(i(ℓ))

) (1.58)

on the charges on nodes i ∈ qα(i(ℓ)), and as the identity operation on all other
charges! By the standard properties of Weyl reflections of simply–laced root sys-
tems,20 a Coxeter factorized sequence of mutations corresponds to a very peculiar
finite BPS–chamber CΛ:

CΛ ≃
⊕
α∈A

∆(Gα) (1.59)

where by ∆(G) is meant the set of roots of G. In other words such a chamber
contains one hypermultiplet per positive root of Gα. Notice that from this fact it
follows that the charge lattice, for a choice of generators compatible with CΛ is

Γ ≃
⊕
α∈A

Γ(Gα), (1.60)

where we denote with Γ(Gα) the root lattice of the Lie algebra of type Gα. It is
useful to remark that any quiver that admits in its mutation class a square product
form of type Q□G admits Coxeter-factorized sequences of type {G#Q0}.21

To illustrate the power of the technique, in the next section we shall use it to de-
termine the spectrum in the finite chamber of SU(2) SQCD with four fundamental
flavors.

1.3.5. Example: the finite chamber of SU(2) Nf = 4 According to ref. [5]
SU(2) SQCD with Nf = 4 has a BPS chamber with a finite spectrum consisting
of 12 hypermultiplets. Let us see how this result follows from the existence of a
complete family of Dynkin subquivers.

20 See, for example, proposition VI.§. 1.33 of [46]
21 See chapter 2 and §. 3.2 for a defintion.
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We write the quiver of SU(2) SQCD with four flavors in the form

1

��ww
2

''

3

��

4

^^

5

gg

6

@@ 77 (1.61)

which admits the complete family of Dynkin subquivers

A3

⨿
A3, (1.62)

where the two A3 are the full subquivers over the nodes {1, 2, 3} and, respectively,
{4, 5, 6}; the sink–factorized sequence of nodes is

Λ = {2, 3, 4, 5, 6, 1} (1.63)

having type (A3 ;A3) as it is easy to check using Keller’s applet [42]. Under the
identification Γ = ΓA3 ⊕ ΓA3 we have

mΛ(Yα⊕β) = Yc(α)⊕c(β). (1.64)

Since h(A3) = 4, one has m4
Λ = 1 and

∏
ΛQk is the 1/4–monodromy. The

corresponding monodromyM(q) satisfies all the physical constraints by comparison
with the A3 AD model.

In conclusion, SU(2) SQCD with Nf = 4 has a Z4–symmetric finite BPS
chamber with 12 hypermultiplets whose charge vectors, under the isomorphism
Γ = ΓA3 ⊕ ΓA3 , are

{α⊕ 0 and 0⊕ α | α ∈ ∆+(A3)}. (1.65)

SU(2) SQCD with Nf = 4 is a superconformal theory (setting the mass pa-
rameters to zero) whose chiral primary operators have integer dimension. Hence
the quantum monodromy should have period 1, that is should be the identity on
TQ,

Ad(M(q)) = 1. (1.66)

Using the known spectrum (1.65), we have checked this statement with the method
outlined in §.2.5.



Chapter 2

Arnol’d–models

2.1. Introduction

In ref. [13] a large class of 4d N = 2 theories were discussed in detail. Those
theories are labelled by a pair (G,G′) of simply–laced Lie algebras, and are UV
superconformal. They belong to the more general class of 4d models which may
be geometrically engineered by considering the Type IIB superstring on the geom-
etry R3,1 ×H [18], where H ⊂ C4 is a local 3–CY hypersurface specified by a
polynomial equation

H : f(x1, x2, x3, x4) = 0.

The resulting four–dimensional theory is N = 2 superconformal iff the defining
polynomial of H , f(xi), is quasi–homogeneous, which implies that H is singular
at the origin. The four–dimensional theory engineered on a smooth hypersurface
f(xi) = 0 is then physically interpreted as a massive deformation of the supercon-
formal N = 2 theory associated to the the leading quasi–homogeneous part f0(xi)
of the polynomial f(xi), deformed by a set of relevant operators corresponding to
the lower degree part of the polynomial, i.e. to ∆f ≡ f(xi)− f0(xi). In refs. [9,18]
it was shown that the singularity f0(xi) is at finite distance in the complex moduli
if it satisfies the condition

4∑
i=1

qi > 1, (2.1)

where the weights qi of the quasi–homogeneous polynomial f0(xi) are defined
trough the identity λ f0(xi) = f0(λ

qi xi), λ ∈ C∗. In the 2d language [47–50], the
condition (2.1) is equivalent to the statement that the Landau–Ginzburg model
with superpotential W ≡ f0(xi) has central charge ĉ < 2. As a consequence, if
the homogeneous part of the defining polynomial, f0(xi), satisfies eqn.(2.1), the
geometry R3,1×H is a valid Type IIB background, and the geometrical engineer-
ing produces a consistent 4d N = 2 quantum field theory which, typically, has no
weakly coupled Lagrangian description.

The (G,G′) models studied in ref. [13] correspond to the special case in which

29
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f0(xi) is the direct sum of two quasi–homogeneous polynomials

f0(xi) = WG(x1, x2) +WG′(x3, x4), (2.2)

where WG(x, y) stands for the quasi–homogeneous polynomial describing the min-
imal singularity associated to the ADE algebra G [47,48,51]1. Of course, the gen-
eral polynomial f0(xi) satisfying eqn.(2.1) has not the ‘decoupled’ form of eqn.(2.2).
Thus one is lead to ask for the extension of the methods and results of [13] to sin-
gular hypersurfaces of more general form.

Such an extension is the main purpose of this chapter. There is a particularly
important class of non–minimal singularities, namely Arnol’d’s 14 exceptional uni-
modal singularities [51, 52]. They have ĉ < 2, and hence define superconformal
N = 2 theories in four dimensions. These 14 models are, in a sense, the simplest
N = 2 superconformal gauge theories which are not complete. The associated 14
singularities naturally appear in many different areas of mathematics, and in par-
ticular in the representation theory of path algebras of quivers with relations [53,54]
(for a review [55]), which is a natural mathematical arena for understanding the
BPS spectra of N = 2 theories [7, 31, 56, 57]. Hence this class of N = 2 models
appears to be ‘exceptional’ from the mathematical side as well as from the physical
one.

We are going to use these 14 ‘exceptional’ gauge theories as an interesting
example to develop our methods, we will then extend our results without efforts
to the quasi–homogenous elements out of the bimodal singularities in the last
section of this chapter.

When the hypersuface H has the special form

0 = f(xi) ≡ g(x1, x2) + x3x4,

the four dimensional N = 2 theory may also be engineered by considering the
Abelian (2, 0) six dimensional theory on the curve {g(x1, x2) = 0} ⊂ C2 [13,
18]. From the point of view of singularity and algebra representation theory, the
equivalence of the two constructions from 10d and 6d is just the Knörrer–Solberg
periodicity [58] which directly implies the equality of BPS spectra.

The results of [13] and [9, 18] have a peculiar implication from the point of
view of the Thermodynamical Bethe Ansatz [59]: They suggest the conjecture2

1See table 3.1 in the next chapter
2 From a physical viewpoint (i.e. arguing trough string theory), this statement is equivalent

to the conjecture that all 4d N = 2 models engineered on such a singular hypersurface have at
least one chamber with a finite BPS spectrum.
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that to each isolated quasi–homogeneous hypersurface singularity, having ĉ < 2,
there is associated a TBA Y –system which is periodic (the two–Dynkin dia-
grams Y –systems [60] corresponding to direct sums of minimal singularities as
in eqn.(2.2), [13]). Here we check this prediction for the 14 Arnol’d exceptional
singularities, including the precise value ℓ of the minimal period. It will be highly
desirable to have a direct proof of this correspondence, making explicit the under-
lying connection between singularity theory and cluster categories, in the spirit of
ref. [60].

More in general, one expects a Y –system of period ℓ to be associated to any
N = 2 superconformal model having a BPS chamber with a finite spectrum and
whose chiral primary fields have dimensions of the form N/ℓ.

2.2. Arnol’d’s 14 exceptional unimodal singulari-

ties

We have the identifications3

E12 ≡ A2 ⊠ A6 E14 ≡ A2 ⊠ A7 (2.3)

W12 ≡ A3 ⊠ A4 U12 ≡ D4 ⊠ A3 (2.4)

Q10 ≡ A2 ⊠ D5 Q12 ≡ A2 ⊠ D6 (2.5)

of six Arnol’d’s models with theories of type (G,G′), G,G′ = ADE, already studied
in [13]. We focus on the remaining 8 Arnol’d exceptional N = 2 theories. These 8
Arnol’d exceptional unimodal singularities (at the quasi–homogeneous value of the
modulus) are written in table 2.1 as polynomials W (x, y, z) in the three complex
variables x, y, z. The local CY 3–fold H , on which we engineer the corresponding
N = 2 model, is then given by the hypersurface in C4

W (x, y, z) + u2 + lower terms = 0. (2.6)

2.2.1. Coxeter–Dynkin graphs, Coxeter transformations The last column
of table 2.1 shows the Coxeter–Dynkin diagram of the singularity [52]. We recall
its definition: The compact homology of the complex surface

{W (x, y, z) + · · · = 0} ⊂ C3

is generated by µ 2–spheres [61], where µ is the Milnor number of the singularity
(equal to the subfix in the singularity’s name). Fixing a strongly distinguished

3 We postpone the definition of the square tensor product of two acyclic quivers Q1 ⊠Q2 to
the next chapter, where we are going to use it extensively.
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Table 2.1: Arnol’d’s 14 exceptional singularities that are not of the formWG+WG′

name polynomial W (x, y, z) weights qi Coxeter–Dynkin diagram

E13 x3 + xy5 + z2 1/3, 2/15, 1/2

• • • • • •

• • • • • • •

Z11 x3y + y5 + z2 4/15, 1/5, 1/2

• • •

• • • •

• • • •

Z12 x3y + xy4 + z2 3/11, 2/11, 1/2

• • •

• • • •

• • • • •

Z13 x3y + y6 + z2 5/18, 1/6, 1/2

• • •

• • • • •

• • • • •

W13 x4 + xy4 + z2 1/4, 3/16, 1/2

• • • •

• • • •

• • • • •

Q11 x2z + y3 + yz3 7/18, 1/3, 2/9

• •

• •

• • •

• • • •
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name polynomial W (x, y, z) weights qi Coxeter–Dynkin diagram

S11 x2z + yz2 + y4 5/16, 1/4, 3/8

• •

• • •

• • •

• • •

S12 xy3 + x2z + yz2 4/13, 3/13, 5/13

• •

• • •

• • •

• • • •

basis of (vanishing) 2–cycles δj [51, 52], the negative of their intersection form,
−δj · δk, is an integral symmetric µ× µ matrix, with 2’s along the main diagonal,
that is naturally interpreted as a ‘Cartan matrix’. In fact, for a minimal ADE
singularity4, −δj·δk is the Cartan matrix of the associated simply–laced Lie algebra.
However, for a non–minimal singularity, it is not true that −δj · δk ≤ 0 for j ̸= k,
and hence −δj · δk is not a standard Cartan matrix in the Kac sense [62].

Correspondingly, the Coxeter–Dynkin graph becomes a bi–graph, i.e. a graph
with two kinds of edges, solid and dashed. Nodes j, k are connected by |δj · δk|
edges; the edges are solid if δj · δk > 0, and dashed if δj · δk < 0.

It should be stressed that the Coxeter–Dynkin diagram is not unique, since
it depends on the particular choice of a (strongly distinguished) homology basis.
Two such bases differ by the action of the braid group acting by Picard–Lefshetz
transformations [51, 52]. The physical interpretation of this non–uniqueness is
well known: In the 2d language the Picard–Lefshetz transformations correspond
to BPS wall–crossings [50], while from the 4d perspective they are understood as
SQM Seiberg dualities [34, 35,63].

One important invariant of the singularities is (the conjugacy class of) its Cox-
eter transformation, also known as the strong monodromy Φ. With respect to a

4 And a suitable choice of the basis δj .
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strongly distinguished basis one has

Φ = −(S−1)tS, (2.7)

where

Sjk = δjk −

{
δj · δk k > j

0 otherwise,
(2.8)

and S encodes the 2d BPS spectrum of the Landau–Ginzburg (LG) model with
superpotential W [50].

2.3. Arnol’d’s N = 2 superconformal theories

2.3.1. 2d/4d correspondence revisited The 2d/4d correspondence of ref. [13]
states that the quiverQ of the 4d theory engineered on a CY hypersurfaceW+u2 =
0 is equal to BPS quiver of the 2d LG model with ĉ < 2 having superpotential
W +u2. Basically, the nodes of the 4d quiver Q are in one–to–one correspondence
with the susy vacua of the 2d model, and two nodes of Q, j and k, are connected
by a number of arrows equal to the signed number of BPS states interpolating
the corresponding 2d vacua, |j⟩ and |k⟩. To implement this rule, it is convenient
to integrate away the decoupled free 2d superfield u, remaining with the LG 2d
superpotentialW . Then, as shown in [50,64], the 2d susy vacua |j⟩ are in one–to–
one correspondence with the elements of a strongly distinguished basis {δj} of the
vanishing homology of the hypersurface H : {W = const.}, and the signed number
of BPS particles interpolating between |j⟩ and |k⟩ is given by the corresponding
intersection number δj ·δk. Hence the 2d/4d correspondence predicts a quiver with
δj · δk arrows between nodes j and k, a negative number again meaning arrows in
the opposite direction. In other words, the exchange matrix Bjk of Q is given by

B = St − S, (2.9)

where S is as in eqn.(2.8)5. Equivalently, the 2d quantum monodromy in the sense
of ref. [50] is minus the Coxeter transformation Φ of the singular hypersurface (and
thus S is identified with the half–plane Stokes matrix of [50]).

The 2d/4d correspondence is rather subtle, since it depends on the correct
identification of a strongly distinguished basis, and it should be implemented with
the necessary care. For this reason, here we present a more intrinsic derivation of

5 Notice that the notions of a strongly distinguished homology basis {δj} in the sense of [51,52],
and that of a distinguished set of generators of the charge lattice {ej} in the sense we discussed
in §.1.2.1 agree under the 2d/4d correspondence.
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the N = 2 Dirac quiver from the Coxeter–Dynkin diagram of the singularity; this
method has the additional merit of predicting also the superpotential W of the
quiver (super)quantum mechanics whose susy vacua give the 4d BPS states. One
check that the proposed procedure is equivalent to the proper 2d/4d correspon-
dence, is that it reproduces the correct 2d quantum monodromy −Φ, which is the
mutation–invariant content of the 2d BPS quiver.

There is a standard dictionary [65] between Dynkin bi–graphs and (classes of)
algebras which generalizes Gabriel’s relation between representation–finite hered-
itary algebras and ordinary (simply–laced) Dynkin graphs [66–68]. One picks an
orientation of the solid arrows to get a quiver Q; then the dashed arrows are in-
terpreted as a minimal set of relations generating an ideal J in the path algebra
CQ of that quiver. Finally, one considers the basic algebra CQ/J . Of course, the
orientation of Q has to be chosen in such a way that the dashed lines make sense
as relations in CQ.

Let us illustrate this procedure in the example of the E12 Coxeter–Dynkin
bi–graph

• • • • • •

• • • • • •

orientation−−−−−−−→

orientation−−−−−−−→
• a1 //

b1
��

• a2 //

b2
��

• a3 //

b3
��

• a4 //

b4
��

• a5 //

b5
��

•
b6
��

• c1
// • c2

// • c3
// • c4

// • c5
// •

(2.10)

where the quiver in the rhs is supplemented with the relations generating the
ideal J determined by the dashed edges in the lhs, namely

bj+1 aj = cj bj, j = 1, 2, . . . , 5. (2.11)

These relations just state that the squares in (2.10) are commutative, and hence

imply that the resulting algebra A′
E12
≡ CQ/J is isomorphic to the product CA⃗6⊗

CA⃗2, where CA⃗n stands for the path algebra of the linear An Dynkin quiver

A⃗n :

n nodes︷ ︸︸ ︷
• // • // • // · · · // • // • .

The models having this tensor product form were solved in ref.[13] by exploiting

the isomorphism A′
E12
≃ CA⃗6 ⊗ CA⃗2 and its generalizations to CG ⊗ CG′ (G,G′

being arbitrary ADE Dynkin quivers).
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Let6 Cji be the matrix counting the number of paths between the i–th and
j–th node in the quiver Q (identifying paths which differ by an element of J). The
Euler form of A′

E12
is the non–symmetric bilinear form on the dimension lattice

ΓE12 defined by the matrix C−1, that is

⟨X, Y ⟩E ≡
∑
k≥0

(−1)k dim Extk(X,Y ) = (dimX)tC−1(dimY ). (2.12)

We stress that A′
E12

has global dimension ≤ 2: For all k ≥ 3, Extk(X,Y ) = 0.
This property is absolutely crucial for the consistency of our manipulations. The
Cartan matrix, Dirac pairing, and Coxeter element of the algebra A′

E12
are encoded

in terms of C−1 as follows A′
E12

are, respectively,

(C−1)t + C−1 (Cartan matrix)

(C−1)t − C−1 (Dirac pairing)

− CtC−1 (Coxeter element)

(2.13)

which agree with the predictions of the 2d/4d correspondence since C−1 = S, as
it easy to check going trough the definitions.

However A′
E12
≃ CA⃗6 ⊗ CA⃗2 is not the final story. From the point of view

of the quiver supersymmetric quantum mechanics, the relations of J may arise
only from the F–term flatness equations ∂W = 0. Hence we have to introduce a
SQM superpotentialW and additional Lagrange–multiplier superfields λj, one per
fundamental relation of J , that is, one λj per dashed edge in the bi–graph. This is
equivalent to replacing the dashed edges of the Coxeter–Dynkin diagram with ar-
rows going in the opposite direction. Then, for the E12 example, the superpotential
is

W =
5∑
j=1

λj(bj+1aj − cjbj). (2.14)

In this way we get a completed quiver Q̃, and the algebra A′
E12

gets completed

to the Jacobian algebra CQ̃/∂W which is known as the 3–Calabi–Yau completion
of A′

E12
, written Π3(A′

E12
) [69]. The completed algebra is the one relevant for the

SQM theory describing the 4d BPS states7.

6 In the math litterature, Cji ≡ dimHom(Pi, Pj). Where Pi denotes the projective cover of
the simple representation Si (Si is the representation with the one–dimensional space C at the
i–th node, and zero elsewhere). The projective Pj has dimension vector given by (dim Pj)i ≡
# of path i → j (modulo the relations). Since all our algebras are basic, A ≃ ⊕iPi as (right)
A –modules.

7 Let us stress that the algebra CQ̃/∂W we have defined is not strictly speaking a 3–CY
algebra: the 1d SQM we defined is just the degree zero component of it.
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This procedure may be repeated word–for–word for all the Coxeter–Dynkin
diagrams of the 14 exceptional singularities, and there are no obstacles to generalize
it further. This leads to the

Algebraic reformulation of the 2d/4d correspondence. [10] Let
(Q,W) be the BPS–quiver with superpotential of an 4d N = 2 theory,
and A be the corresponding jacobian algebra. Then A is the 3–CY com-
pletion of a basic algebra A′ with global dimension ≤ 2 whose Coxeter
element ΦA′ has spectral radius 1 and Jordan blocks of size no more
than 2× 2.

By 2d/4d correspondence, the inverse of the Cartan matrix of A′, is precisely the
Stokes matrix of the corresponding 2d N = (2, 2) system S, and therefore the Cox-
eter element of ΦA′ ≡ −CtC−1 coincides with minus the 2d quantum monodromy
H = (S−1)tS. The 2d monodromy of a N = (2, 2) system has spectral radius equal
to one by definition, since the eigenvalues of its Jordan blocks decomposition are
always pure phases. It is well–known [50] that, whenever the 2d theory is not
conformal, H can have non–trivial Jordan blocks Jn(λ) with n ≤ ĉ + 1 (strong
monodromy theorem).

The requirement that A′ has global dimension ≤ 2 arises from consistency in
between the 3–CY completion and the B matrix one computes out of the Dirac
pairing of A′. By Gabriel theorem [68] any basic algebra A′ is Morita equivalent
to a bounded path algebra. A bounded path algebra is simply a path algebra CQ′

modulo some ideal I such that 1.) I is generated by paths of length ≥ 2 and 2.)
there exists an m > 0 such that each path of length ≥ m in CQ′ is contained in
I. Let ei be the idempotents of the algebra A′. Let Si denote the corresponding
simple A′ modules. The Gabriel quiver Q′ of the category of modules of A′ is
simply the quiver that has nodes equal to the Si and in between nodes Si and Sj
dim Ext1(Si, Sj) arrows

8. The relations in I have a cohomological interpretation:
These are elements of the Ext2 groups [70, 71]. It is then clear, by going through
the various definitions, that the Dirac pairing of C−1 is the B matrix of the 3–CY
completion quiver iff the global dimension of A′ is ≤ 2. We stress that whenever
one can find A′, one obtains also the superpotential for the 4d quiver (Q,W). The
inverse problem, however, is not easy. Indeed, given a BPS–quiver in terms of its
intersection matrix B, there are many ways of writing B as St − S, and many
of such possible splitting could, in principle, correspond to a different A′, and
therefore to a different superpotential. In the case of Arnol’d models, however, we

8 Ext1(X,Y ) can be viewed as the space that parametrizes equivalence classes of short exact
sequences 0 → X → M → Y → 0 (in such a case, indeed, M is said to be the extension of X
through Y ).
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know from geometry the precise form of the Coxeter–Dynkin diagrams, and, as
we have discussed, this determine a natural candidate A′ that, in turns, gives the
right W .

2.3.2. The square and the Coxeter–Dynkin forms of the quiver By re-
peated mutations (1d Seiberg dualities) we eliminate all diagonal arrows from the

completed quiver Q̃, and we end up with the square form of the quiver

• // •

��

• //oo •

��

• //oo •

��
•

OO

• //oo •

OO

• //oo •

OO

•oo

(2.15)

where all squares are cyclically oriented9. Then the superpotential W is simply
given by the sum of the traces of the products of Higgs fields along each oriented
square.

Then
(The square form of the quiver with superpotential) The quiver of the

corresponding N = 2 theory is obtained from the Coxeter–Dynkin diagram in the
form of table 2.1 by eliminating the dashed arrows and orienting all the squares.
The superpotential W is the sum of the traces of the cycles corresponding to the
oriented squares.

Of course, the quiver is not unique, and indeed each mutation class contains
infinitely many different cluster–equivalent quivers. The one described above is
particularly convenient for ‘strong coupling’ calculations. There is also a ‘Coxeter–
Dynkin’ form of the quiver whose Jacobian algebra corresponds to the 3–CY com-
pletion of a Coxeter–Dynkin algebra of extended canonical type10 D̂(p, q, r) which is
a tilting of (and hence derived equivalent to) the one–point extension of the canon-

ical algebra C(p, q, r) at a projective indecomposable. The quiver of Π3(D̂(p, q, r))

9 The claim is easily checked with the help of Keller’s quiver mutation applet [42].
10 The the Coxeter–Dynkin algebra of extended canonical type, D̂(p, q, r) is identified with the

path algebra of the quiver in figure 2.1 with the Kronecher subquiver replaced by two dashed
lines (i.e. by two relations) bounded by the ideal J generated by the two relations. Calling αi, βi,
i = 1, 2, 3, the single arrows forming the oriented triangles in figure 2.1, the two relations are

α2β2 + α3β3 = 0 and α1β1 = α3β3,

from which we deduce the superpotential of the 3–CY completed canonical quiver SQM

W = λ1(α2β2 + α3β3) + λ2(α1β1 − α3β3).
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•

a1 // a2 // · · · // ap−1
// •

����

OO

bq−1
oo · · ·oo b1oo

•

`` >>

// cr−1
//

``

cr−2
// · · · // c2 // c1

values of p, q, r

E12 2, 3, 7 Z11 2, 4, 5 Q10 3, 3, 4 W12 2, 5, 5 S11 3, 4, 5

E13 2, 3, 8 Z12 2, 4, 6 Q11 3, 3, 5 W13 2, 5, 6 S12 3, 4, 5

E14 2, 3, 9 Z13 2, 4, 7 Q12 3, 3, 6 U12 4, 4, 4

Figure 2.1: The quiver corresponding to the 3–Calabi–Yau completion of the
Coxeter–Dynkin algebra of extended canonical type D̂(p, q, r); the table gives the
correspondence (singularity type) ←→ (p, q, r).

is presented in figure 2.1. For a discussion of the relevant extended canonical al-
gebras and Coxeter–Dynkin algebras, and their relations to Arnol’d’s exceptional
singularities, see refs. [53, 54].

The bi–graph obtained by replacing in figure 2.1 the double arrows by dashed
lines and all other arrows by solid edges was show by Ebeling [72] to correspond to
the Coxeter–Dynkin diagram of the singularity with respect to a strongly distin-
guished homology basis (related to the previous one by a braid transformation).
This is another check of the 2d/4d correspondence in the stronger version used
here.

2.3.3. Minimal non–complete models The unimodal Arnol’d models are not
complete theories11. For a non–complete theory, the computation of the BPS spec-
trum by any method related to the KS wall–crossing formula — such as cluster–
combinatorics, or the stability conditions on quiver representations — is question-
able on the grounds of the quantum Schottky problem. In this case, the spectrum
we compute does not correspond to any physically realizable regime. Of course,
the computation is still mathematically correct, and all the chamber independent
quantities, like the conjugacy class of the quantum monodromy and the related

11 By 2d/4d correspondence all complete theories have ĉ ≤ 1, this is not the case for all Arnol’d
models
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UV invariants Tr[M(q)k], have their physically correct values, and we can always
recover the physical spectrum (in principle) by applying the KS wall–crossing for-
mula. However, as physicists, we are interested in knowing whether the spectrum
we compute has a direct physical meaning, or if some further mathematical work
is required to extract the physically relevant informations.

The purpose of the present subsection is to present some general remark on the
question of the physical realizability of the special symmetric BPS chambers we
use in our computations. The reader may prefer to skip the following qualitative
discussion, and jump ahead to the more formal arguments.

The present theories, although non–complete, are minimally so, in the sense
that the codimension of the image ℑ(P) ⊂ CD is just 1. In other words, there
is only one quantum–obstructed variation (δZi)obs of the central charge func-
tion, normal to the physical submanifold ℑ(D) ⊂ CD. In general, modifications
Zi → Zi+ δZi correspond to infinitesimal deformations of the periods of the holo-
morphic 3–form Ω associated to deformations δtj of the complex structure of the
hypersurface H of the form

W (x, y, z) + u2 +
∑

j
δtj ϕj = 0, (2.16)

where {ϕj} is a basis of chiral primaries for the 2d LG model with superpoten-
tial W (x, y, z). The offending deformation (δZi)obs is the one associated to the
unique chiral primary of dimension > 1, namely the Hessian H = det ∂α∂βW . The
problematic deformation is precisely the one defining the 1–parameter family of
inequivalent singularities12, which is the only primary perturbation which changes
the behavior at infinity in field–space (and hence may spoil the quantum consis-
tency). Indeed, the 2d renormalization group allows us to identify such directions.
The 2d theory has infrared conformal fixed point dictated by the Zamolodchikov’s
c–theorem [73]. The infrared fixed point is stable under perturbation by irrelevant
operators. Correspondingly, variations of the periods of Ω in these directions of
the basis of the Milnor fibration [61] are forbidden physically, since these 2d defor-
mations renormalize away. The unphysical deformations of the theory (δZi)obs are
precisely those corresponding to the irrelevant primary perturbations. In comput-
ing the BPS spectra, the combinatorics of the quantum clusters is not sensible to
this fact: one can compute a mathematically consistent spectrum that corresponds
to a BPS chamber that cannot be realized physically due to the above phenomenon
— this is an instance of the quantum Schottky problem.

12 By definition, a unimodal singularity has a 1–parameter family of inequivalent singular
deformations.
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E13 A7 ⊠ A2 : x3 + y8 + z2
(
13
12

)
xy5

(
23
24

)
1
11

Z11 A4 ⊠ A3 : x4 + y5 + z2
(
11
10

)
x3y

(
19
20

)
1
9

Z13 A5 ⊠ A3 : x4 + y6 + z2
(
7
6

)
x3y

(
11
12

)
1
5

W13 A5 ⊠ A3 : x4 + y6 + z2
(
7
6

)
xy4

(
11
12

)
1
5

S11 A3 ⊠ D4 : x2z + z3 + y4
(
7
6

)
yz2

(
11
12

)
1
5

Table 2.2: Arnol’d’s superconformal gauge theories as IR fixed points of supercon-
formal square tensor models [13] perturbed by the less relevant operator.

To address the physical realizability question, we have to make sure that, in
the chamber we compute, the Hessian deformation is not switched on. Looking to
the Coxeter–Dynkin diagrams in table 2.1, we see that they are all subgraphs of
two kinds of (bi)graphs associated to direct sums of minimal singularities of the
two forms

An ⊠ Am xn+1 + ym+1 + z2

An ⊠D4 x3 + y3 + zn+1
(2.17)

to which the arguments of [13] directly apply. Physically, the 8 Arnol’d super-
conformal models which are not already of the form G ⊠ G′ may be obtained as
follows: one starts with a suitable ‘big’ G ⊠ G′ theory, and perturbs it by a certain
relevant operator (that is, relevant at the UV fixed point described by the G ⊠ G′

theory), in such a way that the corresponding N = 2 theory will flow in the IR to
the Arnol’d superconformal theory we are interested in.

In table 2.2 we list some convenient choices of UV G ⊠ G′ theories and relevant
perturbations ϕ⋆ for five of the 8 non–product Arnol’d theories. The first number
in parenthesis is the central charge ĉ of the 2d UV Landau–Ginzburg; one has
ĉ < 2, and hence the corresponding 4d N = 2 quantum theories exist by the
criterion of refs. [9,13,18]. The second number in parenthesis is the UV dimension
(in the 2d sense !) of the perturbing chiral primary ϕ⋆; notice that it is always
2d relevant (at the UV fixed point). The last column of table 2.2 is the mass
dimension of the 4d coupling t⋆ corresponding to the deformation ϕ⋆ (at the UV
fixed point) given by [18]

[t⋆] =
2(1− q(ϕ⋆))

(2− ĉ)
. (2.18)

The two theories Z12 and Q11 are better described as the final IR fixed points of
RG ‘cascades’

A5 ⊠ A3
x3y (11/12)−−−−−−−−→ Z13

xy4 (17/18)−−−−−−−−→ Z12 (2.19)

A4 ⊠ D4
x2z (13/15)−−−−−−−−→ Q12

yz3 (14/15)−−−−−−−−→ Q11 (2.20)
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where the perturbing monomials ϕ⋆ and their dimensions are written over the
corresponding arrow. S12 is more tricky; however we may still consider it as the
IR fixed point of the model defined by the hypersurface (y2z+ z3+x5)+xz2+x3y
whose UV limit is A4 ⊠ D4.

The above RG discussion applies directly to the Arnol’d N = 2 theories at
their superconformal point, that is with all relevant deformations switched off. We
are, of course, interested in the massive deformations of the theory which produce
interesting chamber–dependent BPS spectra. For the massive case, we may argue
as follows: we start with the An ⊠ G deformed hypersurface

λ yn+1 +WG(x, z) + ϕ⋆ +
∑∗

i
tiϕi + v2 = 0, (2.21)

where the sum
∑∗ is over chiral primaries of dimension q less than q(ϕ⋆). By the

criterion of [9, 18] , the hypersurface (2.21) corresponds to a physical regime of
the (non–complete) An ⊠ G theory for all λ, ti provided λ ̸= 0. As λ → 0, some
states become infinitely massive and decouple. The decoupling limit produces a
physically realizable regime of the mass–deformed N = 2 Arnol’d theory we are
interested in.

The physical idea is then to control the realizability of a given BPS chamber
for an Arnol’d theory by starting from the An ⊠ G theory (2.21), at large λ, in a
BPS chamber which is known to be physical, and then continuously deform λ to
zero, while ensuring that no wall of marginal stability is crossed in the process. By
construction, we end up into a physical chamber of the (massive) Arnol’d theory,
whose BPS spectrum differs from the one of the original An ⊠ G theory only
because some particle got an infinite mass in the λ → 0 limit and decoupled. In
the process, we give volumes to the (special lagrangian) 3–cycles γi in the third
homology group of the Calabi–Yau 3–fold

yn+1 +WG(x, z) + u2 = 0,

by the primary deformation of this singularity. The D3–branes that wrap around
these 3–cycles, therefore, get central charges

Z(γi) =

∫
γi

Ω ,

becoming the BPS particles of the massive deformation of the corresponding 4
dimensional superconformal theory. If now we deform this theory with ϕ⋆, along
the 2 dimensional RG flow in the infrared some of the above 3–cycles start in-
creasing their volume, that becames bigger and bigger the more close we are to
the IR fixed point. Accordingly, the corresponding BPS particle masses increases.
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Thus, these particles decouples and are absent from the BPS spectrum of the 4 di-
mensional theory obtained by engineering type IIB on the corresponding primary
deformation of H , the Calabi–Yau 3–fold associated to the IR theory.

As an initial reference chamber of the An ⊠ G theory we take one of those
considered in [13]. In general, for a G′ ⊠ G model there is a chamber with a finite
spectrum consisting of hypermultiplets with charge vectors

α⊗ βa ∈ Γ ≃ ΓG ⊗ ΓG′ , α positive root of G, βa simple roots of G′. (2.22)

There is an obvious duality G↔ G′ which produces a second finite chamber with
the role of G and G′ interchanged. It is believed [13] that these two BPS chambers
do correspond to physical situations, and hence they may be used as the starting
points at large λ for the family of theories (2.21).

Let us sketch the argument of [13] for N = 2 models of the form An ⊠ G,
where G is any ADE Dynkin diagram. Such models are engineered by Type IIB
on a hypersurface H : WG(x, y, z)+Pn+1(v) = 0, where WG(x, y, z) stands for the
usual G minimal singularity and Pn+1(v) is a degree n+1 polynomial that we take
of the Chebyshev form. We can see this geometry as a compactification of IIB
down to 6 dimensions on a deformed G–singularity whose deforming parameters
depend (adiabatically) on the complex coordinate v. As in ref. [18], the compact
3–cycles on the hypersurface H are seen as vanishing 2–cycles of the G–type
singularity fibered over a curve in the v–plane connecting two zeros of Pn+1(v).
The G–singularity produces tensionless strings in one–to–one correspondence with
the positive roots of G. Let δα(v) be the vanishing cycle over v associated to the
positive root α. We define and effective SW differential

λα(v) =

∫
δα(v)

Ω ∼
(
Pn+1(v)

)∆α
dv, (2.23)

vanishing at the zeros of Pn+1(v). Then for each α ∈ ∆+(G) we may repeat
the analysis of [18], showing that the spectrum (2.22) corresponds to a physically
realizable chamber.

In practice, it may be difficult to check the existence, in the complex λ–plane,
of a path from zero to infinity which avoids all wall–crossings while keeping con-
trol of the possible mixing between the conserved quantum currents. Therefore,
we shall mostly use the above idea in a weak sense, namely, we shall consider a
mathematically correct BPS spectrum which is naturally interpreted as the re-
sult of the decoupling of some heavy states from the known physical spectrum
of the appropriate An ⊠ G model, as a physically sound BPS spectrum which,
having a simple physical interpretation, also provides circumstantial evidence for
the physical realizability of the corresponding chamber.
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2.3.4. Flavor symmetries The number f of flavor charges, or more precisely
the dimension of the Cartan subalgebra of the flavor symmetry group F , is an
important invariant of the theory, which is independent of the parameters (how-
ever, at particular points in the physical domain P we may have a non–Abelian
enhancement of the flavor symmetry, U(1)f → H × U(1)f−rk(H), which preserves
its rank). A general consequence of 2d/4d correspondence [7, 13] is that f , which
is (by definition) the number of zero eigenvalues of the Dirac pairing matrix Bij,
is equal to the number of 2d chiral primary operators whose UV dimension qi is
equal to ĉ/2. Indeed, a charge is flavor only if

Bγ = 0⇔ Sγ = Stγ ⇔ Φγ = −γ (2.24)

The eigenvalues of Φ are equal to − exp[2πi(qi− ĉ/2)] [50], and so f is equal to the
multiplicity of −1 as an eigenvalue of Φ. Then f may be directly read from the
factorization of the characteristic polynomial of Φ into cyclotomic polynomials,
see table 2 of ref. [53]: f is just the number of Φ2 factors in the product. Thus

f =


2 Z12, U12

1 odd rank

0 otherwise.

(2.25)

2.3.5. Order of the quantum monodromy The quantum monodromy M(q) of
a N = 2 model engineered by Type IIB on a non–compact CY hypersurface H ⊂
C4, given by the zero locus of a (relevant deformation of a) quasi–homogeneous
polynomial f0(xi), has a finite order ℓ, that is,

M(q)ℓ = 1, (identically in q ∈ C∗) (2.26)

in the sense of equality of adjoint actions on the quantum torus algebra TΓ. The
minimal value of the integer ℓ is easy to predict. Let d, w1, w2, w3, w4 be integers
such that

λd f0(xi) = f0(λ
wixi) ∀λ ∈ C, (2.27)

normalized so that gcd{d, w1, w2, w3, w4} = 1. The redefinition xi → λwi xi trans-
forms the CY holomorphic 3–form Ω into λ

∑
i wi−dΩ. Hence the monodromy cor-

responds to replacing λ with exp[2πit/(
∑

iwi−d)] and continuously taking t from
0 to 1. In terms of the original variables, this is

xi → exp

(
2πi

wi∑
iwi − d

)
xi (2.28)

and the monodromy order ℓ is

ℓ =

∑
iwi − d

gcd{
∑

iwi − d, w1, w2, w3, w4}
. (2.29)



2.3. ARNOL’D’S N = 2 SUPERCONFORMAL THEORIES 45

E13 7 Z11 7 Z12 5 Z13 8 W13 7

Q11 8 S11 7 S12 11

Table 2.3: (Reduced) orders of the quantum monodromy for the 8 Arnol’d’s ex-
ceptional theories which are not of the tensor from G ⊠ G′.

In the case of a singularity of the form f0(x, y) + z2 + v2 it is more convenient to
consider the reduced order, corresponding to the engineering of the model from
the 6d (2, 0) theory. It corresponds to setting w3 = d, w4 = 0 in the above formula.

2.3.6. Arnol’d’s exceptional N = 2 models as gauge theories In the title
we referred to the Arnol’d’s exceptional models as gauge theories. Up to now,
the gauge aspect of these models has not manifested itself. Although we are
mainly interested in ‘strong coupled’ regimes in which the BPS spectrum contains
just finitely many hypermultiplets, these theories do have ‘weakly coupled’ phases
where BPS vector–multiplets are present. At least in the simplest situations, the
couplings of these vector–multiplets may be physically interpreted as a super–
Yang–Mills sector weakly gauging a subgroup G of the global symmetry group of
some ‘matter’ system (which is non–Lagrangian, in general). Hence the Arnol’d
exceptional N = 2 theories behave as gauge theories in some corner of their
parameter space, although a full understanding of the phases with stable BPS
vector–multiplets requires a more in–depth study. From our general discussion
about the quantum Shottky problem, combined with the knowledge that for these
model codimℑ(P) = 1, follows, just counting dimensions, that a minimal non–
complete N = 2 model which has, in some limit, the structure of a G SYM weakly
coupled to some other sector, the gauge group G must have one of the following
forms

SU(2)k, SU(2)k × SU(3), SU(2)k × SO(5), SU(2)k ×G2, (2.30)

for some k ∈ N. For the exceptional Arnol’d models, it is easy to prove the
existence of physical limits with G = SU(2), while larger gauge groups are not at
all excluded.

To produce a physical regime with a weakly coupled SU(2) SYM sector, it
is enough to deform the Arnol’d singularity with suitable lower–order monomials
(corresponding to a particular choice of the central charge function Zi inside the
physical region ℑ(P)) which causes the flow, in the IR, to one of the elliptic–E
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complete superconformal gauge theories [7], and specifically

to the E
(1,1)
8 ≡ A2 ⊠ A5 model for E12, E13, E14,

to the E
(1,1)
7 ≡ A3 ⊠ A3 model for Z11, Z12, Z13,W12,W13,

to the E
(1,1)
6 ≡ A2 ⊠ D4 model for Q10, Q11, Q12, S11, S12, U12.

The IR effective theory is known to have physical chambers with a stable SU(2)
gauge vector coupled to three D–type Argyres–Douglas systems [7]. Since the IR
theory is complete, we can tune the coefficients of the defining polynomial of H
to get an arbitrarily weak gauge coupling.

One way to prove the existence of a formal BPS chamber with a stable BPS
vector–multiplet is to look for a (non–necessarily full) subquiver S of Q which is
mutation equivalent to an acyclic affine quiver. This generalizes the strategy of
looking for Kronecker, i.e. Â(1, 1), subquivers used in [7].

If S is a full subquiver of Q, the existence of a mathematical BPS chamber
with a stable BPS vector–multiplet is guaranteed: Indeed, the quantization of the
P1 family of brick representations13 of S with dimension vector

∑
iNiαi equal to

the minimal imaginary root δ, extended by zero to a representation of the total
quiver Q, produces — for suitable choices of the complex numbers Zi — a stable
BPS vector–multiplet.

If S is not a full subquiver, the statement remains true, provided the above
P1 family of representations of S, when seen as representations of the total quiver
Q, has the following two properties: 1) it satisfies the relations ∂W = 0 induced
from the arrows in Q\S, and 2) it does not admit further continuous deformations
corresponding to switching on non–trivial maps along the arrows of the full sub-
quiver over the nodes S0 which are not in S. Indeed, if this no–extra–deformation
condition is not verified, we have to quantize a moduli space of dimension larger
than one, possibly producing higher spin representations of N = 2 supersymmetry,
instead than just vector–multiplets.

The quivers of the exceptional Arnol’d models always have affine subquivers
(as it is already evident from the Coxeter–Dynkin form of the quiver, see figure
2.1) and we may even find pairs of non–overlapping such affine subquivers, leading
to the possibilities of chambers with more than one BPS vector–multiplet.

As an (intriguing) example, take the model E13 and consider the following pair

13 The existence of this family of brick representations follows directly from Kac’s theorem [74].
For details see e.g. [65, 75–77].
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of P1 families of representations with mutually disjoint support

0 // 0

��

0oo // 0

��

Coo 0 // C
[1,0]
��

0

OO

0oo // 0

OO

Coo
i

// C2

[0,1]t

OO

C2
1

oo

[1,1]t
// C

(2.31)

C i // C2

[0,1]t

��

C21oo
[1,1]t

// C

��

0oo // 0

��

0

OO

Coo
0

// C

[1,0]

OO

0oo // 0

OO

0oo // 0

(2.32)

where the map C i−→ C2 defines a line in C2 and hence a point in P1. Both repre-
sentations are pulled back from a representation of a D̂5 non–full subquiver having
dimension vector the minimal imaginary root. Note that the representations sat-
isfy the constraints from the F–term flatness conditions ∂W = 0. It remains
to check that there are no continuous deformations of these P1 families obtained
by giving non–zero values to the omitted arrow (the arrow with an explicit 0 in
eqns.(2.31)(2.32)). Indeed, these arrows are constrained to remain zero by the
F–term relations ∂W = 0. Hence, the P1 family is not further enlarged, and the
corresponding BPS vector–multiplet is stable for a suitable choice of the Zi’s. We
write δ1, δ2 for the charge vectors of the resulting vector–multiplets. Counting
arrows, we see that

⟨δ1, δ2⟩Dirac = 1 (2.33)

Hence the two vector–multiplets are not mutually local. If the mathematical cham-
ber in which both vectors are stable is physically realizable — which is certainly not
guaranteed, and perhaps unlikely — the physics will not be that of a conventional
gauge theory.

2.3.7. A baby example (E7 AD in diverse chambers) We illustrate the
method and its physical meaning in a very baby model: we consider the rank 7
quiver

1, 1 a // 1, 2

b
��

1, 3eoo

2, 1

d

OO

2, 2c
oo

f
// 2, 3

g

OO

0oo

(2.34)

with superpotential

W = Tr(dcba) + Tr(fgeb). (2.35)
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◦ // ◦

��

◦oo // •

��
◦

OO

◦oo // ◦

OO

◦oo

◦ // ◦

��

◦oo

◦

OO

◦oo // ◦

OO

Figure 2.2: The A4 ⊠ A2 and the A3 ⊠ A2 quivers.

Decoupling limits and all that

Physically, we may realize theN = 2 superconformal theory described by (2.34)(2.35)
as the IR fixed point of the theory associated to the A4 ⊠A2 quiver (the first quiver
in figure 2.2) perturbed by a suitable relevant operator which corresponds to giving
a large central charge |Z•| ≫ Λ to the black node in figure 2.2, with the effect of
decoupling (in the IR) all the degrees of freedom carrying a non–zero • charge. In
the same way, the A3 ⊠ A2 theory (second quiver in figure 2.2) may be seen as
a suitable IR limit of the theory (2.34) where we take |Z0| → ∞. Since A4 ⊠ A2

and A3 ⊠ A2 are, respectively, the type–E8 and type–E6 Argyres–Douglas mod-
els [13], the theory (2.34) should be a rank 7 Argyres–Douglas theory, and hence
the type–E7 one.

Of course, there is an elementary direct proof of this last identification: mu-
tating (2.34) one gets the E7 quiver in its standard Dynkin form. However, here
we are interested in the Dynkin subquiver viewpoint which will turn useful for
the more complicated Arnol’d models. The present baby example is conceptually
simpler, since the theory is actually complete [7], and all formal manipulations at
the quiver level do have a direct physical meaning, and we are allowed to be naive.

From the previous discussion, we see than the theory (2.34) is a decoupling
limit of the 4d N = 2 theory geometrically engineered by the E8–singular local
Calabi–Yau hypersurface

x5 + y3 + uv = 0, (2.36)

deformed by the relevant perturbation

x5 + y3 + ϵ x3y + uv = 0 (2.37)

equal to the Hessian h of the lhs of (2.36) (i.e. the less relevant relevant defor-
mation, from both the 2d and 4d viewpoints). In the IR the theory flows to the
fixed point corresponding to the singular hypersurface y3 + yx3 + uv = 0 (after a
rescaling of the x coordinate).

The quiver (2.34) has an obvious decomposition into the complete family of
Dynkin subquivers

A2

⨿
A2

⨿
A2

⨿
A1, (2.38)
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◦

◦ ◦

◦

◦◦

◦ //

oo oo
��

oo

//

OO ◦

◦

◦◦

◦ ◦

◦ //

//

oo
OO
oo

��
//

Figure 2.3: Other quivers in the E7 class with a complete family of Dynkin sub-
quivers

where the three copies ofA2 correspond to the subquivers over the nodes {(1, a), (2, a)},
a = 1, 2, 3. Dually, we have the complete family

A4

⨿
A3 (2.39)

By mutating at 0 we get a quiver which admits the complete families

A3

⨿
A3

⨿
A1 and A3

⨿
A2

⨿
A2. (2.40)

Other quivers in the E7 mutation class may admit a complete family of Dynkin
subquivers, see e.g. the two quivers in figure 2.3 (as well as, of course, the E7

Dynkin quiver itself, and the seven A1’s: these two cases being already covered
in [13]).

All these decompositions into Dynkin subquivers correspond to BPS chambers
of the E7 AD theory whose BPS spectrum may be easily derived using the com-
binatorial methods of the present section. Of course, this is not so interesting for
Argyres–Douglas theories, but it becomes relevant when applied to more general
theories, see the next two sections.

Suppose we start with the E8 Argyres–Douglas in a BPS chamber where the
spectrum is given by a set of hypermultiplets with charge vectors in14 Γ ≃ ΓA2⊗ΓA4

of the form

α⊗ βa,
α ∈ ∆+(A2), (all positive roots of A2)

βa, a = 1, 2, 3, 4, (simple roots of A4)
(2.41)

Such a chamber of the E8 AD theory is physically realizable since the model is
complete. Now switch on the perturbation corresponding to the Hessian h; by
what we saw above, the deformation is expected to give a large mass to the states
having a charge vector

∑
i,a di,a αi ⊗ βa with d1,4 ̸= 0. Tuning the phase of the

14 ΓG denotes the root lattice of the simple simply–laced Lie group G.
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parameter ϵ in such a way15 that the deformation does not trigger spurious wall–
crossings, the net effect is just that in the IR two of the states (2.41) decouple,
namely those of charge α1⊗β4 and (α1+α2)⊗β4, the others remaining unaffected.

Stability of quiver representations

Of course, the same spectrum could be obtained directly from the analysis of the
stable representations of the quiver (2.34): if argZ0 < argZi,a, it is easy to see16

that the stable representations are the ones with charge vector α0 plus the stable
representations of the subquiver A3 ⊠ A2, which (in the corresponding BPS cham-
ber) have charge vectors α⊗ βa, a = 1, 2, 3. In this case the theory is complete [7]
and the two methods give equivalent information. However, in general, the decou-
pling analysis is more powerful: computing the BPS spectrum mathematically, we
get a spectrum which is wall–crossing equivalent to the physical one, but we do
not know whether the particular chamber in which we computed it may or may
not be physically realized (see discussion in [7]). The decoupling analysis, instead,
gives us a physical definition of the BPS chamber we are computing in, and we
are guaranteed that our finding have a direct physical meaning as actual particle
spectra. Of course, it is also more delicate, since as we move in parameter space
we have to control both the wall–crossings and the potential mixing of conserved
charges.

Cluster combinatorics

Let us compare the results of the decoupling (or quiver representation theoretical)
analysis with those of the cluster–combinatorial method. We consider only the
decomposition (2.38) which corresponds to the decoupling limit of the chamber
(2.41), leaving the other cases as an amusement for the reader.

Let Λ be the node sequence

Λ = {(1, 1), (1, 3), (2, 2), 0, (1, 2), (2, 1), (2, 3), (1, 1), (1, 3), (2, 2),
(2, 1), (2, 3), (1, 2), 0, (2, 2), (1, 1), (1, 3), (2, 1), (2, 3), (1, 2)}. (2.42)

15 This is possible since the model is complete and has a finite spectrum in all chambers, the
chamber themselves being finite in number.

16 Let X be a stable representation of the (bound) quiver (2.34) with (dimX)0 = n ̸= 0. Then
there is an exact sequence of the form

0→ Y → X → S(0)⊕n → 0,

where S(0) is the simple representation with vector space C at the 0–th node, and zero elsewhere.
If Y ̸= 0, one has argZ(Y ) = arg(Z(X) − nZ0) > argZ(X). Since X is stable, we get a
contradiction. Hence Y = 0.
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It is easy to check (using, say, Keller’s applet [42]) that this is a sink–factorized
sequence with respect to the complete family of Dynkin subquivers (2.38). mΛ

acts as the identity on TQ, and hence the above sequence corresponds to the full
quantum monodromy M(q). We obtain the charge vectors

γ0, −γ0, and

{
(s2s1)

k−1α2 ⊗ βa
(s2s1)

k−1s2α1 ⊗ βa k = 1, 2, 3, a = 1, 2, 3
(2.43)

where αi (resp. si) are the simple roots (resp. simple reflections) of A2. Note
that s2s1 is a Coxeter element of A2. Then, for a fixed a, we get the spectrum of
A2 AD in the maximal chamber (which, in particular, shows that both the PCT
and phase–ordering requirements are automatically satisfied). Hence the spectrum
consists of a set of hypermultiplets with charge γ0 and α ⊗ βa, a = 1, 2, 3 (α any
positive root of A2) which is precisely the spectrum predicted by the other two
methods.

This illustrates as the cluster combinatoric captures the BPS spectrum without
going trough a detailed analysis.

2.4. BPS spectra

We have several decompositions into complete families of Dynkin quivers which
admit full Coxeter–factorized sequences of the standard type, namely,

(G1, G2, . . . , Gs) (2.44)

Hence the spectrum is always given by equation (1.59), and in particular is consis-
tent with both PCT and the phase–ordering inequalities. This result is confirmed
by the stability analysis of the quiver representations, as well as by the physical
idea of decoupling states from a parent Am ⊠ G theory. The fact that the cor-
responding monodromies do have the right order ℓ (cfr. table 2.3) guarantees the
correctness of the result.

A list of Weyl–factorized sequence types is presented in table 2.4. For the
details of these Weyl–factorized sequences, see appendix C.3.

Table 2.4 presents a list of chambers with finite BPS spectra, which have nat-
ural physical interpretations, and hence are expected to be physically realized. Of
course, as for the E7 AD model in §.2.3.7, there exist other chambers in which the
spectrum has the ‘Weyl–factorized’ form (1.59). Indeed, the (infinite) mutation
classes of the exceptional Arnol’d quivers contain many quivers which admit com-
plete families of Dynkin subquivers: Our combinatoric methods apply to all these
chambers in a straightforward way. As an example we show nontrivial chambers
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E13 (A7, A6) Q10 (D4, D4, A2)

(A6, A6, A1) (A3, A3, A2, A2)

(A2, A2, A2, A2, A2, A2, A1) (D4, D4, A1, A1)

Z11 (A4, A4, A3) (A2, A2, A2, A2, A1, A1)

(A3, A3, A3, A2) Q11 (D4, D4, A2, A1)

Z12 (A4, A4, A3, A1) (A3, A3, A2, A2, A1)

(A3, A3, A3, A2, A1) (A4, A3, A2, A2)

(A5, A4, A3) Q12 (D4, D4, A2, A2)

Z13 (A5, A5, A3) (A4, A4, A2, A2)

(A3, A3, A3, A2, A2) S11 (D4, D4, A3)

W13 (A3, A3, A3, A3, A1) (A3, A3, A3, A2)

(A4, A4, A4, A1) S12 (D4, D4, A3, A1)

(A5, A4, A4) (A3, A3, A3, A2, A1)

(A4, A3, A3, A2)

Table 2.4: Types of some Weyl–factorized sequences for the Arnol’d exceptional
N = 2 theories. Each of them correspond to a BPS chamber of the corresponding
N = 2 theory with a finite spectrum having the direct–sum form (1.59).



2.5. THE Y –SYSTEMS AND THEIR PERIODICITY 53

for the quivers of type Q10 and Q12 obtained by elements of the mutation class
that are not of the (G,G′) type. However, in general it is difficult to establish
whether a given chamber is physical or not, even at the heuristic level. This is
one reason why here we have not attempted a full classification of all ‘factorized’
chambers, but limited ourselves to the set of those chambers simply related to the
analysis of ref. [13].

2.5. The Y –systems and their periodicity

A general consequence of ref. [13] is that the quantum (fractional) monodromy
M(q) (resp. Y(q)) of a 4d N = 2 model geometrically engineered by Type IIB on
an isolated quasi–homogeneous singularity with ĉ < 2 has finite order. Moreover,
in each BPS chamber of such a theory with a finite BPS spectrum the (fractional)
monodromy is written as a finite product of elementary quantum cluster mutations.

In the classical limit q → 1, the action of M(q) (resp. Y(q)) on the quantum
torus algebra TQ reduces to the corresponding KS rational symplecto–morphism
of the complex torus T ∼ (C∗)rankΓ [4, 26], which is directly related to to the
hyperKähler geometry of the 3d dimensional version of the theory [4]. As explained
in [4, 13], the resulting symplectic rational maps form a Y –system in the sense of
the Thermodynamical Bethe Ansatz [59].

The usual TBA periodic Y –systems [59, 60, 78, 79] correspond to ‘decoupled’
singularities of the form WG +WG′ . Ref. [13] predicts the existence of many oth-
ers such periodic Y –systems associated to non–decoupled singularities. Here we
explain how we have checked this prediction for the Arnol’d’s exceptional singu-
larities.

We start by reviewing the construction of the Y –system from the quantum
monodromy. Recall from chapter 1 that the (fractional) quantum monodromy, as
computed from the BPS data in a finite chamber, may be seen as the result of
a sequence of quantum mutations of the torus algebra TQ. The action of M(q)
on the quantum torus algebra is specified by the action on the set of generators
{Yi}i∈Q0 where, as usual, we write Q0 for the set of nodes of Q,

Yi → Y ′
i ≡ Ad(M−1)Yi ≡ N [Ri(Yj)], (2.45)

here N [Ri(Yj)] stands for the normal–order version of the rational function Ri(Yj)
of the operators Yj [13]. Ri has the log–symplectic property

⟨αi, αj⟩Dirac d log Yi ∧ d log Yj = ⟨αi, αj⟩Dirac d logRi ∧ d logRj. (2.46)

The rational map Yi → Ri is simply the classical limit of the monodromy action,
from which we may recover the full quantum action by taking the normal–order
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prescription for the operators (this is true [13] for all simply–laced, i.e. |Bij| ≤ 1,
quivers). This shows that the quantum monodromy, acting on TQ in the adjoint
fashion, has finite order ℓ if and only if the rational map CD → CD

R : Yi 7→ Ri(Yj) (2.47)

has order ℓ.
On the other hand, Ad(M−1) is an ordered product of basic quantum mutations

of the form
↷∏
Qk. The rational map Yj → Rj coincides with the composition of

the rational functions R
(k)
j giving the classical limit of each basic mutation Qk in

the product. The map Yj → R
(k)
j is just the elementary mutation at the k–th node

of the Y –seed in the sense of Fomin–Zelevinsky17 [43,80] but for Q replaced by the
opposite quiver Qop (see e.g. [39]). The Keller applet [42] automatically generates
the Y –seed mutations for any quiver Q, and hence, although the actual form of
the rational map (2.47) is typically quite cumbersome, it is easily generated by a
computer procedure.

By definition, the Y –system associated to a finite chamber of a N = 2 model is
simply the recursion relation generated by the iteration of the rational map (2.47),
namely

Yj(s+ 1) = Rj

(
Yk(s)

)
, s ∈ Z. (2.48)

Specializing to the N = 2 (G,G′) theories studied in [13], eqn.(2.48) reproduces
the well–known TBA Y –systems for the integrable 2d (G,G′) models [59,60,78,79].

Although we have generated at the computer the Y –systems for all the excep-
tional Arnol’d models, to avoid useless vaste of paper, here we limit ourselves to
present the explicit form of just a couple of examples: see the appendices. All
the others may be straightforwardly generated, using the explicit Weyl–factorized
sequences listed in appendix C.3, by the same computer procedure.

We stress that, although the explicit form of the Y –system depends on the
particular finite BPS chamber we use to write the map (2.47), two Y –systems
corresponding to different chambers of the same N = 2 theory are equivalent,
in the sense that they are related by a rational change of variables Yj → Y ′

j (Yk).
Indeed, the monodromy M(q) is independent of the chamber up to conjugacy, and
so is its classical limit map Yj → Rj. Hence the rational maps Rj obtained in
different chambers are conjugate in the Cremona group.

In conclusion, the (adjoint action of the) quantum monodromy M(q) has a
finite order ℓ if and only if the corresponding Y –system is periodic with (minimal)
period ℓ, that is

Ad
[
M(q)ℓ

]
= Id ⇐⇒ Yj(s+ ℓ) = Yj(s), ∀ j ∈ Q0, s ∈ Z. (2.49)

17 For Y variables in the universal semi–field.
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For the Arnol’d exceptional models, we know from string theory that M(q)
has the finite orders ℓ listed in table 2.3. This proves that the corresponding Y –
systems are periodic of period ℓ. It should be possible to give an interpretation of
these new periodic Y –systems in terms of exactly solvable 2d theories in analogy
with the (G,G′) ones [59,78,79].

At the mathematical level, we get an unexpected relation between singularity
theory and cyclic subgroups of the Cremona groups Cr(n) of birational automor-
phisms Pn → Pn, both interesting subjects in Algebraic Geometry (the second one
being notoriously hard for n ≥ 3 [81]).

2.5.1. Checking the periodicity Type IIB engineering of the model together
with our computation of the BPS spectrum proves that the corresponding Y –
systems are periodic with the periods listed in table 2.3. However, as a check, we
wish to give an independent proof of the periodicity.

In principle, to prove periodicity, one has just to iterate ℓ times the rational
map R of eqn.(2.47), and check that the resulting rational map is the identity.
Unfortunately, at the intermediate stages of the recursion, one typically gets ratio-
nal functions so cumbersome that no computer can handle them analytically [82].
Luckily, there is an alternative strategy advocated by Fomin in [82]. The ℓ–fold
interation of R, Rℓ, is a rational map whose fixed–point subvariety F has some
codimension n in CD. Periodicity is just the statement that n = 0.

If we specialize the Yi’s to randomly chosen numbers uniformely distributed
in some disk of radius ρ, compute numerically the transformation Rℓ(Yi), and get
back the original point Yi, we conclude that our randomly chosen point Yi lays on
the fixed–point subvariety F within the computational numerical accuracy ϵ. The
probability that a randomly chosen point appears to be on the fixed locus F is
then of order (ϵ/ρ)2n.

Therefore, the probability that applying Rℓ to a sequence of k random points
we get back the same sequence of points, is of order (ϵ/ρ)2nk. Since ϵ/ρ ∼ 10−11,
for n ̸= 0 the probability goes quite rapidly to zero as we increase k. If we do get
back the original sequence of points for, say, k = 5, we may conclude that n = 0
with a confidence level which differs from 100% by a mere 10−108%.

Using this strategy, we have checked all the periodicities listed in table 2.3. The
interested reader, may find the details of the check for the S11 model in appendix
C.2.

We have also checked the order of the 1/4–fractional monodromy for SU(2)
SQCD with four flavors, getting 4, namely order 1 for the full monodromy M(q),
in agreement with the physical prediction based on the fact that all chiral primaries
have integral dimension.
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2.6. Bimodal singularities

In this section we extend, without effort, the results of this chapter to the 4d
N = 2 SCFT’s that correspond to Arnol’d bimodal singularities.

Bimodal singularities are fully classified [51]: they are organized in 8 infi-
nite series and 14 exceptional families. All 14 exceptional families have a quasi–
homogeneous point in their moduli and, in between the 8 infinite series, there are
6 families that admit one. With an abuse of language, we will refer to this set as
to the set of quasi–homogeneous bimodal singularities. The quasi–homogeneous
potentials, W (x, y, z), that corresponds to the elements of this set lead to non–
degenerate 2d N = (2, 2) Landau–Ginzburg superconformal field theories that
have central charge ĉ < 2, therefore, according to [?, 9], these singularities are all
at finite distance in Calabi–Yau moduli space: the local CY 3–fold H , given by
the hypersurface in C4

H : W (x, y, z) + u2 + lower terms = 0. (2.50)

is a good candidate for the compactification of type IIB superstring that leads to
the engineering of an N = 2 superconformal 4d theory.

In between the theories obtained engineering Type IIB superstring on bimodal
singularities there are the following superconformal square tensor models [13]:

E18 x3 + y10 + z2 A2□A9 E20 x3 + y11 + z2 A2□A10

W18 x4 + y7 + z2 A3□A6 U16 x3 + xz2 + y5 D4□A4

J3,0 x3 + y9 + z2 A2□A8 W1,0 x4 + y6 + z2 A3□A5

(2.51)

Also the even elements of the Q2k serie belongs to the class of square tensor models,
in fact these are precisely the theories of type A2 ⊠Dk, but, looking at the tables
of Coxeter–Dynkin diagrams, one does not recognize the square form: this point
will be explained in what follows.

2.6.1. Modality and completeness The Landau–Ginzburg models we are con-
sidering here have chiral ring of primary operators [48,49]

R ≃ C[x, y, z]/JW , (2.52)

where JW is the jacobian ideal of W , i.e. the ideal of C[x, y, z] generated by the
partials ∂iW . The theories being non–degenerate, the ring is finite–dimensional as
a C–algebra and its dimension, µ, is called the Milnor number (or multiplicity) of
the singularity W (x, y, z),

D = µ ≡ dimCR. (2.53)
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Table 2.5: Exceptional bimodal singularities that are not listed in (2.51).

name W (x, y, z) Coxeter–Dynkin diagram

E19 x3 + xy7 + z2
• • • • • • • • •

• • • • • • • • • •

Z17 x3y + y8 + z2

• • •

• • • • • • •

• • • • • • •

Z18 x3y + xy6 + z2

• • •

• • • • • • •

• • • • • • • •

Z19 x3y + y9 + z2

• • •

• • • • • • • •

• • • • • • • •

W17 x4 + xy5 + z2

• • • • •

• • • • • •

• • • • • •



58 Chapter 2. Arnol’d–models

Q16 x3 + yz2 + y7

• •

• •

• • • • • •

• • • • • •

Q17 x3 + yz2 + xy5

• •

• •

• • • • • •

• • • • • • •

Q18 x3 + yz2 + y8

• •

• •

• • • • • • •

• • • • • • •

S16 x2z + yz2 + xy4

• •

• • • •

• • • • •

• • • • •

S17 x2z + yz2 + y6

• •

• • • • •

• • • • •

• • • • •
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Table 2.6: Quasi–homogeneous elements of the 8 infinite series of bimodal singu-
larities that are not in (2.51). We indicate the corresponding Milnor numbers in
parenthesis.

name W (x, y, z) Coxeter–Dynkin diagram

Z1,0 (15) x3y + y7 + z2

• • •

• • • • • •

• • • • • •

Q2,0 (14) x3 + yz2 + xy4

• •

• •

• • • • •

• • • • •

S1,0 (14) x2z + yz2 + y5

• •

• • • •

• • • •

• • • •

U1,0 (14) x3 + xz2 + xy3

• • •

• • •

• • • •

• • • •
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qx, qy, qz ĉ ℓ

E19 1/3 , 1/7 , 1/2 8/7 18

Z17 7/24, 1/8, 1/2 7/6 10

Z18 5/17, 2/17, 1/2 20/17 14

Z19 8/27, 1/9, 1/2 32/27 22

W17 1/4, 3/20, 1/2 6/5 8

Q16 1/3, 1/7, 3/7 25/21 17

Q17 1/3, 2/15, 13/30 6/5 12

Q18 1/3, 1/8, 7/16 29/24 19

S16 5/17, 3/17, 7/17 21/17 13

S17 7/24, 1/6, 5/12 5/4 9

Z1,0 2/7, 1/7, 1/2 8/7 6

Q2,0 1/3, 1/6, 5/12 7/6 5

S1,0 3/10, 1/5, 2/5 6/5 4

U1,0 1/3, 2/9, 1/3 11/9 9

Table 2.7: Chiral charges qi, central charges ĉ and orders ℓ of the quantum mon-
odromy M(q) for the quasi–homogeneous bimodal singularities that are not in
(2.51).
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Z1,0 x2y3(1), xy6(8
7
) Q2,0 x2y2(1), x2y3(7

6
)

S1,0 zy3(1), zy4(6
5
) U1,0 zy3(1), zy4(11

9
)

E19 y11(22
21
), y12(8

7
) W17 y7(21

20
), y8(6

5
)

Z17 xy6(25
24
), xy7(7

6
) Z18 y9(18

17
), y10(20

17
) Z19 xy7(29

27
), xy8(32

27
)

Q16 xy5(22
21
), xy6(25

21
) Q17 y8(16

15
), y9(6

5
) Q18 xy6(13

12
), xy7(29

24
)

S16 y6(18
17
), y7(21

17
) S17 zy4(13

12
), zy5(5

4
)

Table 2.8: Primary deformations of dimension ≥ 1 of the quasi–homogeneous
bimodal singularities that are not square tensor models. The number in parenthesis
is the dimension of the deformation.

This number equals the Witten–index tr(−)F of the theory, by the spectral flow
isomorphism [49, 83]. Moreover, by 2d/4d correspondence µ equals the rank of
the charge lattice Γ of the 4d theory. tr(−)F jumps at the infrared fixed point
obtained by perturbing the theory away from criticality with primary relevant
perturbations: this corresponds to the fact that taking this infrared limit we are
projecting on a proper subalgebra of R. Modality is the cardinality of the set of
perturbations that generate renormalization flows asymptotically preserving the
Witten–index [84]. From this definition, it follows that it can be computed as the
number of marginal and irrelevant primary operators in a monomial basis of the
chiral ring.

The 4d theories obtained by geometric engineering Type IIB on H are non–
complete quiver quantum field theories in the sense of [7]. In the case of exceptional
bimodal singularities, there are two quantum obstructed deformations, therefore
the codimension of ℑ(P) ⊂ CD is 2, while for the non–exceptional bimodals, there
is only one such deformation, the other modulus being a marginal deformation —
see table 2.8. As an example, consider the Q2,0 theory. The marginal deformation
of this singularity is x2y2. This is an operator equivalent, in the chiral ring, to y6.
By deforming Q2,0 with y6, we obtain the equivalence Q2,0 ∼ A2□D7.

2.6.2. 2d wall–crossings and Coxeter–Dynkin graphs As already mentioned,
Coxeter–Dynkin graphs are not unique, depending on the choice of a distinguished
homology basis. Equivalent distinguished basis are related by the braid group
(Picard–Lefshetz) transformations, i.e. by the 2d wall–crossing group. Whenever
we switch the position of two susy vacua, say |i⟩ and |i+ 1⟩, in the W plane, we
cross a 2d wall of marginal stability and this has the effect of a phase transition
in the 2d BPS spectrum. By 2d/4d correspondence, 2d wall–crossing is equivalent
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to mutations. Assume that the superpotential of the N = (2, 2) 2d Landau–
Ginzburg superconformal theory has nonzero modality, then there are directions
along the 2d renormalization group flow along which the Witten–index is conserved
also asymptotically. The behaviour of the Coxeter–Dynkin graph under these
deformations is encoded in the following proposition:

Proposition( 1 of [85]): all the irrelevant and marginal deformations of an
N = (2, 2) 2d Landau–Ginzburg superconformal theory with µ <∞ lead to equiv-
alent configurations of vacua and interpolating BPS solitons, where, by equivalent,
we mean that they are in the same 2d wall–crossing group orbit.

This proposition is the key to understand the phenomenon we encountered
with the even elements of the Q series: it is just the 2d wall–crossing in action.
The diagrams that one can find in the math litterature (and that we reported in
table 2.5) are referred to an irrelevant deformation while the ones from which the
square tensor form is explicit are obtained directly from the undeformed theory:
being the diagrams in a µ=const. stratum of Q2k they are equivalent, i.e. the two
quivers belongs to the same mutation class.

Indeed, for all k’s the result is in perfect agreement with [13]:

Q2k :

• • • • . . . • •

• • • • . . . • •︸ ︷︷ ︸
k elements

We remark that Q14 above is just Q2,0.

2.6.3. 2d Renormalization group flows The trivial instances of this RG pro-
cess are the following theories (we indicate in parenthesis the dimension of ϕ⋆):

A2□A10 : x
3 + y11 + z2

xy7 (32/33)−−−−−−−−→ E19

A3□A7 : x
4 + y8 + z2

x3y (7/8)−−−−−−→ Z17

A3□A6 : x
4 + y7 + z2

xy5 (27/28)−−−−−−−−→W17

A3□A6 : x
4 + y7 + z2

x3y (25/28)−−−−−−−−→ Z1,0

A4□D4 : x
2z + x3 + y5

xy3 (14/15)−−−−−−−−→ U1,0.

A4□D4 : x
2z + z3 + y5

yz2 (13/15)−−−−−−−−→ S1,0

(2.54)

The theories Z18, S16 and the ones of the Q series are better described as the
final IR points of RG ‘cascades’
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A3□A8 : x
4 + y9 + z2

x3y (31/36)−−−−−−−−→ Z19
xy6 (26/27)−−−−−−−−→ Z18

A5□D4 : x
2z + z3 + y6

yz2 (5/6)−−−−−−→ S17
xy4 (23/24)−−−−−−−−→ S16

A6□D4 : x
3 + z3 + y7

yz2 (17/21)−−−−−−−−→ Q16
xy4 (19/21)−−−−−−−−→ Q2,0

A7□D4 : x
3 + z3 + y8

yz2 (19/24)−−−−−−−−→ Q18
xy5 (23/24)−−−−−−−−→ Q17.

(2.55)

2.6.4. Flavor charges The degeneracies of the chiral ring elements are captured
by the Poincaré polynomial: ∑

α

tqα =
∏
i

(1− t1−qi)
1− tqi

(2.56)

where the qi are the charges of table 2.7 and the sum is over all the elements of a
monomial basis of the chiral ring. Expanding the RHS, f is the (positive or zero)
integer multiplying the coefficient tĉ/2 of the serie. So,

f =


3 for Z1,0

2 for Q2,0, S1,0, J3,0, Z18

1 for odd rank exceptionals and W1,0

0 otherwise.

(2.57)

2.6.5. A remark about weak coupling From table 2.8 we are able to compute
the codimension of ℑ(P) in CD

codim(D) =

{
2 for exceptional bimodals;

1 otherwise.

Therefore, if one of the theories we are considering has the structure of a G SYM
weakly coupled to some other sector that maybe non–lagrangian, just counting di-
mensions, we are able to constrain the possible gauge groupsG: for non-exceptional
bimodals the possibilities are

SU(2)k, SU(2)k × SU(3), SU(2)k × SO(5), SU(2)k ×G2, (2.58)

while for exceptional bimodals we have the above cases and the following ones

SU(2)k × SU(3)× SO(5), SU(2)k × SU(3)×G2,

SU(2)k × SO(5)×G2, SU(2)k × SU(4),
SU(2)k × SO(6), SU(2)k × SO(7)

(2.59)

for some k ∈ N. Since µ = rk(Γ), the possible number of SU(2) factors appearing
here is constrained by the Witten–index of the corresponding 2d theory.
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2.6.6. BPS spectra at strong coupling. The quivers with superpotentials of
these models are obtained with the same circle of ideas we discussed in §.2.3.1.
Again the BPS–spectra of these models are obtained via Weyl–factorized sequences
of mutations and determine the existence of 11 new periodic Y –systems that can
be straightforwardly generated with the help of the Keller’s mutation applet [42].
The sequences of mutations we have used are detailed in appendix C.4. Our result
are the following18:

• E19 : this theory is a one–point extension of A2□A9. We have four alge-
braically trivial finite chambers:

(A2 × 8, A3) (A2 × 9, A1)

(A10, A9) (A9 × 2, A1)
(2.60)

• Z17 : we have two algebraically trivial finite chambers:

(A3, A7, A7) (A3 × 3, A2 × 4) (2.61)

• Z18 : this is the one point extension of the previous one:

(A3, A7, A8) (A3, A7, A7, A1)

(A3 × 3, A2 × 3, A3) (A3 × 3, A2 × 4, A1)
(2.62)

• Q2k : the canonical chambers of A2□Dk and the following two algebraically
trivial finite chambers:

Q2,0 : (D4 × 2, A2 × 3) (A2 × 2, A5 × 2) (2.63)

Q16 : (D4 × 2, A2 × 4) (A2 × 2, A6 × 2) (2.64)

Q18 : (D4 × 2, A2 × 5) (A2 × 2, A7 × 2) (2.65)

• Q17 : this is a one point extension of Q16:

(D4 × 2, A2 × 4, A1) (A2 × 2, A6 × 2, A1)

(D4 × 2, A2 × 3, A3) (A2 × 2, A6, A7)
(2.66)

18The notation (..., G×N, ...) means that the Dynkin graph G appears N times in the family.



2.6. BIMODAL SINGULARITIES 65

• For all the others we have two algebraically trivial finite chambers:

Z19 : (A3, A8, A8) (A3 × 3, A2 × 5) (2.67)

W17 : (A5, A6, A6) (A3 × 5, A2) (2.68)

S16 : (D4 × 2, A3 × 2, A2) (A2, A4, A5 × 2) (2.69)

S17 : (D4 × 2, A3 × 3) (A2, A5 × 3) (2.70)

Z1,0 : (A3, A6 × 2) (A3 × 3, A2 × 3) (2.71)

S1,0 : (D4 × 2, A3 × 2) (A2, A4 × 3) (2.72)

U1,0 : (D4 × 3, A2) (A3 × 2, A4 × 2) (2.73)

We stress that all these finite BPS chambers have natural physical interpre-
tations as the decoupling of some heavy hypermultiplet from the physical BPS
spectrum of a canonical chamber of a square tensor model [13], as we showed in
section §2.6.3.





Chapter 3

Ĥ ⊠G systems and Dp(G) SCFT’s

3.1. A heuristic introduction

Consider the type IIB geometric engineering on the local Calabi–Yau hypersurface
of equation

epZ + e−Z +WG(X, Y ) + U2 = 0 (3.1)

where WG(X,Y ) stands for (the versal deformation of the) minimal ADE singu-
larity of type G (see table 3.1). The RHS of (3.1), seen as a 2d superpotential,
corresponds to a model with central charge ĉ at the UV fixed point equal to

ĉuv = 1 + ĉG < 2 (3.2)

where ĉG is the central charge of the minimal (2, 2) SCFT of type G. Since ĉuv < 2,
the criterion of the 2d/4d correspondence we reviewed in §.2.3.1 is satisfied, and
we get a well–defined QFT in 4D. For p = 1 the geometry (3.1) reduces to the
known Seiberg–Witten geometry of the pure G SYM, and for all p ∈ N, we expect
the resulting 4D theory is UV asymptotically free; there is, indeed, a scale one
cannot get rid off but by changing the underlying geometry discontinuously: the
size of the cylinder in the Z coordinate. This claim can be justified also in terms of
the standard argument by Tachikawa–Terashima [86]: one can view the geometry
(3.1) as a particular fibration of the (deformed) ALE spaceWG(X, Y )+U2 = 0. It
is well–known that the low energy description of Type II B on WG(X, Y )+U2 = 0
gives rise to the 6d N = (2, 0) theory of type G. Then the cylinder in the Z
coordinate is naturally interpreted as a Gaiotto plumbing cylinder, and its size
can be traded for the scale of the theory. Notice that this is the only scale one
can obtain from this geometry: all other cycles are vanishing, therefore it exists
a limit in which the theory is conformal up to one single scale. From this we
deduce that only one simple factor of the gauge group of these models can be
asymptotically free, the case p = 1 indicates that the group in question is G. Let g
denote the Yang–Mills coupling constant of this gauge group. In the limit g → 0,
the SYM sector decouples from the system and one is left with a subsector of the
original model with G flavor symmetry (at least). From the above considerations,
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WG(X, Y ) (qX , qY ) h(G)

An−1 Xn + Y 2 (1/n, 1/2) n

Dn+1 Xn +XY 2 (1/n, (n− 1)/2n) 2n

E6 X3 + Y 4 (1/3, 1/4) 12

E7 X3 +XY 3 (1/3, 2/9) 18

E8 X3 + Y 5 (1/3, 1/5) 30

Table 3.1: List of the ADE simple singularities, and some of the corresponding
properties.

moreover, we expect that such decoupled system is superconformal. This idea
is confirmed by the analysis of the G = SU(2) case: indeed, in this case, the

geometry (3.1) gives simply the Â(p, 1) complete 4d N = 2 theory, that is well–
known to have an S–duality frame that represents an SU(2) SYM system weakly
gauging the SU(2) flavor symmetry of an Argyres–Douglas system of type Dp. In
conclusion, for all other gauge groups, we expect that the geometry (3.1) engineers
a G SYM weakly gauging the flavor symmetry of a superconformal sector. Such
system generalizes the Dp Argyres–Douglas models to the case of flavor group (at
least) G, so we will call these models Dp(G). The purpose of this chapter is to
discuss some of the most relevant properties of these models.

3.2. 2d/4d and direct sums of 2d models.

As we have discussed in the previous chapter, the 2d/4d correspondence is the
(conjectural) statement that, for each 4d N = 2 supersymmetric quantum field
theory with the BPS–quiver property, there is a two–dimensional N = (2, 2) sys-
tem with ĉ < 2 such that the exchange matrix B of the 4d quiver Q is

B = St − S, (3.3)

where S is the tt∗ Stokes matrix of the 2d system. The inverse process of recon-
structing the 2d theory from the 4d one (that is, of finding S given B) involves
some subtleties. In the lucky case that Q is acyclic, one has simply

Sij = δij −max{Bij, 0}, (3.4)

corresponding to the Euler form of the quiver Q. Notice that the path algebra CQ
of any quiver without relations Q is always hereditary, i.e. it has global dimension
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≤ 1 [71]. For BPS–quivers the acyclicity condition entails that it cannot have
a superpotential and therefore it will not have relations. Formula (3.4), then
follows from the algebraic reformulation of 2d/4d correspondence of §.2.3.1. For the
constructions of this chapter we need S only for acyclic quivers, and for the slightly
more general cases which are derived equivalent to a hereditary category [87], the
matrix S still being given by the Euler form.

Remark. The 2d/4d correspondence relates 2d superconformal theories to
4d superconformal ones: Indeed the scaling of the 2d theory may be seen as a
scaling property of the Seiberg–Witten geometry, which in turn implies a scaling
symmetry for the 4d theory. The 2d quantum monodromy is H = (St)−1S [50],
and the 2d theory is superconformal (in the UV) precisely when H is semi–simple.

Consider now two 2d (2, 2) LG systems with superpotentials W1(Xi) and
W2(Ya) and (UV) Virasoro central charges ĉ1 and ĉ2. Their direct sum is defined
as the (2, 2) decoupled model with superpotential

W (Xi, Ya) = W1(Xi) +W2(Ya). (3.5)

It has ĉ = ĉ1 + ĉ2. By the 2d/4d correspondence, it defines a 4d N = 2 theory
provided ĉ < 2.

A more general application of the same strategy that lead Cecotti–Neitzke–
Vafa to the definition of the (G,G′) models is to consider the direct sum of a 2d
minimal model (ĉ < 1) with a 2d model corresponding to a complete 4d theory
which has ĉ ≤ 1 by definition. Again the direct sum has automatically ĉ < 2.
By construction, the Hilbert spaces of the direct sum models are tensor products
H1⊗H2 of the Hilbert spaces of the factors, and therefore the tt∗ Stokes matrix of
the direct sum is the tensor product of the Stokes matrices of the summands [50]

S = S1 ⊗ S2. (3.6)

In our case S2 is the Stokes matrix of an ADE Dynkin quiver (which is a tree, so
eqn.(3.4) applies), while S1 is the Stokes matrix of a ĉ ≤ 1 (2, 2) system. In almost
all cases considered in this chapter we will take S1 to be the Stokes matrix of an
acyclic affine quiver. The construction may be extended to a general mutation–
finite quiver, provided one knows the right Stokes matrix.

If the quivers Q1, Q2 associated to S1, S2 are acyclic, the quiver Q with ex-
change matrix

B = St1 ⊗ St2 − S1 ⊗ S2 (3.7)

is called the triangle tensor product of the two quivers, written Q1 ⊠Q2, and it is
equipped with a unique superpotential W⊠ obtained by 3–CY completion. Notice
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that (3.6) and (3.7) are perfectly consisten with our discussion in §.2.3.1: the Dirac
pairing in (3.7) is precisely the antysimmetrization of the Euler form defined in
(3.6). Let CQ1, CQ2 be the corresponding path algebras. We can consider the
tensor product algebra CQ1 ⊗ CQ2 spanned, as a vector space, by the elements
α⊗ β and endowed with the product

α⊗ β · γ ⊗ δ = αγ ⊗ βδ. (3.8)

Let ei, (resp. ea) be the lazy paths (≡ minimal idempotents) of the algebra CQ1

(resp. CQ2). The minimal idempotents of the tensor product algebra are eia =
ei ⊗ ea; for each such idempotent eia there is a node in the quiver of the algebra
CQ1 ⊗ CQ2 which we denote by the same symbol. The arrows of the quiver are1

ei ⊗ β : ei ⊗ es(β) → ei ⊗ et(β), α⊗ ea : es(α) ⊗ ea → et(α) ⊗ ea. (3.9)

However, there are non–trivial relations between the paths; indeed the product
(3.8) implies the commutativity relations

et(α) ⊗ β · α⊗ es(β) = α⊗ et(β) · es(α) ⊗ β. (3.10)

In the physical context all relations between paths should arise in the Jacobian
form ∂W = 0 from a superpotential. In order to set the commutativity relations
in the Jacobian form, we have to complete our quiver by adding an extra arrow
for each pairs of arrows α ∈ Q1, β ∈ Q2

ψα,β : et(α) ⊗ et(β) → es(α) ⊗ es(β), (3.11)

and introducing a term in the superpotential of the form

W⊠ =
∑

pairs α,β

ψα,β

(
et(α) ⊗ β · α⊗ es(β) − α⊗ et(β) · es(α) ⊗ β

)
(3.12)

enforcing the commutativity conditions (3.10). The resulting completed quiver,
equipped with this superpotential, is called the triangle tensor product of Q1, Q2,
written Q1 ⊠Q2 [10, 13,14,60].

Remark. Notice that the 3–CY completion construction of the quiver with
superpotential Q1 ⊠ Q2 carries over formally for all finite quivers Q1, Q2 without
relations. Indeed, the path algebras CQ1 and CQ2, though infinite dimensional,
are still hereditary if the quivers Q1 and Q2 are finite [71]. Even if this situation

1 Here s(·) and t(·) are the maps which associate to an arrow its source and target node,
respectively.
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seems unphysical at first sight, we will see that peculiar decoupling limits (weak
coupling regime) can be described using this technology.

Examples. If bothQ1, Q2 are Dynkin quivers their tensor product corresponds
to the (G,G′) models constructed and studied by Cecotti–Neitzke–Vafa in [13]. If

Q1 is the Kronecker (affine) quiver Â(1, 1) and Q2 is a Dynkin quiver of type G,

Â(1, 1) ⊠ G is the quiver (with superpotential) of pure SYM with gauge group
G [8, 10, 13].

3.3. Light subcategories: a short review.

Consider a BPS–quiver 4d N = 2 gauge theory that behaves, in some duality
frame, as SYM with simply–laced2 gauge groupG coupled to some ‘matter’ system.
We fix a quiver Q which ‘covers’ the region in parameter space corresponding to
weak G gauge coupling. We pick a particular pair (Q,W) in the corresponding
mutation–class which is appropriate for the G weak coupling regime of its Coulomb
branch. rep(Q,W) should contain, in particular, P1 families of representations
corresponding to the massive W–boson vector–multiplets which are in one–to–one
correspondence with the positive roots of G. We write δa (a = 1, 2, . . . , r) for the
charge vector of the W–boson associated to the simple–root αa of G.

Electric and magnetic weights: Dirac integrality condition

At a generic point in the Coulomb branch we have an unbroken U(1)r symmetry.
The U(1)r electric charges, properly normalized so that they are integral for all
states, are given by the fundamental coroots3 α∨

a ∈ h (a = 1, 2, . . . , r). The a–th
electric charge of the W–boson associated to b–th simple root αb then is

qa(αb) ≡ αb(α
∨
a ) ≡

2 (αb, αa)

(αa, αa)
≡ Cab, (the Cartan matrix of G). (3.13)

Therefore the vector in Γ⊗Q corresponding to the a–th unit electric charge is

qa = (C)−1
ab δb. (3.14)

Then the magnetic weights (charges) of a representation X are defined through its
Dirac electromagnetic pairing with the unit electric vectors

ma(X) ≡ ⟨dimX, qa⟩Dirac = C−1
ab (dimX)tB δb. (3.15)

2 The construction of the light subcategory for G SYM in the non–simply laced case was
found in [notsimply], but it is out of the scope of the present work to review also that (very
interesting) topic.

3 Here and below h stands for the Cartan subalgebra of the complexified Lie algebra of the
gauge group G.
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Dirac quantization requires the r linear forms ma(·) to be integral [10]. This
integrality condition is quite a strong constraint on the quiver Q, and, if the
model has a lagrangian description, it is a criterion strong enough to completely
determine it.

The light subcategory L (Q,W)

Assume for simplicity that G is simple and simply laced. At weak Yang–Mills
coupling, g → 0, the central charge takes the classical form

Z(X) = − 1

g2

∑
i

Cama(X) +O(1) Ca > 0. (3.16)

States of non–zero magnetic charge have masses of order O(1/g2) as g → 0, and
decouple in the limit. The BPS states which are both stable and light in the
decoupling limit must correspond to quiver representations X satisfying the two
conditions: 1) ma(X) = 0 for all a (light); 2) if Y is a subrepresentation of X,
then ma(Y ) ≤ 0 for all i (stability in the chamber (3.16)). These two conditions
are well known in representation theory, but to understand this link we need to
introduce some more abstract nonsense.

Consider an abelian category A . The Groethendieck group K0(A ) is the free
abelian group on the set of objects of A modulo all relations A−B +C given by
short exact sequences

0→ A→ B → C → 0

A linear function from K0(A ) to Z can be viewed as a mapping on the objects of
A that is additive on exact sequences, λ(B) = λ(A) + λ(C). Given a set of linear
functions (the controls)

λA : K0(A )→ Z, (A = 1, 2, . . . , s)

the subcategory B(λA) ⊂ A of objects defined by the requirements that i)
λA(X) = 0 for all A, and ii) for all subobjects Y one has λA(Y ) ≤ 0 is an
exact subcategory4 of A that is, moreover, closed under extensions5. B(λA) is
said to be a controlled subcategory of A [10, 88].

Take A = rep(Q,W). Γ = K0(A ), the isomorphism (of groups) being given
by the dimension vector. We stress that the Groethendieck group is the physically

4i.e. it is closed under kernels, cokernels and direct sums.
5 Recall that given two objects of an abelian category X,Y ∈ A , M ∈ A is an extension of

X through Y iff 0→ X →M → Y → 0 is an exact sequence. The set Ext1(X,Y ) is simply the
set of all extensions of X through Y .
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more natural structure: it does not distinguish in between particles and anti–
particles6.

The magnetic charges (3.15) can be extended to linear functions ma : Γ → Z.
The two physical conditions that a BPS state is stable and light, then, are precisely
the requirements for defining a controlled subcategory B(ma) of rep(Q,W). Such
subcategory is said to be a light subcategory L (Q,W) w.r.t. the chosen duality
frame. All BPS states with bounded mass in the weak coupling limit gYM → 0
correspond to representations in L (Q,W). In facts, for a N = 2 theory which has
a weakly coupled Lagrangian description the stable objects of L (Q,W) precisely
correspond to the perturbative states that are charged under G: we will have P1

families that corresponds to gauge bosons, making one copy of the adjoint of G,
together with finitely many rigid objects that correspond to hypermultiplets and
are organized in definite representations of G.

The light category L has a quiver (with relations) of its own. However, while
typically a full non–perturbative category has a 2–acyclic quiver, the quiver of
a light category has, in general, both loops and pairs of opposite arrows ⇆. It
depends on the particular superpotential W whether the pairs of opposite arrows
may or may not be integrated away. To motivate this claim, consider a theory
with a Lagrangian description: if we take the weak–coupling limit for all simple
factors of the gauge group, all states in L are mutually local so that

⟨·, ·⟩Dirac

∣∣
L

= 0, (3.17)

and the net number of arrows between any two nodes of Q′ must be zero

#{arrows i→ j in Q′} −#{arrows i← j in Q′} = 0. (3.18)

In particular, Q′, if connected, cannot be 2–acyclic. This is related to the fact that
L is not, typically, the non–perturbative Abelian category representing all BPS
states of the theory, but rather it represent only a subsector (the perturbative one)
which is not a full QFT. The complete spectrum also contain dyons with masses
of order O(1/g2).

Compatible decoupling limits

The notion of controlled subcategory can be used in many different ways to engi-
neer in representation theory various physical decoupling limits (Higgs decoupling,

6 Indeed, two mutation equivalent quivers with potential, lead to derived equivalent algebras,
that, in particular, have the same Groethendieck group.
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acyclic affine quiver Ĥ matter content

Â(p, q) p ≥ q ≥ 1 Dp ⊕Dq (⊕D1)

D̂r r ≥ 4 D2 ⊕D2 ⊕Dr−2

Êr r = 6, 7, 8 D2 ⊕D3 ⊕Dr−3

Table 3.2: Affine N = 2 complete theories as SU(2) SYM coupled to several Dp

systems. D1 stands for the empty matter and D2 ≡ A1 ⊕ A1 for a free hypermul-
tiplet doublet.

massive quark,...). An especially simple case is when one has λA(ei) ≥ 0 for all
positive generators ei of Q and all A = 1, 2, . . . , s. In this positive case,

B(λA) = rep(Q0,W
∣∣
Q0
),

where Q0 is the full subquiver of Q over the nodes ei such that λA(ei) = 0 for all
A. Examples of this sort were the decoupling limits we have considered in §.2.3.3
of the previous chapter.

A very useful property of the light category L , proven in different contexts
[10–12], is the following. Assume our theory has, in addition to g → 0, a de-
coupling limit (e.g. large masses, extreme Higgs breaking), which is compatible
with parametrically small YM coupling g, and such that the decoupled theory has
support in a full subquiver Q̃ of Q. Then

X ∈ L (Q) ⇒ X
∣∣
Q̃
∈ L (Q̃), (3.19)

a relation which just expresses the compatibility of the given decoupling limit
with g ∼ 0. This fact is quite useful since, combined with the Dirac integrality
conditions, it allows to construct recursively the category L for complicate large
quivers from the light categories associated to smaller quivers.

Let us focus now on the G = SU(2) case; this will be a very instructive example
for the construction of the models discussed in the rest of this chapter.

3.3.1. Affine N = 2 SU(2) gauge theories and Euclidean algebras. The
full classification of the N = 2 SU(2) gauge theories whose gauge group is strictly
SU(2) and which are both complete and asymptotically–free is presented in refer-
ence [7]. Such theories are in one–to–one correspondence with the mutation–classes

of quivers obtained by choosing an acyclic orientation of an affine ÂD̂Ê Dynkin



3.3. LIGHT SUBCATEGORIES: A SHORT REVIEW. 75

graph. For D̂r (r ≥ 4) and Êr (r = 6, 7, 8) all orientations are mutation equiv-

alent, while in the Âr case the inequivalent orientations are characterized by the
net number p (resp.q) of arrows pointing in the clockwise (anticlockwise) direction

along the cycle; we write Â(p, q) for the Âp+q−1 Dynkin graph with such an orien-

tation (p ≥ q ≥ 1). The case Â(p, 0) is different because there is a closed oriented

p–loop. The corresponding path algebra CÂ(p, 0) is infinite–dimensional, and it
must be bounded by some relations which, in the physical context, must arise
from a superpotential, ∂W = 0. For generic W , Â(p, 0) is mutation–equivalent to
the Dp Argyres–Douglas model which has an SU(2) global symmetry, however, by
the triality property of SO(8), the D4 Argyres–Douglas model is very special: its
flavor symmetry gets enhanced to SU(3). One can show in many ways [7,10] that
these N = 2 affine theories correspond to SU(2) SYM gauging the global SU(2)
symmetries of a set of Argyres–Douglas models of type Dr as in the table 3.2. To
our knowledge the most intuitive way of getting this result is to use the gauging
gluing rûle on Gaiotto surfaces that corresponds to affine models. Degenerating
the tube that corresponds to the SU(2) gauge group one remains with the sur-
faces that corresponds to the Dp Argyres–Douglas systems in the table. The same

result follows from inspection of the properties of the category rep(Ĥ). Since we
are going to use heavily these properties in the rest of this chapter (in particular
in §.3.4.6), let us review the algebraic proof of the statement in table 3.2 [10,89].

The path algebras that correspond to the acyclic affine quivers CĤ have been
widely studied in the math literature under the name of Euclidean algebras. These
algebras are, in particular, hereditary (i.e. of global dimension ≤ 1), and therefore
their Euler form is easily determined from the exchange matrix: One has

Sij = δij −max{Bij, 0}. (3.20)

To the Euler form ⟨−,−⟩E is associated a quadratic form, called the Tits form7:

qĤ(X) ≡ ⟨X ,X⟩E (3.21)

The Tits form is always positive semi–definite for Euclidean algebras and it is
independent on the chosen orientation of Ĥ. By linearity the Tits form we have
defined is extended to the whole charge lattice. The set

∆Ĥ ≡ {γ ∈ ΓĤ | qĤ(γ) ≤ 1} (3.22)

is the set of roots of Γ. The dimension vectors of the indecomposable representa-
tions γ ∈ ΓĤ are in bijection with the positive roots of q. A given root γ ∈ ∆Ĥ is

7 Notice that it also coincides with the Tits form associated to the underlying unoriented
Euclidean graph.
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Ĥ dim δ d(dim X)

A(p, q) :

• // . . . // •
��

♠
??

��

♢

• // . . . // •
??

1 . . . 1

1 1

1 . . . 1

n♠ − n♢

D̂r :

♠1

!!

♢1

• // . . . // •
==

!!

♠2

==

♢2

1 1

2 . . . 2

1 1

n♠1 + n♠2 − n♢1 − n♢2

Ê6 :

a2

a1

OO

b2 b1oo ♠oo //

OO

c1 // c2

1

2

1 2 3 2 1

3n♠ −
∑2

i=1(nai + nbi + nci)

Ê7 :
c

a3 a2oo a1oo ♠oo //

OO

b1 // b2 // b3

2

1 2 3 4 3 2 1
4n♠ − 2nc −

∑3
i=1(nai + nbi)

Ê8 :
c

b2 b1oo ♠oo //

OO

a1 // a2 // a3 // a4 // a5

3

2 4 6 5 4 3 2 1
6n♠ − 3nc − 2

∑2
i=1 nbi −

∑5
i=1 nai

Table 3.3: Dimension vector δ of the minimal imaginary roots and Dlab-Ringel
defects d(dim X) of the representations X of Ĥ. In the last column we adopt the
shorthand ni ≡ dim Xi.

said to be real iff qĤ(γ) = 1, while it is imaginary iff qĤ(γ) = 0. There is always
a minimal imaginary root, δ, such that

rad qĤ(·) ≡ {γ ∈ ΓĤ | ⟨γ ,−⟩E = −⟨− , γ⟩E}
≃ Zδ.

(3.23)

The list of the minimal imaginary roots δ for all Ĥ is in table 3.3. The Dlab–Ringel
defect of a module X ∈ rep(Ĥ) is simply

dĤ(X) ≡ ⟨δ , dim X⟩E = −⟨dim X , δ⟩E (3.24)

Notice that the Coxeter element Φ ≡ −(S−1)tS of these algebras satisfies a very
interesting identity in terms of the defect

ΦN = Id +
bN

2
δ ⊗ ⟨δ,−⟩E (3.25)

where b and N are as in table 3.4.
From the definition of the Euler form (2.12), we notice that, for an hereditary

algebra
qĤ(X) = dim End(X)− dim Ext1(X,X). (3.26)
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Ĥ: Â(p, q) D̂r Êr

N : lcm{p, q} lcm{2, 2, r − 2} lcm{2, 3, r − 3}
b : 2(1/p+ 1/q) 2(1/(r − 2)) 2((9− r)/6(r − 3))

Table 3.4: Couples (b,N) for eqn.(3.25) and corresponding Euclidean algebras.

Since we know that representations that are stable in some chamber are always
bricks we have that

X brick ⇒ dim Ext1(X,X) =

{
1 iff qĤ(X) = 0

0 iff qĤ(X) = 1
(3.27)

Moreover, our quiver being acyclic, lemma 1 of §.3 of [77] computes the dimension
of the moduli spaceM(γ) for γ = dim X as

dimM(dim X) = dim Ext1(X,X). (3.28)

The bricks of Ĥ are fully classified. Given two dimension vectors γ1 and γ2 we say
that γ1 ≤ γ2 iff this inequality holds componentwise.

Characterization of bricks. Let γ be a positive real root. The indecompos-
able representation of Ĥ of dimension γ is a brick iff one of the following holds:
1.) ⟨γ, δ⟩E ̸= 0; or 2.) γ ≤ δ. Moreover, the only other indecomposable represen-
tations that are bricks have dimension vector δ.

Let us callWλ the elements of the P1 orbit of representations with dim Wλ ≡ δ.
This P1–family is interpreted as the SU(2) W–boson of the model. Notice that
the corresponding magnetic charge coincides with the Dlab–Ringel defect:

m(X) ≡ 1
2
(dim X)tBδ

= 1
2
(dim X)t(St − S)δ

= 1
2
(⟨δ, dim X⟩E − ⟨dim X, δ⟩E)

= ⟨δ, dim X⟩E
= dĤ(X).

(3.29)

This remark leads to the physical interpretation of the characterization of bricks.
Indeed, all the positive real roots that have non–vanishing defect correspond to
magnetically charged hypermultiplets (the dyons). In addition, there may be other
magnetically neutral hypers that corresponds to those positive real roots γ such
that m(γ) = 0 and γ ≤ δ. In the limit g → 0, all magnetically charged particles
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decouple. The light subcategory will contain only the following objects: (1.) a
P1 family of indecomposable bricks with charge δ, (i.e. the SU(2) W–boson),
(2.) the rigid bricks with vanishing defect and dimension vectors in the positive

roots s.t. γ ≤ δ. With the exception of the cases Â(1, 1), Â(2, 1), Â(2, 2), and

D̂4, from this fact it follows that the actual light BPS–spectrum will depend on
the stability conditions, i.e. there are many domains of the first kind that are
compatible with the limit g → 0, and in each such domain the stable and light
BPS–hypers may still not be all mutually local8. This is enough to deduce that the
theory represents SU(2) weakly gauging an SU(2) flavor symmetry of a strongly
coupled non–lagrangian conformal system. The exceptions, indeed, corresponds
to the lagrangian asymptotically–free SU(2) SQCD with fundamental hypers in
Nf = 0, 1, 2, 3. The only SCFT’s that have these properties (spectrum made only
of hypermultiplets in all chambers9 + SU(2) flavor symmetry) are the Argyres–

Douglas models of type Dp. Our conclusion for the moment is that any Ĥ has an
S–duality frame in which it can be represented as an SU(2) SYM sector coupled to
a certain direct sum⊕iDpi . It remains to determine the set of {pi}i that correspond
to the given Ĥ model. In order to do that, there are other fundamental properties
of the category rep(Ĥ) that comes to rescue us.

The category rep(Ĥ) has the following structure10

rep(Ĥ) = PĤ ∨ TĤ ∨QĤ (3.30)

where P , T , and Q are called, respectively, the preprojective, the regular, and the
preinjective component. These subcategories of rep(Ĥ) are distinguished by the
defect: if X is an indecomposable module, then it is, respectively, preprojective,
regular or preinjective, if its its defect is negative, zero, or positive. From our
definitions, the light subcategory L (Ĥ) is precisely TĤ . The category rep(Ĥ) has

8 However, since we know that they can come only in hypermultiplets, their Dirac pairings
are constrained to be ≤ 1.

9 This fact alone implies that the underlying quiver is Dynkin of type ADE, by Gabriel’s
theorem on classification of representation–finite algebras.

10 The notation we use is due to Ringel [65]. Let A be a Krull–Schmidt category (i.e. a
C–linear category such that all the endomorphism rings of its indecomposable objects are local
— this is always the case for categories of the form rep(Q,W) that corresponds to 4d N = 2
models), an object class B ⊆ A is a full subcategory of A that is closed under direct sums,
direct summands, and isomorphisms. Any object class of a Krull–Schmidt category is itself
a Krull–Schmidt category and it is characterized uniquely by the indecomposable objects that
belong to it. Given two object classes B1,B2, we will call

B1 ∨B2 = add(B1,B2)

the smallest object class containing B1 and B2.
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Auslander–Reiten translations11 τ, τ− : rep(Ĥ)→ rep(Ĥ). For indecomposable X,

X ∈ P ⇔ ∃n > 0 s.t. τnX = 0

X ∈ Q ⇔ ∃n > 0 s.t. τ−nX = 0

X ∈ T ⇔ τnX ̸= 0 ∀n ∈ Z
(3.31)

For X indecomposable and not projective

dim τ X = Φdim X. (3.32)

In particular, τ and τ− are always autoequivalences12 of the category TĤ . More-
over, τ induce a Serre–duality on TĤ : again let X, Y ∈ Tλ, we have (Auslander–
Reiten formula)

Hom(Y,X) ≃ DExt1(X, τ Y ) (3.33)

where D is the usual duality functor of vecC: D ≡ Hom(−,C). The categories of
regular representations of Euclidean algebras all have the Ringel property : in the
Ringel notation introduced in footnote 10, this is expressed as

TĤ =
∨
λ∈P1

Tλ (3.34)

where the elements Tλ are (standard stable) tubes. All tubes in (3.34) are Hom–
orthogonal, i.e. Hom(Tλ, Tλ′) ̸= 0 ⇔ λ = λ′. The Auslander–Reiten functors
respects this ‘fibration’ of the additive generators of TĤ in tubes13, i.e. given an
indecomposable representationX ∈ Tλ, τ X ∈ Tλ. Notice that these two properties
(Hom–orthogonality and τ compatibility) holds also for the object classes14

TĤ(λ) ≡ add(Tλ). (3.35)

There are only two kinds of standard stable tubes:

• homogeneous tubes, T1 : for all indecomposable X ∈ T1 we have τ X = X;

• non–homogeneous or periodic tubes, Tp: for all indecomposable X ∈ Tp,
τ pX = X.

11 For Euclidean algebras A over C the AR–translations becomes simply the dual (in vecC) of
the functors Ext1(−,A).

12 Recall that two functors F : A → B, and G : B → A are adjoint iff HomB(FX, Y ) =
HomA (X,GY ). Two adjoint functors are an equivalence of the categories A and B iff they
induce isomorphisms in between the corresponding morphism spaces (i.e. they are full and faith-
ful).

13 More rigorously, such ‘decomposition’ is defined via the AR–functors: see footnote 15.
14 See the definition in footnote 10.
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An object X ∈ TĤ is a regular simple object iff it has no proper non–zero regular
submodule, i.e. dĤ(X) = 0 and dĤ(Y ) < 0 ∀ 0 ̸= Y ⊂ X. If S is a regular simple
it is a brick. In particular, τ S = S iff dim S is an imaginary root. If this is the
case, clearly, dim S = δ. A τ orbit of regular simples uniquely characterize the
tube it belongs to15. If the tube is of period one, there is only one regular simple
in it, it is a brick, and its dimension vector is δ. On the contrary, if the tube has
period p, we have an orbit of regular simples Sk ≡ τ kS such that

p−1∑
k=0

dim τ kS = δ. (3.36)

Being bricks, the Sk must correspond to positive real roots and have to be rigid.
It is natural to associate to the category add(Tp) its Gabriel quiver. It has nodes
in correspondence with the Sk and in between two nodes Si and Sj one draws

dim Ext1(Si, Sj) =by eqn.(3.33) dim Hom(Sj, τSi) = Schur’s lemma δj,i+1 (3.37)

arrows. The last equality follows from the fact that the Si are simple objects:
by Schur’s lemma any morphism in between them is either an isomorphism or
zero. The resulting quiver is precisely the Â(p, 0) quiver that we have discussed
at the beginning of this section. Its nilpotent indecomposable representations are
in one–to–one correspondence with the elements of the stable tube of period Tp.
By eqn.(3.36) an indecomposable with dimension vector δ is part of the nilpotent

indecomposables of Â(p, 1): in the terminology of footnote 15 it is the the ‘small-
est’ regular indecomposable of lenght p. From the characterization of bricks, it
follows that the information about the BPS–states of the SCFT ‘matter system’ is
contained in the rigid bricks of the tube that have dimensions γ < δ. To untangle
the rigid bricks from the whole tube we have to impose a relation that selects only
the regular indecomposables of length ≤ p− 2. This in turns is a condition on the
length of the worlds one can form using the arrows of the quiver Â(p, 0): imposing
that all the worlds of lenght > p− 2 are zero is equivalent to impose the relations
on Â(p, 0) that would follow from the partials of the superpotential W ≡ p-cycle.

As we have said at the beginning of this section, the quiver (Â(p, 0),W = p-cycle)
is mutation equivalent to the quiver for a Dp system.

15 Indeed, every indecomposable regular module X is such that it has regular submodules
0 = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xℓ = X and these are the only regular submodules of it. ℓ is
called the (regular) length of X. The submodules X1, X2/X1, X3/X2, . . . , Xℓ/Xℓ−1 are called
the (regular) composition factors of X, X1 is its (regular) socle, X/Xℓ−1 its (regular) top. For
each regular simple S there is a unique regular module X with regular top S and composition
factors, in decreasing order from the top, S, τS, τ2S, . . . , τ ℓS. The tube Tp corresponding to an
orbit of regular simples is the set of all indecomposable regulars with composition factors in the
orbit.
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This shows that each regular tube of period p in TĤ corresponds to the gauging
of a Dp matter system. The characterization of bricks constraints the possible
tubes: at the generic points of the P1 base of the Ringel–decomposition there
are only homogeneous tubes, while at finitely many non–generic points there are
non–homogenous tubes. The possible non–homogenous tubes have periods pi that
precisely coincides with the Dpi triples of table 3.2 — see also table 3.6. For

example, the systems of type Â(p, 1) have light subcategories that contain a unique
non–homogenous tube of period p. This concludes our summary.

Remark 1. The category rep Â(p, 0) will play a rôle in what follows. Consider

TÂ(p,1), the category of regular objects of Â(p, 1). Let us call T∞ the (unique)
homogenous tube that contains the regular simple

C 1 // C 1 // · · · 1 // C
1

��

C

1

??

0 // C

(3.38)

It is a theorem by Ringel16 that

TÂ(p,1) = rep Â(p, 0) ∨ T∞. (3.39)

Remark 2. Notice that via eqn.(3.29), eqn.(3.25) becomes

ΦN = Id + bN m(−)q. (3.40)

where q is the electric weight of SU(2). As we will review in §.3.4.4, this is
interpreted as the effect of a 2πN chiral rotation on the charge lattice: on one
hand this is precisely the Witten–effect on Dyon spectra, on the other hand b
of table 3.4 can be interpreted as the coefficient of the chiral axial anomaly, and
therefore is precisely the coefficient of the beta–function of the SU(2) coupling

µ
∂

∂µ

4π

g2
=

b

2π
.

This is a very interesting way to show that eachDp contributes to the beta function
of the SU(2) SYM coupling b(Dp) = 2(p−1)/p. Using this formula, one check that
the models listed in (3.2) precisely correspond to all possible (complete) matter
systems which are compatible with the asymptotic freedom of a simple SU(2)
gauge group.

16 (6) pag.160 of [65]. We thank Bill Crawley–Boevey for pointing that out.
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•2,1
e2⊗α1 // •2,2

e2⊗α2 //

ψA,α1

yy

ψB,α1

yy

•2,3

ψA,α2

yy

ψB,α2

yy

•1,1

A⊗e1

OO

B⊗e1

OO

e1⊗α1 // •1,2
e1⊗α2 //

A⊗e2

OO

B⊗e2

OO

•1,3

A⊗e3

OO

B⊗e3

OO

Figure 3.1: The quiver for SU(4) SYM in the notation of (3.12).

3.3.2. The Ringel property of light subcategories. One of the major out-
comes of the anlisys of [10] is that the Ringel–decomposition property generalizes
to all 4d N = 2 theories with any (simply–laced) gauge group. If we consider the
g → 0 limit for one simple simply–laced factor of the gauge group G, the light
category has the structure [10]

L =
∨
λ∈P1

Lλ, (3.41)

where the Abelian categories Lλ are called, by analogy with eqn.(3.34), G–tubes.

Homogenous G–tubes

Let G be a simple simply–laced lie group. Consider the pure G SYM system. Its
quiver is Â(1, 1)⊠G. The charge lattice of this model is ΓÂ(1,1)⊗ΓG, where ΓG is the

root lattice of G. This system has a canonical weak–coupling regime. Let Â(1, 1)a
denote the full Â(1, 1) subquiver on the a-th node of the Dynkin subquiver of type
G. Let Wa denote the W–boson of the model that corresponds to the simple root
ea in Γ+

G. The canonical weak–coupling for this system is obtained by declaring
that Wa corresponds to the representations that have dimension vector equal to
δ ⊗ ea, the minimal imaginary root of the Â(1, 1)a full subquiver. By (3.6) the
Euler form factorizes as the product of the Euler forms of the factors, therefore

⟨δ ⊗ ea , δ ⊗ eb⟩E = ⟨δ , δ⟩E · ⟨ea , eb⟩E
= δ is an imaginary root 0

(3.42)

Since the Dirac pairing for this class of models is simply the anti–symmetrization
of the Euler form, this ensures that the charges we have chosen are mutually local:

⟨δ ⊗ ea , δ ⊗ eb⟩Dirac = 0. (3.43)

Let X ∈ rep(Â(1, 1)⊠G). By construction dim X =
∑
Ni,bei ⊗ eb, where i = 1, 2

and b = 1, ..., r, the rank of G. Again we use that the Euler form factorizes as the
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product of the Euler forms of the factors:

⟨dim X, δ ⊗ ec⟩E = ⟨
∑
i,b

Ni,bei ⊗ eb , δ ⊗ ec⟩E

=
∑
i,b

Ni,b⟨ei, δ⟩E⟨eb , ec⟩E

= −
∑
b

d(X
∣∣
Â(1,1)b

)⟨eb , ec⟩E.

(3.44)

Where d is the defect of the Â(1, 1) Euclidean algebra (3.24). Analogously, by
(3.24), we obtain that

⟨δ ⊗ ec , dim X⟩E =
∑
b

d(X
∣∣
Â(1,1)b

)⟨ec , eb⟩E (3.45)

Therefore (compare with (2.12) and (2.13))

⟨dim X , δ ⊗ ec⟩Dirac ≡ ⟨δ ⊗ ec , dim X⟩E − ⟨dim X , δ ⊗ ec⟩E
=
∑
b

d(X
∣∣
Â(1,1)b

)
(
⟨eb , ec⟩E + ⟨ec , eb⟩E

)
≡
∑
b

(CG)cbd(X|Â(1,1)b).

(3.46)

Where (CG)cb is the Cartan matrix of G. Using the definition (3.15), the a-th
magnetic charge for the canonical weak–coupling is

ma(X) = (C−1
G )ac⟨dim X , δ ⊗ ec⟩Dirac

= d(X|Â(1,1)a) ∈ Z (3.47)

Therefore the Dirac integrality condition is satisfied. The (canonical) light subcat-

egory L (Â(1, 1)⊠G) of this system is defined as the controlled subcategory with
respect to this choice of controls. There are obvious Higgs decoupling limits of the
form G → SU(2)× ‘decoupled photons’ that are compatible with the canonical

weak–coupling regime: these are given by the full Â(1, 1) subquivers on the nodes
of G. By compatibility with the Higgs decoupling limits, (3.19), we know that

X ∈ L ⇒ X
∣∣
Â(1,1)a

∈ TÂ(1,1)a ∀ a = 1, ..., r = rank(G) (3.48)

e.g. X|Â(1,1)a is a direct sum of regular indecomposables of the Â(1, 1). Now, we
are going to show that the canonical light subcategory has a Ringel–decomposition
of the form in eqn.(3.41) in two ways. The first gives some insight on the quiver of
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the light subcategory for these models that we will generalize later, the second is
just a sketch to show the power of the Auslander–Reiten functor approach to this
story; it can be generalized too, but getting the quiver from that might be hard17.

First proof . From (3.39) in remark 1 of the previous section we know that

TÂ(1,1) = rep Â(1, 0) ∨ T∞

Forgetting about the T∞ component, it is natural to associate to the category
L (A(1, 1) ⊠ G) the quiver A(1, 0) ⊠ G. For example the quiver for the light

subcategory of SU(4) SYM is Â(1, 0) ⊠ A3 (the dashed arrows are the relations
that implement the commutativity of the tensor product):

•1

A1

��
α1

)) •2

A2

��
α2

))

α∗
1

ii •3

A3

��

α∗
2

ii

W⊠ = α∗
1(α1A1 − A2α1) + α∗

2(α2A2 − A3α2).

(3.49)

Each representation restricted to one node X|•i can be thought as a representation

of the 1–loop Jordan quiver Â(1, 0). The relations ∂α∗
i
W = 0 entails that the arrows

αi induce morphisms
αi : X|•s(αi)

→ X|•t(αi)

in between different representations, and the same holds for the relations ∂αi
W =

0: the arrows
α∗
i : X|•s(α∗

i
)
→ X|•t(α∗

i
)

are morphisms too. Embedding back rep Â(1, 0) in TÂ(1,1), we see that whenever
the arrows α and α∗ are non–zero, they induce morphisms in between objects of
TÂ(1,1). Since Jordan representations are in particular regular of the Euclidean

Â(1, 1) algebra, they must be direct sums of indecomposables that belongs to

homogeneous tubes. Consider an indecomposable representation of Â(1, 0)⊠G that
is supported on more than one node, i.e. X|•i ̸= 0 and X|•j ̸= 0 for i ̸= j. Since X
is indecomposable, the support must be connected, and some of the α, α∗ arrows
must be non–zero. Thus we have induced homomorphisms in between the various
X|•i . This is possible iff X|•i ∈ add (T1)λ at the same λ ∀ i. By our discussion
around (3.35), these are, indeed, the only possible objects that admits morphisms
in between each other. If this is not the case, there is at least an indecomposable
summand Yi of X|•i for some i that belongs to another tube, at a different λ, but

17 Even though a possible approach would be to use the Yoneda pairings ExtmR (X,Y ) ⊗
ExtmS (P,Q)→ Extm+n

R⊗S (X ⊗ P, Y ⊗Q) where X,Y are R–modules, and P,Q are S–modules.
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all the arrows connecting it to other objects that belongs to the λ component must
be zero and the representation splits, it is no more indecomposable. This shows
that the category of representations of Â(1, 0)⊠G is Ringel–decomposed over C.
Adding the projective closure at λ = ∞ nothing changes18. By construction (all
tubes of TÂ(1,1) are homogenous), the fibers of indecomposable modules in the
Ringel–decomposition of this category are, moreover, all equivalent to one, called
the homogenous G–tube, and denoted L YM

G .

The relations following from ∂Ak
W , are precisely the relations that define a

preprojective algebra19 of type P(G). We have a forgetful functor from repÂ(1, 0)⊠
G to the category of modules of the preprojective algebra modP(G), given by
forgetting the Ai arrows. We know that all indecomposable objects belongs to
homogenous G–tubes at fixed λ. This means that focusing on indecomposable
bricks, all Ai arrows are fixed : Ai = λ · idXi

, ∀i. Forgetting the Ai arrows,
we are working directly on modP(G). Moreover, by the previous argument, the
indecomposable bricks of the latter are precisely in bijection with the bricks of the
homogenous G–tube. The category modP(G) has only rigid bricks with dimension
vectors in bijection with the positive roots of G, moreover, precisely one copy of
the positive roots of G that we have identified corresponds to bricks of L YM

G that
are stable given a domain of the first kind that is compatible with the canonical
weak coupling limit20. This concludes the proof that the light subcategory of G
SYM contains precisely one adjoint vectormultiplet.

Second proof (skecth). The Auslander–Reiten translations of rep Â(1, 1) induce
the functors

τ ⊗ 1, τ− ⊗ 1 : repA(1, 1)⊠G→ repA(1, 1)⊠G. (3.51)

18 Indeed, by S2 symmetry of the Kronecker quiver T∞ is equivalent to Tλ=0.
19 Given a (finite, connected) graph L, we define its double quiver L by replacing each edge
α

in L with a pair of opposite arrows
α //

α∗
oo . The quotient of the path algebra of L by

the ideal generated by the relations ∑
α∈L

(αα∗ − α∗α) = 0, (3.50)

is called the preprojective algebra of the graph L [90,91], which we write as P(L). A basic result
is that P(L) is finite dimensional if and only if L is an ADE Dynkin graph G. In this case,
moreover, (3.50) give precisely the set of relations ∂AiW = 0.

20 We shall review only the proof of the first part. It is known that for X,Y bricks of modP(G)
(X,Y )C = (dim X)t(CG)dim Y = dim Hom(X,Y ) + dim Hom(Y,X) − dim Ext1(Y,X). Spe-
cialize to the case X = Y : 0 < (X,X)C = 2−dim Ext1(X,X). But the minimal value of (·, ·)CG

is 2, and this is attained precisely for X with dimensions equal to the positive G root lattice. So
dim Ext1(X,X) = 0. The dimension of the moduli space of a P(G)–module is proportional to
dim Ext1(X,X), so the bricks are rigid.
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From (3.48), it is the clear that an indecomposable object X ∈ repA(1, 1)⊠G is in
the canonical light subcategory L iff (τ ⊗1)X = X. The fact that L inherits the
Ringel–decomposition of TÂ(1,1) follows from this remark. Indeed, let S ∈ (T1)λ ⊂
TÂ(1,1) be the regular simple that uniquely characterize that tube. All objects
S ⊗ R, where R is a brick of repG belong to the same τ ⊗ 1 orbit, and these are
the regular simple objects for the homogeneous G–tube L YM

G , that automatically
satisfy the relations of ∂W⊠. The bricks of repG have dimension vectors equal to
the positive roots of G and are moreover its only indecomposables. The rest of
the homogenous G–tube at λ consist of all the (indecomposable) extensions that
are compatible with the relations ∂W⊠ of the objects of the form X ⊗ R where
X ∈ (T1)λ is an indecomposable regular.

Non–homogenous G–tubes

Whenever we add matter to the system, there will be special points of the P1

family that correponds to non–homogeneous G–tubes. For almost all λ ∈ P1, the
G–tubes of eqn.(3.41) are homogenous, while at non–generic points, we will find
non–homogenous G–tubes.

If G is not simple, we have as many coupling constants as simple factors. The
above procedure can be carried over for each coupling constant separately. At each
step we decouple the states that are heavy in the limit in which one of the coupling
becomes weak. At the end we will remain with a category that is fibered over a
set of P1’s, one per simple factor of the gauge group, that intersect at non–generic
points. At the generic point of each (P1)k we will find the homogeneous Gk–tube of
the corresponding simple factor Gk ⊂ G. At the non–generic points of intersection
(P1)k1 ∩ (P1)k2 ∩ · · · (P1)kn we are going to find a non–homogeneous

∏n
i=1Gki–tube

that represents the gauging of some matter subsystem with
∏n

i=1Gki flavor group.
The more complicated the theory, the more complicated will be the corresponding
index variety N such that

L =
∨
λ∈N

Lλ. (3.52)

The index variety N has a clear geometrical meaning for all theories of class S[C, g].
N is the degeneration limit of C that corresponds to the S–duality frame cap-
tured by L . From this perspective, the classification of N = 2 theories with
BPS–quiver property amounts to the classification of possible non–homogenous
G–tubes, the Cecotti’s categorical tinkertoy. The passage from a given light sub-
category L (Q,W) to the full category rep(Q,W) is said to be a non–perturbative
completion or a categorical quantization.
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Specialization: a lightning sketch

One can rephrase the specialization procedure of [12] in the language of the previ-
ous sections. Consider the quiver of the light subcategory of G SYM, A(1, 0)⊠G
and set one of the ‘loop’ arrows, Ai in (3.49), to a special value λ∗. Setting one
arrow to λ∗, the possible hom–orthogonal tubes localizes to the λ∗–one. At the
tube at λ = λ∗ one finds bricks with the charges of the adjoint representation of G,
while at the tubes at λ ̸= λ∗ one finds bricks only for the full subquivers obtained
deleting the i-th node. Consider the SU(4) SYM example, the quiver is (3.49).
Setting A1 (resp.A3) to zero one obtains the light subcategory for SU(3) with one
hyper in the fundamental 3 (resp. antifundamental 3̄). Setting A2 = 0, one ob-

tains SU(2) with one hyper in the bifundamental. Embedding back Â(1, 0)⊠G in

Â(1, 1)⊠G, this procedure determines the superpotential of the specialized quivers

•2,2
ww

// •2,3

~~
~~

•1
''
•1,2 //

OO OO

•1,3

OO OO
•2,1

''

•2,3
ww•2

''ww
•1,1

OO OO

•1,3

OO OO
•2,1 // •2,2

~~
~~

'' •3
ww

•1,1 //

OO OO

•2,1

OO OO

(3.53)

SU(3) w/ 3 SU(2)2 w/ (2, 2̄) SU(3) w/ 3̄

The specializations of ADE SYM at one Kronecker precisely correspond to the
list of cases explicitly discussed in ref. [92], namely

An → An−k × Ak−1

Dn → Dn−1, An−1, Dn−r × Ar−1

E6 → D5, A5

E7 → D6, E6, A6

E8 → E7.

(3.54)

In all instances the matter representations found in [92] using geometric methods
agree with those found in [10] using the Representation Theory of the associated
quivers with superpotential. In facts, in both approaches one is effectively reduced
to a breaking of the adjoint representation of the Lie groups in the left part of
eqn.(3.54) to the Lie groups on the right times U(1)f , where — after specializa-
tion — U(1)f is interpreted as the global flavor symmetry of the matter sector.
(Note that specialization at k vertical Kronecker subquivers reduces the numbers
of nodes of the quiver by k; in particular, the exchange matrices of one-Kronecker
specializations have odd rank, so that detB = 0, consistent with the fact that
there is a flavor U(1)f charge).
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• α1 // •

ψ1

xx

ψ2

uu•

C1

XX

α3

,, •

C2

FF

ψ3

uu•

A1

OO

B1

FF

α3

// •

A2

OO

B2

XX

W = (α1A1 − A2α3)ψ1 + (α1C1 − C2α2)ψ2 + (α2B1 −B2α3)ψ3

Figure 3.2: The quiver and superpotential for Â(2, 1)⊠ A2

3.4. The N = 2 models Ĥ ⊠G

We consider the triangle tensor product Ĥ⊠G where Ĥ stands for an acyclic affine
quiver (listed in the first column of table (3.2)), and G is an ADE Dynkin quiver.

Since ĉ(Ĥ) = 1 and ĉ(G) < 1, the total ĉ is always less than 2, and thus all quivers
of this form correspond to good N = 2 QFT models by 2d/4d correspondence.

With a slight abuse of notation, we shall use the symbol Ĥ⊠G to denote both the
quiver (with superpotential) and the corresponding 4d N = 2 theory. In addition

we shall consider the S1’s corresponding to the four elliptic quivers D
(1,1)
4 , E

(1,1)
6 ,

E
(1,1)
7 , and E

(1,1)
8 [7]. However in this last case the quiver (3.7) is not simply a

tensor product of the quivers of the 2d direct summands.

Since the 2d minimal models are conformal, the direct sum 4d theory will be a
SCFT precisely when the (2, 2) theory corresponding to the factor S1 is conformal.
An acyclic affine quiver always corresponds to a 4d theory which is asymptotically–
free with β ̸= 0 [50][7], and the 4d models Ĥ⊠G are also asymptotically–free with
a non–zero β–function. On the contrary, the direct sum of a minimal and an
elliptic 2d theories leads automatically to a superconformal 4d model.

If Ĥ = Â(1, 1), the model Ĥ ⊠G correspond to pure N = 2 SYM with group
G. In figure 3.2 we show the quiver (with superpotential) corresponding to the

simplest next model i.e. Â(2, 1) ⊠ A2, the general case being a repetition of this
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basic structure21. We call the full subquiver Ĥ ⊠ {•a} ⊂ Ĥ ⊠G ‘the affine quiver
over the a–th node of the Dynkin graph G’, or else ‘the affine quiver associated
to the the a–th simple root of the group G’; it will be denoted as Ĥa, where
a = 1, 2 . . . , rankG.

3.4.1.Weak coupling We claim that theN = 2 model Ĥ⊠G is SYM with gauge
groupG coupled to some superconformalN = 2 matter (which may contain further
SYM sectors). The most convincing proof of this statement consists in computing
the BPS mass spectrum as gYM → 0 and showing that the vectors which remain
light in the limit form precisely one copy of the adjoint representation of G plus,
possibly, G–singlets. This amounts to constructing the light category L , checking
that it has the universal structure described in §.3.3.2, and showing that its quiver
satisfies all necessary conditions for being considered the BPS–quiver of another
4d N = 2 theory.

The charge lattice of these models ΓĤ⊠G ≃ ΓĤ ⊗ ΓG. We may choose our
S–duality frame in such a way that the representations Wa, corresponding to the
a–th simple root W–boson, has support in the affine quiver Ĥa over the a–th
simple root. Then, by Kac’s theorem [74], its dimension vector must be equal to

the minimal imaginary roots of Ĥ

dimWa = δ ⊗ ea. (3.55)

This is exactly like the canonical S–duality frame for the pure G SYM models!
All set of eqns.(3.42)–(3.47) carries over. In particular, the magnetic charges are
given by

ma(X) = d
(
dimX

∣∣
Ĥa

)
(3.56)

where d is the Dlab–Ringel defect of the (sub)quiver Ĥa. And ma(δ ⊗ eb) = 0
∀ b. Mutual locality and Dirac integrality of the magnetic charges are satisfied
The magnetic charges ma(·) define the canonical light category L as in §. 3.3.
The consistency of the light subcategory with the Higgs mechanism expressed in
eqn.(3.19), now reads

X ∈ L ⇒ X
∣∣
Ĥa
∈ TĤ . (3.57)

The category TĤ is precisely the regular category of rep Ĥ, see (3.34). Then on P1

there are ℓ distinct points λi such that the associated category Tλi is a stable tube
of period pi; the Tλ’s over all other points of P1 are homogeneous tubes (period 1).
The property (3.57) has an important refinement. For X ∈ L one has

X
∣∣
Ĥa
∈ Tλ(Ĥ) the same λ for all a. (3.58)

21 For Ĥ = Â(p, p), D̂r and Êr we have an equivalent square product quiver without ‘diagonal’

arrows; for Â(p, q) we may reduce to a quiver with just p− q diagonal arrows.
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There are many ways to show that this is true. For example the second proof
about homogenous G–tubes in §.3.3.2 generalizes to this case22. Another way of
seeing this is to go to the meta–quiver approach we will discuss later on. However,
from (3.58) it follows that the light spectrum consists of vector–multiplets in the
adjoint of G — corresponding to the generic point of P1 — plus the matter which
resides at the special values λi.

The matter systems associated with two distinct special points decouple from
each other as gYM → 0, so, as long as we are interested in the matter theory
itself rather than the full gauged model Ĥ ⊠G, we loose no generality in choosing
Ĥ to have just one special point over which we have a stable tube of period p,
p = 2, 3, . . . . This corresponds to the models with Ĥ = Â(p, 1).

3.4.2. Â(p, 1) ⊠ G models. From eqn.(3.39) in remark 1 of the previous section
we know that

TÂ(p,1) = repA(p, 0) ∨ T∞

Forgetting about the T∞ component, it is natural to associate to the category
L (Â(p, 1) ⊠ G) the quiver with superpotential Â(p, 0) ⊠ G. For example, the

quiver with superpotential Â(p, 0)⊠ A3 is

∗1,1 ∗1,2
α∗
(p),1

ww

∗1,3
α∗
(p),2

ww
•p,1

A
(1)
p

OO

α(p),1
// •p,2

α∗
(p−1),1

xx

A
(2)
p

OO

α(p),2
// •p,3

A
(3)
p

OO

α∗
(p−1),1

xx...

A
(1)
p−1

OO

...
α∗
(2),1

xx

A
(2)
p−1

OO

...
α∗
(2),2

xx

A
(3)
p−1

OO

•2,1

A
(1)
2

OO

α(2),1
// •2,2

α∗
(1),1

ww

A
(2)
2

OO

α(2),2
// •2,3

A
(2)
3

OO

α∗
(1),2

ww

∗1,1

A
(1)
1

OO

α(1),1
// ∗1,2

A
(2)
1

OO

α(1),2
// ∗1,3

A
(3)
1

OO

(3.59)

where nodes ∗ are identified. Here we have introduced the following notation, with
respect to the one of §.3.2:

A
(a)
i ≡ Ai ⊗ ea α(i),a ≡ ei ⊗ αa α∗

(i),a ≡ ψAi,αa . (3.60)

22 By (3.57) the canonical light subcategory is the subcategory that has objects X ∈ repW⊠G
such that (τn ⊗ 1)X ̸= 0 for all n ∈ Z
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And the ⊠ superpotential23 reads

W⊠ =
∑
i,a

α∗
(i),a(α(i+1),aA

(s(αa))
i − A(t(αa))

i α(i),a). (3.61)

ForX ∈ rep Â(p, 0)⊠G, letX
∣∣
a
be its restriction to the a–th affine cyclic subquiver.

Again we see that the relations ∂α∗W⊠ = 0 entails that the arrows in a family
α̃a ≡ {α(i),a}pi=1 induce a morphism of representations of rep Â(p, 0):

α̃a : X|s(αa) → X|t(αa) (3.62)

If we take the partials ∂αW⊠ = 0, instead we obtain relations

A
(s(α))
i−1 α∗

(i−1),s(α) = α∗
(i),s(α)A

(t(α))
i . (3.63)

Consider the family of arrows α̃∗
a ≡ {α∗

(i),a}
p
i=1. Again these induce morphisms

of representations (as one can easily convince himself with a glance at the quiver
(3.59))

α̃∗
a : X|s(α∗

a) → X|t(α∗
a). (3.64)

because the quiver Â(p, 0) is symmetric by shift i → i − 1. Later in this section
we will make this property formal: this shift is the Auslander–Reiten translation
τ of TÂ(p,1). Moreover, we have the relations ∂AW⊠ = 0∑

α:s(α)=a

α∗
(i),aα(i+1),a =

∑
α:t(α)=a

α(i),aα
∗
(i),a. (3.65)

These relations entails that the morphisms α̃a and α̃
∗
a satisfies the relations of the

P(G) preprojective algebra. The same argument we have discussed for pure G
SYM applies here: since the object classes corresponding to the tubes at different
values of λ are hom–orthogonal, we obtain a Ringel–decomposition of the category
rep Â(p, 0) ⊠ G in tubes of indecomposable objects. The tube at λ = ∞ of the
category TÂ(p,1) being homogenous nothing changes there, and this entails that we

have a Ringel–decomposition of the full light category of Â(p, 1)⊠G

L (Â(p, 1)⊠G) =
∨
λ∈P1

Lλ (3.66)

For all λ ̸= 0 the indecomposable objects X ∈ Lλ are such that X|a belongs to the

object class of the homogenous tube at λ, add (T1)λ: all the arrows A(a)
i are, there-

fore, isomorphisms. Using these isomorphisms together with the relations (3.65)

23 i is taken mod p in the summation.
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we see that Lλ at λ ̸= 0 is precisely a copy of the homogenous G–tube L YM
G . A

way to show this is that, via these isomorphisms, the quiver with superpotential
Â(p, 0)⊠G is mapped into Â(1, 0)⊠G and the morphisms α̃a and α̃

∗
a reduce to the

αa and α
∗
a arrows. A more rigorous proof can be found in §.3.4.6. On contrast, at

λ ̸= 0 the indecomposable X ∈ L0 are such that X|a belong to the object class of
a non–homogenous tube (of period p). As we have discussed the indecomposable
objects of a non–homogenous tube of period p are precisely the indecomposable
nilpotent representations of Â(p, 0), therefore not all A

(a)
i arrows can be isomor-

phisms! The BPS particles, stable and light at weak coupling, which correspond to
generic λ representations are then vector multiplets forming precisely of one copy
of the adjoint representation of G (taking into account also the massless photons
in the Cartan subalgebra). The indecomposables of Lλ=0, instead, contains other
representations besides the ones obtained by taking the λ → 0 limit of the λ ̸= 0
ones. In facts, one has the inclusion

L YM(λ = 0)G ⊆ L (λ = 0) (3.67)

with equality if and only if p = 1. For p > 1 Lλ=0 contains in addition repre-
sentations which (when stable) have the physical interpretation of matter BPS–
particles charged under the G gauge symmetry. By sending the Yang–Mills cou-
pling to zero, we decouple from the SYM sector the matter system sitting in the
category L (λ = 0), which we call Dp(G). Our next task is to characterize the
non–perturbative physics of this system.

3.4.3. The quiver with superpotential of the Dp(G) system. The matter
N = 2 theory Dp(G) has its own quiver with superpotential (Qmat.,Wmat.). They
are characterized by the property that there is a matter functor M

M : rep(Qmat.,Wmat.)→ rep Â(p, 0)⊠G (3.68)

which preserves indecomposable modules and iso–classes (in the RT jargon, one
says that the functor M insets indecomposable modules) as well as the quantum
numbers

dim M (X) = dim X, (3.69)

and such that, if X is an indecomposable module of rep(Qmat.,Wmat.), then M (X)

is a λ = 0 indecomposable module of rep Â(p, 0) ⊠ G which is rigid in the λ
direction, that is, M (X) cannot be continuously deformed to a λ ̸= 0 module.

Let us label Qp,G the quiver of Â(p, 0) ⊠ G. Since the simple representations
with support at a single node of Qp,G are rigid, and there are no other simple
repr.’s, the Gabriel quiver [68] of the matter module category has the same nodes
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as Qp,G. It has also the same arrows, since Qp,G is simply–laced and the modules
with support on the (full) A2 subquivers are obviously rigid. Thus the matter
quiver is simply

Qmat. ≡ Qp,G. (3.70)

The superpotential, however, should be modified to rigidify the parameter λ.
In the case G = A1, where the quiver Qp,A1 is just Â(p, 0), λ–rigidity is achieved by

taking Wmat. = ApAp−1 · · ·A1. Considering the representations of rep Â(p, 0) ⊠ G

with support in a single affine cyclic subquiver Â(p, 0)a, and comparing with the
A1 case, we deduce that we have to add to the superpotential W⊠ at least the
extra term

δW =
∑
a

A(a)
p A

(a)
p−1 · · ·A

(a)
1 . (3.71)

One may wonder whether this modification is enough, or we need to add additional
higher order corrections corresponding to cycles not supported in single affine cyclic
subquivers. We claim that this is not the case (up to terms which do not modify
the universality class ofW , and hence may be ignored as far as the BPS spectrum
is concerned).

To substantiate the claim, the first thing to check is that the modified super-
potential Wmat. = W⊠ + δW does rigidify λ to zero. For notational simplicity we
are going to check this only for the case G = An, the result can be easily extended
to all G in ADE. The only relations that gets modified by δW are the ∂AW ones,
that becomes (for G = An)

A
(a)
i+1A

(a)
i+2 · · ·A(a)

p A
(a)
1 · · ·A

(a)
i−1 = α(i),a−1α

∗
(i),a−1 − α∗

(i),aα(i+1),a (3.72)

Using ∂αW and ∂α∗W one shows that the maps

A
(a)
i+1A

(a)
i+2 · · ·A(a)

p A
(a)
1 · · ·A

(a)
i−1A

(a)
i : X•i,a → X•i,a (3.73)

define an endomorphism of a representation of both Â(p, 1)⊠G and rep (Qp,G,Wmat.).
Hence, for an indecomposable module X ∈ rep(Qp,G,W⊠ + δW), we have

λ · IdX(j,a)
+N(j,a) = A

(a)
j−1A

(a)
j−2 · · ·A

(a)
1 A(a)

p · · ·A
(a)
j

= eqn.(3.73) α(j),a−1α
∗
(j),a−1A

(a)
j − α∗

(j),aα(j+1),aA
(a)
j

= eqn.(3.63) α(j),a−1A
(a−1)
j−1 α∗

(j−1),a−1 − α∗
(j),aα(j+1),aA

(a)
j

= by ∂α∗W = 0 A
(a)
j−1α(j−1),a−1α

∗
(j−1),a−1 − α∗

(j),aα(j+1),aA
(a)
j

where N(j,a) is nilpotent. Taking traces we get

λ · dimX(j,a) = tr
(
A

(a)
j−1α(j−1),a−1α

∗
(j−1),a−1

)
− tr

(
α∗
(j),aα(j+1),aA

(a)
j

)
= cyclicity tr

(
A

(a)
j−1α(j−1),a−1α

∗
(j−1),a−1

)
− tr

(
α(j+1),aA

(a)
j α∗

(j),a

)
= by ∂α∗W = 0 tr

(
A

(a)
j−1α(j−1),a−1α

∗
(j−1),a−1

)
− tr

(
α(j+1),aα

∗
(j+1),aA

(a+1)
j+1

)
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Summing this relation over the nodes ofQp,G, we get for all indecomposable module
X

λ ·
∑
j,a

dimX(j,a) = 0 (3.74)

which implies λ = 0 rigidly. Since all its non–zero indecomposables are rigid in the
λ direction, the Abelian category rep(Qp,G,W⊠ + δW) is rigid in that direction.
By this we mean that any object of the category rep(Qp,G,W⊠ + δW) restricts in
each cyclic affine subquiver to a module of the uniserial self–injective Nakayama
algebra [68] given by the quotient of the path algebra of Â(p, 0) by the bilateral

ideal generated by all cyclic words A
(a)
i A

(a)
i+1 · · ·A

(a)
i−1 for i = 1, . . . , p. Note that

the module category of this Nakayama algebra is strictly larger than the module
category of the Nakayama algebra which is the Jacobian algebra of theDp Argyres–
Douglas system, the difference being that the maximal length of the composition
series is now p instead of p − 1. Thus, Dp(G) is not, in any sense, the tensor
product of Dp and G. For an explicit counterexample, however, see §.3.4.5.

This rigidity result implies, in particular, that the limit as λ → 0 of a λ ̸= 0
brick of Â(p, 0)⊠G does not satisfy the modified relations, and hence the super-
potential W⊠ + δW has the effect of ‘projecting out’ the SYM sector.

To get the claim, it remains to construct the functor M . It should be such that,
for all representations X of the quiver Qp,G which satisfy the relations ∂(W⊠ +
δW) = 0, M (X) is a representation of the same quiver satisfying ∂W⊠ = 0. We
define M as follows. Let X|a be a Dp(G) module. Write

X
∣∣
a
= Ya ⊕ Za (3.75)

where Ya is a direct sum of indecomposables of lenght p, while the direct summands
of Za have lengths ≤ p − 1. Then M (X) is obtained from X by the arrow
replacement

α(∗),a → α(∗),aPZa , α∗
(∗),a−1 → α∗

(∗),a−1PZa , (3.76)

where PZa is the projection on the second summand in eqn.(3.75). The functor M ,
so defined, has the desired properties, and, moreover, dimM (X) ̸=

∑
a na dimWa

for all bricks X.

3.4.4. Monodromies, beta function, and flavor The 2d quantummonodromy

of the Â(p, 1)⊠G system is the tensor product of the monodromies of the factors

Hp,G ≡ ΦÂ(p,1) ⊗ ΦG. (3.77)

where ΦQ stands for the Coxeter element of the acyclic quiver Q. Let us denote
by Φd(X) the d-th cyclotomic polynomial. The characteristic polynomial of the
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χG(X)

An
∏

d|(n+1)
d̸=1

Φd(X)

Dn Φ2(X)
∏

d|2(n−1)
d∤(n−1)

Φd(X)

E6 Φ3(X)Φ12(X)

E7 Φ2(X)Φ18(X)

E8 Φ30(X)

Table 3.5: Factorization of the ADE characteristic polynomials χG(X).

Coxeter element of Â(p, 1) is [87]

det
[
z − ΦÂ(p,1)

]
= Φ1(z)

∏
d|p

Φd(z). (3.78)

For each G = ADE we define a function δ(d;G) : N→ Z≥0 by the formula

χG(z) ≡ det
[
z − ΦG

]
=
∏
d∈N

Φd(z)
δ(d;G), (3.79)

see table 3.5. By 2d/4d then, f is equal to the the multeplicity of 1 as an eigenvalue
of the 2d monodromy — see (2.24). In our case, this is simply the number of
solutions to the equations

ℓ

p
+

ki
h(G)

∈ Z
i = 1, 2, 3, ℓi = 1, 2, . . . , pi − 1,

ki an exponent of G.
(3.80)

Let φ(d) denote the Euler totient function. For all d that divides p and it is such
that δ(d;G) ̸= 0, by eqn.(3.78), we will find as many solutions of (3.80) as the
roots of Φd(X): This number is φ(d) by definition. Therefore

f(p,G) ≡
∑
d|p

δ(d;G)φ(d) (3.81)

A much more elegant number theoretical proof of a general result from which this
follows can be found in [22]. Here we prefer not to explain all the details of that
proof: we will need only the number of flavors.
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Then, after decoupling the G Yang–Mills sector, we remain with a matter
system, Dp(G), which has flavor symmetry G× F whose rank is

f(Dp(G)) = r(G) + f(p,G). (3.82)

From the 2d monodromy Hp,G it is easy to compute the β function of the

Yang–Mills coupling g for the model Â(p, 1)⊠G. Indeed, since the matter Dp(G)
is superconformal, in the weak YM coupling limit, g → 0, the trace of the energy–
momentum tensor is proportional to the YM β–function. Then, by N = 2 super-
symmetry, the coefficient b of the β–function

µ
∂ τ

∂µ
=

i

2π
b,

is the same as the coefficient of the chiral U(1)R anomaly which counts the net
chiral number of Fermi zero–modes in the instanton background. A U(1)R rotation
by 2πn (n ∈ Z) is equivalent to a shift of the vacuum angle θ by 2πb n, which has
the effect of changing the electric/magnetic charges of a BPS dyon as [93]

(e,m)→ (e+ b nm,m). (3.83)

Thus, if we know the action of a chiral 2π n rotation on the charge lattice Γ (that
is, on the dimensions of the corresponding modules), we may extract the coefficient
b.

The 2d monodromy Hp,G acts on the CY 3–form Ω of the geometry (cfr.
eqn.(3.1)) as [13]

Ω =
dX ∧ dY ∧ dU

∂ZW
7→ exp

(
2πi(qX + qY − 1/2)

) dX ∧ dY ∧ dU
∂ZW

≡

≡ exp(2πi/h(G))
dX ∧ dY ∧ dU

∂ZW
,

(3.84)

where h(G) is the Coxeter number of G, and we denote by W the superpotential
of the 2d model that corresponds to the geometry (3.1). Hence the action of the
chiral 2π n rotation, Ω 7→ e2πi nΩ, on the dimension/charge lattice Γ is given by
the matrix

H
nh(G)
p,G = Φ

nh(G)

Â(p,1)
⊗ Φ

nh(G)
G ≡ Φ

nh(G)

Â(p,1)
⊗ 1. (3.85)

It is convenient to take n = p; we have (see eqn.(3.25) and combine it with table
3.4)

Φ
p h(G)

Â(p,1)
= Id + (p+ 1)h(G) δ ⊗ ⟨δ, ·⟩E (3.86)
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where δ is the minimal imaginary root of Âp, which corresponds to a purely electric
charge, while the form ⟨δ, ·⟩E measures the magnetic charge [10]. Comparing with
eqn.(3.83), taking care of the appropriate normalizations, we get

p b = (p+ 1)h(G), (3.87)

that is, the β coefficient b of the Â(p, 1)⊠G model is

b =
p+ 1

p
h(G), (3.88)

whose sign implies asymptotic freedom. b receives a contribution 2h(G) from the
SYM sector and a negative contribution −bp,G = −kp,G/2 from the matter Dp(G)
SCFT. We use eqn.(3.88) to extract the central charge of the G–current algebra
of the SCFT Dp(G)

kp,G = 2
p− 1

p
h(G). (3.89)

On the other hand, a U(1)R rotation by 2π defines the 4d quantum monodromy

M. For the model Â(p, 1)⊠G, which is just asymptotically–free, M has not finite
order; however, once we decouple the SYM sector, we remain with the SCFT
Dp(G) whose 4d quantum monodromy has a finite order r(p,G). As we saw
above, the action of a U(1)R rotation by 2π on the charges of Dp(G) is given by
the semi–simple part of the h(G) power of Hp,G, that is, by

Φ
h(G)

Â(p,1)

∣∣∣
semi–simple

⊗ 1. (3.90)

The order of the 4d quantum monodromy M is just the order of this operator.
Comparing with eqn.(3.78) we get [21]

r(p,G) =
p

gcd{p, h(G)}
. (3.91)

As we have discussed in our heuristic introduction, the underlying 2d (2, 2) system

of Â(p, 1)⊠G is encoded in the geometry (3.1). Having identified the coordinate
Z there with the plumbing cylinder of the 6d (2, 0) systems, is natural to identify,
at a heuristic level of rigor, the underlying 2d system for the matter Dp(G) theory
with the Z → +∞ limit of the above. One obtains the 2d superpotential

Wp,G ≡ epZ +WG(X, Y ) + U2 (3.92)

An interesting consitency check of our result24 about the quantum monodromy
is given by applying the same method of §.2.3.5 to the geometry Wp,G = 0. We
discuss this in appendix §. B.1.

24 Actually, it is really the same computation, but dressed in another way.
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3.4.5. Example: D3(SU(3)) is not A2 ⊠D3. The number of nodes is the same.
Let us consider the next quiver invariant: the rank of the B matrix. By 2d/4d
the theory A2 ⊠ D3 is engineered by the singularity X3 + Y 2 + U2 + UZ2. This
theory has qX = 1/3, qY = qU = 1/2 and qZ = 1/3 by table 3.1. Therefore we
have ĉ = 2/3. The Poincaré polynomial (2.56) for this singularity is very easy:(

(1− t2/3)
(1− t1/3)

)2

= 1 + 2t1/3 + t2/3. (3.93)

By 2d/4d correspondence then we see that A2⊠D3 has a flavor group of rank 2, so
that rank B = 6− 2 = 4. Let us now consider the theory D3(SU(3)). The flavor
group has rank at least 2, but p = 3, and so, by table 3.5, δ(3, A2) = 1, and we
have enhancement, as discussed in the previous paragraph: f(p,A2) = φ(3) = 2.
The flavor symmetry group of D3(SU(3)) has rank 4, and its B matrix has rank
2: the two theories are different.

3.4.6. A new viewpoint: META–quivers Usually, by a representation of a
quiver Q we mean the assignment of a vector space Xi to each node i of Q and a
linear map Xψ to each arrow ψ, that is, we assign to nodes resp. arrows objects
resp. morphisms of the category vec of finite dimensional vector spaces. Of course
we may replace vec by any other category C , getting a C –valued representation of
Q where the concatenation of arrows along paths inQ is realized as the composition
of the corresponding morphisms in C . If C is C–additive, so that it makes sense
to sum morphisms and to multiply them by complex numbers, we may even define
C –valued representations of quivers subjected to relations of the standard form.
Thus it makes sense to speak of the category of C –valued representations of the
quiver Q bounded by an ideal I. If, in addition, C is Abelian, the category of
C –valued representations of a quiver with relations is again Abelian, and share
most of the properties of the usual module categories.

It is useful to extend the construction to twisted C –valued representations.
Let {σℓ} be a group of autoequivalences of the category C , where σ0 = Id. To
each arrow in Q we assign a valuation in {σℓ}. Then a C –valued representation
of the valued quiver assigns to an arrow a with valuation σℓ(a) a morphism ψ ∈
Hom(Os(a), σℓ(a)Ot(a)). The twisted composition ⋆ of two arrows a and b with
s(b) = t(a) has valuation σℓ(a)σℓ(b) and is given by25

ψb ⋆ ψa ≡ σℓ(a)(ψb) ◦ ψa ∈ Hom
(
Os(a), σℓ(a)σℓ(b)Ot(b)

)
(3.94)

25 The fact that the {σa} are taken to be just autoequivalences (and not automorphisms)
introduces notorious subtleties; for the particular categories we are interested in, this will not
be a problem, since we have an underlying concrete description in terms of elements of objects
(the one given by the big BPS–quiver modules). The abstract viewpoint is, however, very useful
since it allows to describe the physical phenomena in a unified way for large classes of N = 2
models, abstracting the essential physics from the intricate details of each particular example.
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where ◦ is the composition in C .
Of course, by this construction we are not introducing any real generalization,

the resulting Abelian category may always be seen (up to Morita equivalence)
as a subcategory of the usual representations of some bigger (possibly infinite)
quiver. However, in the case of N = 2 QFT’s working with twisted C –valued
representations turns out to be very convenient both conceptually and technically:
we replace a messy BPS quiver with complicate Jacobian relations with a much
smaller quiver having few nodes, few arrows and, typically, a higher symmetry
which is almost never visible in the messy vec quiver QBPS. Besides, the messy
vec quivers associated to QFT’s have no simple universality property useful to
characterize and classify them while, for a good choice of C , the smaller C –quivers
have rather uniform behaviour.

It is easy to introduce a notion of stability of the (twisted) C –valued represen-
tations of Q which is equivalent to the stability for the corresponding vec–valued
representation of the messy QBPS. One introduces a stability function (central
charge) Z for the C –valued representations X

Z ≡
{
Zi : K0(C )→ C, i ∈ (nodes of Q)

}
(3.95)

Z (X ) =
∑
i

Zi(Xi) ∈ C, (3.96)

where the homomorphism of Abelian groups Zi coincides with the usual central
charge for the subcategory of the representations of the messy quiver QBPS which
map into C –valued representations having support on the i–th node of Q. A C –
valued representation X is Z –stable iff, for all non–zero proper sub–objects Y ,
argZ (Y) < argZ (X ).

Given aN = 2 QFT T we say that the quadruple (Q, I,C , ν) —Q being a finite
connected quiver, I a bilateral ideal of relations in CQ, C a C–additive Abelian
category, and ν a valuation of Q in the autoequivalences of C — is a META–
quiver for T iff the stable, ν–twisted, C–valued representations of Q, subjected to
the relations in I, give the BPS spectrum of T (in some chamber).

The META–quiver for the light category of the Â(p, 1)⊠G model

Let us construct META–quivers for the light category of N = 2 models at hand.
Let us chose C = T ≡ TÂ(p,1), i.e. the category of regular representations of the

affine quiver Â(p, 1). Let τ be its autoequivalence given by the Auslander–Reiten
translation [65, 77]. We consider the quiver of the preprojective algebra of type
P(G) with the following valuation: direct arrows α are valued by Id, while inverse
arrows α∗ by τ . The lhs of eqn.(3.50) has then valuation τ . From our discussion
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in §.3.4.2 it should be clear that category of the twisted C –valued modules of P(G)
is equivalent to the light category of Â(p, 1)⊠G.

The tube subcategories TÂ(p,1)(λ) and TÂ(p,1)(µ) are preserved by τ , and Hom–

orthogonal for λ ̸= µ [65,77]. Since the arrows α, α∗ take value in the Hom groups,
they automatically vanish between objects in different tubes. Hence if X is a
TÂ(p,1)–valued indecomposable representation of P(G)

Xi ∈ TÂ(p,1)(λ) with the same λ for all nodes i of G. (3.97)

For λ ̸= 0 we have the equivalence TÂ(p,1)(λ) ≃ TÂ(1,1)(λ) (the homogeneous tube),

so the category of TÂ(p,1)(λ)–representations of P(G) coincides in this case with
the corresponding light subcategory of SYM. In facts, as we are going to show,
the category of twisted T –valued representations of P(G) contains a canonical
subcategory isomorphic to the light Yang–Mills one (for gauge group G).

The SYM sector

There is a more canonical way of looking to the SYM sector. For λ ̸= 0, T (λ)
is a homogeneous tube, so τO = O for all its indecomposable objects. Fix an
indecomposable O0 ∈ T (λ ̸= 0); we have a functor from the category of modules
(in the standard sense) of the preprojective algebra P(G) to the one of T (λ ̸= 0)–
valued twisted module — that is, to L (λ ̸= 0) — given by

Xi = O0 ⊗Xi, Xα = Id⊗Xα, Xα∗ = Id⊗Xα∗ . (3.98)

In particular, the bricks of L (λ ̸= 0) are obtained by taking as O0 the unique
regular brick in T (λ), i.e. the SU(2) W–boson representation W (λ); one gets

bricks of L (λ ̸= 0) ≡ W (λ)⊗X, X a brick of modP(G). (3.99)

The bricks of modP(G) have dimension vectors equal to the positive roots of G
and are rigid (this is an elementary consequence of [94], see [10]), that is, the family
of representations (3.99) correspond to BPS vector multiplets with the quantum
numbers of the W–bosons of G (the SYM sector).
T (λ = 0) is a tube of period p. Then the

Xi =
mi⊕
s=1

Ri,s (3.100)

with Ri,s indecomposable regular modules characterized uniquely by their (regular)
socle τ ki,sS and lenght ri,s [77] (S being a reference regular simple). The λ = 0
SU(2) W–boson representations are the indecomposables of regular lenght p; we
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writeW (k) for the length p regular indecomposable with socle τ kS (0 ≤ k ≤ p−1).
Since

dimHom(W (k),W (ℓ)) = δk,ℓ, dimHom(W (k), τW (ℓ)) = δk,ℓ+1, (3.101)

we may promote each ordinary representation X of P(G) to a representation of
the SYM sector of L (λ = 0) by replacing the basis vectors vi,s of Xi by W (ki,k) in
such a way that two basis vectors v, v′ related by v′ = α(v) (resp. v′ = α∗(v)) have
the k′ = k (resp. k′ = k − 1). The assignement of k’s may be done consistently
since, P(G) is finite–dimensional (here it is crucial that G is Dynkin) and hence
all closed cycles are nilpotent. Again, the bricks of L (λ = 0) with ri,k = p for all
i, k have the quantum numbers of the W–bosons of G.

Non–perturbative completion

The twisted T –valued representations of P(G) give just the light category L of the

Â(p, 1)⊠G model. Physically, one is interested to a META–quiver interpretation
of the total non–perturbative category, which includes, besides the light objects,
also heavy ones carrying non–zero magnetic charge. In the language of [10], this
corresponds to the non–perturbative completion of L . The naive choice C =
modCÂ(p, 1) will not work, since the Auslander–Reiten translation τ is not an
autoequivalence for this module category26. This problem may be fixed by recalling
the derived equivalence [87]

Db
(
modCÂ(p, 1)

)
= Db

(
Coh(Xp)

)
, (3.102)

where Coh(Xp) is the Abelian category of coherent sheaves on Xp, the projective
line with a marked point (say the origin λ = 0) of weight p (this means that the
skyskraper sheaf at λ = 0 has length p in Coh(Xp)). In the category Coh(Xp) τ
is an autoequivalence given by the tensor product with the dualizing sheaf ωXp .
Then the category of the τ–twisted Coh(Xp)–valued P(G) representations makes
sense, and gives the non–perturbative closure (or categorical quantization) of the
light category L in the sense of [10] (the case G = A1 is discussed in that paper).

This construction may be generalized by taking the (τ–twisted) representations
of P(G) valued in the category Coh(Xp1,p2,...,ps) of the coherent sheaves over a
weighted projective line with s marked points of weights p1, p2, . . . , ps (a marked
point of weight 1 being equivalent to an unmarked one) [87].

As we shall discuss in section 3.4.7, the (τ–twisted) representations of P(G)
valued in the category Coh(Xp1,p2,...,ps) will correspond to the (non–perturbative)
category of SYM gauging the diagonal symmetry group G of a collection of s
decoupled Dpi systems the ranks pi being equal to the weights of the marked
points.

26 Because of the presence of projective and injective modules.
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The product ⊛

We saw above that, in order to capture the non–perturbative physics of the 4d
N = 2 model corresponding to the direct sum of an ADE 2d minimal model and
theW1 = epZ+e−Z one (or any other affine (2,2) theory [50]), we may consider the
τ–twisted representations of P(G) valued in the coherent sheaves of the geometry
associated to W1. This procedure is a kind of product, which ‘morally’ is the same
as the triangle tensor product ⊠. We shall denote it by the symbol ⊛. So, if A
stands for the 4d model whose quiver with potential has the property

Db
(
rep(Q,W)

)
= Db

(
Coh(Xp1,p2,...,ps)

)
, (3.103)

we write

A⊛G

to denote both the META–quiver(
P(G),Coh(Xp1,...,ps), τ

)
, (3.104)

as well as the corresponding 4d N = 2 QFT associated to the direct sum 2d theory.
We shall use this construction in section 4.

Deformed preprojective META–algebras vs. Dp(G) SCFT’s

In the context of the standard vec–valued representations, the preprojective algebra
P(L) has a generalization, called the deformed preprojective algebra of weight λ,
written P(L)λ, which is defined by the same double quiver L as P(L) and the
deformed relations [95–98]∑

a

(αα∗ − α∗ α) =
∑
i

λi ei ≡ λ (3.105)

where ei is the lazy path at the i–th node of L, and the fixed complex numbers
λi’s are the weights (also called Fayet–Illiopoulos terms). In more abstract terms
we may say that the rhs of (3.105) is a sum over the nodes i of L of fixed central
elements of End(Xi) (the endomorphism ring of the object at node i, not to be
confused with the End for the representation of the total quiver).

The META counterpart of this construction is to consider the category of the
representations of L valued in some C–linear Abelian category C satisfying the
relation (3.105), where the rhs is replaced by a sum of prescribed central endo-
morphisms of the objects at each node. In addition, the representation may be
twisted by autoequivalences of C as in sect.3.4.6.
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It is convenient to restrict ourselves to categories C having a ‘trace’ map which
generalizes the usual trace of vec. That is, for each object O ∈ C we require the
existence of a map

Tr: End(O)→ C, (3.106)

which is invariant under the adjoint action of Aut(O) and has the trace property

Tr(AB) = Tr(BA), ∀ A ∈ Hom(O1,O2), B ∈ Hom(O2,O1), (3.107)

(the trace in the lhs, resp. rhs, being taken in End(O2), resp. End(O1)).

We are particularly interested in the following family of categories. V (p) is
the category whose objects are the pairs O ≡ (V,A), where V is a Zp–graded
vector space and A : V → V is a degree 1 linear map. Its morphisms Ψ: O1 → O2

are given by Zp–graded linear maps ψ : V1 → V2 which satisfy the compatibility
condition

ψ(A1z) = A2 ψ(z) ∀ z ∈ V1, (3.108)

with the obvious compositions and identities. Equivalently, V (p) is the cate-

gory of the finite–dimensional representations of the cyclic affine quiver Â(p, 0)
(no relations). It follows from (3.108) that the degree k mod p endomorphisms
Ek : (V,A)→ (V,A) given by the maps Ak : V → V (k ∈ Z+) belong to the center
of End(V,A). It makes sense, therefore, to consider the V (p)–valued representa-
tions of the deformed P(L) with graded weights of the form

∑
i λiE

s
i , where Ei

stands for E acting on the object Oi ∈ C sitting at the node i of L.
V (p) has a natural autoequivalence σ which acts on objects as ([1], Id) where

[1] is the operation of shifting the degree by 1. Clearly σp = 1. V (p) has also a
natural trace map which on the degree zero endomorphism Ψ = (ψ) is simply

Tr(Ψ) ≡ tr(ψ), (3.109)

which clearly satisfies the trace property (3.107). We generalize the trace to the
endomorphisms of degree −k mod p by replacing Tr(Ψ) with

Tr(Ψ) = Tr(EkΨ), Ψ ∈ End(O) of degree − k mod p, 0 ≤ k < p. (3.110)

Tr(·) still satisfies the trace property since E is central in the endomorphism ring.
The Abelian category of (ordinary) representations of the quivers Qp,G with

superpotential Wmatter, that is, the Abelian category of the Dp(G) theories, is
then manifestly equivalent to the category of twisted V (p)–valued representations
of the deformed preprojective algebra P(G)λ with the degree −1 weight

λ =
∑
i

Ep−1
i (3.111)
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where the direct arrows of G have valuation Id and the inverse ones σ−1.
If t is a non–zero complex number, the weights λ and t λ produce equivalent

representation categories. In the case of vec–valued representations the basic result
on the deformed preprojective algebras of a Dynkin graph G [95, 96, 98] says that
an indecomposable module X0 of the undeformed preprojective algebra (at t = 0)
may be continuously deformed to a module Xt of the t ̸= 0 one if and only if the
trace of the weight λ vanishes on X0 (the trace of the weight being defined, of
course, as the sum of the traces of the endomorphisms at each node). That this
is necessary follows from taking the trace of the two sides of eqn.(3.105). If the
trace obstruction vanishes, one constructs Xt order by order in t, the procedure
stopping since the arrows of Xt have a polynomial dependence on t [98].

After replacing ordinary vec–valued representations by twisted V (p)–valued
ones with the weight (3.111), the corresponding statement is that the (twisted)
trace of the weight λ, seen as a (sum of) degree −1 endomorphism(s), is an ob-
vious obstruction to the deformation of the representations for t = 0 to t ̸= 0.
This is exactly the λ–rigidity result of eqn.(3.74). It is not true, however, that
all indecomposable t = 0 V (p)–valued representations with Tr(λ) = 0 may be
deformed to t ̸= 0 ones. In facts, as we argued in the previous subsection, only
the λ–rigid one may be deformed. Let us check that there is an obstruction to the
deformation at t ̸= 0 of the representations27 corresponding to the W–bosons of
G (cfr. eqns.(3.100)(3.101)). The weight at node i is (cfr. eqn.(3.111))

0 ̸= λi ≡ Ep−1
i =

⊕
s

Ap−1
∣∣∣
W (ki,s)

∈
⊕
s

End
(
W (ki,s)

)
, (3.112)

that is, λi is block–diagonal and non–zero, while

(αα∗ − α∗α)
∣∣∣
i node

∈
⊕
s

Hom
(
W (ki,s),W (ki,s − 1)

)
, (3.113)

i.e. it is block off –diagonal. Hence the constraint∑
α

(αα∗ − α∗α) = t
∑
i

λi, (3.114)

cannot be satisfied for t ̸= 0. Of course, this just says that the deformation tλ
projects out the W–bosons from the light category L (λ = 0); what remains is the
correct Dp(G) BPS category we were looking for.

3.4.7. Several Dp(G) matter subsectors One could ask what happens if we
couple more than one Dp(G) system to a G SYM subsector. Suppose we gauge

27 We identity the category T (λ = 0) with the category of nilpotent representations of Â(p, 0).
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ℓ allowed pi UV behavior C
2 (p, q) : p ≥ q ≥ 1 AF A(p, q)

3 (2, 2, p) : p ≥ 2 AF D̂p+2

(2,3,3) AF Ê6

(2,3,4) AF Ê7

(2,3,5) AF Ê8

(3,3,3) CFT E
(1,1)
6

(2,4,4) CFT E
(1,1)
7

(2,3,6) CFT E
(1,1)
8

4 (2,2,2,2) CFT D
(1,1)
4

Table 3.6: Solutions to eqn.(3.115) and corresponding algebras.

the diagonal group G of ℓ subsystems of type Dpi(G). The requirement of no
Landau poles gives

b =
(
2−

ℓ∑
i=1

pi − 1

pi

)
h(G) ≥ 0 (3.115)

The solutions to this condition are listed in table 3.6. The allowed ℓ-uples of pi are
well–known in representation theory: the numbers we obtain for asymptotically–
free (resp. for conformal) theories are precisely the tubular types of the P1 families
of regular representations of Euclidean (resp. tubular) algebras [65,87].

Therefore the asymptotically–free model one gets are precisely the Ĥ⊠G mod-
els. Such models consist of a G SYM subsector weakly gauging the G-flavor sym-
metry of several Dpi(G) matter systems according to the following table:

superconformal system

A(p, q)⊠G p ≥ q ≥ 1 Dp(G)⊕Dq(G)⊕D1(G)

D̂r ⊠G r ≥ 4 D2(G)⊕D2(G)⊕Dr−2(G)

Êr ⊠G r = 6, 7, 8 D2(G)⊕D3(G)⊕Dr−3(G)

(3.116)

The superconformal models correspond to the 2d theories which are the di-
rect sums of the minimal G–models with the ones associated to the four elliptic
complete SCFT’s [7]

D
(1,1)
4 , E

(1,1)
6 , E

(1,1)
7 , E

(1,1)
8 . (3.117)
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superconformal system

D
(1,1)
4 ⊛G D2(G)⊕D2(G)⊕D2(G)⊕D2(G)

E
(1,1)
6 ⊛G D3(G)⊕D3(G)⊕D3(G)

E
(1,1)
7 ⊛G D2(G)⊕D4(G)⊕D4(G)

E
(1,1)
8 ⊛G D2(G)⊕D3(G)⊕D6(G)

Table 3.7: Matter content of the G–tubular SCFT’s.

Equivalently, they may be defined as the models

D
(1,1)
4 ⊛G, E

(1,1)
6 ⊛G, E

(1,1)
7 ⊛G, E

(1,1)
8 ⊛G. (3.118)

Their ‘messy’ vec–quivers QBPS may also be easily written down since D
(1,1)
4 is a

Lagrangian theory (SU(2) SQCD with Nf = 4) while [7]

E
(1,1)
6 = D4 ⊠ A2, E

(1,1)
7 = A3 ⊠ A3, E

(1,1)
8 = A2 ⊠ A5, (3.119)

which allows to write their elliptic Stokes matrices Sell as tensor products of Dynkin
ones. The BPS quiver of the SCFT model H(1,1)⊛G is then given by the exchange
matrix

B = Stell ⊗ StG − Sell ⊗ SG. (3.120)

The periods pi’s of the Dpi matter subsectors may be read from the characteristic
polynomial of the Coxeter of the corresponding affine/toroidal Lie algebra [87]

det[z − Φ] = (z − 1)2
∏
i

zpi − 1

z − 1
(3.121)

see table 3.7. This equation also implies that the rank of the flavor group of a Ĥ⊠G
QFT (resp. H(1,1) ⊛G SCFT) is additive with respect to the matter subsectors

rankF =
∑
i

f(pi, G), (3.122)

where f(p,G) is the function defined in (3.81).

From the point of view of section 3.4.6, the module category for G SYM cou-
pled to ⊕ℓi=1Dpi(G) may be more conveniently realized as the (τ–twisted) rep-
resentations of the preprojective algebra P(G) valued in the Abelian category
Coh(Xp1,...,pℓ).
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3.4.8. The BPS spectrum of Ĥ ⊠ G models at strong coupling All the

models of type Ĥ⊠G admit a finite BPS chamber containing only hypermultiplets
with charge vectors

ea ⊗ α ∈ ΓĤ ⊗ ΓG, α ∈ ∆+(G), (3.123)

that is, a copy of the positive roots of G per each node of Ĥ. We get a finite
chamber with

#{ hypermultiplets } = 1

2
r(G)h(G) r(Ĥ). (3.124)

This result follows from the Weyl–factorized source–sequences approach to the
mutation algorithm. Since all the models have chambers of type (G, ..., G), these
BPS–chambers exhibit, moreover, 1/h(G) fractional monodromies. The details of
the computation are rather technical: The mutation sequences corresponding to
these finite BPS-chambers are constructed in appendix A.3.

3.5. Geometry of Dp(G) SCFT’s for G a classical

group

In the previous section we have defined the four-dimensionalN = 2 superconformal
systems Dp(G) from the study of the light subcategory of the Â(p, 1)⊠G models.

The underlying (2, 2) system of the Â(p, 1)⊠G was given in (3.1) by

e−Z + epZ +WG(X,Y ) + U2 = lower terms in X, Y.

In particular we have shown that the Â(p, 1)⊠G system has a G SYM subsector.
Geometrically, by the scaling arguments of [86], we would expect that the size of
the cylinder in the Z coordinates of (3.1) is related to the size of the G SYM
coupling. Thus, formally, the Dp(G) system could be described by the engineering
of the Type II B superstring on the limit Z →∞ of the geometry (3.1):

Wp,G ≡ epZ +WG(X, Y ) + U2 + lower terms = 0, (3.125)

with holomorphic top form given as in eqn.(3.84). In this section, we explore the
consequences of this geometric picture when G is a (simple, simply–laced) classical
Lie group.

The identification of the Dp(G) Lagrangian subclass

The chiral operators of a 4d N = 2 SCFT with a weakly coupled Lagrangian for-
mulation have integral dimension. Hence the order of its 4d quantum monodromy
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is necessarily 1 [13] which — in view of eqns.(3.88)(3.91) — is equivalent to b ∈ Z.
For the Dp(G) models this statement has a partial converse. Indeed, we claim
that:

• A model Â(p, 1)⊠ AN−1 is Lagrangian iff bp,SU(N) is an integer.

• A model Â(p, 1)⊠DN is Lagrangian iff bp,SO(2N) is an even integer.

• No model Â(p, 1)⊠ Er is Lagrangian.

The statement that Â(p, 1)⊠Er has no Lagrangian formulation is elementary.
The theories of type Dp(G) have bp,G < h(G): If a Dp(G) theory is Lagrangian, its
contribution to the YM β–function should be equal to the U(1)R anomaly coeffi-
cient b(R) of a free hypermultiplet in some (generally reducible) representation R
of G. Since E8 has no non–trivial representation with b(R) < 30 this is impossible.
For E7 the only representation with b(R) < 18 are the k

2
56, k = 1, 2 with b = 6k.

Then, in order to have a Lagragian model,

bp,E7 =
p− 1

p
18 = 6k ⇐⇒ (3− k)p = 3 =⇒ k = 2, p = 3. (3.126)

A Lagrangian theory with two half–hypers would have flavor symmetry at least
SO(2); but the theory A(3, 1) ⊠ E7 has f(3, E7) = 0 by (3.81), and therefore the
model D3(E7) cannot be Lagrangian. Finally, the only E6 representation with
b(R) < 12 is the 27 with b = 6; to have a Lagrangian model

bp,E6 ≡
p− 1

p
12 = 6⇐⇒ p = 2, (3.127)

which would imply F at least U(1), while (3.81) gives f(2, E6) = 0.
Let us now proceed to show the claim for G = SU(N), SO(2n). Some checks

of the identifications we have found are in appendix §.A.2 — to be compared with
our discussion about specialization.

3.5.1. The case G = SU(N) We have to show that

Dp(SU(N)) admits

a Lagrangian formulation
⇐⇒ h(SU(N)) = N = mp. (3.128)

Consider the (2, 2) superpotentials of type Wp,SU(N): Only if N = mp the cor-
responding (2, 2) system admits, at the conformal point, several exactly marginal
deformations. By 2d/4d correspondence, we known that under such deformations
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the quiver mutation class is invariant. Since the models of type Dp(G) are de-
fined only by the mutation class of their quivers with superpotential, properly
speaking, the 2d/4d correspondence associates to a 4d model the universal 2d
superpotential Wp,G(tα) over the space of exactly marginal/relevant deformations.
The dimensions of the generators of the 2d chiral ring R are

q(X) =
1

mp
q(eZ) =

1

p
q(Y ) = q(U) =

1

2
. (3.129)

The marginal deformations of Wp,SU(mp) correspond to the operators XαeβZ ∈ R
such that

q(XαeβZ) = 1⇐⇒

[
α = m(p− k)
β = k

k = 0, . . . , p. (3.130)

The universal superconformal family of superpotentials is then

Wp,SU(mp) = epZ +Xmp +

p−1∑
k=1

tkX
m(p−k)ekZ + Y 2 + U2. (3.131)

The Seiberg–Witten geometry that corresponds to the Â(p, 1)⊠SU(mp) model is

e−Z +Wp,SU(mp) = 0. (3.132)

The corresponding Seiberg–Witten curve can be written as

e−Z + epZ +Xmp +

p−1∑
k=1

tkX
m(p−k)ekZ = relevant deformations of Wp,SU(mp)

(3.133)
with canonical Seiberg–Witten differential λSW = X dZ. Let us change variables
as follows

s = eZ v = X =⇒ λSW = v
ds

s
. (3.134)

Multiplying by s the equation (3.133) in the new variables, we obtain the Seiberg–
Witten curve

1 + pmp(v)s+ pm(p−1)(v)s
2 + · · ·+ p2m(v)s

p−1 + pm(v)s
p + sp+1 = 0, (3.135)

where the pi(v) are polynomials of degree i in v. This is a well-known Seiberg–
Witten curve (see for example eqn.(2.41) of [99]), and therefore we conclude that

all theories Â(p, 1)⊠ Amp−1 have a Lagrangian S-duality frame in which they are
described as the quiver gauge theory 28

SU(mp)− SU(m(p− 1))− SU(m(p− 2))− · · · − SU(2m)− SU(m). (3.136)

28Here, as usual, an edge − denotes a bifundamental hypermultiplet.
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Decoupling the first SU(mp) SYM sector, we get that the only Lagrangian theories
of type Dp(SU(N)) are

Dp(SU(mp)) =


Â(p, 1)⊠ Am(p−1)−1

coupled to mp fundamental

SU(m(p− 1)) hypers

 (3.137)

which is indeed a SCFT as expected. Let us perform a couple of consistency
checks:

1. The rank of the flavor group F of the theory Â(p, 1)⊠ Amp−1 is

δ(d, SU(mp)) =

{
1 if d | mp and d ̸= 1

0 else
=⇒ f(p, SU(mp)) =

∑
d|p
d̸=1

φ(d) = p−1,

which is precisely the number of bifundamentals in the linear quiver (3.136).

2. The rank of the gauge group of the theory (3.136) is

r(G) =

p∑
k=1

(mk − 1) =
mp(p+ 1)

2
− p (3.138)

In addition we have the f = p− 1 hypermultiplets. The rank of the charge
lattice then matches the number of nodes of the quiver Â(p, 1)⊠ Amp−1:

2r(G) + f = mp(p+ 1)− 2p+ p− 1 = (p+ 1)(mp− 1). (3.139)

3.5.2. Lagrangian subclass for G = SO(2N) The necessary condition that
bp,SO(2N) must be an even integer follows from the fact that all representations
with b < h of SO(2N) have even Dynkin-index b. So,

bp,SO(2N) =
p− 1

p
2(N − 1) ∈ 2N⇐⇒ N = mp+ 1. (3.140)

Again, this is precisely the case in which the corrisponding (2, 2) superpotential
at the superconformal point admits marginal deformations. Indeed,

Wp,Dmp+1 = epZ +Xmp +XY 2 + U2, (3.141)

while the dimensions of the generators of R are

q(X) =
1

mp
q(Y ) =

mp− 1

2mp
q(eZ) =

1

p
q(U) =

1

2
. (3.142)
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The marginal deformations of Wp,Dmp+1 are those in eqn.(3.130), and the universal

family of superpotentials for Â(p, 1)⊠Dmp+1 is

e−Z + epZ +Xmp +

p−1∑
k=1

tkX
m(k−p)ekZ +XY 2 + U2 = ‘lower terms’ . (3.143)

The generic ‘lower terms’ have the form 2λY + ‘independent of Y ′ for some non–
zero λ. Integrating out Y we obtain the equivalent geometry

e−Z + epZ +Xmp +

p−1∑
k=1

tkX
m(k−p)ekZ − λ2

X
+ U2 = lower terms , (3.144)

which is the Seiberg–Witten (SW) curve of the 4d theory with differential λSW =
XdZ. Now we change variables X = v2, s = eZ , and we multiply the resulting
curve by sv2. The final form of the SW curve for the model Â(p, 1)⊠Dmp+1 is

v2 + v2 sp+1 +

p∑
k=1

pm(p−k+1)+1(v
2) sk = 0, (3.145)

where the pi(v
2) are polynomials of degree 2i in v. These Seiberg-Witten curves

are well-known (see e.g. section 3.6 of [100]): they are part of the family

v2 + v2 sp+1 +

p∑
k=1

p2ℓk+1+(−1)k(v) s
k = 0, (3.146)

that corresponds to linear quiver theories of type

SO(2ℓ1)− USp(2ℓ2)− · · · − SO(2ℓk−1)− USp(2ℓk)− SO(2ℓk+1)− · · · (3.147)

where the edges represents half -hypermultiplets in the bifundamental repr. In our
case

2ℓk + 1 + (−1)k = 2(m(p− k + 1) + 1) =⇒

[
k even : ℓk = m(p− k + 1)

k odd : ℓk = m(p− k + 1) + 1

(3.148)

for k = 1, . . . , p. In conclusion: all theories of type Â(p, 1) ⊠ Dmp+1 have a La-
grangian description (in a suitable region of their parameter space) as the linear
quiver theory

SO(2mp+ 2)− USp(2m(p− 1))− SO(2m(p− 2) + 2)− USp(2m(p− 3))− · · ·
· · · − SO(2m(p− 2ℓ) + 2)− USp(2m(p− 2ℓ− 1))− · · ·

(3.149)
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The linear quiver have two possible ends, depending on the parity of p:

p odd : · · · − USp(4m)− SO(2m+ 2)

p even : · · · − SO(4m+ 2)− USp(2m)− SO(2)
(3.150)

where the box represents an ungauged flavor group. Consequenctly the only La-
grangian theories of type Dp(SO(N)) are the theories:

Dp(SO(2mp+2)) =


SO(2(mp+ 1)) − USp(2m(p− 1))− · · ·

· · · − SO(2m(p− 2ℓ) + 2)− USp(2m(p− 2ℓ− 1))− · · ·
with the same ends as in eqn.(3.150)

 (3.151)

where again the box represents an ungauged flavor group. A few checks are in
order:

1. The rank of the flavor group of Â(p, 1)⊠Dmp+1 is

f(p,Dmp+1) =

{
0 p odd

1 p even
(3.152)

which is consistent with (3.149): half-hypermultiplets carry no flavor charge.

2. The rank of the gauge group of the Â(p, 1)⊠Dmp+1 theory is

r(G) =
1

2

p∑
k=1

(
2(m(p−k))+1−(−1)k

)
=

1

2

(
p(mp+m+1)+

1

2

(
1−(−1)p

))
.

(3.153)
Therefore

2r(G) + f = p(mp+m+ 1) + 1 = (p+ 1)(mp+ 1) (3.154)

which is the number of nodes for the quiver Â(p, 1)⊠Dmp+1.

3. The beta function contribution to the SO(2mp+ 2) gauge group is

4mp− 2m(p− 1) = bÂ(p,1)⊠Dmp+1
. (3.155)

3.6. Computing the 4d a, c, SCFT central charges

3.6.1. 4d quantum monodromy and the SCFT central charge c It is well
known that for a N = 2 4d SCFT the corresponding topological theory in curved
spacetime develops a superconformal anomaly which is sensitive to the topology of
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the background manifold [101,102]. If the Euler characteristic χ of the background
manifold is zero, such an anomaly is proportional to the central charge c of the
N = 2 4d SCFT.

The trace of the 4d quantum monodromy operatorM(q) is a particular instance
of topological partition function on the R–twisted Melvin cigar MCq ×g S1 [13]
which has χ = 0. In principle, TrM(q) is uniquely fixed once we give the quiver
and superpotential of the 4d theory, (Q,W), via the BPS spectrum (computed in
any chamber) [13].

It turns out that TrM(q) is equal to a Virasoro character of a 2d CFT [13]; the
effective 2d CFT central charge, ceff ≡ ceff(Q,W), then measures an anomaly of
the topological partition function which should correspond to the 4d SCFT one.
It follows that the 2d effective central charge ceff should be identified with the 4d
central charge c, up to normalization. However one has to take into account, in
addition, the contribution of the massless sector, which is omitted in the usual
definition of M(q) [13]. For the models of interest in this paper the massless sector
consists just of the free photon multiplets, since there are no hypermultiplets which
are everywhere light on the Coulomb branch. The number of the free photon
multiplets is equal to the dimension of the Coulomb branch, which is rankB/2,
where B is the exchange matrix of the quiver of the theory. Since one free vector
multiplet contributes +1/6 to the 4d SCFT central charge c, we get

c = α · ceff(Q,W) +
rankB

12
, (3.156)

where α is a universal normalization constant still to be determined. To fix α we
apply this formula to a free hypermultiplet.

In ref.[13] ceff was computed for the models G⊠G′ (G,G′ being Dynkin quivers)

ceff(G⊠G′) =
r(G) r(G′)h(G)h(G′)

h(G) + h(G′)
. (3.157)

A free hypermultiplet corresponds to G = G′ = A1; since it has c = 1/12,
eqns.(3.156)(3.157) give

1

12
= α · 1 · 1 · 2 · 2

2 + 2
≡ α, (3.158)

and the final formula for c is

c =
1

12

(
ceff(Q,W) + rankB

)
. (3.159)

Comparing our analysis with [101] we see that the 2d CFT central charge
ceff(Q,W) captures the scale dimension of the discriminant of the SW curve at
the conformal point. Our formula then may be seen as an expression for the
discriminant scale in terms of Lie–theoretical invariants of Q.
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A few examples are in order.

Example 1: AN−1 Argyres–Douglas corresponds to G = AN−1, G
′ = A1 in

eqn.(3.157). Then

ceff =
2N(N − 1)

N + 2
(3.160)

and rankB = 2[(N − 1)/2], so

c =
ℓ(6ℓ+ 5)

6(2ℓ+ 3)
for N = 2ℓ+ 1 (3.161)

c =
(2ℓ− 1)(3ℓ+ 1)

12(ℓ+ 1)
for N = 2ℓ (3.162)

which are the values reported in [103].

Example 2: DN Argyres–Douglas corresponds to G = DN , G
′ = A1. Thus

ceff =
2N · 2(N − 1)

2 + 2(N − 1)
= 2(N − 1) (3.163)

and rankB = 2[(N − 2)/2], so

c =
1

6
(3ℓ− 2) for N = 2ℓ (3.164)

c =
1

2
ℓ for N = 2ℓ+ 1, (3.165)

in agreement with [103].

Example 3: Nore generally, for all models Ak−1⊠AN−1 our formula reproduces
the value of c conjectured by Xie [103].

3.6.2. Generalization to Ĥ ⊠ G Unfortunately no one has computed ceff for
N = 2 models more general than the G′ ⊠ G ones. However in this paper we
are interested only in the slightly more general case where the finite–dimensional
Lie algebra G′ is replaced by the infinite dimensional Kac–Moody Lie algebra Ĥ,
our prime application being to Ĥ = Â(p, 1). The similarity with the case analyzed

in [13] suggests that ceff(Ĥ⊠G) is still expressed in terms of Lie–theoretic invariants

of the two algebras G and Ĥ, in facts by eqn.(3.157) where the invariants r(G′)

and h(G′) of G′ are replaced by the appropriate invariants of Ĥ.
In order to make the correct replacements, we have to return to the computation

leading to (3.157) was computed, and to track the origin of each Lie–theoretical
quantity in the rhs of (3.157). The Coxeter numbers in the numerator arise as
(twice) the number of quiver mutations we need to perform to get the complete
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BPS spectrum (in each one of the two canonical chambers) by the mutation algo-
rithm of [8]. In other words, it is (twice) the number of mutations after which the
mutation algorithm (in those chambers) stops. One may see this number also as
(twice) the number of mutations we need to perform to collect the contributions to
the quantum monodromy M(q) from all the BPS particles. Mathematically, the
factor r(G′)h(G′) may be seen as (twice) the size of preprojective component of
the AR quiver of CG, generated by repeated application of the inverse AR trans-
lation τ−. On the other hand, the denominator of (3.157) may be understood in
terms of the identification of physical observables computed at a chiral phase ϕ
with the physical observables at ϕ+ 2π twisted by the action of M.

Now, all the these viewpoints about the origin of the h(G′)’s appearing in the
rhs of (3.157) lead to the conclusion that the proper value of h for an affine Lie al-

gebra Ĥ is∞: in one of the two canonical chambers the mutation algorithm will be
go on forever visiting particle after particle in the infinite towers of (preprojective)
dyons.

Therefore, our educated guess is

ceff(Ĥ ⊠G) = lim
h→∞

r(Ĥ) r(G)h(G)h

h+ h(G)
≡ r(Ĥ) r(G)h(G), (3.166)

For Ĥ ⊠G one has

rankB = r(G)

(
3∑
i=1

pi − 1

)
−

3∑
i=1

f(pi, G) (3.167)

where {p1, p2, p3} are the three periods of Ĥ (listed for each acyclic affine quiver

Ĥ in the second column of the table in eqn.(3.116)) and f(p,G) is the function
defined in eqn.(3.81) Then eqn.(3.159) gives the following expression for c of the

Ĥ ⊠G QFT

c
(
Ĥ ⊠G

)
=

1

12

{(
3∑
i=1

pi − 1

)
r(G)

(
h(G) + 1

)
−

3∑
i=1

f(pi, G)

}
. (3.168)

Let us check that this expression has the right physical properties. First of all,
it should be additive in the following sense. Let Ĥ be an acyclic affine quiver and
{p1, p2, p3} its periods (cfr. table in eqn.(3.116)). Since our formula for c refers
to the value at the UV fixed point, and the YM coupling is asymptotically free,
c(Ĥ ⊠G) should be the sum of the c’s of the four UV decoupled sectors: G SYM,
Dp1(G), Dp2(G), and Dp3(G), while c(D1(G)) ≡ 0 for all G since it corresponds to
the empty matter sector

c(Ĥ ⊠G) =
1

6
dimG+

∑
i

c(Dpi(G)), (3.169)
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This gives two conditions which need to be satisfied by the expression (3.168)

c(Â(1, 1)⊠G) = ( c of pure SYM with group G ) ≡ 1

6
dimG (3.170)

c
(
Ĥ ⊠G

)
=

3∑
i=1

c
(
Â(pi, 1)⊠G

)
− 2 c

(
Â(1, 1)⊠G

)
. (3.171)

They are both true and corroborate our educated guess (3.166).
From eqn.(3.169) we extract the value of the central charge c for the SCFT

Dp(G). It is given by the function

c(p,G) =
1

12

{
(p− 1) r(G)

(
h(G) + 1

)
− f(p,G)

}
. (3.172)

Example 4: the model Â(2, 1)⊠A2 is SU(3) SYM gauging the SU(3)flavor of
the Argyres–Douglas of type D4 [21]. From eqn.(3.164) c of D4 is 2/3, and then the
c of the gauged model should be c = 8/6 + 2/3 ≡ 2 in agreement with eqn.(3.168)

c(Â(2, 1)⊠ A2) =
3 · 2 · 4
12

= 2. (3.173)

In §. 3.6.4 we shall present a number of additional examples of the formula
(3.172), which always produces the correct physical results. See also §. 3.7.3 for
further applications of the formula.

3.6.3. Computing a The formula for c also determines the central charge a in
view of the 2d/4d correspondence. Indeed, consider a N = 2 4d SCFT, and let
R be the chiral ring of primary operators [49] of the (2, 2) superconformal system
associated to it. For an element ψ ∈ R, let us denote with q(ψ) its 2d R-charge.
Deforming the 2d superpotential

W −→ W +
∑
ψ∈R

uψψ uψ ∈ C (3.174)

we induce a massive deformation of the 4d theory with primary operators Oψ that
have dual parameters uψ. Their scaling dimensions are D[Oψ] = 2 − D[uψ]. Let
Ω be the Seiberg–Witten form of the theory. At the conformal point the Seiberg–
Witten geometry has a holomorphic scaling symmetry (i.e. the 2d R-=symmetry)
under which the Seiberg-Witten form transforms as

Ω −→ λq(Ω)Ω. (3.175)
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The 4d scaling dimensions of the mass parameters uψ are fixed by requiring that
the Seiberg-Witten form have dimension equal to 1

D[Ω] ≡ 1 =⇒

{
D[ψ] = q(ψ)/q(Ω)

D[uψ] = (1− q(ψ))/q(Ω)
(3.176)

It is a known fact [101] that

4(2a− c) =
d∑
i=1

(2D[ui]− 1) (3.177)

where d is the dimension of the Coulomb branch of the model and the ui are
the physical deformations that parametrizes it, i.e. the deformations with scaling
dimensions D[ui] > 1. Since d ≡ rankB/2, we have

a =
1

2

(
c+

1

4
·

d∑
i=1

(2D[ui]− 1)
)
=

1

2
· c+ 1

16
· rankB +

1

4
·

d∑
i=1

(D[ui]− 1). (3.178)

We define

u(R) ≡ 1

4
·
∑
ψ∈R

[
1− q(ψ)
q(Ω)

− 1

]
+

(3.179)

where [x]+ is the function

[x]+ =

{
x for x ≥ 0

0 for x < 0.
(3.180)

This gives the final formula for a

a =
1

2
· c+ 1

16
· rankB + u(R). (3.181)

For the Dp(G) SCFT this formula may be rewritten in a simpler way. We
write E(G) for the set of exponents of G (equal to the degrees of the fundamental
Casimirs of G minus 1 ). Then u(R) is given by the function

u(p,G) =
1

4

p−1∑
s=1

∑
j∈E(G)

[
j − h(G)

p
s

]
+

. (3.182)

This formula is very obvious if you recall that q(Ω) ≡ 1−ĉ/2 ≡ 1/h(G) (eqn.(3.84)).
Hence 4 u(R) is simply

∑
RR[h(G) qRR]+, where the qRR’s are the U(1)R charges

of the RR vacua whose set is precisely

{qRR} ≡ {j/h(G)− s/p : j ∈ E(G), 1 ≤ s ≤ p− 1}. (3.183)
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Putting everything together we obtain that the central charge a for the Dp(G)
models is

a(p;G) = u(p;G) +
1

48

(
(p− 1) r(G)

(
2h(G) + 5)− 5f(p;G)

)
. (3.184)

Correspondingly, at the UV fixed point, the a–central charge for the Ĥ⊠G models
is

a(Ĥ ⊠G)
∣∣
UV

=
1

4

∑
j∈E(G)

j +
1

24
r(G)

(
2h(G) + 5) +

3∑
i=1

a(pi;G). (3.185)

Example 5: SU(2) SQCD with Nf ≤ 3 flavors. Nf = 1, 2, 3 correspond,

respectively, to the quiver A(2, 1) ⊠ A1, A(2, 2) ⊠ A1, and D̂4 ⊠ A1. One has

ceff(Ĥ ⊠ A1) = 2 r(Ĥ) ≡ 2(2 +Nf ), while rankB = 2 for all Nf . Then

c =
1

12

(
4 + 2Nf + 2) =

3

6
+

2Nf

12
, (3.186)

a =
1

4
+

9

24
+Nf a(2, A1) =

5 dimSU(2)

24
+

2Nf

24
(3.187)

consistent with dimSU(2) = 3 vector–multiplets and Nf hyper doublets.

3.6.4. Further examples and checks

Example 6: SU(N) linear quivers

For all m, p ∈ N we consider the linear quiver theory

SU(mp)− SU(m(p− 1))− SU(m(p− 2))− · · · − SU(2m)− SU(m). (3.188)

As we discussed in §. 3.5.1, such theory has quiver Â(p, 1) ⊠ Amp−1. The weak
coupling computation of c is

c =
1

6
nv+

1

12
nh =

1

6

p∑
k=1

(m2k2− 1)+
1

12

p−1∑
k=1

(mk)m(k+1) =
1

12
p(m2p(p+1)− 2).

(3.189)

The computation from the quiver Â(p, 1)⊠ Amp−1 is

1

12

((
(p+ 1)(mp− 1)mp

)
+
(
(p+ 1)(mp− 1)− p+ 1

))
=

1

12
p(m2p(p+ 1)− 2),

(3.190)
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in perfect agreement with the weak coupling computation. Now consider the cen-
tral charge a. Let us start computing

4u(p;Amp−1) =

p−1∑
s=1

mp−1∑
j=1

[j −ms]+ =

p−1∑
s=1

∆(ms), (3.191)

where we have set

∆(N) =
N−1∑
j=1

j =
N(N − 1)

2
. (3.192)

We already know that

f(p;Amp−1) = gcd{p,mp} − 1 = p− 1. (3.193)

so that (3.185) gives

a(p;Amp−1) =
1

4

p−1∑
s=1

∆(ms) +
1

48

(
(p− 1)(mp− 1)(2mp+ 5)− 5(p− 1)

)
=

=
1

48
(p− 1)(4m2p2 −m2p− 10)

(3.194)

On the other hand, let us compute a using weakly coupled QFT in the UV; a for
SU(N) SYM is

a(SU(N)) =
5

24
dimSU(N) =

5

24
(2∆(N) +N − 1) (3.195)

while the hypers in the bifundamental (N1, N2) contribute with N1N2/24. Then

a(linear quiver)
∣∣∣
QFT

=
5

24

p−1∑
s=1

(
2∆(ms) +ms− 1

)
+
m2

24

p−1∑
s=1

s(s+ 1) =

=
1

48
(p− 1)(4m2p2 −m2p− 10),

(3.196)

in perfect agreement.

Example 7: SO/USp linear quivers

For all m, p ∈ N we consider the linear quiver theory

SO(2mp+ 2)− USp(2m(p− 1))− SO(2m(p− 2) + 2)− USp(2m(p− 3))− · · ·
· · · − SO(2m(p− 2ℓ) + 2)− USp(2m(p− 2ℓ− 1))− · · ·

(3.197)
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(the two lines are meant to be concatenated). The edges now stand for bifundamen-
tal HALF hypermultiplets. The linear quiver have two possible ends, depending
on the parity of p.

p odd : · · · − USp(4m)− SO(2m+ 2)

p even : · · · − SO(4m+ 2)− USp(2m)− SO(2)
(3.198)

where the box means an ungauged flavor group. As we discussed in §. 3.5.2, the
BPS quiver of this theory is Â(p, 1)⊠Dmp+1.

Let us compute c from weak coupling; we specialize to p = 2ℓ even:

c =
1

6
nv +

1

24
n1

2
h
=

1

6

[
ℓ∑

k=1

dimSO(4mk + 2) +
ℓ∑

k=1

dimUSp(2m(2k − 1)

]
+

+
1

24

ℓ∑
k=1

[
2m(2k − 1)

][
2m(2k) + 2 + 2m(2k − 2) + 2

]
=

=
1

6

[
ℓ∑

k=1

(2mk + 1)(4mk + 1) +
ℓ∑

k=1

m(2k − 1)[2m(2k − 1) + 1]

]
+

+
1

24

ℓ∑
k=1

[
2m(2k − 1)

][
2m(2k) + 2 + 2m(2k − 2) + 2

]
=

=
ℓ

6

(
8m2ℓ2 + 4m2ℓ+ 6mℓ+ 3m+ 1

)
, (3.199)

while from the quiver

c =
1

12

(
(2ℓ+1)(2ℓm+1)4ℓm+(2ℓ+1)(2mℓ+1)−1

)
≡ ℓ

6

(
8m2ℓ2+4m2ℓ+6mℓ+3m+1

)
,

(3.200)
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with perfect agreement. Let us consider now p odd = 2ℓ+ 1.

c =
1

6
nv +

1

24
n1

2
h
=

1

6

[
ℓ∑

k=0

dimSO(2m(2k + 1) + 2) +
ℓ∑

k=1

dimUSp(4mk)

]
+

+
1

24

ℓ∑
k=1

4mk
[
2m(2k + 1) + 2 + 2m(2k − 1) + 2

]
=

=
1

6

[
ℓ∑

k=0

(m(2k + 1) + 1)(2m(2k + 1) + 1) +
ℓ∑

k=1

2mk[4mk + 1]

]
+

+
1

24

ℓ∑
k=1

4mk
[
2m(2k + 1) + 2 + 2m(2k − 1) + 2

]
=

=
1

6
(4mℓ+ 2m+ 1)(2mℓ+m+ 1)(ℓ+ 1) (3.201)

while from the quiver

c =
1

12

(
(2ℓ+ 2)

(
(2ℓ+ 1)m+ 1

)(
2m(2ℓ+ 1)

)
+ (2ℓ+ 2)

(
(2ℓ+ 1)m+ 1

))
=

=
1

6
(4mℓ+ 2m+ 1)(2mℓ+m+ 1)(ℓ+ 1), (3.202)

in complete agreement.
If one considers the Dp(SO(2mp+ 2)) models, one has

f(p;Dmp+1) =

{
1 p even

0 otherwise
≡ p+ 1− 2

[
p+ 1

2

]
(3.203)

u(p;Dmp+1) =
1

4

p−1∑
s=1

(
mp∑
k=1

[2k − 1− 2ms]+ + [mp− 2ms]+

)
=

=
1

4

p−1∑
s=1

m(p−s)∑
k=1

(2k − 1) +
m

4

[p/2]∑
s=1

(p− 2s) =

=
m2

24
(2p− 1)p(p− 1) +

m

4
[(p− 1)/2] [p/2]

(3.204)

and then

a(p;Dmp+1) =
m2

24
(2p− 1)p(p− 1) +

m

4
[(p− 1)/2] [p/2]+

+
1

48

{
(p− 1)(mp+ 1)(4mp+ 5)− 5(p+ 1) + 10[(p+ 1)/2]

}
(3.205)
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for p = 2q even this is

1

24

(
32m2q3 − 20m2q2 + 24mq2 + 2m2q − 15mq + 5q − 5

)
(3.206)

while for p = 2q + 1 odd

1

24
q
(
32m2q + 28m2q + 24mq + 6m2 + 9m+ 5

)
(3.207)

We have already computed the number of vector multiplets and half–hypers in the
linear quiver Â(p, 1) ⊠ Dmp+1: the computation for the theory Dp(SO(mp + 1))
changes just nv by the SO(mp+ 1) contribution; for p = 2q

nv =
1

3
(16m2q3 − 12m2q2 + 12mq2 + 2m2q − 9mq + 3q − 3) (3.208)

n1
2
h
=

8

3
mq(4mq2 + 3q −m) (3.209)

and therefore

a =
5

24
nv+

1

48
n1

2
h
=

1

24

(
32m2q3−20m2q2+24mq2+2m2q−15mq+5q−5

)
(3.210)

in agreement with the formula (3.206).
For p = 2q + 1, we have

nv =
1

3
q(16m2q2 + 12m2q + 12mq + 2m2 + 3m+ 3) (3.211)

n1
2
h
=

8

3
mq(4mq2 + 6mq + 3q + 2m+ 3) (3.212)

and therefore

a =
5

24
nv +

1

48
n1

2
h
=

1

24
q
(
32m2q2 + 28m2q + 24m+ 6m2 + 9m+ 5

)
(3.213)

in agreement with formula (3.207).

3.6.5. General properties of the Dp(G) SCFT’s We have obtained quite a
precise physical picture of the SCFT Dp(G). We know:

• the rank of the flavor group

f = r(G) + f(p,G) (3.214)
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• the dimension of the Coulomb branch

d =
1

2

(
(p− 1)r(G)− f(p,G)

)
(3.215)

• the order of the 4d quantum monodromy

r =
p

gcd{p, h(G)}
(3.216)

• the dimension of the discriminant of the SW curve at the UV CFT point29:

≡ (p− 1)r(G)h(G) (3.217)

• the SCF central charge a is a(p;G) defined in eqn.(3.184)

• the SCF central charge c is c(p;G) defined in eqn.(3.172)

• the G–current algebra central charge kG is

kG ≡ 2 bp,G =
2(p− 1)

p
h(G) (3.218)

• the set of the dimensions of the operators parametrizing the Coulomb branch{
∆1,∆2, . . . ,∆d

}
=
{
j−h(G)

p
s+1

∣∣∣ j > h(G)

p
s, j ∈ E(G), s = 1, . . . , p−1

}
.

(3.219)

From these expressions we may extract some general properties of the Dp(G)
SCFT which are typical of this class of theories. For instance, as we are going
to show, these theories have Coulomb branches of large dimension, d = O(p)
(eqn.(3.215)), while, for fixed G, the dimension of their Higgs branches is bounded
above by 2 r(G)h(G)2 (a sharper inequality holds for p ≥ h(G), see below).

We list a few such properties:

The Coulomb branch operator of maximal dimension: Since h(G) − 1 ∈
E(G) for all G’s, we see from (3.219) that the maximal dimension of the
Coulomb branch operators is equal to the β–function coefficient bp,G,

∆d ≡
p− 1

p
h(G) = bp,G ≡

1

2
kG, (3.220)

and is always less that the maximal dimension ∆max(G) ≡ h(G) for SYM
with gauge groups G.

29 Just by checking against the formulas by Shapere–Tachikawa [101], one sees thatD(∆)there ≡
ceff (Q,W)here.
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The rank of the flavor group f it is always ≤ 2 r(G) with equality iff h(G) | p.

The dimensions ∆i ∈ N ⇐⇒ r ∈ N⇐⇒ bp,G ∈ N.

Asymptotic behavior of a and c: For fixed G and large p the asymptotics of
the SCFT central charges a and c are

a(p;G) ≈ dimG

12
p+O(1) (3.221)

c(p;G) ≈ dimG

12
p+O(1). (3.222)

In particular, c(p;G) − a(p;G) is constant for large p up to a few percent
Number–Theoretic modulation (see next item).

Dimension of the Higgs branch: Assume p ≥ h ≡ h(G). Then (r ≡ r(G))

dimH Higgs branch ≡ nh − nv ≡ 24(c− a) ≤

≤ #(positive roots of G) + r ≡ (h+ 2)r

2
∈ N, (3.223)

with equality if and only if h | p.
The reader interested in the proofs of eqns.(3.221)–(3.223) is referred to ap-

pendix B.2.

3.7.D2(G) systems and Minahan-Nemeshansky the-

ories

The SCFT’s of period p = 2 are expected to be particular easy since they generalize
to arbitrary G = ADE the D2 Argyres–Douglas model which is just a free doublet.
In this section we study in more detail this simple class of theories.

3.7.1. Quivers and superpotentials The quivers Q2,G have Â(2, 0) full sub-
quivers over the nodes of G which correspond to quadratical terms in the su-
perpotential Wmat. Therefore the arrows of the Â(2, 0) vertical subquivers get
integrated out from their DWZ–reduced quiver with superpotential, D(G), which
are particularly simple. For G = An one gets

D(An) ≡

1̂ // 2̂ //

��

· · ·

��

// n̂− 1 //

}}

n̂

~~

1 // 2 //

^^

· · · //

__

n− 1 //

aa

n

``

(3.224)
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the D(G)’s for the other simply–laced Lie algebras being represented in figure 3.3.
The superpotential for D(An) is

WD =
∑
a

(
α∗
(1),aα(2),a − α(1),aα

∗
(2),a

)(
α∗
(2),aα(1),a − α(2),aα

∗
(2),a

)
. (3.225)

3.7.2. A finite BPS chamber. The quivers D(G) contain two full Dynkin G
subquivers with alternating orientation and non–overlapping support. E.g. the
two alternating An subquivers of D(An) in (3.224) are the full subquivers over the
nodes {

1, 2, 3̂, 4̂, 5, 6, . . .
}

and
{
1̂, 2̂, 3, 4, 5̂, 6̂, . . .

}
. (3.226)

With reference to this example, let us define the following mutation sequence:

m2,An ≡

( ∏
a even

µa ◦ µâ

)
◦

( ∏
a odd

µa ◦ µâ

)
(3.227)

The mutation sequence corresponding to the full quantum monodromy associated
to the An ⊕ An chamber is symply

(m2,An)
n+1 = m2,An ◦ · · · ◦m2,An︸ ︷︷ ︸

n+1 times

. (3.228)

We draw the BPS-quivers of the other D2(G) models in figure 3.3. From their
structure it is clear that they all admit Coxeter–factorized sequences of type (G,G)
constructed analogously. We conclude that all the D2(G) superconformal systems
have a (possibly formal) finite–BPS-chamber Cfin such that

Γ+
∣∣
Cfin
≃ ∆+(G)⊕∆+(G) (3.229)

where ∆+(G) is the set of positive roots of the Lie algebra G. A few remarks are
in order:

1. Applying this result to D2(SU(2N)) we get a refinement of the result of [8]
for SU(N) SQCD with 2N flavors. The chamber (3.229) has less BPS hypers.

2. Comparing with the previous section we see that

ceff = r(G)h(G) = #
{
BPS-particles in the chamber (3.229)

}
(3.230)

in agreement with a conjecture by Xie and Zhao [104].

3. From the explicit BPS spectrum (3.229) one constructs (new) periodic TBA
Y –systems whose periodicity should coincide with that of the 4d quantum
monodromy, r(2, G) [13,14]. We have numerically checked this prediction for
the corresponding 2d solvable models along the lines of [14], getting perfect
agreement.
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D(Dn+1) :

n̂+ 1

��

1̂ // 2̂ //

��

· · ·

��

// n̂− 1

;;

//

}}

n̂

zz

1 // 2 //

^^

· · · //

__

n− 1 //

$$

aa

n

dd

n+ 1

XX

D(E6) :

6̂





1̂ // 2̂ //

��

3̂

AA

��

// 4̂ //

~~

5̂

��
1 // 2 //

^^

3 //

^^

��

4 //

``

5

^^

6

TT

D(E7) :
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1̂ // 2̂ //

��

3̂

AA

��

// 4̂ //

~~

5̂ //

��

6̂

��
1 // 2 //

^^

3 //

^^

��

4 //

``

5 //

^^

6

^^

7

TT

D(E8) :
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1̂ // 2̂ //

��

3̂

AA

��

// 4̂ //

~~

5̂ //

��

6̂ //

��

7̂

��
1 // 2 //

^^

3 //

^^

��

4 //

``

5 //
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6 //

^^

7

^^

8

TT

Figure 3.3: The DWZ–reduced quivers D(G) for the D2(G) SCFT’s.
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3.7.3. The exceptional Minahan–Nemeshansky theories.

E6 MN ≡ D2(SO(8))

Notice that D2(SO(8)) theory coincides with the E6 MN theory: The D2(SO(8))
quiver is mutation equivalent to the quiver in figure (6.11) of [8] we reproduce
below on the lhs: It is sufficient to mutate it on one of the white nodes to show
this result is true.

•

• •

◦

•

••

◦

�� ��

DD

��

;;

ii



��

bb

kk

����

ff

dd

99==

��



ZZ

4466

µ◦−−−−−→

•

		

• // ◦

??

��

// •

}}
• // ◦ //

__

��

•

aa

•

UU

(3.231)

As a consistency check, let us now show that all the invariants of the D2(SO(8))
model agrees with the ones of the E6 MN theory. First of all notice that

δ(2, D4) = 2 =⇒ f(2, D4) = δ(2, D4) · φ(2) = 2 (3.232)

Therefore the rank of the flavor group of the D2(SO(8)) model is 4+ 2 = 6. From
this we can recover the rank of B:

rankB = 2 · 4− 6 = 2 =⇒ dimension of the Coulomb branch = 1. (3.233)

Now,

c =
1

12

(
4 · 6 + 2

)
=

13

6
(3.234)

and

4 · u(2, D4) =
[
5− 6

2

]
+
+ 2
[
3− 6

2

]
+

[
1− 6

2

]
+
= 2. (3.235)

Therefore,

a =
13

12
+

1

8
+

1

2
=

41

24
. (3.236)

Moreover, the Coulomb branch coordinate has dimension

b2,D4 =
1

2
· 6 = 3, (3.237)

in perfect agreement.
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1
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6
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9
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::
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vvoo
^^VV

CC

88

&&
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Figure 3.4: Element in the quiver mutation class of D2(SO(10)) describing the
S-duality frame of Argyres–Seiberg [105]. The full subquiver of type A(1, 1) on
the nodes { 1, 6 } represents the SU(2) SYM subsector, and the node 2 represents
the gauged SU(2) flavor symmetry of E7 MN.

D2(SO(10)) is E7 MN coupled to SU(2) SYM

From our results of section 3.5.2 it follows that the theory D2(SO(10)) is La-
grangian. In an S-duality frame, this is just the model USp(4) coupled to 6
hypermultiplets in the fundamental representation, i.e.

SO(10) − USp(4)− SO(2) (3.238)

where the boxes represents ungauged flavor groups (Nf = 5+1). One of the most
famous examples of S–duality [105] relates precisely this model with an SU(2)
SYM sector weakly gauging an SU(2) subgroup of the flavor group of the E7 MN
model. By quiver mutations we are able to give an explicit proof of this statement:
In the mutation class of the BPS-quiver of D2(SO(10)) there is an element that
clearly describes an SU(2) SYM sector weakly gauging the flavor symmetry of a
subsystem that we identify with the E7 MN one. We draw such quiver in figure
3.4. See appendix B.3 for the explicit sequence of mutations.

From this result, it is easy to obtain the quiver for E7 MN and from such quiver
to prove that the E7 theory has a finte BPS-spectrum. The explicit computation
can be found in the next chapter of this thesis.

D2(E6) is E8 MN coupled to SU(3) SYM

We have found how the exceptional MN theories of type E6 and E7 appear in
between the Dp(G) systems: The question, now, is if we can find also the E8 MN
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1
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Figure 3.5: An element in the mutation-class of the quiver of the model D2(E6).
This quiver clearly represents an S-duality frame in which we have an explicit
SU(3) SYM sector coupled to the E8 MN theory. The SU(3) SYM full subquiver is
on the nodes {2, 3, 5, 11}. The node 8 represents the gauged SU(3) flavor symmetry
of E8 MN.
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theory. Such theory has rank 1 and it has E8 flavor symmetry, therefore its charge
lattice has dimension 10. Since there are no Dp(E8) theories with such a small
charge lattice, we expect that if the E8 MN theory appears in between the Dp(G)
systems, it will manifest itself with part of its flavor symmetry weakly gauged.
The first possibility we have is the E7 ⊗ SU(2) ⊂ E8 group, but gauging the
SU(2) symmetry will leave us with an E7 flavor symmetry, and there is no Dp(E7)
theories with 10− 1 + 2 = 11 nodes. The next possibility is the E6 ⊗ SU(3) ⊂ E8

group, here we would be gauging the SU(3) flavor symmetry subgroup, remaining
with a E6 flavor group. The theory would have 10 − 2 + 4 = 12 nodes. And we
have a theory with 12 nodes and E6 flavor symmetry: It is precisely the D2(E6)
system!!

Let us use our results about the central charges of the D2(E6) theory to check
if this prediction makes sense. Looking at table 3.5 one obtains that δ(2, E6) = 0
and therefore f(2, E6) = 0. The rank of the quiver exchange matrix is simply

rankB = 2 · 6− 6 = 6 (3.239)

Moreover ceff(D2(E6)) = 6 · 12 = 72, therefore

c(2, E6) =
1

12

(
72 + 6

)
=

39

6
. (3.240)

Now, by additivity

c(E8 MN) = c(2, E6)−
1

6
dimSU(3) =

39

6
− 8

6
=

31

6
(3.241)

which is the correct result!! Let us check that also a is correct. We have

u(2;E6) =
1

4

(
[1− 6]+ + [4− 6]+ + [5− 6]+ + [7− 6]+ + [8− 6]+ + [11− 6]+

)
=

=
1

4
(1 + 2 + 5) = 2

(3.242)

Then

a(2;E6) = 2 +
31

12
+

1

16
· 6 =

45

8
(3.243)

so,

a(E8 MN) =
45

8
− 5

24
dimSU(3) =

95

24
(3.244)

which is again the correct result !!!

Based on these very strong evidences, we may try to find a representative of
the mutation class of the BPS-quiver of D2(E6) such that this result is mani-
fest: We draw in figure 3.5 such representative. This concludes our proof of the
identification. The explicit mutation sequence is given in appendix B.3.



Chapter 4

H1, H2, D4, E6, E7, E8

4.1. Introduction and interesting numerology

Consider the seven rank 1 4d N = 2 SCFT’s which may be engineered in F–theory
using the Kodaira singular fibers [106–114]

H0, H1, H2, D4, E6, E7, E8. (4.1)

H0 has trivial global symmetry and will be neglected in the following. The other
six theories have flavor group F equal, respectively, to

SU(2), SU(3), SO(8), E6, E7 and E8. (4.2)

We note that (4.2) is precisely the list of all simply–laced simple Lie groups F
with the property

h(F ) = 6
r(F ) + 2

10− r(F )
, (4.3)

where r(F ) and h(G) are, respectively, the rank and Coxeter number of F . Phys-
ically, the relation (4.3) is needed for consistency with the 2d/4d correspondence
of [13], and is an example of the restrictions on the flavor group F of a 4d N = 2
SCFT following from that principle.

Neglecting H0, let us list the numbers 2h(F ) for the other six models

4, 6, 12, 24, 36, 60. (4.4)

The first four numbers in this list have appeared before in the non–perturbative
analysis of the corresponding SCFT’s: it is known [8,22] that the (mass–deformed)
SCFT’s H1, H2, D4 and E6 have a finite BPS chamber in which the BPS spectrum
consists precisely of (respectively) 4, 6, 12 and 24 hypermultiplets. The H1 SCFT
is the D3(SU(2)) model of [21, 22], while the H2, D4 and E6 SCFT’s coincide,
respectively, with the models D2(SU(3)), D2(SU(4)), and D2(SO(8)) of those
papers; then the above statement is a special instance of the general fact that, for
all simply–laced Lie groups G = ADE, the D2(G) SCFT has a finite chamber with

131
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r(G)h(G) hypermultiplets [22], while, for all p ∈ N, the model Dp(SU(2)) has a
special BPS chamber with 2(p− 1) hypermultiplets1.

For the four SCFT’s H1, H2, D4, E6, the number of hypermultiplets in the
above preferred chamber, nh, may be written in a number of intriguing ways: we
list just a few

nh = 2h(F ) =
12 r(F ) + 24

10− r(F )
= 12(∆− 1) = n7 ∆, (4.5)

where ∆ is the dimension of the field parametrizing the Coulomb branch of the
rank 1 SCFT, and n7 is the number of parallel 7–branes needed to engineer the
SCFT in F–theory [106–114]; see Table 4.1.

The special finite BPS chambers with nh = 2h(F ) hypers have the particu-
lar property of saturating the conformal central charge c of the strongly–coupled
SCFT. By this we mean that, for these theories, the exact c is equal to the value
for nh free hypermultiplets plus the contribution from the massless photon vector
multiplet

c =
1

12
nh +

1

6
, (4.6)

that is, c has the same value as the system of free fields with the same particle
content as the BPS spectrum in the special chamber. In fact, the c–saturating
property holds in general for the standard BPS chamber of all D2(G) SCFT’s [22],
and also for all Dp(SU(2)). It was conjectured by Xie and Zhao [104] that a finite
BPS chamber with this property exists for a large class of N = 2 models (their
examples are close relatives of the present ones). At the level of numerology, for the
four SCFT’s H1, H2, D4, E6 we also have a simple relation between the number
of hypers in our special chamber, nh, and the a, kF conformal central charges:
in facts, for all the above SCFT’s the central charge a is given by the photon
contribution, 5/24, plus three–halves the contribution of nh free hypers

a =
1

24

3nh
2

+
5

24
(4.7)

kF =
nh + 12

6
. (4.8)

In view of all this impressive numerology involving nh, it is tempting to con-
jecture that the last two SCFT’s in the sequence (4.1), E7 and E8, also have

1 Note that H1 is the Argyres–Douglas (AD) model of type A3 [17] which has BPS chambers
with any number nh of BPS hypers in the range 3 ≤ nh ≤ 6; likewise H2 is the Argyres–Douglas
model of type D4. In both cases it is neither the AD minimal (3 resp. 4 hypers) nor the AD
maximal (6 resp. 12 hypers) BPS chamber which is singled out by the property of being c–
saturating, but rather their canonical chamber as a Dp(SU(2)) resp. a D2(G) theory [22] (for
D4 AD these two chambers are equivalent).
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SCFT H1 H2 D4 E6 E7 E8

∆ 4/3 3/2 2 3 4 6

n7 3 4 6 8 9 10

c 1/2 2/3 7/6 13/6 19/6 31/6

a 11/24 7/12 23/24 41/24 59/24 95/24

kF 8/3 3 4 6 8 12

Table 4.1: Numerical invariants for the six SCFT’s H1, H2, D4, E6, E7 and E8.
The rank of the flavor group, r(F ), is equal to the index in the SCFT symbol.

canonical finite BPS chambers with, respectively, 36 and 60 hypermultiplets. This
will extend our observations, eqn.(4.5)–(4.8), to the full SCFT sequence (4.1), sug-
gesting that the numerology encodes deep physical properties of rank 1 SCFTs.

The purpose of this chapter is to prove the above conjecture, by constructing
explicitly the canonical chambers with 2h(F ) hypers. To get the result we use
the BPS quivers for the E7 and E8 Minahan–Nemeshanski theories identified in
§.3.7.3, together with the mutation algorithm of [8].

4.2. Computing the BPS spectra

4.2.1. The quivers Q(r, s) We begin by fixing uniform and convenient represen-
tatives of the quiver mutation–classes for the six N = 2 models in eqn.(4.1) with
F ̸= 1. We define Q(r, s) to be the quiver with (r + s+ 2) nodes

c1

  
'' ++a1

33

a2

44

· · · ar

>>

b1

��

b2

ww

· · · bs

ssc2

kk jj
``

(4.9)

Then the (representative) quivers for our six SCFT’s are

SCFT H1 H2 D4 E6 E7 E8

quiver Q(0, 1) Q(1, 1) Q(2, 2) Q(3, 3) Q(3, 4) Q(3, 5)
(4.10)

(cfr. ref. [7] for H1, H2 and D4, ref. [8] for E6, and ref. [22] for E7 and E8).
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The simplest way to get the table (4.10) is by implementing the flavor groups F
in eqn.(4.2) directly on the quiver. Indeed, given a Q(r, s) quiver the flavor group
F of the corresponding N = 2 QFT is canonically identified by the property that
its Dynkin graph is the star with three branches of lengths2 [r, s, 2].

4.2.2. The c–saturating chamber for H1, H2, D4 and E6 The first four
quivers in (4.10) may be decomposed into Dynkin subquivers in the sense of [14]

Q(1, 0) = A2 ⨿ A1, Q(1, 1) = A2 ⨿ A2,

Q(2, 2) = A3 ⨿ A3, Q(3, 3) = D4 ⨿D4.
(4.11)

For a quiver G⨿G′ the charge lattice is Γ = ΓG⊕ΓG′ , where ΓG is the root lattice of
the Lie algebra G. Since the decomposition has the Coxeter property [14,22], there
is a canonical chamber in which the BPS spectrum consists of one hypermultiplet
per each of the following charge vectors [14]{

α⊕ 0 ∈ ΓG ⊕ ΓG′ , α ∈ ∆+(G)
}∪{

0⊕ β ∈ ΓG ⊕ ΓG′ , β ∈ ∆+(G′)
}
, (4.12)

where ∆+(G) is the set of the positive roots of G. Then the number of hypermul-
tiplets in this canonical finite chamber is

nh =
1

2

(
r(G)h(G) + r(G′)h(G′)

)
, (4.13)

which for the four cases in eqn.(4.11) gives (respectively)

4, 6, 12, 24, (4.14)

i.e. nh = 2h(F ) as expected for a c–saturating chamber.

For sake of comparison with the E7, E8 cases in the next subsection, we give
more details on the computation of the above spectrum for the E6 Minahan–
Nemeshanski theory [112] using the mutation algorithm. The cases H1, H2 are
similar and simpler, and we have discussed the D4 theory in §.1.3.5.

The twoD4 subquivers ofQ(3, 3) are the full subquivers over the nodes {a1, a2, a3, c1}
and, respectively, {b1, b2, b3, c1}. The quiver Q(3, 3) has an automorphism group
Z2 ⋉ (G3 × G3), where the two G3 are the triality groups of the D4 subgraphs,

2 As always, in the length of each branch we count the node at the origin of the star; in
particular, a branch of length one is no branch at all, while a branch of length zero means that
we delete the origin of the star itself. Note that, for all s, the quiver Q(2, s) is mutation equivalent
to the quiver of SU(2) SQCD with Nf = s + 2 fundamental flavors which has flavor symmetry
group SO(2s+ 4), whose Dynkin graphs is the star with three branches of lengths [2, s, 2].
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while Z2 interchanges the two D4 subquivers (and hence the two G3’s). The quiver
embedding D4 ⊕D4 → Q(3, 3) induces an embedding of flavor groups

SU(3)× SU(3)→ F ≡ E6, (4.15)

where SU(3) is the flavor group of the Argyres–Douglas theory of type D4 char-
acterized by the fact that Weyl(SU(3)) ≡ G3 ≡ the triality group of D4.

The two D4 subquiver have the ‘subspace’ orientation; in both bi–partite quiv-
ers Q(3, 3) and D4 we call even the nodes ai and bi and odd the ci ones. Then, by
standard properties of the Weyl group, the quiver mutation ‘first all even then all
odd’

µc2µc1

3∏
i=1

µbi

3∏
i=1

µai (4.16)

transforms the quiver Q(3, 3) into itself while acting on ΓD4 ⊕ ΓD4 as Cox⊕ Cox,
where Cox ∈ Weyl(D4) is the Coxeter element of D4. Since (Cox)3 = −1, the
quiver mutation (

µc2µc1

3∏
i=1

µbi

3∏
i=1

µai

)3
(4.17)

is a solution to eqn.(1.47) with π = Id. Since there are 24 µ’s in eqn.(4.17), we
have found a finite BPS chamber with 24 hypers. Eqn.(4.17) is invariant under the
automorphism group Z2 ⋉

(
Weyl(SU(3))×Weyl(SU(3))

)
so that there are points

in the parameter domain Dfin corresponding to the above chamber which preserve
a flavor group

Ffin ⊇ Z2 ⋉
(
SU(3)× SU(3)× U(1)2

)
, (4.18)

where Z2 acts by interchanging the two SU(3)’s and inverting the sign of the first
U(1) charge. The 24 BPS states may be classified in a collection of irrepresen-
tations of the group in the large parenthesis of eqn.(4.18) which form Z2 orbits.
From eqn.(4.17) we read the phase ordering of the particles in the 24 BPS hypers
(in addition we have, of course, the PCT conjugate anti–particles). Ordered in
decreasing phase order, we have

︷ ︸︸ ︷
(3,1)1,0, (1,3)−1,0,

︷ ︸︸ ︷
(1,1)3,1, (1,1)−3,1,

︷ ︸︸ ︷
(3,1)2,1, (1,3)−2,1,︷ ︸︸ ︷

(1,1)3,2, (1,1)−3,2,
︷ ︸︸ ︷
(3,1)1,1, (1,3)−1,1,

︷ ︸︸ ︷
(1,1)0,1, (1,1)0,1,

(4.19)

where overbraces collect representations forming a Z2–orbit. In terms of dimension
vectors of the corresponding quiver representations, the quantum numbers of the
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24 BPS particles (in decreasing phase order) is

a1, a2, a3; b1, b2, b3; a1 + a2 + a3 + c1; b1 + b2 + b3 + c2;

a2 + a3 + c1, a1 + a3 + c1, a1 + a2 + c1; b2 + b3 + c2, b1 + b3 + c2, b1 + b2 + c2;

a1 + a2 + a3 + 2 c1; b1 + b2 + b3 + 2 c2;

a1 + c1, a2 + c1, a3 + c1; b1 + c2, b2 + c2, b3 + c2; c1; c2,
(4.20)

where, for notational convenience, the positive cone generators eai , ebj , eck are writ-
ten simply as ai, bj, ck, respectively.

4.2.3. The 36–hyper BPS chamber of E7 MN The quiver Q(3, 4) has no
obvious useful decomposition into Dynkin subquivers. However, with the help of
Keller’s quiver mutation applet it is easy to check that the composition of the 36
basic quiver mutations at the sequence of nodes

a1 a2 a3 b1 b2 b3 c1 c2

a1 a2 b4 b1 b2 b3 c1 c2 a1 a2 a3 b2 c1 c2 b4 b1 b2 b3 c1 c2

a1 a2 a3 b1 b2 b3 c1 c2

(4.21)

is a solution to eqn.(1.47) for Q(3, 4) with3

π = (a1 a2)(a3 b1 b4)(b2 b3)(c1 c2). (4.22)

Moreover no proper subsequence of mutations is a solution to eqn.(1.47). Note the
similarity with the sequence for E6 which is a three fold repetition of the first line
of (4.21) (the Coxeter sequence of D4 ⨿ D4). Passing from E6 to E7 we simply
replace the second repetition of the Coxeter sequence for D4⨿D4 with the second
line of (4.21) which may also be interpreted as a chain of Coxeter sequences (see
remark after eqn.(4.25)).

The solution (4.21) corresponds to the finite BPS chamber for the E7 Minahan
Nemeshanski theory [113] with 36 hypermultiplets we were looking for. The (man-
ifest) automorphism of this finite chamber is given by the centralizer of π in the
Q(3, 4) automorphism group S3 ×S4, which is the subgroup G2 × G2 generated
by the involutions (a1 a2) and (b2 b3). Then the BPS hypers in this finite chamber
form representations of Ffin = SU(2) × SU(2) × U(1)5. From the list of charge
vectors of the 36 hypers in Table 4.2 we see that this is indeed true.

We stress that the 36–hyper chamber above is far from being unique; a part
for the other m = 36 solutions to eqn.(1.47) obtained from (4.21) by applying

3 The fact that π is not an involution implies that this mutation cannot arise from Coxeter–
factorized subquivers as in the previous examples.
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a1, a2, a3, b1, b2, b3, a1 + a2 + a3 + c1, b1 + b2 + b3 + c2, a2 + a3 + c1, a1 + a3 + c1,

a1 + a2 + a3 + b4 + c1, b2 + b3 + c2, b1 + b3 + c2, b1 + b2 + c2, a1 + a2 + 2 a3 + b4 + 2 c1,

b1 + b2 + b3 + 2 c2, a1 + a3 + b4 + c1, a2 + a3 + b4 + c1, a1 + a2 + b1 + b2 + b3 + c1 + 2 c2,

b2 + c2, b4, a1 + a2 + b2 + c1 + c2, a1 + a2 + a3 + b2 + 2 c1 + c2, b1 + b4 + c2, a1 + a2 + c1,

b3 + b4 + c2, b1 + b3 + b4 + 2 c2 , a1 + a2 + a3 + 2 c1 , a2 + c1 , a1 + c1, b4 + c2, b3 + c2,

a3 + c1, b1 + c2, c2, c1

Table 4.2: The charge vectors of the 36 BPS particles in the chamber Cfin of the E7

MN theory. To simplify the notation, the positive cone generators eai , ebj , eck are
written simply as ai, bj, ck, respectively. The particles are listed in decreasing BPS
phase order. To get the full BPS spectrum, add the PCT conjugate anti–particles.

an automorphism of the quiver Q(3, 4), there are other ones; for instance, the
sequence of 36 mutations at the nodes

c1 c2 a1 a2 b1 b2 c2 c1 a3 b3 b4 b1 c2 c1 b4 b3 a1 a2

b1 b2 c2 c1 a2 a1 b3 b4 a3 b1 c2 c1 a3 b4 b2 a1 a2 b3.
(4.23)

is a solution to (1.47) with π = (a1 a2)(a3 b1 b2)(b3 b4)(c1 c2). The properties
of all these chambers look very similar, in particular they are expected to have
isomorphic Ffin.

4.2.4. The 60–hyper BPS chamber of E8 MN For the quiver Q(3, 5) one
checks that the composition of the 60 basic quiver mutations at the sequence of
nodes

a1 a2 a3 b1 b2 b3 c1 c2 ∥ a1 a2 b4 b1 b2 b3 c1 c2 ∥
a1 a2 a3 b5 b1 b4 c1 c2 ∥ b1 b2 b3 a3 c1 c2 ∥

a1 a2 b2 b3 b4 b5 c1 c2 ∥ a1 a2 a3 b2 b3 b4 c1 c2 ∥
a3 b1 b2 b3 b4 b5 c1 c2 ∥ a1 a2 b4 b5 c1 c2

(4.24)

is a solution to eqn.(1.47) with

π = (a1 a2)(a3 b1)(b2 b3)(b4 b5)(c1)(c2), (4.25)

while no proper subsequence solves it. In eqn.(4.24) the sequence of mutation is
divided into pieces by the dividing symbol ∥; again each piece may be seen as a
Coxeter sequence for a suitable G⨿G (sub)quiver with G either A3 or D4.

Thus we have constructed a 60–hyper c–saturating chamber for the E8 MN
theory [113]. The manifest unbroken flavor symmetry in this finite chamber is
SU(2)×SU(2)×U(1)6 whose Weyl group is realized as permutations of the charge
vector sets {ea1 , ea2} and {eb2 , eb3}.
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a1, a2, a3, b1, b2, b3, a1 + a2 + a3 + c1, b1 + b2 + b3 + c2, a2 + a3 + c1, a1 + a3 + c1,

a1 + a2 + a3 + b4 + c1, b2 + b3 + c2, b1 + b3 + c2, b1 + b2 + c2, a1 + a2 + 2 a3 + b4 + 2 c1,

b1 + b2 + b3 + 2 c2, a1 + a3 + b4 + c1, a2 + a3 + b4 + c1, a1 + a2 + b1 + b2 + b3 + c1 + 2 c2,

a1 + a2 + a3 + b1 + b2 + b3 + b5 + c1 + 2 c2, b1 + c2 , a3 + c1, a3 + b4 + c1,

2 a1 + 2 a2 + a3 + 2 b1 + b2 + b3 + b5 + 2 c1 + 3 c2,

2 a1 + 2 a2 + a3 + b1 + b2 + b3 + b5 + 2 c1 + 2 c2, a3 + b2 + b4 + c1 + c2,

a3 + b3 + b4 + c1 + c2, a1 + a2 + a3 + b1 + b5 + c1 + c2, a3 + b2 + b3 + b4 + c1 + 2 c2,

a1 + a2 + a3 + b5 + c1, a2 + a3 + b5 + c1, a1 + a3 + b5 + c1, b3 + c2, b2 + c2,

a1 + a2 + a3 + b4 + b5 + c1, a1 + a2 + a3 + b1 + b2 + b3 + b4 + 2 c1 + 3 c2,

a1 + a2 + b1 + b2 + b3 + c1 + 3 c2, a1 + a2 + 2 a3 + b4 + 2 b5 + 2 c1,

a1 + a3 + b4 + b5 + c1, a2 + a3 + b4 + b5 + c1, a1 + a2 + b2 + b3 + c1 + 2 c2,

a1 + a2 + b1 + b2 + c1 + 2 c2, a1 + a2 + b1 + b3 + c1 + 2 c2, a3 + b5 + c1,

2 a1 + 2 a2 + b1 + b2 + b3 + 2 c1 + 3 c2, a3 + b4 + b5 + c1, a1 + a2 + b1 + c1 + c2,

a3 + b4 + b5 + c1 + c2, a1 + a2 + b3 + c1 + c2, a1 + a2 + b2 + c1 + c2,

b4, b5, a1 + a2 + c1, b4 + b5 + c2, a2 + c1, a1 + c1, b5 + c2, b4 + c2

Table 4.3: Charge vectors of the 60 BPS particles in the chamber Cfin of the E8

MN theory (in decreasing phase order). One has to add the PCT conjugate anti–
particles.

Again the 60–hyper chamber is not unique; for instance, another 60–mutation
solution is given by the node sequence

c2 c1 b1 b4 b2 a1 a3 a2 c1 c2 b5 b3 b2 b4 c2 c1 a1 a3 a2 b1 b5 b3 c1 c2 a1 a3 a2 b2 b5 b3

c2 c1 b2 b5 b3 b4 b1 a1 c1 c2 a3 a2 a1 b1 c2 c1 a3 a2 b2 b5 b4 b3 c1 c2 a3 a2 b1 b2 b5 b3.
(4.26)

4.2.5. Decoupling and other finite chambers Sending the mass parameter
dual to a charge ebj to infinity, |Z(ebj)| → +∞, all BPS states with non–zero
ebj–charge get infinitely massive and decouple. The surviving states correspond
to representations X of the Q(r, s) quiver with dimXbj = 0, which are stable
representations of the quiver Q(r, s− 1).

Assuming the decoupling limit may be taken while remaining in the domain
Dfin, consistency requires that if we delete from the list of states in Table 4.3 all
those which contain the given bj (j = 1, 2, . . . , 5) with non–zero coefficient, what
remains should be the BPS spectrum of the E7 Minahan–Nemeshanski model
in some (not necessarily canonical) finite chamber. In the same vein, a similar
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truncation of the list in Table 4.2 should produce a finite BPS spectrum of E6

MN. The fact the all the BPS spectra so obtained are related by the Wall Crossing
Formula to the canonical chamber determined above is a highly non–trivial check
on the procedure.

This decoupling procedure applied to E7 produces BPS chambers with 27 hy-
permultiplets, which are easily shown to be equivalent to the canonical 24–hypers
one. In the E8 case we get a chamber of E7 with either 42 or 43 hypers, depending
of which ebj charge we make infinitely heavy.





Appendix A

More details about Ĥ ⊠G models.

A.1. Detailed study of the light category of Â(2, 1)⊠
A2

The quiver and superpotential for this model are presented in figure ??. If we are
interested in the subcategory L, by eqn.(3.57) we can take A1, A2 to be isomor-
phisms and identify nodes pairwise trough them. Then the fields ψ1 and α1 − α2

get massive and may be integrated away. We remain with the quiver and super-
potential

1
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��

α2

** 3

C2

��
ψ3

rr2

B1

GG

α

44 4

B2

GG

ψ2

ll

(A.1)

Weff = ψ2(αC1 − C2α2) + ψ3(α2B1 −B2α).

The following map is an element of EndX

(X1, X2, X3, X4) 7→ (B1C1X1, C1B1X2, B2C2X3, C2B2X4) (A.2)

hence a complex number λ if X is a brick. For λ ̸= 0, B1, B2, C1, C2 are isomor-
phisms, which identify the nodes in pairs. The arrows α − α2 and ψ2 − ψ3 also
get massive and may be integrated away, reducing to representations of the pre-
projective algebra P(A2), i.e. to the homogeneous SU(3)–tube [10]. At λ = 0 we
isolate the non–homogeneous SU(3)–tube containing the matter. It corresponds
to the representations of the quiver (A.1) bounded by the relations

B1C1 = C1B1 = B2C2 = C2B2 = ψ2α = α2ψ2 = ψ3α2 = αψ3 = 0 (A.3)

C1ψ2 − ψ3B2 = ψ2C2 −B1ψ3 = αC1 − C2α2 = α2B1 −B2α = 0. (A.4)

141
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Theorem. The bricks X of the quiver (A.1) bounded by the relations (A.3)(A.4)
are isolated (no moduli). They satisfy

dimX ≤ (1, 1, 1, 1) (A.5)

with equality only for modules in the projective closure of the families of represen-
tations of the gauge vectors. The dimension vectors of bricks coincide with those
for CÂ(4, 0)/(∂[4–cycle]).

Proof. By virtue of the relations in the first line, eqn.(A.3), our algebra A
is a string algebra. In view of the Butler–Ringel theorem [?], the bricks of A
are isolated iff there is no band which is a brick. In any legitimate string, arrows
(direct or inverse) labelled by latin and greek letters alternate. We observe that a
sequence of three arrows (direct of inverse) of the form (latin)(greek)(latin) is not
legitimate unless the greek arrow points in the opposite direction with respect to
the latin ones [same with (latin) ↔ (greek)]. Indeed by (A.4)

C1−→ α−→ B2−→ =
C1−→ B1−→ α2−→ C1−→ α−→ C2←− =

α2−→ C2−→ C2←− C1−→ ψ3←− B2←− =
C1−→ C1←− ψ2←−

and the rhs are illegitimate strings. Thus, for all indecomposables of total di-
mension

∑
i dimXi ≥ 4, the arrows in the string/band should alternate both in

alphabets (latin vs. greek) and orientation (direct vs. inverse). Then, given an ar-
row in the string, the full sequence of its successors is uniquely determined. There
are no bands with dimX1 = 0; if dimX1 ̸= 0 we may cyclically rearrange the band
in such a way that the first node is 1 and the first arrow is latin. If it is C1, the
unique continuation of the string is

1
C1−→ 2

ψ3←− 3
C2−→ 4

α←− 2
B1−→ 1, (A.6)

while, if the first arrow is B1, it is this string segment read from the right. We
cannot close (A.6) to make a band since C1B1 = 0. The string/band may be
continued (either ways)

· · · α2←− 1
C1−→ 2

ψ3←− 3
C2−→ 4

α←− 2
B1−→ 1

ψ2←− 4
B2−→ 3

α2←− 1
C1−→ · · · , (A.7)

and this structure repeats periodically; all legitimate strings are substrings of a k–
fold iteration of the period. Let vi be the basis elements of X1 numbered according
to their order along the string; from (A.7) we see that v1 7→ v1 + v2, vi 7→ vi for
i ≥ 2, is a non–trivial endomorphism, so the corresponding string/band module X
is not a brick. X may be a brick only if dimX1 ≤ 1; the nodes being all equivalent,
dimXi ≤ 1 for all i. Now it is elementary to show that the matter category has a
quiver and superpotential equal to those of D4 [10]. □
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A.2.Mutation checks of the identification §.3.5.

The quiver of A(2, 1)⊠ A3 is:
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Mutating at the nodes 7 4 8 2 5 9 4 6 9 6 7 6 4 8 we obtain:
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The quiver of A(2, 1)⊠ A5 is
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Mutation at 13 10 14 7 11 15 4 8 12 13 2 5 6 4 9 7 9 6 8 7 9 12 7 5 3 10 12 9 10 6
12 10 7 12 7 11 7 12 6 9 13 15 14 11 13 12 8 5 3 15 12 8 5 3 15 11 9 14 6 14 9 6 14
6 14 9 7 14 11 gives:
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The quiver of SU(3)× SU(2) coupled to (3,2)⊕ (1,2) is
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(A.12)

by the sequence of mutations 5 8 3 2 4 8 7 1 6 8 4 5 2 it becomes the quiver
A(3, 1)⊠ A2.

A.3. The BPS spectrum of the Ĥ ⊠G models

The aim of this appendix is to give a proof of the

Main Claim. All Ĥ⊠Gmodels have a finite chamber Cfin at strong G coupling
consisting only of hypers. Moreover, in such a chamber, the cone of particles of
the theory has the structure

Cfin ∩ Γ+ =

rk(Ĥ)⊕
i=1

∆+(G), (A.13)

and therefore it consists of 1
2
(rk(Ĥ)× rk(G)× h(G)) hypermultiplets.

First we need to fix the notation. We collect in figure A.1 our conventions
about the labelings of the nodes and orientations of the affine quivers.

Remark: Let a↘ denote the sequence of nodes of Ĥ

a↘ ≡
{
1 , 2 , . . . , rk(Ĥ)− 2 , rk(Ĥ)− 1 , rk(Ĥ)

}
.

The corresponding sequence of mutations

µa↘(Ĥ) ≡
∏
a↘

µa = µ1 ◦ µ2 ◦ · · · ◦ µrk(Ĥ)−2 ◦ µrk(Ĥ)−1 ◦ µrk(Ĥ) (A.19)

is a sequence of mutations on sinks that satisfies properties i), ii), iii). If we
interpret them as right mutations, we obtain the minimal BPS chamber of the
models associated to the affine quivers.

Label the nodes of the Ĥ ⊠G quiver, as

(i, a), i = 1, ..., rk(Ĥ), a = 1, ..., rk(G). (A.20)
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A(p, q) :

2 // 3 // . . . // p
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<<
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(A.14)
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Ê7 :

7
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(A.17)

Ê8 :

8

0 // 1 // 2 // 3 // 4 // 5

OO

// 6 // 7

(A.18)

Figure A.1: Our conventions on the nodes of the affine quivers.
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Let

qk ≡ {(k, a) | a = 1, ..., rk(G)}, vj ≡ {(i, j) | i = 1, ..., rk(Ĥ)}. (A.21)

We have
(Ĥ ⊠G)

∣∣
qk

= G and (Ĥ ⊠G)
∣∣
vj
= Ĥ. (A.22)

Lemma 1. Let
←→
G be the alternating orientation of the Dynkin quiver of type

G such that the first node is a source, all odd nodes are sources, and all even nodes

are sinks — see figure A.2. All quivers Ĥ ⊠G are mutation equivalent to Ĥ ⊠←→G .

Proof. The proof is organized as follows: First we are going to consider the
quivers of type An, then the quivers of type Dn and finally the exceptionals.

Let G = An. The orientation for the An quivers that we have used elsewhere
is simply (i) → (i + 1): When we will speak about the “An quiver” or simply
“An” we will always mean the An quiver with this orientation. Let mn denote the
following sequence of elementary mutations of the An quiver:

mk ≡ µk ◦ µk−1 ◦ · · · ◦ µ2 ◦ µ1. (A.24)

Notice that mn = idAn . The sequences of mutations

m2 ◦m4 ◦ · · · ◦m2(k−2) ◦m2(k−1) ◦m2k for n = 2k + 1

m2 ◦m4 ◦ · · · ◦m2(k−2) ◦m2(k−1) for n = 2k
(A.25)

are sequences of mutations mappingAn to
←→
A n involving only mutations on sources.

By construction of the ⊠ operation on quivers, the sequence of mutations

µa↘(1) ≡
∏

(a,1)↘

µ(a,1) = µ(1,1)◦µ(2,1)◦· · ·◦µ(rk(Ĥ)−2,1)◦µ(rk(Ĥ)−1,1)◦µ(rk(Ĥ),1) (A.26)

is a mutation on sources for the dynkin subquivers of type An, because by definition
each (i, 1) is a source of the Dynkin on the nodes qi, and a mutation on sinks for

the affine subquiver of type Ĥ on the nodes v1. Analogously, one can define

µa↘(i) ≡
∏

(a,i)↘

µ(a,i) = µ(1,i) ◦µ(2,i) ◦ · · · ◦µ(rk(Ĥ)−2,i) ◦µ(rk(Ĥ)−1,i) ◦µ(rk(Ĥ),i), (A.27)

and
m(Ĥ)k ≡ µa↘(k) ◦ µa↘(k − 1) ◦ · · · ◦ µa↘(2) ◦ µa↘(1). (A.28)

Then, by construction of the ⊠ operation on quivers, m(Ĥ)k involves only muta-
tions on sources with respect to the subquivers on the nodes qi, and on sinks with
respect to subquivers on the nodes vj. Notice that

m(Ĥ)n = idĤ⊠An
(A.29)
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←→
A 2k+1 : 1 // 2 3 //oo . . . 2k − 1oo // 2k 2k + 1oo

←→
A 2k : 1 // 2 3 //oo . . . 2k − 1oo // 2k

←→
D 2k+1 :

2k + 1

1 // 2 3 //oo . . . 2k − 1oo

OO

// 2k

←→
D 2k :

2k

��

1 // 2 3 //oo . . . 2k − 3oo // 2k − 2 2k − 1oo

←→
E 6 :

6

1 // 2 3 //oo

OO

4 5oo

←→
E 7 :

7

��

1 // 2 3 //oo 4 5oo // 6

←→
E 8 :

8

1 // 2 3 //oo 4 5oo //

OO

6 7oo

(A.23)

Figure A.2: Our conventions about the alternating orientations of the Dynkin
subquivers.
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Our lemma for the case G = An is equivalent to the following

Claim. The sequences of mutations

m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1) ◦m(Ĥ)2k for n = 2k + 1

m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1) for n = 2k
(A.30)

maps the quiver Ĥ ⊠ An into the quiver Ĥ ⊠←→A n.

We will proceed by induction on n. For n = 1, 2 there is nothing to prove: Let
us now show that (n − 1) ⇒ (n). The case n = 2k is trivial. One considers the

subquiver Ĥ ⊠ A2k−1, on the nodes{
(i, a) | i = 1, . . . , rk(Ĥ) , a = 1, . . . , 2k − 1

}
.

By inductive hypothesis the sequence of mutations

m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1) (A.31)

maps this subquiver into Ĥ ⊠←→A 2k−1. But then each subquiver on the nodes qi
has the form

1 // 2 3 //oo . . . 2k − 1oo // 2k . (A.32)

And we are done. If n = 2k + 1, analogously, consider the full Ĥ ⊠A2k subquiver
of Ĥ ⊠ A2k+1 on the nodes{

(i, a) | i = 1, . . . , rk(Ĥ) , a = 1, . . . , 2k
}
.

By inductive hypothesis the sequence of mutations

m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1) (A.33)

maps this subquiver into Ĥ ⊠←→A 2k. Therefore each subquiver on the nodes qi,
now, looks like:

1 // 2 3 //oo . . . 2k − 1oo // 2k // 2k + 1 (A.34)

Clearly, if we apply to the mutated quiver the sequence of mutations

µa↗(2k + 1) ≡
∏

(a,2k+1)↗

µ(a,2k+1)

= µ(rk(Ĥ),2k+1) ◦ µ(rk(Ĥ)−1,2k+1) ◦ µ(rk(Ĥ)−2,2k+1) ◦ · · · ◦ µ(2,2k+1) ◦ µ(1,2k+1),

(A.35)
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we obtain the quiver of Ĥ ⊠←→A 2k+1. Notice that, by construction, the sequence
µa↗(2k + 1) is on sources with respect to the vj subquivers and on sinks with
respect to the qi subquivers. Our claim follows if we are able to show that

µa↗(2k + 1) ◦m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1)

= m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1) ◦m(Ĥ)2k.
(A.36)

This equality follows easily from the fact that

µa↘(2k + 1) ◦m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1) ◦m(Ĥ)2k

= m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1) ◦ µa↘(2k + 1) ◦m(Ĥ)2k

= m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1) ◦m(Ĥ)2k+1

= m(Ĥ)2 ◦m(Ĥ)4 ◦ · · · ◦m(Ĥ)2(k−2) ◦m(Ĥ)2(k−1).
(A.37)

Combined with

µa↗(2k + 1) ◦ µa↘(2k + 1) = idĤ⊠A2k+1
(A.38)

that, in turn, follows by our definitions using the fact that µi ◦ µi = idQ for
elementary mutations.

For G = Dn, the proof is similar. Consider the Ĥ ⊠ An−3 subquiver on the
nodes {

(i, a) | a = 1, ..., n− 3, i = 1, .., rk(Ĥ)
}
. (A.39)

By our result about G = An, we know these are mutation equivalent to Ĥ⊠←→A n−3,
and by locality of mutations, the mutations sequences are the same as the one we
have obtained previously. If n = 2ℓ+ 1, then one has just to use

m(Ĥ)2 ◦ · · · ◦m(Ĥ)2(ℓ−1) (A.40)

If, instead, n = 2ℓ, then one needs to apply the mutation sequence

µa↗(n) ◦ µa↗(n− 1) ◦m(Ĥ)2 ◦ · · · ◦m(Ĥ)2(ℓ−2). (A.41)

For E6, E7, and E8 we have, instead, that the sequences are

E6 : µa↘(6) ◦m(Ĥ)2 ◦m(Ĥ)4

E7 : µa↘(7) ◦m(Ĥ)2 ◦m(Ĥ)4

E8 : µa↘(8) ◦m(Ĥ)2 ◦m(Ĥ)4 ◦m(Ĥ)6.

(A.42)

□
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Lemma 2. All Ĥ ⊠G models admit Coxeter-factorized sequences of type(
G, . . . , G︸ ︷︷ ︸
rk(Ĥ) times

)
. (A.43)

Proof. Take the representative Ĥ ⊠ ←→G in the mutation class. With the
notations of the previous proof, the mutation sequences

CoxĤ,G ≡
∏
j even

µa↘(j) ◦
∏
k odd

µa↘(k) for G = An, E6, E7, E8 (A.44)

CoxĤ,D2ℓ+1
≡ µa↘(2ℓ+ 1) ◦

∏
j even

µa↘(j) ◦
∏

k odd≤2ℓ−1

µa↘(k) (A.45)

CoxĤ,D2ℓ
≡

∏
j even≤2ℓ−2

µa↘(j) ◦ µa↘(2ℓ) ◦
∏
k odd

µa↘(k) (A.46)

acts as the identity on the quiver Ĥ ⊠←→G , and as the Coxeter element of G on the
charges of each qi subquiver for the lattice Γ. Indeed, the sequences are source-sink
factorized: Each mutation in the sequences is on a node that is a sink with respect
to the full subquivers on the nodes vj, and a source on the subquivers on the nodes

qi. The full quantum monodromy of the (Ĥ, G) model is

M(q) = Ad(ĈoxĤ,G)
h(G). (A.47)

where the hat means that we are considering the corresponding quantum muta-
tions.

□



Appendix B

More details about Dp(G) systems.

B.1. A further check of (3.91)

Since the theory Dp(G) is N = 2 superconformal, its quantum monodromy M(q)
has finite order r [13], and all chiral primary operators have dimensions in N/ℓ.
The order ℓ is a nice invariant which is quite useful to distinguish SCFT models.

As we have discussed in the main body of the text, repeating the scaling argu-
ments at the end of §. 3.3.1, we see that the matter theory Dp(G), at the formal
level, is engineered by the local Calabi–Yau geometry

W ≡ epZ +WG(X1, X2) +X2
3 = 0 (B.1)

endowed with the standard holomorphic 3–form

Ω = P.R.
dZ ∧ dX1 ∧ dX2 ∧ dX3

W
(B.2)

(P.R. stands for ‘Poincaré Residue’). At a conformal point f(X1, X2, X3) ≡
WG(X1, X2) +X2

3 is quasi–homogeneous, f(λqiXi) = λ f(Xi) for all λ ∈ C. Thus

Xi → eiαqi Xi, Z → Z + α/p, (B.3)

is a holomorphic symmetry of the hypersurface (B.1) under which

Ω→ exp
(
iα(q1 + q2 + q3 − 1)

)
Ω, (B.4)

so that the dimension of Xi is qi/(
∑

j qj − 1) ≡ qi h(G) ∈ Z while that of eZ is
h(G)/p. The order of the quantum monodromy M(q) is then

order M(q) ≡ ℓ =
p

gcd{p, h(G)}
. (B.5)

151
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B.2. The proofs of eqns.(3.221)–(3.223)

We present in this appendix a proof which illustrate well the idea that, for the
Dp(G) SCFT’s, the value of all physical quantities have deep Lie–theoretical mean-
ing. Eqn.(3.221) is elementary:

c(p;G) =
1

12
r(h+ 1)p+O(1) (B.6)

and dimG = r(h+ 1) is a well–known identity in Lie theory due to Coxeter.

To get eqn.(3.222) we consider

u(p;G) =
1

4

∑
j∈E(G)

p−1∑
s=1

[
j − h s/p

]
+

(B.7)

For p ≫ 1 the sum over s may be evaluated by the Euler–McLaurin summation
formula; setting x = s/p, the term of order p in u(p;G) is then

p

4

∑
j∈E(G)

∫ 1

0

dx [j − hx]+ =
p

8h

∑
j∈E(G)

j2 (B.8)

where

∑
j∈E(G)

j2 =



N(N − 1)(2N − 1)/6 SU(N)

n(4n− 5)(n− 1)/3 SO(2n)

276 E6

735 E7

2360 E8

(B.9)

Therefore

a(p,G) =
1

48

6

h

∑
j∈E(G)

j2 + r(2h+ 5)

 p+O(1) (B.10)

and eqn.(3.222) is equivalent to the peculiar Lie theoretical identity

4 dimG =
6

h

∑
j∈E(G)

j2 + r(2h+ 5). (B.11)

However unlikely it looks, this identity is actually true: indeed, plugging in eqn.(B.9),
the rhs turns out

4(N2 − 1) for SU(N) 4n(2n− 1) for SO(2n)

312 = 4× 78 for E6 532 = 4× 133 for E7

992 = 4× 248 for E8

(B.12)
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The identity (B.11) is more conveniently written as1

6
∑

j∈E(G)

j2 = 2h2r − hr. (B.13)

To show eqn.(3.223) we consider first the case h | p. Let p = hℓ; then

c− a =
1

48

2h2r − hr − 6
∑

j∈E(G)

j2

 ℓ+
1

48

6
∑

j∈E(G)

j − 2hr + 2r

 . (B.14)

The term linear in ℓ vanishes by the identity (B.13). The equality in Eqn.(3.223)
for h | p then follows from the identity

∑
j∈E(G) j = rh/2 which, in view of the

discussion after eqn.(3.182), is just 2d PCT.

Returning to the general case, we infer that, as a function of p, 24(c − a) is
given by a degree–zero polynomial, #∆+(G)+r, plus a small Number–Theoretical
modulation depending on the divisibility properties of p and h; the modulation
has two sources, from f(p;G) and u(p;G). For p ≥ h, u(p;G) is simply

u(p;G) =
1

8p

∑
j∈E(G)

(
j2p2

h
− jp

)
+

h

8p

∑
j∈E(G)

{
jp

h

}(
1−

{
jp

h

})
, (B.15)

where {x} denotes the fractional part. Therefore (for p ≥ h)

24(c− a) =
[
polynomial in p (of degree zero)

]
−

− 3h

p

∑
j∈E(G)

{
jp

h

}(
1−

{
jp

h

})
− 1

2

(
r − f(p;G)

) (B.16)

where the second line corresponds to the modulation. Both terms in the modula-
tion are non–positive, and vanish if and only if h | p. This gives eqn.(3.223), in
facts the more precise result (p ≥ h)

24(c− a) = #∆+(G) + r −

(
3h

p

∑
j∈E(G)

{
jp

h

}(
1−

{
jp

h

})
+

1

2

(
r − f(p;G)

))
.

(B.17)

1 We thank the referee for informing us that this identity was proven before, see [?].



154 Chapter B. More details about Dp(G) systems.

B.3.Mutation sequences for the MN theories

The quiver for the model D2(SO(10)) is simply

1

2

3

4

5

6

7

8

9

10

//
��

ZZ
//

//
��

ZZ
//

�� ��
//

��

GG

//
ZZRR

(B.18)

By performing the sequence of mutations

9 4 3 4 10 3 10 8 3 10 5 8 1 2 5

We obtain the element of the mutation class of the quiver of D2(SO(10)) in figure
3.4.

The quiver for D2(E6) is

1 2 3 4 5

6

7 8 9 10 11

12

//
��

//

ZZ

��
//

''

ZZ

����
//

ZZ

��

WWWW
// // //

99

//

(B.19)

The following sequence of mutations

9 12 4 9 10 12 6 12 3 11 1 9 10 9 12 10 9 12 6 3 12 9 6 5 6 9 10 12 1 7
3 1 7 8 4 8 1 2 1 8 1 4 8 2 8 4 3 5 7 4 7 5 7 1 7 11 7 4 1 8

gives the quiver in figure 3.5.



Appendix C

Technicalities about Arnold mod-
els

C.1. The E7 Y –system from the chamber (2.43)

We illustrate the kind of Y –system one gets from Weyl–factorized sequence using
the baby example of §. 2.3.7. There we presented a Weyl–factorized sequence of
nodes for the family of subquivers (2.38). Written in terms of the BPS data in the
corresponding chamber, the classical monodromy is equal to the Y –seed mutation
(for the opposite quiver) associated to this Weyl–factorized sequence. This Y –seed
mutation, as generated by the Keller mutation applet [?] is (we set Yi,a,s ≡ Yi,a(s))

Y1,1,s+1 =
1 + Y2,3,s
Y2,3,sY0,s

Y2,1,s+1 =
Y1,2,sY1,3,s(1 + Y2,3,s + Y2,3,sY0,s)

1 + Y1,2,s

Y1,2,s+1 =
Y2,1,s(1 + Y1,2,s)Y2,2,sY2,3,sY0,s

(1 + Y2,3,s + Y2,1,s(1 + (1 + Y2,2,s(1 + Y1,2,s))Y2,3,s)(1 + Y2,3,s(1 + Y0,s)))

Y2,2,s+1 =
1 + Y2,3,s + Y2,2,sY2,3,s + Y1,2,sY2,2,sY2,3,s

Y1,2,s + Y1,2,sY2,3,s

Y1,3,s+1 =
1 + Y2,3,s

Y2,1,s + Y2,1,s(1 + Y2,2,s + Y1,2,sY2,2,s)Y2,3,s

Y2,3,s+1 =
Y1,1,sY1,2,s(1 + Y2,1,s + Y2,3,s + Y2,1,s(1 + Y2,2,s + Y1,2,sY2,2,s)Y2,3,s)

1 + Y1,2,s + (1 + Y1,2,s)(1 + (1 + Y1,2,s + Y1,1,sY1,2,s)Y2,2,s)Y2,3,s

Y0,s+1 =
1 + Y2,3,s + Y2,2,sY2,3,s + Y1,2,sY2,2,sY2,3,s

Y1,1,sY1,2,sY2,2,sY2,3,s
.

This Y –system should be equivalent to the usual E7 Y –system, differing only
by a change of variables Yi → Ỹi. In particular, it must have the same minimal
period ℓ as the usual one, namely 5. We have checked this using the strategy of
§. 2.5.1.
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C.2. Periodicity of the Y –systems: the S11 example

Here is our Mathematica program to test the periodicity for S11.

SeedRandom[5]

Clear[i, j, k, Y]

Array[Y, {3, 12}, 0];

Array[X, {1, 12}, 0];

Y[0, 1] = 2 Random[];

Y[0, 2] = 2 Random[];

Y[0, 3] = 2 Random[];

Y[0, 4] = 2 Random[];

Y[0, 5] = 2 Random[];

Y[0, 6] = 2 Random[];

Y[0, 7] = 2 Random[];

Y[0, 8] = 2 Random[];

Y[0, 9] = 2 Random[];

Y[0, 10] = 2 Random[];

Y[0, 11] = 2 Random[];

(*dummy variable to store the initial seed*)

For[k = 1, k < 12, k++,

X[0, k] = Y[0, k]

]

Print["INITIAL SEED="]

For[k = 1, k < 12, k++, Print[{k, Y[0, k]}]]

(*order of the quantum monodromy*)

r = 7;

(*iteration : notice that is based on the 1/2 monodromy so one has to do it twice and at the end implement the nontrivial permutation of the nodes*)

For[i = 1, i < 2 r + 1, i++,

Y[1, 1] = (((Y[0, 3] + ((1 + (1 + Y[0, 1])*Y[0, 2])*Y[0, 3])*

Y[0, 4])*Y[0, 5])*

Y[0, 7] + ((((((1 + Y[0, 1])*Y[0, 2])*Y[0, 3])*Y[0, 4])*

Y[0, 5])*Y[0, 7])*Y[0, 11])/(1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 5] + (1 +

Y[0, 1] + (1 + Y[0, 1] + Y[0, 1]*Y[0, 3] +

Y[0, 1]*Y[0, 3]*Y[0, 4])*Y[0, 5])*Y[0, 7]);

Y[1, 2] = (1 +

Y[0, 4])/(((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4])*Y[0, 11]);

Y[1, 3] = (1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 5] + (1 + Y[0, 1] + (1 + Y[0, 1])*Y[0, 5])*

Y[0, 7])/(((Y[0, 1]*Y[0, 3] + Y[0, 1]*Y[0, 3]*Y[0, 4])*Y[0, 5])*

Y[0, 7]);

Y[1, 4] = ((((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4])*

Y[0, 5] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2] +

Y[0, 1]*Y[0, 2]*Y[0, 3])*Y[0, 4] +

Y[0, 1]*Y[0, 2]*Y[0, 3]*Y[0, 4]^2)*Y[0, 5])*Y[0, 7])*

Y[0, 8] + ((((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4])*

Y[0, 5] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2] +

Y[0, 1]*Y[0, 2]*Y[0, 3])*Y[0, 4] +

Y[0, 1]*Y[0, 2]*Y[0, 3]*Y[0, 4]^2)*Y[0, 5])*Y[0, 7])*

Y[0, 8])*

Y[0, 10] + ((((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4])*

Y[0, 5] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2] +

Y[0, 1]*Y[0, 2]*Y[0, 3])*Y[0, 4] +

Y[0, 1]*Y[0, 2]*Y[0, 3]*Y[0, 4]^2)*Y[0, 5])*Y[0, 7])*

Y[0, 8] + ((((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4])*

Y[0, 5] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (((1 + Y[0, 1])*Y[0, 2] +

Y[0, 1]*Y[0, 2]*Y[0, 3])*Y[0, 4] +

Y[0, 1]*Y[0, 2]*Y[0, 3]*Y[0, 4]^2)*Y[0, 5])*
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Y[0, 7])*

Y[0, 8] + ((((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + ((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + ((1 + Y[0, 1])*Y[0, 2])*Y[0, 4]^2)*

Y[0, 5] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + ((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (((1 + Y[0, 1])*Y[0, 2] +

Y[0, 1]*Y[0, 2]*Y[0, 3])*

Y[0, 4] + ((1 + Y[0, 1])*Y[0, 2] +

2*Y[0, 1]*Y[0, 2]*Y[0, 3])*Y[0, 4]^2 +

Y[0, 1]*Y[0, 2]*Y[0, 3]*Y[0, 4]^3)*Y[0, 5])*

Y[0, 7])*Y[0, 8])*Y[0, 9])*Y[0, 10])*

Y[0, 11])/(1 + (2 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (1 + (2 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*Y[0, 4]^2)*

Y[0, 5] + (Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2)*

Y[0, 5] + (Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2)*Y[0, 5])*Y[0, 7])*

Y[0, 8] + ((Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2)*

Y[0, 5] + (Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (Y[0, 4] + (1 + (1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2)*Y[0, 5])*Y[0, 7])*Y[0, 8])*

Y[0, 10] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + ((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4] + ((1 + Y[0, 1])*Y[0, 2])*Y[0, 4]^2)*

Y[0, 5] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4]^2)*

Y[0, 5] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4]^2)*

Y[0, 5])*Y[0, 7])*

Y[0, 8] + ((((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4]^2)*

Y[0, 5] + (((1 + Y[0, 1])*Y[0, 2])*

Y[0, 4]^2 + (((1 + Y[0, 1])*Y[0, 2])*Y[0, 4]^2)*

Y[0, 5])*Y[0, 7])*Y[0, 8])*Y[0, 10])*Y[0, 11]);

Y[1, 5] = ((Y[0, 1]*Y[0, 3] + Y[0, 1]*Y[0, 3]*Y[0, 4])*

Y[0, 7] + ((Y[0, 1]*Y[0, 3] + Y[0, 1]*Y[0, 3]*Y[0, 4])*Y[0, 7])*

Y[0, 10] + ((Y[0, 1]*Y[0, 3] + Y[0, 1]*Y[0, 3]*Y[0, 4])*

Y[0, 7] + ((Y[0, 1]*Y[0, 3] + Y[0, 1]*Y[0, 3]*Y[0, 4])*

Y[0, 7] + ((Y[0, 1]*Y[0, 3] + 2*Y[0, 1]*Y[0, 3]*Y[0, 4] +

Y[0, 1]*Y[0, 3]*

Y[0, 4]^2 + (Y[0, 1]*Y[0, 3]*Y[0, 4] +

Y[0, 1]*Y[0, 3]*

Y[0, 4]^2 + (Y[0, 1]*Y[0, 3]*Y[0, 4] +

Y[0, 1]*Y[0, 3]*Y[0, 4]^2)*Y[0, 5])*Y[0, 6])*

Y[0, 7])*Y[0, 9])*Y[0, 10])*Y[0, 11])/(1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 5] + (1 +

Y[0, 1] + (1 + Y[0, 1] + Y[0, 1]*Y[0, 3] +

Y[0, 1]*Y[0, 3]*Y[0, 4])*Y[0, 5])*

Y[0, 7] + (1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 5] + (1 +

Y[0, 1] + (1 + Y[0, 1] + Y[0, 1]*Y[0, 3] +

Y[0, 1]*Y[0, 3]*Y[0, 4])*Y[0, 5])*Y[0, 7])*

Y[0, 10] + (1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 5] + (1 +

Y[0, 1] + (1 + Y[0, 1] + Y[0, 1]*Y[0, 3] +

Y[0, 1]*Y[0, 3]*Y[0, 4])*Y[0, 5])*

Y[0, 7] + (1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 5] + (1 +

Y[0, 1] + (1 + Y[0, 1] + Y[0, 1]*Y[0, 3] +

Y[0, 1]*Y[0, 3]*Y[0, 4])*Y[0, 5])*

Y[0, 7] + (1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 4] + (1 + Y[0, 1] + (1 + Y[0, 1])*Y[0, 4])*

Y[0, 5] + (1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 4] + (1 + Y[0, 1] +

Y[0, 1]*

Y[0, 3] + (1 + Y[0, 1] + 2*Y[0, 1]*Y[0, 3])*
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Y[0, 4] + Y[0, 1]*Y[0, 3]*Y[0, 4]^2)*Y[0, 5])*

Y[0, 7])*Y[0, 9])*Y[0, 10])*Y[0, 11]);

Y[1, 6] = (1 +

Y[0, 10] + (1 + (1 + (1 + Y[0, 4])*Y[0, 9])*Y[0, 10])*

Y[0, 11])/(((((Y[0, 4] + Y[0, 4]*Y[0, 5])*Y[0, 6])*Y[0, 9])*

Y[0, 10])*Y[0, 11]);

Y[1, 7] = ((Y[0, 1]*Y[0, 3] + Y[0, 1]*Y[0, 3]*Y[0, 4])*

Y[0, 5] + (Y[0, 1]*Y[0, 3]*Y[0, 4]*Y[0, 5] +

Y[0, 1]*Y[0, 3]*Y[0, 4]*Y[0, 5]*Y[0, 7])*

Y[0, 8] + ((Y[0, 1]*Y[0, 3]*Y[0, 4]*Y[0, 5] +

Y[0, 1]*Y[0, 3]*Y[0, 4]*Y[0, 5]*Y[0, 7])*Y[0, 8])*

Y[0, 10])/(1 +

Y[0, 1] + (1 + Y[0, 1])*

Y[0, 5] + (1 +

Y[0, 1] + (1 + Y[0, 1] + Y[0, 1]*Y[0, 3] +

Y[0, 1]*Y[0, 3]*Y[0, 4])*Y[0, 5])*Y[0, 7]);

Y[1, 8] = (1 +

Y[0, 4])/((Y[0, 4] + Y[0, 4]*Y[0, 7])*

Y[0, 8] + ((Y[0, 4] + Y[0, 4]*Y[0, 7])*Y[0, 8])*Y[0, 10]);

Y[1, 9] = ((Y[0, 4] + Y[0, 4]*Y[0, 5])*

Y[0, 6] + ((Y[0, 4] + Y[0, 4]*Y[0, 5])*Y[0, 6])*

Y[0, 10] + ((Y[0, 4] + Y[0, 4]*Y[0, 5])*

Y[0, 6] + ((Y[0, 4] + Y[0, 4]*Y[0, 5])*Y[0, 6])*Y[0, 10])*

Y[0, 11])/(1 +

Y[0, 4] + (1 + Y[0, 4])*

Y[0, 10] + (1 +

Y[0, 4] + (1 +

Y[0, 4] + (1 + 2*Y[0, 4] +

Y[0, 4]^2 + (Y[0, 4] +

Y[0, 4]^2 + (Y[0, 4] + Y[0, 4]^2)*Y[0, 5])*Y[0, 6])*

Y[0, 9])*Y[0, 10])*Y[0, 11]);

Y[1, 10] = (((1 + Y[0, 4] + (Y[0, 4] + Y[0, 4]*Y[0, 7])*Y[0, 8])*

Y[0, 9] + (((Y[0, 4] + Y[0, 4]*Y[0, 7])*Y[0, 8])*Y[0, 9])*

Y[0, 10])*Y[0, 11])/(1 +

Y[0, 10] + (1 + (1 + (1 + Y[0, 4])*Y[0, 9])*Y[0, 10])*Y[0, 11]);

Y[1, 11] = (((1 + (1 + (1 + Y[0, 1])*Y[0, 2])*Y[0, 4])*Y[0, 9])*

Y[0, 10] + (((((1 + Y[0, 1])*Y[0, 2])*Y[0, 4])*Y[0, 9])*

Y[0, 10])*Y[0, 11])/(1 +

Y[0, 10] + (1 + (1 + (1 + Y[0, 4])*Y[0, 9])*Y[0, 10])*Y[0, 11]);

Y[2, 1] = ((Y[1, 3] + ((1 + (1 + Y[1, 1])*Y[1, 2])*Y[1, 3])*Y[1, 4])*

Y[1, 7] + (((((1 + Y[1, 1])*Y[1, 2])*Y[1, 3])*Y[1, 4])*Y[1, 7])*

Y[1, 11])/(1 +

Y[1, 1] + (1 + Y[1, 1] + Y[1, 1]*Y[1, 3] +

Y[1, 1]*Y[1, 3]*Y[1, 4])*Y[1, 7]);

Y[2, 2] = (1 +

Y[1, 4])/(((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4] + (((1 + Y[1, 1])*Y[1, 2])*Y[1, 4])*Y[1, 11]);

Y[2, 3] = (1 +

Y[1, 1] + (1 + Y[1, 1])*

Y[1, 7])/((Y[1, 1]*Y[1, 3] + Y[1, 1]*Y[1, 3]*Y[1, 4])*Y[1, 7]);

Y[2, 4] = (((((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^2)*

Y[1, 5] + ((((1 + Y[1, 1])*Y[1, 2] +

Y[1, 1]*Y[1, 2]*Y[1, 3])*Y[1, 4]^2 +

Y[1, 1]*Y[1, 2]*Y[1, 3]*Y[1, 4]^3)*Y[1, 5])*Y[1, 7])*

Y[1, 8] + (((((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^2)*

Y[1, 5] + ((((1 + Y[1, 1])*Y[1, 2] +

Y[1, 1]*Y[1, 2]*Y[1, 3])*Y[1, 4]^2 +

Y[1, 1]*Y[1, 2]*Y[1, 3]*Y[1, 4]^3)*Y[1, 5])*Y[1, 7])*

Y[1, 8])*

Y[1, 10] + (((((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^2)*

Y[1, 5] + ((((1 + Y[1, 1])*Y[1, 2] +

Y[1, 1]*Y[1, 2]*Y[1, 3])*Y[1, 4]^2 +

Y[1, 1]*Y[1, 2]*Y[1, 3]*Y[1, 4]^3)*Y[1, 5])*Y[1, 7])*

Y[1, 8] + (((((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^2)*

Y[1, 5] + ((((1 + Y[1, 1])*Y[1, 2] +

Y[1, 1]*Y[1, 2]*Y[1, 3])*Y[1, 4]^2 +

Y[1, 1]*Y[1, 2]*Y[1, 3]*Y[1, 4]^3)*Y[1, 5])*

Y[1, 7])*

Y[1, 8] + (((((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + ((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^3)*

Y[1, 5] + ((((1 + Y[1, 1])*Y[1, 2] +

Y[1, 1]*Y[1, 2]*Y[1, 3])*

Y[1, 4]^2 + ((1 + Y[1, 1])*Y[1, 2] +

2*Y[1, 1]*Y[1, 2]*Y[1, 3])*Y[1, 4]^3 +

Y[1, 1]*Y[1, 2]*Y[1, 3]*Y[1, 4]^4)*Y[1, 5])*

Y[1, 7])*Y[1, 8])*Y[1, 9])*Y[1, 10])*

Y[1, 11])/(1 + (3 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4] + (3 + (2 + 2*Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (Y[1, 4] + (2 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^3)*
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Y[1, 5] + (Y[1, 4] + (2 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3)*

Y[1, 5] + (Y[1, 4] + (2 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3)*Y[1, 5])*Y[1, 7])*

Y[1, 8] + ((Y[1, 4] + (2 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3)*

Y[1, 5] + (Y[1, 4] + (2 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (Y[1, 4]^2 + (1 + (1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3)*Y[1, 5])*Y[1, 7])*Y[1, 8])*

Y[1, 10] + (((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4] + ((2 + 2*Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + ((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + ((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^3)*

Y[1, 5] + (((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + ((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^3)*

Y[1, 5] + (((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + ((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^3)*

Y[1, 5])*Y[1, 7])*

Y[1, 8] + ((((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + ((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^3)*

Y[1, 5] + (((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^2 + ((1 + Y[1, 1])*Y[1, 2])*

Y[1, 4]^3 + (((1 + Y[1, 1])*Y[1, 2])*Y[1, 4]^3)*

Y[1, 5])*Y[1, 7])*Y[1, 8])*Y[1, 10])*Y[1, 11]);

Y[2, 5] = (1 + Y[1, 4])/(Y[1, 4]*Y[1, 5]);

Y[2, 6] = (((((1 + Y[1, 4] + Y[1, 4]*Y[1, 5])*Y[1, 6])*Y[1, 9])*

Y[1, 10])*Y[1, 11])/(1 +

Y[1, 10] + (1 + (1 + (1 + Y[1, 4])*Y[1, 9])*Y[1, 10])*Y[1, 11]);

Y[2, 7] = (Y[1, 1]*Y[1, 3] +

Y[1, 1]*Y[1, 3]*

Y[1, 4] + (Y[1, 1]*Y[1, 3]*Y[1, 4] +

Y[1, 1]*Y[1, 3]*Y[1, 4]*Y[1, 7])*

Y[1, 8] + ((Y[1, 1]*Y[1, 3]*Y[1, 4] +

Y[1, 1]*Y[1, 3]*Y[1, 4]*Y[1, 7])*Y[1, 8])*Y[1, 10])/(1 +

Y[1, 1] + (1 + Y[1, 1] + Y[1, 1]*Y[1, 3] +

Y[1, 1]*Y[1, 3]*Y[1, 4])*Y[1, 7]);

Y[2, 8] = (1 +

Y[1, 4])/((Y[1, 4] + Y[1, 4]*Y[1, 7])*

Y[1, 8] + ((Y[1, 4] + Y[1, 4]*Y[1, 7])*Y[1, 8])*Y[1, 10]);

Y[2, 9] = (1 +

Y[1, 10] + (1 + Y[1, 10])*

Y[1, 11])/((((1 + Y[1, 4])*Y[1, 9])*Y[1, 10])*Y[1, 11]);

Y[2, 10] = (((1 + Y[1, 4] + (Y[1, 4] + Y[1, 4]*Y[1, 7])*Y[1, 8])*

Y[1, 9] + (((Y[1, 4] + Y[1, 4]*Y[1, 7])*Y[1, 8])*Y[1, 9])*

Y[1, 10])*Y[1, 11])/(1 +

Y[1, 10] + (1 + (1 + (1 + Y[1, 4])*Y[1, 9])*Y[1, 10])*Y[1, 11]);

Y[2, 11] = (((1 + (1 + (1 + Y[1, 1])*Y[1, 2])*Y[1, 4])*Y[1, 9])*

Y[1, 10] + (((((1 + Y[1, 1])*Y[1, 2])*Y[1, 4])*Y[1, 9])*

Y[1, 10])*Y[1, 11])/(1 +

Y[1, 10] + (1 + (1 + (1 + Y[1, 4])*Y[1, 9])*Y[1, 10])*Y[1, 11]);

Y[0, 1] = Y[2, 11];

Y[0, 2] = Y[2, 2];

Y[0, 3] = Y[2, 9];

Y[0, 4] = Y[2, 4];

Y[0, 5] = Y[2, 6];

Y[0, 6] = Y[2, 5];

Y[0, 7] = Y[2, 10];

Y[0, 8] = Y[2, 8];

Y[0, 9] = Y[2, 3];

Y[0, 10] = Y[2, 7];

Y[0, 11] = Y[2, 1];

]

Print["RESULT OF ITERATION="]

For[j = 1, j < 12, j++, Print[{j, Y[0, j]}]]

Print["DIFFERENCE="]

For[j = 1, j < 12, j++, Print[{j, Chop[Y[0, j] - X[0, j]]}]]
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QZ11 :

3, 1 // 3, 2

��

3, 3oo

2, 1

OO

��

2, 2oo // 2, 3

OO

��

2, 4oo

1, 1 // 1, 2

OO

1, 3oo // 1, 4

OO

QZ12 :

3, 1 // 3, 2

��

3, 3oo

2, 1

OO

��

2, 2oo // 2, 3

OO

��

2, 4oo

1, 1 // 1, 2

OO

1, 3oo // 1, 4

OO

0oo

QZ13 :

3, 1

2, 1

1, 1

3, 2

2, 2

1, 2

3, 3

2, 3

1, 3

2, 4

1, 4

2, 5

1, 5

OO
//

��

oo

//

��

oo

OO
//

oo

OO

��

oo

//

OO
//

oo
��

Figure C.1: Quivers for the Z familiy.

C.3. Details on the Weyl–factorized sequences

In this appendix we present the details of the computations summarized in table
2.4. For each model we specify the quiver used and the associated Weyl–factorized
sequences, with their types (ie. the element of the Weyl group they generate on
the corresp. subquiver) and involutive permutations. For the quivers arising from
one–point extensions of known algebras — Z12, Q11, S12, W13 — we report only
the sequences associated with the quivers in figures C.1, C.2, C.4: obtaining the
sequences corresponding to these quivers mutated at 0 is straightforward.
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Z11 (3,2),(2,1),(2,3),(1,2),(1,4),(3,1),(2,2),(2,4),(1,1),(1,3),(3,3),(2,1),(2,3),
(1,2),(1,4),(3,2),(2,2),(2,4),(1,1),(1,3),(3,1),(3,3),(2,1),(2,3),(1,2),(1,4)

Type: (A4, s4s2(cA4)
2 : A4, s3s1(cA4)

2 : A3, (cA3)
2)

PΛ < (γ3,1, γ3,3), (γa,4, γa,1), (γa,2, γa,3), a = 1, 2 >

(3,1),(3,3),(1,1),(1,3),(2,2),(2,4),(3,2),(1,2),(1,4),(2,1),(2,3),(3,1),(3,3),
(1,1),(1,3),(2,2),(2,4),(3,2),(1,2),(2,1),(2,3)

Type: (A3, (cA3)
2 : A3, (cA3)

2 : A3, (cA3)
2 : A2, u)

PΛ < (γ1,4, γ2,4), (γ1,a, γ3,a), a = 1, 2, 3 >

Z12 (3,2),(2,1),(2,3),(1,2),(1,4),(3,1),(2,2),(1,1),(1,3),0,(2,1),
(1,2),(1,4),(1,1),(1,3),(1,2),(2,4),(2,3),(2,2),(3,3),(3,2),0,
(1,4),(2,4),(3,1),(3,3),(2,1),(2,3),(1,1),(1,3),0

Type: (A5, (cA5)
3 : A4, s3s1(cA4)

2 : A3, (cA3)
2)

PΛ < (γ1,1, γ0), (γ1,2, γ1,4), (γ2,1, γ2,4), (γ2,2, γ2,3), (γ3,1, γ3,3) >

(3,1),(1,1),(2,2),(3,3),(1,3),(2,4),0,(2,1),(3,2),(1,2),(2,3),
(1,4),(3,1),(1,1),(2,2),(3,3),(1,3),(2,4),(2,1),(3,2),(1,2),(2,3)

Type: (A3, (cA3)
2 : A3, (cA3)

2 : A3, (cA3)
2 : A1, s)

PΛ < γ1,a, γ3,a > a = 1, 2, 3, (γ2,4, γ1,4)

Z13 (3,2),(2,1),(2,3),(2,5),(1,2),(1,4),(2,2),(2,4),(1,1),(1,3),(1,5),(3,1),
(2,1),(2,3),(2,5),(1,2),(1,4),(3,3),(2,2),(2,4),(1,1),(1,3),(1,5),
(3,2),(2,1),(2,3),(2,5),(1,2),(1,4),(1,1),(3,3),(2,2),(2,4),(1,1),(1,3),(1,5)

Type: (A5, (cA5)
3 : A5, (cA5)

3 : A3, (cA3)
2)

PΛ < (γ3,1, γ3,3), (γa,5, γa,1), (γa,4, γa,2), a = 1, 2 >

(3,1),(3,3),(1,1),(1,3),(2,2),(1,5),(2,4),(3,2),(1,2),(2,1),(2,3),(2,5),(1,4),
(3,1),(3,3),(1,1),(1,3),(2,2),(3,2),(1,2),(2,1),(2,3),(2,4),(1,5)

Type: (A3, (cA3)
2 : A3, (cA3)

2 : A3, (cA3)
2 : A2, u : A2, v)

PΛ < (γ1,b, γ2,b), b = 4, 5, (γ1,a, γ3,a), a = 1, 2, 3 >

Table C.1: Weyl–factorized sequences for the quivers of figure C.1.
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QQ10 :

3, 1 3, 2

2, 1 2, 2

4, 1 4, 2

1, 1 1, 2

2, 3

1, 3

oo

		

KK

//
""

OO

ZZ

��

oo

oo

oo //

OO

QQ11 :

3, 1 3, 2

2, 1 2, 2

4, 1 4, 2

1, 1 1, 2

2, 3

1, 3 0

oo





JJ

//
!!

PP

WW

��

oo

oo

oo //

PP

oo

QQ12 :

3, 1 3, 2

2, 1 2, 2

4, 1 4, 2

1, 1 1, 2

2, 3

1, 3

2, 4

1, 4

oo

		

JJ

//
""

OO

[[

��

oo

oo

oo //

OO
//

oo
��

Figure C.2: Quivers for the Q familiy.
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Q10 (4,1),(3,1),(2,2),(1,1),(2,3),(2,1),(1,3),(1,2),(4,2),(3,2),(2,2),(1,1),
(2,3),(4,1),(3,1),(2,1),(1,3),(1,2)

Type: (A3, (cA3)
2 : A3, (cA3)

2 : A2, v : A2, v)

PΛ < (γb,1, γb,2), b = 3, 4, (γa,1, γa,3), a = 1, 2 >

(2,1),(3,2),(4,2),(1,2),(1,3),(4,1),(3,1),(1,1),(2,2),(2,3),(2,1),(4,2),
(3,2),(1,2),(4,1),(3,1),(1,1),(2,2),(2,1),(4,2),(3,2),(1,2),(4,1),(3,1),
(1,1),(2,2),(1,3)

Type: (D4, (cD4)
3 : D4, (cD4)

3 : A2, v)

PΛ < (γ1,3, γ2,3) >

Q11 (1,1),(1,3),(2,2),(3,1),(4,1),(1,2),0,(2,1),(2,3),(1,3),(2,2),(3,2),(4,2),0,
(1,1),(1,2),(2,1),(1,3),(2,3),(3,1),(4,1),(1,1)

Type: (A4, s3s1(cA4)
2 : A3, (cA3)

2 : A2, u : A2, v)

PΛ < γa,1, γa,2 > a = 3, 4, (γ2,1, γ2,3), (γ0, γ1,1), (γ1,2, γ1,3)

0,(2,3),(3,2),(1,2),(4,2),(2,1),(1,3),(2,2),(4,1),
(1,1),(3,1),(3,2),(4,2),(1,2),(2,1),(2,2),(3,1),(4,1),
(1,1),(3,2),(1,2),(4,2),(2,1),(2,2),(3,1),(4,1), (1,1),(2,3)

Type: (D4, (cD4)
3 : D4, (cD4)

3 : A2, u : A1, s)

PΛ < (γ1,3, γ2,3) >

Q12 (1,1),(1,3),(2,4),(2,2),(3,1),(4,1),(2,3),(2,1),(1,2),(1,4),(2,4),(1,3),
(2,2),(2,3),(3,2),(4,2),(1,1),(1,2),(2,1),(1,4),(1,1),(2,2),(1,3),(2,4),
(4,1),(3,1)

Type: (A4, s3s1(cA4)
2 : A4, s4s2(cA3)

2 : A2, v : A2, v)

PΛ < (γb,1, γb,2), b = 3, 4, (γa,1, γa,4), (γa,2, γa,3), a = 1, 2 >

(2,1),(4,2),(3,2),(1,2),(2,3),(1,4),(4,1),(3,1),(1,1),(2,2),(1,3),(2,4),
(2,1),(4,2),(3,2),(1,2),(4,1),(3,1),(1,1),(2,2),(2,1),(4,2),(3,2),(1,2),
(2,3),(1,4),(4,1),(3,1),(1,1),(2,2)

Type: (D4, (cD4)
3 : D4, (cD4)

3 : A2, u : A2, v)

PΛ < (γ1,a, γ2,a), a = 3, 4 >

Table C.2: Weyl–factorized sequences for the quivers of figure C.2.
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µ(QQ10) :

4, 1 4, 2

1, 1 1, 2

2, 1 2, 2

3, 1 3, 2

2, 3 1, 3

oo

��

OO

oo

==

��

}}

@@

//
��

@@
oo

Figure C.3: The quiver in the mutation class of Q10 of example (??).

Table C.3: Weyl–factorized sequences associated with the quiver of figure C.3.
Both of them corresponds to mutations that are the identity on the quiver. The
first one, being of order 1 corresponds to the full quantum monodromy, the second
to the half–monodromy.

Q10 (4,1),(3,1),(1,1),(2,2),(4,2),(3,2),(1,3),(1,2),(2,1),
(4,1),(3,1),(1,1),(2,2),(4,2),(3,2),(2,3),(1,2),(2,1),
(4,1),(3,1),(1,3),(1,1),(2,2),(4,2),(3,2),(1,2),(2,1),(2,3)

Type: (A2, c
3 : A2, c

3 : A2, c
3 : A2, c

3 : A1, c
2 : A1, c

2)

(2,1),(4,2),(3,2),(1,3),(1,2),(4,1),(3,1),(1,1),(2,2),(2,1),
(4,2),(3,2),(1,2),(4,1),(3,1),(1,1),(2,2),(2,1),(4,2),(3,2),
(1,2),(4,1),(3,1),(1,1),(2,2),(2,3)

Type: (D4, (cD4)
3 : D4, (cD4)

3 : A1, s : A1, s)
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QS11 :

1, 1 1, 2

2, 1 2, 2

4, 1 4, 2

3, 1 3, 2

2, 3

3, 3

1, 3oo

��

LL
//

//
!!

OO

\\

��

oo

oo

oo //

OO

��

QS12 :

3, 1 3, 2

2, 1 2, 2

4, 1 4, 2

1, 1 1, 2

2, 3

1, 3

3, 3

0

oo





JJ
//

//
!!

PP

WW

��

oo

oo

oo //

PP

		

oo

QW13 :

3, 1 // 3, 2

��

3, 3 //oo 3, 4

��

2, 1

OO

� �

2, 2oo // 2, 3

OO

��

2, 4oo

1, 1, // 1, 2

OO

1, 3oo // 1, 4

OO

0oo

Figure C.4: Quivers for the S familiy and for the W13 theory.
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W13 (3,2),(3,4),(2,1),(2,3),(1,2),(1,4),(3,1),(3,3),(2,2),(1,1),(1,3),0,
(3,2),(2,1),(2,4),(1,2),(1,4),(3,1),(3,4),(2,3),(1,1),(1,3),0,
(3,3),(2,2),(2,4),(1,2),(1,4),(3,2),(3,4),(2,1),(2,3),(1,1),(1,3),0

Type: (A5, (cA5)
3 : A4, s3s1(cA4)

3 : A4, s4s2(cA4)
3)

PΛ < (γ0, γ1,1), (γ1,2, γ1,4), (γa,1, γa,4), (γa,2, γa,3), a = 2, 3 >

(3,1),(1,1),(2,2),(3,3),(1,3),(2,4),0,(2,1),(3,2),(1,2),(2,3),(3,4),(1,4),
(3,1),(1,1),(2,2),(3,3),(1,3),(2,4),(2,1),(3,2),(1,2),(2,3),(3,4),(1,4)

Type: (A3, (cA3)
2 : A3, (cA3)

2 : A3, (cA3)
2 : A3, (cA3)

2 : A1 : s)

PΛ < (γ1,a, γ3,a), a = 1, 3 >

S11 (1,1),(1,3),(3,1),(3,3),(2,2),(4,1),(1,2),(3,2),(2,1),(2,3),(4,2),
(1,1),(1,3),(3,1),(3,3),(2,2),(1,2),(3,2),(2,1),(2,3),(4,1)

Type: (A3, (cA3)
2 : A3, (cA3)

2 : A3, (cA3)
2 : A2, v)

PΛ < (γa,1, γa,3), a = 1, 2, 3, (γ4,1, γ4,2) >

(2,1),(4,2),(1,2),(3,2),(2,3),(4,1),(1,1),(3,1),(2,2),(1,3),(3,3),
(2,1),(4,2),(1,2),(3,2),(2,3),(4,1),(1,1),(3,1),(2,2),(2,1),(4,2),
(1,2),(3,2),(4,1),(1,1),(3,1),(2,2),(3,3),(1,3)

Type: (D4, (cD4)
3 : D4, (cD4)

3 : A3, (cA3)
2)

PΛ < (γ1,3, γ3,3) >

S12 (3,1),(3,3),(1,1),(1,3),(2,2),(4,1),(3,2),(1,2),0,(2,3),(2,1),(4,2),
(1,3),(1,1),(2,2),(3,1),(3,3),0,(1,2),(1,1),(1,3),(2,3),(2,1),(3,2),(4,1)

Type: (A4, s3s1(cA4)
2 : A3, (cA3)

2 : A3, (cA3)
2 : A2, v)

PΛ < (γ1,1, γ0), (γ1,2, γ1,3), (γa,1, γa,3), a = 2, 3, (γ4,1, γ4,2) >

(2,1),(4,2),(3,2),(1,2),(2,3),0,(4,1),(3,1),(1,1),(2,2),(3,3),(1,3),(2,1),
(4,2),(3,2),(1,2),(2,3),(4,1),(3,1),(1,1),(2,2),(2,1),(4,2),(3,2),(1,2),
(4,1),(3,1),(1,1),(2,2),(1,3),(3,3)

Type: (D4, (cD4)
3 : D4, (cD4)

3 : A3, (cA3)
2 : A1, s)

PΛ < γ1,3, γ3,3 >

Table C.4: Weyl–factorized sequences for the quivers of figure C.4.
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C.4.Mutation sequences for the exceptional bi-

modals

In this appendix we discuss some selected examples of the Weyl–factorized se-
quences we have used to generate the BPS spectra of §??. We use the conventions
of [?].

• E19

This model is a one point extension of A2□A9. We will discuss all the
chambers of it, since it is the simplest one point extension in between the
models we are studying in this paper and the other one point extensions
behaves similarly.

The square form of the QE19 quiver is

QE19 :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
��

//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

The original form of QE19 is related to this one by the following sequence of
mutations: (1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 1 3 5 7 9 11 2 4 6 8 10 1 3 5
7 2 4 6 1 3 2)−1.

From QE19 one can easily obtain two of the four chambers (2.60):

(a) (A10, A9) chamber:

∗ complete family: A10: odd nodes; A9: even nodes

∗ Weyl–factorized sequence: 2 6 10 14 18 3 7 11 15 19 4 8 12 16 1 5
9 13 17 2 6 10 14 3 7 11 15 19 4 8 12 18 1 5 9 13 17 2 6 10 16 3 7
11 15 19 4 8 14 18 1 5 9 13 17 2 6 12 16 3 7 11 15 19 4 10 14 18 1
5 9 13 17 2 8 12 16 3 7 11 15 19 6 10 14 18 1 5 9 13 17 4 8 12 16 3
7 11 15 19

∗ permutation:

mΛ(QE19) =

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1
��

//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

∗ type: (A10, c
−5s10s8s6s4s2 : A9, c

5)

(b) (A2 × 9, A1) chamber:
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∗ complete family: A2 = {1, 2}+ 2k, k = 0, ..., 8, A1 = {19}.
∗ Weyl–factorized sequence: 1 4 5 8 9 12 13 16 17 2 3 6 7 10 11 14
15 18 1 4 5 8 9 12 13 16 17 19

∗ permutation:

mΛ(QE19) =

2

1

4

3

6

5

8

7

10

9

12

11

14

13

16

15

18

17

19
��

//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

∗ type: A2, s1s2s1 for the even k, A2, s2s1s2 for the odd k, A1, s.

As far as the other two chambers one has to consider the quiver µ19(QE19):

(a) (A9 × 2, A1) chamber:

∗ complete family: A9 = {1, 3, 5, 7, 9, 11, 13, 15, 17}+k, k = 0, 1, A1 =
{19}
∗ Weyl–factorized sequence: 3 7 11 15 2 6 10 14 18 19 1 5 9 13 17 4
8 12 16 3 7 11 15 2 6 10 14 18 1 5 9 13 17 4 8 12 16 3 7 11 15 2 6
10 14 18 1 5 9 13 17 4 8 12 16 3 7 11 15 2 6 10 14 18 1 5 9 13 17 4
8 12 16 3 7 11 15 2 6 10 14 18 1 5 9 13 17 4 8 12 16

∗ permutation:

mΛ(QE19) =

17

18

15

16

13

14

11

12

9

10

7

8

5

6

3

4

1

2

19
��

//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
oo

∗ type: (A9, c
−5 : A9, c

5 : A1, s)

(b) (A2 × 8, A3) chamber:

∗ complete family: A2 = {1, 2}+ 2k, k = 0, 7, A3 = {17, 18, 19}
∗ Weyl–factorized sequence: 1 4 5 8 9 12 13 16 17 2 3 6 7 10 11 14
18 19 15 1 4 5 8 9 12 13 17 16 19 18

∗ permutation:

mΛ(QE19) =

2

1

4

3

6

5

8

7

10

9

12

11

14

13

16

15

17

19

18
��

//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

oo

//

��
oo

∗ type: A2, s1s2s1 for the even k, A2, s2s1s2 for the odd k, A3, c
−2.

This is the generic situation for all the one–point extensions: mutating at
the extra–node leads two different couples of canonical chambers.
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• Z17

This will be our example of a theory in the Z family. The square form of
QZ17 is:

QZ17 :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

��
//

OO
//

oo
OO

oo

��

oo

//

��
//

OO

oo
OO

oo

//

��
//

oo
OO

oo

//

��

Related to the original form obtained from its Coxeter–Dynkin diagram of
table 2.5 by the sequence of mutations: (17 15 13 11 2 1 5 4 3 16 14 12 17
15 16)−1. We have two (physical) chambers:

(a) (A7 × 2, A3) chamber:

∗ complete family: A7 = {1, 4, 7, 10, 12, 14, 16}A7 = {3, 6, 9, 11, 13, 15, 17}
A3 = {2, 5, 8}
∗ Weyl–factorized sequence: 4 10 14 3 9 13 17 5 1 7 12 16 6 11 15 2
4 10 14 3 9 13 17 1 7 12 16 6 11 15 4 10 14 3 9 13 17 1 7 12 16 6
11 15 4 10 14 3 9 13 8 17 5 1 7 12 16 6 11 15 2 8

∗ permutation:

mΛ(QZ17) =

16

8

17

14

5

15

12

2

13

10

11

7

9

4

6

1

3

��
//

OO
//

oo
OO

oo

��

oo

//

��
//

OO

oo
OO

oo

//

��
//

oo
OO

oo

//

��

∗ type: (A7, c
4 : A7, c

4 : A3, c
2)

(b) (A3 × 3, A2 × 4) chamber:

∗ complete family: A3 = {1, 3, 2} + 3k, k = 0, 1, 2 A2 = {10, 11} +
2h, h = 0, 1, 2, 3

∗ Weyl–factorized sequence: 1 2 6 8 7 11 12 15 16 3 4 5 9 10 13 14
17 2 1 6 7 8 11 12 15 16 3 5 4 9 10 10

∗ permutation:

mΛ(QZ17) =

2

1

3

5

4

6

8

7

9

11

10

13

12

15

14

17

16

��
//

OO
//

oo
OO

oo

��

oo

//

��
//

OO

oo
OO

oo

//

��
//

oo
OO

oo

//

��
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∗ type: A3, c
2, A2, s2s1s2 for even k, A2, s1s2s1 for odd k.

• Z18

In this case is more convenient to use another representative of Z18 under
2d wall–crossing. Switching the vacuas |17⟩ and |18⟩, i.e. using the α17

operation of (??), we bring the Coxeter–Dynkin graph of table 2.5 in the
form

• • •

• • • • • • 18

• • • • • • • 17

to this form we apply the method of section §?? to find a quiver representative
of the 4d theory. The square form of this quiver is:

QZ17 :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18OO

oo

��

oo

//

��
//

OO
//

oo
OO

oo

��
//

��
//

oo
OO

oo

//

��
//

oo

//

OO

To obtain the original form use the sequence: (17 18 15 13 11 16 14 18 11
2 1 5 4 3 7 6 8 2 1)−1. Now, obtaining the chambers of equation (2.62)
is straightforward: one proceeds as for E19 using our results about Z17.
The more convenient Weyl–factorized sink–sequence to generate the Z17 Y –
system is the one associated to the chamber (A3 × 3, A2 × 4, A1). This is a
chamber of µ17(QZ17), with the obvious complete family of Dynkin’s. The
sequence is: 3 5 4 9 10 13 14 18 2 1 6 8 7 11 12 15 17 16 3 5 4 9 10 13 14 18
2 1 6 8 7.

• Z19 and Z1,0

These two theories are analogous to Z17. Again we list only the more conve-
nient sink sequence for generating the Y –system.

The square form representative for Z19 is obtained with the sequence of
mutations 2 1 5 4 3 19 17 18 15 16 19 13 14 17 18 11 12 15 16 19 from the
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one obtained with §??. The result is:

QZ19 :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

��
//

OO
//

oo
OO

oo

��

oo

//

��
//

OO

oo
OO

oo

//

��
//

oo
OO

oo

//

��
//

oo
OO

The sequence of the chamber (A3 × 3, A2 × 5) is: 2 1 6 8 7 11 12 15 16 19 3
5 4 9 10 13 14 17 18 2 1 6 7 8 11 12 15 16 19 3 5 4 9.

The Z1,0 case is analogous to this one. The square form of the quiver is
obtained by removing from the previous one the nodes 16 17 18 19. The
transformation that maps it back to the form we deduce from the Coxeter–
Dynkin diagram is (2 1 5 4 3 15 13 14 11 12 15)−1. The sequence of the
chamber (A3 × 3, A2 × 3) is: 2 1 6 8 7 11 12 15 3 5 4 9 10 13 14 2 1 6 8 7 11
12 15 3 5 4 9.

• W17

The study of the stable BPS hypermultiplets of this model is analogous to
that of the odd rank elements of the Z family. The square form of the quiver
QW17 is

QW17 :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17OO

oo

��

oo

//

��
//

OO
//

oo
OO

oo

��

oo

//

��
//

OO
//

oo
OO

oo

��
//

��

It is related to the original form by the sequence of mutations: ( 1 2 5 4 8 7
11 10 13 3 6 9 12 2 1 4 5 8 7 14 3 6 2 1)−1. The two chambers of (2.68) are
straightforwardly generated. The more convenient to generate the Y –system
is the (A3× 5, A2) one for which the Weyl–factorized sequence is: 3 5 4 9 11
10 15 16 2 1 6 8 7 12 14 13 17 3 5 4 9 11 10 15 2 1 6 8 7 12 13 14 16.

• Q2,0,Q16 and Q18

We will discuss Q2,0 as an example for all the theories in the Q family of
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even rank. The square form of Q2,0 is

QQ2,0 :

1

2

3

4

5

6

7

8

9

10

11

12

13

14
""

oo

		

oo

OO

oo

//

__

II

��
//

oo
OO

oo

//

��
//

oo
OO

To bring it back to its original form: (1 2 3 14 12 10 13 11 14)−1. The model
has two canonical BPS chambers:

(a) (D4 × 2, A2 × 3) chamber:

∗ complete family: D4 = {1, 2, 3, 4} + 4k, k = 0, 1 A2 = {9, 10} +
2n, n = 0, 1, 2.

∗ Weyl–factorized sequence: 4 5 6 7 10 11 14 1 2 3 8 9 12 13 4 5 6 7
1 2 3 8 4 5 6 7 10 11 14 1 2 3 8

∗ permutation:

mΛ(QQ2,0) =

1

2

3

4

5

6

7

8

10

9

12

11

14

13
""

oo

		

oo

OO

oo

//

__

II

��
//

oo
OO

oo

//

��
//

oo
OO

∗ type: D4, c
3 : D4, c

3, while A2, s2s1s2 for n = 0, 2, A2, s1s2s1 for
n = 1.

(b) (A2 × 2, A5 × 2) chamber:

∗ complete family: A2 = {1, 5}, {2, 6} A5 = {3, 7, 10, 11, 13}+ n, n =
0, 1

∗ Weyl–factorized sequence: 2 1 8 12 3 10 13 4 9 14 7 11 8 12 3 10
13 4 9 14 7 11 8 12 3 10 13 5 6 4 9 14 7 11 1 2

∗ permutation:

mΛ(QQ2,0) =

5

6

13

14

1

2

11

12

9

10

7

8

3

4
""

oo

		

oo

OO

oo

//

__

II

��
//

oo
OO

oo

//

��
//

oo
OO
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∗ type: A5, c
3, A2, s1s2s1.

The situation we encountered in chamber (a) is typical for all the even Q’s:
the D4 part remains invariant while the A2 part gets switched. Proceeding
analogously one obtains the chambers for Q16 and Q18 we listed in (2.64)
and (2.65).

• S17, S16 and S1,0

The square form of the quiver S17 is:

QS17 :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

gg //

OO
//

��
//

oo
�� ��

oo

OO

oo

//

OO
//

��
//

oo
��

oo

OO

oo

//

OO

��

.

It is related with the Coxeter–Dynkin graph by the sequence of mutations (
17 14 15 16 2 1 3 6 7 4 5 )−1. The two chambers we listed in (2.70) are easily
obtained with the help of the Keller’s applet.

(a) (D4 × 2, A3 × 3) chamber

∗ complete family: D4 = {1, 2, 3, 4}+ 4k, k = 0, 1 A3 = {9, 10, 11}+
3m,m = 0, 1, 2

∗ Weyl–factorized sequence: 1 2 3 8 9 10 14 15 16 4 5 6 7 11 12 13
17 1 2 3 8 4 5 6 7 9 10 14 15 16 1 2 3 8 4 5 6 7 11 12 13 17

∗ permutation:

mΛ(QS17) =

1

2

3

4

5

6

7

8

10

9

11

13

12

14

16

15

17

gg //

OO
//

��
//

oo
�� ��

oo

OO

oo

//

OO
//

��
//

oo
��

oo

OO

oo

//

OO

��

∗ type: D4, c
3 and A3, c

2

(b) (A5 × 3, A2) chamber

∗ complete family: A5 = {2, 6, 10, 13, 16}, {4, 8, 11, 14, 17}, {3, 7, 9, 12, 15}
A2 = {1, 5}
∗ Weyl–factorized sequence: 5 6 12 4 11 17 7 13 1 2 9 15 8 14 3 10
16 6 12 4 11 17 7 13 2 9 15 8 14 3 10 16 6 12 4 11 17 7 13 2 9 15 8
14 3 10 16 5
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∗ permutation:

mΛ(QS17) =

5

15

16

17

1

12

13

14

9

10

11

6

7

8

2

3

4

gg //

OO
//

��
//

oo
�� ��

oo

OO

oo

//

OO
//

��
//

oo
��

oo

OO

oo

//

OO

��

∗ type A5 : c
3, A2 : s2s1s2

The cases of S16 and S1,0 can be treated analogously. The square form of the
quiver S16 is the same as QS17 with the node 15 removed, and consequent
relabeling (17 → 16 and 16 → 15), while the quiver of S1,0 is obtained by
the removal of the nodes 15 16 17. As far as S1,0 the shortest sequence to
obtain the Y –system is the one leading to the (D4 × 2, A3 × 2) chamber: 1
2 3 8 9 10 14 4 5 6 7 11 12 13 1 2 3 8 4 5 6 7 1 2 3 8 9 10 14 4 6 7 11 12 13
5. For S16 it is the one leading to the (D4 × 2, A3 × 2, A2) chamber: 1 2 3 8
9 10 14 15 4 5 6 7 11 12 13 16 1 2 3 8 4 5 6 7 1 2 3 8 9 10 14 4 5 7 6 11 12
13 15.

• U1,0 The square form quiver representative of the U1,0 theory is the following:

QU1,0 :

1

2

3

4

5

6

7

8

9

10

11

12

13

14

\\
//

KK
//

��
//

oo
��

oo

��

oo

OO

oo

//

\\

KK

��
//

oo
OO

Related to the one obtained with the method of §4.1 by the sequence 14 4
9 10 11 13. The analysis of the algebraically trivial chambers of this theory
is straightforward. The shortest sink–sequence is the one associated to the
(D4 × 3, A2) chamber that reads: 1 2 3 8 9 10 11 14 4 5 6 7 12 13 1 2 3 8 9
10 11 4 5 6 7 12 2 1 3 8 9 10 11 14 4 5 6 7 12.

From the above examples, obtaining the Weyl–factorized sequences for the
other chambers we listed in §?? should now be an easy exercise with the help of
Keller’s applet [?].
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[82] S. Fomin, Lectures at Aarhus University, (June 14th–18th 2010). Video avail-
able from http://qgm.au.dk/video/clusalg/.

[83] S. Cecotti, “Geometry of N = 2 Landau–Ginzburg families”, Nucl.Phys.
B355 (1991) 755

[84] A.M. Gabrielov, “Bifurcations, Dynkin diagrams and modality of isolated
singularities”, Funkt. Anal. Appl. (1974) vol.8, n.2, p. 7–12, in Russian. Engl.
Transl. p. 94–98.

[85] A.M. Gabrielov, “Dynkin diagrams for unimodal singularities”, Funkt. Anal.
Appl. (1975) vol. 8, n.3, Engl. Transl. p. 192 –196

http://www.arXiv.org/abs/hep-th/9207040
http://www.arXiv.org/abs/hep-th/9309137
http://www.arXiv.org/abs/0807.1960


BIBLIOGRAPHY 181

[86] Y. Tachikawa and S. Terashima, “Seiberg–Witten Geometries Revisited,”
arXiv:1108.2315 [hep-th].

[87] H. Lenzing, “Hereditary categories,” in Handbook of Tilting Theory, Ed. by
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