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Overview

As more and more of the basic constituents of a cell (such as genes, proteins and
chemical compounds) are being described and characterized, the field of Biology is
showing a growing interest in describing the nature and the effect of their reciprocal
connections. The need of understanding the links among biological components and
of determining their interactions is one of the raisons d’étre and of the driving forces
behind the emergence of Systems Biology. This field of study uses an approach to
biological and biomedical research which is more holistic than the traditional re-
ductionist one. From a circuit of a single cellular process (for instance a signaling
cascade) up to a large network of many cellular functions (e.g. all metabolic reac-
tions), Systems Biology aims at providing a theoretical description of the principles
that govern the living systems (for instance gene expression, chemotaxis, nutrients
selection). Because of this holistic approach and because of the widely different level
of complexity of the networks involved, many different mathematical methods have
been developed during the years, based on physical, chemical and engineering ap-
proaches. The variety of these tools represents a very important aspect of Systems
Biology.

Some of these computational methods are used in this thesis in order to investi-
gate various properties of different biological systems. In particular, three research
projects are presented in the three parts in which this thesis is split.

I. The first part deals with the prediction of the perturbation of cellular meta-
bolism induced by drugs. In particular, using a recently reconstructed model
of the human metabolic network, we consider the problem of identifying the
most selective drug synergisms for given therapeutic targets (in our case re-
lated to metabolic diseases and cancer). The problem is approached using Flux
Balance Analysis as computational tool, a framework which provides a reli-
able quantitative description of the reaction fluxes of genome-wide metabolic
networks.

II. The second part of the thesis considers another class of biological networks,
namely gene regulatory networks. In these systems, activation or inhibition
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Overview

are the modes of regulation of the gene expression. The resulting signed graph
model has remarkable analogies with an Ising spin glass: activation/deactiva-
tion are rephrased as positive/negative coupling between spins and the corre-
sponding energy function is generated. Using this analogy, an analysis of the
content of “disorder” and of the energy landscape can be carried out. The
same theory has been also applied to much larger signed graphs drawn from
other contexts, such as from social network theory.

Finally, the last part of this thesis concerns the modeling of the signaling path-
way of rod photoreceptors, in particular the investigation of the heterogeneity
of the response of this signaling cascade when different parts of the cell are se-
lectively stimulated with light. The electrophysiological experiments produced
by our collaborators in the Neurobiology laboratory at SISSA have been an-
alyzed with various dynamical systems: the ordinary and partial differential
equations used to describe some steps of the phototransduction give an insight
into the process of ageing of photoreceptors and into the role of the diffusion
in the cytoplasm of these cells.



PART 1

PERTURBATION OF METABOLIC NETWORKS
IN FLUX BALANCE ANALYSIS






Introduction

Metabolism is probably the best known “organized” system at cellular level: under-
standing the chemical rules that govern the reactions which take place in the cell has
helped in elucidating the connections between the various metabolic transformations.
Linking the identified compounds (metabolites) through this set of chemical reac-
tions, a network appears: nodes represent metabolites and directed edges reactions
(each catalyzed by a specific enzyme). Thanks to the advanced high-throughput
techniques and exploiting the genetic information provided by genome sequencing
projects, metabolic networks are now more and more reliable and represent one of
the main paradigms inside Systems Biology. Genome-scale metabolic networks have
been reconstructed for many organisms, ranging from bacteria to fungi, from yeasts
to the human cell.

In order to perform a characterization of these networks, many methods have
been developed and used. In the following we focus on Flux Balance Analysis (FBA).
In this constraint-based framework the minimization (or maximization) by linear
programming of an heuristic cost functional over the stoichiometric constraints is
used to compute an “effective rate” of each metabolic reaction. Several aspects of
the metabolic networks have been investigated through FBA, like robustness with
respect to reaction deletion and the effects of external perturbations (e.g. gene
knockout, drug inhibition, change in the growing medium). In the same spirit,
specific heuristic methods have been proposed to deal with these perturbation ef-
fects. Among these, it is worth mentioning Minimization Of Metabolic Adjustment
(MOMA) and Regulatory On/Off Minimization (ROOM). While MOMA replaces
the linear programming with a linear-quadratic programming, ROOM requires in-
stead to resort to the more expensive mixed-integer linear programming (further
details in the next chapter).

In the following chapters, after a brief description of genome-scale metabolic
networks and FBA (Chapter 1), we present two applications of drug-induced network
disturbance and a new heuristic criterion for describing the transient dynamics after
a perturbation. Here is a more detailed description of the contents that follows.
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Drug synergism for human diseases and cancer (Chapter 2)

In this chapter we investigate the effect of one or more drugs on the human
metabolic network. Because of the topology of the network, the effect induced by
a combination of drugs can be larger than the simple superposition of the pertur-
bations induced by each single drug. This “nonlinear” effect is referred to as a
synergism. Our aim is to exploit the synergism among already approved drugs in
order to predict new multiple drug therapies. The repurposing of known drugs is
indeed a very attractive task because many clinical results are already available for
approved drugs. However, assessing the potential of multidrug therapies is a difficult
task because of the combinatorial complexity (both theoretical and experimental)
and because of the requirements on the selectivity of the therapy (i.e. it must have
an effect on certain targets, but a limited side effect on the rest of the network).

To cope with this problem, we have developed a novel method for the systematic
in silico investigation of synergistic effects of drugs on genome-scale metabolic net-
works. The algorithm (based on “bilevel optimization”, i.e. two nested optimization
steps) efficiently finds the optimal combination of currently available drugs which
guarantees the inhibition of an objective reaction (for instance the reaction respon-
sible for a disease), while minimizing the side effect on the other cellular processes.
In this project, we assume that a drug completely inhibits its target enzyme (i.e. it
stops the metabolic reaction catalyzed by the enzyme). Two different applications
are considered: finding drug synergisms for human metabolic diseases (like diabetes,
obesity and hypertension) and finding antitumoral drug combinations with minimal
side effect on the normal human cells. The results we obtain are consistent with some
of the available therapeutic indications and predict new multiple drug treatments.

Perturbation of a network by drug partial inhibition (Chapter 3)

Within FBA the investigation of complex subtasks, such as finding an optimal
combination of drugs, can be set up as a bilevel optimization problem. In the
previous algorithm, in order to keep the linearity and convexity of these nested
optimization problems, an ON/OFF description of the effect of the perturbation
(i.e. Boolean variable) has been used. This restriction may not be always realistic:
for instance, the inhibition of a reaction induced by a drug in fact may be partial
rather than complete.

In this chapter we improve the previous formulation of the bilevel optimiza-
tion problem overcoming the oversimplified ON/OFF modeling while preserving the
linear nature of the problem. As guiding example, the same case study of drug syn-
ergism is considered: the search for the best multi-drug treatment which modulates
an objective reaction and yields the minimal perturbation on the whole network.
The inhibition induced by a drug (i.e. the interval [0,1] instead of the set {0,1}) is
described and tuned through a convex combination of a fixed number of Boolean
variables (instead of a single Boolean variable). Compared to a simple ON/OFF
modeling, the application of the algorithm to the core metabolism of E.coli high-
lights the possibility of finding both a broader spectrum of drug combinations and a
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more fine-grade tuning of the selectivity. It is worth noting that this approach can
be extended to any other FBA problem such as, for instance, strain improvement
and cost functional identification.

Analysis of the transient dynamics in perturbed networks following a
change in the growing medium (Chapter 4)

The description of the perturbation studied in the two previous projects are sta-
tionary. However, when a metabolic network is perturbed, it experiences a transient
excursion before settling to the new steady state predicted by FBA. The criteria
available in the current literature for perturbed networks (e.g. MOMA) provides
only a snapshot of the initial part of this transient. The short-terms metabolic ad-
justment described by MOMA consists typically in a temporary drop of the growth
rate and in the activation of many reactions. Both effects are induced for example
by a gene deletion or by a change of the carbon source in the growing medium.
However, less attention has been given to the late dynamical adjustment of the
metabolism that leads to the recovery of the proliferation rate.

Referring to experimental measurements reported in literature for E.coli cultures,
we interpret this recovery as a stochastic sequence of small metabolic adjustments.
The heuristic criterion we suggest to describe this recovery is based on concepts
related to natural selection. The reactions transiently activated by the perturbation
are progressively turned off when this provides a local improvement of the growth
rate (the analogous of the so-called “fitness” in the evolutionary context). Ap-
plying iteratively this procedure together with the induced short-term adjustment
(MOMA), we obtain a description of the recovery of the growth rate consistent with
the experimental data we found in literature.

While the metabolic adjustment for describing the transient dynamics is work in
progress (which requires still further analysis), the first two topics mentioned above
have already been published in the following papers:

o G. Facchetti, M. Zampieri, C. Altafini Predicting and characterizing selective
multiple drug treatments for metabolic diseases and cancer, BMC Systems
Biology 6, 115-130, (2012);

o G. Facchetti and C. Altafini Partial inhibition and bilevel optimization in Flux
Balance Analysis, BMC Bioinformatics (2013), in press;
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Chapter 1

Constraint-based methods for
metabolic networks

1.1 Genome-scale metabolic networks

In recent years, genome-scale metabolic networks have represented an important
paradigm of Systems Biology, well describing how interesting and relevant biological
features can be deduced in spite of the complexity of the system [1, 2, 3, 4].

Metabolism is the set of chemical transformations among biomolecules within
the cells of living organisms, necessary for the cells to grow and reproduce. It can
be represented as a network whose nodes are the metabolites connected by single
or multiple arrows (the reactions). More properly, it is a directed hypergraph [5, 6]
which finds also a representation as a bipartite directed graph (see Figure 1.1). Each
biochemical reaction is catalyzed by a specific enzyme. Enzymes are crucial for the
metabolism because they allow organisms to drive desirable reactions that require
energy and will not occur by themselves, by coupling them to spontaneous reactions
that release energy. As enzymes act as catalysts, they allow these reactions to pro-
ceed quickly and efficiently. Moreover, enzymes allow the regulation of metabolic
pathways in response to changes in the cell environment or signals from other cells.
The presence or the absence of an enzyme makes the corresponding chemical trans-
formation possible or not possible: therefore, the expression (non-expression) of
a protein is correlated to the functioning (non-functioning) of a specific reaction.
From this point of view, enzymes can be interpreted as the cellular switches of the
catalyzed reactions.

Metabolism is formally divided into two categories: catabolism that breaks down
organic nutrients, for example to produce energy in cellular respiration; anabolism
that uses this energy to build components of cells such as aminoacids and nucleotides
(the monomers for proteins and nucleic acids respectively). The chemical reactions of
metabolism are usually organized into metabolic pathways, in which one compound
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is transformed (or synthesized) through a series of steps into another compound, by a
sequence of enzymes. In this perspective, metabolism shows a multi-level structure:

® cellular input and outputs: metabolism is viewed as a complex machin-
ery which transforms nutrients into biomolecules for cellular growth; waste is
expelled from the cell to the environment;

® catabolism and anabolism: the two main sectors of the metabolism, one
for the processing of the nutrients and the other for the biosynthesis of macro-
molecule precursors (and special metabolites);

® pathways: to a finer resolution, pathways are identified as set of reactions
which serve a definite role, for instance the pathway for the synthesis of lipids,
the pathway for degradation of complex carbohydrates etc.;

® individual reactions: each transformation can form or break chemical bounds,
can transfer a chemical group from one molecule to another, can oxidize or re-
duce a compound, can produce or consume energy etc. Except for very simple
reactions, all these processes are catalyzed by an enzyme. According to the
type of the catalyzed transformation, enzymes (and therefore reactions) are
labeled with the universally accepted Enzyme Commission (EC) numbers.

Beside this universal structure, an important feature of metabolism is the simi-
larity of the basic metabolic pathways and components among even vastly different
species. The most evident example is the set of carboxylic acids that are best
known as the intermediates in the citric acid cycle (the Krebs cycle); it is present in
all known organisms, being found in species as diverse as the unicellular bacterium
Escherichia coli and huge multicellular organisms like elephants. These striking
similarities in the metabolic pathways are likely due to their early appearance in
evolutionary history, and have been retained by natural selection because of their
efficiency.

Nevertheless, each organism has some peculiarities which make necessary to re-
construct the whole network for all of them. This is performed by exploiting the
information collected by various high-throughput experiments. Figure 1.2 depicts a
workflow of the metabolism reconstruction indicating the methods and approaches
used. The main data sources are the following;:

1. biochemistry: the strongest evidence for the presence of a metabolic reaction
is the isolation of the corresponding enzyme;

2. genomic: based on DNA sequence homology, functional assignments can be
identified;

3. physiology: for instance, the ability of a organism to produce an aminoacid
while fermented, may support the existence of the corresponding pathway;

4. in silico modeling data: in order to identify a gap, an in silico study of the
consistency is often useful; as result, the presence of some reactions can be
inferred.



Genome-scale metabolic networks 11

Figure 1.1: Metabolic networks and hypergraphs. Example of two equivalent represen-
tations of a metabolic network. Reaction R; (i.e. A — B+C') and reaction Ry (i.e. C — D)
are depicted as oriented hyperedges of a network (a) or as nodes of a bipartite directed
graph (b).

organism

:

| —

cell and i i
genome biochemical I
molecular | 5nnotation assays cell physiology
biology l
network
recostruction
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techniquges [metabolic model
quantitative
analytical methods

new independent
experimental information

Figure 1.2: Metabolism reconstructions. A scheme of the overall process of genome-scale
metabolic network reconstruction and subsequent model formation (adapted from [7]).
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Table 1.1: Example of size of various reconstructed metabolic networks down-
loaded from the BIGG database.

Organism number of Ref.
metabolites reactions compartments

Helicobacter pylori 485 554 2 8]

Staphylococcus aureus 655 743 2 [9]

Methanosarcina barkeri 628 690 2 [10]
Shewanella oneidensis 713 870 2 [11]
Mycobacterium tuberculosis 826 1025 2 [12]
Saccaromyces cerevisiae 1061 1266 3 [13]
FEscherichia coli 1668 2382 3 [14]
Salmonella typhimurium 1802 2546 3 [15]
Homo sapiens 2766 3742 8 [16]

Reconstructed networks are published and are made available from different re-
search groups together with additional important details (name and chemical for-
mula of metabolites, stoichiometry of each reaction, EC number of the associated
genes, code of the genes, pathway identification, biomass composition, etc.). The Ky-
oto Encyclopedia of Genes and Genomes (KEGG, http://www.genome. jp/kegg/),
the Biochemical Genetic and Genomic (BIGG, bigg.ucsd.edu/), EcoCyc and Meta-
cyc (www.ecocyc.org/ and www.metacyc.org/) are just a few examples of databases
where metabolic networks can be downloaded. Table 1.1 reports a list of some recon-
structed networks available from the BIGG database. An example of such metabolic
networks is that of F.coli reported in Fig. 1.3: it contains 1668 metabolites and 2382
reactions, distributed in 3 compartments (the compartmentalization is described de-
noting metabolites in different areas with different labels and introducing a transport
process among them).

Making these networks available has significantly facilitated their spread and
usage. Furthermore, new computational tools have been developed in order to obtain
in silico predictions from them, and to try to collect more and more information
about the principles which govern the structure and the function of cell metabolism.
In particular, for its simplicity, FBA is a widely used framework that has contributed
to exploit the knowledge contained in these metabolic reconstructions and to enlarge
their spectrum of applications.

1.2 Flux Balance Analysis

FBA is a linear constraint-based framework for stoichiometric models of metabolic
networks. We give here a short overview of this formalism. More details can be
found in many reviews and books (for example [17, 18]).
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No kinetic parameters

Viewed as a set of chemical reactions, the metabolism can be in principle treated
as a dynamical system. Let us consider the simple network given by the following
processes:

k1

g — A
g *2, p
A+2B 2 30
Cﬂ@,

where @ indicates that reactions 1, 2 and 4 consist in a transport from/to another
compartment, and the parameter k; represents the kinetic rate constant of the reac-
tion i (i = 1,...,4). The corresponding differential equations (based on the law of
mass action) which describe the rate of variation of the concentrations of the three
metabolites ([A], [B] and [C]) are:

d[A]/dt =k — ks[A][B);
d[B]/dt = ko — 2ks[A][B)?;
d[C]/dt = 3ks[A][B)? — k4[C].

Studying the dynamics requires the knowledge of the kinetic rate constants for all
reactions, which is difficult for a network of thousands transformations (especially
because the measurement or the theoretical calculation of a kinetic parameter is a
very difficult task in vivo).

The main simplification introduced in FBA is that in the right-hand side of the
differential equations the dependence on the concentrations of the metabolites is
completely ignored and only a description of the reactions (with their stoichiome-
try) is maintained. In particular, each reaction is considered as a flux whose value
indicates the rate of the reaction: in our example 4 fluxes are necessary, therefore
a vector of 4 elements is enough to describe the reactions. We denote this vector
by v = [’Ul,’Ug,’Ug,’U4]T. Considering the stoichiometric coefficients, the dynamical
systems can be rewritten in terms of v as follows:

d[A]/dt V1 — U3;
d[B]/dt v — 2v3;
d[C]/dt 3u3 — vy,
or equivalently
d[A]/dt 1 0 ~1 0 10 -1 0 Zl
dB]/dt |=| 0 |vi4+| 1 |vo+| =2 |vs+| 0 |wu=|0 1 =2 0 v2
d[C]/dt 0 0 3 -1 00 3 —1 U?’
4

where column j of the resulting 3 x 4 matrix contains the stoichiometric coefficients

of reaction j.
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Steady-state assumption

A second assumption is then introduced. As mentioned, a metabolic transfor-
mation takes place if the corresponding enzyme (i.e. gene) is expressed and active.
Metabolic reactions are therefore subordinated to the transcriptional processes which
occur on a much slower time scale. A few examples of typical time for the F.coli
bacterium are here reported [19]:

TRANSCRIPTIONAL PROCESSES
transcribe a single gene 60 s
translate a single copy of a protein 100

METABOLIC PROCESSES
enzyme—substrate binding 1 ms
single chemical transformation 50 ms

Ensemble processes occurring at the cellular scale are of course slower, but keep
the same separation of scales. This fact implies that on the time scale of interest
for most functions of a cell, the metabolic processes have usually reached their
steady state: the derivative of the concentration of each metabolite is null. In this
balanced perspective, the network is viewed as an electrical circuit where at each
node (metabolite) the Kirchhoff’s law holds. Our previous equation can then be
rewritten as an algebraic equation:

0 10 -1 0 U1

0l=]01 -2 o vl

0 00 3 —11]|%5
(%

which can be interpreted as a constraint for the value of the fluxes v.

Therefore, for a given network composed of m metabolites and r reactions (m = 3
and r = 4 in our toy example) the steady-state assumption can be compactly written
as

Sv =0, (1.1)

where the m x r matrix S is called “stoichiometric matrix” (S;; represents the
stoichiometric coefficient of the i-th metabolite in the j-th reaction).

Lower and upper bounds

Thermodynamical constraints can be added to each reaction: an upper bound
U; > 0, which is related to the maximal enzyme activity and to the availability of
nutrients; a lower bound L;, which states the reversibility (L; < 0) or irreversibility
(L; = 0) of the reaction:

L,‘ S’UZ' S UZ', Vi:L...T. (1.2)
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Definition of a cost functional

Constraints (1.1) and (1.2) generate a convex and bound set W C R" (a polytope)
to which the flux vector v has to belong (see Fig. 1.4a and b). In order to obtain
the point in W which describes the “effective” fluxes of the network an optimization
procedure is usually adopted. The definition of the cost functional is a key ingredient
of this approach and there are many works which attempt to define new heuristic
functionals capable of generating realistic metabolic fluxes (see for instance [20, 21,
22, 23, 24]). We present here the most common criteria.

Maximizing growth rate for unperturbed network. The rationale behind
this criterion comes from an evolutionary point of view of the role of metabolism [20].
As mentioned, metabolism is a machinery by which nutrients are converted in energy
and in the building blocks for the macromolecules, i.e. aminoacids for proteins, sugars
for complex carbohydrates, nucleotides for DNA and RNA, lipids for membranes,
etc. These building blocks are the constituents of the cell mass (called “biomass”)
and are necessary for the cell to duplicate and proliferate. Through a chemical
analysis of the biomass, the average cell composition in terms of these precursors
can be estimated [25]. The heuristic assumption is therefore that any metabolic
change which allows the cell to better exploit the nutrients and more efficiently
synthesize the biomass components would have been favored by natural selection.
According to the formalism we presented, the “biomass production” can be expressed
as a cost functional ¢(v) defined as a linear combination of the fluxes describing the
precursors biosynthesis:

6(v) = bTv,

where b contains the experimental coefficients obtained from the chemical analysis
of the biomass, i.e. the amount of precursors that is needed for unit of biomass.
Indeed, together with the stoichiometric matrix, also the vector b is normally in-
cluded in a database of metabolic networks. Therefore, in case of unperturbed cells
the metabolic fluxes v* can be easily found by the following optimization:

v* =arg max b’ 'w, (1.3)

(see Figure 1.4c) where arg max, ¢, f () stands for the set of x for which the function
f attains its maximal value in @ (or equivalently, its minimal value for “arg min”).

Minimizing adjustment in a perturbed network. When a metabolic net-
work is perturbed, e.g. through a gene knockout or through the action of a drug,
the steady state v* from (1.3) is no longer realistic. The most famous criterion for
treating perturbed networks is MOMA (see Fig. 1.4(d)). According to [21], when
a gene has been knocked-out the cell reacts by trying to minimize the adjustment
with respect to the unperturbed situation defined by (1.3). Using the Euclidean
L?-norm || - ||2 to quantify the entity of the adjustment, this criterion translates in
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Figure 1.4: Flux Balance Analysis. (a): Sketch of a simple network where metabolite A
is produced by reaction 1 and consumed by reactions 2 and 3; (b): Convex set (polytope
W) defined by the constraints v; — vy — w3 = 0 and 0 < v; < 10 for i = 1,2,3; (c): the
green dot represents v*, the outcome of the optimization of the cost functional (biomass
production) ¢(v) = 2vy +v3 (i.e. b = [0,2,1]T); (d): the perturbation of the network by
removal of reaction 2 (knockout of the corresponding gene) reduces the set W to its subset
W’. According to MOMA, the new optimum vMOMA is the orthogonal projection of the
unperturbed solution v* on W’ (magenta line and dot).

the following quadratic optimization problem

MOMA . *
= — V2. 1.4
v arg min |[w — vz (1.4)

An alternative has been proposed in Ref. [22], where the minimization is performed
on the number of adjusted reactions (ROOM), i.e. reactions whose flux adjustment
with respect to v* is higher than a given threshold e:

-
ROOM .

=a iy 1.5

v rg min EZ Yi (1.5)

where y; is an integer variable equal to 1 if |w; —v}| > ¢, 0 otherwise. Because of the
integer nature of variables y;, this approach belongs to the class of Integer Problems
which have a higher computational complexity than Linear-Quadratic Programming.

Both heuristics provide reasonable predictions: while MOMA seems to provide a
more reliable description of what happens shortly after a perturbation, ROOM seems
to capture better a later (but not specified) stage in the metabolic adjustment.
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1.3 Linear programming and duality theorem

The final step of FBA is an optimization problem. In particular, it consists of a con-
vex optimization since both constraints and cost functional are linear (the convexity
is preserved also in the case of MOMA based on the Euclidean L? norm). Therefore,
linear optimization (known as Linear Programming, LP) can be straightforwardly
applied. LP is based on very efficient algorithms which have been introduced since
its development by Leonid Kantorovich in 1939. Kantorovich developed the earliest
linear programming problems during the second World War to plan expenditures
and returns of army in order to reduce costs. After the ending of the war, many
industries used it in their daily planning. For military reasons, the method was kept
secret until 1947 when George Dantzig published the simplex method and John von
Neumann developed the theory of duality as a linear optimization solution, apply-
ing it in the field of game theory. Further details can be found in the books of J.
Matousek and B. Gérter [26] and of A. Schrijver [27].

A standard way of describing a linear programming problem consists of the fol-
lowing three parts (in order to highlight the link with the FBA formulation presented
above, the unknown variable is denoted by the vector v € R"):

® Constraints: because of linearity, they can be written in general as a set of
equalities
Aqu = Ceq

and a set of inequalities
Ainqu < Cineq-

Without loss of generality, we can merge them in the following expression:

Av <, (1.6)

TCT

eqs Cineq) 18 @ column vector.

where A = [ALT = AT

eq’ ineq]T is a matrix and ¢ = [c 7

® Nonnegative variables: in standard form, only nonnegative values for the
variables are considered:

v >0 Vi=1,...,r (1.7)

® Cost functional ¢: it is defined by the inner product with a given vector b:

p(v) =Dblv. (1.8)

A linear programming problem may have no solution, one (and only one) so-
lution, or an infinite number of solutions. This can be easily assessed by simple
algorithms which scale polynomially with the size of the problem.
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Table 1.2: Dualization recipe: nonnegativity and nonpositivity requirements for the vari-
ables are not counted among the constrains [26].

Primal problem Dual problem
Variables V1, V2, ..., Uy W1, W, ..., Ws
Matrix A AT
Right-hand side c b
Cost function max b’v min c¢/'w
Constrains i-th constraint has < w; >0
i-th constraint has > w; <0
i-th constraint has = w; € R
v; >0 j-th constraint has >
v; <0 j-th constraint has <
v; €R j-th constraint has =

Duality theory

Every linear programming problem, referred to as a primal problem, can be con-
verted into a dual problem which provides an upper bound to the optimal value
of the primal problem. In matrix form, if the primal problem is formulated in its
standard form:

Maximize b’ v subject to Av<c¢c, v>0,
the corresponding symmetric dual problem is
Minimize ¢w subject to ATw >b, w>0,

where w is the vector of dual variables.

Table 1.2 reports a summary of the rules for writing the dual of a generic formulation
of the primal problem.

The importance of the dual problem lays in the Strong Duality Theorem of LP: [27]:

Theorem 1. Let A be a matriz, and let b and ¢ be vectors. Then
max{b’ v such that Av < ¢, v> 0} = min{c’ w such that ATw> b, w> 0},

provided that both sets are not empty.

This means that at the optimum, primal and dual cost functionals are equal. As a
consequence, imposing the equality

blv =cl'w, (1.9)
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Figure 1.5: LP vs MILP. (a): Sketch of a LP maximization. This problem is the relaxed
form of the MILP reported in (b). Relaxed solution (red dot) always lays on an edge of the
polytope. (b): in MILP, gray dots are unfeasible points. The optimal MILP solution (red
dot) cannot have a cost functional ¢ higher than the relaxed solution.

and adding the dual constraints to the primal constraints, the resulting polytope
will be constituted only by the optimal solution of the primal problem.

In the following chapters this theorem is frequently applied in order to solve all
bilevel optimizations (i.e. two nested optimizations) we obtain during the develop-
ment of new algorithms.

Mixed Integer Linear Programming (MILP)

If some of the unknown variables are required to be integers, then the problem is
called a Mixed Integer Linear Programming (MILP) problem (as mentioned ROOM
belongs to this class, see Equation 1.5). In contrast to LP, these problems are
generally NP-hard, i.e. the computational times scale more than any polynomial
function of the number of integers. Advanced algorithms for solving integer linear
programs include: (i) cutting-plane method; (ii) branch and bound (and its variations
such as branch and cut, branch and price [28, 29]); (iii) delayed column generation
(if the problem has some extra structure). One of the complications origins from
the lack of convexity: indeed, the set of feasible points defined by the constraints is
not convex (in particular it is not even connected since it is a set of isolated points;
see Fig. 1.5b).

Normally, the optimization starts with the so-called “relaxed problem”: the
LP relaxation of a {0,1} integer program is the problem that arises by replacing
the constraint where each variable must be 0 or 1 by a weaker constraint where
each variable belong to the interval [0, 1] (relaxed variables). The solution of the
relaxed problem provides an upper (lower) bound on the maximized (minimized) cost
functional (see Fig. 1.5). Then, depending on the procedure, the relaxed variables
are converted one by one to integer. In the following we do not enter into the
details of these algorithms: however, it is worth noting that the duality theorem
does not apply to MILP. For this reason, approaches like ROOM, which refer to
integer quantities cannot be used in any primal problem.



Chapter 2

Drug synergisms for human
metabolic diseases and cancer

2.1 Background

In spite of the advances in molecular and computational biology, the discovery of new
drugs still remains a challenging task which requires a very long period of research
and development before any new compound can be commercialized. A possible al-
ternative to the search of new active compounds is to make use of the unexploited
properties of already available drugs, since a wide knowledge about both their ther-
apeutic and toxicity effects has already been gathered during the study for their
approval. In this perspective, a natural approach to broaden the range of appli-
cations of the existing drugs is to try to combine them in multiple drug therapies
[30, 31, 32]. However, even though both the financial burden of conducting trials as
well as the risk of adverse events in trial populations is expected to be sensibly lower
for already approved drugs, so far the experimental investigations of multicompo-
nent therapies have been quite limited [33, 34]. Major obstacles to this approach are
the high number of possible combinations but also our limited understanding of the
complex mode of action of a multidrug treatment. Indeed, multiple perturbations
can show three types of interactions, which have been classified as synergistic, an-
tagonistic and additive [35]. We focus our attention on the first type, where the use
of drug combinations represents an enhancement with respect to the superposition
of the single perturbations.

In order to identify synergistic effects, Ref. [33] experimentally investigated all
pairs of a set of known drugs at different doses, obtaining a functional classification
of the interactions by looking at their inhibitory effect. Various computational ap-
proaches, based on reconstructed genome-scale metabolic networks, have been also
developed in Refs. [36, 37, 24, 38] for the identification of synergistic effects trig-
gered by multiple drugs or multiple genetic perturbations (for example the so-called
“synthetic lethality”). Unfortunately, a systematic evaluation of the effects of all
possible combinations of drugs is unfeasible, because their number scales exponen-
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tially with the number of chemicals taken into account (for an exhaustive search over
40 drugs, more than a trillion possible combinations should be tested). Moreover, a
drug profile is given by both its therapeutic effect and by its side effect, the latter
being related to its selectivity. For example, drugs such as anticancer agents have
to selectively act only on tumor cells [39]. Similarly, metabolic diseases are induced
by the imbalance of key metabolic pathways which, if modulated without affecting
other vital functions, can rescue from the pathology [40, 41].

Referring to these specific needs, we have developed an algorithm based on the
metabolic network of humans and on the comparison between the metabolic net-
works of human and cancer cells (as reconstructed recently in [2]) aimed at expanding
the spectrum of applications of the existing drugs to new selective multidrug thera-
pies. In particular, the algorithm has been applied to two different case studies:

©® finding drug synergisms for metabolic diseases (like diabetes, obesity and
hypertension) on the human network [16];

©® finding antitumoral drug combinations (i.e. that are lethal for the cancer
metabolic network) with minimal side effect on the normal human cell.

The computational method is based on FBA and relies on a bilevel optimization
which, after reformulation through duality theory, allows the algorithm to efficiently
search the interactions between drugs. Inspired by works such as Refs. [21, 22], we
treat the inhibition of a metabolic reaction induced by a drug as the silencing of the
gene which codes for the catalyzing enzyme (i.e. the simple ON/OFF description of
the drug effect is adopted). In spite of this simplified framework, the synergistic effect
resulting from multiple perturbations of the metabolic network is still well captured
[37, 3] (see Figure 2.1 for a toy example). The selectivity of any drug treatment is
correlated to its side effect, which is estimated as the number of stopped reactions
(see Figure 2.1(c) ws (d)) plus a correction term for the known non-metabolic targets.
Further details are described in the Section 2.2. It is worth noting that, because
of the steady-state assumption of FBA, this formalism does not identify synergisms
between drugs that manifest themselves as alterations of kinetic parameters and
consequently of concentration of metabolites, like the case of drugs which act on the
same linear path (as e.g. Trimethoprim and Sulfamethoxazole do on folate synthesis
[42]). Similarly, interactions where for instance one drug inhibits the biodegradation
of the others cannot be found by FBA-based methods [43].

2.1.1 State of the art

With respect to the available literature the procedure, we are proposing presents
at least three important differences: (i) the synergisms are efficiently explored over
all drug combinations without limiting only to pairwise combinations but without
doing an exhaustive search, thanks to the application of duality theory; (ii) the
multiple drug treatments suggested by the method guarantee both the inhibition of
the chosen target (efficacy) and a minimal side effect on the other cellular functions
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Figure 2.1: Example of drug synergism in FBA. For the toy network depicted in (a)
the aim is to stop the objective reaction v1g (in red) by choosing a combination of drugs
(the three valves “x”) while blocking the minimum number of reactions other than vig. In
the drawing, blue arrows indicate active fluxes while gray arrows refer to stopped reactions;
the valve is red if the drug is used, gray otherwise. Panel (b) shows how the use of a
single drug (v4 or v7) does not stop the objective reaction, while the drug at ve blocks the
objective reaction v1g but it also blocks all fluxes of the network (panel (c)). Therefore,
the optimal drug combination blocking the objective function v19 with minimal side effect
is given by the synergism of the two drugs acting at v4 and v7 (panel (d). The comparison
of panels (b) and (d) shows how a synergism is a behavior which cannot be simply inferred
by the superposition of the effects of the single drugs, but that structurally depends from
the topology of the network.

(selectivity); (iii) in our procedure, any metabolic process of the network can be
chosen as possible disease and phenotype readout, not only cell growth as common
in the FBA literature.

We present here a quick overview of the literature and of the main computational
methods which investigate drug synergisms (or synergisms induced by other network
perturbations, like gene knockout). We list them from the most similar to the most
different with respect to our algorithm, underlying the main discrepancies.

OPTKNOCK AND OPTORF [24, 44]: the two works aim to find the best knockout
(simple or multiple, up to a limit in cardinality fixed by the user) that maximizes
the biosynthesis of a given metabolite while optimizing the biomass production.
Both methods are based on FBA (OptOrf includes also some transcriptional reg-
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ulations). The bilevel optimization contained in both algorithms has been refor-
mulated through the duality theory, which assures the computational efficiency of
the method. Indeed, we have been inspired by these works in developing of our
algorithm.

ESSENTIALITY AND SYNTHETIC LETHALITY [36]: Through an algorithm which
is similar to Optknock, this work identifies pairs, triple and some high-order gene
deletions which are lethal in the Escherichia coli metabolism. Also in this method,
the optimization is based on the biomass and does not consider any alternative
objective reaction.

OPMET ([38]: the aim is to search the gene knockout (of any cardinality) which
stops a given objective reaction while inducing the minimum damage on the network
(estimated as number of stopped reactions and unavailable metabolites). The ap-
proach used to model the network is similar to FBA but with a weaker assumption
on the steady state: for instance, accumulation of metabolites is allowed. The search
on the space of the combinations is performed dynamically through a branch-and-
bound algorithm, refined with two filtering strategies. Properties of LP, like duality
theory, which are useful for the efficiency of the algorithm have not been exploited.

EPISTASIS IN HUMAN METABOLISM [45]: gene epistasis has been here investigated
through FBA formalism; no limitation on the cardinality of the gene deletions is
imposed. However, since the search is based on an approximate determination of the
elementary modes (called “pathway fragment generation”), solutions are suboptimal.
An exact calculation of the elementary modes would have been computationally
much more expensive and almost prohibitive for a large network such as the human.
Moreover, no information on the side effect on the whole network is included.

EPISTASIS IN YEAST METABOLISM [37]: epistatic interactions are here studied
performing an exhaustive search of all pairs of gene knockouts on the S.cerevisiae
network modeled according to FBA; the effect is characterized through an epistasis
indicator which quantifies the change of the biomass production of the multiple
perturbation with respect to the two single perturbations. No objective reaction
other than growth rate has been considered.

DRUG TARGETS IN CANCER [2]: also in this case only an exhaustive evaluation
of all pairs of knockouts has been carried out; moreover, the side effect of the po-
tential antitumoral treatments on the normal human cell is estimated in terms of
ATP production, a central process in the metabolism. However, according to this
evaluation criterion, all the antitumoral solutions we discuss below would induce the
same impact on the human network, meaning that this definition of side effect is
not able to discriminate among different drug treatments, while our definition does
(see Table 2.5 in the following). Indeed, instead of considering a single reaction, our
approach estimates the impact as a global loss of cellular functions, which in our
opinion is reasonable since no tissue-specific network of the human metabolism is
available at the moment.
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2.2 Materials and Methods

2.2.1 The algorithm: bilevel optimization

The drug-synergism algorithm is developed in the framework of FBA; in particular,
we suppose to have a metabolic network (with m metabolites and r reactions) and a
set of d drugs which inhibit some reactions of this network (the set of targets of the
k-th drug is indicated by 7). By decomposing any reversible reaction in a couple
of irreversible reactions, we can always assume that fluxes have non-negative values.
Then, the optimal synergism problem can be stated as follows:

Problem: Given:

e a metabolic network, which means a stoichiometric matriz S € R™*"
and a vector of flures v with upper-bounds U, both laying in R";

e an objective reaction flur voy; which has to be stopped;
e the set of d drugs together with their inhibition targets {Ty}k=1,. d;

we want to find the subset of drugs such that it blocks vep; causing the
minimal side effect, i.e. a minimum perturbation on the overall reaction
fluxes.

Of course, we are not interested in procedures which perform an exhaustive
search in the space of all drugs combinations.

The space W of all possible steady-state fluxes v as defined by FBA is
W:={v:8v=0, 0<v;<U; Vj=1,...,r},

where v; and Uj are the j-th components of the vectors v and U respectively. Given
the inhibition targets of each drug, we assume that a drug inhibits completely the
enzymes responsible for the targeted reactions, hence stopping the relative fluxes
(the ON/OFF approach). Therefore, using a drug combination on the network
means forcing (directly or indirectly) to zero some of the fluxes. We define a drug
combination by means of the “inhibition vector” h € {0,1}% such that

b — 0 if drug k induces no inhibition of its targets, i.e. drug k is not used;
T 1 f drug k induces 100% inhibition of its targets, i.e. drug k is used;

Then, if the k-th drug targets the j-th reaction we write:
vy < Uj(l — hk)

This reduces the space of feasible steady state fluxes to a subset W (h) C W (notice
that W(0) = W).
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We can now introduce a definition which quantifies the side effect, o(h), of a
drug combination h on the reaction fluxes. Clearly, there are many possible def-
initions. If we were dealing with microorganisms we could adapt to our situation
the analogous MOMA or ROOM criteria [21, 22] modeling the perturbation on the
fluxes (induced by knockout of one or more enzymes) with respect to the “wild
type” fluxes. This requires, however, to know the unperturbed fluxes (the wild type
reference) which for a microorganism corresponds to using the biomass production
as cost functional of the FBA problem [20]. Unfortunately, for human metabolic
network such a commonly accepted FBA criterion is unavailable, because human
cells are normally not assumed to be maximizing their growth rate (they do not
proliferate). Hence, an easy way to determine the metabolic fluxes for the unper-
turbed network (“wild type”) is not immediately available. Consequently, also the
calculation of the perturbed fluxes and the quantification of the side effect are more
ambiguous. Our choice in this work is to quantify the side effect as number of
stopped reactions (more precisely, the number of reactions that cannot take place
because of the drugs). This bypasses the lack of the reference fluxes and allows to
quantify the number of cellular functions which are no longer available, regardless
of the type of tissue to which the human cell belongs.

Since the available drugs we selected do not have only metabolic targets, a mea-
sure of the side effect based exclusively on metabolic reactions disregards the per-
turbation induced by the drugs on other cellular functions (for example signaling
cascades, protein synthesis, etc). This additional information can be incorporated
in the model weighting each drug variable hj in the objective function according to
its non-metabolic effects. Following this approach, we define:

T d
h) .= i 11—y, hi; 2.1
o(h) ngl‘}r(lh)jzl( y;)%—éﬁk k; (2.1)

where the parameter Jj is an estimation of the non-metabolic perturbation induced
by drug k£ and y; is a binary variable such that y; = 0 when the flux of reaction j
is lower than a threshold ¢ (¢ = 0.1 in this work); this threshold effect on the fluxes
can be inserted in our problem by appending the following linear inequalities to the
set of constraints of the problem:

ey; < vj Vi=1,...,7;
Ujy; > vj Vi=1,...,7

In order to avoid a double count, for reversible reactions (split in two opposite fluxes)
we impose also the additional constraint

yi+y <1 Vjandl=1,...,r such that v; and v; are opposite fluxes.

Although the choice of the weights (i is quite arbitrary, we have tried to evaluate
both terms of (2.1) using a homogeneous criterion; this is achieved by relating
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the values of (B to the number of known non-metabolic targets of each drug. In
particular we set:

By := [ - [number of non-metabolic targets of drug k],

where the numerical coefficient 3 aims to capture both the direct and the indirect
(i.e. propagated) effect of the perturbation across the non-metabolic functions of the
cell. However, because of the lack of a model for the description of the propagation
of this perturbative effect, we perform the estimation referring to the metabolic
networks. In this perspective, 3 is estimated by the ratio between the total number
of metabolic reactions that are stopped (directly and indirectly) by a drug and
the total number of targets inhibited (directly) by the same drug. Referring to
the human metabolic network and averaging over all drugs we selected, we obtain
B="1.T.
The optimal solution can be described as follows:

Solution: For any subset of drugs (i.e. for any vector h), we can find
the set W (h) and the perturbation o(h). By restricting to drug combina-
tions which guarantee the inhibition of the objective reaction, i.e. such that
maX ey (n) (Vobj) = 0, the optimal solution h* is

h* = arg min o(h). (2.2)

he{0,1}9 :
maXye w (k) (Vobj ) =0

The resulting bilevel optimization is a min-max integer linear programming prob-
lem [46]. The inner problem adjusts the fluxes in order to achieve the mazimum flow
for the objective reaction when all fluxes are subjected to the inhibitions (drugs) im-
posed by the outer problem and to the stoichiometric constraints. The outer problem
selects the combination of drugs which minimizes the side effect, restricting to those
solutions of the inner problem which guarantee no flow for the objective reaction.

The bilevel optimization problem is the following:

Minimize »7_;(1—y;) + Zizl Brhi + b Eizl hi “outer problem”
such that
Maximize vgp; “inner problem”
such that

Z;lei,jvj =0 Vi= 1,...,m
’l}jSUj Vj:L...,T
Vj SUJ(l—hk) Vi=1,...,r,j € Tp;
Vob; = 05
SijUj Vj:L...,T;
ijjZUj Vj:1,...,’l";
yi+y <1 Vj=1,...,r such that v; is the opposite flux of v;,
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where the parameter b < 1 (b = 0.001 in this work) is introduced in the objec-
tive function of the outer problem in order to exclude the combinations containing
redundant inhibitions and to avoid an “over-selection” of drugs.

To solve this bilevel optimization we apply the strong duality theorem (1.9)
which consists in appending a list of constraints corresponding to the dual of the
inner problem and setting the primal objective function equal to the dual. This
leads to a single minimization problem. Dual variables are identified as follows
(see Table 1.2 for details on their range of values): pi,...,pu, € R are the dual
variables associated to the first m constraints of the inner problem (steady state);
Ayeey Ar € Ry (= 377 |7j]) are the dual variables associated to the second
set of constraints of the inner problem (upper bounds); and 6;,...,6; € Ry are
associated to drugs targets, i.e. to the third set of constraints of the inner problem.

The final optimization problem becomes:

T

d d
Minimize Z(l —y;) + Z Brhy, + bz I,
j=1 k=1 k=1
such that

r
ZSi,jvj:0 Vi:1,...,m;
j=1

v; < Uj Vi=1,...,7;
v SU(1—hg)  Vi=1,...,1,j € Ti;
m Ny j
D SigmitAi+Y 6>0  Vi=1,...7,j#{obj}
=1 i=1

m Ny j
Y Signi+ A+ 8i=1;  for j = obj;
i=1 i=1

Vobj = § Ui [/\z' + d; E (1- hk)}s (2.3)
=1 keTi
Vobj = 0;

ey < vj Vi=1,...,7;
ijjZ’Uj Vj:L...,?“;
yi+ty <1 Vj=1,...,7 | v is the opposite flux of v;.

The key simplification is that the nonlinear terms d;hr =: z;; in (2.3) (the strong
duality theorem equality) are exactly linearizable as follows:

0 < zip <6;""hy,

0 = 07" (1 — hy) < zip < 65

where is the upper bound for the dual variable §; (chosen arbitrarily high in
the implementation).

max
51'
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2.2.2 Algorithm for competing organisms

The following version of the algorithm allows us to study the selectivity problem
in a multi-network context, in which we would like to stop an objective reaction
belonging to a first organism (in our case the proliferation rate wpiomass Of & tumoral
cell whose fluxes are denoted here by w, stoichiometric matrix by S € R™*" and
upper bounds by fJ) while having a minimal effect on a second metabolic network (a
normal human cell in our case). Since the two cells live in the same environment they
experience the same drug inhibitions. The modified bilevel optimization problem is
as follows:

Minimize Y ; (1 —v;)+ Zzzl Brhi + b Zgzl hi “outer problem”
such that
Maximize Wpiomass “inner problem”
such that
iy Spiw; = 0;
w; < Uj;

Wy S Uz(l — hk);
> i1 Sigvi = 0;
’Uj S Uj;
v; < Uj(1 = hy);
Whiomass = U;
eY; < vj;
ijj Z vj.

The constraints on the second network (Sv = 0, thermodynamical bounds v; < Uj
and drugs inequalities v; < U;(1 — hy)) are located only in the outer problem.
Therefore, they do not interfere with the inner problem and with the application of
the duality theorem for the first network. This separation guarantees the constraint
max(Whiomass) = 0 and the optimality of the solution. Of course, also here the strong
duality theorem is applied and the bilevel optimization is converted to a single step
minimization.

The code for the algorithm has been developed in MATLAB (MathWorks R2010b).
All MILPs have been performed using the ILOG-IBM CPLEX 12.1, under free aca-
demic license.

2.2.3 Metabolic networks

Two metabolic networks are used in this study: (i) human network developed in
[16]; (ii) cancer network reconstructed in [2]. Some features of these two metabolic
networks are listed in Table 2.1, together with the number of drugs currently ap-
proved.
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Table 2.1: Features of used metabolic networks. The human network has been obtained
from BIGG (bigg.ucsd.edu/), whereas the cancer network has been provided us by the
authors of [2]. The number of reactions here reported is before the splitting of every reversible
process in a pair of irreversible reactions.

Human [16] Cancer [2]
Number of reactions (r) 2469 940
Number of metabolites (m) 1587 654
Number of compartments 8 8
Number of pathways 83 62
Number of drugs (d) 85 55

2.2.4 Selection procedure for the drugs

In order to generate realistic solutions, the available information about the exist-
ing drugs has been carefully filtered, selecting only inhibitions of metabolic human
targets that have been experimentally proven (see Table 2.2). On the DrugBank
database (www.drugbank.ca [47]) the following query is adopted:

1. the whole database contains 6708 drugs;
2. only approved drugs have been picked out, restricting the search to 1570 drugs;

3. we filter for drugs which act on human enzymes (identified by the EC number):
the set reduces to 473 drugs;

4. we select only drugs for which an inhibitory effect on at least one enzyme
of the human metabolism has been experimentally proven. The set reduces
to 267 drugs (with the EC numbers of the inhibited enzymes). For these
drugs, we count the number of non-metabolic targets, including also cases of
agonism, antagonism and activation, since they all represent a perturbation to
the regular functioning of the target (activation is not considered for metabolic
targets because it does not affect the number of stopped reaction in our FBA
formulation);

5. the reactions of the metabolic network directly inhibited by each drug are
identified through the available correspondence between EC numbers of the
inhibited enzymes and the gene codes first, and then through the correspon-
dence between gene codes and metabolic reactions. During this step, it may
happen that many genes, and hence many reactions, are associated to the
same EC number. Therefore, although in the original database a drug inhibits
only a single or a few targets, the number of metabolic reactions affected by
the drug can be high. For instance, this is the case of Rosiglitazone (drug
#7 in Table 2.2) which inhibits a single target, the long-chain-fatty-acid-CoA
ligase an enzyme responsible for the binding of the acyl-CoA group to a long
fatty acid chain. Since the substrate of this enzyme can be any carbon chain,
regardless of the unsaturation (presence or not of double bonds C=C) and of
the exact length (it just requires a chain longer than 12 carbons atoms), we
end up with a drug which inhibits up to 60 metabolic targets;
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6. drugs which have exactly the same metabolic targets are grouped; the final
85 groups are listed in Table 2.2. For each group only a representative is
reported, namely the drug which has the minimal number of targets outside
the metabolism.

2.3 Human metabolic diseases: results

In this section, we consider the inhibition of specific functions of human metabolism
obtained without impairing other vital processes. First, the inhibitory effect of each
single drug on the whole network has been calculated. Then, the following screening
is performed: we systematically consider each reaction of the network as a potential
objective function and we apply the algorithm, searching for the most selective
synergism capable of blocking this objective reaction. Comparing this solution with
the single-drug effects evaluated in advance, we distinguish three cases:

a) the drug combination leads to a new inhibition since no single drug can stop
the objective reaction;

b) the objective reaction can be stopped also by a single drug but the drug com-
bination is more selective (has a minor side effect);

c¢) the objective reaction can be stopped also by a single drug and the multiple
drug solution is less selective (this solution is not interesting because it triggers
a larger side effect).

In all cases where a single or a multidrug solution is found, also all suboptimal
solutions are hierarchically identified, iterating the procedure while excluding the
current optimum, until the problem becomes unfeasible (i.e. no more solutions exist,
capable of blocking that objective reaction). At the end of the screening, we obtained
a set of 32 multicomponent solutions, ranging from combinations of two up to four
compounds (see Table 2.3).

The following characterization of the synergistic effects is performed. For each
combination we identify the set Y of metabolic reactions which cannot be stopped
by any single drug of the combination, but which are stopped when all these drugs
are used together. Then, the synergism is described by the vector s € {0,1}", where
sj = lif reaction j belongs to Y. From the vectors s of the 32 multiple drug solutions
a matrix of distances is constructed and a cluster analysis is performed on these
distances; the resulting distance-based tree (similar to a phylogenetic tree) is drawn
in Figure 2.2 (upper panel). The synergisms are clustered in six classes (with clearly
identifiable subclasses in some of them) labeled from “A” to “F”. This classification
can be used to build also a proximity network for the drugs, linking those that
belong to the same synergistic interaction. The outcome is drawn in Figure 2.2
(lower panel) and shows that the same clustering applies to the drugs involved in
the synergisms. The result highlights how drugs can often be used in alternative
one to the others: for example, the synergistic pairs of class C contain one drug
among those labeled with the number 7 or 55 (Rosiglitazone or Acetylsalicylic acid)
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Table 2.3: Multiple drug solutions in the human metabolic network. For each
solution, the table reports the side effect o(h), the synergism size (i.e. the number of stopped
reactions which exceeds the linear superposition of single drug effects), the ratio between
these two quantities, and their classification (see Figure 2.2 and text for the clustering
analysis). Drug numbers refer to Table 2.2. Bold font indicates that the solution (or part
of it) has an experimental validation in literature.

Drugs Side eff. Syn. ratio Class
Rosiglitazone (#7) - Quinacrine (#36) - Cerulenin (#62) - Tyloxapol (#385) 363.8 91 25.0% A
Rosiglitazone (#7) - Quinacrine (#36) - Orlistat (#65) - Tyloxapol (#85) 377.7 91 24.0% A
Rosiglitazone (#7) - Indomethacin (#22) - Cerulenin (#62) - Tyloxapol (#85) 390.6 91 23.2% A
Rosiglitazone (#7) - Diclofenac (#35) - Cerulenin (#62) - Tyloxapol (#385) 397.5 91 22.8% A
Rosiglitazone (#7) - Indomethacin (#22) - Orlistat (#65) - Tyloxapol (#85) 404.5 91 22.4% A
Rosiglitazone (#7) - Diclofenac (#35) - Orlistat (#65) - Tyloxapol (#85) 411.4 91 22.1% A
Rosiglitazone (#7) - Cerulenin (#62) 298.9 52 17.3% A
Rosiglitazone (#7) - Orlistat (#65) - 312.8 52 16.6% A
Indomethacin (#22) - Fomepizole (#75) 84.7 1 1.1% B
Naftifine (#43) - Acetylsalicylic acid (#55) 116.0 6 5.1% C
Acetylsalicylic acid (#55) - Tioconazole (#60) 116.0 6 5.1% C
Simvastatin/Pravastatin (#4) - Acetylsalicylic acid (#55) 123.9 6 4.8% C
Rosiglitazone (#7) - Tioconazole (#60) 280.9 6 2.1% C
Rosiglitazone (#7) - Naftifine (#43) 280.9 6 2.1% C
Simvastatin/Pravastatin (#4) - Rosiglitazone (#7) 288.8 6 2.0% C
Carbidopa (#6) - Droxidopa (#24) 93.1 1 1.0% D
Droxidopa (#24) - Selegiline (#45) 96.1 1 1.0% D
Droxidopa (#24) - Minaprine (#49) 152.4 1 0.6% D
Droxidopa (#24) - Zonisamide (#54) 289.7 1 0.3% D
Mycophenolic acid (#42) - Mercaptopurine (#58) 11.0 5 45.4% E
Ribavirin (#51) - Mercaptopurine (#58) 23.9 5 20.9% B
Udenafil (#10) - Mycophenolic acid (#42) - Mercaptopurine (#58) - 18.0 7 38.8% B
Mycophenolic acid (#42) - Dipyridamole (#57) - Mercaptopurine (#58) 22.0 7 31.8% E
Udenafil (#10) - Ribavirin (#51) - Mercaptopurine (#58) 30.9 7 22.6% B
Ribavirin (#51) - Dipyridamole (#57) - Mercaptopurine (#58) 34.9 7 20,0% E
Theophylline (#18) - Mycophenolic acid (#42) - Mercaptopurine (#58) 41.7 7 16.7% E
Mycophenolic acid (#42) - Pentoxifylline (#50) - Mercaptopurine (#58) 53.8 7 13.0% E
Theophylline (#18) - Ribavirin (#51) - Mercaptopurine (#58) 54.6 6 10.9% E
Pentoxifylline (#50) - Ribavirin (#51) - Mercaptopurine (#58) 66.7 6 8.9% E
Pentoxifylline (#50) - Arsenic trioxide (#72) 118.2 17 14.3% F
Cladribirne (#16) - Pentoxifylline (#50) 118.2 17 14.3% F
Gemcitabine (#30) - Pentoxifylline (#50) 157.8 15 9.5% F

in combination with one drug among number 4 or 43 or 60 (Pravastatin or Naftifine
or Tioconazole; see Table 2.2 for all correspondences between names and numbers).
Being the cardinality of class C equal to 6, we can deduce that these solutions
are generated only by the combination of the pair and the triplet just mentioned.
Three exceptions to the sharp clusterization of Figure 2.2 are represented by drugs
labeled with the numbers 7, 22 and 50, respectively Rosiglitazone, Indomethacin and
Pentoxifylline. Indeed Rosiglitazone targets many metabolic reactions (60, all in the
fatty acid metabolism) which allow two types of interaction: class A for fatty acid
activation and class C for cholesterol metabolism. On the other hand, Indomethacin
causes only 7 inhibitions, some belonging to glycerolphospholipids metabolism and
some others to pyruvate pathways: the first interact synergistically with drugs which
target fatty acid reactions (class A), whereas the second can be combined with drugs
acting on pyruvate metabolism (like Fomepizole, drug number 75, in class B). Finally,
Pentoxifylline inhibits reactions both in the salvage pathway for nucleotides (which
give synergisms in class E) and in pyrimidine catabolism (class F).

The analysis of the complete results obtained from the screening over all metabolic
reactions is shown in Figure 2.3, where the stopped reactions are grouped on the ba-
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Figure 2.2: Classification of the synergisms for the human metabolic network. Top
panel: Each leaf of the tree represents a multidrug solution that we have found. The layout
of the graph is obtained through the same method used for phylogenetic trees (a distance
tree, see text) and manifestly shows the clustering of these synergisms; the six clearly visible
classes have been labeled with letters (from “A” to “F”). Names of the pathways mainly
affected by each class are reported near the clusters. Details of the metabolic functions to
which these classes of synergisms correspond are given in Figure 2.3. Bottom panel: This
network of drugs represents a detailed characterization of the classes of synergisms. Each
drug is indicated by a circle whose radius is proportional to the number of its direct targets
(drugs are labeled with numbers according to Table 2.2). Each synergism is drawn as a
colored line which connects the drugs involved (each synergism has its own color and the
line thickness is proportional to the number of stopped reactions). Even in this more detailed
representation, the six classes are still visible. Some subclasses can also be identified: drug
pairs (7, 62) and (7, 65) in class A and drug pairs (42, 58) and (51, 58) in class E (indicated
with dotted lines) exploit part of the synergism of the entire class; indeed these 4 pairs are
the isolated leaves in the corresponding clusters in the top panel. Note the role of drugs 7,
22 and 50 in bridging classes A-C, A-B and E-F.
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Figure 2.3: Drug synergisms for the human metabolic network. Left panel: For
each affected pathway, the histogram reports the number of objective reactions which can
be stopped; gray-scale bars represent reactions stopped only by a Single drug or multidrug
solution, classified as New inhibition (meaning that no single drug is capable of triggering the
inhibition), More selective and Less selective inhibitions (referring to the case where both
single and multiple drug treatments are possible and the multiple one has respectively a lower
and a higher side effect). Right panels: The two plots refer to multiple drug solutions only.
For the same pathways, we report here the fraction of the direct drug targets and the fraction
of the synergistic inhibitions which are induced by the six classes of synergisms (shown in
Figure 2.2): the comparison between the two stacks shows that synergistic interactions can
occur on pathways that are not direct targets of the drugs. See also Table 2.4.
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Figure 2.4: Side effects comparison. Histogram analysis of the size effect induced by
single durg and by multiple drug solutions.
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Table 2.4: List of the inhibitions on human metabolism obtained by multiple drug
solutions. The reactions are sorted according to the pathway they belong. The solutions
are classified as New inhibition, More selective and Less selective from a comparison with
a possible single drug treatment; this information is reported in the third column. Last
columns reports the class of the synergistic combination which cause the inhibition of the
objective reaction (see Figure 2.2).

OBJECTIVE REACTION SYNERG.

Name Pathway Type Class.
Proline dehydrogenase Arginine and Proline Metabolism New C
C160 transport into the mitochondria Carnitine shuttle Less A
C161 transport into the mitochondria Carnitine shuttle Less A
C180 transport into the mitochondria Carnitine shuttle Less A
C181 transport into the mitochondria Carnitine shuttle Less A
carnitine fatty-acyl transferase Carnitine shuttle Less A
carnitine O-palmitoyltransferase Carnitine shuttle Less A
carnitine O-stearoyl transferase Carnitine shuttle Less A
carnitine octadecenoyl transferase Carnitine shuttle Less A
carnitine transferase Carnitine shuttle Less A
R group transport into the mitochondria Carnitine shuttle Less A
transport into the mitochondria (carnitine) Carnitine shuttle Less A
sterol O-acyltransferase 1 Cholesterol Metabolism Less A
dephospho-CoA kinase CoA Biosynthesis New A
3’,5’-Cyclic GMP exchange Exchange New E
(R)-Pantothenate exchange Exchange New A
Ceramide 1-phosphate exchange Exchange New A
cholesterol ester exchange Exchange Less A
L-Phenylalanine exchange Exchange New D
Beta oxidation of fatty acid Fatty acid oxidation Less A
Beta oxidation of long chain fatty acid Fatty acid oxidation, peroxisome New A
Beta oxidation of long chain fatty acid Fatty acid oxidation Less A
fatty acyl-CoA desaturase (n-C18:1CoA -> n-C18:2C0A) Fatty acid elongation New A
stearoyl-CoA desaturase (n-C18:0CoA -> n-C18:1CoA) Fatty acid elongation New A
choline phosphatase Glycerophospholipid Metabolism Less F
phosphatidate cytidylyltransferase Glycerophospholipid Metabolism Less F
5’-nucleotidase (GMP) Nucleotides More E
CTP synthase (NH3) Nucleotides Less F
cytidine kinase (ATP) Nucleotides New F
cytidylate kinase (CMP),mitochondrial Nucleotides Less F
GMP reductase Nucleotides New E
guanylate cyclase Nucleotides New E
guanylate kinase (GMP:ATP) Nucleotides New E
nucleoside-diphosphate kinase (ATP:CDP), mitochondrial Nucleotides Less F
ribonucleoside-diphosphate reductase (GDP) Nucleotides More E
aspartate carbamoyltransferase (reversible) Pyrimidine Biosynthesis Less F
carbamoyl-phosphate synthase (glutamine-hydrolysing) Pyrimidine Biosynthesis Less F
CTP synthase (glutamine) Pyrimidine Biosynthesis Less F
dihydoorotic acid dehydrogenase (quinonel0) Pyrimidine Biosynthesis Less F
dihydroorotase Pyrimidine Biosynthesis Less F
orotate phosphoribosyltransferase Pyrimidine Biosynthesis Less F
orotidine-5’-phosphate decarboxylase Pyrimidine Biosynthesis Less F
hydroxyacylglutathione hydrolase Pyruvate Metabolism New B
R group artificial flux R Group Synthesis New A
R group to palmitate conversion R Group Synthesis Less A
R total flux R Group Synthesis New A
3-Dehydrosphinganine reductase Sphingolipid Metabolism New A
Ceramide kinase Sphingolipid Metabolism New A
dihydroceramide desaturase Sphingolipid Metabolism New C
serine C-palmitoyltransferase Sphingolipid Metabolism New A
ATP transporter, peroxisomal Transport, Peroxisomal New C
cGMP transport (ATP-dependent) Transport, Extracellular New E
cholesterol ester transporter Transport, Extracellular Less A
crmp hs transport Transport, Extracellular New A
cytidine facilated transport in mitochondria Transport, Mitochondrial Less F
Diphosphate transporter, peroxisome Transport, Peroxisomal New C
fatty acid retinol efflux Transport, Extracellular New A
intracellular transport Transport, Mitochondrial Less F
NADP transporter, peroxisome Transport, Peroxisomal New C
NADPH transporter, peroxisome Transport, Peroxisomal New C
Pantothenate sodium symporter II Transport, Extracellular New A
1l-acylglycerol-3-phosphate O-acyltransferase 1 Triacylglycerol Synthesis New A
glycerol-3-phosphate acyltransferase Triacylglycerol Synthesis New A
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Figure 2.5: Nonlinearity in the synergism: the example of Guanylate kinase. The
part of the human network here represented shows the nonlinear interaction when the three
drug targets (the three valves, with the name of the drugs) are simultaneously inhibited:
when this is the case, the objective reaction of Guanylate kinase (in red) is stopped. Gray
arrows and gray circles indicate respectively stopped reactions and metabolites which become
unavailable.

sis of the metabolic pathway to which they belong. This figure reports also the class
and the targets of the drug combinations which induces the inhibition. As one can
see, some synergisms occur between reactions which belong to different pathways:
in particular, sphingolipids subsystems, CoA and pyrimidine biosynthesis contain
reactions whose inhibitions are caused by interactions situated in other pathways,
since none of the combined drugs have targets on them. Moreover, among the mul-
tiple drug solutions of Figure 2.3 (left histogram), there are several new inhibitions
and a few more selective cases (a comparison of the side effects induced by single
and multiple drug solutions is reported in Figure 2.4).

Among the cases of new inhibitions (see Table 2.4), the case of Guanylate kinase,
although of no therapeutic interest, represents an easily visualizable example of the
nonlinearity in the superposition of the effects as anticipated in the hypothetical sit-
uation presented in Figure 2.1. We consider the phosphorylation of GMP into GDP
catalyzed by guanylate kinase as objective reaction. Since the blockage of GMP
production will cause also the arrest of any transcription process, this inhibition
constitutes only a toy example of synergism devoid of any practical value. For this
problem, the algorithm proposes the combination of Mercaptopurine, Dipyridamole
and Mycophenolic acid: the synergism takes place through the simultaneous inhibi-
tion of guanine phosphoribosyltransferase, 3’,5’-cyclic-nucleotide phosphodiesterase
and IMP dehydrogenase (see Figure 2.5 for a representation of the corresponding
subnetwork). Indeed, these reactions are alternative ways of GMP biosynthesis.
When and only when they are all blocked, Guanylate kinase lacks its substrate and
stops as well.
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The complete list of the objective reactions, with relative pathways and syn-
ergistic inhibitions, is reported in Table 2.4: this list contains many inhibitions in
the fatty acid, cholesterol and carnitine transport pathways, which may represent
solutions for obesity. In particular, concerning the case of hyperlipidemia diseases,
the algorithm finds the combination of Rosiglitazone and Cerulenin (class A) as
inhibitor of many reactions in the carnitine transferase and fatty acid desaturase
pathways. This synergism has been reported in the literature for being active versus
the biosynthesis of fatty acids in prostate tumors [48]: the mean ICsp are 45uM
and 32uM for Rosiglitazone and Cerulenin alone, whereas it reduces to 5uM when
they are combined: the authors claimed that this effect comes from the reduced
production of fatty acids preventing the growth and differentiation of prostate cells.
It is worth noting that we predict this combination also in three anticancer solu-
tions (together with an additional target on palmitate conversion, see next section).
Moreover, this pair is part of other eight synergisms on the human metabolism (class
A), all concerning the same pathways .

Another significant example is represented by the inhibition of Dihydroceramide
desaturase inside the human metabolic network. Ceramide is the hydrophobic mem-
brane anchor of sphingolipids and is involved as a bioactive molecule in cell growth
regulation, apoptosis, senescence, and diverse cell responses, particularly those linked
to stress situations [49, 50]; recent studies have shown the role for ceramide biosyn-
thesis in body weight regulation, energy expenditure, hence in the metabolic obesity
syndrome [51]. For these reasons Dihydroceramide desaturase has been proposed as
a promising potential target for metabolic diseases. Currently some specific inhibitors
of Dihydroceramide desaturase are under investigation and development (for exam-
ple GT11, XM462 and analogous [52, 53]) although there is no approved drug yet.
Indeed in our model no single drug can stop this reaction. Our algorithm finds some
possible multidrug treatments that block this reaction: among them, there are the
synergistic pairs of Rosiglitazone plus Simvastatin (same group of Pravastatin, see
Table 2.2), and Acetylsalicylic acid plus Atorvastatin (Pravastatin). Concerning the
first synergism, clinical experiments have shown that combining these two drugs a
significant reduction (about 30% less) of the intracellular accumulation of lipid is
achieved [54]. Moreover, the authors of [55] investigate the adverse effect of sin-
gle and combined therapies (hypoglycemia, body weight increase) and claim that
adverse events are generally similar (the safety profile of Rosiglitazone was not ad-
versely affected by the addition of Atorvastatin). Also our results predict a limited
worsening of the adverse effect: indeed, after the combination with Atorvastatin the
side effect of Rosiglitazone passes from 252.7 to 288.8 (see Table 2.2 and 2.3), i.e. it
increases of about 14% only. For the same therapeutic purpose, the pair of Acetyl-
salicylic acid and Atorvastatin has been also studied. Clinical trials are currently
ongoing [56] and some of them have shown promising results [57]. The rationale for
this approach is based on the restoration of platelet sensitivity by reduction of the
cholesterol levels. Moreover, as mentioned above, it is known that ceramide is in-
volved in apoptosis. This combination has been tested for the treatment of prostate
cancer: the results have shown a linear synergism between these two drugs [58].
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Table 2.5: Solutions for the cancer vs human problem. We report the solutions and
the side effects o(h) for the inhibition with approved drugs. Drug numbers refer to Table 2.2.
Bold font indicates that the solution has an experimental validation.

Solution nr. Drugs Side effect o(h)
1 Floxuridine (#20) 1
2 Mycophenolic acid (#42) 4
3 Trimethoprim (#29) 5
4 Methotrexate (#11) 5
5 Atovaquone (#69) 6
6 Tyloxapol (#85) 6
7 Ezetimibe (#56) 12
8 Pemetrexed (#41) 15
9 Ribavirin (#51) 17
10 Quinacrine (#36) 22
11 Myo-Inositol (#82) 29
12 Tioconazole (#60) 34
13 Nalftifine (#43) 34
14 Simvastatin (#4) 42
15 Leflunomide (#66) 42
16 Auranofin (#59) - Fomepizole (#75) 47
17 Indomethacin (#22) 48
18 Diclofenac (#35) 55
19 Hydroxyurea (#16) 56
20 Arsenic trioxide (#72) 56
21 Gemcitabine (#30) 99

2.4 Human cancer: results

A similar approach can be used to improve the selectivity and specificity of the
treatment when dealing simultaneously with more than one type of cells. As pre-
sented is Section 2.2.2, our procedure can be modified in order to force the solution
to preserve the metabolism of one cell while inhibiting an objective reaction of an-
other. Indeed, a drug interaction can explore the differences in the topologies of the
metabolic networks and, in this way, bypass the restrictions caused for instance by
targets homology. This is crucial in case of anticancer therapy since tumoral and
normal cells share the same genes.

For this purpose, we use the metabolic network of a generic human cancer as-
sembled in [2] and the human metabolic network. We apply the modified version
of the algorithm to the biomass reaction of the cancer network (which must be
stopped), while minimizing the side effect on the regular human metabolism. As
in the previous section, the procedure is iterated until the problem becomes un-
feasible. The results are shown in Table 2.5 and Figure 2.6. The solutions are
mainly single drugs which differ one from the other in terms of side effect on
the human network. Many are known chemotherapeutic agents such as Floxuri-
dine, Mycophenolic acid, Methotrexate, Pemetrexed, Ribavirin, Myo-Inositol, Sim-
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Figure 2.6: Results on cancer vs human selectivity problem. Left panel: The iterative
application of the algorithm to the cancer vs human networks finds 21 solutions before
becoming unfeasible (magenta line). Including the possibility of inhibiting an additional
target, other 31 solutions are found (blue line). Right panel: The bars count the number
of solutions which stop the biomass metabolite in the cancer metabolism (same color code).
See Tables 2.5 and 2.6 for more details.

vastatin, Leflunomide, Indomethacin, Hydroxyurea, Arsenic trioxide, Gemcitabine
[59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70]. Since only one synergism is present,
between Fomepizole and Auranofin, these results suggest that approved drugs do
not seem to induce significant interactions at the level of the metabolism.

In order to increase the range of putative synergisms, we have tried to use the
algorithm to set up a search for targets potentially interacting with the currently
available drugs. Instead of searching for the reactions which are synthetically lethal
(as partially done, for instance, in [2]) and proposing them as potential new targets,
we look for the reactions whose single inhibition may give a lethal synergism with any
combination of the approved drugs. The problem is formally equivalent to the one
we have already described: we search again for the optimal drug combination after
having deleted a reaction in the cancer network (the same reaction is removed also
from the human network; this reaction is called “additional target” since it will be the
target of an additional new drug). We systematically consider each reaction of the
cancer network as an additional target; the results of this screening are reported in
Table 2.6. After a search in literature of possible inhibitors of the additional targets
of the results, we identify some interesting solutions. For instance, the inhibition of
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Figure 2.7: Results on cancer metabolic network alone. Like for the human network
(see Figure 2.3), the plot reports the new inhibitions that synergisms make possible and the
inhibitions with different selectivity with respect to a single drug treatment. Notice how the
number of new inhibitions is significantly higher than in the human metabolism, meaning
that the cancer pathways are less robust (and redundant) than their counterparts in the

human network.

methenyltetrahydrofolate cyclohydrolase (combined with the use of Mimosine) can
be induced by the experimental drug 5,6,7,8-tetrahydro-N° N'%-carbonylfolic acid
[71]; therefore, its combination with Mimosine could represent a potential antitumor
therapy. Also for other four additional targets there exist experimental inhibitors
whose activity is reported in the literature. Concerning the drug solutions identified
by the algorithm, the pair Rosiglitazone plus Cerulenin is proposed in combination
with three possible additional targets. One is the palmitate fatty acid conversion: it
is worth noting that the validated antitumoral activity of this pairs versus prostate
cancer cells (as mentioned above) is due to the reduction of the synthesis of fatty
acids [48]. In our prediction, indeed, among the metabolites which are no longer
available because of this inhibition, there are cholesterol ester, mono-, di- and tri-
acylglycerol. The other two additional targets are related to phosphatidylcholine.
Part of the phosphatidyilcholine pathway has been already identified as synthetic
lethal [2], but without mentioning any possible exploitation. Our results suggest the
use of a combined drug therapy as possible way to take advantage of this synthetic

lethality.
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2.5 Discussion

The field of drug combinatorics is largely unexplored experimentally and the po-
tential of combined drug therapies is difficult to assess, mostly for lack of suitable
systematic methodologies. To try to fill this gap, we have developed an algorithm
which is capable of exploring efficiently the optimal synergisms among all possible
drug combinations and of characterizing them in terms of side effect and selectiv-
ity. Indeed, the success of a drug discovery process depends on multiple aspects,
not least on the fulfillment of requirements regarding selectivity and toxicity: for
metabolic diseases the modulation of the key pathways without affecting the other
vital functions can be instrumental for rescuing from the pathology. Similarly, anti-
cancer compounds should only kill cancer cells without affecting normal ones. These
requirements are rarely taken into account in standard computational approaches.
The results we obtained by applying our algorithm to the human and tumor vs hu-
man metabolic networks show the possibility to take advantage of drug synergisms
in proposing new therapies: the potentialities lay in the possibility to intervene with
a different mechanism of action with respect to those that are currently available. In
this enlarged repertoire of possibilities, we have identified examples of drug repur-
posing (some of them were previously demonstrated experimentally), a procedure
which is becoming more and more attractive thanks to the reduced costs on the
preclinical and clinical steps.

One of the main features of FBA-based knockout studies is that metabolic net-
works appear to be robust [75, 30], meaning that there seem to be a high degree
of redundancy of the pathways inside a network (property alternatively reported as
“nonessentiality” of the gene in Refs. [36, 45]). In the context of drug synergism, this
property reflects into the presence of optimal solutions consisting of many drugs (in
our case up to four, or even more if we consider the number of inhibition targets of
each drug). For the same reason, the results show the necessity to extend the search
to all possible drug combinations without limiting to those of low cardinality. This
fact becomes significant especially when the drugs to combine present a high sim-
ilarity in terms of inhibited targets; indeed, the characterization of the synergisms
we have found shows a limited variety of possible interactions between the available
drugs (only six classes were identified, see Figure 2.2). However, besides increasing
the cardinality of the solutions, a very strong robustness may also reduce the total
number of solutions because it makes more difficult to induce the simultaneous in-
hibition of all the redundant pathways; indeed, if the screening we have run on the
human metabolism is applied also to the less robust cancer network (seen as stand-
alone network), the number of possible inhibitions is much higher (see Figure 2.7 in
comparison with Figure 2.3). Moreover, when we want to stop the biomass reaction
of the cancer, mainly single drug solutions are found (see Table 2.5): this is again
an index of the low redundancy of the cancer network and of the limited variety in
the metabolic targets for the available drugs.

Nevertheless, adding the possibility to inhibit an extra target, we could identify
some experimental compounds (other than the drugs from DrugBank) which may be
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used as anticancer in a combination with the approved drugs (see Table 2.6). These
examples show that predictive tools like the method we are proposing become more
important if one considers also the possibility of combining active compounds which
are not yet approved but for which a minimal characterization of the mechanism
of action is available. In this perspective, experimental compounds which inhibit
additional targets that are different from those affected by the approved drugs may
represent a good chance for improving, through synergism, the spectrum of the whole
set of the currently available drugs. Moreover, the application of our method can
be extended to situations where multiple networks are compared and contrasted. It
is expected that problems like this will become important as soon as tissue-specific
networks of human metabolism and cancer-specific networks will become available
in the near future.

In a broader perspective, if instead of confining our study only to the human
network we consider also the metabolism of microorganisms, the exploitation of
drug synergisms obtained with our algorithm can be useful in investigating a wide
range of situations: (i) when specific enzyme inhibitors are not currently available,
multiple drug solutions could represent an example of the reprofiling of existing
drugs for new therapeutic indications; (ii) when the target enzyme has undergone a
mutation rendering ineffective the original therapy, a synergistic solution may bypass
the resistance acting on other enzymes and therefore help in fighting resistance; (iii)
when the optimal synergism has no lethal impact while the single drug solution
has. This change in lethality can be important for instance in cases of human-
hosted bacteria producing toxic by-products: in order to save the useful symbiosis
with these commensal bacteria, a selective (but not lethal) inhibition of the toxic
processes must be pursued [76, 77].



Chapter 3

A more realistic description of
drug action: partial inhibition

3.1 Motivations

In the drug synergisms problem presented in the previous chapter, we derived
a bilevel optimization which was reformulated as a single optimization problem
through the strong duality theorem of LP. In order to solve the nonlinearity which
arose from this theorem (see Equation (2.3)), we described the inhibition induced by
a drug as the knockout of the genes which code for the enzymes of the drug targets
(i.e. by a Boolean variable). This approach was inspired by the literature on strain
improvement [24, 44], which aims at the identification of the best knockout maxi-
mizing the biosynthesis of a key metabolite. However, if this ON/OFF description
is correct for gene deletions, in the case of drug treatment (where the enzymes are
inhibited by drugs) or gene mutation (on which one changes the enzymes activity) it
represents only a rough approximation which may not constitute a realistic descrip-
tion of the biological effect. In addition, a complete inhibition of a disease-causing
target may not represent the right therapeutic solution (in healthy cells, the level
of each metabolite must be in a finite range rather than suppressed). It is in fact
more plausible to assume that a drug acting on an enzyme leads to a partial loss of
functionality of the latter, and hence to a partial inhibition of the corresponding re-
action(s). Although expected to be a potential strategy in a multi-target approach,
[32], partial inhibition has been considered only in a few computational works in
the current literature. For example, studies like [78, 79] dealt with a small part of
the network, modeling the kinetic reactions explicitly and solving them numerically.
The partial inhibition then amounts, for instance, to a modulation of one or more ki-
netic parameters. Because of the complexity of the metabolic networks and because
of the difficulty of knowing the kinetic parameters of all biochemical reactions, this
approach cannot be applied at a genome-wide level. On the other hand, the authors

45
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of [80] consider the whole network, but the (partial) inhibition is given as initial
fixed parameter of the model and only the effect of the perturbation is quantified.
A different approach is presented in [81] in the context of the prediction of new drug
targets; these targets are identified though a two-stages FBA (which differs from a
bilevel formulation because the two optimizations are not nested). However, the po-
tential targets obtained with this method must be verified exhaustively, which may
represent a problem for networks with more than the 26 reactions of the human
hyperuricemia metabolic pathway considered in [81]. An alternative to overcome
the ON/OFF oversimplification and to consider the modulation of the enzyme ac-
tivity is to reformulate the bilevel optimization problem as a nonlinear (nonconvex)
single optimization problem, but this leads to a more complicated situation from a
numerical point of view [23].

Therefore, the aim of the present chapter is to introduce a novel algorithm which
allows to provide a more realistic description of the partial inhibition induced by the
drugs on large networks while still remaining within the framework of LP. Improv-
ing on the work from the previous chapter, we consider the problem of searching
the optimal combination of drugs capable, through a synergistic effect, to modulate
(inhibit or enhance) an objective reaction (i.e. a putative target for a disease) while
inducing the minimal perturbation on the rest of the network. Replacing a single
Boolean variable by a convex combination of a fixed number of Boolean variables,
we are able to model the inhibition as any number belonging to a discretized rep-
resentation of the interval [0,1]. This approach preserves the linear nature of the
final problem. Notice that the method we propose can be extended to any bilevel
optimization which needs to deviate from the simple ON/OFF description.

In the following, we first formalize a more generalized version of the problem
about drug synergisms; then, within this case study, we describe why Boolean vari-
ables are necessary in the reformulation of a bilevel optimization problem via the
strong duality theorem of LP. After the presentation of the novel idea concerning
the implementation of partial inhibition, the potentiality and limits of the proposed
algorithm are discussed.

3.2 Materials and Methods

3.2.1 The drug synergism problem

As mentioned, in FBA the vector v of the “effective” metabolic fluxes is obtained
through the optimization of a certain cost functional. For unperturbed networks,
the production of the macromolecular building blocks for the biomass (the growth
rate, here indicated by the flux Uphijomass) is often maximized [20]: we denote by
v (ut="“untreated”; all symbols and variables are listed in Table 3.1) the reaction

fluxes obtained after this optimization:

ut
Vv = arg Max thiomass, (3.1)
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where W ={v : Sv=0 and 0<v; <U;, i=1,...,r} (as done in the previous
chapter, all fluxes are rendered positive by decomposing any reversible reaction in a
couple of irreversible reactions). These fluxes v can be nonunique [82] (an analysis
of the case of multiple equivalent solutions is reported in Section 3.3.3). In the
following, nevertheless, these unperturbed fluxes are considered as given parameters
of the problem.

The drug synergisms problem we consider here is a generalization of the problem
treated in the previous chapter. In particular, for a given metabolic network and for
a given set of d drugs which inhibit some enzymes of this network (k-th drug has a
set of target denoted by 7j), we want to modulate a certain reaction (for example
rendering its flux less than a given threshold) through a combination of these drugs,
inducing the minimal effect on the rest of the network. In order to give a more clear
presentation of the algorithm, we assume that a drug induces an identical fractional
inhibition on all its targets. Therefore, the amount of inhibition by the k-th drug
on its target reaction i € 7, can be modeled by the linear constraint

V; S Ui(l — hk), (3.2)

where, U; is the upper-bound of the flux v; and where partial inhibition means
hi € [0,1] (instead of hy € {0,1}). Through this formalism we do not consider the
allosteric interaction between two (or more) drugs on the same enzyme: indeed, our
model simply takes the maximum inhibition over the set of drugs which affect the
enzyme of reaction i:

v; < Ui (1 — Iglg%ck hi).
Then, the vector h € [0,1]? represents the drug treatment, i.e. the inhibition due
to the drugs: for example, for d = 3, the vector h = [0.5, 0, 0.8] indicates that
drug 2 is not used (hy = 0) while drugs 1 and 3 are used at dosages which cause
respectively a 50% and 80% inhibition of their targets (hence, in (3.2), the reduction
of their upper-bounds to 50% and 20% in the original values). For each choice of h
these inhibitions reduce the set W to a subset W (h):

W(h) ={v e W such that v; <U;(1—hg), Vk=1,...,d, Vi € T;;}.

The determination of the reaction fluxes v¥(h) (tr="“treated”) for the drug-treated
network is obtained through MOMA which has been shown to generate reasonable
and realistic results for perturbed metabolism [21, 83, 84, 4, 85]. In order to apply
the theory of linear programming, we use the definition of MOMA in terms of norm
L' [86]. Then

v (h) = argmin ||v — v%;.

v e W(h) (3.3)

In the following the side effect of a drug treatment is quantified in terms of the
distance [[v?"(h) —v"|l; = 31, [vf*(h) —v}"| used in (3.3): the greater the distance,
the bigger the impact of the drugs on the whole network.
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The problem can be stated as follows:

Problem: Given:
e a metabolic network, which means a stoichiometric matriz S € R™*"
and the upper-bounds U € R", of the reaction flures v;

o the unperturbed fluzes v'¢;
e the set of d drugs together with their inhibition targets {7y }r=1.. 4.

e the index (denoted by “mod”) of the objective reaction whose flux
(Vmoq) must be modulated;

e a threshold T € [0,1) for the modulation constraint on Vmed;
we want to find the inhibition h € [0,1]¢ such that v ,(h) < 7o

mod mod
and such that it causes the minimal side effect, i.e. the minimal distance

vt (h) = vy

According to (3.3), for a given set of drugs (i.e. for a given inhibition vector h),
we can calculate both vt (h) (and then check whether v ,(h) < 7o ) and the
value of the side effect. Similarly to (2.2), the formulation of the problem is the
following:

min [V (h) — vUt|;.
viT(h) = argmin ||v — v
h : v € W(h) (3.4)
,Urtriod(h) < Tvlltlitod

The bilevel optimization (3.4) is a min-min linear program. The inner problem
adjusts the fluxes so as to achieve the minimal metabolic adjustment (MOMA),
subject to the drug inhibitions imposed by the outer problem and to the stoichio-
metric constraints. The outer problem selects the combination of drugs which has
the minimum side effect and guarantees a modulated flux lower than the desired
threshold.

Since we are looking for a minimum, the absolute value operation a; = |v; — v}"|,
necessary for the definition of the L'-norm, is obtained by adding the following linear
constraints:

a; > +(vi — v}");
a; > —(v; — vl").

The sum of a; defines both the objective function of the inner and the outer prob-
lem. However in (3.4), at the optimal point of the inner problem (at the minimum
of [|[v —v'|;) we have that v = v'(h), hence ||v — v"||; is equal to the objective
function of the outer problem. Notice that, despite of the common objective func-
tion, the two minimizations cannot be merged in a single optimization because of
the additional constraint on vy,0,q contained in the outer problem. Indeed, calling B
the set defined by the inequality v ,(h) < 7o . the following relationship holds:

mod m

{jf$$ ﬂﬂ}mB#{vsﬁaﬁB ﬂﬂ}_
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Then, detailed equations of the bilevel optimization (3.4) are the following:

Minimize Y, a; “outer problem”
such that
[ Minimize ».. ;a; “inner problem” T
such that
> =1 8ivj =0
v; < U

v; < Ui(1 — hy)
+v; — a; < +opt

—v; —a; < —vpt

Umod < Tyl

mod*

3.2.2 The strong duality theorem and the need of Boolean variables

The obtained bilevel optimization is again solved by applying the strong duality
theorem of LP (1.9). This leads to the following single minimization, in which
Greek letters refer to dual variables (for clarity, we differentiate them according to
the associated constraints of the primal problem, as detailed in Table 3.1):

T

Minimize ~» a; such that (3.5a)
i=1
.
> Sijuy=0 Vi=1,...,m; (3.5b)
j=1
v, <U; Vi=1,...,r; (3.5¢)
v; < Ui(l—hk) Vk=1,....d, i € Tp; (3.5d)
vi—a; < oM Vi=1,...,r; (3.5e)
—v; —a; < —vt Vi=1,...,r (3.5f)
m
Z‘S’i,jﬂi+>\j+ Z&H—aj—ﬁjzo Vi=1,...,7; (3.5g)
=1 i:j€T;
aj+3; <1 Vi=1,...,m; (3.5h)
Umod < TUhog; (3.51)

T

S a= 30 N Ui 3 (0= )+ (e = 5], (3.5)
i=1

i=1 k€T,

where (3.5a) specifies the objective function of the outer problem; equations (3.5b)—
(3.5f) refer to the constraints of the original inner problem; (3.5g) and (3.5h) are
the dual constraints; (3.51) imposes the outer problem constraint on vy,0q and (3.5j)
is the duality theorem equality (1.9). However, this last equation is no longer a
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linear constraint since it contains the product between the outer problem variable
hi and the dual variable §;; hence, the problem can no longer be solved by a linear
optimization. It is common to overcome this complication by restricting the hy
variables to Boolean values. In this case, in fact, the nonlinear terms d;h; can be
exactly linearized as follows:

Zik = Oihy;
0 <z <6 hy; (3.6)

0 — 07" (1 — hy) < 2z < 65,

where 0;"** is the upper bound for the dual variable ;.

The restriction to Boolean variables saves the linear nature of the problem (which
however requires now MILP) but it implies the assumption that drugs can only act as
switches on the reactions, or equivalently, that we are considering only an ON/OFF
model. This was indeed the approach we used in the study of the previous chapter.

3.2.3 The implementation of partial inhibition

In this section we propose a solution which can still use the duality theorem for
solving the bilevel optimization while including the possibility of inducing a partial
inhibition of the reactions targeted by the drugs. This requires to create a dis-
cretization of the interval [0, 1] and to replace the ON/OFF action of each drug with
P + 1 Boolean variables describing this discretization (P is a fixed parameter of the
problem). For the k-th drug (k = 1,...,d) we introduce the set of Boolean vari-
ables {xf , }n=0, . p and define the inhibition coefficient hj by the following convex
combination:

P
Tk.O Tkn
hy = —5 + E — 3.7

In (3.7) the integer P is related to the desired accuracy of the [0, 1] discretization.
Indeed, the factor hj assumes values between 0 and 1 with precision 2=%. Notice
that for P = 0 we have the ON/OFF model of the previous section. We can replace
now (3.2) with the following inequality:

P
TE,0 LTkn
vigUi(l—hk):Ui<1—2P—§ 2n>.

n=1

When the strong duality theorem is applied, the nonlinear terms are the §;h; prod-
ucts. Expanding the product according to the definition in Eq. (3.7):

P

0iTk0 0iTkn
5ihk: 2P +Z on ’

n=1
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the nonlinearity is now spread over the products ;, with again x;, a Boolean
variables. Similarly to (3.6), we can write an equivalent set of linear inequalities:

Zikn = 5i33k:,n;
0< Zikn < 5;(nazxk7n;

0 =0 (1 — wpp) < Zikm < 0;.

Notice that any “representation” of the partial inhibition values can be used in place
of (3.7). Let us imagine, for instance, that we would like h, to have the same values
obtained in the dose-response experiments for the determination of the half maximal
inhibitory concentration (ICsg) of drug k (see Figure 3.1):

hk € {07 Bk,Oa Bk,la ceey Bk,P: 1}7

(with 0 < Bkﬂ- < Bk,j < 1, Vi < j) then we may define hy by the following convex
combination

hie o= 0@k + (Rt — o)ty + -+ + (1= b p)ak p, (3:8)
with a series of inequalities
Tro < X1 S Xg2c 0 < X, p.

Of course, the discretization (3.7) is the most efficient because, for a given number
of Boolean variables (P + 1), it generates the maximal precision (27%). For this
reason, in the following we will refer to (3.7) only.

Enzyme inhibition (h)

0.00 — Tt t—TtT+>
0.25 0.5 1.0 2.0 4.0 8.0
Drug concentration

Figure 3.1: Constructing the inhibition h from the experimental dose-response
curve: an example. The points of the curve are hypothetical experimental measurements
of the effect of the drug k on the activity of the enzyme. The discretization of the curve can
be used as basis for the discretization of the interval [0,1]: therefore, referring to (3.8), we
may define hy = 0.10x;,0 + 0.152 1 + 0.50z 2 + 0.15z 3 + 0.10x4 4.
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3.2.4 Inhibitions or activation of the objective reaction

The evaluation of the effect on the fluxes induced by the drugs is performed through
the MOMA formalism. It is known that this approach describes well the spreading
across the network of the effect of the perturbation: many processes are down-
regulated or up-regulated in order to adjust and compensate the effect of the per-
turbation (see for example [4]). For the same reason, a second intervention may
amplify the deactivation (recovery) of a certain metabolic function that was down-
regulated (activated) after the first perturbation [83]. In terms of multiple drug
effect, this means that a drug synergism may induce both the inhibition and the
activation of the reaction fluxes.

In our algorithm, through the choice of 7, one can selects the exploitation of one
of these two situations through a different constraint on vy,0q in the outer problem:
indeed, imposing as in the previous section

ut

Umod S Tvmod’

(for 0 < 7 < 1) the algorithm identifies synergistic inhibitions, whereas requiring

ut

Umod > TUmod>

(for 7 > 1) the algorithm generates drug interactions that up-regulates the objective
reaction.
In the following, both versions are applied.

3.2.5 Cases of multiple equivalent solutions

In the development of our algorithm, we consider the possibility to have cases of
multiple equivalent solutions (solutions with the same side effect on the network,
i.e. the same distance ||[v" — v'T||;). It is worth noting that the use of the norm L!
does not guarantee the uniqueness of the points at this minimal distance: indeed balls
in L' and the polytope W (h) are convex but not strictly convex sets. Unfortunately
this limit can be overcome only passing to the L? formulation with the consequent
loss of the linearity of the problem. However, we expect that such a type of situations
are quite rare since they appear only when the hyperplane (or the intersection of
some of them) which defines W (h) and which realizes the minimum distance with
respect to the vector v, is parallel to an edge (or face) of the L!-ball (see Figure 3.2).

Other (more common) cases of degeneracy of the solutions are avoided through
a specific correction mechanism. For instance, if there exists a pair of drugs k and [
such that 7 C 7; (i.e. drug k inhibits enzymes which are already target by drug [),
any solution which contains both drugs is equivalent to the solution without drug
k (i.e. drug k is superfluous). Similar reasoning can be done between a lower and
higher dosages of the same drug. Therefore, in order to prevent an “overselection”
of drugs, we introduce an additional term in the objective function of the outer
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Figure 3.2: Convexity of L'- and L?-formulations and uniqueness of the solution.
The two pictures report the unperturbed fluxes (v"%) in the original set W. When the
inhibition h is applied (dotted blue line), the set reduces to W (h). (a) With the L!-norm,
balls are not strictly convex, therefore cases of multiple equivalent solutions may appear.
As one can see, these situations occur only when the hyperplane of W (h) which realizes the
minimum distance with respect to v' is parallel to an edge of the L!-ball. (b) Conversely,
L? balls are strictly convex and always lead to a unique solution.

problem. The new function becomes the following:

r d
Z a; + bz hp,
=1 k=1

where the parameter b is chosen low enough (10~% in our computations, much smaller
than 103, the common upper-bounds of the fluxes) in order to keep this term lower
than the difference in the side effects and therefore to not change the order between
non-equivalent solutions.

A similar approach is used to solve the redundancy in the definition of hj. Indeed,
since in (3.7) xpo and x; have the same coefficient, the inhibition hj does not
change when swapping the values of these two variables. To avoid this degeneracy,
we allow z1, o be 1 only if all the other x, ; (for j = 1,..., P) are 1. This is obtained
through the following extra linear constraint:

s
Tro < 2 Zxk,j-
7j=1

Since the problem is not strictly convex and since equivalent drug combinations
may always appear (for instance, the combination of drug A which targets reaction
1 plus drug B which targets reactions 2 and 3 is equivalent to the combination of
drug C which targets reaction 2 plus drug D which targets reactions 1 and 3), the
problem of multiple equivalent solutions needs to be considered. In all these cases,



Results 55

because of the numerical implementation of the algorithm, a random choice of one of
these optimal solutions is taken. Because, by definition, all these equivalent solutions
fulfill the conditions on the objective reaction and on the minimization of the side
effect, their differences are irrelevant: indeed they concern only some other fluxes on
which we do not have any specific requirements. For this reason any solution chosen
by the implementation of the algorithm can be considered acceptable.

3.2.6 Metabolic networks

Six metabolic networks of different microorganisms are used in this study. They
have been downloaded from BIGG database and their mean features are listed in
Table 3.2. For the central carbon metabolism of E.coli the table reports also the
number of drugs that have been selected from DrugBank database.

Table 3.2: Main properties of the metabolic networks used in this work (from
BIGG bigg.ucsd.edu/). For the E.coli core network, drugs and respective targets have
been selected from DrugBank database [47]: drugs which are common metabolites (for
example Adenosine) have been discarded and drugs with the same targets have been grouped
together.

E.coli core  S.aureus  H.pylori  S.oneidensis E.coli  S.typhimurium
Nr. of reactions r 95 575 513 696 1911 2224
Nr. of metabolites m 72 455 436 528 1337 1497
Nr. of genes 137 619 339 783 1261 1271
Nr. of drugs d 8 - - - - -
Reference [87] [9] [10] [11] [14] [15]

3.3 Results

3.3.1 Screening for optimal drug combinations on E.coli core net-
work

The main scope of these calculations is to show the advantage given by the use of
values of P higher than zero, i.e. of passing from the ON/OFF to a more accurate
description. In order to better characterize its behavior (performing a large number
of tests), we run the algorithm on the small network of the core metabolism of E.coli.
A sketch of this network is depicted in Figure 3.3.
A set of tests have been carried out combining different values of 7 and P, in

particular:

T € {0.0, 0.1, 0.5, 1.5, 2.0};

P < {0, 1, 2}.

For each pair, we perform a screening that considers each metabolic reaction as
objective process to be modulated (down- or up-regulated depending on the value of
7) and finds the most selective drug combination. The following characterization of
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the solutions is performed. For a given P and for a given objective reaction vy,oq, we
consider the solutions h at different values of 7. When the same drug combination
is found for two values of 7 (for example 71 = 0.1 and 75 = 0.5), the solution is
considered valid only for the most stringent constraint (73 = 0.1, in the example;
similarly, if 71 = 1.5 and 75 = 2.0 then the solution is associated to 7o = 2.0 only).
This procedure allows to considered only cases when passing to a weaker constraint
on Vp,eq the severity (for instance the dosage) of the corresponding optimal drug
treatment is reduced too. We analyze the results by looking at the following four
indices.

Number of solutions:  Figure 3.4(a) shows the total number of solutions we have
found in the screening of all reactions at different P and 7. One can see that, when
a complete stop of the objective reaction is required (7 = 0) there is no significant
advantage in increasing the precision P. However, when it is necessary to induce a
more accurate modulation of the flux (inhibitory when 0 < 7 < 1), higher values of
P allow to find a larger number of solutions. Through the partial inhibition, indeed,
we can find solutions which are closer to the desired threshold, whereas the simple
ON/OFF model can mostly induce a complete stop of the objective reaction. A
similar improvement can be also identified while passing from 7 = 1.5 to 7 = 2.0.

Cardinality of the solutions: More details are presented in Figure 3.4b, which
reports the histogram of the cardinality of the solutions and their mean values for
the case of 7 = 0.5 (averages for each value of 7 are reported in Table 3.3). When
the precision increases, the distribution of the cardinality shifts slightly to higher
values, meaning that multiple drug treatments are slightly preferred.

Perturbation induced by the solutions: For each solution that we have iden-
tified during this screening, also the corresponding perturbation (i.e. the side effect
[v? — v'||;) can be evaluated. We calculate the frequency of these perturbation
values (regardless of the value of 7). The result is shown in Figure 3.4(c). We notice
that at higher precision, smaller perturbations become (slightly) more probable: as
expected, for high values of P, the algorithm can modulate the inhibition more ac-
curately and therefore reduce the impact on the network, while still satisfying the
request on the flux of the objective reaction.

Nonlinearity exploited by the solutions: The interaction between drugs is
normally interpreted as the deviation of the effect of combined drugs with respect
to the linear superposition of the single drug perturbations. Therefore, similarly to
the scaled epistasis measure presented in literature [37], a index of nonlinearity 7(h)
can be defined on the basis of the flux of the objective reaction as follows.

Let v**_.(hi,ha,...,hg) be the flux of the objective reaction at drug inhibition

mod

h = (h1, ha, ..., hq) and given by (3.3). Then,
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Figure 3.4: Effect of the precision parameter P (results from the reactions screen-
ing). (a) The plots show the number of solutions that are found for different values of 7 (see
legend) as function of P (color codes as in the following plots). As one can see, for 7 > 0,
increasing the precision P, it is nearly always more frequent to find a drug combination
which induces the sought modulation. (b) The plot is a detail of the curve in panel (a) for
the case 7 = 0.5, and shows the frequency of the drug cardinality of the solutions (i.e. the
number of drugs used in the solution). For larger P, the distribution is slightly shifted to
higher cardinality (data for each 7 are reported in Table 3.3). (c) Beside the number of
solutions, higher precision produces more selective outcomes, i.e. with a lower side effect (as
clearly shown by the mean values reported in the legend). The counting is performed over
all different values of the threshold 7. (d) This plot shows the histogram of the values of the
nonlinearity index n(h) (as reported in (3.9)) calculated for all the solutions of the screening
(still regardless the value of 7). From the curves and from the mean values reported in
the legend, it is possible to see that higher amount of nonlinearity are obtained when P is

increased.
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Table 3.3: Averaged cardinality of the drug combinations from the screening.
Figure 3.4(b) shows the details of the screening results for 7 = 0.5 and the corresponding
legend reports the averaged value of the cardinality of the solutions which have been found;
we summarize here the same quantities for all values of 7.

Precision T=0.0 T=0.1 T=0.5 T=1.5 =20
P=0 2.5 2.9 2.1 2.1 1.4
P=1 2.7 3.0 2.3 3.5 3.1
P=2 2.9 3.3 2.4 3.7 3.2
77(h1, ...,hd> =
_ o 1(h1,0,..,0) 4+ 0% 1(0,...,0,hg) — (d— D)oty — 0% (b, ..., hg) (3.9)

Urtriod(o’ 0,...,0) — Ufﬁod(hl, ooy hg)

since it holds v ,(0,0,...,0) = v2 . From this definition, = 0 means linear
behavior and n > 0 nonlinear. Therefore, for each solution of the screening, we
calculate the corresponding n(h) and we analyzed the distribution of its values (still
ignoring the parameter 7): the result is shown in panel (d) of Figure 3.4. It is clear
that increasing the value of P the nonlinearity index tends to be higher. It seems
that, thanks to the higher precision, the algorithm may exploit more efficiently the
nonlinearity property and, by consequence, it can limit the dosage of the drug and

consequently reduce the perturbation.

3.3.2 Drug interaction surfaces: three case studies

For three of the solutions found through the screening procedure, we detail now
the drug interactions exploited by the algorithm. In particular, we considered the
synergisms in the inhibition of transketolase and of ribose-5-phosphate isomerase,
and the synergism in the up-regulation of glutamate dehydrogenase (respectively
indicated by codes TKT1, RPI and GLUDy in Figure 3.3). Each of the first two
solutions contains a pair of drugs (Fomepizole plus Halofantrine and Fomepizole plus
Hexachlorophene respectively). We explore the drug interaction surface changing the
amount of inhibition induced by each compound, as could correspond in experiments
to using different drug dosages (the interval [0, 1] has been discretized using (3.7)
with P = 4). The 2D surfaces are reported in Figure 3.5 panels (a) and (d). In
the third case (up-regulation of glutamate dehydrogenase, panel (g)) the synergism
is obtained combining three drugs (Nitrofurazone, Halofantrine and Pemetrexen);
therefore, in order to have the 2D surface of interaction, the first drug is kept at the
optimal inhibition value (h; = 1) and the combinations are explored changing the
dosages of the remaining two drugs. Figure 3.5 reports also the nonlinearity index
n(h) as defined in (3.9): panels (b), (e) and (h) show that in all cases there is a clear
enhancement of the effect when the drugs are combined.
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Figure 3.5: Examples of surface of drug interaction. Axes x and y report the inhibition
coefficients h (dosage) for the two drugs; the z-axis reports the percentage of the flux through
the modulated reaction after drug treatment calculated with L' formulation of MOMA with
respect to the untreated value (left panels a, d and g), or the relative deviation, n(h), of
the effect induced by the drug combination from the linear superposition of the effects due
to the single drugs as expressed by (3.9) (middle column, panels b, e and h). The right
panels (c, f and j) show the calculations made with MOMA based on the L?-norm. The
higher smoothness of the surface makes this formulation more reliable: however the surfaces
obtained with our method (L*-norm) well reproduce the main characteristic of the synergism
between the drugs. In the first two rows inhibitory synergisms are shown (7 < 1), whereas
the third row is an example of activating synergism (7 > 1). Notice that for the sake of
readability, in the plots of the last row, both = and y axes have been inverted.
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These calculations has been performed with MOMA based on the L'-norm be-
cause, as already mentioned, it allows a definition of a linear function in the op-
timization problem. When compared to the surfaces obtained from the original
quadratic formulation of MOMA (last column: panels (c), (f) and (j) of Figure 3.5),
the results from L'-norm show some irregularity of the surfaces (which makes the
original L? version more reliable) but the main features of the drug-drug interaction
are still well described.

3.3.3 The problem due to the nonuniqueness of v

As mentioned after Eq. (3.1), the optimization of the biomass production may lead
to a nonunique solution v". We presume that the nonuniqueness is mainly due to
the presence of circulations (i.e. loops) and alternative equivalent pathways in the
network, a problem which is well known in FBA and which is not ascribable to our
algorithm. Nevertheless, we analyze here the behavior of the algorithm with respect
to the variability of the unperturbed fluxes (one of the inputs of the algorithm).
Nonunique solution means that the set M C W of solutions at the maximal
growth rate pHax = put can be defined jointly by the standard FBA con-

biomass — Ubiomass
straints and by the extra equality constraint on vpiomass:

Sv=0
0<y; < Vi=1,...,r
Ubiomass = Ugilg?nass'

In order to perform a robustness analysis of the algorithm, we sample points in M
and apply the following procedure:

1) We choose again ribose-5-phosphate isomerase as reaction of the FE.coli core
metabolic network to be modulated and we set P =2, 7 = 0.6.

2) The reference fluxes of the “untreated” network with optimal biomass produc-
tion are denoted by v (0), whereas v*(0) is the corresponding solution of the
algorithm (“treated” metabolic fluxes). The counter ¢ is set equal to 0.

3) The counter g is increased. Starting from v'(g—1) we randomly choose a new
vector of fluxes which has the same maximal growth rate (in practice we do a
random walk in M). This is achieved by adding a Gaussian random vector to
v (g — 1) and projecting the new point on M (the projection of a Gaussian
random vector on a hyperplane is still Gaussian). This generates v"(q).

4) We run the algorithm using v'"*(¢) and obtaining the corresponding v*(q).
5) Points 3) and 4) are repeated iteratively for 100 times.

In the end we have two set of vectors: {v"*(j)};=o,. 100 and the corresponding
{v**(j)}=0,...100. For each pair (j, k), j,k = 0,...,100, k > j, we calculate the
normalized distances:
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Both normalization are performed with respect to the same quantity |[v"*(0)]];.
Results are reported in Figure 3.6. Panel A shows that there is certain degree of
correlation between the two distances.
The histogram analysis of the ratio between them (i.e. d o/ d .:) is presented in panel
B. Since this ratio is always smaller than 1, these results 1ndlcate that starting from
different v, the deviation among the corresponding solutions v of the algorithm
is smaller that the variation of the v', meaning that the algorithm reduces (or at
least it does not amplify) the variability of the starting point.

This can be justified by the fact that the algorithm is a “contraction”, i.e. de-
noting by F the map corresponding to the algorithm, for any pair of vectors v and
w, the following inequality holds:

1F(v) = FW)lh < [lv = wl]i.

Indeed, the algorithm starts with the unperturbed convex set W of feasible fluxes
defined by the standard FBA constraints. Then, this set is reduced to a proper
convex subset W (h) through the inhibition induced by the drugs (selected according
to the modulation of the objective reaction and to the side effect). Finally, MOMA
performs a projection of the unperturbed fluxes v on this subset. Therefore, as
for any projection on a convex set in a metric space (the metrics being induced by
the L! norm), the algorithm reduces distances.
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3.3.4 Computational performances.

The proposed algorithm has been implemented in MATLAB (2012R) and the opti-
mization has been performed using ILOG-IBM CPLEX 12.1 under academic license.

A benchmark study

First, the impact of the parameter P on the computational cost is evaluated on
the core metabolism of E.coli: we choose one of the metabolic reactions for which we
characterize the corresponding drug interaction surface (namely ribose-5-phosphate
isomerase, see Figure 3.5) as reaction to be modulated (7 = 0.35) and run the
algorithm with different values of P from 0 to 5, recording the computational time
required to find the solution. Since there are 8 drugs, the extremal values of P
correspond to 8 and 48 Boolean variables in the whole problem. Notice that for
P = 5, the accuracy on the definition of Ay, is quite high (2= = 1/32 < 5%).

In addition, we estimate the time needed to perform the evaluation of the in-
hibitory effect (MOMA) of a single drug combination as an average over a 20 random
subsets of the 8 available drugs. From this value we can predict the approximate
computational cost of an exhaustive search over all possible drug combinations (and
dosages). The comparison of the performances of the algorithm with this estimation
is plotted in panel (a) of Figure 3.7.

Performances on larger networks

Moreover, we run the algorithm on the metabolic network of the six microorgan-
isms listed in Table 3.2. Our scope is to evaluate the impact of the size of the network
(parametrized by the number of reactions r) on the computational performances.
In order to limit the interference of other parameters, these calculations are carried
out with the same objective reaction (in particular we still keep ribose-5-phosphate
isomerase since it appears on all networks we have considered) at constant preci-
sion (P = 2) and threshold (7 = 0.35), with the same number of drugs (d = 8),
and choosing their inhibition targets in a random manner (unfeasible problems are
ignored). However, since on very large networks it is quite unlikely to induce the
sought modulation on the objective reaction when only 8 targets are inhibited, the
number of targets of each drug is proportionally increased (on average the total num-
ber of inhibitions is approximately 6% of the total number of reactions). Because of
the randomness in the choice of the targets, the computational times may present
a significant variation. Therefore, Figure 3.7(b) shows the whole distributions of
the computational time over 100 runs for each one of the six metabolic networks we
considered. Finally, Figure 3.7(c) reports the mean and the standard deviation of
these distributions as a function of the size of the network. On average, also for very

large networks, the computational time is approximately one hour (on a 2.3 GHz
CPU).

All these characterizations show the good performances of the algorithm.
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Figure 3.7: Algorithm performances. (a) Computational time of the algorithm compared
with an estimation of the exhaustive search for different values of P on the FE.coli core
metabolism. (b) The influence of the size of the network on the performances is here
reported as distribution of the computational time for the 6 metabolic networks listed in
Table 3.2. Each distribution is built over 100 random samples obtained by changing the
targets of a fixed number of drugs and keeping the precision parameter and the threshold
constant (P =2 and 7 = 0.35). (c): Averaged computational time (same color code of the
corresponding distributions reported in panel (b)) and error bar as a function of the size of
the network (expressed as the number of reactions r reported Table 3.2).

3.4 Discussion and Conclusions

Optimization is a concept widely used in many scientific fields; for instance, in
systems biology, FBA makes use of it for discriminating reaction fluxes in large
metabolic networks. Following the same philosophy, in order to cope with more
complex situations, multiple optimization criteria can be needed simultaneously
leading in some situations, like the one discussed in this work, to a bilevel opti-
mization problem. The bilevel approach is promising for studying several features
and applications of metabolic networks, for instance for identifying metabolic objec-
tive functions [23] or for studying perturbations around a nominal optimum [24, 44].
In the context of drug combinatorics, in order to efficiently solve the bilevel opti-
mization, Boolean variables are commonly used in the outer problem. However, this
ON/OFF description of the corresponding biological quantities may represent a very
rough approximation, as it is the case for the (partial) inhibition induced by drugs



Discussion and Conclusions 65

acting on the enzymes of a metabolic network.

In order to overcome this limitation, we propose an improvement on the for-
mulation of the bilevel optimization in which a single Boolean variable is replaced
by a convex combination of several Boolean quantities: in this manner the convex
and linear nature of the problem is preserved and the description of the inhibitory
effects becomes more realistic. Since the problem contains Boolean variables, the
optimization falls in the MILP class: compared to LP, the NP-hard complexity of
MILP [27] makes the new algorithm more expensive from a computational point of
view. For the tasks at hand (see Figure 3.7), the algorithm behaves well also for
large metabolic networks. The logarithm of the computational time scales linearly
with the number of reactions, but with a small slope, so that on average the so-
lution is found in a reasonable computational time, also for networks with around
2500 reactions and for P = 2.

For testing purposes, we run the algorithm on the central carbon metabolism
of FE.coli screening all reactions. We have found that increasing the number of
Boolean variables used in the convex combination (the precision parameter P), it
is more likely to find a solution which succeeds on the modulation of the objective
reaction (see Figure 3.4(a)). In particular, partial inhibitions (i.e. modulations of
the dosage of the drugs) are more frequent for multicomponent solutions (panel (b)
of Figure 3.4): this result may be interpreted as a wider possibility, offered by the
synergism, to calibrate a drug treatment according to the specific needs. Moreover
our computations represent a confirmation on large networks of the expected, but
still not verified, higher efficiency of multiple targets drug treatments in presence of
partial inhibition [32]. In this perspective, the results show that this approach may
also lead to treatments which are more selective (panel (c) of Figure 3.4).

A possible explanation can be found in the unexpected or hardly predictable
drug synergism which are typical of complex systems such as metabolic networks,
even in a simplified framework like FBA. In particular, concerning the synergistic
interactions between drugs, the analysis done through the drug—drug interaction
surface (Figure 3.5) reveals that nonlinear effects, not explained by superposition of
the single drug perturbation, are significant and can be captured and exploited by
the method proposed, unlike with a more coarse-grained ON/OFF description. We
should mention, that the three case studies presented in Figure 3.5 do not pretend to
have any clinical value: they have been selected only for the purpose of illustrating
the method and the advantages it may give in the context of drug synergism and
drug reprofiling for reconstructed metabolic networks.

It is worth noting that the problem of drug synergism we presented here can be
read as a guiding example for a more general class of situations: indeed, the idea
we have proposed for treating bilevel optimization can be applied to any other case
which requires a more realistic modeling with respect to the oversimplified ON/OFF
description, in biology as well as in all the other fields where LP is already used.
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Chapter 4

Transient dynamics in the
metabolism of perturbed
microorganisms

4.1 Motivations and state of the art

Metabolic networks, investigated through the tool of FBA as in the previous chap-
ters, deals only with one of the layers of the cellular functions, seen as an independent
entity isolated from the rest of the regulatory machinery of the cell. This is obvi-
ously a drastic simplification and new frontiers start to appear when, for example,
the metabolism is coupled with other internal functions of an organism, such as
trascriptional networks [88, 89].

For these purposes, several researchers have studied the response of the meta-
bolism of microorganisms after various perturbations [90, 91, 92, 37], for instance, a
gene knockout or a change of the nutrients. It is known [93] that the microorganisms
normally stop temporarily to proliferate after such perturbations. It has been hy-
pothesized that during this period many more enzymes are expressed and activated
then in standard conditions: this activation of this high number of metabolic path-
ways (the so-called latent pathways [4]) is considered as a “safety measure” that the
cells adopt in order to survive under such stressful conditions [21, 83]. Indeed, these
processes are less efficient with respect to those normally running and not all of them
are necessary for the proliferation. Only later, once the survival is guaranteed, the
cells start to regulate the metabolic reactions, selecting those which better perform
the synthesis of the biomass; following this adjustment strategy, the proliferation
rate can often be fully recovered. Figure 4.1 shows how a dynamics of this survival
strategy may look like, according to [94].

As mentioned in Chapter 1, in FBA the perturbed networks are described using
heuristic criteria such as MOMA and ROOM. While MOMA seems more reliable in
the quantification of the effect shortly after the perturbation, ROOM seems better
for a later stage of the metabolic adjustment. However, no procedure is available for
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.. Adaptive evolution ¢

FBA

Growth rate

Number of active reactions

Time

Figure 4.1: Hypothetical dynamics of metabolic adaptation after a gene knockout
[94]. (A): initial drop and recovery of the growth rate. (B): number of active reactions,
which is high after the perturbation and progressively reduces during the adaptation. Dotted
line indicates alternative trajectories.

the modeling of the entire transient dynamics and for describing the recovery of the
growth rate that follows. For this reason, the scope of our work in this chapter is to
develop a new heuristic criterion for FBA, able to predict the dynamics of the overall
adjustment of the metabolism that a microorganism adopts after a perturbation.

4.1.1 Experimental data from literature

In order to present our procedure, we refer to a set of biological measurements
available in the literature. In particular, we consider the data generated by Fong
and Palsson [93]: their experiments have been carried out on Escherichia coli strains
with different gene knockouts. After a culture for a night in a growing rich medium
(i.e. with many types of nutrients such as carbohydrates, aminoacids, vitamins...)
the microorganisms are transferred into a single carbon source medium. The authors
have shown that, after this transfer, the microorganisms have a temporary reduction
of the proliferation rate, which is recovered partially or almost totally depending on
the carbon source and on the gene knockout (results are reported in Figure 4.2).
The authors use FBA for both the wild type and the knockout strains in order to
describe the growth rate in various growing media. However, as FBA is unable to
describe the transient dynamics, the authors have found a good agreement only in
terms of the final growth rate, without providing any description of the strategy
adopted by the E.coli strains to get there.

In the following, the heuristic criterion for metabolic adjustment is first pre-
sented. A few (preliminary) results of its application to the central carbon meta-
bolism of E.coli [87] are shown next.
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[ measurement of the proliferation rate

Figure 4.2: Adaptive evolution experiments from [93]. (a): Scheme of the ex-
perimental protocol: after an overnight culture in a rich medium, the microorganism is
transferred in a single carbon source medium. During the following days the growth rate
is measured. (b): Each plot reports the growth rates (h™!) of the E.coli strains with
different gene knockouts in growing media with various carbon sources. Deleted genes:
ackA=acetate kinase A, frd=fumarate reductase, pck=phosphoenolpyruvate carboxyki-
nase, ppc=phosphoenolpyruvate carboxylase, tpi=triosephosphate isomerase; zwf=glucose
6-phosphate-1-dehydrogenase. Carbon sources: Akg=a-ketoglutarate; Glu=glucose;
Lac=lactate; Mal=malate; Suc=succinate.
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4.2 Methods

In this section, the following symbols are used: the metabolic network of F.coli is
represented by the m X r stoichiometric matrix S; the lower and upper bounds of
the reaction fluxes are L and U, respectively. Since nutrients inflows are among the
fluxes considered in the metabolic network, L and U are related not only to the
activation (biochemical or allosteric) and to the concentration of the enzymes (i.e.
the gene expression), but also to the growing medium in which the microorganism
is living. The constraints typical of FBA define the polytope

W(L,U)={v : Sv=0, L<v<U},

here denoted as W (L, U) because it is viewed as function of the lower and upper
bounds. For a given vector v (the reaction fluxes), the growth rate G is defined
by the inner product b’v, where b is the composition of the building blocks of the
cellular biomass. This is the standard cost function of FBA [20].

In order to describe the adjustment of the metabolism when passing from rich
medium to single carbon source, we will use a time-varying dynamics for the fluxes
and the bounds, represented by the sequence

{v®,LO UO} 010,

where v(®), L® and U® denote the reaction fluxes, the lower and upper bounds
at time ¢, respectively (during the dynamics some components of L and of U can
be set to zero because of the removal of the exchanged nutrients or because of the
deactivation of the corresponding enzymes or genes).

4.2.1 The starting point of the transient

We explain here how the initial part of the experiments of Fong and Palsson can be
described by the criteria already available.

The first day: The experiments start with an overnight in a rich medium; we
indicate this initial condition by the polytope W (L(® U©) where the label (0)
indicates the initial time ¢t = 0. It is known that, for unperturbed networks, the
maximization of the growth rate provides the fluxes
v¥=arg max blv.
vew (LO,U0)

Therefore, in the case of the wild type of E.coli, the initial metabolic state v is set
equal to v*. On the contrary, in the case of microorganisms with a knockout (i.e. with
vg = 0, where k is the reaction whose enzyme is coded by the deleted gene), we know
that MOMA provides a reliable description of the short-term metabolic adjustments.
Therefore, since we are interested only in the first overnight in the rich medium, the
metabolism of the microorganisms having a gene deletion is calculated as follows:

v = arg min |lv —v*||2,
veWw (L°,U%)n{v,=0}
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transfer to single carbon source medium

Figure 4.3: Computational description of the initial step of the experiments. The
starting point in the rich medium is the vector of fluxes v(®) € W (L%, U"). After the transfer
to a single carbon source medium, the metabolic fluxes v(!) are calculated by MOMA (a
orthogonal projection on the subset W (L', U)).

where || - ||2 indicates the L?-norm.

The second day: At the beginning of the second day, the rich growing medium
is substituted with a single carbon source medium: formally, the lower and upper
bounds of the exchange reactions of the nutrients which are no longer available are
set equal to zero. The polytope W is now defined by LM and UM, As previously
done, in order to obtain the one-day quantification of the metabolic adjustment of
the microorganism (i.e. v(1)), the short term description provided by MOMA (with
respect to V(O)) is considered again sufficiently reliable. We calculate then:

vl =arg  min  [|v—v©|..

vew (L1, Ul)
A computational description of this initial step is represented in Figure 4.3.

Both steps performed so far are standard in the literature of perturbed FBA.
Proceeding further with these criteria is however impossible, unless we introduce
some other mechanisms in the method, like the “reaction turn-off” described in the
next section. It is worth noting that, among the possible ways used by a cell to
stop a reaction, there is the gene resilencing (transcriptional regulation of the gene
expression) but also the allosteric interaction and the biochemical deactivation of
the enzyme. For this reason, such cellular action will be simply called turn-off in
the following.
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4.2.2 An heuristic criterion for long-term metabolic adjustment

Generally, MOMA provides a low proliferation rate G and a higher number of ac-
tive reactions N than FBA [21]. This is valid also for the fluxes v(!) obtained for
the second day of the adaptation (for which G = bTv() and N = |A(1)],
where A(s) = {i : vz(s) # 0} is the set of active reactions at time ¢ = s and
|A(s)| its cardinalty), coherently with the low proliferation observed after the per-
turbation. Hence, in order to recover the growth rate, a reasonable strategy is that
these survival-enabling “latent” pathways are progressively stopped. This progres-
sive turn-off should be accompanied by a progressive restoring of the growth rate, up
to a complete recovery (or more precisely, as complete as possible, given the carbon
source and the knockout) as per FBA prediction.

Let us look at the move from ¢ = 1 to t = 2 (expect for the first and second day,
the time scale will be in arbitrary units). For instance, the cell turns off the enzyme
of the reaction k (an active reaction, i.e. k € A(1)). This means that L,(CQ) = U,ig) =0
and that new changes are caused in the metabolism. Since we are interested to the
short time horizon after this resilencing (i.e. only at the time 2), these changes can
be described again by MOMA. For a given k, we can calculate the reaction fluxes
as follows

wlk] =arg  min  [Jw—vD|, (4.1)
weWw (L2,U?)
and the corresponding proliferation rate g[k] = b? w[k]. Of course, this can be done
for any generic time ¢ > 1. Note that, although w([k] and g[k] represent the metabolic
fluxes and the growth rate respectively, we do no use the standard symbols v and
G because (4.1) provides only the k-th prediction over all N (1) possibilities.
Indeed, we need now to decide which value of k will be chosen by the cell.

Population dynamics. We may assume that a cell does not know the final
metabolic state it will reach after several adjustments. For this reason, only in-
stantaneous information can be used.

For simplicity, let us consider the case in which, at time ¢, the cell has two
possible strategies K = 1 and & = 2 (see Figure 4.4) which lead temporarily to
proliferation rates g[1] and g[2] respectively (calculated using (4.1)). Denoting with
Q(t) the population of the cell culture at time ¢ and referring to the usual equation
for its growth

dQ(t)/dt = g[k]Q(t),
after an arbitrary time At the population can be:

Q(t+ At) = Q(t)edMAt if the cells turn off reaction 1;
Qa(t + At) = Q(t)e?PAt if the cells turn off reaction 2.

We may suppose that natural selection would have advantaged the strategy that
gives the highest instantaneous growth rate: as consequence, the ratio between
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strategies

g[1] > g(2]

dO(t)/dt = g-Q(t)

=

Q,(t+At) = Q(t)estua
Q,(t+At) = Q(t)e sz

Figure 4.4: Population dynamics. Between two strategies that induce different effects,
the more probable is that which induce a higher growth rate.

these populations indicates the probability IP for a cell to select the reaction to turn
off: in particular we have

Pk = 1) Q1(t + At) esltat
- Ot + At) T Oot + Al) o9l 1 goPIAL
gl2]At
Pk=2) = Qa2(t + At) e

Qi(t + At) + Qa(t + At)  edlIAE | cglIAt

Therefore, in our systems, among the N(¢) active reactions that a cell can turn
off, the probability of turnign off any reaction k € A(t) is given by

ePlk]
Dicaq) €79

where we replace the arbitrary time At by the factor 3. Indeed, (4.2) reminds the
expression used in Statistical Physics [95] to calculate the probability distribution
of the states of a system in which the denominator is the partition function

7 Z Pk
I

P(k) = (4.2)
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i.e. it is the summation over all possible states p of the exponential of the Hamilto-
nian h(p) multiplied by the Boltzmann factor # = 1/kgT (kp denotes the Boltzmann
constant and 7' the temperature). For this similarity, lower values of (3 (i.e. higher
temperatures) would increase a random spread during the simulation over the possi-
ble cellular strategies (toward both lower and higher growth rates). In the following
we arbitrarily set 5 = 1/0.007.

As the g[k| are updated at each step, so are P and Z. Clearly the partition
function Z cannot be computed explicitly and we have to resort to a numerical
simulation.

Simulation of the process. From Equation (4.2), given the state of the cell at
time ¢ (ie. given [v(®), L(t),U(t)]), we can calculate the probability for all turn-off
that a cell can adopt. The strategy is then chosen by generating a random index
x € A(t) according to this probability distribution. This procedure is repeated until
no turn-off provide any further advantage to the microorganism (i.e. until the growth
rate cannot further increase).

Many random realizations (n) of such stochastic process are generated.

VO, LY, U (Demoa 20y G=1,-000m

From each of them, we calculate the trajectories of G®(j) and of N®(j). The
averages over the n samples generates the final dynamics G(t) and N(t). For direct
comparison with experimental data, G(t) is rescaled as in the paper of Fong and
Palsson, i.e. such that it corresponds to the same substrate and oxygen uptake rates
of the wild type in the same growing medium. This is achieved multipling G(t) by

the ratio
Fong-Palsson
biomass

maXy, 1,1 y)) Ybiomass

4.3 Preliminary results

The method is applied to the Escherichia coli central carbon metabolism (details of
this network can be found in Table 3.2 and Figure 3.3 of the previous chapter). The
results, reported in Figure 4.5, show a good agreement with the experimental data
of Figure 4.2(b): the cases where the growth rate was almost completely recovered
have been progressively reproduced by our simulations. Similarly also for cases with
a partial recovery. Moreover, also the number of active reactions is in agreement
with the expected behavior reported in Figure 4.1, i.e. high at the beginning and
reduced with time. The only difference concerns the dynamics of the wild type: for
this strain, the prediction of the growth rate we obtain is always too high, although
our starting value is much smaller than the experimental value. In spite of that,
our final growth rate is always closer to the experimental data than the direct FBA
computed by Fong and Palsson.



75

Preliminary results

INOOY Aq pootpard o3el [imoIs o1y Juosardol soul] Pao(q ‘[e6] qg'§ 9IMSBI] Ul Sk 'IPOW SUIMOIS PUR SINOYIOUY dUSL) "SaLI0j00[r1)
wopuelI (J)T = U I9AO (SUOIJORAI DAIJOR JO Ioquunu) () N PUR (9)el [)M0I3) (7)£) onfes UBSJ\ *SUOIIR[NUIIS 8YJ JO SINSOY G oI

|wn |awn |wn awl awl
0oc oL 0 0oc oL 0 0oc oL 0 0oc oL 0 0oc oL oo
. : . =
®
oz 2
<
(0]
or 8
2}
=
09 3
0
1dy .
I fYiaYe p— 10
odd
I mz 0
P e
H oe .
9dAL PIIM = &0
! v'o @
g
S0 =
90 &
L0
r 80
3 6°0
: . L : : L : L L L : I : . L
ajeuldong aleleiN-1 ajejoe1-a 9soon|9H-q ajeseln|boxO-g



76 Transient dynamics in perturbed microorganisms

A B
17 1 R
094 0.94 * "'
*
- 0.8% i ® 7
0.8 4 } tpilac - — *tpl Lac ® .’
~ 073 wiGly <= 0.7+ s zwf Glu |
LT * pck Akg L4
| ~ @ * )
< zwf Glu ‘é o * ¥* yl.. - ]
© 0.6 - = 0.6% o
s * o
£ 0.54 I ppe Glu %05- * .' : 1
: ~ S s cAkg PPC Glu
g 04 \ ipi Gl B o4l - St T pRe i ]
° .
pck Akg a : 4 tpi Gl
£ 03 § 0.3 - pi Glu ]
% ppc AKG 2 P
= 024 0.2 ',' 4
o) e ® Proposed method
0 - * ROOM ]
0 T T T T 1 o
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Predicted growth rate (h™1) Predicted growth rate (hq)

Figure 4.6: Comparison with the theoretical prediction from the literature. (A):
correlation between experimental data and theoretical predictions indicated by Fong and
Palsson [93]. The mean square errors is equal to 0.15 h™!. (B): correlation between the
same experimental data and our theoretical prediction: in our case the agreement is much
better. The mean square error is 0.09 h~!. Blue asterisks refer to ROOM predictions.

Indeed, we have also compared our results with the theoretical ones proposed
in the paper of these authors. As mentioned, their in silico predictions concerned
only the final point: in particular, the authors have calculated the maximal growth
rate by the standard FBA criterion [20]. However, not all microorganisms reached
the complete recovery of the growth rate: indeed, as reported in Figure 4.6A, the
agreement they have obtained with respect to the experimental measurements is
only partial. In our simulation, instead, just a few cases show a total recovery of
the proliferation and a better agreement is thus obtained (see Figure 4.6B).

We calculate also the biomass production predicted by ROOM (after the change
of the growth medium), since it is considered to be more reliable than MOMA in
describing later stages in the metabolic adjustment. Indeed, with respect to results
of MOMA (all with G(0) = 0, see initial points of the trajectories in Figure 4.5) the
values of ROOM are higher (precisely, in the interval [0, 0.5] h™!, see dotted lines in
Figure 4.5 and blue asterisks in Figure 4.6B). However, the fact that these values are
randomly located between zero and the experimental data indicates that the time
of the later stage to which ROOM refers is completely unclear and unpredictable.
For this reason it cannot be considered a precise method for describing the transient
dynamic of the metabolic adjustment.
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4.4 Discussions and perspectives

These preliminary results indicate that the method we propose is able to generate
a reliable description of the metabolic adjustment following a change of medium.
Such good predictions are valid not only for what concerns the final growth rate
but also for the whole trajectory. For this reason, we expect that our procedure can
contribute to the understanding of the principles which control cellular metabolism.
However, no measurement of genes regulation and of enzymes activation has been
included in the paper we use as reference. In a more recent publication [94], the
same research group of Palsson has performed a gene expression analysis during the
adaptation of the metabolism in case of Lactate as carbon source. Several other
papers (for instance [90, 91, 92]) report the experimental measurements of the rate
of reactions of the central carbon metabolism (namely glycolysis and Krebs cycles)
for E.coli. They represent then a set of new references potentially able to validate
the method we have proposed here: for example, it may be possible to verify if the
experimental sequences of the turned-off reactions are coherent with the theoretical
predictions of our heuristic criterion.

Beside this, also the effect of the temperature parameter G should be investigated.
Moreover, the probabilistic properties of the procedure viewed as a Markov process
can be identified and characterized. The promising results obtained up to now
encourage us to perform these additional studies.
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PART 11

QUANTIFYING DISORDER IN
COMPLEX SIGNED NETWORKS:
FROM GENE-REGULATORY TO SOCIAL NETWORKS






Introduction

In the previous part we have shown how FBA is able to capture the complexity
of a metabolic network using a simple constraint-based model in which the kinetic
parameters are completely neglected and only stoichiometric information is used.
In the FBA approach, the “effective” fluxes are determined by the minimization
(maximization) of a cost functional defined according to some heuristic criteria.
In reality the yield of a reaction depends on the concentration and activity of the
enzyme that catalyzes the reaction itself, hence on the expression of the gene that
codes for the enzyme. This links the metabolic layer of a cell to the gene regulatory
layer.

Unfortunately, the FBA formalism cannot be straightforwardly extended to the
characterization of these regulations. In addition, our knowledge of the gene regu-
latory networks is largely incomplete even in the best studied prokaryotes, such as
E.coli. For example in the RegulonDB database (the reference database for E.coli
gene regulatory network) the coverage for what concerns the interactions among
transcription factors and target genes is less than 50% of the genome (it is much
worse for other organisms). For a vast fraction of these known interactions also a
specification of the functional mode of action is available, namely transcriptional
regulations are classified as activatory or inhibitory. This means that the gene net-
work can be described as a signed graph, with nodes representing genes and signed
edges the regulatory modes.

This model has similarities with the Ising spin-glass model used in Statistical
Physics to describe disordered systems. As alternative, an Information Theory per-
spective can also be adopted. Both perspectives are explained in Chapter 5. De-
pending on the convenience of the investigation we need to perform, one of the two
formalisms is taken as main reference. Even though nodes and edges are interpreted
in a different manner in the two settings, the final computational issues are similar
and related: hard optimization problems for which heuristic procedures are needed
(LP is no longer suitable in these cases).

The main issue we investigate for our signed graphs is the amount of “true
disorder” encoded in the network. In the Information Theory context of Lossy
Source Compression codes used in Chapter 6 to deal with gene regulatory networks,
this concept is called distortion. In Chapter 7 we discuss instead disorder in another
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class of signed graphs drawn from social network theory. In this context the disorder
is related to the notion of structural balance. The contents and the results presented
in Chapters 6 and 7 are briefly summarized below.

Atypicality of regulatory networks (Chapter 6).
Gene regulatory networks, with their modes of transcriptional regulations (activa-
tion/inhibition), are treated as a lossy data compression problem for a coding system
whose distortion is determined. For currently available gene networks, we show that
the distortion is much lower than expected from null models, and that it is close
to (when not lower than) the Shannon bound determined by the rate-distortion
theorem.

These results highlight that the distribution of regulatory modes is highly atyp-
ical in the networks considered, and that this atypicality greatly helps in avoiding
contradictory transcriptional actions.

Structural balance of social networks (Chapter 7).

According to Heider’s theory of structural balance proposed in the 50’s, social net-
works, whose edges represent friendly /hostile interactions among individuals, tend
to be organized so as to avoid conflictual (called unbalanced in this context) situ-
ations represented as cycles of negative sign (i.e. frustrated cycles in the spin glass
terminology). Using an algorithm for ground state calculation in large-scale Ising
spin glasses, we compute the global level of balance of some very large on-line social
networks: in spite of the “apparent disorder” present in these graphs, we verify that
currently available networks are indeed extremely balanced (i.e. the frustration is
very limited).

Moreover, by exploring the landscape of near-ground states we show that one of
the networks we analyzed shows several distinct minima, separated by energy bar-
riers determined by internally balanced sub-communities of users, a phenomenon
similar to the replica-symmetry breaking of spin glasses. Passing from one val-
ley to another requires to destroy the internal arrangement of these balanced sub-
communities and then to reform it again.

The results of these chapters have been published in the following papers:

o G. Facchetti, G. Iacono, G. De Palo and C. Altafini. A rate-distortion the-
ory for gene regulatory networks and its application to logic gate consistency
Bioinformatics, 29(9), 1166-1173, (2013).

o G. Facchetti, G. Tacono, C. Altafni. Computing global structural balance in
large-scale signed social networks. Proc. Nat. Ac. Sci., 108(52), 20953-20958,
(2011).

o G. Facchetti, G. Iacono and C. Altafni. Exploring the low-energy landscape
of large-scale signed social networks. Physical Review E, 86, 036116 (2012).



Chapter 5

Theoretical framework: an
overview

5.1 Ising spin-glass model

For us a spin glass is a signed graph in which a set of spins (nodes) are reciprocally
interacting according to a defined topology (in Statistical Physics a regular lattice,
for us a network of heterogeneous connectivity). In these models, each spin can
exist in two or more states and the interactions between nearest neighbors can
be of “ferromagnetic type” (represented as a positive weight on the edge) or “anti-
ferromagnetic type” (represented as a negative weight on the edge). Each interaction
has an energetic content which depends on the states of the interacting spins and
on the value of the edge linking them: the sum of these energetic contributions
defines an energy function called Hamiltonian h of the system. The study of h at
different spin configurations may reveal important features of the network such as
for instance clustering of sub-networks, appearance of spontaneous order (called, for
instance, “magnetization” in case of spin of nuclei). The Ising model [96, 95] is one
of the simplest cases of spin glass: spins have two possible states (which, without lost
of generality, we consider now £1), see Fig. 5.1. Since we refer to pairwise undirected
relationships only and since we assume they have all the same magnitude, a network
of spins can be described by an undirected graph in which the n nodes are the spins
and the m edges are their couplings. These couplings define the n x n adjacent
matrix J of the network as follows:

+1 if there is a positive coupling between spin ¢ and spin j;
Jij = 0 if there is no coupling between spin i and spin j; (5.1)
-1 if there is a negative coupling between spin ¢ and spin j.

As the signed graph is undirected, its adjacency matrix J is symmetric: J;; = Jj;.
Ignoring the single spin terms due to an external effect (e.g. an external magnetic
field in case of spins of nuclei), the Hamiltonian h(s) of the network J in a given
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Figure 5.1: Ising spin glass. Example of an Ising spin glass on a planar network: spins are
the nodes (“+” indicates s; = +1, “—” indicates s; = —1) and their coupling are the edges
(blue: positive; red: negative). The assignment of the spins here reported corresponds to the
minimal energy configuration. This network is not frustrated since all cycles are positive.

spin configuration s = [s1...s,]7, s; € {£1}, i =1,...,n, is calculated as follows:
1 1—J;i848;
h(s) = ffTJ:§7”” 5.2
(s)=m 5S Js 5 , (5.2)

(4,9)

where the summations runs over all adjacent pairs of nodes, i.e. it is a sum of 2m
terms (1—J;5s;5;5)/2 each of them equals to 0 or +1. The minimum of h(s) is achieved
in correspondence of a spin configuration s for which as many as possible of the terms
(1 — Jijsis;)/2 are null. When J;; > 0 this requires s; = s;, when J;; <0 s; = —s;
The Hamiltonian has “true disorder” (or frustration) when not all terms of (5.2) can
be “satisfied” (i.e. rendered 1— J;;js;s; = 0) simultaneously. The Hamiltonian is the
main tool for the characterization of the spin glass and of the associated network.
Indeed, through the analysis of what is called “energy landscape” one may obtain
information about the ground state and about other possible local minima of energy.
As we will see, all problems presented in the following chapters need to search for
the energetic minima and/or to study the main features of the energy landscape.
An exhaustive exploration of all configurations is prohibitive even for small net-
works (the number ¢ of configurations scales exponentially with the number n of
spins, in particular ¢ = 2™). Several methods have been proposed in order to collect
as much information as possible (for instance the energy of the local minima and
their locations) with a reasonable computational cost. In spite to some computa-
tional limits which start to appear with medium size systems (approximately over
103 spins), Monte Carlo with its large number of variations [97] is the most diffuse



Optimization algorithm: gauge transformation 85

method for this purpose. In the next section, we are going to present a heuristic algo-
rithm based on the concept of gauge transformation which is capable of performing
efficiently the energy minimization of an Ising spin glass.

Although we refer to spins such that s; € {£1}, the presented formalization can
be applied to any other pair of possible spin values (here called v; and vy). For
instance, in case of a signed graph representing a gene regulatory network, it would
be more convenient to consider “expressed/unexpressed” as the two possible states,
i.e. v1 = 1 and vy = 0, respectively. Since we have two pairs of values (namely
{=1,+1} and {v1,v2}), we can always find a linear (bijective) map F converting
one pair to the other. In particular:

F:{-1,41} — {vi,v2}

s T
and its inverse are given be the following expressions:

5 = F(s) = (vg — 'U1)5i2+ (v + Ul); (5.3)
2x; — (UQ + Ul) ‘

(v2 —v1)

S; = F_l(.%‘i) == (54)
Substituting (5.4) in (5.2), we can now calculated the same Hamiltonian with respect
to the new “spin” variable x.

5.2 Optimization algorithm: gauge transformation

We present here the main features of the heuristic algorithm used to find the min-
imum of h(s). Computing this minimum is an NP-hard problem, i.e. the time of
execution scales more then any polynomial function of the size of the problem. More
details about our algorithm are available in [98].

Given the (n x n) adjacency matrix J (with J;; € {—1,0,+1}), our approach to
minimize the Hamiltonian of an Ising spin glass, i.e. to solve

0=  min h(s)= min m-— 1sTJs,
se{—1,+1}" se{—1,+1}" 2

consists in finding a diagonal matrix T, = diag(o), o € {—1,+1}", such that T,,JT,
has the least possible number of negative signs. Any such 7T, is a change of sign
through a cut set of the graph of J, see example in Fig. 5.2. These operations are
called switching equivalences in the theory of signed graphs [99], or gauge transfor-
mations in the theory of frustrated spin systems [100], and correspond to changes in
the partial order of the orthants of R” in the theory of monotonic systems [101, 102].
The outcome of the algorithm is a gauge transformation of the adjacency matrix

J into the equivalent J,:
J— J, =T1,JT. (5.5)
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A system is exactly balanced if and only if there exists a ¢ such that J, = T,JT,
has no negative entries. Unlike the usual algorithms to find the ground states in
spin systems, which explore the space of spin configurations s, our optimization
procedure works on the adjacency matrix J. Since s = Tgx1, in terms of the energy
function (5.2) the two concepts are equivalent and (5.2) can be written as

1 1
h(s) =m — §STJS =m— §1TTSJT51. (5.6)

For s = o, from (5.6) it is easily seen that flipping spins is equivalent to applying
the gauge transformation (5.5) to J. In spin glass theory [103] this corresponds to
the notion that frustration ¢ is an invariant of transformations such as (5.5).

What makes the algorithm efficient is the observation that at each step identi-
fying a gauge transformation which decreases h(s) is straightforward, as it amounts
to computing the rows/columns of the current 7,.J7, having negative sum (i.e. the
nodes of the graph of T, JT, being adjacent to more negative than positive edges).
Iterating the procedure (5.5) r times for signature vectors oy,...,o, then means
nesting r matrix multiplications:

J =Ty o Ty JTy, ... Ty, (5.7)

Provided oy, ...,0, are chosen appropriately, the energy in (5.2) is monoton-
ically decreasing. As the T, are all diagonal matrices, it is always possible to
find a ¢ € {—1,+1}" such that T, = Ty, ...T,,. Computationally, the fact that
gauge transformations which decrease the energy are cheaply computable a priori
(i.e. before each move) implies that only favorable directions are probed at each
step. This approach (similar to the BKL algorithm [104] but of lower complexity)
drastically decreases the computational time of a search, especially at low energies
where favorable moves become rare. As long as J, = T,JT, has rows/columns of
negative sum, then the procedure (5.7) can be iterated for another step. The local

Figure 5.2: Example of gauge transformation. (a): The given initial graph with all
spin state equal to +1. (b): Applying a sign change to all edges adjacent to the node A
(in green) only one negative edge is left in the graph. Since we flip spin A, this optimum
corresponds to choosing s4 = —1, sp = s¢ = sp = sg = +1. Hamiltonian (5.2) is then
equal to 1 (only one negative edge is left).
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search always stops in a minimum, corresponding to a J, having all non-negative
row/columns sums. This minimum can be local or global. Perturbing locally the
system (i.e. applying a gauge transformation which slightly increases the energy)
allows to move away from the a local minimum and to continue the search. Millions
of such perturbations (of various sizes) can be performed on a single run. After the
run is terminated, the algorithm is randomly re-initialized and the whole procedure
repeated. In Statistical Physics terminology, different runs of the procedure corre-
spond to different replicas. A certain number of replicas reaching the low energy are
stored for further processing. The best minimum over all replicas we computed is
denoted 4, (i.e. an upper bound of the true ground state 9).

Lower bounds on the ground state § are available for exact branch-and-cut
methods [28, 29] (which, however, can only deal efficiently with small-medium
size instances) and for semidefinite programming approaches [105, 106, 107], for
which the well-known Goemans—Williamson lower bound guarantee corresponds to
Siow/Oup = 0.8785 [108]. An advantage of minimizing the negative entries of J, is
that no matter if the procedure stops in a local or global minimum, the residual
frustrations are straightforward to localize, as one of the optimal spin assignments
(ground states) of the gauge transformed J,, is always the state 1, i.e. the all spins
up state (and by global symmetry, the all spins down state —1). Furthermore, on
an adjacency matrix composed largely by positive edges such as J,, it gets eas-
ier to try to associate to each remaining negative edge a cycle completed only by
means of positive edges. As long as such frustrated cycles are built edge-disjoint,
then the frustration they carry can be shown to be ineliminable [98]. This allows
to compute also a lower bound d;,, for § for each J,. In the concrete examples
discussed in this thesis our ratio ;o /dup always outperforms the aforementioned
Goemans—Williamson ratio.

Once we have found the “optimal” gauge transformation 7, (for which we recall
that 1 is always a ground state), since s = Ts1, reconstructing the optimal spin flip
so in the original “quenching” J means “‘rewinding” all the gauge transformations
performed. For (5.7) this amounts to write s = Ty, ... T, 1.

5.3 From spin glass to lossy data compression problem

There is a consistent literature on the connections between the Statistical Physics
of disordered systems and information theory, in particular between spin glass the-
ory and Shannon coding theory. A typical approach consists in using some of the
Statistical Physics tools developed for spin glasses in order to design new algorithms
for a coding system or to analyze its properties [109, 110, 111]. The coding system
could be for example a capacity-approaching lossy data compressor, such as those
based on Low Density Parity Checks and affine methods [109, 110, 112].

In what follows, we show how to map an Ising spin-glass problem into a lossy
data compression problem.
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Figure 5.3: Signed networks and coding systems. (A): a toy example of signed graph
and its formulation as a SAT problem. A negative (red) edge is mapped into y; = 1, while a
positive edge (blue) is mapped into y; = 0. (B): rate-distortion scheme. In the regime n < m,
the encoding/decoding scheme is normally referred to as a lossy source compression problem
[113], as a length-n sequence X is used to represent a length-m word y. The distortion
corresponds to the relative Hamming distance d(y, ¥)/m, where y = Ax.

From the adjacent matrix J of a spin glass (5.1), we can first compute an m x n
matrix A which contains all the information about the topology of the network (n
the number of spins, m the number of edges). Each row of A identifies an edge, and
has two nonzero entries (equal to 1) in correspondence of the two nodes linked by
the edge, see Fig. 5.3A for an example.

The sign of the edges of the network can be represented by a vector y € Z5* as
follows

Yk =

1—J;; 0 if Ji; =41
2232{ i +, Vi > j such that J;; # 0, (5.8)

1 if Ji = —1
for the triplets of indexes {k, (i,7)} resulting from the vec(-) operation.

Similarly, after choosing (v1,v2) = (0,1), Equation (5.3) can be used to convert the
vector of spins s into the binary vector x:

1—s; [0 ifs=+1 ,
Ti = i :{ = i=1,...,n. (5.9)

2 1 ifs;=-1"
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According to the Ising glass interpretation, we need to search for the configuration
of spins which has the minimum number of frustrations (i.e. the ground state). We
can now translate the Hamiltonian minimization (a sum of m interactions, i.e. of
m terms) into a constraint satisfaction (SAT) problem. In particular, searching for
the assignments x € Z3 compatible with all the values of the given y € Z7' means
solving a linear system of m equations over the field (Zq, ®, -)

Ax@y =0. (5.10)

For example, the contribution to the Hamiltonian of two interacting spins (s; and s;)
through the coupling J;; is the term (1 — J;;s;s;)/2 which is equal to 0 (energetically
favored) or equal to +1 (energetically unfavored) according to number of negative
signs over the three factors s;, s; and J;;. In the same way, each row of (5.10)
consists of a summation z; ® x; @ y, which is equal to +1 (constraint unsatisfied)
according to the number of null values of the three terms z;, x; and y;. Indeed (5.10)
is known as “XORSAT problem” and it may or may not have a solution depending
on y. When (5.10) has no solution (it is said UNSAT in this case), then one can
look for the x € Z7 that satisfies the maximal number of constraints of (5.10). This
problem is called MAX-XORSAT, see [114], and is equivalent to the Hamiltonian
minimization. In fact, denoting d(y, Ax) the Hamming distance between y and Ax,
the following equalities hold:

M) = 30T axmy| = d(y, Ax).
(i.4)
Then solving the MAX-XORSAT for a given y means finding X that minimizes
d(y, Ax):
X = argmin,znd(y, Ax) = argmin,czn [Ax @ y|. (5.11)

In information theory, MAX-XORSAT problems are used to solve lossy source com-
pression problems [106, 107]. In this context, y is the original message, x is the
encoded (compressed) message and A defines the coding system (see Fig. 5.3B).
The relative Hamming distance

.

Day=_ min d(y, Ax) (5.12)
is called the distortion of the “word” y associated to the “code” A. We shall call
average distortion of the “code” associated to A (denoted by D 4) the expectation of
(5.12) over the entire alphabet Z5* of y. Assuming that the bits ¥;, i =1,...,m, of
the encoded message are independent random variables, each drawn from the same
given probability distribution, Prob(Y; = y) = p(y), then:

1
Djy=Evy[D = — d(y, Ax 5.13
a=Ey[Day]=— 3 p(y)dly, A%), (5.13)

yeZ?

where, for each y, x solves (5.11).
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5.4 Rate-distortion theorem

We now introduce a Shannon-type bound that allows to estimate the value of the
distortion in correspondence of the “best” channel topology and of source sequences
drawn from a probability distribution model. We start from the definition of distor-
tion D4y of a word y associated to the code A reported in (5.12) and we assume to
have the probability distribution P(Y). The Shannon bound is given by the so-called
rate-distortion theorem [113].

Denote R = n/m the rate between the number of bits of the encoder (n) and
that of the original source (m), R < 1. Consider an encoding function f,
75 — {1, 2, ...,2™%} and a decoding function g,, : {1, 2, ...,2™%} — Z™ so that
U = gm(fm(y)). Asin (5.13), the distortion associated with the code (i.e. to the pair
[fm(+), gm(-)]) is the expectation with respect to the probability distribution P(Y):

d(y, Y)

D( )= E _ Zp(y) d(Y: gmf){m(y)))) ) (5.14)

fmsgm

y

Given R, as we vary the channel (i.e. [fi,(+), gm(+)]) the pairs (R, D) deduced from
(5.14) vary. In particular, a rate distortion pair (R, D) is said achievable if there
exists a sequence of [f,(+), gm(-)] for which

im E [d(ngm(fm(Y)))] <D.

m

m—00

The rate-distortion region C' is the closure of the set of achievable rate-distortion
pairs (R, D). In particular we are interested in the rate-distortion function R(D) =
min g pyjec R, which is the minimum of rates R such that (R, D) € C for a given
D, and in the distortion-rate function D(R) = min g pjec D which is defined anal-
ogously, for a given R.

When the source has a Bernoulli distribution with probability ¢, i.e. Y; ~ B(q),
i=1,...,m, then R(D) can be calculated explicitly [113].

Theorem 2. When the source is a Bernoulli distribution B(q), the rate-
distortion function associated with the Hamming distortion (5.14) is

Mm_{ﬂ@—H@)0<D<mM%Lw) (5.15)

0 D > min(q, 1 — q)

where H(D) is the binary entropy, H(D) = —Dlogy D—(1—D)logy(1—D).

The expression (5.15) obviously identifies also D(R) (see also Figure 5.4). For
a given R, the value D(R) is achieved by a “best” channel, not necessarily by all
channels. In the case of a nonoptimal channel, the distortion for a B(g) source
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Figure 5.4: Rate-distortion theorem. Example of the rate-distortion function R(D) from
a Bernoulli distribution with parameter ¢ from 0.1 to 0.5 (for symmetry reasons, the outcome
is the same for ¢ and 1 — q).

(computed on this channel) must be strictly bigger than D(R) by construction.
Likewise, when applied to a specific source sequence, D(R) is achieved only if the
sequence is “typical” for the source probability distribution, while an odd, unusual
sequence may instead deviate significantly from D(R).
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Chapter 6

A rate-distortion theory for
gene regulatory networks

6.1 Gene regulatory networks

A gene regulatory network consists of a set of Transcription Factors (TF) regulating
the expression of the genes of a given genome. As our knowledge of these regula-
tory mechanisms grows steadily, the problem of understanding the principles behind
their organization and their functioning is becoming a crucial question of Systems
Biology [115, 116, 117, 118, 119]. While the current literature is focused mainly on
the topological aspects of a gene regulatory network, the perspective that we take
in this work is to study whether the transcriptional regulatory modes (i.e. the ac-
tivation/inhibition role of a TF on its target genes) of the gene networks currently
available are distributed randomly on the given network or are organized according
to some criteria.

To formalize this question and to try to understand the rules of this design, we use
tools from information theory [113, 114] and, in particular, we treat a gene network as
a “code” for which the signs of the regulatory actions constitute a particular “source
word”, which can be compared to the typical words generated by a corresponding
probabilistic model. As a comparison criterion we use the “level of coherence” of
the regulatory actions along the network. Two regulatory orders emanating from
a TF and acting on the same target gene (possibly through intermediate genes)
are considered coherent when they induce the same behavior on the target gene
(i.e. they both induce activation or repression); they are considered incoherent when
they induce conflicting behaviors. As can be easily deduced from simple examples
like FeedForward Loops (FFL, see Fig. 6.2), in a gene regulatory network incoherence
is associated with negative (undirected) cycles on the signed graph having the genes
as nodes, the regulations as edges, and the modes of the regulations as signs of the
edges, see [98]. An undirected cycle is negative when it contains an odd number
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i
R rrrrres R R

Figure 6.1: E.coli gene regulatory network. A transcription network that represent
about 20% of the transcription interactions in E.coli. (from [120])

of inhibitions. Since we associate binary values to the expression of the genes,
the main feature of a negative undirected cycle is that no choice of expression can
satisfy all constraints imposed by the regulations. This satisfiability can be tested
by formulating the “compatibility” as a system of linear algebraic equations over a
binary field.

If the gene regulatory network is a code, and the signs of the regulations specify
a codeword, then the problem can be studied as a lossy source compression problem,
see [109, 112]. In this framework, in particular, the level of coherence of the tran-
scriptional regulations can be rigorously computed as the distortion introduced by
the source compression problem. For the gene networks currently available for F.coli
(see Figure 6.1), S.cerevisiae and B.subtilis, the distortion can be quantified with
sufficient precision and can be compared with two important quantities: (i) the av-
erage distortion of a typical word associated to the same “code” (i.e. a gene network
with the same topology but signs reshuffled); (ii) the best average distortion achiev-
able by any gene network with the same ratio of genes/regulations. The latter value
corresponds to the Shannon bound provided by the rate-distortion theorem [113].
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6.2 DMaterials and Methods

6.2.1 Analyzed networks

Although large-scale gene regulatory networks are becoming available for several
organisms, only for very few of them the signs of the regulations are available to
date (see e.g. [121, 122, 123]). In this work we use the following three gene networks:

® gene regulatory network of FEscherichia coli, downloaded from RegulonDB
database (http://regulondb.ccg.unam.mx). See [124].

® gene regulatory network of Saccaromyces cerevisiae, discussed in [125] and
downloadable from http://www.weizmann.ac.il/mcb/UriAlon/.

@® gene regulatory network for Bacillus subtilis, assembled by [126]. Downloaded
from http://dbtbs.hgc. jp/.

Details like the number of genes n and regulations m for these three networks are in
Table 6.1. A directed edge represents the action of a transcription factor on one of its
target genes, and the sign means activation (+) or inhibition (—). As always in the
gene network literature, these post-transcriptional regulations (the TF influencing
the transcription of other genes are gene products) are represented at transcriptional
level. Only a very few TFs are cataloged as acting both as activator and as repressor
on the same gene. These regulations are disregarded in our study. Also the autoreg-
ulatory actions (i.e. self-loops of the signed graphs), which are abundant especially
in the F.coli network, are not considered in the work.

In the second part of Table 6.1, the three gene networks are restricted to their
largest bicomponent, i.e. to the subnetwork whose nodes are involved in undirected
cycles. In this way, the leaves (and tree-like structures) of the undirected graph are
dropped.

Table 6.1: Main features of the analyzed gene regulatory networks. n and m are
the number of nodes and edges of the directed graph representing the gene network; rate R
is the ratio nodes/edges; ¢ is the fraction of negative edges.

Network n m R q

E.coli 1461 3220 0.454 0.416
S.cerevisiae 690 1082 0.638 0.204
B.subtilis 918 1324 0.693 0.256

QUANTITIES RESTRICTED TO THE BICOMPONENT SUBNETWORKS.

Network n m R q
E.coli 892 2671 0.334 0.404
S.cerevisiae 336 736 0.457 0.234

B.subtilis 388 803 0.483 0.277
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Figure 6.2: FFL motifs and their steady state values. The FFL is the simplest motif
forming an undirected cycle in a graph. Of the 8 possible FFL, 4 are coherent (A) and 4
incoherent (B).

6.2.2 Gene regulatory networks as constraint satisfaction problems

In this section we are interested in formulating a description of the signed graph
representing the gene regulatory network in terms of encoding/decoding systems.
Consider a gene regulatory network composed of n nodes x = [a:l e a:n]T repre-
senting the genes and m directed edges y = [yl . ym]T representing regulatory
actions of activation/inhibition of a gene on another gene. Assume both x and
y are represented in Boolean terms: z; € Zs = {0, 1} = {“low”, “high”}, and
yi € Za = {0, 1}, where we use the convention that 0 stands for activation (i.e. “+”)
and 1 for inhibition (i.e. “—7).

Let us make use of an m x n matrix A to describe the topology of the gene net-
work. According to (5.10), finding gene expression assignments x € Z% compatible
with all the regulatory signs of a given y € Z5' means solving a linear system over
the (Zs,®, ) field:

Axdy =0. (6.1)

The distortion of y associated to the A is

.
DA7y - E }{IEHZ%L d(Y: AX), (62)

where d(-, -) denotes the Hamming distance.

Example: Feed-Forward Loops (FFL)
Let us consider as an example the FFL of Fig. 6.2. In a FFL, n = m = 3, hence
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Table 6.2: Coherent and incoherent FFL. Counts of the FFL in the three transcriptional
networks of Table 6.1. For F.coli and B.subtilis the FFL counts do not take into account
the operonal structure of the DNA. When genes sharing an operon are lumped together, the
fraction coherent/incoherent FFL is very similar. Notice that in many of these FFL, the
intermediate node (i.e. 23 in Fig. 6.2) has in-degree > 1, meaning that the FFL are coupled.
Other forms of coupling are present. For example many FFL share an edge. In FE.coli this
can be deduced also from the fact that the number of incoherent FFL is larger than the
number of independent undirected negative cycles, see [123].

Network coherent FFL incoherent FFL
E.coli 539 724
S.cerevisiae 39 34
B.subtilis 149 97

both alphabets Z5 and Z3' consist of 8 words and we may ask if for each choice
of y € Z3 there is always an x € Z3 such that (5.10) is satisfied. In this case the
connectivity matrix A is the following

110
A=1|1 0 1, (6.3)
01 1

and it is straightforward to verify that only in 4 of the 8 choices of y Equation
(6.1) is SAT. These cases (Fig. 6.2A) are known in the literature as coherent FFL
while the 4 UNSAT cases (Fig. 6.2B) are called incoherent in [117]. In a coherent
FFL d(y, Ax) = 0, while in an incoherent FFL d(y, Ax) = 1; therefore we have
Dyy = 1/3. See Table 6.2 for a count of the FFL motifs in the gene networks of
Table 6.1.

6.2.3 Null model of a gene regulatory network of given topology

Consider a gene regulatory network with n genes, m edges and a given topology.
Let us denote Y; a random variable associated to the sign of the regulatory actions
between two genes, i = 1,...,m. Y; takes values in the alphabet {0, 1} (0 corre-
sponds to “+” and 1 to “—"). If we know that ¢ = m™ /m is the fraction of negative
signs in the true network, then to form a null model we can think of each edge
sign as being drawn independently from a Bernoulli distribution with probability ¢
for the symbol “1” (i.e. negative regulation), denoted B(q). Y = [Yl Ym}T,
Yi,..., Y, € B(q), is therefore the random variable for the gene regulatory network
with the given topology. Since the Y; are independent and identically distributed
variables (i.i.d.), then each sample vector y = [yl . ym]T has a probability that

factorizes: p(Y =y) = [[" p(Yi = vi) = ¢¥I(1 — ¢)™ ¥l
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6.3 Results and Discussion

Distortion of the analyzed gene networks

In the following we denote D"P the distortion in correspondence of the true
(“empirical”) edge sign ass1gnments y of a given network. The values reported in
Table 6.3 are computed using (6.2). The upper and lower bounds computed for
Demp are fairly tight.

Needless to say, it is impossible to evaluate exactly quantities such as (5.13) which
are computed exhaustively over y € Z5'. To estimate D4, we can repeat the same
optimization as in (6.2) on a sufficiently large number of null models as described in
Section 6.2.3. As can be seen in Table 6.3, Demp < D4 for all three gene networks,
meaning that the true gene networks have less distortion than the corresponding
null models (coherently with the results reported in [98, 123]). Notice that only
nodes involved in undirected cycles contribute to the distortion. In particular, then,
intending the networks as undirected graphs and restricting to the bicomponents
(i.e. dropping the nodes/edges not involved in undirected cycles) means changing
the values of n and m, and hence of Dilrgf’ and of D4, see second part of Table 6.3.

Both Demp and D4 are obtained in correspondence of the given topology, de-
scribed by the connectivity matrix A. If we allow also the topology to vary, then
we can use the rate-distortion theorem of information theory [113] to determine the
admissible region for the distortion D for all possible compression rates R = n/m
in correspondence of a B(q) source of edge sign words. As explained in the previ-
ous chapter, the boundary of such an admissible region represents a Shannon-type
bound, and it is achieved in correspondence of a “best” network topology. For
Bernoulli sources, the distortion D on such bound can be computed explicitly, see
(5.15). In Fig. 6.3, the Shannon bound D is compared with D" and D, for
the three gene networks of Table 6.1. As can be observed, the Values of Demp are
close to the corresponding D. In particular, once we restrict to the blcomponents
(right panels in Fig. 6.3), D emp < D in two of the three networks. On the contrary

Table 6.3: Distortion of analyzed networks. Lower and upper bounds of D"} and D4
(distortion of the true edge sign assignment and of the null models, respectively).

Network Dzrgf) Dy

E.coli [0.1134, 0.1152] [0.1767, 0.2043]
S.cerevisiae [0.0379, 0.0379] [0.1077, 0.1091]
B.subtilis [0.0536, 0.0536] [0.1040, 0.1043]

QUANTITIES RESTRICTED TO THE BICOMPONENT SUBNETWORKS

E.coli [0.1367, 0.1389] [0.2130, 0.2462]
S.cerevisiae [0.0557, 0.0557] [0.1583, 0.1605]
B.subtilis [0.0883, 0.0883] [0.1713, 0.1718§]
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Figure 6.3: Distortion and Shannon bounds. Left panels: For the three gene networks
of Table 6.1 the distortion in correspondence of the “true” edge signs y (DZIT‘;) ) and in
correspondence of the null models (D4) is compared with the Shannon bound given by
the rate-distortion theorem (yellow curve). Upper and lower bounds on DZ?;’ and on D4
are normally very close, see Table 6.3 (one exception is D4 for E.coli). Right panels: the
same quantities are shown for the bicomponent subnetworks (where nodes not involved in
undirected cycles are dropped,). In this last case, D;rflf is below the Shannon bound in 2 of
the 3 networks (and very close in the third one). In all cases DY}")” < D i.e. the distortion
is atypical for a B(q) source of words (i.e. of edge sign assignments).
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A: E.coli B: S.cerevisiae C: B.subtilis
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Figure 6.4: Single-mode action of the TF. The histograms show the number of positive
and negative edges in the out-degree of the TF for the three networks. The histograms are
highly skewed, meaning that the majority of TF have a single mode of action. In particular,
the TF significantly single-mode (with respect to a cumulative binomial test, p-value 10~2)
are highlighted in color: blue for activators, red for repressors. See also Tables 6.4-6.6 for
a list of the corresponding genes. For F.coli, the few TF having both positive and negative
edges are well-known dual-mode regulators, such as crp, far, ihf, fis, arcA and narL (see
Table 6.4).

D4 > D in all three cases. The meaning is that in spite of non-optimal topologies,
the distortions of our gene regulatory networks (which, from DZI?}? < Dy, we know
to be much lower than expected) are also at the level expected for a “best” network
topology.

In terms of Ising spin glasses, the distortion DZI?;’ has the interpretation of “frus-
tration” encoded in the undirected cycles, i.e. of linearly independent undirected
cycles having negative sign (meaning an odd number of inhibitions). Our result
therefore implies that frustration is largely absent in these signed graphs. Notice
that direct counts of the basic frustrated/non-frustrated motifs such as the incoher-
ent /coherent FFL are largely inconclusive, see Table 6.2. The true distortion can
be computed only genome-wide, and its calculation confirms that indeed conflictual
orders are largely avoided.

Low distortion and single-mode TF

It is worth mentioning that the origin of the low distortion of the gene networks
lies in the highly skewed distribution of the signs of the actions of the TF. As can be
seen in Fig. 6.4, the vast majority of the TF tends to operate in a single-mode fashion
on all their target genes. Dual-mode TF are statistically rare with respect to the
null models. See Tables 6.4-6.6 for more details. While this skewness is expected,
since the physical interaction mechanisms of an activator and of an inhibitor are
normally different, its consequences for the regulation on a genome-wide scale have
rarely being assessed, except on small motifs like FFL. Following the arguments of
[127, 123], and in particular the notion of gauge equivalence, it can be shown that
such a pattern is responsible for the limited amount of distortion of these networks.
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Table 6.4: TF with dual mode of action and TF enriched for positive or negative
edges in E.coli. The left part of the table shows all TF acting both as activator and
repressor. Dual mode TF marked with an asterisk show a dominating action (i.e. they are
enriched for positive or negative edges with respect to a cumulative binomial test, p-value
1072). The central and right part of the table list TF acting as activator or repressor on
different target genes (enriched for positive or negative edges, same cumulative binomial
test). In Fig. 6.4A TF enriched for positive edges are in blue and those enriched for negative
edges in red.

DUAL MODE + — POSITIVE + — NEGATIVE + —
torR 9 2 fh1A 29 0 ydeW 0 8
himD 124 63 rob 12 0 metJ 0 13
yabN 2 3 crp 320 44 ybbU 0 10
csgD 8 1 for 176 84 glpR 0 9
modE 31 15 appY 9 0 nagC 1 15
cysB 17 6 phoP 23 5 vifQ 0 7
nagC* 1 15 evgA 12 0 hupA 0 8
marA 19 6 flhC 75 4 trpR 0 11
rcsB 16 6 malT 10 0 exuR 0 7
arcA* 41 98 glnG 38 0 arcA 41 98
narL* 34 66 yvhiE 30 0 narL 34 66
tyrR 2 8 hyfR 11 0 pdhR 5 13
leuO 10 1 cbl 9 0 lexA 0 39
pdhR* 5 13 oxyR 16 1 yjeB 0 16
idnR 4 1 yhiX 19 0 yiaJ 0 9
rcsA 15 6 caiF 10 0 fruR 9 24
ompR 6 6 soxS 25 0 Irp 29 52
crp* 320 44 yaeG 9 0 purR 0 30
fruRt* 9 24 flhD 75 4 gatR 0 6
for* 176 84 phoB 29 2 mlc 0 9
Irp* 29 52 gntR 0 11
phoP* 23 5 uxuR 0 6
fis 131 69 yedC 2 10
asnC 1 2 paaX 0 12
fihC* 75 4 fur 13 66
nac 6 8 agaR 0 10
narP 17 17 deoR 0 6
dnaA 3 6 argR 5 31
IrhA 1 2 ybaD 0 8
yedC* 2 10 cytR 0 10
fur* 13 66 iscR 7 18
fadR 3 8 hns 41 97
citB 6 1 gatR 0 6
argR* 5 31 hupB 0 8
yhiw 3 4
rstA 5 5
oxyR* 16 1
yheK 1 7
ybbl 2 5
iscR* 7 18
hns* 41 97
flhD* 75 4
himA 124 63
phoB* 29 2
cpxR 34 21
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Table 6.5: TF enriched for positive or negative edges in S.cerevisiae. The table
lists the TF significantly single-mode (with respect to a cumulative binomial test, p-value
1072). In Fig. 6.4B the TF enriched for positive edges are shown in blue and those enriched
for negative edges in red.

POSITIVE + — NEGATIVE + —
GCN4 53 0 DALS0 0 17
GLN3 29 0 DAL8S0_-GZF3 0 3

MBP1_SWI6 36 0 HDA1 0 5
MSN2 35 0 MIG1 0 27
MSN4 32 0 MIG2 0 12

OAF1_PIP2 22 0 MOT3 0 3
STE12 71 0 RGT1 1 4
TEC1 44 0 ROX1 1 8
YAP1 38 0 SKO1 0 3
HAP2.3.4.5 25 0 TUP1 0 24
UMES6 7 31

XBP1 0 5

ARG80-ARGS1 1 5

HDA1_TUP1 0 7

SSN6_TUP1 0 10

Table 6.6: TF enriched for positive or negative edges in B.subtilis. The table lists
the TF significantly single-mode (with respect to a cumulative binomial test, p-value 10~2).
In Fig. 6.4C the TF enriched for positive edges are shown in blue and those enriched for

negative edges in red.

POSITIVE + — NEGATIVE + —
Sigh 326 0 AbrB 5 27
SigB 66 0 AraR 0 4
SigD 30 0 CcpA 3 41
SigE 83 0 YsiA 0 4
SigF 30 0 CodY 0 15
SigG 60 0 CtsR 0 5
SigH 24 0 LexA 0 33
SigK 59 0 Fur 0 23

SigW 33 0 Hpr 1 7
PerR 1 7
PurR 0 9
YvaN 0 4
Rok 0 9
SinR 0 5
SpolIID 9 22
SpoVT 6 10
MtrB 0 4
YdiH 0 4
Y1pC 0 5
YrzC 0 8
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6.4 Conclusions

We have shown that the distortion of the currently available gene networks is much
lower than the one of a typical sequence of the same code, and that it is comparable
to (when not better than) the Shannon bound. This atypicality implies that in our
gene networks the signs of the transcriptional regulations are highly organized and
far from random. In particular, the origin of the low distortion can be traced in the
scarcity of dual-mode TF, i.e. of TF acting both as activators and as repressors. Our
calculation suggests a very practical reason for such an organization: single mode
TF lower the distortion and hence help in avoiding conflictual transcriptional orders
in which different TF induce contradictory actions on a downstream gene.

The multiplicity of TF regulating each gene implies that the logic with which
these multiple TF combine their actions plays an important role on the regulation.
Additional considerations on the consistency of the Boolean logics (canalizing such as
AND-OR rather than XOR, non-canalizing) at the multi-input nodes, and how they
are bound by distortion can be also drawn. Further details can be found in [128].
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Chapter 7

Structural balance in large
signed social networks

7.1 From structural balance to spin glasses

The method and the approach used in the previous chapter for the characterization
of gene networks can be applied to a completely different context, like on-line signed
social networks.

On-line social networks are examples of large-scale communities of interacting in-
dividuals in which local ties between users (friend, fan, colleague, but also friend/foe,
trust /distrust, etc.) give rise to a complex, multidimensional web of aggregated so-
cial behavior [129, 130, 131, 132]. For such complex networks, the emergence of
global properties from local interactions is an intriguing subject, so far investigated
mostly at structural and topological level [133, 125, 134, 135, 130]. In social network
theory [136, 137, 138], however, the content of the relationships is often even more
important than their topology, and this calls for the development of novel analytical
and computational tools, able to extrapolate content-related features out of the set
of interactions of a social community. This is particularly challenging when, as in
social networks retrieved from on-line media, the size of the community is very big,
of the order of 10° individuals or higher.

A global property that has recently attracted some attention [139, 140, 129, 141]
is determining the structural balance of a signed social network. Structural (or
social) balance theory was first formulated by Heider in the 50’s [142] in order
to understand the structure and origin of tensions and conflicts in a network of
individuals whose mutual relationships are characterizable in terms of friendship and
hostility. According to the theory proposed by Heider, individuals tend to establish
relations that avoid tensions: this can be condensed in the statement “the enemy of
my enemy is my friend” (and similar, equivalent statements, see e.g. Figure 7.1a).

It was modeled in terms of signed graphs by Cartwright and Harary [143] (see
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[138, 137] for an overview of the theory). The nodes of the graph represent users
and the positive/negative edges their friendly/hostile relationships. It has been
known for some time how to interpret structural balance on such networks [143]:
the potential source of tensions are the cycles of the graph (i.e. the closed paths
beginning and ending on the same node), notably those of negative sign (i.e. having
an odd number of negative edges). It follows that the concept of balance is not
related to the actual number of negative edges on the cycles but only to their parity,
see Fig. 7.1 for an illustration on basic graphs. In particular, a signed graph is exactly
balanced (i.e. tensions are completely absent) if and only if all its cycles are positive
[143]. As such, structural balance is intrinsically a property of the network as a
whole, not fragmentable into elementary subgraphs. Heiders’s structural balance
theory affirms that human societies tend to avoid tensions and conflictual relations.
In a signed graph this translates into a level of balance higher than expected, given
the network structure.

The first part of this work is focused on the characterization of some on-line net-
works through the determination at the global degree of structural balance: partial
hints that social networks currently available are more balanced than expected are
provided by both the small motif screening of [140, 129] and the spectral analysis
of [144]. In particular, on the social networks analyzed in this work we show that the
chance that a null model has the level of balance of the true networks is essentially
equal to zero. For all three networks, the level of balance turns out to be even less
than the Shannon bound one obtains developing a rate-distortion theory for the null
models [109, 114, 112]. What makes our signed networks so balanced is the skewed
distribution of the signs of the edges on the users: users with a large majority of
friends but also users with a large majority of enemies are not causing any significant
frustration. In terms of social network theory, this means that individuals manifestly
recognized as enemies do not contribute to the structural tension of a community.

A second purpose of this work is to use the large amount of independent repli-
cas obtained during the minimization procedure in order to describe the low-energy
landscape of the system, i.e. of the landscape of near optimal balance of the social
networks. For example if the system has multiple distinct valleys of nearly identical
energy separated by energetic barriers, then it is said to have a replica symmetry
breaking picture [145], meaning that ergodicity is broken and different cooling pro-
cedures lead to different isoenergetic (or nearly isoenergetic) minima separated by
energy barriers. Some other times, instead, it may happen that the landscape is
funneled around a single “dominant” valley, possibly surrounded by a plethora of
local minima of little significance (and progressively higher energy). The two dif-
ferent pictures are both observed on two social networks considered in this study.
Most interestingly, our analysis allows us to obtain insight into the origin of these
differences in the landscape.
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(a) (b)
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The friend The enemy The friend The enemy
of my friend of my friend of my enemy of my enemy
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Figure 7.1: Balanced and unbalanced graphs. (a): Simplest cases of balance and un-
balance: triangles. Users A and C are related directly and indirectly (through B). The
sentences on the top connote this indirect relationship between A and C. Blue edges repre-
sent friendship, red hostility. The triangles are balanced when the direct and the indirect
relationships have the same sign, unbalanced otherwise. (b): For generic graphs, testing
all triangles may not give a satisfactory measure of the global balance. In the example the
graph is not globally balanced, although all triangles are balanced.

7.2 Materials and Methods

7.2.1 Three on-line large-signed social networks

The three signed social networks analyzed in this work were downloaded from the
Stanford Network Analysis Platform (http://snap.stanford.edu/) [139]:

® Epinions: trust/distrust network among users of product review web site Epin-
ions [146, 140];

® Slashdot: friend/foes network of the technological news site Slashdot (Zoo
feature) [147, 139];

® WikiElections: election of admin among Wikipedia users [148].

The size (n) and number of edges (m) of these networks are given in Table 7.1. The
edges of the networks are always considered as undirected. This process leads to
only a limited number of sign inconsistencies between pairs of edges J;; and J;;.
These inconsistencies are disregarded in our analysis.

7.2.2 Computation of global balance

From a computational point of view, verifying if a signed undirected network is
exactly balanced is an easy problem, which can be answered in polynomial time
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Table 7.1: Signed social networks. Data for the three networks characterized in this work
(before and after symmetrization) and for their largest connected component. The networks
are originally provided as directed graphs. n and m are the number of nodes and edges of the
undirected graph, m~ and m™ are the number of negative and positive edges of the networks.
The compatible/incompatible edge pairs are pairs of directed edges J;; and Jj;. They are
compatible when J;; = J;; and incompatible when J;; = —Jj;. The latter are only a tiny
fraction, and are disregarded in this study. This implies also that the “symmetrization” of
the directed graphs is not changing notably the properties of the networks. Similarly, also the
self-loops (i.e. the diagonal entries of the adjacency matrix) J;; are not taken into account.
g = m~ /m is the probability of a negative edge and R = n/m is the “rate of compression”.
All three networks have a very large connected component, to which we focus our attention
(c denotes the total number of connected components). Within a connected component,
only nodes in a bicomponent are involved in cycles, and may potentially be unbalanced.
The largest bicomponent of the largest connected component contains a significant fraction
of the nodes (11 picomp)- M1 picomp is the number of edges in the bicomponent.

ORIGINAL NETWORKS

Network ng my m~ mT comp./incomp.  diagonal
Epinions 131828 841372 123705 717667 254345 / 2703 573
Slashdot 82144 549202 124130 425072 93544 / 1949 0
WikiElections | 8297 103591 21927 81664 5298 / 296 58
AFTER SYMMETRIZATION

Network n m m- m™ q R
Epinions 131513 708507 118619 589888 0.167 0.186
Slashdot 82062 498532 117599 380933 0.236 0.165

WikiElections 7114 100321 21529 78792 0.214 0.071

LARGEST CONNECTED COMPONENT

Network ny my my mf N1 bicomp M1 bicomp ¢
Epinions 119070 701569 117759 583810 58174 640080 5566
Slashdot 82052 498527 117599 380928 51402 467511 6

WikiElections | 7065 100295 21517 78778 4785 98015 24

[149, 144, 150]. When instead a graph is not exactly balanced, one can compute a
distance to exact balance, i.e. a measure of the amount of unbalance in the network.
The most plausible distance is given by the least number of edges that must be
dropped (or changed of sign) in order for the graph to become exactly balanced
[143, 151, 152]. Computing this distance (called the “line index of balance” in
[151, 152]) is an NP-hard problem, equivalent to a series of well-known problems,
such as

o computing the ground state of a (nonplanar) Ising spin glass [153];
o solving a MAX-CUT problem [106, 107];
o solving a MAX-2XORSAT problem [114].
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The equivalence with energy minimization of a spin glass has for example been
highlighted recently in [154] (see also [155, 156]). In this context, a negative cy-
cle is denoted as frustration, and frustrations are the trademark of complex energy
landscapes, with many local minima whose structure and organization has been so
far explored only in special cases. For instance, the case studied in [156], the fully
connected graph, is unrealistic for real social networks, which usually have hetero-
geneous connectivity degrees. As a matter of fact, for what concerns the on-line
signed social networks currently available, only an analysis of local, low-dimensional
motifs has been carried out so far [139, 140]. This amounts essentially to the enu-
meration of the triangles and to their classification into frustrated/non-frustrated,
see [140, 129]. An alternative approach is taken in [144], where spectral properties
of the Laplacian are investigated. For connected signed graphs, the magnitude of
the smallest eigenvalue of the Laplacian is indicative of how unbalanced a network
is, i.e. of how much frustration is encoded in the cycles of the networks.

Both approaches provide useful information in order to understand the structural
balance of signed social networks. Yet, this information is partial and unsatisfactory.
The small motif analysis, for example, only identifies the frustration on the smallest
possible groups of interacting users, but overlooks more long-range conflicts associ-
ated to longer cycles (and larger communities), see Fig. 7.1(b) for an example. The
spectral approach, on the contrary, gives an idea of the overall amount of frustration
of the network, but does not provide any information on which relationships remain
unbalanced. In terms of spin glasses, solving the problem globally and identifying
the residual ineliminable tensions means computing the ground state(s) of a het-
erogeneous Ising spin glass, with bimodal bond distribution. We use the efficient
heuristic method presented in Chapter 5 based on the application of equivalence
transformations to the signed graph, called gauge transformations, to perform this
minimization.

Practically, if J;; € {£1} = By is the edge between the nodes s; and s; of
the graph (call J the n x n symmetric matrix of entries J;;), computing global
balance means assigning a +1 or a —1 to all the nodes so as to minimize the energy
functional (5.2). When J;; represents friendship (J;; = +1) each term in (5.2) gives
a zero contribution if s; = s; and a +1 contribution if s; = —s;, while when J;;
represents hostility (J;; = —1) the summand is zero if s; = —s; and +1 otherwise.
The network is exactly balanced when there exists s € B such that all terms in
(5.2) can be made simultaneously equal to zero. Computing the global balance of
the network then means solving the following optimization problem

0 = min h(s) = min <m = ;sTJs> . (7.1)

seBY seBy

In correspondence of sp = argminggyh(s), the residual positive terms in (7.1)
correspond to the least number of unbalanced pairwise relationships between nodes
(i.e. the frustrations at the ground state).
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7.2.3 Statistics

Z-statistics for ¢,, with respect to a null model

To evaluate how significant the global balance ¢, is, this value is compared with
the one obtained by means of a null model. We have constructed two different null
models, both using the same topology of the original graphs, but assigning the edge
signs by means of different probability distributions:

1. Bernoulli B(g). From Table 7.1, ¢ = m™/m is the probability of a negative
edge. In the null model each edge sign is drawn as a i.i.d. variable from B(q).

2. Hypergeometric distribution with parameters m, m~. This null model cor-
responds to randomly reshuffling the signs of the edges on the nodes, while
maintaining exactly the same number of positive/negative edges of the origi-
nal graph.

In both cases 100 random model instances are generated for each of the three net-
works. Lower and upper bounds on § are then computed by the algorithm described
in Chapter 5. The mean values on these lower and upper bounds are denoted 5?0%
and 5%”.

Sign skewness

In order to evaluate if a node is enriched in positive or negative nodes, a p-value
is calculated for each of the nodes, with respect to a null model network obtained by
randomly shuffling the edges signs (over the entire network) while keeping the same
fraction ¢ of negative signs. Let s be a node with total degree k and positive degree
k™, then the probability of finding for the node s an amount ¢ of positive edges less
or equal to kT in the null model counterpart is given by the cumulative binomial

kt
Prob[t < kt] =) ( i > (1—¢q)ig"t (7.2)

=0

where, as before, ¢ = m™ /m is the probability of the event “negative edge” in the
original network J. A vanishing p-value means that the node s has a significant
amount of negative edges and a significant lack of positive edges. An analogous
formula is used for the analysis of negative edge enrichment. The nodes with a
p-value less or equal than a given significance threshold 6 are classified as enriched.
The sign skewness index ¢ then corresponds to the total number of edges belonging
to nodes with p-value less than 6. A Z-score can be computed as follows:

Z-score = (¢ — (bnuit))/ Tnuli

with (pun) the average skewness index of 100 null models and o,,,,;; the correspond-
ing standard deviation.
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7.3 Results and Discussion

First we discuss the characterization drawn from the minimal energy configuration
only (the ground state) and secondly we move to consider the features of energy
landscape obtained from the analysis of all replicas.

7.3.1 Global Structural Balance: the ground state

The local search algorithm is applied to the three on-line social networks of Table 7.1.
Some ~ 4700 replicas were computed for Epinions, ~ 8000 for Slashdot and ~ 18000
for WikiElections. Each replica yields an estimate from above of the true value ¢,
denote it 51(50). Let 6,, = miny 51(5,) be the best value among all replicas. These
values are given in Table 7.2, where also the corresponding lower bounds on 4, djy,
are shown. That this algorithm scales well with size, and in fact that it can deal
effectively with the signed social networks of dimension ~ 10° used in this work,
is proved by the tiny gap left between 0;0,, and d,,, which guarantees that the
estimate for § is accurate. For 2 of the 3 networks, we have essentially computed
the true optimum, as 0joy/dup > 0.99, while the residual gap in the third network
(Slashdot, 1o /0up > 0.95) is most likely due to the lack of precision of the lower
bound computation.

By definition, a local optimum of the Hamiltonian h(s) is any s such that for
every user the majority of pairwise relationships are “satisfied”, i.e. yield a zero
contribution to (5.2). Due to the ruggedness of the energy landscape, the number
of local minima can be huge [155]. It is only by solving (7.1) that a local minimum
becomes also a global optimum and, in the present context, acquires the meaning of
balance value for the network. Since our computed o, is very close to the true 9,
essentially all the residual conflicts in J, are ineliminable, i.e. they represent the real
disorder of the problem. Due to the gauge equivalence, what holds in the ground
state 1 for J, holds also in the configuration sy = o for the original J. In the

Table 7.2: Global balance of the networks. d;,, and d,, are the lower and upper
bounds on the global balance. These are much lower than §7“! and 6%‘”, the corresponding
average values of balance obtained on null models generated from a Bernoulli distribution
B(g). The ratio §/m (the more conservative d,,/m for us) represents the distortion, i.e. the
fraction of frustrated bipartite relationships in the global balance configuration sg. For the
values of 1o, and &y, the ratio djy /0wy is much higher than the value achieved by popular
semidefinite programming approaches to MAX-CUT (0.8785, see [108]), meaning that our
ground-state algorithm is indeed quite efficient.

Network Olow Sup 5{%[ 5%" Sup/m Stow/ Oup
Epinions 50452 50806 105247 105520 0.0717 0.9930
Slashdot 70014 73604 90346 106163 0.1476 0.9512

WikiElections 14194 14245 20878 20880 0.1420 0.9964
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Figure 7.2: Global balance and its statistical significance. Comparison of d,, =

ming 51(5,) with lower bounds and with null models generated from a Bernoulli distribution

B(g). The lower bounds 0;0,, are shown in red, d,, are in blue, and the distribution of 53;‘”
in 100 null models in green. In each of the three networks d,, < &4/, meaning that the
true networks are much less frustrated than expected from the null models (Z-test, with

p-value < 107199). Furthermore, the interval of uncertainty of the optimal level of balance
is very limited, since 0jou/dup > 0.95 (d1ow/dup > 0.99 for Epinions and WikiElections) and
5up - 5low < 53;” - 6up-

optimal balance state sg, a consistent fraction of users results to be completely free
of tensions: from the 52.7% of WikiElections to the 83.7% for Epinions.

Statistical analysis of the level of balance

For a signed graph, the amount of frustration depends on the topology of the
network, on the percentage of negative edges and, most of all, on their distribution
over the graph. Unlike for spin glasses on regular lattices, for heterogeneous signed
networks systematic predictions of the expected frustration, given the connectivity
and the percentage of negative edges, are completely missing. We observe that in the
three social networks we analyzed, the fraction of negative edges is always limited
(g =m~/m = 16.7 = 23.6%). In terms of spin glasses, this would corresponds to
a “partially ferromagnetic” quenching (more ferromagnetic than anti-ferromagnetic
bonds). Obviously this leads to a lower frustration than in a spin glass with equally
distributed edge signs. To evaluate if also the arrangements of the negative edges on
the graph are favoring balance, we have to compare the sign arrangements on our
networks with null models. In the null models we discuss here the edge signs are
drawn as i.i.d. variables from a Bernoulli distribution with probability of negative
sign equal to g. For each of the three networks, 100 randomizations were performed,
and the corresponding 5{;% and 5;};“ computed solving (7.1) by the same heuristic
method used for the true networks (see Table 7.2). The distribution of the 53]’;” is
compared with 6;,, and d,;, of the true networks in Fig. 7.2. It can be observed that
the null models are unavoidably much more frustrated than the real social networks
(Z-test, p-value ~ 0). This means that indeed the organization of the signs in our
social networks is such that tensions are largely avoided. Analogous results are
obtained if the null models are constructed using a hypergeometric distribution,
corresponding to reshuffling randomly the signs on the edges while keeping constant
the ratio negative/positive edges.
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For our networks, the property of being much more balanced than expected goes
beyond the statistical significance of a Z-test on null models. As a matter of fact, d,,
is even lower than a Shannon-type bound which can be associated with the average
frustration of our null models. For n and m sufficiently large, denoting R = n/m
the rate and D = ¢/m the distortion, the rate-distortion Theorem (5.15) affirms
that when the edge signs are drawn as i.i.d. variables from B(q) then the distortions
achievable are in expectation lower bounded by the distortion-rate curves shown
in Fig. 7.3, regardless of the topology of J. Distortions (and hence frustrations)
that lie below this Shannon bound must be considered as obtained from edge sign
assignments that are highly atypical for the probability “source” B(gq). All three
networks have sign arrangements that violate the Shannon bound. This confirms
that the sign assignments of our networks are far from being typical for B(q), and in
particular that their frustration is less than the frustration of a typical sequence of
B(q) even if we arbitrarily modify the topology A. In Fig. 7.3 notice that, instead,
the distortions 67! /m and 5%‘” /m of the null models all lie above the Shannon
bounds, as expected.

Skewness of the sign distributions and its social meaning

The feature that makes our networks so atypical is the skewness of the sign dis-
tribution on the individuals. In particular, the three networks have a significant
fraction of nodes that are enriched for positive or negative edges (cumulative bino-
mial test, p-value 10~9), property not shared with the null models, see Fig. 7.4 and
Table 7.3. Both fat tails of this sign distribution contribute to increase the balance
of a network: the tail of positive edges, because users with many friends, have less
enemies than expected from null models; the tail of negative edges for the opposite
reason. A direct consequence of the sign skewness is that a considerable part of
negative edges can be eliminated by means of gauge transformations, meaning that
a vast fraction of the negative edges contribute only to the apparent disorder, not
to the real frustration. On the contrary, the reduction of negative edges in the null
models is always minimal, see Fig. 7.2 and Table 7.2.

That the reduction of negative edges in passing from J to J, is primarily due
to users with high connectivity of enemies is confirmed in all three networks by the
signed degree distributions of Fig. 7.5 (compare the degree distributions of negative
edges in J and J,). In practice, a small fraction of individuals attracting a large
number of negative edges contributes less to unbalance the social community than a
homogeneous distribution of unfriendly relationships. The sociological interpretation
of this fact is clear: unpopular individuals are easily “cast away” from the bulk of the
community without creating much conflict within the community itself. Something
similar does not happen for homogeneous distributions of the negative edges in
the community. In conclusion, in all three networks analyzed, the local process
of choosing friends/enemies induces a collective behavior which is strongly biased
towards the creation of a disorder that is only apparent, thereby confirming the
validity of Heider’s theory for this class of networks.
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Figure 7.3: Rate-distortion plots. In the rate-distortion (R = n/m, D = d/m) plane,
the yellow curves are the Shannon bounds of the rate-distortion theorem associated to a
Bernoulli distribution B(g). The region above (below) the curve is achievable (unachievable)
in expectation by an edge sign assignment drawn as a length-m sequence of i.i.d. variables
from B(q), compressed to a length-n sequence, and then reconstructed. The distortion of
the three true sign assignments (tip of the triangles, blue for d,, and red for 6;0., partially
overlapping) is less than this Shannon-type bound, meaning that these edge signatures are
significantly away from a typical i.i.d. sequence from B(q). The signatures used in the null
models of Table 7.2 (tip of the triangles, green for 674! and black for ;4! also partially
overlapping) are instead in the achievable region.
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Figure 7.4: Global balance and sign skewness. Left column: All three networks have
a significant percentage of nodes enriched for positive (blue) or negative edges (yellow and
red), see Table 7.3. The sign skewness of a node is computed through a cumulative binomial
test (p-value 1075). In particular, the nodes in red are adjacent to more negative than
positive edges in J. Gauge-transforming these nodes reduces considerably the amount of
negative edges of the networks while not altering their frustration. These histograms should
be compared with the corresponding histogram for a null model (right column).
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Figure 7.5: Distribution of signed edges in the original J and in the optimal
gauge transformed J,. In all cases, passing from J to J, the number of nodes with
high connectivity of negative edges (red tail of the distribution in Fig. 7.4) systematically
decreases.

Table 7.3: Sign skewness index. The nodes significantly enriched for positive or negative
edges are computed through the cumulative binomial models described in Section 7.2.3.
Two significance thresholds are used: § = 10~° and 6 = 0.01. For the former, the 100 null
models yield a very low ¢, often equal to zero (this implies a very high skewness of the
true networks). For 6 = 0.01 the Z-scores are still very high.

THRESHOLD 6 = 107°

Network | nodes + nodes — tot. nodes (%) o) (pnutr)  Z-score
FEpinions 1619 2194 6.43 424247 ~0 ~ 00
Slashdot 1121 1396 4.83 71781 ~ 0 ~ 00

WikiElections 291 477 16.05 52879 ~0 ~ 00

THRESHOLD 6 = 0.01

Network | nodes + mnodes — tot. nodes (%) o) (Pnun)  Z-score
Epinions 4148 6110 17.31 539839 16360  225.18
Slashdot 3363 3302 12.80 363950 10948  230.68

WikiElections 807 1021 38.20 82795 2682 116.10

7.3.2 Energy landscape characterization for Epinions and Slashdot

We now investigate the distribution of low-energy configurations corresponding to
the different replicas computed by the optimization procedure. The minimization
procedure of Section 5.2 is indeed repeated many times starting always from different
initial points (independently and randomly chosen). Each run generates a replica:

5&’;) and s*) indicate the distortion and the spin configuration at the local minimum

of replica k. Denote d,;, = miny 51(5,) the best estimate obtained for the ground state
energy over all replicas. Consider an energy band of width e above d,,. For both

networks €/dy, ~ 0.6% is chosen, meaning a few hundreds of energy levels above
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dup are considered (namely, € = 310 for Epinions and € = 450 for Slashdot). Only
replicas reaching the interval [dyp, dup + €] are retained for further analysis. The
number of such replicas is r = 606 for Epinions and r = 5557 for Slashdot.

This part of the work is limited to the networks of Epinions and Slashdot only,
because of their peculiar features (WikiElection results are very similar to that
obtained from Epinions).

Energy and Hamming distance distributions

The histogram of the values of energies h(s) and the (relative) Hamming distances
between these replicas are reported in Fig. 7.6 for the two networks. A first com-
parison of these energies shows a significant difference between the two networks:
the histogram for Epinions reports only a single broad group whereas the histogram
for Slashdot shows three peaks, see Fig. 7.6(a) and (b). If we compute the relative
Hamming distances between each pair of replicas (Fig. 7.6(c) and (d)), the two net-
works still present a different behavior: for Epinions the minima are all close one
to the other (Hamming distances are distributed like a single Gaussian peak); on
the contrary, several peaks can be identified among the minima we have found for
Slashdot.

It is worth noting that, since the energy has a global spin flip symmetry (i.e. h(s)
h(—s)), the Hamming distances d(s("), () and d(s(!), —s(?)) are not distinguishable.
This amounts to saying that only relative distances between 0 and 1/2 can be consid-
ered (analogously to the Ising spin glass case). We follow this principle throughout
the whole chapter.
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Figure 7.6: Distribution of the energies and relative Hamming distances for all
near-optimal replicas. (a,c): Epinions. (b,d): Slashdot. The leftmost bar of histograms
(a) and (b) corresponds to dyp (blue line in Fig. 7.2).
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Statistics over replicas

Since we can expect that each replica represents a different local minimum in the
energy landscape, we can explore the distribution of the frequencies of the sign with
which a spin appears in the r replicas: in particular, for each spin i we can define

r (k) T (R
1 . s, —1 s, +1
Vi:rmln{ g 5 E 2}, (7.3)

k=1 k=1

where the two summations represent the number of replicas in which the ¢-th spin
has negative and positive sign respectively. In particular, for each value of v between
0 and 1/2 (the histograms stop at v = 1/2 because of the global spin flip symmetry),
the subset W (v) of spins which have v; = v can be identified. For the subgraph
corresponding to W (v), we calculate:

n(v) : the number of spins;
¢(v) : the number of connected components;

z(v) : the maximal size of these connected components.

Exploring the distribution of the frequency index ¢(v) (see the middle panel in the
first two rows of Fig. 7.7), we can observe that both networks have broad peaks
around frequencies v = 1/3 and v = 1/2, meaning that the corresponding spins
appear flipped in a half or in a third of the low-energy replicas. The peak at v =0
corresponds to spins with equal orientation in all replicas, hence it constitutes a
fixed “backbone” which does not contribute to the variability.

A characterization of the two peaks at v = 1/2 and v = 1/3 in the plot of the
index ¢(v) can be carried out through a probabilistic model. By construction, the
replicas are statistically independent. We may also expect that the flipping com-
ponents which belong to the peak at v = 1/2 are independent with respect to the
flipping components around v = 1/3 (and viceversa). Under these assumptions, the
two peaks can be modeled separately (the plot of ¢(v) is then viewed as the super-
position of two curves), considering the Binomial probability distribution Bin(r, p)
as the theoretical distribution for the variable rv for each peak:

v =i = ()t - (7.4

(where the value of p is fixed at p = 1/2 and p = 1/3 for the two peaks). If
Y (k) is a random variable representing the number of connected components (over
a population of @ flipping components, ) unknown) having v = k/r, and assuming
that each connected component can flip independently, then

Y (k) ~ Bin(Q, Plrv = k]).

By (7.4), its expectation value is
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Figure 7.7: Indices n(v), ¢(v) and z(v) for the two networks. (b): The letters Cj,
C5 and Cj5 indicate the three Slashdot communities identified in the spikes pointed by the
arrows. Panels (c) and (d) report the dimensions of the connected components identified in
the subgraph W (v) of spins under the two peaks of ¢(v) centered at v = 1/3 and at v = 1/2.
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where the parameter () can be obtained by linear regression, fitting the experimental
data with k& varying inside the support of the peak. Once a level of significance «
has been fixed, we can select only spins which are in the central part of the fitted
peak with p-value lower than «, as determined through a hypothesis test. The
selected values of v include only regions where the fitting error is smaller or at least
comparable with the root mean square deviation (r.m.s.d.) of the data at each v.

Extrapolating the connected subgraphs under the two peaks (Table 7.4 reports
the results of the probabilistic model applied to the interpolation of these peaks), it is
possible to obtain statistics of the recurrent motifs which form most of the variability
of the spin configurations around a ground state. A catalogue of isoenergetic motifs
(isoenergetic alternatives for a ground state) we identified through this interpolation
is provided in Tables 7.5 and 7.6.

Isoenergetic motifs

Both the peaks at v = 1/2 and v = 1/3 described in Fig. 7.7 contain a large
number of small disconnected components. For the two networks, the vast majority
of these connected components are isoenergetic. In Fig. 7.8 these correspond to
motifs having relative energy €™ through the cut set equal to 0.5, where the relative
energy of each motif M is computed as the energy through the cut set that isolates
the motif from the rest of the network, divided by the number of edges in the cut

Table 7.4: Probabilistic binomial model for the spin frequencies. Parameters of
the fitting of the binomial probability distribution (7.5) to the broad peaks of ¢(v) of spin
frequencies v = 1/2 and v = 1/3, see Fig. 7.7 (second panel of (a) and (b)). Ranges are
expressed as relative to the total number of replicas. For Epinions the selected intervals
correspond respectively to v € [0.46, 0.50] and v € [0.31, 0.36]. For Slashdot, the test yields
the intervals v € [0.49, 0.50] and v € [0.32, 0.34].

EPINIONS
parameter v=1/2 v=1/3
k/r range for fitting [263/606, 303/606] [172/606, 232/606]
fitting parameter ) 2378 642
r.m.s.d. 8 4
o 0.05 0.10
selected region [279/606, 303/606] [187/606, 217/606]
no. selected components 2336 528
SLASHDOT
parameter v=1/2 v=1/3
k/r range for fitting [2648 /5557, 2778/5557] [1762/5557, 1942/5557]
fitting parameter g 1740 447
r.m.s.d. 3 1
! 0.10 0.10
selected region [2717/5557, 2778/5557] [1807/5557, 1897/5557]
no. selected components 1656 419
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set itself:
et= Y. (1= Jiysisy)/(2) ),
ieM €M
jgEM
with ¢; the connectivity through the cut set of the i-th node of the motif M (C:r and

¢; are the corresponding numbers of +1 and —1 edges of ¢;). Hence ef\‘;’f = 0 means

that with respect to the ground state the motif M has all “satisfied” edges across
the cut set, eer = 0.5 means it has 50% of frustrated edges and eﬁf = 1 means
100% of edges frustrated. A catalog of the isoenergetic motifs under the two peaks
is given in Tables 7.5 and 7.6.

While the presence of isoenergetic motifs under the v = 1/2 peak is straight-
forward to explain, the abundance of such motifs under the v = 1/3 peak is less
obvious and requires an extra investigation. On what follows we restrict ourselves
to the size-1 isoenergetic motifs of Epinions (in this case the motif M is represented
and indicated by its only node 7). For each low energy replica o (with the relative
gauge-transformed adjacency matrix J,) and for each node i (size-1 isoenergetic mo-
tif under either the peak at v = 1/2 or that at v = 1/3) we calculate the percentage
of edges which change sign with respect to the initial matrix J. This value is given
by the ratio:

S

p(O’,Z) - 2”{](1’) ‘1 ’

where J() represents the i-th row of the matrix and | - ||; the L'-norm. We can
easily attribute a plausible meaning to some of the values that this ratio can assume:

e p(0,i) = 0: the gauge transformation o flips neither node i nor its neighbors;

e p(0,i) = 1/2: the gauge transformation o flips only half (mostly one) of the
neighbors of node 1;

e p(o,i) = 1: the gauge transformation o flips the node i (or, less likely, all its
neighbors).

In order to compare two differently populated peaks at v = 1/2 and v = 1/3, for
each o we must normalize the counts for the three cases:

N
plo) = 5

Nyjz
p1/2(0) - N’

N-
plo) =

where Ny, is the number of ¢ such that p(o,7) is equal to k and N = ), Nj. As
most pairs (o,4) are such that p(o,i) assume the values 0, 1/2, or 1, we have the
“empirical” constraint:

po(o) + prya(0) + pi(0) 1 Vo (7.6)
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Figure 7.8: Relative energy of the motifs flipping with frequencies v = 1/2 and
v = 1/3. These motifs are grouped according to their size. The gray-scale represents their
number. In all histograms the relative energy (energy through the cut set divided by the
corresponding number of edges) is concentrated around 0.5, meaning that half of the edges
are frustrated in the ground state. Therefore, the peaks at v = 1/2 and v = 1/3 contain
mostly isoenergetic motifs.
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Figure 7.9: Origin of the size-1 motifs for v = 1/2 and v = 1/3 (data from Epinions).
Plots of the po, p1/2 and p; ratios for the 2172 isoenergetic size-1 motifs identified under the
peak at v = 1/2 (circles) and for the 442 size-1 isoenergetic motifs belonging to the peak at
v = 1/3 (points). The case p; /o (referring to gauge transformations that change 50% of the
edges through the cut set) is more frequent under the v = 1/3 peak than under the v = 1/2
one.
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Table 7.5: Isoenergetic motifs identified under the peak at v = 1/2. The values c;r
and c; refer to the number of positive and negative edges from the i-th node to the rest of
the network in the gauge transformed J,. The motifs are classified according to their size
and then to the size of the cut set with the rest of the network. In the case marked with
the asterisk, one of the triangles on the top presents a frustration. The pictures reported
in the table represent examples of the corresponding motifs: blue line indicates a positive
edge, red line a negative edge.

motif M ci*' cy c;' cy Epinions Slashdot
1 1 - 1928 1469
2 2 - - 180 155
1 3 3 - - 40 41
/\ 4 4 : - 15 14
network 5 5 - - 6 6
6 6 - - 2 6
7 7 - - 1 2
8 8 - - 3
9 9 - - 2
17 17 - -
24 24 - -
1 node: TOTAL 2172 1698
1 1 1 1 13 5
- 1 1 2 2 5 2
/ \ / \ 1 1 3 3 2 2
o 1 1 4 4 1 1
1 1 5 5 2
2 2 2 2 1 1
2 2 3 3 1
2 nodes: TOTAL 24 12
1 1 0 0 2 4%
/. 2 2 0 0 2
_ S 4 4 0 0 1
JANVA 1 1 1 1 1 2
network
1—1—2
ANVANVA 1 1 2 2 1
3 nodes: TOTAL 4 9

The comparison of the values obtained for Epinions is shown in Fig. 7.9. For
p1 (bottom panel) the plots at ¥ = 1/2 and at v = 1/3 almost totally overlap. The
top plot for pg which, as already mentioned, refers to both node and neighboring
nodes unchanged in a replica, instead shows a systematic difference (less frequent in
v =1/3 than in v = 1/2). From Eq. (7.6), such a difference is compensated by an
equal but opposite difference in the middle panel for p; /5. Recalling that p; /5 refers
to the case in which 50% of the neighboring nodes of node i are flipped, then we
can conclude that the peak at v = 1/3 appears to be due, at least to some extent,
to a bulk of the network which is less “rigid” than under the v = 1/2 peak and
hence allows for more frequent internal rearrangements. It is worth noting that this
behavior is uniform across all low-energy replicas.
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Table 7.6: Isoenergetic motifs identified under the peak at v = 1/3. Legend as in
Table 7.5. In the case marked with a double asterisk the two nodes are interconnected by a
negative edge.

motif M ci" cl c; cy Epinions Slashdot
1 1 - 367 245
2 2 - - 51 53
3 3 - - 17 13
1 4 4 - - 2 6
/\ 5 5 - - 1
network 6 6 - - 1 1
9 9 - - 1
15 15 - - 1
17 17 - - 1
20 20 - - 1
1 node: TOTAL 442 318
1 1 1 1 2
1——2 1 1 2 2 1
JANA 1 1 3 3 2
network 2 2 3 3 1
1 0 0 1 3 1
2 1 0 1 1
1 0 0 1 1**
2 nodes: TOTAL 9 3
/<>\ 1 0 0 1 1 1
network
3 nodes: TOTAL 1 1

EPINIONS: a single valley

We can deduce from the histograms in Fig. 7.6 that all the minima of the Epinions
network belong to the same valley. As we move away from the bottom of the valley
(global minimum), the energy tends to grow. This feature can be deduced from
the analysis of the distance among replicas versus energy of a replica reported in
Fig. 7.10(a). The 2D bar plot shows that, moving away from the minimum of
energy, the Hamming distance increases monotonically. This means that the valley is
characterized by sufficiently regular ascending walls, and that the basin of attraction
of the global minimum is rather broad.

The high degeneracy of the ground state, which is also suggested by the sample
trajectories of Fig. 7.10(b), is a well-known feature of Ising spin glasses with bimodal
bonds [157]. The flipping of the isoenergetic motifs we have identified (see Tables 7.5
and 7.6), may explain the broadening of the distribution of the Hamming distance.
Apart from these degeneracies, the Epinions network contains many small disjoint
motifs (scattered at all frequencies v) whose flipping slightly increases the energy.
Their cumulative effect is responsible for the energy difference between replicas,
which smoothly grows moving away from the ground state.
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Figure 7.10: Epinions energy landscape. (a): Distance among replicas versus energy of
a replica. The replicas of Fig. 7.6(a) are binned into 6 bins according to their energy, and
the mean of the relative Hamming distances is computed. The vertical axis (and color code)
represents the mean over bins of the relative distances. The replicas of least energy are also
closer, and the distance grows regularly with the energy. (b): Sample minimal energy paths
connecting the global and a local minimum. For visualization purposes, the trajectories are
depicted as radially distributed according to a polar coordinate, with the global optimum
placed in the origin. The vertical axis (and color code) represents the energy. The radius of
the disks represent the average distance among the replicas in correspondence of the 6 bins
of (a). The horizontal parts on the paths correspond to isoenergetic flips.

Table 7.7: Slashdot balanced subnetworks: nodes and edges of the 3 subgraphs C;
identified from Fig. 7.7. The row rest denotes the complement to C7;UC5UC}5. Internal edges
are those connecting two nodes of the same C;, while external nodes are those connecting a
node in C; and one in C; (or in rest). The C; are visualized in Fig. 7.12.

Subnetwork Nodes Edges
ng; +1 int. —1 int. +1 ext. —1 ext.
Ch 855 4169 1362 6268 6587
Co 62 11 107 143 148
Cs 58 7 197 443 1009
rest 51073 345510 102856 6752 7259
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SLASHDOT: competing valleys of near-optimal balance

For Slashdot, the low-energy landscape is markedly different: distinct peaks in the
Hamming distances are clearly visible (Fig. 7.6) and are related to the three valleys
observed in the energy histogram of Fig. 7.6(b). In fact, a scatter plot (Fig. 7.11(a))
reveals that while the two valleys at higher energy are nearby also in configuration
space (cloud of points in the down-left corner in Fig. 7.11(a)) both of them are
far away from the lowest valley (points in the upper-right corner). To confirm
that indeed this multivalley profile is not due to undersampling of the low-energy
landscape, the search for replicas in [dyp, dup + €] was performed a large number of
times (r = 5557 for Slashdot whereas r = 606 for Epinions). Even increasing tenfold
r, no new valley emerged for this network.

Looking at the spin frequencies of Slashdot (Fig. 7.7(b)) we can also observe a
feature absent in Epinions, namely the presence of three sharp spike-like peaks for
z(v). If broad peaks usually contain small connected components, sharp, spike-like
peaks in the plot of z(r) are more likely to be associated to large connected com-
ponents whose spins are simultaneously flipped in some of the replicas. A thorough
analysis reveals that these three peaks correspond in fact to three connected sub-
networks characterized by an high level of internal balance, higher than the rest of
the network. In Table 7.7 we report some features of the corresponding subnetworks
and in Fig. 7.12 we draw their adjacency matrices and graphs. These subnetworks
are responsible for the formation of competing valleys of near-optimal balance de-
scribed earlier. In fact, while the internal arrangement of their spins is usually frozen
in each valley, their relative orientation with respect to the rest of the network may
change passing from one valley to another, meaning that all spins of a subnetwork
are simultaneously flipped, see Fig. 7.11(c). Computing a few sample trajectories
from one valley to another (Fig. 7.11(b)), we can observe the presence of an energy
barrier: the paths break the internal balance of some of the subnetworks before they
are able to rearrange them again in another manner. In terms of our social net-
works, the formation of different valleys of near-optimal balance means the presence
of possible alternative “alliances” between the majority of the users and a few inter-
nally balanced subnetworks of users (not necessarily friends among them). Fixing
the relationship with one such subnetwork constraints the sign of the relationship
with the other subnetworks. Different arrangements lead to slightly different global
levels of balance for the whole network.

As already mentioned, a necessary condition for the spins of a subnetwork to
have constant sign relative to each other in all low-energy replicas (which means
also to be flipped simultaneously in all these near-optimal configurations) is that
the subnetwork has to have a high level of balance internally, and a certain amount
of frustration with respect to the rest of the network. At low energies, in fact, this
favors a constant choice of spin orientation within the subnetwork which can however
vary from valley to valley.

Denote Cy, Cy and C5 the three subnetworks in Table 7.7 (and rest their com-
plement in the original signed graph). By lumping together all nodes of each sub-
network, the corresponding matrix of adjacencies (blocks ordered as C1, Co, C5 and
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Figure 7.11: Slashdot valleys (a): The three valleys of minima corresponding to the three
peaks in Fig. 7.6(b) are here called low, medium and high, according to their energy. For each
pair of minima s and s\), the scatter plot shows differences in energy |h(s®) — h(s\?))|
versus the relative Hamming distance d for both intra and intervalley peaks. The two valleys
medium and high are near and both more distant from the low valley. (b): A few sample
trajectories connecting minima in different valleys. The radius of the disks corresponds
to the average intravalley distance among the replicas. The height of the trajectories is
indicative of the energy barrier between the valleys. To improve readability, the degenerate
spin flips are not shown. (c): The three internally balanced communities C; and their
average magnetization in the three valleys of near-optimal balance.

Table 7.8: Slashdot valleys: (sc¢,)iow, medium, high 1S the average magnetization of the
subnetwork C; (or of rest) in the three low-energy valleys of Fig. 7.11c.

(sc;) Valley
subnetwork low medium high
Cq -0.712 0.712 0.712
Co 0.513 0.066 -0.663
Cs -0.517 -0.517 0.506
rest 0.797 0.804 0.807
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rest) is the following:

2807 16 —206 —129
16 -9 -1 -19
A= -206 -1 —190 —359 (7.7)

—129 —19 —359 242654
where the original amounts of positive and negative edges are:

4169/1362  30/14  21/227  6217/6346
30/14  11/107  0/1 113/132
21/227 0/1 7/197 422/781

6217/6346 113/132 422/781 345510,/102856

AA/)= (7.8)

Both C5 and Cs have a vast majority of internal negative edges, see Fig. 7.12 and Ta-
ble 7.7. In correspondence of the optimal balance, the gauge-transformed adjacency
matrix for the subnetworks is

5441/90  32/12  242/6  6726/5837
32/12 1180 1/0 170/75
242/6 1/0 204/0 809/394

6726/5837 170/75 809/394 381167/67199

A0(+/_) =

where it can be observed that the various C; have very few residual negative edges
(in particular Co and C3 have none), meaning that indeed these subnetworks are
internally balanced. If we look at the structure of the adjacency matrices of the
C; in Fig. 7.12, it is easy to understand why so many negative edges disappear in
the gauge transformed A,: the negative edges are all in correspondence of the same
users. This is particularly visible in the adjacency matrix of C: each row/column is
highly skewed towards positive or negative edges. Such skewed sign distributions are
the trademark for “apparent disorder”, i.e. negative edges which can be eliminated
by means of gauge transformations and hence that do not spoil global balance. In
Slashdot, users with a high number of negative edges are known as trolls [139]. Trolls
do not add tension to the network, as they are unanimously tagged as foes by the
other users. Looking carefully at Fig. 7.12 it is possible to observe that the subnet-
works Co and C3, where negative edges are the vast majority, have nevertheless all
positive cycles. In Cy all cycles have length 3 and pass through the (positive) edge
linking the two highly connected nodes. In Cj, instead, cycles have length 4 and are
composed of 4 negative edges.

Observing the pattern of signs (and sign flips) of the C; in the 5557 low-energy
replica of Slashdot, a high degree of regularity can be seen. Call sgi) the spin config-
uration of the C; subnetwork in the j-th low-energy replica, and n¢; the number of
spins of C;. By construction, the relative Hamming distance within the subnetwork

j k j k
d(s),sf)) = (1= (sE)sE) /nc, ) /2

is always zero. The intervalley relative Hamming distance is shown in Fig. 7.11(a).
The “average magnetization” within a subnetwork and within a valley is computed
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Figure 7.12: Slashdot: the three internally balanced subnetworks C;, Cy and Cj of
Table 7.7. The adjacency matrices (left column) and the corresponding signed graphs (right
column) are shown. Blue (full) dots correspond to +1 edges, red (empty) to —1. In the
corresponding graph, blue lines correspond to +1 edges, red lines to —1. The color-code
for the nodes reflects the sum of the external edges: blue means positive sum, red negative,
white no external edges.
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restricting the computation to the s¢, spins and to the replicas falling into the valley.
If 70, is the number of replicas in the low valley, then the average magnetization

for the low valley is
Schow= > > 5/ (rownc,),
keC; jelow

and similarly for (s¢;)medium and (Sc; )nigh, ¢ = 1, 2, 3. These average magnetizations
are shown in Fig. 7.11(c) and Table 7.8. It can be observed that for example the spins
s¢, are flipped passing from the low energy valley to the medium/high energy valleys.
These community-wide flips do not modify the intravalley energy, but they alter the
energy of the cut set between the C;s and with the rest of the network. The increase
in energy passing from one valley to another is a consequence of these changes. The
cut sets between C'y and Cy and between Cy and Cs are always negligible, while the
cut set between C and C5 can increase the energy considerably. This happens when
(scy) and (sc,) are not solidary, i.e. in the medium valley. This makes most of the
difference in energy between low and medium valleys. In the high valley, instead, the
magnetizations (Sc, )nigh and (Sc;)nigh are again aligned. However, both are flipped
with respect to the low valley, and this reflects in the changes of energies in the cut
sets relative to the rest of the network. Remember that rest contains a very large
fraction of the network, and that it is highly biased towards positive magnetization
(see Table 7.8), which is essentially uninfluenced by flipping of small communities.
Nevertheless, the internal rearrangements inside rest due to the flips of s¢;, and sc,
induce a consistent increase of frustration within rest. In summary, it appears that
a feature useful for to the creation of separated energy valleys is the presence of
perfectly balanced subnetworks (like Co, C3 and, to a large extent, also C). These
can be composed of friends as well as of “declared” enemies: for what concerns
structural balance, the trolls of Cy and C3 play exactly the same role as the users
having many positive edges.

7.4 Conclusions

The point of view taken in this chapter, i.e. identify a signed social network with
a spin glass (both are signed graphs), allows to pass from a local viewpoint of
pairwise relationships between individuals to a global perspective of organization of
the signs in a given social network. A byproduct of the approach is that a wide range
of concepts developed for spin glasses can be used to investigate social networks.
These include a “natural” energy functional whose global optimum corresponds to
the value of structural balance in the network, a direct identification of frustration
with the “social stress” at the basis of unbalance, and the possibility of evaluating
near-optimal possible arrangements using the tools developed for the rough energy
landscapes of disordered systems.

The first result we have presented in this chapter concerns the fact that currently
available signed social networks are extremely balanced. In particular, individuals
linked by a large majority of negative edges create mostly “apparent disorder”,
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rather than true “frustration”. In the second part of the chapter we have shown
examples of what can be achieved using a large number of low energy minima for
the characterization of the same large-scale on-line networks.

In spite of a similar fraction of negative edges in the two larger networks (16.5%
for Epinions and 23.9% for Slashdot) and of a similar low level of frustration (par-
tially ferromagnetic behavior), two quite different low-energy landscapes have been
identified: a single valley for Epinions and a set of three competing valleys for Slash-
dot. We associate this different qualitative behavior with the presence of exactly
balanced (and highly connected) subnetworks, whose internal balance must be de-
stroyed and reformed in order to pass from one valley to another. It is precisely
the presence of these balanced subnetworks (and their arrangement with the rest
of the network) that leads to a partial breaking of ergodicity in the system, and to
the creation of energy barriers between competing near-optimal valleys. It is worth
observing that these subnetworks are not necessarily composed by friends, making
the determination of energy barriers like these a difficult task if one simply looks at
the sign distributions on the edges and subdivides the nodes into clusters.

These results represent a clear demonstration that, for complex systems like large
social networks, global properties cannot be inferred by local or mean features: more
sophisticated analytical and computational tools must be developed and applied.
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PART 111

DIFFUSION AND SPATIAL GRADIENTS
IN THE ROD PHOTOTRANSDUCTION PATHWAY






Introduction

In the works presented up to now, the focus has been on large networks and
on a simplified description of the dynamics (or no dynamics at all). Indeed, the
modeling approaches we have followed are based on some assumptions, for instance
the steady-state assumption in FBA, which is possible because of the separation
of time scales between metabolic and transcriptional processes. Similarly the Ising
spin-glass models (and its formulation as data compression problem) provides a
“static” description of gene regulatory and social networks. Another simplification
we used so far is the absence of any spatial aspect. In FBA, for example, only a
limited number of compartments are considered, together with the corresponding
transport processes.

In this third part we are instead interested in characterizing the dynamical be-
haviour of a specific signaling pathway, namely phototransduction in rods of verte-
brates. In particular we aim at using the photoresponse to light applied in a localized
way along the cell body in order to understand the spatial gradient and to estimate
the role of diffusion in the cytoplasm. For this purpose, the signaling pathway is
here described by means of ordinary or partial differential equations. The number
of molecular actors involved in the signaling is much smaller than in the complex
networks of the previous chapters, hence we can effort to investigate the spatial and
temporal dynamics of the system without having to deal with too many parameters.

Since several decades, phototransduction has been largely investigated and al-
most all the steps of the cascade have been elucidated (see Chapter 8). It has been
also found that the efficiency of this signaling cascade depends on the part of the
photoreceptor which is illuminated. However, an accurate modeling of this aspect is
still missing. Since many mathematical models of the phototransduction have been
already developed and published in the literature, our main goal is not to provide
an additional omnicomprehensive model of this pathway, but to address the origin
this spatial heterogeneity. In particular, our analysis and modeling are motivated by
novel experiments carried out by Dr. Monica Mazzolini in the lab of prof. Vincent
Torre in SISSA. These experiments in fact allow to look at localized light stimu-
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lation with a much higher resolution and precision than in the existing literature
(Chapter 9).

After my partial contribution to a first project on the adaptation of signaling
pathways in rod photoreceptors and in olfactory neurons (not included in the thesis),
a new paper about the efficiency gradient and diffusion is currently being submitted
for publication.

o G. De Palo, G. Facchetti, M. Mazzolini, A. Menini, V. Torre and C. Altafini
Common dynamical features of sensory adaptation in photoreceptors and ol-
factory sensory neurons Scientific Report, 3, 1251-1258 (2013);

o M. Mazzolini, G. Facchetti, L. Andolfi, M. Lazzarino, R. Proietti, J. Treu,
C. Altafini, E. Di Fabrizio, G. Rapp and V. Torre Restricted spots of light
reveal an efficiency gradient of the phototransduction cascade along rod outer
segment, submitted.



Chapter 8

Biology of rod photoreceptors

The biological research in the field of phototransduction began on the 40’s: since
then, an extremely vast literature has been published [158, 159, 160, 161, 162, 163].
Therefore, in this chapter we are going to give a brief summary of the state of the
art, highlighting the links between cell biochemistry and cell geometry.

8.1 Rods: function and geometry

Vertebrates have developed specific neuronal cells for vision, cells that in evolved
organisms like mammalians are able to generate an electrophysiological response
even to the absorption of a single photon. These cells are densely packed on the
surface of the retina, forming a continuous film that maximizes the area in which
photons can be captured. There are two types of photoreceptors: cones and rods.
As hinted by the names, these cells differ in their geometry, conical and cylindrical,
respectively (see Figure 8.1a). Cones confer color vision (there are three kinds of
cones, each sensitive to the detection of red, green or blue color of light) and give
fast response, whereas rods are slower but more sensitive to dim light (they provide
night vision). This higher sensitivity of rods is caused by the higher amount of
rhodopsin, the protein involved in the absorption of photons. Moreover, cones are
less abundant (in humans there are about 6 millions cones in each retina) and are
concentrated in the central part of the retina (the so-called fovea). On the contrary
there are more the 120 millions of rods distributed around the fovea. Because of
these differences, it is more easy to extract rods from the retina and to perform
electrophysiological experiments on them: this is the reason why the most part of
the research has been carried out on rods. Also in our work, we refer to this type of
cell.

Rods consist of two parts: the inner segment (IS) and the outer segment (OS),
see Figure 8.1(b). The former contains the nucleus and all organelles (especially a
high number of mitochondria) for the common cellular functions, whereas the latter
is the location where the phototransduction takes place. For this reason we focus our
attention on the OS only. It is worth noting that light must first cross the IS before
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Figure 8.1: Rod geometry (a): Photoreceptors in the human retina. Most of the cells here
are rod photoreceptors, but also two cone photoreceptors can be seen (yellow). (b): IS and
OS of a rod photoreceptor: the communication between the two parts is assured by a motor
cilia located at the interphase. (c): the OS is filled with internal discs which are produced
at the base (close to the IS) by folding the membrane (image from Rhesus monkey, [163]).

being absorbed by the OS. In this manner, photons are mostly absorbed in the basal
part of the OS (i.e. closer to the IS) where the phototransduction is more efficient
(this gradient of efficiency is part of our investigation in the following chapter).
The OS contains a stack of thousands of so-called discs which are approximately
25 nm thick. Discs are densely packed: indeed, the distance between two adjacent
discs and the distance between the disc border and the external membrane are both
20-25 nm only, see Figure 8.1(c). This dense packing assures an high concentration
of rhodopsin. The same is valid for other proteins located on the disc surface and
involved in the initial steps of the phototransduction. Therefore, in order to increase
the probability of absorbing a photon, evolved and nocturnal species have a very
long OS and thus a high content of rhodopsin. For example, while in toad and
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salamander the length is about 20—30 pm, mammalians like mouse or human have
OS of 50—60 pm. In case of deep-sea fish the OS can even reach up to 100 pym
length.

8.2 The signaling cascade

The geometry of the OS described above, is strictly correlated to the biochemical
processes responsible for the detection of photons, amplification of the signal and
generation of the photocurrent (due to the change in the membrane polarization
at the synaptic terminal). We describe here the molecules and the corresponding
reactions: all molecules are listed in Table 8.1 and the signaling cascade is depicted
in Figure 8.3. Several negative feedbacks intervene to control the final response of
the signaling pathways. Such pathways will represent the initial approach for our
mathematical modeling (see Figure 9.6 in the next chapter).

Dark current

In absence of photons, the so-called dark current keeps circulating: indeed, with-
out any light stimuli, ion channels are open and a flow of sodium and potassium
ions enter in the OS and is pumped out from the IS by the Na® /K™ pump (see
Fig. 8.2). Under this condition, a rod cell is not hyperpolarized and no synaptic
activity is triggered (without light no signal to the brain is transferred). During illu-
mination, instead, the current is reduced because of the induced phototransduction
and a signal for the brain is generated. Although photoreceptors are neurons, they
do not conduct action potentials, i.e. their synaptic activity induced by photons
absorption does not generate a spike like a neuron of the central nervous system
(the so-called “bursting”), but only a continuous modulated transduction current.
In the neural network, downstream the rod, this induces a decrease in the release of
the neurotransmitter glutamate to the postsynaptic cells.

pﬁm.‘ﬁm’uﬁrmtﬁmfﬁm‘mmmmﬁﬁ’u

\
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Figure 8.2: Dark current in rod cells: ions enter through the CNG channels located in
the external membrane of the OS, migrate to the IS where they are pumped out by the
Na®™ /KT pump.
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Table 8.1: Proteins and molecules of the rod phototransduction pathways.

Name (abbrev.) Location Concentration  Diffusivity Ref.
Rhodopsin (Rh) internal discs 25000 #/pum? 0.14 ym?/s [158, 164]
G-protein (G) internal discs 2500 #/pm? 0.15 um?/s  [158, 165]
Phosphodiesterase (E) internal discs 100 #/pm? 0.05 um?/s  [158, 166]
guanylate cyclase (GC) internal discs 60 #/um? n.a. [158]
RGS9 complex (RGS9) internal discs 15 #/um? n.a. [167]
ions channels (CNG) OS membrane 100 #/pm? n.a. [168]
cyclic GMP (¢cGMP) cytoplasm 3-5 uM 70 pm? /s [169]
calcium ions (Ca®™) cytoplasm 200 nM 15 pm?/s [170]
Calmodulin (CM) cytoplasm 8 uM n.a. [170]
GC activating prot. (GCAP) cytoplasm 5 uM n.a. [171]
rhodopsin kinase (RK) cytoplasm 7 uM n.a. [158]
recoverin (Rec) cytoplasm 400 uM n.a. [158]
arrestin (Arr) cytoplasm 600 pM n.a. [158]
Phototransduction

Vision begins with the photoisomerization of 11-cis-retinal (the aldehyde of vita-
min A), a molecule which is located inside rhodopsin. When this chromophore ab-
sorbs a photon, it isomerizes from the 11-cis state to the all-trans state. This change
in the configuration induces a conformational rearrangement of the rhodopsin which
becomes enzymatically active. There is a debate about the mobility of activated
rhodopsin: Atomic Force Microscopy has shown that almost all rhodopsin molecules
form a pseudocrystal structure (constituted by many dimers) which blocks the lat-
eral mobility. However, a diffusion coefficient has been estimated to be nonzero,
i.e. 0.14 ym?/s [164]. Moreover, the membrane of the internal disc is filled with
other mobile proteins responsible for the amplification steps of phototransduction,
namely G-protein (G, called also trasducin) and phosphodiesterase (E), see Fig-
ure 8.3A. G-protein is a trimer («, 3 and « are the three subunits) bound to the
membrane through two lipids, one from the « subunit and one from the 8 subunit.
When a G-protein interacts with excited rhodopsin, a GTP molecule (guanosine-
tri-phosphate) replaces a GDP molecule (guanosine-di-phosphate) in the o subunit,
triggering the dissociation of the other two subunits (5 and ). It has been measured
that within 1 second, each excited rhodopsin (i.e. each absorbed photon) activates
tens of G-proteins [172]: this is the first amplification step of the phototransduction.
GTP-a-G-protein, now linked to the membrane through a single lipid chain, has a
greater mobility and migrate on the disc surface where it can encounter and activate
one molecule of phosphodiesterase. The life time of this activated phosphodiesterase
(the GTP-a-G-E complex) is determined by the hydrolysis of its GTP. This process
is not fast, but it is catalyzed by the RGS9 enzyme which accelerates the deacti-
vation by two orders of magnitude [173]. This first part of the cascade takes place
on the surface of the disc membrane: it has been suggested that the reduction to
a two-dimensional dynamics increases the probability of encounter of proteins and
consequently increases the rate of the whole process [174, 175].



The signaling cascade 141

‘ Channel
cGMPE_* . Open

t{,_{ Channal

ar=] Glnsad
camp AT *

C
Groe"] [GSER (ot |FCS

@I

GTF""\

Figure 8.3: Scheme of the phototransduction cascade in vertebrate rod photore-
ceptors [158]. (A): Initial amplification steps of the cascade on the internal discs (the
circular gray structure on the left part). From excited rhodopsin, « subunit of G-protein
dissociates, phosphodiesterase is activated and cGMP is thus hydrolyzed. The right part of
the scheme reports the processes which concern calcium ions: its entrance through the CNG
channels regulated by ¢GMP, and the two feedbacks mediated by Calmodulin (on CNG
channels) and by GCAP (on guanylate cyclase). (B): The picture shows the third calcium
feedback which, involving rhodopsin kinase, recoverin and arrestin, leads to the complete
switch off of rhodopsin and to the termination of the phototransduction. (C): the active
complex GTP-a-G-E is deactivated by the RGS9 enzyme which catalyzes the hydrolysis of
GTP to GDP and the consequent dissociation of the a subunit of the G-protein.

The notation is the same as in Table 8.1; an asterisk indicates an activated protein.

On the contrary the following part of the cascade takes place mainly in the cy-
toplasm. The activated phosphodiesterase is indeed responsible for the hydrolysis
of cyclic guanosine-mono-phosphate (cGMP), the second messenger of the signaling
pathway, present in the cytoplasm of the OS. Because of the great catalytic effect
of activated phosphodiesterase, also this step contributes to the amplification of the
initial stimulus. Cyclic GMP is responsible for the opening of the calcium nucleotide
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gated (CNG) channels. Under dark condition (i.e. without photon absorption), cyto-
plasm concentration of cGMP is about 3-5 uM: at this concentration approximately
10% of the CNG channels are open and both calcium and sodium ions enter in the
OS. After light absorption, activated phosphodiesterase hydrolyzes ¢cGMP closing
the CNG channels and thus causing a drop of the circulating current. Suppression
of the photocurrent causes the photoreceptors to hyperpolarise (thereby blocking
the synaptic terminal) and the drop of concentration of calcium ions.

This lack of calcium is the starting point of three negative feedbacks which involve
several steps of the cascade:

© The most important feedback is the regulation of the biosynthesis of cGMP.
Cyclic GMP is produced by guanylate cyclase (GC): this enzyme is linked to
the membrane of the internal discs and is activated by the guanylate cyclase
activation protein (GCAP). Since calcium ions bind and inhibit GCAP, in dark
condition (high calcium concentration) the activity of GC is small. After light
absorption, calcium is reduced and dissociates from GCAP [176]; GCAP is then
no longer inhibited and thus GC starts to synthesize cGMP. This compensates
the hydrolysis due to activated phosphodiesterase and then restores the initial
concentration of cGMP.

@ Calcium ions act on the open CNG channels. Through a calmodulin-like pro-
tein, calcium binds to CNG and prevents the closure. Therefore, during photo-
transduction CNG channels tend to be closed and to reduce the dark current.
Nevertheless, compared to the previous feedback, this effect is much weaker.

© The third feedback acts on the origin of the phototransduction (i.e. on the
activated rhodopsin) and its time scale is longer than the other two feedbacks.
Recoverin, another calcium-binding protein, is normally bound to rhodopsin
kinase when calcium is present. When the calcium level falls during pho-
totransduction, calcium dissociates from recoverin releasing rhodopsin kinase
which proceeds to phosphorylate the activated rhodopsin. This phosphoryla-
tion decreases the affinity between rhodopsin and G-protein (then slows down
the initial amplification of the phototransduction). Finally, arrestin, another
protein, binds and completely deactivates phosphorylated rhodopsin.

For the complete restoration of the dark conditions, all-trans retinal is trans-
ported from the OS to the pigment epithelial cells (other constituents of the retina),
is converted to 11-cis retinal and then is transported back to the rods. Several other
transports are facilitated by the motor cilia located between the IS and the OS.
We mention here only three examples: ATP is produced in the IS by the mito-
chondria and then transported to the OS; similar situation is valid for GTP which
is necessary for G-protein activation and for cGMP biosynthesis; rhodopsin is ac-
tivated and phosphorylated in the OS and then is transported in the IS for being
de-phosphorylated.
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8.3 Discs ageing

As visible in Figure 8.1(c), internal discs are generated at the base of the OS by
a folding of a membrane foil. Surprisingly, this process does not take place only
once but it continues during the life of the rod photoreceptor. Indeed, by means of
radiolabeled aminoacids a continuous formation of new discs at the base has been
measured (see Figure 8.4), formation which is balanced by a continuous shedding
at the tip where old discs are phagocytised by the retinal pigment epithelium [177].
This process has a turnover ranging from a few days in mice [178] to 6-7 weeks in
frogs [178, 179].

Figure 8.4: Experimental evidence of discs renewal. Radioautograph snapshots at
different time from the retina of adult rats injected with methionine-*H. From left to right:
just after injections, after 1 hour, 1 day, 7 days, 21 days and 24 days. The radioactive
material incorporated in the disc proteins (the dark spots) moves from the base to the tip
of the OS (images from [178]).

Electrophysiological experiments have shown that the phototransduction is less
efficient when it involves old discs [180, 181], i.e. smaller photocurrents are measured.
Nevertheless the biological and biophysical reasons for the degradation of aged discs
are still unknown. The following hypotheses have been proposed:

® Lipids of the membrane. An analysis of the lipidic composition of the mem-
brane highlights that the cholesterol content decreases with age [182, 183]. It
has been suggested that a higher level of cholesterol in young discs, although
conferring more rigidity to the membrane (i.e. less motility of the embed-
ded proteins), aggregates all proteins and increases the phototransduction ef-
ficiency. Similarly, the oxidation of lipids in older discs reduces the initial
amplification step of the phototransduction [184].

©® Transport to/from the IS. An alternative hypothesis concerns the proteins
and compounds involved in the cascade: referring to the fact that many pro-
teins and key molecules (such as ATP) are regenerated and synthesized in
the IS, the tip region (far from the IS) might have a lower efficiency if com-
pared to the base (close to the IS). For instance, it has been measured that
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phosphodiesterase is less abundant in the tip part of the OS [185]. For the
same reason, the migration of ions from the tip part of the OS towards the
sodium/potassium pump of the IS is more difficult and can generate a lower
photocurrent [180].

Surrogate antioxidant. Every cell uses glutathione (GSH) as antioxidant.
GSH is regenerated by a mechanism involving NADPH-dependent glutathione
reductase. However, since this enzyme competes with the regeneration of
retinol, rod photoreceptors are deprived of GSH. Therefore, the production of
new discs and the elimination of old discs damaged by the photo-oxidation
is interpreted as a surrogate antioxidant process necessary for preserving the
cellular functions [186].

In order to evaluate the effect of ageing, we are interested in finding a correlation

between the position of the discs in the OS and the efficiency of the phototransduc-
tion. For this reason, experimental illuminations which induce only the activation
of the tip or only the activation of the base of the OS are reported in the follow-
ing chapter: the obtained electrophysiological results are analyzed and reproduced
through mathematical models.



Chapter 9

Signaling efficiency and cGMP
diffusion in rod photoreceptors

9.1 Motivation

In most electrophysiological assays, rod photoreceptors are illuminated by a diffuse
flash of light. During such experiments with a high light intensity, all the internal
discs are stimulated (all CNG channels are closed and the photocurrent is saturated)
and no spatial gradient appears along the OS. On the contrary, when a very dim light
is used (i.e. a few photons are absorbed) only a few discs may be excitated generating
some spatial gradient (i.e. an inhomogeneous stimulation) along the OS. However,
the location where this takes place is unknown. Consequently, diffuse light permits
either uniform saturation or spatial inhomogeneities but never both at the same
time. In order to control both, in this work we use localized illumination by tapered
optical fibers (TOF). By placing a TOF in the proximity of the OS, the tiny beam of
light emitted by the TOF can illuminate a reduced portion of the discs, leaving the
remaining in dark-adapted conditions. While parameter distributed models based
on the cylindrical geometry of the OS have already been published in the literature
[187, 188, 189], none of them accounts for this spatial inhomogeneity. In particular,
such experiments provide (i) information about the gradient of efficiency along the
OS and (ii) evaluation of the diffusion of cGMP in the OS geometry.

Concerning the first point, several publications have already measured and eval-
uated a higher (resp. lower) efficiency of the signaling cascade in the basal part
(resp. in the tip) of the OS [181, 180]. However, as mentioned in the previous
chapter, a molecular explanation of this spatial gradient is still missing and so is an
interpretation in terms of dynamical models.

Also estimates of the cGMP diffusivity have been published in literature. From
the variation of the circulating current recorded from a truncated rod (i.e. which is
losing the cytoplasmic cGMP), Koutals et al. [169] estimated a diffusion coefficient
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of cGMP of approximately 70 ym?/s. Similar values have been obtained by other
authors through model-based estimates, in which the diffusion coefficient is consid-
ered one of tens of parameters in a fitting to experiments [189, 169]. In our opinion,
such high number of parameters to fit and the absence of localized illumination make
the estimation of the diffusion less reliable. It is worth noting that the values usually
reported in the literature refer to the so-called “longitudinal diffusion”, i.e. the 1D
mobility of cGMP along the gap between the disc and the external membrane of
the OS. Indeed, the stack of the internal discs slows down significantly the diffusion
in the proximity of the external membrane of the OS: it has been estimated [170]
that this “longitudinal” value is 6.5 times lower than the real 3D diffusion coefficient
(usually called “radial diffusion”) that we are interested to determine.

Unless differently specified, all experiments reported in the following have been
performed by Dr. Monica Mazzolini in the lab of Prof. Vincent Torre (Neurobiology
Department at SISSA). Our contribution consists in the analysis of the experimental
data and in the corresponding mathematical modeling.

9.2 Materials and Methods

Photocurrent recordings. Dissociated rods are obtained from adult male Xeno-
pus laevis frogs. After mechanical isolation, the IS of an isolated and intact rod is
drawn into a borosilicate glass electrode filled with Ringer’s solution. Rods are
viewed under infrared light and stimulated with a 491 nm diffuse light laser. The
restricted light is applied using a TOF. The photoresponses to brief flashes (5 ms)
are recorded through the suction electrode. The sequence of the experimental steps
is reported in Figure 9.1.

Characterization of the flash of light. In order to characterize the flash light
exiting from the TOF, the following physical characterization has been performed
by Dr. Laura Andolfi from CBM (Trieste). By using an ultrasensitive CCD camera
we measure that the exiting light has a profile which illuminates about 5-6 pm (see
Figure 9.2) and which corresponds to 100-120 discs of the OS (see, for instance,
[180, 181, 190] for a comparison with the literature).

9.3 Gradient of efficiency along the OS

9.3.1 Experimental results

We compare photoresponses of rods exposed to conventional diffuse light and to
localized illumination (by TOF). All the evoked electrophysiological currents are
reported in Figure 9.3. In particular, we delivered localized illuminations at different
locations of the OS (namely at the base, middle and tip) and with different light
intensities (both saturating and non-saturating). Saturating lights are analyzed and
plotted in Figure 9.4, whereas non-saturating lights are shown in Figure 9.5.
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Figure 9.1: Sequence of experimental steps. The isolated rod (1) is fixed in the suction
electrode (2). Then the TOF (3) is located close to the rod (4) and a localized part of the
OS is illuminated (5).

Light intensity
s

9 6 3 0 3 6 9
Radial distance (um)

Figure 9.2: Characterization of flash of light. Profile of light from TOF: the size of the
illuminated part is about 5-6 pm.

= 20A__
1s

Figure 9.3: Illumination with TOF at different positions along the OS. (a): family
of photoresponses to diffuse light of increasing intensity; (b): family of photoresponses
obtained with the TOF illuminating the base of the OS (purple traces) compared to the
photoresponse to a diffuse saturating flash of light (black trace); (c): as in (b) but with the
TOF illuminating the middle of the OS and traces in orange; (d): as in (b) but with the
TOF illuminating the tip of the OS and traces in green.
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Saturating light
Photoresponses to pulses of saturating diffuse light and to saturating localized
light (respectively black and colored traces of Fig. 9.4) exhibit different features:

©

(17

Current ratio
Restricted / Diffuse

AMPLITUDE: when only the base is illuminated (Fig. 9.4(b)) photoresponse
has an amplitude equal to 0.52£0.08 of that obtained by diffuse light. When
only the middle (Fig. 9.4(c)) or only the tip (Fig. 9.4(d)) are illuminated this
factor is 0.3240.04 or 0.15+0.05, respectively. These results are summarized
in the histogram reported in panel (e) of Figure 9.4.

TIME TO PEAK: concerning the dynamics, photoresponses to diffuse light reach
their peak in 190 4+ 4 ms, while photoresponses to localized light reach the peak
in 480 £+ 40 ms, 560 4+ 20 ms and 620 £+ 80 ms at the base, middle and tip
respectively (see Figure 9.4(f) for the summary).

SATURATION TIME: referring to the literature [191], we define saturation time
(denoted by Ts) as the period in which all CNG channels remain closed, i.e. in
which the photoresponse is saturated. Using diffuse saturating light of increas-
ing intensity, Ts rises almost linearly, but not with localized illuminations (see
Figure 9.4g).
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Figure 9.4: Saturating illumination at different positions along the OS. (a): pho-
toresponses to saturating diffuse light at increasing intensity; (b, ¢, d): photocurrents to
saturating light (at increasing intensity) localized at the base (purple traces), at the middle
(orange traces) and at the the tip (green traces). Diffuse light in black; (e): average am-
plitude of maximal photoresponse (fraction of the maximal current with respect to diffuse

light);

n, number of mediated experiments; (f): average of time to peaks. (g): relationship

between light intensity (mainly saturating) and saturation time T [191].
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Non-saturating light

Curves in Figure 9.5(a), (b) and (c), obtained with non-saturating pulses of light,
exhibit different amplitude and shape. While the difference in the maximal ampli-
tude A is expected, the variation of the slope V' of the rising phase (i.e. the maximal
slope of the sigmoidal curve which can describe the initial rising phase of the pho-
tocurrent) is a novel experimental result. In particular, increasing the light intensity,
the slope of the rising phase initially increases and then reaches a plateau (which
is higher is case of base illumination): this is reported in Figure 9.5(d). Neverthe-
less, the slope of the rising phase and the amplitude of photocurrent are linearly
correlated, regardless to the position (base, middle or tip) of the illumination, see
in panel (e) of Figure 9.5.
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Figure 9.5: Non-saturating illumination at different positions along the OS. (a):
family of photoresponses obtained with the TOF illuminating the base of the OS (purple
traces); trace indicated by 2I was obtained by a flash of light with an intensity equal to
twice that indicated by I. (b): as in (a) but with the TOF illuminating the middle of the
OS and traces in orange; (c): as in (a) but with the TOF illuminating the tip of the OS and
traces in green. (d): relationship between light intensity (in arbitrary unit) and slope V' of
the rising phase of photoresponses (same color code as planels a, b, and c); n, number of
mediated experiments. (e): relationship between maximal amplitude A and slope V' of the
rising phase of the photoresponses.
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Data interpretation and pathway simplification

We describe now the correlation between these experimental results and the steps
of the phototransduction (described in Chapter 8). In order to do this, the complete
signaling cascade is here reproduced as a network where 29 molecules are linked
by 19 reactions (see Figure 9.6). In this pathway, the initial part of the cascade is
colored in green (representing only the signaling molecules that are on the surface
of the internal discs), whereas the second part is colored in red.

Because of the uniform density of the CNG channels along the OS [192, 168],
the higher efficiency of the base with respect middle and tip cannot be justified
by the signaling steps downstream of the cGMP hydrolysis. Moreover, since the
rising phase of the photoresponses occurs before the intervention of the calcium
feedbacks, the whole second part of the cascade (the red nodes in Figures 9.6)
is ignored, meaning that it must be due to the part of the transduction depicted
in green. The amplification step of this part involves three proteins: rhodopsin,
G-protein and phosphodiesterase. Since the ratio of their concentrations is 250:25:1
(see Table 8.1) and the amplification ratio is 1:10:10, it is reasonable to hypothesize
that saturation occurs for the less abundant protein, namely phosphodiesterase.
In light of these considerations, our basic model describing the position-dependent
TOF flash response includes only the activation-deactivation of phosphodiesterase,
as reported in Figure 9.7. Furthermore, a progressive loss of phosphodiesterase in
aged discs seems to be a good candidate for explaining the observed differences of
efficiency of phototransduction between the base, middle and tip.

9.3.2 Modeling of the slope of the initial rising phase

We present here the mathematical model we use to interpret the slope V' of the rising
phase of the current responses at different light intensities and at different locations
along the OS; through this approach, we infer new insight into the efficiency of
phototransduction.

Derivation of the equation of the model
The part of the cascade we need to model is the loop reported Figure 9.7, i.e. the
following single reversible reaction:

k-Rn*

phosphodiesterase &= activated phosphodiesterase,

J

where k is the kinetic constant of phosphodiesterase activation by rhodopsin (excited
by the localized photons and whose concentration is denoted by Rh*) and ¢ is the
kinetics of phosphodiesterase deactivation catalyzed by the RGS9 complex. The
corresponding dynamic system is

dE*
dt

= kRh* (Bt — E*) — 0E*, (9.1)
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Figure 9.6: Complete signaling pathway of the rod phototransduction. The scheme
of the cascade reported in Figure 8.3 can be described by this block diagram. Symbols refer
to Table 8.1. In this representation, green nodes represent the molecules involved in the
sequence of reactions that occur on the surface of the internal disc and that are responsible
of the first amplification of the signal. Red nodes refer to the cytoplasm processes and the
calcium feedbacks. Grey boxes include both the enzyme (an activated protein, marked with
an asterisk) and the corresponding catalyzed reaction.

Thick green nodes and green arrows indicate the simplifications that lead to the
simplified scheme of Figure 9.7.

Figure 9.7: Simplified scheme of phototransduction. The scheme contains the basic
ingredients we identified as responsible for the rising phase and for the gradient of efficiency
along the OS (from base to tip). The parameters reported in this scheme are used in the
mathematical model.
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where Fiq is the total amount of phosphodiesterase on the discs where the localized
illumination is absorbed, and E* denotes the amount of activated phosphodiesterase.
Thus, for a given Rh*, the maximal amount of activated phosphodiesterase (for
which dE*/dt = 0) is
Rh*

Rh* +4§/k
The initial rising phase of the photoresponse is linked to the closure of CNG channels
caused by the hydrolysis of cGMP. Since the rate of such hydrolysis is proportional
to the concentration of activated phosphodiesterase,

d[cGMP]
dt

the maximal slope V of the rising phase observed in the current can be assume to
be proportional to E;,

E} .« = Eiot (9.2)

— kn[cGMP][E"],

ax:
Vx E}
Because of the high concentration of rhodopsin, also Rh* can be assumed to be
proportional to the light intensity I (i.e. Rh* = af). Substituting these relations in
(9.2), we obtained
I
I+ K’
where Vijax & Eior and Kg = ¢/ka. This expression provides the dependence of
V from the light intensity I; the parameters Vi and K are instead necessary to
characterize the gradient of efficiency along the OS.

V = Vinax (9.3)

Fit of the experimental results

By using (9.3) to fit the relationship between the slope of the rising phase of the
photocurrent and the light intensity (previously reported in panel (d) of Figure 9.5),
we can obtain the values of Vi ax and of K at different positions along the OS (base,
middle and tip). These fitting curves are reported in Figure 9.8(a) and the values
of the fitting parameters are listed in Table 9.1.

We may notice that base, middle and tip exhibit the same values of K. From
Ks = §/ka, this means that the kinetics of the signaling cascade is the same re-
gardless of the age of the discs. On the contrary, Vi .x is strongly dependent on the
position; since it is related to the total amount of phosphodiesterase present in the
illuminated discs, the value of Vi .« provides an estimate of the loss of this protein
during the ageing of the internal discs.

Table 9.1: Fitting parameters for different positions along the OS.

illuminated position Vinax (PA/s) K, (arbitrary units)
Base 277 £ 3.1 1080 £ 80
Middle 12.6 £ 3.7 1100 £ 170
Tip 25 +£22 1100 £ 500
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Figure 9.8: Model results. (a) Fitting of the slope of the rising phase by the mathe-
matical model; experimental data of Figure 9.5(d) and fit by Equation (9.3). (b): Loss of
phosphodiesterases: decay of Eiot in time and its fit with model (9.4) using v = 0.48 week ~*.

Rate of loss of phosphodiesterase

Although our experiments have only three locations (i.e. only three ages of the
discs of the rod from Xenopus laevis, corresponding in particular to 1, 3 and 6
weeks approximately [178]) we can perform a rough estimation of the rate of loss of
phosphodiesterase of the discs. In particular, the simple decay model can be used

dEtot/dt = ’}/Etot, (94)

where + is the characteristic time constant of the process of loss. Since Vipax & Elot,
it can be rewritten as

AVinae /At = 3Vinax. (9.5)

The fitting of the data (see Figure 9.8(b)) provides a value of v = 0.48 week !,
meaning that a disc loses approximately 35% of its phosphodiesterase within one
week. Electrophysiological experiments cannot provide validation of this model.
Specific biological assays are needed (and not yet available).

9.3.3 Single photon experiments

In this section we show that our model is valid also in case of extremely low light
intensity. In particular, we investigate the very dim photoresponses evoked by a
single photon absorption.

Experimental results

Single photon responses are obtained by a series of N repetitions of dim flashes
of light localized at the three different positions of the OS (base, middle and tip;
N=100, 50 and 100, respectively). With such a weak illumination, a response can
be a failure (no absorption), a single or a few photoisomerations. The photocurrent
measured in some repetitions are reported in panels (a), (b) and (c) of Figure 9.9.
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Figure 9.9: Single photon responses. (a,b,c): Photoresponses evoked by a series of
repetitions of dim flashes of light to the base, middle and tip position of the OS (N is equal
to 100, 50 and 100, respectively); (d,e,f): corresponding histograms of the amplitude of N
evoked photoresponses fitted by (9.6) as explained in the text.

For each position of the TOF, we first estimate the maximal amplitudes A of
the N photocurrents we have obtained (according to the procedure used in [193]).
The histogram of these N values is fitted with the equation obtained from [194]:

e e~k 1 1/2 7(,427(119)3
p<A):Z< Ml )[ )] ety (9.6)

— 2n(03 + ko?

(see panels (d), (e) and (f) of Figure 9.9). The expected distribution of the observed
amplitudes is the sum of the Gaussian components, where each component has a
mean ka, variance (O‘% + ko?), and with an area re-scaled according to the Poisson
equation (e~™m*)/k! (where m is the mean number of photoisomerizations per
flash). From the values of a, ¢ and o1 used to provide the best fit of the histograms,
we determine the single photon response to be 0.30+0.11 pA for the base, 0.21+0.12
pA for the middle and 0 pA (no response) for the tip.



Estimation of the diffusion coefficient of cGMP 155

Theoretical calculation
A consistent interpretation of these results can be provided by the proposed model.
Using Equation (9.3) at a generic light intensity I, we calculate,

Vmiddle B Vnriaai)((idle I+ K;aase
b - b iddle
1/ base Vbase T 1 K;nl e

max

For extremely small light intensity I (i.e. for a single photon absorption), this

expression simplifies to
middle middle g~base
14 ~ Vmax Ks

b — /b iddle *
1/ base Vmgingm e

Because of the linear correlation between the slope V and current amplitude A
(Figure 9.8e), this ratio is equal to the ratio:
Amiddle VmiddleKbase
S

max

b - b iddle -
A ase V aseK;m e

max

Using the values reported in Table 9.1 (and calculating the same expression for the
ratio AP/ AP25¢) we obtain

Amiddle

W = 05 + 027
Atip
W — 00 :l: 01

According to this ratios, the theoretical single-photon responses at the base, middle
and tip are 0.33, 0.17 and 0.01 pA, respectively. These values are sufficiently con-
sistent with the experimental data mentioned above (0.30 £ 0.11, 0.21 £ 0.12 and
0.0 pA). This agreement suggests that our model, although very simplified, is valid
in a wide range of light intensities (from single photon up to saturating light).

9.4 Estimation of the diffusion coefficient of cGMP

In case of a saturating illumination at the base (i.e. when many phosphodiesterases
are activated), the photocurrent shows a delay in reaching its maximal amplitude.
Because of the geometry of the cytoplasm, such delay is presumably caused by the
diffusion of the second messenger cGMP along the OS. Indeed, phosphodiesterase
proteins (activated in the illuminated discs of the base) initially hydrolyze cGMP
between the illuminated discs. This creates a gradient of concentration of cGMP
along the OS, inducing the cGMP molecules present in the non-illuminated part of
the OS to migrate towards the base (see Figure 9.10a).

By quantifying the correlation between this migration and the photocurrent de-
lay, we can estimate the diffusion coefficient of cGMP. In particular we have de-
veloped a parameter-free model based on the geometry of the cytoplasm of a rod
photoreceptor from Xenopus laevis (see Figure 9.10b).
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Figure 9.10: Diffusion of cGMP inside the OS. (a) Diffusion takes place in OS cyto-
plasm, i.e. through the space between discs and external membrane and in the gaps between
adjacent discs; (b): measurement of length and diameter of a typical rod photoreceptor from
Xenopus laevis.

9.4.1 A parameter-free model

Cyclic GMP diffuses in the cytoplasm of the OS; this domain is a cylinder with
length L = 32 pym and diameter d = 4 pm . Thanks to the radial symmetry, it can
be reduced to a rectangle of dimension L x d/2. Of course, the volume occupied
by the internal discs is excluded. Our model describes the dynamics of the cGMP
concentration (hereafter denoted ¢) along this domain during the initial part of the
photoresponse (up to the peak time, i.e. 500 ms). The initial condition is a uniform
concentration of cGMP equal to 3.5 uM [195]:

g(x,r,t=0)=35puM VY(z,r)e 0, 32 pm] x [0, 2 pm].

The partial differential equation of cGMP dynamics is the Fick’s law with the
Laplacian expressed in cylindrical coordinates:

dg(x,r,t) 19 ( dg(x,rt)\ | Pglz,rt)
T DCGMP|:T o (r o 2 | (9.7)

where D.gmp is the diffusion coefficient of cGMP.
In case of localized illumination of the base of the OS, three boundary conditions
are defined:
©® As reported in Figure 9.2, TOF illuminates about 5 um of the base of the OS
(from £ = 0 to = 5 pm). In these points, the activated phosphodiesterase
hydrolyzes cGMP. Because of the high efficiency of the phototransduction at
the base and because we are referring to saturating flashes, cGMP hydrolysis
is very fast; the chemical reaction can be considered instantaneous and written
as a Dirichlet condition:

g(x,rt) =0, r=0pm, z <5 pm. (9.8)
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Figure 9.11: Numerical grid for the discretization of the cytoplasm of the OS. Black
nodes are internal points for which (9.7) is applied, whereas color nodes have boundary con-
ditions. In particular: blue nodes indicate phosphodiesterase activity (Dirichlet conditions
given by (9.8)); red nodes refer to symmetric reflective boundary conditions (9.9); green
nodes have reflective conditions because of the external membrane of the OS (9.10).

© Due to symmetry reason, a reflective boundary conditions is used along the
remaining part of the symmetry axis of the cylinder where the phosphodi-
esterases are not activated:

og(x,r,t
DceMPg(f;f)—o, r=0pm, x> 5 um. (9.9)

© Along the three remaining sides of the rectangle, no migration can take place
and then similar reflective conditions are used:

og(x,r,t

DCGMPg(aT ) _ 0, r =2 pm;
0 t

DcGMPg(g’;’ ) 0, r =0 pm; (9.10)
dg(x,r,t

DCGMPQ(&U) =0, r =32 pm.

In order to perform a numerical integration of the differential equation, the
domain is discretized as a sequence of concatenated nodes at distance 50 nm from
each other (the same distance between adjacent discs). Figure 9.11 reports the
resulting grid.

The equation is integrated numerically for different values of the diffusion coeffi-
cient of cGMP ranging from 50 to 1000 um?/s. Each integration provides the drop
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Figure 9.12: Numerical integration of the model. Theoretical ratio between localized
and diffused saturating photoresponse (at ¢ = 500 ms) vs value of Degmp in the case of
illumination at the base of the OS. In order to reproduce the localized/diffuse ratio equal to
0.5240.08 , D.gyp must assume a value of 550150 ,um2/s.

of concentration of cGMP along the whole domain. The ratio between this drop and
the total amount of ¢cGMP is the photocurrent ratio between localized and diffuse
saturating light. The result is reported in Figure 9.12: considering that the pho-
toresponse measured in case of base illumination reaches 524-8% of the dark current
(from Figure 9.4(e)), this model provides the estimation D.cymp = 500 =600 pm?/s.
It is worth noting that such range may represent a lower bound: indeed, without
the negative effect due to the calcium feedback, we overestimate the amplitude of
the photoresponse and, because of the monotonicity of the curve in Figure 9.12,
we underestimate the diffusion. In any case, our result is higher than the estima-
tions available in the current literature, which range from 250 to 450 pm?/s (after
correction of the “longitudinal diffusivity” [189, 169] by the factor of 6.5 [170]).

9.5 Conclusions

Rod photoreceptors and their signaling cascade evoked by light are well character-
ized: abundant information and results have been collected in many years of research.
However, some details are still missing and, in some cases, various hypotheses have
been suggested. For instance, a few of them concern the ageing of the discs (i.e. the
gradient of efficiency of phototransduction along the OS) and the role of diffusion
of the second messenger in the generation of the photocurrent. For this reason, the
laboratory of prof. Vincent Torre has setup a new experimental technique based on
the use of optical fibers and thus capable of generating a very localized illumination.
Through such source of light, the efficiency of the signaling pathway along the OS
(from base to tip) has been measured at different intensities of light, from very dim
up to saturating flashes (see Figures 9.4 and 9.5). The maximal amplitude and the
slope of the rising phase of the obtained photocurrents show a previously unobserved
correlation with respect to the localized light intensity.



Conclusions 159

Starting from these results, our contribution has been the development of a
mathematical model in order to justify the correlation between the different prop-
erties of the photocurrent. After a simplification of the signaling cascade, we have
obtained an equation which reproduces the experimental data, which suggests that
the gradient of efficiency can be attributed to the loss of phosphodiesterase proteins
due to the ageing of the internal discs (see Figure 9.8). It is worth noting that, in
spite of its simplified structure, our model is able to describe the efficiency at any
light intensity, from saturating illumination down to single photon absorption.

The use of localized illumination has been utilized also to evaluate the mobility
of cGMP in the cytoplasm. Using a parameter-free model applied to the more
efficient situation (the illumination of the base of the OS), we have estimated the
diffusion coefficient of cGMP to be about 550 um? /s (see Figure 9.12). Our result is
higher than those reported in literature. However, as a result of this high diffusion
coefficient, CNG channels near the tip of the OS can be closed by diffuse flashes of
light, despite the very low level of phosphodiesterase proteins in the discs in that
region.
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