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Introduction

The present thesis is divided into three parts. In the first part, we analyze a
suitable regularization — which we call nonlinear multidomain model — of the
motion of a hypersurface under smooth anisotropic mean curvature flow. The
second part of the thesis deals with crystalline mean curvature of facets of a
solid set of R3. Finally, in the third part we study a phase-transition model for
Plateau’s type problems based on the theory of coverings and of BV functions.

Besides the apparent differences between the various parts of the thesis, let us
underline what are the connections. An immediate common feature is given by
the fact that the first and the second part are both concerned with an anisotropic
variational model. In this respect, let us notice that also the last part of the thesis
could be generalized to an anisotropic setting, by properly modifying the total
variation functional in terms of a convex norm: anyway, in the present thesis we
shall be confined to the isotropic case. Moreover, one could recall that solutions
of the Plateau’s problem are minimal surfaces (i.e., surfaces with zero mean
curvature), and minimal surfaces come out as the asymptotic extinction profiles
of mean curvature flow [108]. However, what we believe it is the most interesting
trait d’union between the above mentioned problems is the fact that, in some
sense, they are “close” to a phase-transition model: this was already known for
anisotropic mean curvature flow (see for instance [31, 41]), while for Plateau’s
problem it has been observed first in [55].

Let us now turn to the description in deeper details of the three problems
that form the core of the thesis.

Anisotropic mean curvature flow and nonlinear multidomain model.
Mean curvature flow, namely the motion of a hypersurface having normal velocity
equal to its mean curvature, is the gradient flow of the perimeter functional
[54, 107, 93, 116, 26]. A natural extension of this evolutive problem, which
is of geometric interest and also useful for its applications to material science
and crystals growth [60, 150, 44, 41], is the so-called anisotropic mean curvature
flow. In this case, the ambient space Rn is endowed with a Finsler metric φ,
inducing an integral functional Pφ (the φ-anisotropic perimeter), whose integrand
is expressed in terms of φo (the dual of φ). Assume φ2 smooth and uniformly
convex, and let Tφo be the gradient of 1

2(φo)2. Anisotropic mean curvature flow is
nothing but the gradient flow of Pφ: as a consequence, the hypersurface evolves
with velocity equal to its anisotropic mean curvature along the so-called Cahn-
Hoffman direction Tφo(νφo), where we set νφo := ν

φo(ν) , and we let ν denote the
outer normal to the evolving hypersurface.

Smooth anisotropic mean curvature flow has been the subject of several pa-
pers in the last years [96, 83, 84, 44, 41, 31, 134, 43]. For a well-posed formulation
of the problem, we refer the interested reader for instance to [41, Proposition 6.1].

i



ii Introduction

To the aim of the present thesis, it is important to recall the following remarkable
result, appeared in [31]: as well as for the isotropic case, the anisotropic perimeter
can be approximated in the sense of Γ-convergence [75] by a sequence of elliptic
functionals, whose gradient flows converge to anisotropic mean curvature flow.
This result is achieved by combining two main ingredients: the first one is the ex-
plicit construction of a sequence of sub and supersolutions to the approximating
flows, while the second ingredient is the maximum principle. The construction
of the sub/supersolutions is in turn suggested by an asymptotic expansion argu-
ment, and involves the anisotropic signed distance function dφ from the evolving
hypersurface.

A subsequent natural step in the theory could be given by the study of non-
convex mean curvature flow. This corresponds to the case when the unit ball
of φo is not anymore convex, but it is just a smooth star-shaped set containing
the origin in its interior. Here, the situation becomes immediately much more
complicated, since φo cannot be seen as a dual norm, and so it is not possible
to speak about the distance dφ. Moreover, the nonconvexity of φo leads to the
gradient flow of a nonconvex (and nonconcave) functional, which corresponds in
general to an ill-posed parabolic problem. Incidentally, let us also mention that,
as shown by numerical experiments [87], the motion of a hypersurface having
normals in the region where φo is locally convex should not coincide with the
anisotropic mean curvature flow corresponding to the convexified of φo.

A rather natural strategy to study an ill-posed problem is to regularize it,
adding for instance some higher order term, and then passing to the limit as the
regularizing parameter goes to zero, see for instance [32] and references therein.
In this thesis, instead, we shall deal with a completely different regularization,
which is inspired by the so-called bidomain model.

The bidomain model, a simplified version of the FitzHugh-Nagumo system,
was originally introduced in electrocardiology as an attempt to describe the
electric potentials and current flows inside and outside the cardiac cells, see
[74, 122, 11, 73] and references therein. In spite of the discrete cellular struc-
ture, at a macroscopic level the intra (i) and the extra (e) cellular regions can
be thought of as two superimposed and interpenetrating continua, thus coincid-
ing with the domain Ω (the physical region occupied by the heart). Denoting
the intra and extra cellular electric potentials respectively by ui = ui,ε, ue =
ue,ε : [0, T ] × Ω → R, the bidomain model can be formulated using the following
weakly parabolic system, of variational nature:(1)

ε∂t(ui − ue)− εdiv (Mi(x)∇ui) +
1

ε
f
(
ui − ue

)
= 0,

ε∂t(ui − ue) + εdiv (Me(x)∇ue) +
1

ε
f
(
ui − ue

)
= 0.

(0.1)

System (0.1) is composed of two singularly perturbed linearly anisotropic reaction-
diffusion equations, coupled with suitable initial and boundary conditions. Here
ε ∈ (0, 1) is a small positive parameter, f is the derivative of a double-well poten-
tial with minima at s±, and Mi(x),Me(x) are two symmetric uniformly positive
definite matrices.

A crucial role in the description of the electrochemical changes governing the

(1)See the functional in (1.28) below.
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heart beating is played by the transmembrane potential

u = uε := ui − ue,

which typically exhibits a thin transition region (of order ε) which separates the
advancing depolarized region where uε ≈ s+ from the one where uε ≈ s−, see
[31, 43] and references therein. Remarkably, a non-negligible nonlinear anisotropy
occurs in the limit ε → 0+, because of the fibered structure of the myocardium.
To explain the appearence of the anisotropy, let us introduce the Riemannian
norms φi, φe, defined as

(φi(x, ξ
∗))2 = αi(x, ξ

∗) := Mi(x)ξ∗·ξ∗, (φe(x, ξ
∗))2 = αe(x, ξ

∗) := Me(x)ξ∗·ξ∗,

where ξ∗ denotes a generic covector of the dual (Rn)∗ of Rn, n ≥ 2, and · is the
Euclidean scalar product. The squared norms αi and αe depend on the spatial
variable x, since the fibers orientation changes from point to point, and their
hessians 1

2∇
2
ξ∗αi,

1
2∇

2
ξ∗αe (with respect to ξ∗) give Mi and Me respectively. Then

the anisotropy arises, for instance, recalling the following formal result [31]. Let
Φ be defined as

Φ :=

(
1

αi
+

1

αe

)− 1
2

, (0.2)

and assume that Φ2 is smooth and uniformly convex. Then, as ε → 0+, the
zero-level set of uε approximates a geometric motion of a front, evolving by Φo-
anisotropic mean curvature flow, where, again, Φo denotes the dual of Φ. This
convergence result is substantiated by a Γ-convergence result (at the level of the
corresponding actions) toward a geometric functional, whose integrand is strictly
related to (0.2), see [11] and Theorem 1.20 below. Note that Φ is not Riemannian
anymore (in the language of this thesis, it is a nonlinear anisotropy), and it may
also fail to be convex (this latter property can be seen through an explicit example
described in [43], see also Example 1.18 and Appendix A).

The lack of an underlying scalar product for Φ suggests that it is natural to
depart from the Riemannian structure of (0.1) and to consider, more generally,
the nonlinear bidomain model. This latter is described by

ε∂t(ui − ue)− εdiv
(
Tφi

(
x, ∇ui

))
+

1

ε
f
(
ui − ue

)
= 0,

ε∂t(ui − ue) + εdiv
(
Tφe

(
x, ∇ue

))
+

1

ε
f
(
ui − ue

)
= 0,

(0.3)

where now φi and φe are two smooth symmetric uniformly convex Finsler metrics,
and setting as before αi = φ2

i , αe = φ2
e , the maps

Tφi
:=

1

2
∇ξ∗αi, Tφe :=

1

2
∇ξ∗αe

are the so-called duality maps, mapping (Rn)∗ into Rn (convexity of φi and φe is
required, in order to ensure well-posedness of (0.3)). Then, a result similar to the
previous formal convergence to Φo-anisotropic mean curvature flow holds also in
this nonlinear setting, still assuming Φ2 to be uniformly convex, see [43].

Generalizing system (0.3) to an arbitrary number m of Finsler symmetric
metrics φ1, . . . , φm, leads to rewrite the problem, that we have called the non-
linear multidomain model, in a slightly different and more natural way: we seek
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functions wr = wrε satisfying the weakly parabolic system
ε∂tu− εdiv

(
Tφr
(
x, ∇wr

))
+

1

ε
f
(
u
)

= 0, r = 1, . . . , m,

u =
m∑
r=1

wr,
(0.4)

where

Tφr :=
1

2
∇ξ∗αr and αr := φ2

r , r = 1, . . . ,m.

In this respect, our main focus will be to provide an asymptotic analysis of the
zero level set of u = uε in (0.4): indeed, one of the main results of the thesis will
be to show that {uε(t, ·) = 0} converges to the Φo-anisotropic mean curvature
flow (see (2.97) below), where Φ2, supposed to be uniformly convex, reads as

Φ2 :=

(
m∑
r=1

1

αr

)−1

, (0.5)

as it happens for the linear and nonlinear bidomain models. Our proof, appeared
first in [7], remains at a formal level, and is based on a new asymptotic expansion
for (0.4), rewritten equivalently as a system of one parabolic equation and (m−1)
elliptic equations (this shows, among other things, the nonlocality of solutions of
(0.4)). The asymptotic expansion we shall perform is simpler, and at the same
time carried on at a higher order of accuracy, with respect to the one exhibited
in [43] for the case m = 2.

We stress that confirming rigorously the convergence result for the level sets
{uε(t, ·) = 0} is still an open problem, even in the simplest case of (0.1) (see
Theorem 1.22 for a precise statement). Here we have to observe that, since we
are dealing with systems, we cannot make use of the maximum principle, as
it was for the scalar anisotropic Allen-Cahn equation. This, however, could be
hopely less hard to prove than a convergence result of the Allen-Cahn’s (2 ×
2)-system, to curvature flow of networks (see [59] for a formal result in this
direction): indeed, this was among the starting motivations for studying nonlinear
multidomain model.

Another open problem, connected with the nonconvex anisotropic mean cur-
vature flow, is given by the analysis of the limit behaviour (if any) as ε → 0+

of solutions to (0.3) when Φ is nonconvex. The question arises as to whether
nonlinear multidomain model could be used in order to provide a notion of solu-
tion for nonconvex anisotropic mean curvature flow, at least within the class of
anisotropies of the form (0.5). The answer to this question seems, at the moment,
out of reach, even at a formal level.

Crystalline mean curvature on facets and connections with capillar-
ity. A sort of limiting case for anisotropic mean curvature flow is when the unit
ball Bφ of φ (sometimes called the Wulff shape) is convex and nonsmooth. Recall
that, when φ2 is smooth and uniformly convex, the natural direction for the ge-
ometric motion is given by the Cahn-Hoffman vector field Tφo(νφo). However, in
the nonsmooth setting, the map Tφo is defined as the subdifferential of the convex
function 1

2(φo)2, and therefore it is allowed to be multivalued. This implies that
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there can be infinitely many vector fields X defined on the evolving hypersurface
∂E, and satisfying the constraint

X ∈ Tφo(νφo). (0.6)

As a consequence, there are several open problems concerning the motion. Apart
from the planar case,(2) at our best knowledge a “good” definition of flow is still
missing, as well as a well-posedness result for short times. It is not even clear how
to choose the natural class of sets for studying the motion. Several definitions of
“regular sets” (and, hence, of anisotropic mean curvature) have been proposed,
like the neighbourhood regularity in [36, 34, 62].(3)

In the present thesis, we shall follow the approach of [38, 39], which, in some
sense, naturally fits in the aim of studying anisotropic mean curvature as a local-
ized problem on the facets of a crystal. In particular, we shall require the existence
of a Lipschitz vector field X, defined just on the boundary of the solid set, and
satisfying (0.6). In this framework, anisotropic mean curvature is obtained by
minimizing the L2-norm of the divergence among all vector fields defined on the
hypersurface, and satisfying (0.6). Remarkably, anisotropic mean curvature still
turns out to correspond to the direction of maximal slope of Pφ. However, since
there exist several vector fields whose divergence equals the anisotropic mean
curvature, it is not clear which is (if any) the natural direction for studying the
motion. It is not even clear, in general, if anisotropic mean curvature is attained
by a Lipschitz vector field.

In this respect, a first mathematically interesting and challenging case is when
n = 3, and Bφ is a (convex) polyhedron. In this setting, the focus is given
by the study of anisotropic mean curvature on facets F ⊂ ∂E of a solid set
E ⊂ R3, which are parallel to a facet of the Wulff shape: indeed, under reasonable
assumptions on the behaviour of E locally around F (see (3.9)), the anisotropic
mean curvature κEφ at F can be obtained as a by-product of a minimization
problem on divergences of vector fields defined just on the facet (hence, solving
a variational problem in one dimension less). We shall call optimal selection in
F any vector field solving the above mentioned minimization problem. Notice,
again, that we cannot guarantee in general the existence of a Lipschitz optimal
selection in the facet.

As a first nontrivial step in this analysis, there is the characterization of
facets having constant anisotropic mean curvature, also called φ-calibrable [36].
The notion of calibrability can be given for any convex anisotropy [36, 37], and in
any dimension k ≥ 1 [6, 62] (we shall focus on the case k = n− 1 = 2). Actually,
the case k = 1 is trivial, since all edges contained in the boundary of a planar
domain have constant anisotropic mean curvature (see for instance [151], and
references therein). Noncalibrable facets allow to construct explicit examples of
facet breaking-bending phenomena, see again [36, 37]: indeed, it seems reasonable
that, at least at time t = 0, the facet breaks in correspondance of the jump set
of its curvature and bends if the curvature is continuous and not constant. On
the contrary, a calibrable facet is expected to translate parallely to itself with
constant velocity, at least for short times.

(2) This will not be the subject of the present thesis. We refer the interested reader for instance
to [151], or to the more recent paper [67], and references therein.

(3)This notion has been used in [27] to give a uniqueness result, in general dimension and for
convex sets, again combining an approximating argument with the maximum principle.
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In our case (k = 2), let ΠF
∼= R2 be the affine plane spanned by F , and let

B̃F
φ ⊂ ΠF be the facet of Bφ which is parallel to F . For simplicity, let us state the

problem assuming that E lies, locally around F , in the half-space delimited by
ΠF and opposite to the outer normal to ∂E at F (in the language of the present
thesis, E is said to be convex at F ). We say that F is φ-calibrable if there exists
a vector field X ∈ L∞(F ;R2) satisfying

X(x) ∈ B̃F
φ for a.e. x ∈ F,

divX = h a.e. in F,

〈ν̃F , X〉 = 1 H1-a.e. on ∂F,

(0.7)

where ν̃F ∈ ΠF is the unit normal vector field to ∂F pointing outside of F ,
〈ν̃F , X〉 plays the role of a normal trace, and the constant h > 0 is determined
by an integration by parts (Section 3.4). It is possible to prove [37] that a facet
is φ-calibrable if and only if its “mean velocity” is less than or equal to the mean
velocity of any subset of the facet (Theorem 3.30).(4) We say that F is strictly
φ-calibrable if it is φ-calibrable and there is no B ⊂ F , B 6= ∅, having mean
velocity equal to that of F .

Remarkably, the (necessary and sufficient) condition for calibrability provided
by [37] turns out to be very similar to the one, given by Giusti in its fundamental
paper [101], about the existence of solutions to the capillary problem in the ab-
sence of gravity on a bounded connected open set Ω ⊂ Rn. For a brief discussion
on the action principle for a capillary, we refer the interested reader for instance
to [117, 88], or also to Appendix B. Here, we want just to mention that Giusti’s
result (which we recall in Theorem 3.41) provides a function u ∈ C2(Ω) such that
the subunitary vector field ∇u√

1+|∇u|2
has constant divergence on Ω, and

∇u√
1 + |∇u|2

→ νΩ uniformly on ∂Ω,

if and only if Ω is the unique solution of a prescribed mean curvature problem
among its subsets.

In the present thesis, we shall apply Giusti’s result as follows. Let φc be the
norm of R3 induced by the (portion of) Euclidean cylinder

Bφc :=

{
(ξ1, ξ2, ξ3) ∈ R3 : max

(√
ξ2

1 + ξ2
2 , |ξ3|

)
≤ 1

}
.

Then, a strictly φc-calibrable facet F such that E is convex at F is nothing
but a set Ω where the problem addressed in Theorem 3.41 has a solution. As a
consequence (Proposition 3.43), in such a facet there exists an optimal selection
which is induced by a solution u of the capillary problem in the relative interior
of F with zero contact angle; moreover, this optimal selection is (disregarding
the sign) the horizontal component of the outer unit normal vector to the graph
of u.

The link between capillarity and calibrability turns out to be useful also in the
case of noncalibrable facets, which corresponds to let the right hand side of the

(4)See also [62] for an extension to convex facets in dimension k ≥ 2.
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second equation in (0.7) nonconstant. In particular, by analyzing the sublevel sets
of the anisotropic mean curvature, we will show that it is sometimes possible to
extend the selection out of the maximal subset of F where the capillary problem
is solvable. This extension, in general, may not be induced by a scalar function;
nevertheless, it still provides information on the regularity of the anisotropic mean
curvature at F , and it could help for a better understanding of the geometric
motion.

Constrained BV functions on coverings. In its earliest and simplest for-
mulation, the Plateau’s problem consists in finding a surface Σ in the ambient
space R3, spanning a fixed reference smooth loop S, and minimizing the area. As
it is well-known, several models have been proposed to solve the mathematical
questions related to this problem (and to its generalizations in Rn, for n ≥ 2),
depending on the definition of surface, boundary, and area: parametric and non-
parametric solutions, homology classes, integer rectifiable currents, varifolds, just
to name a few. General references are for instance [2, 131, 143, 129, 81]; we refer
the reader to [76] for a brief overview on the Plateau’s problem. In connection
with what we are going to discuss, we also mention the recent paper [77], where
the authors, extending in a different setting some results of [103], look for a solu-
tion of Plateau’s problem, minimizing the (n−1)-dimensional Hausdorff measure
in the class of relatively closed subsets of Rn \S, with nonempty intersection with
every loop having unoriented linking number with S equal to 1.

In the present thesis, we link the coverings with the theory of (possibly vector-
valued) functions of bounded variation and Γ-convergence, in order to solve the
problem of minimal networks in the plane, and to find an embedded solution to
Plateau’s problem, without fixing a priori the topology of solutions. This idea
shares several similarities with the “soap films” covering space model, set up in
[55] by Brakke as a new original approach to Plateau’s problem in codimension
one.

Our model mathematically reproduces the physical structure of an interface
separating two (or more) phases. In this respect, for instance in case of two
phases, it is useful to merge Plateau’s problem in an n-dimensional (n = 3 being
the physical case) manifold, which is a covering space of the open set

M := Ω \ S,

where Ω ⊂ Rn is usually a bounded connected Lipschitz open set containing the
(n− 2)-dimensional compact embedded Lipschitz manifold S without boundary.
In the model of [55], how to choose the covering is part of the model construction,
and it can lead to different solutions. Then one has to select some connected
components of a pair covering space of M in order to pair the sheets and to
set up the minimization problem in terms of a suitable notion of current mass.
Again, the choice of the pair covering space is part of the model construction.

Here, we approach the problem without making use of pair covering spaces,
which can be considered as a first simplification of the model. Typical situations
that we shall consider are:

- n = 2, S ⊂ R2 a set of m-distinct points, and an m-sheeted covering space
of M ; the case m = 3 is already interesting, and related to the Steiner
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graphs (when m ≥ 3, taking a two-sheeted covering space does not lead to
any interesting conclusion);(5)

- n = 3, S ⊂ R3 a link, and a two-sheeted covering space;(6) this leads to the
Plateau’s problem.

Our explicit construction of the covering, denoted by (YΣ, πΣ,M ), requires a suit-
able pair of cuts Σ = (Σ,Σ′), where Σ and Σ′ are (n − 1)-dimensional compact
Lipschitz manifolds (not necessarily connected), having S as topological bound-
ary (Definitions 4.2 and 4.3). The construction is made by “cut and paste”, with
the use of local parametrizations, these latter suggesting the natural way to en-
dow YΣ with the Euclidean metric. The metric aspects here play an important
role: as it will be clear from the discussion, we cannot confine ourselves to a
purely topological construction of the covering (see Remark 4.4).

Let m ≥ 2 be the number of sheets of YΣ, and let V ⊂ Rm−1 be the set of
vertices of a regular simplex. Our idea is to minimize the total variation |Du|(YΣ)
among all BV functions u : YΣ → V , satisfying the following constraint on the
fibers: for j = 1, . . . ,m, denote by vj(u) the restriction of u to the j-th sheet of
the covering (Definition 4.8); then we require that

vj(u) = τ j−1 ◦ v1(u), j = 1, . . . ,m, (0.8)

for a transposition τ of V of order m and independent of j. Roughly speaking,
condition (0.8) means that u “behaves” the same way on each covering sheet,
the only difference consisting in a fixed transposition of the elements of V having
order m. For instance, if y ∈ YΣ is a jump point of u, then u has to jump at all
points of the same fiber of y.(7)

When m = 2 and V = {±1}, condition (0.8) is equivalent to require∑
πΣ,M (y)=x

u(y) = 0, for a.e. x ∈M,

so that u takes opposite values on (the two) points of the same fiber. To have
an idea of the geometric meaning of the total variation we are considering, it is
useful to look at the elementary Example 4.10, which refers to the case m = 3.
The usefulness of constraint (0.8) stands in studying the minimization problem
handling with standard BV functions defined on open subsets of Rn. We also
remark that the constraint (0.8) forces the boundary datum S to be attained
(Corollary 4.26); this represents a difference with the approach of [55], where it
may happen that the boundary S is not fully covered by a solution.(8) Perhaps,
the most remarkable among its consequences is that all issues about the definition
of “boundary” on S are avoided. Finally, the constraint (0.8) plays a crucial
role also in forcing the minimum value to be strictly positive (see Lemma 4.25).
It seemed to us not immediate to derive the constraint on the fibers from the
approach of [55].

What we call a constrained covering solution with boundary S is (Definition
4.27) the projection via πΣ,M of the jump set of a minimizer. Existence of

(5)See Figures 4.1, 4.3 and 4.6.
(6)See Figure 4.2.
(7)See Figure 4.4 for an example where m = 3 and condition (0.8) is violated.
(8)See also Figure 4.5 for an explicit example (in dimension n = 2) where the two methods

lead to different solutions.
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minimizers is proved in Theorem 4.24. Although our construction requires a
suitable pair Σ of cuts, constrained covering solutions are actually independent
of Σ;(9) in some sense, this is due to the fact that, working on the covering space,
all information about the exact location of the cuts becomes irrelevant, since
changing the cuts corresponds just to an isometry on the covering space.

We expect that our model could be generalized in a nontrivial way in various
directions; in particular, to more general choices of S (for instance, taking as S the
set of all 1-dimensional edges of a polyhedron). In this spirit, we briefly discuss
in Section 4.4.3 the case when S is the one-skeleton of a tetrahedron (n = 3 and
m = 4), and, by adapting an argument in [23], we give a regularity result(10)

(Proposition 4.42) in the sense of Almgren’s (M, 0, r)-minimal sets [2, 148].

Plan of the thesis. In Chapter 1 we fix the basic notation, and collect
some preliminary facts on φ-anisotropic mean curvature, in the (regular) case
φ2 is smooth and uniformly convex. In Section 1.3 we define the star-shaped
combination of m anisotropies (m ≥ 2), which will play a crucial role in the
analysis of bidomain and nonlinear multidomain models. We end this chapter
recalling some relevant results related to bidomain model (Section 1.4).

Chapter 2 is devoted to nonlinear multidomain model. A well-posedness
result is given in Section 2.2, by adapting the original proof in [73] for bidomain
model. The remaining of this chapter contains the asymptotic analysis of non-
linear multidomain model, developed up to the second order included, and the
already mentioned, formal convergence result to anisotropic mean curvature flow.

In Chapter 3 we study the problem of finding an explicit optimal selection
in facets of a solid set in R3 with respect to a crystalline norm. In Section 3.1 we
briefly collect some results on the anisotropic and Euclidean Cheeger problem,
which will be useful in the remaining of the chapter. Then we consider the
problem of φ-calibrable facets. Let φ̃ be the bidimensional metric induced by
B̃F
φ , let P

φ̃
(F ) be the φ̃-perimeter of F , and denote by κF

φ̃
the φ̃-mean curvature

of ∂F . Then, we show in Theorem 3.36 that

κF
φ̃
≤
P
φ̃
(F )

|F |
(0.9)

is a necessary condition for calibrability when F is φ̃-convex (namely, “convex”
in the relative geometry induced by φ̃). This result was already known for convex
facets [37], and in that context the two conditions are actually equivalent. Ex-
ample 3.35 shows that condition (0.9) is not sufficient anymore for φ-calibrability
when F is just φ̃-convex. In Section 3.4.1, we prove some facts on the calibra-
bility of “annular” facets. Theorems 3.37-3.39 could be considered as a first step
towards an extension to the crystalline setting of the study of “oscillating towers”
given in [30]. In Section 3.4.2 we generalize to the anisotropic context the case
of strips investigated in [113] in the Euclidean setting. The main results of the
chapter are contained in Section 3.5, where we link the issue of calibrability with
the capillary problem in order to provide some relevant examples of continuous
optimal selections in noncalibrable facets.

In Chapter 4 we set up the explicit “cut and paste” covering construction,
and we define the family of constrained BV functions. Then, for any admissible

(9)See [55, Proposition 12.1] for a similar result.
(10)See also [55, Theorem 10.2] for a similar result.
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pair of cuts Σ, the minimization problem is set up in Section 4.2. Regularity of
constrained covering solutions is based on the well-established regularity theory
for isoperimetric sets and minimizing clusters. Then, in Section 4.3, we lift the
constraint on the fibers to the class of Sobolev functions on YΣ, showing (Propo-
sition 4.31) that our formulation naturally leads to a Γ-convergence result. In
Section 4.4.1 we exploit the case n = 2, namely when S consists of m ≥ 2 dis-
tinct points, and we show that a constrained covering solution coincides with
the Steiner graph over S. In Section 4.4.2 we test the model in the case of the
standard Plateau’s problem in R3: in Theorem 4.36 we show that, at least when
2 < n < 8, our model is equivalent to solving Plateau’s problem using the theory
of integral currents modulo 2 [86].

Finally, in Appendix A we give an interesting example of nonconvex com-
bined anisotropy, generalizing in some sense that one provided in [43]. Appendix
B contains a brief discussion on the action principle for a capillary in the absence
of gravity, while in Appendix C we perform a standard abstract covering con-
struction which is used in Chapter 4.

Bibliographic note. The results of Chapter 2 have been obtained in collabo-
ration with G. Bellettini and M. Paolini, and are published in [7]. The content of
Chapter 3 corresponds to a joint work with G. Bellettini and L. Tealdi, appearing
in [9]. Finally, Chapter 4 describes the results of [8], obtained in collaboration
with G. Bellettini and M. Paolini.



Chapter 1

Preliminaries

Summary. We recall the definition of star-shaped anisotropies, duality maps, anisotropic

perimeter (Section 1.1) and anisotropic mean curvature in the regular case (Section 1.2).

In Section 1.3, we introduce the operation of star-shaped combination of anisotropies, and

we give some examples of star-shaped combination where convexity is not preserved. In

Section 1.3.1, we provide a formula for the hessian of the combined anisotropy, which will

be useful in Chapter 2. Section 1.4 contains some relevant results on bidomain model, and

represents the starting motivation for the formulation of nonlinear multidomain model

given in the subsequent chapter.

Basic notation. For n ∈ N, n ≥ 1, we denote by Hn−1 the Euclidean (n−1)-
dimensional Hausdorff measure in Rn. We let | · | be the Euclidean norm on Rn.
For any x, x′ ∈ Rn, we denote by x · x′ the scalar product between x and x′.
We also let Sn−1 := {x ∈ Rn : |x| = 1}. The volume of the unit ball of Rn is
denoted by ωn. For any E ⊆ Rn, we denote by E (resp. by int(E)) the closure
of E in Rn (resp. its interior part). When E is a finite perimeter set, we denote
by ∂∗E its reduced boundary, and by νE the generalized outer normal to ∂∗E.
Sometimes, whenever no confusion is possible, we shall denote by |E| the volume
of E, namely the Euclidean n-dimensional Lebesgue measure Ln of E.

Let X be a (possibly infinite dimensional) Banach space, with dual X∗ and
let g : X → R ∪ {+∞} be convex. Let 〈·, ·〉 denote the duality between X∗ and
X, and let 2X

∗
be the powerset of X∗. Then, for any x ∈ X, we denote by

∂g(x) ∈ 2X
∗

the subdifferential of g at x, namely the subset of X∗ defined as

∂g(x) := {l ∈ X∗ : g(x) + 〈l, y − x〉 ≤ g(y) for every y ∈ X}.

1.1 Convex anisotropies

Let n ∈ N, n ≥ 1. Let V denote either Rn or its dual (Rn)∗, endowed with the
Euclidean norm | · |. Clearly, one has the trivial identifications V ∼= Rn ∼= (Rn)∗;
nevertheless, in order to distinguish between anisotropies defined on vectors or
on covectors, sometimes we shall find more convenient to keep this notation (see
Remarks 1.2 and 1.6).

Definition 1.1 (Star-shaped anisotropies). A star-shaped anisotropy (or
anisotropy for short) on V is a continuous function φ : V → [0,+∞), positive
out of the origin, and positively one-homogeneous. We say that φ is symmetric
if φ(−ξ) = φ(ξ) for any ξ ∈ V.

1
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We say that φ is linear if it is the square root of a quadratic form on V.

By Definition 1.1, given any star-shaped anisotropy φ there exist C ≥ c > 0
such that

c|ξ| ≤ φ(ξ) ≤ C|ξ|, ξ ∈ V. (1.1)

We denote by Bφ ⊂ V the unit ball of a given anisotropy φ on V, namely

Bφ := {ξ ∈ V : φ(ξ) ≤ 1}.

Remark 1.2. The previous definitions of φ and Bφ can be generalized, by al-
lowing a continuous dependence on the space variable x in some n-dimensional
manifold M. This way, φ = φ(x, ξ) is defined for (x, ξ) ∈ TM (the tangent bun-
dle of M) More precisely, a continuous function φ : TM → [0,+∞) is called an
inhomogeneous star-shaped anisotropy on M, provided φ(x, ·) is positively one-
homogeneous for any x ∈ M, and there exist two constants C ≥ c > 0 such that
c|ξ| ≤ φ(x, ξ) ≤ C|ξ| for any (x, ξ) ∈ TM. Notice that, for any x ∈ M, φ(x, ·)
is defined on V := TxM (the tangent space of M at x). In the present thesis,
however, we will be interested in space-independent anisotropies defined on open
subsets of Rn.

In this thesis we shall be mainly concerned with the following classes of star-
shaped anisotropies.

Definition 1.3 (Convex anisotropies). We denote by

M(V)

the collection of all symmetric convex anisotropies on V.

Definition 1.4 (Regular anisotropies). We denote by

Mreg(V) ⊂M(V)

the collection of all symmetric anisotropies φ on V, such that φ2 is of class C2

and uniformly convex.

Notice that Mreg(V) contains all linear anisotropies.

Remark 1.5. Symbols M(V), Mreg(V) are meant to remind the word “met-
ric”. Indeed, we recall that an inhomogeneous star-shaped anisotropy φ : TM→
[0,+∞) such that φ(x, ·) is convex, for every x ∈ M, is usually called a Finsler
metric on M (see for instance [22]). In our case, anyway, a map φ ∈ M(V) will
be nothing but a norm in V.

Given an anisotropy φ on V, we denote by φo : V∗ → [0,+∞) the dual of φ
[136], defined as

φo(ξ∗) := sup{〈ξ∗, ξ〉 : ξ ∈ Bφ}, ξ∗ ∈ V∗.

It turns out [136] that φo is an anisotropy on V∗; moreover:

- φo is convex;

- if φ ∈Mreg(V), then φo ∈Mreg(V∗);
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- if φ is symmetric, then, for any ν ∈ Sn−1, φo(ν) is the minimal distance from
the origin of all affine hyperplanes which are orthogonal to ν and tangent
to Bφ;

- φoo coincides with the convexified of φ; in particular, φoo = φ if and only if
φ is convex.

Figure 1.1 below shows some examples of convex anisotropies and dual norms
which will be relevant in the present thesis. See also Figure 1.2 for an example
of nonconvex anisotropy related to what we shall discuss in Section 1.3.

Remark 1.6. Let M be a n-dimensional manifold, and let φ be an inhomogeneous
star-shaped anisotropy (recall Remark 1.2). Then, the dual (inhomogeneous)
anisotropy φo is defined as φo(x, ·) = (φ(x, ·))o, for every x ∈ M; in particular, φo

is defined on the cotangent bundle of M.

Definition 1.7 (Duality maps). Let φ be a star-shaped anisotropy on V. We
define the (maximal monotone possibly multivalued) one-homogeneous map Tφo :
V∗ → 2V as

Tφo(ξ
∗) :=

1

2
∂((φo)2)(ξ∗), ξ∗ ∈ V∗.

Similarly, assuming also φ ∈M(V), we define the map Tφ : V→ 2V∗ as

Tφ(ξ) :=
1

2
∂(φ2)(ξ), ξ ∈ V.

When φ ∈Mreg(V), both Tφ and Tφo are single-valued maps. Then one has [41]

Tφo ◦ Tφ = idV, Tφ ◦ Tφo = idV∗ .

Moreover, the Euler’s formula for homogeneous functions implies

〈Tφ(ξ), ξ〉 = φ2(ξ), ξ ∈ V, (1.2)

and similarly for Tφo .

Definition 1.8 (Anisotropic perimeter). Let φ be an anisotropy of V. The
φ-anisotropic perimeter of a finite perimeter set E ⊂ Rn in the open set Ω ⊆ Rn
is defined as

Pφ(E,Ω) := ωφn

∫
Ω∩∂∗E

φo(νE) dHn−1,

where ωφn := ωn
|Bφ| .

The constant ωφn plays a role in the definition of the φ-anisotropic volume
| · |φ, see for instance [44, 41]. We recall that | · |φ = ωφn| · |, so that |Bφ|φ = ωn for
any φ anisotropy of V. It turns out that Bφ satisfies the following isoperimetric
property: for every set E ⊂ Rn of finite perimeter and finite Lebesgue measure,
we have

Pφ(E) ≥
(
|E|
|Bφ|

)n−1
n

Pφ(Bφ), (1.3)

with equality if and only if E coincides (up to a translation) with Bφ. See
[146, 147, 149, 90, 91, 85] for a quantitative version of (1.3).
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(a)

Bφ Bφo

Tφo

Tφ

(b)

Figure 1.1: In (a), an example of unit balls of regular anisotropies φ (red line) and
φo (blue line). In (b), an example of unit balls of convex nonregular anisotropies φ (on
the left) and φo (on the right). Colours are used in order to represent the action of the
duality maps Tφ and Tφo . In particular, any edge (resp. any vertex) of Bφ is mapped by
Tφ onto a vertex (resp. an edge) of Bφo , and similarly for Tφo .

1.2 Anisotropic mean curvature in the regular case

Throughout this section, we let V := Rn, n ≥ 1, and we let φ ∈ Mreg(Rn). Let
E ⊆ Rn be a compact set of class C2, and set

νφo :=
νE

φo(νE)
.

In order to define the φ-anisotropic mean curvature of ∂E (Definition 1.9), we
shall make use of the φ-anisotropic signed distance function from the boundary
of E. This is, in some sense, a convenient approach when one looks at the evolv-
ing hypersurface as a set of points rather than as the embedding of a reference
manifold; moreover, this setting fits in a natural way in the perspective of study
anisotropic mean curvature flow as the evolution of a hypersurface separating two
phases.(1)

For y, z ∈ Rn, we set distφ(y, z) := φ(z − y), distφ(z, E) := infy∈E distφ(y, z),
and we define the φ-anisotropic signed distance function dEφ from ∂E (positive
inside E) as

dEφ (z) := distφ(z,Rn \ E)− distφ(z, E). (1.4)

(1) For a parametric description of the flow in the isotropic case, we refer the reader for instance
to [116].
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Figure 1.2: Let Φ be the anisotropy whose unit ball BΦ is bounded by the red line
in the picture (compare also Figure 1.3 below). Notice that the set TΦ(BΦ) (blue line)
has self-intersections and cusps. The dual of BΦ is obtained by removing from TΦ(BΦ)
the four swallow-tails, and, of course, it coincides with the dual of the convexified of BΦ

(green line).

It turns out that there exists a neighbourhood U of ∂E such that dEφ is Lipschitz

in U , and moreover dEφ satisfies the following eikonal equation [44]

φo(∇dEφ ) = 1 in U. (1.5)

Equation (1.5) shows that ∇dEφ is a φo-unitary covector field on ∂E, or, equiva-
lently,

∇dEφ = −νφo .

Following [41], we dually define the Cahn-Hoffman vector field nφ on ∂E as

nφ := Tφo(νφo), on ∂E, (1.6)

and, by means of (1.5), we extend the Cahn-Hoffman vector field nφ on the whole
of U as

Nφ := −Tφo(∇dEφ ) in U.

Definition 1.9 (Anisotropic mean curvature). We define the φ-anisotropic
mean curvature κEφ of ∂E as

κEφ := divNφ = −div(Tφo(∇dEφ )) on ∂E.

Anisotropic mean curvature appears in the first variation of the anisotropic
perimeter functional. We recall from [41] the following result.(2)

(2) See [42, 33, 25] for an extension of (1.10) to the case of nonconvex smooth anisotropies.
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Theorem 1.10 (First variation of Pφ). Let ψ ∈ C1
0(U ;Rn), and, for δ > 0

sufficiently small, let Ψδ ∈ C1
0(U ;Rn) be defined as Ψδ(z) := z + δψ(z) + o(δ).

Then
d

dδ
Pφ(Ψδ(E))∣∣

δ=0

=

∫
∂E
ωφnκ

E
φ (ψ · νE) dHn−1.

Moreover, a scalar multiple of κEφ νφo is the minimizer of

inf
{∫

∂E
κEφ (g · νE) dHn−1 : g ∈ L2(∂E;Rn), ||g||L2(∂E) ≤ 1

}
.

Now, it is well known that the (Euclidean) perimeter functional can be approx-
imated, in the sense of Γ-convergence [75], by a sequence of singularly perturbed
elliptic functionals whose gradient flows converge in a suitable sense to (Eu-
clidean) mean curvature flow. This result has been extended to the anisotropic
context in [31], and can be stated as follows. Let Ω ⊂ Rn a bounded open set, let
W : R → [0,+∞) the double-well potential W (s) := (1 − s2)2, and set f := W ′.
For ε ∈ (0, 1), let uε be a solution of the anisotropic Allen-Cahn equation (of
reaction-diffusion type)

∂tu = εdiv(Tφo(∇u))− 1

ε
f(u),

coupled with an initial condition uε(0, ·) = uε,0(·) and a proper boundary condi-
tion.

Theorem 1.11 (Convergence to anisotropic mean curvature flow). Let
T > 0. For any t ∈ [0, T ), let E(t) ⊂ Rn be a compact set of class C2. Assume
that (E(t))t∈[0,T ) evolves under φ-anisotropic mean curvature flow.(3) Then, for
any ε ∈ (0, 1), it is possible to build uε,0, depending just on ∂E, such that there
exist ε0 ∈ (0, 1) and C > 0 such that, for ε ∈ (0, ε0),

{uε(t, ·) = 0} ⊆ {z ∈ Ω : dist(z, ∂E(t)) ≤ Cε3| ln ε|3},

∂E(t) ⊆ {z ∈ Ω : dist(z, {uε(t, ·) = 0}) ≤ Cε3| ln ε|3},
for all t ∈ [0, T ).

In other words, as ε→ 0+, the Hausdorff distance between {uε(t, ·) = 0} and
∂E(t) is of order less than or equal to ε3| ln ε|3.

1.3 Star-shaped combination of anisotropies

In this section we introduce the operation of star-shaped combination of m
anisotropies (m ≥ 2), which will play a fundamental role in Chapter 2. Even
if we shall deal mainly with the regular case, nevertheless it is natural to define
this operation for general star-shaped anisotropies (not even convex).

Let S be the family of star bodies, namely

S :=
{
K ⊂ V : K = int(K) is compact, star-shaped with respect to 0 ∈ int(K)

}
.

(3) For the purposes of the present thesis, it will be sufficient to consider the following definition
of anisotropic mean curvature flow: we say that ∂E evolves by φ-anisotropic mean curvature
flow if

velocity = −κEφ in the direction nφ.

We refer the reader to the already mentioned [41], and references therein, for a more detailed
discussion. Notice that, by virtue of the minus sign in the previous formula, E is expected to
shrink locally around those portions of ∂E where κEφ is positive.
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Remark 1.12. One can check that

S = {Bφ : φ : V→ [0,+∞) anisotropy on V} .

Indeed, given K ∈ S, the function

φK(ξ) := inf{λ > 0 : ξ ∈ λK}, ξ ∈ V,

is the unique star-shaped anisotropy such that BφK = K.(4)

We now introduce an operation on star-shaped anisotropies. Making use of
Remark 1.12, this will be done working on the family S of star bodies.

For K ∈ S, let %K : Sn−1
V := {ξ ∈ V : |ξ| = 1} → (0,+∞) be the radial

function of K (see for instance [152]), defined as

%K(ν) := sup
{
λ ≥ 0 : λν ∈ K

}
, ν ∈ Sn−1

V .

The function %K is extended (keeping the same symbol) in a one-homogeneous

way on the whole of V, i.e., %K(ξ) = |ξ|%K( ξ
|ξ|) for any ξ ∈ V \ {0}. Notice that

%K(ν) =
1

φK(ν)
, ν ∈ Sn−1

V , (1.7)

and

K = {λν : 0 ≤ λ ≤ %K(ν), ν ∈ Sn−1
V }.

Now, consider K1, K2 ∈ S. We let %K1 ? %K2 : Sn−1
V → (0,+∞) be defined as

follows [43]:

%K1
? %K2

(ν) :=

√(
%K1

(ν)
)2

+
(
%K2

(ν)
)2
, ν ∈ Sn−1

V .

Again, %K1
? %K2

is extended (keeping the same symbol) in a one-homogeneous
way on the whole of V.

Definition 1.13 (Star-shaped combination of two sets). Given K1, K2 ∈ S,
we define the star-shaped combination

K1 ? K2

of K1 and K2 as the set whose radial function coincides with %K1
? %K2

:

%K1?K2
:= %K1

? %K2
.

One checks that K1 ? K2 ∈ S, and that the identity element for ? does not
belong to S. Moreover

K1 ? K2 = K2 ? K1.

It is clear that the set K1 ?K2 depends on K1 and K2 and not only on K1 ∪K2.

(4)The function φK is sometimes called gauge of K, see [140, 152] and references therein. When
K ∈ S is convex (we say that K is a convex body), φK is usually called Minkowski functional of
K, see for instance [136], and it is obviously a convex anisotropy. There exists also the notion
of dual body Ko of a set K ∈ S, which turns out to be nothing but B(φK)o . Incidentally, we
mention that (φK)o is sometimes called support function of K.



8 Chapter 1. Preliminaries

However, it cannot be viewed as the union of an enlargement of K1 with an
enlargement of K2.

Next formula gives the concrete way to compute the star-shaped combination
of two sets K1, K2 ∈ S:

∂ (K1 ? K2) :=

{√
λ2

1 + λ2
2 ν : ν ∈ Sn−1

V , λj = %Kj (ν), j = 1, 2

}
.

Remark 1.14. The reason for using star bodies, instead of convex sets, in Defi-
nition 1.13 is the following: if K1 and K2 are two convex bodies, then K1 ?K2 is
not in general a convex body. An explicit counterexample for n = 2 and V = R2

is given in [43], and it involves the two ellipses

K1 :=
{

(x, y) ∈ R2 : x2 + ρy2 = 1
}
, K2 :=

{
(x, y) ∈ R2 : ρx2 + y2 = 1

}
,

defined for ρ > 0. Then:

(i) K1 ? K2 is (smooth and) strictly convex, for ρ ∈ (1
3 , 3);

(ii) K1 ? K2 is (smooth and) convex, for ρ = 1
3 or ρ = 3, with zero boundary

curvature at the points of intersection with the lines {(x, y) ∈ R2 : x± y =
0};

(iii) K1 ? K2 is (smooth and) not convex, for ρ < 1
3 or ρ > 3.

Figure 1.3 shows the sets K1, K2, and K1 ? K2 when ρ := 8. Further cases of
interest of star-shaped combinations of (2-dimensional) convex sets are given in
Example 1.18 below, and in Appendix A.

Figure 1.3: The sets K1 (in red), K2 (in blue) and their star-shaped combination K1?K2

(in green), defined in Remark 1.14 with the choice ρ := 8. Notice that K1 ? K2 is not
convex. The plot has been done using “Maple 16”.
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Observe that for any K1, K2, K3 ∈ S we have:

(%K1
? %K2

) ? %K3
= %K1

? (%K2
? %K3

),

or equivalently:
%K1?K2

? %K3 = %K1
? %K2?K3 .

This observation leads to the following definition.

Definition 1.15 (Star-shaped combination of m sets). Given m ≥ 2 and
K1, . . . ,Km ∈ S, we let

m
?
j=1

%Kj (ν) :=

√√√√ m∑
j=1

(
%Kj (ν)

)2
, ν ∈ Sn−1

V , (1.8)

extended (keeping the same symbol) in a one-homogeneous way on the whole of
V , and

m
?
j=1

Kj

be the set in S whose radial function is given by
m
?
j=1

%Kj .

Again, note that

∂

(
m
?
j=1

Kj

)
=


√√√√ m∑

j=1

λ2
j ν : ν ∈ SN−1, λj = %Kj (ν), j = 1, . . . ,m

 .

Problem 1.16. An open problem is to characterize those sets in S obtained
as star-shaped combination of m symmetric convex bodies, more precisely to
characterize the class{

m
?
j=1

Kj : K1, · · · ,Km smooth symmetric uniformly convex bodies

}
.

In [43], some necessary conditions are given in the case m = 2, such as the
impossibility of cusps or re-entrant corners in ∂(K1 ? K2).

From (1.7) and (1.8), it follows the formula(
φ m
?
j=1

Kj
(ν)

)2

=

 m∑
j=1

1(
φKj (ν)

)2
−1

, ν ∈ Sn−1
V , (1.9)

According to (1.9), we now give the following definition.

Definition 1.17 (Combined anisotropy). Let m ≥ 2 and let be given m
anisotropies φ1, . . . , φm : V→ [0,+∞). The function

m
?
j=1

φj :=

 m∑
j=1

1

φ2
j

−1/2

(1.10)

will be called the star-shaped combination of φ1, . . . , φm, or combined anisotropy
for short.
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Example 1.18. We give a counterexample showing that, in general, convexity
is not preserved under star-shaped combination of a convex anisotropy with the
Euclidean one φEucl.

Let n = 2, and let V = R2. With slight abuse of notation, for any anisotropy
φ of R2, we set φ(θ) := φ

(
(cos θ, sin θ)

)
, and %Bφ(θ) := %Bφ

(
(cos θ, sin θ)

)
for

θ ∈ [0, 2π). We recall that, if Bφ is of class C2, then it is convex if and only if

φ(θ) + φ′′(θ) ≥ 0. (1.11)

Now, let a, b > 0, and let ϕ ∈M(R2) be the convex anisotropy such that

Bϕ = {(x, y) ∈ R2 : |x| ≤ a, |y| ≤ b} ∪ {(x, y) ∈ R2 : (x± a)2 + y2 ≤ b2}.

Let also A denote the collection of all angles θ ∈ (0, π2 ) such that the line {(x, y) ∈
R2 : x sin θ = b cos θ} intersects the flat portions of the boundary of Bϕ. Clearly,
A depends on the choice of a and b; in particular, for fixed b > 0, A tends to the
whole interval (0, π2 ) as a→ +∞.

Figure 1.4: The boundaries of BφEucl
(red line), and of Bϕ (blue line), defined in Example

1.18, with the choice a :=
√

3, b := 1. The boundary of the unit ball BΦ of the combined
anisotropy Φ = (ϕ ? φEucl) is shown in green. Notice that BΦ is not convex. The plot
has been done using “Maple 16”.

We have

%Bϕ(θ) =
b

sin θ
, θ ∈ A.

Let Φ := (ϕ ? φEucl). Then, by (1.8), we have

%BΦ
(θ) =

√
sin2 θ + b2

sin θ
, θ ∈ A,

and so, by (1.7) and (1.9),

Φ(θ) =
sin θ√

sin2 θ + b2
, θ ∈ A.
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One can check that

Φ′′(θ) = − b2 sin θ

(sin2 θ + b2)
5
2

(b2 + 3− 2 sin2 θ), θ ∈ A,

so that, in particular,

Φ(θ) + Φ′′(θ) =
sin θ

(
(sin2 θ + b2)2 − b2(b2 + 3− 2 sin2 θ)

)
(sin2 θ + b2)

5
2

, θ ∈ A. (1.12)

From (1.12), also recalling (1.11), a necessary condition for BΦ to be convex is
that

(sin2 θ + b2)2 − b2(b2 + 3− 2 sin2 θ) ≥ 0, θ ∈ A,

or, equivalently,

sin4 θ + 4b2 sin2 θ − 3b2 ≥ 0, θ ∈ A. (1.13)

Notice that the inequality in (1.13) does not depend on the choice of a, and it
is violated as θ → 0+. Hence, for fixed b > 0, it is possible to take a > 0 large
enough so that (1.13) is not valid for some θ ∈ A. See Figure 1.18 for the choice
a :=

√
3 and b := 1. In this case, A = (π6 ,

π
2 ) and condition (1.13) is violated at

all θ ∈
(
π
6 , arcsin

(√√
7− 2

))
.

1.3.1 On the hessian of the combined anisotropy

Let be given m star-shaped anisotropies φ1, . . . , φm : V∗ → [0,+∞),(5) such that
φ2
j is of class C2 for every j = 1, . . . ,m. Let Φ := ?mj=1φj be their combined

anisotropy. By (1.10), it immediately follows that also Φ2 is of class C2. The aim
of this short section is to find an appropriate representation of the hessian

1

2
∇2Φ2

of Φ2, which will be useful in Section 2.3.6.

First of all, set for notational convenience

α := Φ2, αj := φ2
j , j = 1, . . . , m.

Then formula (1.10) can be rewritten as

α =

 m∑
j=1

1

αj

−1

. (1.14)

Differentiating (1.14), we get

∇α = α2
m∑
j=1

1

α2
j

∇αj .

(5) We find more convenient to let the φj ’s be defined in the space of covectors, in order to
avoid conflicts of notation wih Section 2.3 (where the result of this section wll be applied).
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and differentiating again, we end up with

1

2
∇2α =α3

 m∑
j=1

1

α2
j

∇αj

⊗( m∑
k=1

1

α2
k

∇αk

)

− α2
m∑
j=1

1

α2
j

∇αj ⊗∇αj +
1

2
α2

m∑
j=1

1

α2
j

∇2αj ,

(1.15)

where the tensor product η∗ ⊗ ζ∗ between η∗, ζ∗ ∈ V∗ ∼= (Rn)∗ is defined as

(η∗ ⊗ ζ∗)j,k := η∗j ζ
∗
k , j, k = 1, . . . , n.

Set

Q :=
1

2
α2

m∑
j=1

1

α2
j

∇2αj , (1.16)

and

Q0 :=
1

2
∇2α−Q.

From (1.15) and (1.16), we obtain

Q0 =
m∑
j=1

(
α3

α4
j

− α2

α3
j

)
∇αj ⊗∇αj +

m∑
j,k=1,
j 6=k

α3

α2
jα

2
k

∇αj ⊗∇αk

= α2
m∑
j=1

α− αj
α4
j

∇αj ⊗∇αj + α3
m∑

j,k=1,
j 6=k

1

α2
jα

2
k

∇αj ⊗∇αk.
(1.17)

For m = 2, formulas (1.16) and (1.17) coincide with those given in [43]. Further-
more, we can observe that, as in the case m = 2, we have

Q0(ξ∗)ξ∗ = 0, ξ∗ ∈ V∗. (1.18)

This relation will be used in the asymptotics, see Section 2.3.6. In order to show
(1.18) we use Euler’s formula ∇αj(ξ∗)ξ∗ = 2αj(ξ

∗). We have

1

2
Q0(ξ∗)ξ∗ =α2(ξ∗)

m∑
j=1

α(ξ∗)− αj(ξ∗)
(αj(ξ∗))4

αj(ξ
∗)∇αj(ξ∗)

+ α3(ξ∗)
m∑

j,k=1,
j 6=k

1

(αk(ξ∗))2(αj(ξ∗))2
αk(ξ

∗)∇αj(ξ∗)

=
m∑
j=1

α2(ξ∗)
(
α(ξ∗)− αj(ξ∗)

)
(αj(ξ∗))3

+
α3(ξ∗)

(αj(ξ∗))2

m∑
k=1,
k 6=j

1

αk(ξ∗)

∇αj(ξ∗),
and each terms in the summation leads (recalling (1.14) and omitting the symbol
ξ∗) to

α2

α2
j

[
α− αj
αj

+ α
( 1

α
− 1

αj

)]
= 0, j = 1, . . . ,m.

Using (1.16) and (1.17) we have therefore obtained a representation for

1

2
∇2α = Q+Q0.
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1.4 The bidomain model

We now turn to the formulation of bidomain model. This section aims to provide
the starting motivation for the study of nonlinear multidomain model which will
be the subject of the next chapter.

The bidomain model is a standard model in electrocardiology, originally in-
troduced in the ’70s (see for instance [82, 153], or also the more recent monograph
[71]) as an attempt to describe the averaged electric potentials which govern the
heart beating. Let Ω ⊂ Rn, n = 3, be the bounded connected open set which
corresponds to the physical region occupied by the heart. Despite its underlying
cellular discrete structure, at a macroscopic level it is useful to think of Ω as a
continuous superimposed domain. In this scheme, the intra (i) and extra (e) cel-
lular electric potentials ui,e are defined on the whole of Ω, and they are associated
to the current densities

−Mi∇ui, −Me∇ue, (1.19)

where Mi,e are the conductivity tensors, and they are symmetric, positive-definite
matrices, continuously depending on the position. The presence of Mi,e is related
to the fibered structure of the cardiac tissue, since the resistance of the cellular
membrane is significantly higher than at the intracellular connections; at the
macroscopic level, these difference are in some sense “averaged”, leading to a
strong anisotropy factor in the model. Disregarding possible induction effects,
the quantities in (1.19) have to satisfy the conservation law

div(Mi∇ui) = −div(Me∇ue) = im in Ω,

where im := Cm∂tu+ iion denotes the membrane current density, which consists
of a capacitance(6) Cm∂tu and a ionic term iion. It is in general quite hard to
describe the ionic source density iion: several addictional gating variables are
needed to model the ionic channels’ dynamics, each of whom is related to the
transmembrane potential u := ui − ue through a nonlinear, first order ODE. To
gain general insight into the wave propagation in the cardiac excitable media, it
is possible to consider the simplified situation (also known as FitzHugh-Nagumo
approximation) of a single gating variable w : Ω→ R, which has to satisfy

∂tw = βu− γw,

for suitable constants β, γ > 0. Then, the ionic density is given by

iion = f(u) + ηw, (1.20)

where η > 0 is a suitable constant, and f ∈ C1(R) is a cubic-like function having
only s− and s+ as stable zeroes. A standard assumption, which we shall adopt
in Section 2.3, is

f = W ′,

W : R→ [0,+∞) being the double-well potential W (s) := (1− s2)2.
In the forthcoming discussion, we shall be mainly interested in a large-scale

qualitative behaviour of the electric impulses during the depolarization phase.

(6)The positive coefficient Cm has the physical interpretation of a surface membrane capaci-
tance.
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Since the gating variable w plays the main role during the repolarization phase,
we simply discard it from (1.20), thus getting

Cm∂tu− div(Mi∇ui) + f(u) = 0,

Cm∂tu+ div(Me∇ue) + f(u) = 0,

u = ui − ue.

(1.21)

System (1.21) is then rescaled [70] as follows
ε∂tu− ε2div(Mi∇ui) + f(u) = 0,

ε∂tu+ ε2div(Me∇ue) + f(u) = 0,

u = ui − ue,

(1.22)

where ε > 0 is a small nondimensional parameter. Roughly speaking, the rescal-
ing procedure is meant to approximate the propagating transition front realizing
the depolarization with a real discontinuity surface: indeed, the activation pro-
cess takes place in a thin layer (also known as the excitation wavefront), typically
1 mm thick, and moving across distances of 1 cm, see [70] and references therein.

Given T > 0, system (1.22) is studied for (t, x) ∈ (0, T ) × Ω, and is coupled
with an initial condition

u(0, ·) = u0(·) in Ω, (1.23)

and two Neumann boundary conditions

Mi,e∇ui,e · νΩ = 0 on (0, T )× ∂Ω. (1.24)

Conditions (1.23)-(1.24) are better understood observing that system (1.22) is
equivalent to the following parabolic/elliptic system:{

ε∂tu− ε2div(Mi∇ui) + f(u) = 0,

div
(
Mi∇ui +Me(∇ui −∇u)

)
= 0,

(1.25)

obtained by taking the difference of the two equations in (1.22).
A “degenerate” situation to study system (1.22) corresponds to the so-called

equal anisotropic ratio, namely when

Me = λMi, (1.26)

for some λ > 0. In this setting, system (1.22) can be reduced to the following
equation, of anisotropic Allen-Cahn type:

ε∂tu− ε2
λ

1 + λ
div(Mi∇u) + f(u) = 0. (1.27)

The anisotropy governing (1.27) can be seen as a combined anisotropy (see Re-
mark 2.2 below). Nevertheless, assumption (1.26) seems not to be physiological,
as it follows from well-established experimental evidence (for instance, cardiac
defribillation cannot be modelled through the single equation (1.27), see [112]).

Coming back to system (1.22), we recall from [73] the following result, which
has been proven in a more abstract setting using a degenerate formulation of
bidomain model.(7)

(7)The well-posedness result in [73] is given in a more general statement. Nevertheless, we have
preferred to state it as in Theorem 1.19, since this will be the formulation we shall generalize in
the next chapter.
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Theorem 1.19 (Well-posedness in the linear case). Let Ω ⊂ Rn be a
bounded Lipschitz domain. Let T > 0, and let u0 ∈ H1(Ω) be such that u0f(u0) ∈
L1(Ω). Then there exists a pair

(ui, ue) ∈ (L2
(
0, T ;H1(Ω)

)
)2,

uniquely determined up to a family of additive time-dependent constants, with

u := ui − ue ∈ H1
(
0, T ;L2(Ω)

)
∩ L∞

(
0, T ;H1(Ω)

)
,

and such that (ui, ue) solves system (1.22) in (H1(Ω))∗, with initial/boundary
conditions (1.23)-(1.24).

To our best knowledge, a well-posedness result for the case of nonlinear
anisotropies (even if independent of the position) has not been given so far. In
Section 2.2, adapting the original proof in [73], we shall extend Theorem 1.19 to
the nonlinear multidomain model.

In the remaining of this section, we list some results concerning the bidomain
model. First of all, we notice that bidomain model admits a variational formula-
tion. Indeed, let us consider the family of functionals defined, for v, w ∈ H1(Ω),
as

Fε
(
v, w

)
:=

∫
Ω

{
ε

2

[
Mi∇v · ∇v +Me∇w · ∇w

]
+

1

ε
W (v − w)

}
dx, (1.28)

and extended to +∞ elsewhere in (L2(Ω))2; then, system (1.22) is the formal
gradient flow of the functionals Fε with respect to the degenerate scalar product
of (L2(Ω))2

b
(

(v, w), (ṽ, w̃)
)

:=

∫
Ω

(v − w)(ṽ − w̃) dx,

namely

b
(
∂t(ui, ue), (v, w)

)
+ δFε

(
(ui, ue), (v, w)

)
= 0, (v, w) ∈ (H1(Ω))2.

The following result has been obtained in [11].

Theorem 1.20 (Γ-convergence in the linear case). There exists the Γ
(
(L2(Ω))2

)
−

limε→0+Fε = F , and depends only on u = v −w. Moreover, F(u) is finite if and
only if u ∈ BV (Ω; {s±}); for such functions, we have

F(v, w) =

∫
Ju

σ(x, νu(x)) dHn−1(x),

where Ju is the jump set of u, νu(x) is a unit normal to Ju at x ∈ Ju, and σ is a
convex inhomogeneous symmetric anisotropy.

It is also possible to explicitly characterize σ(x, ·) as an infimum of an appro-
priate class of vector-valued functions, see [11] for the details. In particular. when
Mi and Me (and hence σ) are independent of x, we can estimate σ as follows.
Let φi,e denote the square root of the quadratic forms associated with Mi,e, and
let Φ := φi ? φe be their star-shaped combination (Definition 1.17). Recall that,
in general, Φ is allowed to be nonconvex. Then:

- {σ ≤ 1} contains the convexified of {Φ ≤ 1};
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- {σ ≤ 1} is contained in the smallest ellipsoid circumscribing the convexified
of {Φ ≤ 1} and tangent to it at the intersection with the coordinate axes.
Moreover, the strict inclusion holds whenever the two anisotropies are not
proportional.

The following problem has been pointed out in [11].

Problem 1.21. Is it true that the unit ball of σ coincides with the convexified
of {Φ ≤ 1}?

Problem 1.21 seems to be related with the next formal result, obtained in [31]
using an asymptotic expansion argument developed up to the second order in-
cluded. Again, let us make use of the identification V ∼= Rn in order to distinguish
between anisotropies defined on vectors or on covectors.

Theorem 1.22 (Formal convergence in the linear case). Let ui = ui,ε,
ue = ui,ε and u = uε be given by Theorem 1.19, with initial condition uε(0, ·)
well-prepared(8) and possibly depending on ε, in particular so that

{x ∈ Ω : uε(0, x) = 0} = ∂E, ε ∈ (0, 1),

where ∂E is smooth and compact in Ω. Suppose furthermore that

Φ ∈Mreg(V∗). (1.29)

Then, for T > 0 sufficiently small, the sets {uε(t, ·) = 0} formally converge as
ε → 0+,(9) to a hypersurface ∂E(t) evolving by anisotropic Φo-mean curvature
with ∂E(0) = ∂E, for any t ∈ [0, T ].

Theorem 1.22 has been generalized in [43] to the case of φi,e ∈ Mreg(V∗) —
namely, dropping the linearity of the original anisotropies. In this case, the
current densities in (1.19) have to be replaced by

Tφi
(∇ui), Tφe(∇ue),

where, recalling Definition 1.7, the operators Tφi,e
= 1

2∇(φi,e)
2 are allowed to

be possibly nonlinear. Theorem 1.23 below has been stated for a different time-
scaling, and the asymptotic expansion argument has been developed just up to
the first order included.

Theorem 1.23. Let ui = ui,ε, ue = ue,ε and u = uε solve the following system
ε2 ∂tu− ε2div(Tφi

(∇ui)) + f(u) = 0,

ε2 ∂tu+ ε2div(Tφe(∇ue)) + f(u) = 0,

u = ui − ue,

in (0, T )× Ω. (1.30)

Then, under assumption (1.29), the same conclusion of Theorem 1.22 holds.

We stress that a rigourous mathematical justification of Theorems 1.22-1.23 is
still missing, which seems a nontrivial goal to reach due to the lack of maximum
principle. Perhaps, a strategy for the proof could try to follow the work in [78],

(8)See [31] for the details.
(9)With an expected speed rate of order ε, up to logarithmic corrections.
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[79] (see also [1], [139] for a different evolutive problem): here, the authors seek
for an approximated solution via asymptotic expansion, then showing the con-
vergence to the real solution by means of proper spectral estimates (see also [69]).
The relevant efforts stand in the setting up of a refined algorithm for inductively
retrieving all terms in the asymptotic expansions just from the evolutive equation.
In this respect, it seems nontrivial to repeat this strategy to bidomain model: in-
deed (Remark 2.15), already determining the 0-order terms in the asymptotic
expansion is still an open problem, which deserves further investigation.

We end this section by mentioning the recent paper [127], where stability
of the propagating wavefront of bidomain model (here, n = 2 and Ω = R2) is
studied depending on the shape of the combined anisotropy Φ. In particular, if Φ
is not convex, then planar fronts are unstable, this giving a possible theoretical
explanation of the wrinkling phenomenon appeared in the numerical experiments
in [43]. The following conjecture is addressed in the same paper [127].

Problem 1.24. Suppose that the planar front is stable along all directions where
Φ and its convexified coincide. Then the asymptotic shape of the propagating
front is given by the unit ball of Φo.





Chapter 2

The nonlinear multidomain
model

Summary. In Section 2.1, we introduce nonlinear multidomain model. A well posedness
result is given in Section 2.2, while Section 2.3 contains the asymptotic analysis of non-
linear multidomain model, developed up to the second order included, and the formal
convergence result of the zero-level set of the solutions to a suitable anisotropic mean
curvature flow.

2.1 Formulation of the model

Let m,n ∈ N, with m,n ≥ 2. Let V := Rn, and let φ1, . . . , φm ∈ Mreg(V∗). Let also
Ω ⊂ Rn be a bounded connected open set with Lipschitz boundary.

Let W ∈ C2(R), W ≥ 0, and let f := W ′. We shall assume that f(0) = 0, and that
there exists Cf > 0 such that

f ′ ≥ Cf . (2.1)

Sometimes we shall also require that

0 < lim inf
|s|→+∞

W (s)

|s|4
≤ lim inf
|s|→+∞

W (s)

|s|4
< +∞, (2.2)

and

0 < lim inf
|s|→+∞

f(s)

|s|3
≤ lim inf
|s|→+∞

f(s)

|s|3
< +∞, (2.3)

namely W (resp. f) has quartic-like (resp. cubic-like) growth at infinity.

Definition 2.1 (Nonlinear multidomain model). We call nonlinear multidomain
model the following degenerate system of parabolic PDE’s

ε2∂tu− ε2div
(
Tφr
(
∇wr

))
+ f(u) = 0, r = 1, . . . , m,

u =

m∑
r=1

wr,

(2.4)

in the unknown (w1, . . . , wm) ∈
(
H1(0, T ; Ω)

)m
, where Tφr := 1

2∇ξ∗φ
2
r is allowed to be

nonlinear, for every r = 1, . . . ,m.(1)

Notice that bidomain model (1.30) corresponds to the choice m := 2, φ1 := φi,
φ2 := φe, w1 := ui and w2 := −ue.

(1)No summation on the index r is obviously understood in (2.4).

19
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Remembering (1.25), system (2.4) is equivalent to

ε2∂tu− ε2div
(
Tφ1

(
∇w1

))
+ f(u) = 0,

div
(
Tφ1

(
∇w1

))
= div

(
Tφs
(
∇ws

))
, s = 2, . . . ,m,

u =

m∑
r=1

wr,

so that we are suggested to couple (2.4) with an initial condition and m Neumann bound-
ary conditions

Tφr (∇wr) · νΩ = 0 on ∂Ω, r = 1, . . . ,m. (2.5)

Remark 2.2 (Simplest possible case). Assume that, for r = 1, . . . ,m, there exist
λr > 0 such that φr = λrφ, for some φ ∈Mreg(V∗). Set Tφ := 1

2∇φ
2. Then, system (2.4)

can be rewritten as
ε2∂tu− ε2λ2

rdiv
(
Tφ
(
∇wr

))
+ f(u) = 0, r = 1, . . . ,m,

u =

m∑
r=1

wr.

(2.6)

Suppose also that φ is a linear anisotropy, so that

div (Tφ(∇u)) =

m∑
r=1

div (Tφ(∇wr)) .

Dividing each parabolic equation in (2.4) by λ2
r, summing over r = 1, . . . , m, and dividing

by
∑m
r=1

1
λ2
r
, we obtain

ε2∂tu− ε2
(

m∑
r=1

1

λ2
r

)−1

div
(
Tφ(∇u)

)
+ f(u) = 0.

Hence, by formula (1.10) u satisfies a scalar anisotropic Allen-Cahn’s equation, where we
take as anisotropy the star-shaped combination Φ of the original anisotropies, namely

ε2∂tu− ε2div (TΦ(∇u)) +
1

ε
f(u) = 0 (2.7)

where as usual TΦ := 1
2∇Φ2. Under the previous assumptions, we summarize this more

precisely as follows. Let u0 be a suitable function defined on Ω. If (w1, . . . , wm) solves
(2.6) with an initial condition

∑m
r=1 w

r = u0 and m Neumann boundary conditions (2.5),
then u :=

∑m
r=1 w

r solves (2.7), with initial condition u = u0, and Neumann boundary
condition

TΦ(∇u) · νΩ = 0. (2.8)

Conversely, let u solve (2.7) with initial condition u = u0 and Neumann boundary con-
dition (2.8). Then, we get a solution to system (2.6), by taking

wr :=
1

λ2
r

(
m∑
s=1

1

λ2
s

)−1

u, r = 1, . . . , m.

With this choice, conditions (2.5) are automatically satisfied.
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2.2 Well-posedness of nonlinear multidomain model

In this section we give an existence result for the nonlinear multidomain model (2.4), for
small times and in a suitable weak sense. The author wishes to thank Prof. G. Savaré
for the useful advices.

In what follows, we are not interested in considering the parameter ε in (2.4), so for
simplicity we fix ε = 1. We shall consider the Hilbert triple

H1(Ω) ↪→ L2(Ω) =
(
L2(Ω)

)∗
↪→
(
H1(Ω)

)∗
,

where previous inclusions are continuous and dense (see for instance [57, p.136]) We
will adopt the notation (H1(Ω))∗〈·, ·〉H1(Ω) for the duality between

(
H1(Ω)

)∗
and H1(Ω).

Whenever l ∈ L2(Ω) and v ∈ H1(Ω), then duality reduces to

(H1(Ω))∗〈l, v〉H1(Ω) =

∫
Ω

lv dx.

The aim of this section is to prove the following result.

Theorem 2.3 (Well-posedness of nonlinear multidomain model). Let u0 ∈ H1(Ω)
be such that W (u0) ∈ L1(Ω). Then, there exists w = (w1, . . . , wm) ∈

(
L2(0, T ;H1(Ω))

)m
such that, letting u :=

∑m
r=1 w

r, we have

u ∈ H1
(
0, T ;L2(Ω)

)
∩ L∞

(
0, T ;H1(Ω)

)
, u(0, ·) = u0(·), (2.9)

and, for r = 1, . . . ,m, and for a.e. t ∈ (0, T ),∫
Ω

∂tu(t) v dx+

∫
Ω

Tφr (∇wr(t)) · ∇v dx+

∫
Ω

f(u(t))v dx = 0, (2.10)

for all v ∈ H1(Ω). Moreover, w is uniquely defined up to a map c := (c1, . . . , cm) ∈
(L2(0, T ))m such that

∑m
r=1 c

r = 0.

Let u be given by Theorem 2.3. Assume also that f(u(t)) ∈ L2(Ω).(2) Then (2.10),
(2.9) and (2.1) imply that, for r = 1, . . . ,m and for a.e. t ∈ (0, T ),

div
(
Tφr (∇wr(t))

)
=
(
∂tu(t) + f(u(t))

)
∈ L2(Ω). (2.11)

In particular (see for instance [92]), there exists the normal trace of Tφr , seen as an
element of the dual of H1(∂Ω); moreover, due to (2.11), it has to be zero, this giving a
suitable weak sense for the Neumann boundary conditions (2.5).

Theorem 2.3 will be a consequence of Propositions 2.8 and 2.9 below. We recall also
[142, Proposition 1.2, p.106] that

H1
(
0, T ;L2(Ω)

)
⊂ C0

(
0, T ;L2(Ω)

)
,

so that the solution provided by the above mentioned results satisfies the initial condition
in (2.9).

Let us start with some preliminary results. First of all, we reformulate (2.4) as a
singular nonlinear evolution equation in the unknown u. To this aim, we introduce(3)

the functional G : H1(Ω)→ [0,+∞), defined as

G(u) := inf
{
g(w)

∣∣ w := (w1, . . . , wm) ∈ Adm(u)
}
,

(2)This happens, for instance, when f(s) := d
ds

(1−s2)2, and |u0| ≤ 1. In this case, a truncation
argument shows that |u(t)| ≤ 1 for every t ∈ (0, T ).

(3)When m = 2, and φ1, φ2 are linear anisotropies — namely, in the standard bidomain
model — the analog of functional G has been introduced in [11] in a Γ-convergence framework
(see also [73]).
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where

g(w) :=
1

2

∫
Ω

m∑
r=1

φ2
r(∇wr) dx,

and, for u ∈ H1(Ω), we set

Adm(u) :=
{

(w1, . . . , wm) ∈ (H1(Ω))m :

m∑
r=1

wr = u
}
.

It is immediate to verify that G(u) < +∞ for every u ∈ H1(Ω) (see Lemma 2.4 below).
We collect in Lemmata 2.4, 2.5 and 2.7 some results concerning G. We shall adopt the
notation

u :=
1

|Ω|

∫
Ω

u dx

to denote the mean value of a function u ∈ L1(Ω).

Lemma 2.4. Let u ∈ H1(Ω). Then there exists w = (w1, . . . , wm) ∈ Adm(u) such that
G(u) = g(w) < +∞. Moreover, w is uniquely defined up to an element c = (c1, . . . , cm) ∈
Rm such that

∑m
r=1 c

r = 0.

Proof. Fix c ∈ Rm such that
∑m
r=1 c

r = u, and set

Admc(u) :=
{

w ∈ Adm(u) : wr = cr
}
,

which is a closed and convex subset of
(
H1(Ω)

)m
. Let also Gc : H1(Ω)→ [0,+∞) be the

functional defined as

Gc(u) = inf
w∈Admc(u)

g(w).

Clearly, G(u) ≤ Gc(u). We claim that

G(u) = Gc(u). (2.12)

Indeed, for any w ∈ Adm(u), let ŵ = (ŵ1, . . . , ŵm) be defined as

ŵr := wr + cr − wr, r = 1, . . . ,m. (2.13)

By construction, ŵ ∈ Admc(u), so that

Gc(u) ≤ g(ŵ) = g(w). (2.14)

Taking the infimum in (2.14) among all w ∈ Adm(u), we get (2.12).
Now, since g is a coercive, sequentially lower semicontinuous, strictly convex func-

tional on Admc(u), it admits a unique minimizer in Admc(u). Recalling (2.12) and
(2.13), the statement is proven.

Lemma 2.5. The following statements hold:

1. there exist positive constants C1 ≤ C2 such that

C1||∇u||2L2(Ω) ≤ G(u) ≤ C2||∇u||2L2(Ω), u ∈ H1(Ω); (2.15)

2. G is convex and sequentially weakly lower semicontinuous in H1(Ω).

Proof. (1) Let u ∈ H1(Ω). For any r = 1, . . . ,m, let cr (resp. Cr) be the smallest
(resp. the biggest) constant appearing in (1.1) with φ := φr, and let C2 ≥ C1 > 0 be
such that

2mC1 ≤ c2
r, C2

r ≤ 2mC2, r = 1, . . . ,m.
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Let w0 := (u/m, . . . , u/m). Then w0 ∈ Adm(u), and

G(u) ≤ g(w0) =
1

2

∫
Ω

m∑
r=1

1

m2
φ2
r(∇u) dx ≤ 1

2

∫
Ω

m∑
r=1

C2
r

m2
|∇u|2 dx =

∫
Ω

C2|∇u|2 dx,

which proves the inequality on the right hand side of (2.15).
Now, let w = (w1, . . . , wm) ∈ Adm(u). Then

g(w) ≥ mC1

∫
Ω

m∑
r=1

|∇wr|2 dx ≥ mC1

m

∫
Ω

∣∣ m∑
r=1

∇wr
∣∣2 dx = C1

∫
Ω

|∇u|2 dx. (2.16)

The left inequality in (2.15) now follows, by taking the infimum in (2.16) among all
w ∈ Adm(u).

(2) Let u1, u2 ∈ H1(Ω), let λ ∈ [0, 1], and set:

u := λu1 + (1− λ)u2.

Let w1,w2 ∈ Adm(uj) be such that G(uj) = g(wj), for each j = 1, 2 (Lemma 2.4). Then
w := λw1 + (1− λ)w2 satisfies

∑m
r=1 w

r = u. In particular,

G(u) ≤ g(w) ≤ λg(w1) + (1− λ)g(w2) = λG(u1) + (1− λ)G(u2),

where convexity of g is used in the last inequality. This proves convexity of G.
Finally, for k ∈ N let uk, u ∈ H1(Ω) be such that uk ⇀ u ∈ H1(Ω) as k → +∞. For

any k ∈ N, fix ck ∈ Rm such that
∑m
r=1 c

r
k = uk. Clearly, it is not restrictive to assume

that (ck)k is bounded. For any k ∈ N, let wk := (w1
k, . . . , w

m
k ) ∈ Admck(uk) be such

that G(uk) = g(wk). The sequence (wk)k is bounded in
(
H1(Ω)

)m
, so that there exists

w ∈
(
H1(Ω)

)m
such that (up to a not-relabelled subsequence) wk ⇀ w in

(
H1(Ω)

)m
as

k → +∞. In particular,
∑m
r=1 w

r = u and therefore

G(u) ≤ g(w) ≤ lim inf
k→+∞

g(wk) = lim inf
k→+∞

G(uk),

where the second inequality comes from the sequential weak lower semicontinuity of
g.

Remark 2.6. Let u ∈ H1(Ω), and let w ∈ Adm(u). Then, for any v ∈ H1(Ω), w has
to satisfy the Euler-Lagrange equation∫

Ω

Tφr (∇wr) · ∇v dx =

∫
Ω

Tφs(∇ws) · ∇v dx r, s = 1 . . . ,m. (2.17)

Relation (2.17) is in accordance with the results stated in [11, Lemma 4.1] for the (linear)
bidomain model. To prove (2.17), we take as admissible variation w + λv, for λ ∈ R,
and v ∈

(
H1(Ω)

)m
such that{

vj = 0, for j 6= r, s,

vr = −vs = v.

By the minimality of w, we have g(w) ≤ g(w +λv). In the previous inequality, all terms
apart from those in r, s cancel out, so that, letting λ→ 0, we get (2.17).

For u ∈ H1(Ω), we denote by ∂G(u) the subdifferential of G at u, with respect to
the strong topology of H1(Ω). Recall that ∂G(u) 6= ∅, since G(u) < +∞. Lemma 2.7
below gives a dual characterization of ∂G(u). Notice that the right hand side of (2.18)
is independent of r (recall (2.17)) and also of the choice of w such that G(u) = g(w)
(Lemma 2.4).
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Lemma 2.7 (Subdifferential of G). Let u ∈ H1(Ω), l ∈ (H1(Ω))∗, and let w =
(w1, . . . , wm) ∈ Adm(u) be such that G(u) = g(w). Then, l ∈ ∂G(u) if and only if, for
any v ∈ H1(Ω),

(H1(Ω))∗〈l, v〉H1(Ω) =

∫
Ω

Tφr (∇wr) · ∇v dx r = 1, . . . ,m. (2.18)

Proof. Let us check that, for any r = 1, . . . ,m,

G(v) ≥ G(u) +

∫
Ω

Tφr (∇ws) · ∇(v − u) dx, v ∈ H1(Ω). (2.19)

By (2.17), it is sufficient to show (2.19) for r = 1. Fix v ∈ H1(Ω), and let w̃ =
(w̃1, . . . , w̃m) ∈ Adm(v). Then

g(w̃)− g(w) =
1

2

∫
Ω

( m∑
r=1

φ2
r(∇w̃r)− φ2

r(∇wr)
)
dx

≥
∫

Ω

( m∑
r=1

Tφr (∇wr) · ∇(w̃r − wr)
)
dx

=

∫
Ω

(
Tφ1

(∇w1) ·
m∑
r=1

∇(w̃r − wr)
)
dx

=

∫
Ω

(
Tφ1

(∇w1) · ∇(v − u)
)
dx

(2.20)

where we used the convexity of φ2
r, r = 1, . . . ,m, together with (2.17). Taking the

infimum in (2.20) among all w̃ ∈ Adm(v), we get (2.19).
Assume now that l ∈ ∂G(u). Fix r, s ∈ {1, . . . ,m}, with r 6= s, and v, z ∈ H1(Ω).

Then, for λ > 0, define wλ = (w1
λ, . . . , w

m
λ ) ∈

(
H1(Ω)

)m
as

wjλ := wj , j = 1, . . . ,m, j 6= r, s

wrλ := wr + λ(v − z),
wsλ := ws + λz.

Since
∑m
r=1 w

r
λ = u+λv, we have G(u+λv) ≤ g(ŵ). By the definition of subdifferential,

we have
g(ŵ)− g(w)

λ
≥ G(u+ λv)− G(u)

λ
≥ (H1(Ω))′〈l, v〉H1(Ω). (2.21)

Letting λ→ 0+ in (2.21), we end up with:∫
Ω

Tφr (∇wr) · ∇(v − z) dx+

∫
Ω

Tφs(∇ws) · ∇z dx ≥ (H1(Ω))′〈l, v〉H1(Ω),

or, equivalently,∫
Ω

Tφr (∇wr) · ∇v dx+

∫
Ω

(
Tφs(∇ws)− Tφr (∇wr)

)
· ∇z dx ≥ (H1(Ω))′〈l, v〉H1(Ω).

Observe that the second integral in the previous line vanishes, by virtue of (2.17). Ar-
guing similarly for λ < 0, we get the converse inequality, and hence the equality, which
proves our statement.

Let f : Dom(f)→
(
H1(Ω)

)∗
be the (nonlinear) operator defined as

(H1(Ω))∗〈f(u), v〉H1(Ω) :=

∫
Ω

f(u)v dx, v ∈ H1(Ω),

for every u ∈ Dom(f) := {u ∈ H1(Ω) : f(u) ∈ (H1(Ω))∗ ∩ L1(Ω)}.
We postpone the proof of the following result to the end of this section. Let us set,

for notational convenience,

V := H1
(
0, T ;L2(Ω)

)
∩ L∞

(
0, T ;H1(Ω)

)
.
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Proposition 2.8 (Reduction to a single evolutive equation). Let u0 ∈ H1(Ω) be
such that W (u0) ∈ L1(Ω). Then, there exists a unique u ∈ V such that

u(t) ∈ Dom(f), t ∈ (0, T ),

∂tu(t) + ∂G(u(t)) + f(u(t)) = 0, a.e. t ∈ (0, T ),

u(0) = u0.

(2.22)

Observe that, by virtue of Lemma 2.7, we do not need to write the evolutive equation
in (2.22) as a differential inclusion. We are now in the position to prove the following
result.

Proposition 2.9. Let u0 ∈ H1(Ω) be such that W (u0) ∈ L1(Ω), and let u ∈ V be given

by Proposition 2.8. Then there exists w = (w1, . . . , wm) ∈
(
L2
(
0, T ;H1(Ω)

))m
, uniquely

defined up to a map c = (c1, . . . , cm) ∈
(
L2(0, T )

)m
with

∑m
r=1 c

r = 0, satisfying (2.10)
in the sense of distributions.

Proof. By Lemma 2.4, for a.e. t ∈ (0, T ) there exists a unique w(t) ∈ (H1(Ω))m such

that g(w(t)) = G(u(t)) and wr(t) = u(t)
m , for every r = 1, . . . ,m. Recalling (2.18), we are

just left to prove that

w ∈
(
L2
(
0, T ;H1(Ω)

))m
. (2.23)

Indeed, for every r = 1, . . . ,m, using also (2.15), we have∫ T

0

||wr(t)||2H1(Ω) dt ≤(1 + C2(Ω))

∫ T

0

(
||∇wr(t)||2L2(Ω) +

(
wr(t)

)2)
dt

≤ (1 + C2(Ω))

C1

∫ T

0

(
g(w(t) +

(
u(t)

)2)
dt

=
(1 + C2(Ω))

C1

∫ T

0

(
G(u(t)) +

(
u(t)

)2)
dt

≤C2(1 + C2(Ω))

C1

∫ T

0

(
||∇u(t)||2L2(Ω) +

(
u(t)

)2)
dt,

(2.24)

where C(Ω) > 0 is the constant given by the Poincaré inequality [57, Corollary 9.19].
Since u ∈ V, the right hand side of (2.24) is finite. This proves (2.23).

We have reduced the proof of Theorem 2.3 to proof of Proposition 2.8. In order
to conclude, as already mentioned, we set up a standard minimizing movements [10]
approach.

Fix τ0 > 0, and let τ ∈ (0, τ0). Set v0
τ := u0, and, for k ∈ N, k ≥ 1, let vkτ ∈ H1(Ω)

be a minimizer of
1

2τ
||u− vk−1

τ ||2L2(Ω) + E(u), u ∈ H1(Ω), (2.25)

where

E(u) := G(u) +

∫
Ω

W (u) dx, u ∈ H1(Ω).

Notice that, by virtue of (2.2)-(2.3), if W (u) ∈ L1(Ω), then u ∈ Dom(f). In particular,
vkτ ∈ Dom(f) for every τ ∈ (0, τ0) and k ∈ N.

Existence of minimizers for (2.25) follows by direct methods (recall Lemmata 2.4 and
2.5). Let us check, when τ0 > 0 is sufficiently small, (2.25) admits a unique minimizer:
indeed, any minimizer u has to satisfy

u− vk−1
τ

τ
+ ∂G(u) + f(u) = 0 (2.26)
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in the sense of (H1(Ω))∗. Now, let vk,1τ , vk,2τ ∈ H1(Ω) be two minimizers of (2.25). From
(2.26), we get

−1

τ
||vk,1τ − vk,2τ ||2L2(Ω) =(H1(Ω))∗〈∂G(vk,1τ )− ∂G(vk,2τ ), vk,1τ − vk,2τ 〉H1(Ω)

+ (H1(Ω))∗〈f(vk,1τ )− f(vk,2τ ), vk,1τ − vk,2τ 〉H1(Ω)

≥
∫

Ω

(
f(vk,1τ )− f(vk,2τ )

)
(vk,1τ − vk,2τ ) dx

≥− Cf ||vk,1τ − vk,2τ ||2L2(Ω),

where we used (2.1) and the monotonicity of ∂G. Hence, if τ0 ≤ 1
Cf

, we end up with

vk,1τ = vk,2τ , as claimed.
Observe that, for any k ≥ 1, the minimality of vkτ implies that

1

2τ
||vkτ − vk−1

τ ||2L2(Ω) ≤ E(vk−1
τ )− E(vkτ ).

In particular,
E(vkτ ) ≤ E(vk−1

τ ), k ≥ 1, (2.27)

and
∞∑
k=1

1

τ
||vkτ − vk−1

τ ||2L2(Ω) ≤ 2
∞∑
k=1

E(vk−1
τ )− E(vkτ ) = 2E(u0) < +∞. (2.28)

Now, let us define a map uτ : [0,+∞)→ H1(Ω) as

uτ (t) := v[t/τ ]
τ +

( t
τ
−
[
t

τ

])
(v[t/τ+1]
τ − v[t/τ ]

τ ), t ≥ 0, (2.29)

where, for t ∈ R, we denote by [t] the smallest integer less or equal than t. Notice that,
for every τ ∈ (0, τ0),

uτ (0) = u0; (2.30)

moreover, uτ (t) ∈ Dom(f) for every t ∈ (0, T ), and

u′τ (t) =
v

[t/τ+1]
τ − v[t/τ ]

τ

τ
, a.e. t > 0. (2.31)

Coupling (2.31) with (2.26), we get

u′τ (t) + ∂G(v[t/τ+1]
τ ) + f(v[t/τ+1]

τ ) = 0,

or equivalently
u′τ (t) + ∂G

(
uτ (t(τ)

)
+ f
(
uτ (t(τ))

)
= 0, (2.32)

where we put for shortness

t(τ) := τ
[ t
τ

+ 1
]
.

Lemma 2.10. There exists M > 0 such that, for every τ ∈ (0, τ0) and t > 0,

||uτ ||L∞(0,T ;H1(Ω)) ≤M, ||u′τ ||L2(0,T ;L2(Ω)) ≤M. (2.33)

Proof. Let us bound the H1(Ω)-norm of uτ as follows:

||uτ (t)||2H1(Ω) ≤C(G(uτ (t)) + ||uτ (t)||2L2(Ω))

≤C sup
k∈N

{
G(vkτ ) + ||vkτ ||2L2(Ω)

}
=C sup

k∈N

{
E(vkτ ) + ||vkτ ||2L2(Ω)

}
≤C
(
E(u0) + ||u0||2L2(Ω)

)
, t > 0,
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where, in order, we used (2.15), convexity of G and of || · ||L2(Ω), (2.27), and we have let
C > 1 be a suitable constant, possibly different from line to line. This proves the first
inequality in (2.33). The second estimate follows recalling (2.31) and observing that∫ T

0

||u′τ (t)||2L2(Ω) dt =

∫ T

0

1

τ2
||v[t/τ+1]
τ − v[t/τ ]

τ ||2L2(Ω) dt

≤
∫ +∞

0

1

τ
||v[s+1]
τ − v[s]

τ ||2L2(Ω) ds

≤
∞∑
k=1

1

τ
||vkτ − vk−1

τ ||2L2(Ω) ≤ 2E(u0),

where the last inequality is due to (2.28).

Remark 2.11. As a consequence of the second inequality in (2.33), using also Hölder
inequality [57], we get for any t, s > 0

||uτ (t)− uτ (s)||L2(Ω) ≤
(∫ T

0

||u′τ (r)||2L2(Ω) dr
) 1

2 |t− s| 12 ≤M |t− s| 12 . (2.34)

The proof of the following result is given, in a more general setting, in [14].

Lemma 2.12. For τ ∈ (0, τ0), let uτ be defined as in (2.29). Then there exists u ∈ V
such that u(t) ∈ Dom(f) for every t ∈ (0, T ), and moreover, up to a subsequence,

uτ (t) ⇀ u(t) in H1(Ω), t > 0. (2.35)

Proof. Recalling the first inequality in (2.33), Rellich’ Theorem [57, Theorem 9.16], and
using a standard diagonalization argument, it is not restrictive to assume that

uτ (q) weakly converges in H1(Ω), q ∈ Q+,

uτ (q) strongly converges in L2(Ω), q ∈ Q+.

Hence, we are allowed to set

u(q) := lim
τ→0+

uτ (q), q ∈ Q+. (2.36)

For t > 0, we define u(t) as

u(t) := lim
q→t

u(q), q ∈ Q+, q → t. (2.37)

This makes sense, since

||u(q)− u(q′)||L2(Ω) ≤||u(q)− uτ (q)||L2(Ω) + ||uτ (q)− uτ (q′)||L2(Ω)

+ ||u(q′)− uτ (q′)||L2(Ω), q, q′ ∈ Q+,
(2.38)

and we notice that, by (2.34) and (2.36), all terms in the right hand side of (2.38) cancel
as q, q′ → t. Finally, let

(
uτk(t)

)
k∈N be a subsequence weakly convergent in H1(Ω) to

some w. Then, recalling (2.34), we have for any q ∈ Q+

||u(q)− w||L2(Ω) ≤ lim inf
k→+∞

||uτk(q)− uτ ′(t)||L2(Ω) ≤M |q − t|
1
2 . (2.39)

As q → t in (2.39), using also (2.37), we get w = u(t). This result being independent of
the weakly convergent subsequence, we get (2.35).

Notice that (2.35) and the first bound in (2.33) entail

u ∈ L∞
(
0, T ;H1(Ω)

)
.
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Therefore, in order to conclude, we are left to prove that

u ∈ H1
(
0, T ;L2(Ω)

)
.

Recalling the second bound in (2.33), it is not restrictive to assume that there exists
w ∈ L2

(
0, T ;L2(Ω)

)
such that u′τ ⇀ w in L2

(
0, T ;L2(Ω)

)
. Letting τ → 0+ in

uτ (t)− uτ (s) =

∫ t

s

u′τ (r) dr, t, s > 0,

we obtain

u(t)− u(s) =

∫ t

s

w(r) dr,

namely u ∈ AC
(
0, T ;L2(Ω)

)
. In particular (see for instance [10, Theorem 2.1]), this

implies that u′(t) exists for a.e. t ∈ (0, T ), and moreover

u′ = w ∈ L2
(
0, T ;L2(Ω)

)
. (2.40)

The statement is proven.

Remark 2.13. We notice that, by virtue of (2.34), (2.36) and (2.37), we have

uτ → u in L2
(
0, T ;L2(Ω)

)
, as τ → 0+. (2.41)

Moreover, as a byproduct of (2.40), we have

u′τ ⇀ u′ in L2
(
0, T ;L2(Ω)

)
, as τ → 0+. (2.42)

Proof of Proposition 2.8. Let u ∈ V be given in Lemma 2.12. We claim that

u satisfies (2.22). (2.43)

Indeed, by (2.30) and (2.36), we have u(0) = u0, which is the initial condition appearing
in (2.22). Now, fix z ∈ H1(Ω). From (2.32), for any τ, t > 0 we have

G(z) ≥ G(uτ (t(τ)))−
∫

Ω

(u′τ (t) + f(uτ (t(τ)))) (z − uτ (t(τ))) dx. (2.44)

Fix t ∈ (0, T ). Integrating (2.44) in the interval (t, t + h), and then dividing by h > 0,
we get

G(z) ≥ 1

h

∫ t+h

t

G(uτ (s(τ)))ds− 1

h

∫
Ω

(uτ (t+ h)− uτ (t)) z dx

+
1

h

∫ t+h

t

ds

∫
Ω

dxu′τ (s)uτ (s(τ))

− 1

h

∫ t+h

t

ds

∫
Ω

dx f
(
uτ (s(τ))

)
(z − uτ (s(τ)) .

By Lemma 2.12, using also (2.34), we have that

uτ (s(τ)) ⇀ u(s) in H1(Ω) as τ → 0+, s ∈ (0, T ). (2.45)

Letting τ → 0+ in (2.2), also recalling (2.41), (2.42), and (2.1), we get

G(z) ≥ 1

h

∫ t+h

t

G(u(s))ds− 1

h

∫
Ω

(u(t+ h)− u(t)) z dx

+
1

h

∫ t+h

t

ds

∫
Ω

dxu′(s)u(s)

− 1

h

∫ t+h

t

ds

∫
Ω

dx f(u(s)) (z − u(s)) .

(2.46)
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where we used also Fatou’s Lemma, (2.45), and the sequential lower semicontinuity of G
(Lemma 2.5). Letting h→ 0+ in (2.46), we get

G(z) ≥ G(u(t))−
∫

Ω

u′(t)(z − u(t)) dx −
∫

Ω

dx f(u(t)) (z − u(t)) , (2.47)

for a.e. t ∈ (0, T ). By the arbitrariness of z ∈ H1(Ω), (2.47) implies

−u′(t)− f(u(t) = ∂G(u(t)),

which proves claim (2.43).
We are left to show that (2.22) admits at most one solution. Indeed, let u, v ∈ V

solve (2.22), and set z := u− v. Then, for a.e. t ∈ (0, T ),

∂tz(t) + ∂G(u(t))− ∂G(v(t)) + f(u(t))− f(v(t)) = 0. (2.48)

Taking the duality between (2.48) and z(t), we get:∫
Ω

∂tz(t)z(t) dx+ (H1(Ω))′〈∂G(u(t))− ∂G(v(t)), u(t)− v(t)〉H1(Ω)

+

∫
Ω

(
f(u(t))− f(v(t))

)
(u(t)− v(t)) dx = 0,

which, by the monotonicity of the subdifferential, also recalling (2.1), implies∫
Ω

∂tz(t)z(t) dx ≤−
∫

Ω

(
f(u(t))− f(v(t))

)
(u(t)− v(t)) dx

≤Cf
∫

Ω

|u(t)− v(t)|2 dx

=Cf

∫
Ω

|z(t)|2 dx.

By Gronwall’s Lemma [142, Lemma 4.1, p.179], also recalling that z(0) = 0, we deduce
z(t) = 0.

2.3 Formal asymptotics

In this section we perform a formal asymptotic expansion for the nonlinear multidomain
model, assuming for definitiness

f(s) =
d

ds

(
(1− s2)2

)
,

in particular s± = ±1. The computations, appeared in [7], will be simpler, and at the
same time more general than those made in [43]. This will be apparent particularly in
the inner expansion of Section 2.3.2 below. Due to the strong reaction term, we expect
the sum uε :=

∑m
r=1 w

r
ε to assume values near to ±1 in most of the domain with a thin,

smooth, transition region where it transversally crosses the unstable zero of f . This
motivates the use of matched asymptotics in the outer Ω−∪Ω+ region (outer expansion)
and in the transition layer (inner expansion).

As a formal consequence (see (2.97) below), the front generated by (2.4) propagates
with the same law, up to an error of order O(ε), as the front generated by a Φo-anisotropic
mean curvature flow starting from a smooth hypersurface ∂E ⊂ Ω, where Φ is the star-
shaped combination of the m original anisotropies φ1, . . . , φm ∈Mreg(V∗).

We write the system in the convenient form

ε ∂tuε − εdiv
(
Tφ1(∇w1

ε )
)

+ 1
ε f(uε) = 0,

div
(
Tφr (∇wrε )

)
= div

(
Tφs(∇wsε )

)
, 1 ≤ r, s ≤ m,

uε =
∑m
r=1 w

r
ε .

(2.49)
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This system consists of one parabolic equation and (m − 1) elliptic equations, to be
coupled with an initial condition at {t = 0}, which in particular is required to satisfy

{uε(0, ·) = 0} = ∂E, ε ∈ (0, 1),

and m either Neumann boundary conditions at ∪Tt=0 ({t} × ∂Ω). We restore in this
section the notational dependence on ε for u = uε and all wr = wrε .

2.3.1 Outer expansion

Given r = 1, . . . ,m, we formally expand uε and wrε in terms of ε ∈ (0, 1):

uε = u0 + εu1 + ε2u2 + . . . , wrε = wr0 + εwr1 + ε2wr2 + . . .

Substituting these expressions into the parabolic equation in (2.49) and using the expan-
sion

f(uε) = f(u0) + εf ′(u0)u1 + ε2
(
u2

1f
′′(u0)

2
+ f ′(u0)u2

)
+O(ε3),

we get

f(u0) = 0, u1f
′(u0) = 0.

Hence, excluding u0 = 0 (the unstable zero of f), we get in (0, T )× Ω,

u0 ∈ {1,−1}, (2.50)

u1 ≡ 0. (2.51)

We denote by

Σ0(t), t ∈ (0, T ), (2.52)

the jump set of u0(t, ·).
Coming back to the elliptic equations in (2.49), we find

div
(
Tφr (∇wr0)

)
= div

(
Tφs(∇ws0)

)
, 1 ≤ r, s ≤ m

m∑
r=1

wr0 = u0 =⇒
m∑
r=1

∇wr0 = 0,

(2.53)

where the last implication is a consequence of (2.50).

Note also that

u2 =
1

f ′(u0)
div
(
Tφr (∇wr0)

)
, r = 1, . . . ,m. (2.54)

Remark 2.14. System (2.53) consists of (m − 1) nonlinear elliptic equations in the
(m − 1) unknown functions wr0 (for r = 2, . . . ,m), since we can solve the algebraic
equation in (2.53) with respect to w1

0.

Remark 2.15. It is important to notice that the boundary conditions across the limit
interface Σ0(t), to be coupled with (2.53), will arise by matching the outer expansion with
the inner expansion, see (2.106) and (2.108) (jump conditions and jump of the normal
derivative). We assume the elliptic problem expressed by (2.53), (2.106), (2.108) (and
augmented with Neumann or Dirichlet boundary conditions on ∂Ω) to be solvable, thus
providing wr0 for every r = 1, . . . ,m, and therefore u2 by (2.54). We stress that, at the
author’s best knowledge, this is an open question, compare Problem 2.25 at the end of
this chapter.



2.3. Formal asymptotics 31

If we now perform a Taylor-expansion for Tφr , we obtain

Tφr (η
∗ + εζ∗) = Tφr (η

∗) + εMr(η∗)ζ∗ +O(ε2), η∗, ζ∗ ∈ V∗,

where Mr = 1
2∇

2αr, which can be used in the elliptic equations of (2.49) to get equations
for wr1 for any r = 1, . . . ,m, namely:

div
(
Mr(∇wr0)∇wr1

)
= div

(
Ms(∇ws0)∇ws1

)
, 1 ≤ r, s ≤ m.

Moreover, from the relation
∑m
r=1 w

r
ε = uε, and recalling from (2.51) that u1 = 0, we

obtain
m∑
r=1

wr1 = 0.

By solving this latter equation with respect (for instance) to w1
1, and substituting it

into the previous equation we obtain a system of (m− 1) linear elliptic equations in the
unknowns wr1, for r = 2, . . . ,m.

Remark 2.16. The outer expansion has been performed without assuming Φ to be
convex.

2.3.2 Inner expansion

For any ε ∈ (0, 1) let us consider the set

Eε(t) := {x ∈ Ω : uε(t, x) ≥ 0},

the boundary of which will be denoted by

Σε(t) = {x ∈ Ω : uε(t, x) = 0}. (2.55)

Our aim is to formally identify the geometric evolution law of Σε(t) as ε→ 0+.
For r = 1, . . . , m we seek the shape, in the transition layer, of functions wrε satisfying

ε2∂tuε − ε2div
(
Tφr (∇wrε )

)
+ f(uε) = 0, r = 1, . . . , m, (2.56)

with uε =

m∑
r=1

wrε . We put, as usual,

αr := φ2
r, Tφr :=

1

2
∇αr, Mr :=

1

2
∇2αr, r = 1, . . . ,m,

so that, by Euler’s identities for homogeneus functions (recall (1.2)), we have

αr(ξ
∗) = Tφr (ξ

∗) · ξ∗ = Mr(ξ∗)ξ∗ · ξ∗, ξ∗ ∈ V∗. (2.57)

Remember that the matrixMr depends on the covector ξ∗, unless φr is a linear anisotropy
(i.e., unless Tφr is linear).

2.3.3 Main assumptions and basic notation

We assume in this section that
Φ ∈Mreg(V∗).

This allows to look at Φ as the dual of an anisotropy ϕ ∈Mreg(V), namely

ϕ = Φo.

Keeping the simpler symbol ϕ instead of Φo, we let

dϕε (t, x) := dEε(t)ϕ (x)
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denote the ϕ-signed distance function from Σε(t), positive in the interior of Eε(t) (recall
the notation in (1.4)).

Following [31], it is convenient to introduce the stretched variable y defined as

y = yϕε (t, x) :=
dϕε (t, x)

ε
.

We parametrize Σε(t) with a parameter

s ∈ Σ, (2.58)

Σ being a fixed reference (n−1)-dimensional smooth manifold, and the function x(s, t; ε)
gives the position in Ω of the point s at time t.

We let, for x in a tubular neighbourhood of Σε(t),

nϕε (t, x) := −TΦ(∇dϕε (t, x)) (2.59)

be the (outward) Cahn-Hoffman’s vector field (remember (1.6)), for which we suppose
the expansion:

nϕε := nϕ0 + εnϕ1 + . . .

Points on the evolving manifold Σε(t) are assumed to move in the direction of nϕε , i.e.

∂tx(s, t; ε) = V ϕε nϕε ,

where V ϕε is positive for an expanding set, and where we assume the validity of the
following expansion:

V ϕε = V ϕ0 + εV ϕ1 + ε2V ϕ2 + . . .

The anisotropic projection of a point x on Σε(t) will be denoted by sϕε (t, x), which
satisfies

∂ts
ϕ
ε = 0. (2.60)

Hence
∂td

ϕ
ε (t, x) = V ϕε

(
sϕε (t, x), t

)
. (2.61)

We also recall (Definition 1.9) that div (TΦ(∇dϕε )) gives (up to a minus sign) the anisotropic
mean curvature of the level hypersurface at that point and [41] it can be approximated
by the anisotropic mean curvature κϕε of Σε(t) (positive when Eε(t) is uniformly convex)
as follows

div (TΦ(∇dϕε (t, x))) = −κϕε (sϕε (t, x), t)− εyϕε hϕε (sϕε (t, x), t) +O(ε2(yϕε )2) (2.62)

for a suitable hϕε depending on the local shape of Σε(t). We assume the expansions

κϕε = κϕ0 + εκϕ1 +O(ε2), hϕε = hϕ0 +O(ε).

With abuse of notation, for a given ε, we let x(y; s, t) be the point of Ω having signed
distance εy and projection s on Σε(t). We have

x(y; s, t) = x(s, t)− εynϕε +O(ε2y2). (2.63)

For a given ε, the triplet (y; s, t) will parametrize a tubular neighbourhood of ∪t∈(0,T )({t}×
Σε(t)). We look for functions Uε(y; s, t) and W r

ε (y; s, t, x) (r = 1, . . . , m) respectively
so that

uε(t, x) = Uε

(
dϕε (t, x)

ε
, sϕε (t, x), t

)
, (2.64)

wrε (t, x) = W r
ε

(
dϕε (t, x)

ε
, sϕε (t, x), t, x

)
, r = 1, . . . ,m, (2.65)

with
m∑
r=1

W r
ε = Uε. (2.66)
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Remark 2.17. Formula (2.64) defines uniquely the function Uε, since to evey (t, x) there
corresponds uniquely the triplet (y, s, t). This observation does not apply to (2.65), in
view of the explicit dependence of the functions W r

ε on x.

We shall write

W r
ε = W r

0 + εW r
1,ε = W r

0 + εW r
1 + ε2W r

2,ε, r = 1, . . . ,m, (2.67)

where W r
0 and W r

1 are allowed to depend explicitly on x (and hence on ε). We suppose
the remainders W r

1,ε, W
r
2,ε to be bounded as ε→ 0+.

We let also

Sr :=
1

2
∇3αr = ∇Mr, r = 1, . . . ,m,

be the 3-indices, (−1)-homogeneus completely symmetric tensor given by the third deriva-
tives of 1

2αr: in components we have

Srijk := ∇kMr
ij , r = 1, . . . ,m,

where ∇k = ∂
∂ξ∗k

. Finally, for any j, k = 1, . . . , n, we introduce the notation

Mr
. k :=

(
Mr

1k . . .M
r
nk

)
, Sr.jk :=

(
Sr1jk . . . S

r
njk

)
, r = 1, . . . ,m.

Warning: We will adopt the convention of summation on repeated indices, with the
exception of the index r, for which the explicit symbol

∑m
r=1 will be always used. For

instance, in formulas (2.71), (2.75), (2.76), (2.77) and (2.116) below, no summation on r
is understood.

2.3.4 Preliminary expansions

Now we begin to expand all terms in (2.56). We have, using the convention of summation
on repeated indices,

ε2∂tuε = ε2Uεsβ ∂ts
ϕ
εβ + εU ′ε ∂td

ϕ
ε + ε2Uεt = εU ′εV

ϕ
ε + ε2Uεt, (2.68)

where we used (2.60) and (2.61).
We write

Uε = U0 + εU1,ε = U0 + εU1 + ε2U2,ε, (2.69)

where we require U0 and U1 not to depend on ε.
Using Taylor’s expansion of the nonlinearity f , we get

f(Uε) = f(U0) + εU1,εf
′(U0) +

1

2
ε2(U1,ε)

2f ′′(U0) +O(ε3). (2.70)

To expand the divergence term, we need some additional work. First of all, expanding
the operator Tφr , we get

Tφr (η
∗ + εζ∗) = Tφr (η

∗) + εMr(η∗)ζ∗ +
1

2
ε2Sr·jk(η∗)ζ∗j ζ

∗
k +O(ε3), η∗, ζ∗ ∈ V∗,

so that, for any r = 1, . . . ,m,

ε2Tφr (∇wrε )

= Tφr

(
εW r

ε
′ ∇dϕε + ε2W r

εsβ
∇sϕεβ + ε2∇W r

ε

)
= εW r

ε
′ Tφr (∇dϕε ) + ε2W r

εsβ
Mr(∇dϕε )∇sϕεβ + ε2Mr(∇dϕε )∇W r

ε

+
1

2W r
ε
′ ε

3Sr·jk(∇dϕε )
[
W r
εsβ
∂xjs

ϕ
εβ + ∂xjW

r
ε

] [
W r
εsβ
∂xks

ϕ
εβ + ∂xkW

r
ε

]
+O(ε4).

(2.71)
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Remark 2.18. Since we still have to apply the divergence operator (which produces an
extra ε−1 factor), we need to go through the ε3 term in (2.71). We also observe that the

term O(ε4) in (2.71) is actually a term of order O
(
ε4 1

(W r
ε
′)2

)
which, a posteriori, turns

out to be of order O(ε4): indeed, from (2.86) below it follows that W r
ε
′ is nonvanishing

in the transition layer.

We now recall that by Euler’s identities for homogeneous functions we have

Tφr (ξ
∗) = ∇iTφr (ξ∗)ξ∗i , ξ∗ ∈ V∗, (2.72)

which implies

Tφr (∇dϕε ) · ∇sϕεβ = Mr(∇dϕε )∇sϕεβ · ∇d
ϕ
ε , r = 1, . . . ,m. (2.73)

Differentiating (2.72) with respect to ξ∗k and using the notation ∇2
ik = ∂2

∂ξ∗k∂ξ
∗
i

, we also

have

∇2
ikTφr (ξ

∗)ξ∗i = Sr·ikξ
∗
i = 0, ξ∗ ∈ V∗, k = 1, . . . , n,

which implies

Srijk(∇dϕε )∇idϕε = 0, j, k = 1, . . . , n, r = 1, . . . ,m. (2.74)

For any r = 1, . . . ,m, we compute, using (2.73),

ε2div(Mr(∇dϕε )∇W r
ε )

= ε2∂xi

(
Mr
ij(∇dϕε )W r

εxj

)
= εTφr (∇dϕε ) · ∇W r

ε
′

+ ε2W r
εxjdiv

(
Mr
·j(∇dϕε )

)
+ ε2Mr(∇dϕε )∇sϕεβ · ∇W

r
εsβ

+ ε2W r
εxixjM

r
ij(∇dϕε ).

(2.75)

By differentiating (2.71) we obtain, using also (2.57),

ε2div (Tφr (∇wrε ))
= αr(∇dϕε )W r

ε
′′ + 2εW r

εsβ
′ Tφr (∇dϕε ) · ∇sϕεβ

+ 2ε Tφr (∇dϕε ) · ∇W r
ε
′ + εW r

ε
′ div(Tφr (∇dϕε ))

+ ε2W r
εsβsδ

Mr(∇dϕε )∇sϕεβ · ∇s
ϕ
εδ + ε2Mr(∇dϕε )∇sϕεβ · ∇W

r
εsβ

+ ε2W r
εsβ

div
(
Mr(∇dϕε )∇sϕεβ

)
+ ε2W r

εxjdiv
(
Mr
·j(∇dϕε )

)
+ ε2 Mr(∇dϕε )∇sϕεβ · ∇W

r
εsβ

+ ε2W r
εxixjM

r
ij(∇dϕε )

+O
(
ε3
)
,

(2.76)

where we notice that no contribution of order larger than O
(
ε3
)

can come from the O(ε3)
term in (2.71) — because they can only be produced via differentiation with respect to
y, which in turn gives rise to a scalar product between ∇dϕε and the tensor Sr(∇dϕε )
(which in the end vanishes, due to Euler’s identities (2.74)).

Hence, in terms of Uε and W r
ε , the expansion of the r-th parabolic equation in (2.56),
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for r = 1, . . . , m, reads as, using also (2.68),

0 = − αr(∇dϕε )W r
ε
′′ + f(Uε)

+ ε
(
V ϕε U

′
ε − 2W r

εsβ
′ Tφr (∇dϕε ) · ∇sϕεβ − 2Tφr (∇dϕε ) · ∇W r

ε
′

−W r
ε
′div (Tφr (∇dϕε ))

)
+ ε2

(
Uεt −W r

εsβsδ
Mr(∇dϕε )∇sϕεβ · ∇s

ϕ
εδ

− 2Mr(∇dϕε )∇sϕεβ · ∇W
r
εsβ
−W r

εsβ
div
(
Mr(∇dϕε )∇sϕεβ

)
−W r

εxjdiv
(
Mr
·j(∇dϕε )

)
−W r

εxixjM
r
ij(∇dϕε )

)
+O

(
ε3
)
.

(2.77)

2.3.5 Order 0

Recall [44] that ∇dϕε satisfies the anisotropic eikonal equation

(Φ(∇dϕε ))2 = 1 (2.78)

in the evolving transition layer.
Assuming the formal expansion

dϕε = dϕ0 + εdϕ1 + ε2dϕ2 +O(ε3), (2.79)

where dϕ0 (t, ·) is the ϕ-signed distance from Σ0(t) (positive in the interior of {u0(t, ·) =
1}), equation (2.78) leads to

1 = Φ2(∇dϕ0 ) + 2εTΦ(∇dϕ0 ) · ∇dϕ1
+ ε2

(
2TΦ(∇dϕ0 ) · ∇dϕ2 +∇TΦ(∇dϕ0 )∇dϕ1 · ∇d

ϕ
1

)
+O(ε3),

which in particular entails:
Φ2(∇dϕ0 ) = 1, (2.80)

TΦ(∇dϕ0 ) · ∇dϕ1 = 0, (2.81)

2TΦ(∇dϕ0 ) · ∇dϕ2 +∇TΦ(∇dϕ0 )∇dϕ1 · ∇d
ϕ
1 = 0. (2.82)

Using formula (1.10), equation (2.80) reads as

m∑
r=1

1

αr(∇dϕ0 (t, x))
= 1, (2.83)

again for all x in a suitable tubular neighbourhood of Σε(t).

Remark 2.19 (Weights). The quantities

1

αr(∇dϕ0 )
, r = 1, . . . , m

can be used as “weights” to obtain a weighted mean of equations (2.77). This observation
will be crucial in the sequel.

Collecting all terms of order zero in ε from each parabolic equation (2.77), dividing
by αr(∇dϕ0 ), summing r = 1, . . . ,m and using (2.83), we obtain

− U ′′0 + f(U0) = 0, (2.84)

where we used expansions (2.67), (2.69), (2.70), (2.79) for Uε, W
r
ε , f(Uε), d

ϕ
ε , and we

have employed (2.66).
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The only admissible solution of (2.84) (see for instance [40, 31]) is the standard
standing wave

U0(y, s, t) = γ(y), y ∈ R,

where γ(y) = tgh(cy) (here c is a constant only depending on f); in particular, U0 does
not depend on (s, t).

Now we can recover each of the m functions wr0, r = 1, . . . ,m, by substituting
f(U0) = U ′′0 into (2.77):

αr(∇dϕ0 )wr0
′′ = U ′′0 = γ′′.

Hence

W r
0
′′ =

1

αr(∇dϕ0 )
U ′′0 =

1

αr(∇dϕ0 )
γ′′, r = 1, . . . ,m. (2.85)

We also get by integration(4)

W r
0
′ =

1

αr(∇dϕ0 )
U ′0 =

1

αr(∇dϕ0 )
γ′, r = 1, . . . ,m. (2.86)

Remark 2.20. The functions W r
0
′ depend explicitly on x (and on t) through the coef-

ficient 1
αr(∇dϕ0 )

. They are, on the other hand, independent of s.

2.3.6 Order 1

Let us consider the terms of order ε in equations (2.77). To this aim, we use the repre-
sentation of 1

2∇
2α = Q+Q0 given in Section 1.3.1 for α = Φ2, namely

Q = α2
m∑
r=1

1

α2
r

Mr,

where
Q0(ξ∗)ξ∗ = 0, ξ∗ ∈ V∗. (2.87)

Remember that by Euler’s identities for homogeneous functions we have

TΦ(ξ∗) =
1

2
∇2α(ξ∗)ξ∗ = (Q(ξ∗) +Q0(ξ∗)) ξ∗, ξ∗ ∈ V∗.

Hence, using (2.87),

TΦ(∇dϕ0 ) =
(
Q(∇dϕ0 ) +Q0(∇dϕ0 )

)
∇dϕ0

=Q(∇dϕ0 )∇dϕ0 = (α(∇dϕ0 ))2
m∑
r=1

1

(αr(∇dϕ0 ))2
Mr(∇dϕ0 )∇dϕ0

=

m∑
r=1

1

(αr(∇dϕ0 ))2
Mr(∇dϕ0 )∇dϕ0 ,

(2.88)

where the last equality follows from (2.78). Therefore

div (TΦ(∇dϕ0 )) =

m∑
r=1

div

(
1

(αr(∇dϕ0 ))2
Tφr (∇d

ϕ
0 )

)
. (2.89)

For each r = 1, . . . , m, we now collect all terms of order one in (2.77).
Remembering once more that U0 = γ and wr0

′ do not depend explicitly on s and t so
that in particular W r′

0sβ
= 0, we obtain

− αr(∇dϕ0 )W r
1
′′ − 2W r

0
′′Tφr (∇d

ϕ
0 ) · ∇dϕ1 + f ′(γ)U1

+ γ′V ϕ0 − 2Tφr (∇d
ϕ
0 ) · ∇W r

0
′ −W r

0
′div (Tφr (∇d

ϕ
0 )) = 0,

(2.90)

(4)See Section 2.3.7 below, and in particular equation (2.105).
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where we have taken into account that the term

−αr(∇dϕ0 )W r
1
′′ − 2wr0

′′Tφr (∇d
ϕ
0 ) · ∇dϕ1 + f ′(γ)U1

arises from the expansion at the order ε of the first line on the right hand side of (2.77).
Using formula (2.86), equation (2.90) can be rewritten as

− αr(∇dϕ0 )W r
1
′′ − 2γ′′

Tφr (∇d
ϕ
0 ) · ∇dϕ1

αr(∇dϕ0 )
+ f ′(γ)U1 + γ′V ϕ0

− αr(∇dϕ0 )γ′

[
div (Tφr (∇d

ϕ
0 ))

(αr(∇dϕ0 ))2
+ 2

Tφr (∇d
ϕ
0 ) · ∇ 1

αr(∇dϕ0 )

αr(∇dϕ0 )

]
= 0.

(2.91)

Since ∇ 1
α2
r

= 2
αr
∇ 1
αr

, the expression in square brackets is simply

div
( 1

(αr(∇dϕ0 ))2
Tφr (∇d

ϕ
0 )
)
, r = 1, . . . ,m. (2.92)

Recalling (2.89), the sum over r = 1, . . . ,m of the latter divergences gives div (TΦ(∇dϕ0 )).
The weighted sum of equations (2.91) finally produces

−L(U1) = γ′
[
V ϕ0 − div (TΦ(∇dϕ0 ))

]
,

where
L(g) := −g′′ + f ′(γ)g,

and we make use of (2.81).
Recall now that from (2.62) and the expansions of κϕε it follows

div (TΦ(∇dϕε )) = −κϕ0 − εκ
ϕ
1 − εyh

ϕ
0 +O(ε2y2), (2.93)

in particular
div (TΦ(∇dϕ0 )) = −κϕ0 . (2.94)

We then obtain
− L(U1) = γ′

[
V ϕ0 + κϕ0

]
. (2.95)

We recall now from [40, 31, 26] that for equation −L(g) = v to be solvable, we must
enforce the orthogonality condition ∫

R
γ′v dy = 0. (2.96)

This and (2.95) imply the remarkable fact

V ϕ0 = −κϕ0 , (2.97)

so that
U1 = 0. (2.98)

Remark 2.21 (Convergence to anisotropic mean curvature flow). Note carefully
that (2.97) justifies the convergence of solutions of system (2.4) to Φo-anisotropic mean
curvature flow.

Substituting (2.97) and (2.98) in (2.91), dividing by αr(∇dϕ0 ) and recalling that the
square bracket in (2.91) equals (2.92), we end up with the equation for W r

1 , for any
r = 1, . . . ,m:

W r
1
′′ =

1

αr(∇dϕ0 )
γ′V ϕ0 − γ′div

(
1

(αr(∇dϕ0 ))2
Tφr (∇d

ϕ
0 )

)
− 2γ′′

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2

=
1

αr(∇dϕ0 )
γ′div (TΦ(∇dϕ0 ))− γ′div

(
1

(αr(∇dϕ0 ))2
Tφr (∇d

ϕ
0 )

)
− 2γ′′

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
,

(2.99)
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since, from (2.94) and (2.97),

div (TΦ(∇dϕ0 )) = V ϕ0 .

As a consequence, recalling (2.83), (2.89) and (2.81), we have

m∑
r=1

W r
1
′′ = U ′′1 = 0, (2.100)

where the last equality follows from (2.98).
Equation (2.99) can be written as(5)

W r
1
′′ =γ′

[
div

(
1

αr(∇dϕ0 )
TΦ(∇dϕ0 )

)
− div

(
1

(αr(∇dϕ0 ))2
Tφr (∇d

ϕ
0 )

)

− TΦ(∇dϕ0 ) · ∇ 1

αr(∇dϕ0 )

]
− 2γ′′

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
.

(2.101)

From (2.100) it follows that
∑m
r=1W

r
1 minus a linear function vanishes, namely

m∑
r=1

W r
1 − U1 = C1y + C0.

We now claim that C0 = C1 = 0, and hence

m∑
r=1

W r
1 = U1(= 0). (2.102)

The constant C0 turns out to be zero for the following argument: as a consequence
of (2.66) and (2.55),

0 = Uε(0, t, x) =

m∑
r=1

W r
ε (0, t, x), ε ∈ (0, 1),

which implies
m∑
r=1

W r
i (0, t, x) = 0, i ≥ 0

and hence C0 = 0.
For what concerns the constant C1, we have, using (2.110) below and (2.81),

C1 =

m∑
r=1

W r
1
′ =

m∑
r=1

{
(γ − 1)Θr − 2γ′

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
+ wr0

′
}

=

m∑
r=1

{
(γ − 1)Θr + wr0

′
}
.

On the other hand, from (2.109) below, it follows
∑m
r=1 w

r
0
′ = 0, so that C1 = (γ −

1)

m∑
r=1

Θr. In order to conclude the proof of claim (2.102) it is enough to observe that

m∑
r=1

Θr = 0, as a consequence of the expression of Θr in (2.110), and of (2.83) and (2.89),

and so C1 = 0.

(5) Although written in a somewhat different form, this result coincides with that of [31], where
dϕε has not been expanded (hence dϕε appears in place of dϕ0 in (2.101), and accordingly the last
addendum is not present).
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2.3.7 Matching procedure

We are now in a position to recover the first term wr0 of the outer expansion of wrε , by
adding to (2.53) a jump condition for wr0 and a condition for nϕ0 ·∇wr0 across the interface
Σ0(t), defined as the boundary of the external phase {u0(t, ·) = 1} (see (2.52)). We set

Σε(t) = {x+ εσ1(s, t)nϕ0 +O(ε2) : x ∈ Σ0(t)},
for a suitable σ1 : Σ× R→ R, where Σ is the reference manifold in (2.58).

We will make use of the change of variables (2.63), and we will match the two
expansions in the region of common validity |y| → +∞ and x approaching Σε(t):

wrε
(
t, x(s, t)− εynϕε +O(ε2y2)

)
≈W r

ε (y; s, t, x(s, t)− εynϕε +O(ε2y2)).

By expanding the left and right hand sides, understanding that wrε is computed at points
x(s, t) ∈ Σε(t), we get

wrε − εynϕε · ∇wrε +O(ε2y2) ≈W r
ε − εynϕε · ∇W r

ε +O(ε2y2), r = 1, . . . ,m.

Expanding wrε , W
r
ε in powers of ε, and matching the first two orders, we get in particular

lim
y→±∞

W r
0 (y, s(t, x), t, x) = wr0(t, x), (2.103)

and

lim
y→±∞

{
W r

1 (y, s(t, x), t, x)− wr1(t, x)

− y
(
nϕ0 · ∇W r

0 (y, s(t, x), t, x)− nϕ0 · ∇wr0(t, x)
)}

= 0,
(2.104)

where wr0 and wr1 are evaluated at each side of the interface according to when y goes to
plus or minus infinity.

Equality (2.103) in particular suggests

lim
y→±∞

W r
0
′(y, s(t, x), t, x) = 0, r = 1, . . . ,m, (2.105)

and the jump [[wr0]] of wr0 across the interface is given by

[[wr0]](s(t, x), t) =

∫
R
W r

0
′(y, s(t, x), t, x) dy, r = 1, . . . ,m.

From (2.86) we get

[[wr0]] =
c0

αr(∇dϕ0 )
, r = 1, . . . ,m, (2.106)

where

c0 :=

∫
R
γ′ dy ∈ (0,+∞).

To obtain the equation involving the conormal derivative, we formally differentiate equa-
tion (2.104):

lim
y→±∞

{
W r

1
′(y, s(t, x), t, x)

− nϕ0 · ∇W r
0 (y, s(t, x), t, x)

}
= −nϕ0 · ∇wr0(t, x),

(2.107)

where we used also the fact that

lim
y→±∞

y nϕ0 · ∇W r
0
′(y, s(t, x), t, x) = 0,

since ∇W r
0
′ = γ′∇ 1

αr(∇dϕ0 )
by (2.86) and γ′ decays exponentially to 0 as y → ±∞. For

the same reason, W r
1
′ is also bounded, thus

−[[nϕ0 · ∇wr0]](t, x) =

∫
R

(
W r

1
′′(y, s(t, x), t, x)− nϕ0 · ∇W r

0
′(y, s(t, x), t, x)

)
dy.
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Coupling previous line with (2.99) and (2.86), and recalling from (2.59) that nϕ0 =
−TΦ(∇dϕ0 ) we end up with

− [[nϕ0 · ∇wr0]] = c0 div

[
1

αr(∇dϕ0 )
TΦ(∇dϕ0 )− 1

α2
r(∇d

ϕ
0 )
Tφr (∇d

ϕ
0 )

]
. (2.108)

The two jump conditions on w0 across Σ0(t), together with the far field equation (2.53)
and appropriate boundary conditions at ∂Ω allow to retrieve a unique solution w0.

If we integrate (2.86), and use the matching condition for wr0 in (2.103), we get for
W r

0 the expression

W r
0 =

1

αr(∇dϕ0 )
(γ − 1) + wr0

+(s, t), r = 1, . . . ,m,

where wr0
+ is the trace on Σ0(t) of wr0 from the external phase {u0(t, ·) = 1}. In particular

m∑
r=1

wr0
+ = 1. (2.109)

Thus, for every r = 1, . . . ,m,

W r
0sβ

= wr+0sβ
, ∇W r

0 = (γ − 1)∇ 1

αr
, ∇W r

0sβ
= 0,

W r
0sβsδ

= wr+0sβsδ
, W r

0xixj = (γ − 1)∂xixj
1

αr
.

In a similar fashion we can integrate (2.99), and use the matching condition (2.107), to
get, for any r = 1, . . . ,m,

W r
1
′ = (γ − 1)

{
1

αr(∇dϕ0 )
div (TΦ(∇dϕ0 ))− div

(
1

α2
r(∇d

ϕ
0 )
Tφr (∇d

ϕ
0 )

)}
− 2γ′

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
+ wr0

′(s, t)

=(γ − 1)Θr(t, x)− 2γ′
Tφr (∇d

ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
+ wr0

′(s, t),

(2.110)

where

wr0
′ := TΦ(∇dϕ0 ) · ∇wr0

+,

and Θr is a shorthand for the expression in braces. Observe that only the last term
explicitly depends on s, while the other terms depend on y (by means of γ) and on x (by
means of Θr). Thus

W r
1sβ
′ = wr0sβ

′,

∇W r
1
′ = (γ − 1)∇Θr − 2γ′∇

(
Tφr (∇d

ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2

)
. (2.111)

Remark 2.22. Note that the jump in the conormal derivative [[nϕ0 · ∇wr0]] vanishes in
the special case of equal anisotropic ratio, which, in our context, consists of choosing,
for every r = 1, . . . , m, αr := λrα with some given smooth symmetric uniformly convex
squared anisotropy α and positive λr (indeed, in this case eikonal equation (2.83) leads
to α(∇dϕ0 ) =

∑m
r=1 λ

−1
r ).

Remark 2.23. Given r = 1, . . . ,m, the function W r
1 (·, t, x) is expected to have linear

growth at infinity (independent of ε), differently with respect to W r
0 (·, t, x), which is

expected to be bounded at infinity. Observe, however, that
∑m
r=1W

r
1 (·, t, x) = 0, see

(2.102).
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2.3.8 Order 2

We end our asymptotic analysis considering the O(ε2) terms in equation (2.77), which
represents an improvement with respect to [43] (in which expansions are performed only
up to the order O(ε) and m = 2). Recall that U ′0 = γ′ depends only on y and that
U1 = 0. Then the terms of order O(ε2) arising from the first line on the right hand side
of (2.77) are:

− αr(∇dϕ0 )W r
2
′′ − 2W r

1
′′Tφr (∇d

ϕ
0 ) · ∇dϕ1

−
[
2Tφr (∇d

ϕ
0 ) · ∇dϕ2 +Mr(∇dϕ0 )∇dϕ1 · ∇d

ϕ
1

]
W r

0
′′ + f ′(γ)U2.

(2.112)

The terms of order O(ε) arising from the terms in the round parentheses in the second
and third lines of (2.77) are

γ′V ϕ1 − 2W r
1sβ
′ Tφr (∇d

ϕ
0 ) · ∇sϕ0β − 2Tφr (∇d

ϕ
0 ) · ∇W r

1
′

− 2Mr(∇dϕ0 )∇dϕ1 · ∇W r
0
′ −W r

1
′div

(
Tφr (∇d

ϕ
0 )
)

−W r
0
′div

(
Mr(∇dϕ0 )∇dϕ1

)
.

(2.113)

Let us shorthand by Dr the sum of the terms of order O(1) arising from the terms in the
round parentheses in the fourth, fifth and sixth lines of (2.77), namely

−W r
0sβsδ

Mr(∇dϕ0 )∇sϕ0β · ∇s
ϕ
0δ − 2Mr(∇dϕ0 )∇sϕ0β · ∇W

r
0sβ

−W r
0sβ

div
(
Mr(∇dϕ0 )∇sϕ0β

)
−W r

0xjdiv
(
Mr
·j(∇d

ϕ
0 )
)

−W r
0xixjM

r
ij(∇d

ϕ
0 ).

(2.114)

Collecting together (2.112), (2.113) and (2.114) we get

− αr(∇dϕ0 )W r
2
′′ − 2W r

1
′′Tφr (∇d

ϕ
0 ) · ∇dϕ1

−
[
2Tφr (∇d

ϕ
0 ) · ∇dϕ2 +Mr(∇dϕ0 )∇dϕ1 · ∇d

ϕ
1

]
W r

0
′′ + f ′(γ)U2

γ′V ϕ1 − 2W r
1sβ
′ Tφr (∇d

ϕ
0 ) · ∇sϕ0β − 2Tφr (∇d

ϕ
0 ) · ∇W r

1
′

− 2Mr(∇dϕ0 )∇dϕ1 · ∇W r
0
′ −W r

1
′div

(
Tφr (∇d

ϕ
0 )
)

−W r
0
′div

(
Mr(∇dϕ0 )∇dϕ1

)
+ Dr.

(2.115)

Substituting (2.85), (2.86), (2.101), (2.110), (2.111) into (2.115), also recalling (2.94),
and reordering terms, we get, for any r = 1, . . . ,m,

0 = − αr(∇dϕ0 )W r
2
′′ + f ′(γ)U2 + γ′V ϕ1

+ γ′
{

2Tφr (∇d
ϕ
0 ) · ∇dϕ1

[
κϕ0

αr(∇dϕ0 )
+ div

(
Tφr (∇d

ϕ
0 )

(αr(∇dϕ0 ))2

)]}
+ 4γ′Tφr (∇d

ϕ
0 ) · ∇

(
Tφr (∇d

ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2

)
− 2γ′Mr(∇d0)∇dϕ1 · ∇

(
1

αr(∇dϕ0 )

)
− γ′ 1

αr(∇dϕ0 )
div
(
Mr(∇dϕ0 )∇dϕ1

)
+ 2γ′

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
div (Tφr (∇d

ϕ
0 ))

+ γ′′Ar + Br + Cr + Dr,

(2.116)

where for brevity we have set

Ar :=

(
2Tφr (∇d

ϕ
0 ) · ∇dϕ1

αr(∇dϕ0 )

)2

−

[
2Tφr (∇d

ϕ
0 ) · ∇dϕ2 +Mr(∇dϕ0 )∇dϕ1 · ∇d

ϕ
1

]
αr(∇dϕ0 )

,
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and
Br := −2W r

1sβ
′ Tφr (∇d

ϕ
0 ) · ∇sϕ0β ,

Cr := −
[
(γ − 1)Θr + wr0

′]div(Tφr (∇d
ϕ
0 )) + (γ − 1)∇Θr · Tφr (∇d

ϕ
0 ).

Let us now focus the attention to (2.116), where for the moment we neglect the first
and the last lines. Dividing by αr(∇dϕ0 ), we get (again reordering terms, and up to the
factor γ′)

2Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
κϕ0 +

2Tφr (∇d
ϕ
0 ) · ∇dϕ1

αr(∇dϕ0 )
div

(
Tφr (∇d

ϕ
0 )

(αr(∇dϕ0 ))2

)
+ 4

Tφr (∇d
ϕ
0 )

αr(∇dϕ0 )
· ∇
(
Tφr (∇d

ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 )2

)
+ 2

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))3
div (Tφr (∇d

ϕ
0 ))

− 2

αr(∇dϕ0 )
Mr(∇d0)∇dϕ1 · ∇

(
1

αr(∇dϕ0 )

)
− 1

(αr(∇dϕ0 ))2
div
(
Mr(∇dϕ0 )∇dϕ1

)

(2.117)

Observe now that the first term in (2.117) will disappear when summing up on r =
1, . . . ,m, thanks to (2.88) and (2.80). Moreover, the last two terms of (2.117) can be put

together giving div
(
Mr(∇dϕ0 )∇dϕ1
(αr(∇dϕ0 ))2

)
so that, summing up on r, we get

2

m∑
r=1

Tφr (∇d
ϕ
0 ) · ∇dϕ1

αr(∇dϕ0 )
div

(
Tφr (∇d

ϕ
0 )

(αr(∇dϕ0 ))2

)
︸ ︷︷ ︸

:=E

+ 4

m∑
r=1

Tφr (∇d
ϕ
0 )

αr(∇dϕ0 )
· ∇
(
Tφr (∇d

ϕ
0 ) · ∇dϕ1

α2
r(∇d

ϕ
0 )

)
︸ ︷︷ ︸

:=F

+ 2

m∑
r=1

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))3
divTφr (∇d

ϕ
0 )︸ ︷︷ ︸

:=G

−
m∑
r=1

div

(
Mr(∇dϕ0 )∇dϕ1

(αr(∇dϕ0 ))2

)
︸ ︷︷ ︸

:=H

.

Now, we claim that
κϕ1 + yhϕ0 = E + F +G+H. (2.118)

In order to prove (2.118), we shall make use of the equality(6)

−κϕ1 − yh
ϕ
0 = div

(
∇TΦ(∇dϕ0 )∇dϕ1

)
.

Using formulas (1.16), (1.17), and the relations ∇αr = 2Tφr , Φ2(∇dϕ0 ) = 1, we get

−κϕ1 − yh
ϕ
0 =

m∑
r=1

div

(
Mr(∇dϕ0 )∇dϕ1

(αr(∇dϕ0 ))2

)

+

m∑
r=1

div

(
1− αr(∇dϕ0 )

(αr(∇dϕ0 ))4
∇αr(∇dϕ0 )⊗∇αr(∇dϕ0 )∇dϕ1

)

+

m∑
j,r=1,
j 6=r

div

(
1

(αr(∇dϕ0 ))2(αj(∇dϕ0 ))2
∇αr(∇dϕ0 )⊗∇αj(∇dϕ0 )∇dϕ1

)
.

(6)Recall (2.93).
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Adding and subtracting in the previous line the term

4

m∑
r=1

div

(
1

(αr(∇dϕ0 ))4
Tφr (∇d

ϕ
0 )⊗ Tφr (∇d

ϕ
0 )∇dϕ1

)
,

it follows

−κϕ1 − yh
ϕ
0 =

m∑
r=1

div

(
Mr(∇dϕ0 )∇dϕ1

(αr(∇dϕ0 ))2

)

+ 4

m∑
r=1

div

(
1− αr(∇dϕ0 )

(αr(∇dϕ0 ))4
(Tφr (∇d

ϕ
0 ) · ∇dϕ1 )Tφr (∇d

ϕ
0 )

)

+ 4

m∑
j,r=1,
j 6=r

div

(
1

(αr(∇dϕ0 ))2(αj(∇dϕ0 ))2
Tφr (∇d

ϕ
0 )⊗ Tφj (∇d

ϕ
0 )∇dϕ1

)

− 4

m∑
r=1

div

(
1

(αr(∇dϕ0 ))4
Tφr (∇d

ϕ
0 )⊗ Tφr (∇d

ϕ
0 )∇dϕ1

)
.

Notice that, for every r = 1, . . . ,m, we have

m∑
j=1,
j 6=r

div

(
1

(αr(∇dϕ0 ))2(αj(∇dϕ0 ))2
Tφr (∇d

ϕ
0 )⊗ Tφj (∇d

ϕ
0 )∇dϕ1

)
= 0,

thanks again to (2.80). Hence

κϕ1 + yhϕ0 =−
m∑
r=1

div

(
Mr(∇dϕ0 )∇dϕ1

(αr(∇dϕ0 ))2

)

− 4

m∑
r=1

div

(
1− αr(∇dϕ0 )

(αr(∇dϕ0 ))4
(Tφr (∇d

ϕ
0 ) · ∇dϕ1 )Tφr (∇d

ϕ
0 )

)

+ 4

m∑
r=1

div

(
1

(αr(∇dϕ0 ))4
Tφr (∇d

ϕ
0 )⊗ Tφr (∇d

ϕ
0 )∇dϕ1

)

=−
m∑
r=1

div

(
Mr(∇dϕ0 )∇dϕ1

(αr(∇dϕ0 ))2

)

+ 4

m∑
r=1

div

(
1

(αr(∇dϕ0 ))3
(Tφr (∇d

ϕ
0 ) · ∇dϕ1 )Tφr (∇d

ϕ
0 )

)
,

(2.119)

where we used the identity

Tφr (∇d
ϕ
0 )⊗ Tφr (∇d

ϕ
0 )∇dϕ1 = (Tφr (∇d

ϕ
0 ) · ∇dϕ1 )Tφr (∇d

ϕ
0 ).

Observe that the term appearing in the fourth line of (2.119) cancels with H, so that, in
order to prove claim (2.118), it will be enough to show that

E + F +G = 4

m∑
r=1

div

(
1

(αr(∇dϕ0 ))2
(Tφr (∇d

ϕ
0 ) · ∇dϕ1 )Tφr (∇d

ϕ
0 )

)
. (2.120)

The right hand side of (2.120) can be rewritten as

4

m∑
r=1

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
div

(
Tφr (∇d

ϕ
0 )

αr(∇dϕ0 )

)
+ 4

m∑
r=1

Tφr (∇d
ϕ
0 )

αr(∇dϕ0 )
· ∇
(
Tφr (∇d

ϕ
0 ) · ∇dϕ1

α2
r(∇d

ϕ
0 )

)
,

so that its last addendum cancels with F . Thus, we are left to prove that

E +G = 4

m∑
r=1

Tφr (∇d
ϕ
0 ) · ∇dϕ1

(αr(∇dϕ0 ))2
div

(
Tφr (∇d

ϕ
0 )

αr(∇dϕ0 )

)
,
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or equivalently

m∑
r=1

Tφr (∇d
ϕ
0 ) · ∇dϕ1

αr(∇dϕ0 )

{
div

(
Tφr (∇d

ϕ
0 )

(αr(∇dϕ0 ))2

)
+

div (Tφr (∇d
ϕ
0 ))

(αr(∇dϕ0 ))2

− 2

αr(∇dϕ0 )
div

(
Tφr (∇d

ϕ
0 )

αr(∇dϕ0 )

)}
= 0.

(2.121)

This can be done for instance using the identity

div

(
Tφr (∇d

ϕ
0 )

(αr(∇dϕ0 ))2

)
=

1

αr(∇dϕ0 )
div

(
Tφr (∇d

ϕ
0 )

αr(∇dϕ0 )

)
+
Tφr (∇d

ϕ
0 )

αr(∇dϕ0 )
· ∇
(

1

αr(∇dϕ0 )

)
;

then the quantity in braces in (2.121) equals, for any r = 1, . . . ,m,

Tφr (∇d
ϕ
0 )

αr(∇dϕ0 )
· ∇
(

1

αr(∇dϕ0 )

)
+

div (Tφr (∇d
ϕ
0 ))

(αr(∇dϕ0 ))2
− 1

αr(∇dϕ0 )
div

(
Tφr (∇d

ϕ
0 )

αr(∇dϕ0 )

)
,

which is identically zero. This proves claim (2.120), and hence (2.118).

Let us come back to (2.116). Dividing by αr(∇dϕ0 ), summing over r = 1, . . . ,m,
using also (2.83) and (2.118), we get

0 = −U ′′2 + U2f
′(γ) + γ′(V ϕ1 + κϕ1 ) + yγ′hϕ0 +

m∑
r=1

1

αr(∇dϕ0 )
[γ′′Ar + Br + Cr + Dr] .

Note that we have used U2 =
∑m
r=1W

r
2 : in general it may happen that U2−

∑m
r=1W

r
2 =

O(ε), but we have the freedom(7) to redefine the functions W r
2 up to discrepancies of

order O(ε), and put the subsequent errors in the terms U3 and W r
3 , which we are not

interested in.

Incidentally, we notice that

m∑
r=1

1

αr(∇dϕ0 )
Ar = 0. (2.122)

Indeed, let us show that

m∑
r=1

1

αr(∇dϕ0 )
Ar = −(2TΦ(∇dϕ0 ) · ∇dϕ2 )−∇TΦ(∇dϕ0 )∇dϕ1 · ∇d

ϕ
1 . (2.123)

Then (2.122) will follow at once recalling (2.82). In order to prove (2.123), we make use
of the representation formula for the hessian ∇TΦ given in Section 1.3.1 (in particular,
recall (1.16) and (1.17)). Using also (2.78), we can rewrite ∇TΦ(∇dϕ0 ) as

∇TΦ(∇dϕ0 ) =

m∑
r=1

1

αr(∇dϕ0 )
Mr(∇dϕ0 )

+ 4

m∑
r=1

1− αr(∇dϕ0 )

α4
r(∇d

ϕ
0 )

Tφr (∇d
ϕ
0 )⊗ Tφr (∇d

ϕ
0 )

+ 4

m∑
j,r=1,
j 6=r

1

α2
j (∇d

ϕ
0 )α2

r(∇d
ϕ
0 )
Tφj (∇d

ϕ
0 )⊗ Tφr (∇d

ϕ
0 );

(7) This is because enforcing the relation between (t, x) and (y, s, t, x) introduces a dependence
on ε.
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as a consequence,

∇TΦ(∇dϕ0 )∇dϕ1 · ∇d
ϕ
1 =

m∑
r=1

1

αr(∇dϕ0 )
Mr(∇dϕ0 )∇dϕ1 · ∇d

ϕ
1

+ 4

m∑
r=1

1− αr(∇dϕ0 )

α4
r(∇d

ϕ
0 )

(Tφr (∇d
ϕ
0 ) · ∇dϕ1 )2

+ 4

m∑
r=1

Tφr (∇d
ϕ
0 ) · ∇dϕ1

α2
r(∇d

ϕ
0 )

m∑
j=1,
j 6=r

Tφj (∇d
ϕ
0 ) · ∇dϕ1

α2
j (∇d

ϕ
0 )

.

(2.124)

Recalling (2.88), using also (2.81), for any r = 1, . . . ,m one has

m∑
j=1,
j 6=r

Tφj (∇d
ϕ
0 ) · ∇dϕ1

α2
j (∇d

ϕ
0 )

=TΦ(∇dϕ0 ) · ∇dϕ1 −
1

α2
r(∇d

ϕ
0 )
Tφr (∇d

ϕ
0 ) · ∇dϕ1

=− 1

α2
r(∇d

ϕ
0 )
Tφr (∇d

ϕ
0 ) · ∇dϕ1 ,

(2.125)

so that, putting (2.125) into (2.124), we end up with

∇TΦ(∇dϕ0 )∇dϕ1 · ∇d
ϕ
1 =

m∑
r=1

1

αr(∇dϕ0 )
Mr(∇dϕ0 )∇dϕ1 · ∇d

ϕ
1

− 4

m∑
r=1

1

α3
r(∇d

ϕ
0 )

(Tφr (∇d
ϕ
0 ) · ∇dϕ1 )2.

(2.126)

Concerning the term 2TΦ(∇dϕ0 ) · ∇dϕ2 appearing in (2.123), we have

2TΦ(∇dϕ0 ) · ∇dϕ2 = 2

m∑
r=1

1

α2
r(∇d

ϕ
0 )
Tφr (∇d

ϕ
0 ) · ∇dϕ2 , (2.127)

where we have made use once more of (2.88). Claim (2.123) now follows from(2.126),
(2.127), and recalling the definition of Ar.

Observing that ∫
R
yγ′γ′ dy = 0,

(so that the orthogonality condition (2.96) leads to drop out the terms with hϕ0 ), we end
up with the following integrability condition:

0 = c1(V ϕ1 + κϕ1 ) + c0g,

where

c1 =

∫
R

(γ′)2 dy

and

g =

m∑
r=1

1

αr(∇dϕ0 )
(Br + Cr + Dr) .

The term g is presumably nonzero, which shows that, in general, V ϕ1 6= κϕ1 . This is a
difference with respect to the formal asymptotic analysis of the anisotropic Allen-Cahn’s
equation [40, 31, 26], and suggests an O(ε)-error estimate between the geometric front
and Σε(t) (while, in the Allen-Cahn’s equation, the estimate can be improved to the
order O(ε2)).
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Remark 2.24 (Approximate evolution law and forcing term). The integrability
condition for function U2 relates V ϕ1 and κϕ1 and together with the integrability condition
for U1 leads to the approximate evolution law

Vε = −κϕε − ε
c0
c1

g +O(ε2)

for Σε. By dropping the O(ε2) term we obtain a new approximation Σ1 of Σε which
we assume to have an O(ε2) error. This allows in turn to recover the O(ε) term for the
signed distance dϕ1 by taking the difference between the signed distance from Σ1(t) and
the signed distance from Σ0(t) and dividing by ε. Now we can recover the functions wr1
(which indeed depend on ∇dϕ1 ) and solve the differential equation for U2 (which also
depends on ∇dϕ1 ) to get U2. This argument works provided g does not depend on dϕ1 ,
since it is also through g that the function U2 is determined. We see from the definitions
of Br, Cr and Dr, that the function g is indeed independent of dϕ1 .

Problem 2.25. Investigate on the existence and regularity of solutions to the elliptic
equation (2.53), coupled with (2.106), (2.108), leading to the function wr0 for any r =
1, . . . ,m.

We notice that, already for the linear bidomain model, it does not seem trivial to
state a variational problem leading to function w1

0. In this respect, the main obstacle
is represented by the jump of the conormal derivative: indeed, the conormal derivative
depends on the standard Euclidean normal in a strongly nonlinear way, so that condition
(2.108) cannot be obtained from Gauss-Green’s formula.

An alternative strategy may be given by the so-called “domain-decomposition method”
[135]: in this setting, neglecting for simplicity the boundary condition for w1

0 at ∂Ω, it is
convenient to split w1

0 as

w1
0 = w + z,

where we let w ∈ H1(Ω \ Σ) be any function solving(8)

{
div
((
Tφ1

+ Tφ2

)
(∇w)

)
= 0, in Ω,

[[nϕ0 · ∇w]] = h on Σ,

h being the right hand side of (2.108) when r = 1. Then, we are reduced to seek for z
belonging to a suitable functional space, and such that

div
((
Tφ1

+ Tφ2

)
(∇z)

)
= 0, in Ω,

[[z]] = c0
α1(∇dϕ0 )

− [[w]], on Σ,

[[nϕ0 · ∇z]] = 0 on Σ.

(2.128)

Domain decomposition method aims to retrieve a solution of (2.128), by studying the
system separately in the two connected open sets Ω1, Ω2 := Ω \ Ω1, where by Ω1 we
denote the region bounded by Σ. Fix a trace function ζ defined on Σ, and let z1 := z1(ζ)
be the solution of {

div
((
Tφ1 + Tφ2

)
(∇v)

)
= 0, in Ω1,

v = ζ, on Σ.

Then, let z2 := z2(ζ) be the solution of{
div
((
Tφ1 + Tφ2

)
(∇v)

)
= 0, in Ω2,

nϕ0 · ∇v = −nϕ0 · ∇z1, on Σ.

(8)Here, we are assuming m = 2 and φ1, φ2 linear anisotropies (namely, the standard bidomain
model in Section 1.4).
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with proper boundary condition at ∂Ω. Existence of a unique solution for the above
elliptic problems can be found for instance in [98]. Let us denote by tr(z2) := tr(z2(ζ))
the trace of z2 on Σ. Then, we see that

z :=

{
z1, in Ω1,

z2, in Ω2,

is a solution of (2.128) if and only if the right hand side of the second equation in (2.128)
belongs to the image of the linear operator

S : ζ 7→ ζ − tr(z2(ζ)).

Here we find again a problem of lack of compactness: indeed, it does not seem possible
to apply Fredholm’s theory in order to deduce surjectivity of S (notice, however, that S
is an injective operator).





Chapter 3

Crystalline mean curvature of
facets

Summary. In Section 3.1, we collect some results on the φ-anisotropic mean curvature
problem, and we recall the definition of maximal/minimal anisotropic Cheeger sets, for
a convex (possibly nonregular) anisotropy φ. Anisotropic mean curvature is defined in
Section 3.2, within the class of Lip φ-regular sets. In Section 3.3, we give the definition of
optimal selection in a facet F ⊂ ∂E (E being a Lip φ-regular solid set) which corresponds
to a facet of Bφ. In the same section, we also prove that, if E is convex at F , then the
maximal Cheeger subset of F is the minimal level set of the anisotropic mean curvature.
Section 3.4 is devoted to study calibrability of a facet. We extend the necessary condition
for a convex facet to be calibrable to all φ̃-convex facets (Definition 3.34), and we present a
counterexample showing that the converse implication is not valid in general. In Sections
3.4.1-3.4.2, we prove some facts on the calibrability of “annular” facets and closed strips.
The main results of the chapter are contained in Section 3.5, where we link the issue of
calibrability with the capillary problem in order to provide some relevant examples of
continuous optimal selections in noncalibrable facets.

3.1 Prescribed anisotropic mean curvature problem

Let m ≥ 2, ϕ ∈ M(Rm), Ω ⊂ Rm be a bounded open set with Lipschitz boundary, and
β > 0. In the following, we shall consider solutions Cβ to the prescribed anisotropic mean
curvature problem, namely solutions to

inf {Pϕ(B)− β|B| : B ⊆ Ω, B 6= ∅} . (3.1)

Existence of solutions of (3.1) can be proved by direct methods.(1) The following regu-
larity result holds.

Theorem 3.1. Let ϕ be the Euclidean norm. Then Ω∩∂∗Cβ is an analytic hypersurface
with constant mean curvature equal to β, and the set Ω∩(∂Cβ \∂∗Cβ) is a closed set with
Hausdorff dimension at most (m− 8). Moreover, ∂∗Cβ can meet ∂∗Ω only tangentially,
that is, νΩ = νCβ on ∂∗Cβ ∩ ∂∗Ω.

Proof. The analyticity of Ω∩ ∂∗Cβ , the closedness and the estimate on the dimension of
Ω ∩ (∂Cβ \ ∂∗Cβ) follow from classical regularity results, see for instance [145] or [114].
We refer the reader to the latter reference for a proof of the tangentiality condition on
∂∗Cβ ∩ ∂∗Ω.

For ϕ ∈ Mreg(Rm) of class C3,α on Rm \ {0}, and α ∈ (0, 1), solutions of (3.1) are
hypersurfaces of class C1,α, out of a closed singular set of zero Hm−1-measure, see [4].(2)

(1) We recall that solutions of the prescribed anisotropic mean curvature problem can be
approximated by means of a singularly perturbed elliptic PDE of bistable type, see [132].

(2)See also [2, 141] for the case ϕ ∈Mreg(Rm) of class C2,1.

49
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For m = 2, in [15] the authors study the problem for a more general notion of perimeter,
and prove that the inner boundary of a solution of (3.1) is a Lipschitz curve out of a
closed singular set of zero H1-measure. The result has been improved in [130, Theorem
4.5], with the following theorem.

Theorem 3.2. Let ϕ ∈ M(R2), β > 0, and let Cβ be a solution of (3.1). Then, every
connected component of Ω ∩ ∂Cβ is contained in a translated of β−1∂Bϕ.

Remark 3.3. In dimension m > 2, even with the Euclidean metric, we cannot deduce
from Theorem 3.1 that any connected component of Ω∩∂Cβ is contained in the boundary
of a ball of radius β−1, see for instance [109] for an explicit example.

Problem (3.1) is related to the so-called ϕ-Cheeger’s problem for Ω, which consists
in solving

inf

{
Pϕ(B)

|B|
: B ⊆ Ω, B 6= ∅

}
=: hϕ(Ω), (3.2)

see [62, 65]. Cheeger’s problem has been introduced in [68], in the effort to give an
estimate from below for the spectrum of the Laplacian operator. A minimizer of (3.2) is
sometimes called a ϕ-Cheeger subset of Ω, while hϕ(Ω) is called the ϕ-Cheeger constant
of Ω. Notice that, when β := hϕ(Ω), a nonempty set B ⊆ Ω solves (3.1) if and only if B
is a minimizer of (3.2).

Definition 3.4 (Cheeger and strict Cheeger sets). If Ω is a solution of (3.2), we
say that Ω is a ϕ-Cheeger set. If

Pϕ(Ω)

|Ω|
<
Pϕ(B)

|B|
, B ⊂ Ω, B 6= ∅, (3.3)

we say that Ω is a strict ϕ-Cheeger set.

If B ⊆ Ω is a ϕ-Cheeger subset of Ω, then B is a ϕ-Cheeger set (namely, hϕ(B) =

hϕ(Ω) =
Pϕ(B)
|B| ). We say that B is a strict ϕ-Cheeger subset of Ω provided that B is a

ϕ-Cheeger subset of Ω, and
Pϕ(B)
|B| <

Pϕ(B′)
|B′| , for every B′ ⊂ B, B′ 6= ∅.

It can be proven [114] that the union of ϕ-Cheeger subsets of Ω is still a ϕ-Cheeger
subset of Ω.

Definition 3.5 (Maximal/minimal Cheeger subsets). We denote by

Chϕ(Ω)

the maximal ϕ-Cheeger subset of Ω, which is defined as the union of all ϕ-Cheeger subsets
of Ω.

Moreover, we say that a ϕ-Cheeger subset C of Ω is minimal if, for any ϕ-Cheeger
subset C ′ ⊆ Ω, either C ⊆ C ′ or C ∩ C ′ = ∅.

We observe that any minimal ϕ-Cheeger subset of Ω is connected. Existence of
Chϕ(Ω) and of a finite number of minimal ϕ-Cheeger subsets is proven for example in
[65, 63].

When ϕ is the Euclidean norm, we omit the dependence on ϕ of the various symbols,
thus letting h(Ω) in place of hϕ(Ω), Ch(Ω) in place of Chϕ(Ω), and so on.

Concerning uniqueness, examples of planar sets Ω admitting more then one (Eu-
clidean) Cheeger subset, and also an uncountable family of Cheeger subsets, can be
found in [110, 114]. Anyway, even when uniqueness fails, it is possible to prove [63] that
any connected open set Ω ⊂ Rm with finite volume generically admits a unique Cheeger
subset, namely it has a unique Cheeger subset up to small perturbations in volume. More
precisely, for any compact K ⊂ Ω, there exists an open set ΩK ⊆ Ω such that K ⊂ ΩK ,
and Ωk admits a unique Cheeger subset. Further results hold for a convex Ω ⊂ Rm, see
[5].
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Theorem 3.6. Let Ω ⊂ Rm be convex. Then Ch(Ω) is the unique Cheeger subset of Ω,
and it is convex.

In [61, Remark 3.6] the authors extend the uniqueness result in Theorem 3.6 to the
case of an anisotropy ϕ ∈ Mreg(Rm) and a uniformly convex set Ω ⊂ Rm of class C2.
In the anisotropic case ϕ ∈M(Rm) \Mreg(Rm), instead, the uniqueness of the Cheeger
subset of a convex set Ω ⊂ Rm is proven, at our best knowledge, only in dimension m = 2
(see Theorem 3.8); anyway, when Ω is convex, Chϕ(Ω) is also convex [62, Theorem 6.3].
Both in the Euclidean and in the anisotropic case, there is also a necessary and sufficient
condition for a smooth enough convex body to be a ϕ-Cheeger set. It appeared at first
in [100] for m = 2 and ϕ Euclidean; in [37] for m = 2, ϕ ∈ M(R2); in [5] for m ≥ 2 and
ϕ the Euclidean norm; finally in [62] in the whole generality (this latter result is recalled
in Theorem 3.7 below).

Given r > 0, we say that E satisfies the rBφ-condition if, for any x ∈ ∂E, there
exists y ∈ Rn such that rBφ + y ⊆ E, and x ∈ ∂(rBφ + y).

Theorem 3.7. Let Ω ⊂ Rm be a convex body satisfying the rBφ-condition for some
r > 0. Then Ω is a ϕ-Cheeger set if and only if

ess sup
∂Ω

κΩ
ϕ ≤

Pϕ(Ω)

|Ω|
.

Finally we have a complete characterization of the (unique) Cheeger subset of a
planar convex domain, proven in [110] for the Euclidean norm and in [111] for a general
anisotropy.

Theorem 3.8 (Cheeger subset of a planar convex domain). If Ω ⊂ R2 is a
bounded, open and convex set, then Chϕ(Ω) is the union of all ϕ-balls of radius r =
hϕ(Ω)−1 that are contained in Ω. Moreover, setting Ω−r := {x ∈ Ω : distϕ(x, ∂Ω) > r},
we have

Chϕ(Ω) = Ω−r + rBϕ,

and |Ω−r | = r2|Bφ|.

In [114] the authors prove that, in the Euclidean case, most of the peculiarities of the
planar convex case can be proven also for bidimensional (not necessarily convex) strips.

3.2 Anisotropic mean curvature in the nonregular case

In the remaining of this chapter, we shall denote by

φ ∈M(R3) \Mreg(R3)

a convex nonregular anisotropy. For simplicity, we shall always assume that(3)

ωφn = 1.

Relevant cases for the present thesis are

- when Bφ (and hence Bφo) is a 3-dimensional polyhedron; in this case, we say that
φ is a crystalline anisotropy;

- when Bφ = C× [−1, 1], C being a 2-dimensional centrally symmetric convex body;
in this case, we say that φ is a cylindrical anisotropy.

Let E ⊂ R3 be a Lipschitz set, and let νφo := νE

φo(νE)
. In order to define the φ-anisotropic

mean curvature of E, we immediately find a difficulty with respect to the regular case:
indeed, when φ ∈M(R3)\Mreg(R3), there can be several possible choices of vector fields
N : ∂E → R3 satisfying N(x) ∈ Tφo(νφo(x)) for Hn−1-almost every x ∈ ∂E.

(3)We recall that the constant ωφn has been introduced in Definition 1.8.
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One possibility to proceed could be to look at the eikonal equation(4)

φo(∇dEφ (z)) = 1, a.e. in U,

where U is a suitable neighbourhood of ∂E, φo is the dual of φ, and dEφ denotes the
φ-signed distance from ∂E, positive in the interior of E. Then, one could require the
existence of a bounded vector field η ∈ Lip(U ;R3) such that η(z) ∈ −Tφo(∇dEφ (z)) for
almost every z ∈ U . In this case, we say that E is neighbourhood Lip φ-regular. This
notion can be generalized to all dimension n ≥ 2, and it could be weakened, by requiring
for instance that η ∈ L∞(U ;Rn): in this latter case, the set E is said to be neighbourhood
L∞ φ-regular. This notion has been introduced in [36, 34], and has been used in [27]
to provide a uniqueness result for a suitable notion of crystalline mean curvature flows
of convex sets. In the Euclidean case, E is neighbourhood-Lip φ-regular if and only if
∂E is of class C1,1. Neighbourhood regularity of boundaries has some connection with
the notion of inner-outer tangent ball: it turns out [28] that, if E is neighbourhood-Lip
φ-regular, then there exists r > 0 such that E and Rn \ E satisfy the rBφ-condition.
Moreover, if E is convex, then E is neighbourhood-L∞ φ-regular if and only if E and
Rn \ E satisfy the rBφ-condition for some r > 0. We also recall that neighbourhood
Lipschitz regularity has been used in [62] to give a characterization of convex subsets of
Rn−1 which are φ-calibrable, see Section 3.4.

However, a difficulty related to the definition of neighbourhood regular sets is that
the divergence of η does not have a well-defined trace on ∂E. For this reason, in the
present thesis we shall adopt a second, stronger notion of regular sets, which has been
introduced (in any dimension n ≥ 2)(5) in [38, 39].

Definition 3.9 (Selection). A selection on ∂E is an element of

Norφ(∂E) := {N : ∂E → R3 : N(x) ∈ Tφo(νφo(x)) for H2-a.e. x ∈ ∂E}.

Notice that, when φ ∈ Mreg(R3), then the unique selection on ∂E is the Cahn-
Hoffman vector field nφ = Tφo(νφo) (recall (1.6)).

Definition 3.10 (Lip φ-regular sets). We say that E is Lip φ-regular if there exists
a Lipschitz selection on ∂E.

For instance, assuming that Bφ and E are polyhedra, E is Lip φ-regular if and only
if, at every vertex v ∈ ∂E, ⋂

F facet of ∂E,
v∈F

Tφo(ν
F ) 6= ∅.

It turns out that a Lip φ-regular set is also neighbourhood Lip φ-regular: indeed, for
any N ∈ Norφ(∂E) it is possible to exhibit a Lipschitz extension of N inside a tubular
neighbourhood U of ∂E, see [38].

Anisotropic mean curvature is defined, in analogy with the regular case (recall The-
orem 1.10), by computing the first variation of the perimeter functional. For δ > 0 and
z ∈ U , define Ψδ(z) := z + δψe(z)Ne(z), where ψ ∈ Lip(U) and Ne ∈ Lip(U ;R3) is a
Lipschitz extension of N on U . It is convenient to introduce the family

H 2
div(∂E) :=

{
N ∈ Norφ(∂E) : divτN ∈ L2(∂E)

}
, (3.4)

where divτN is the tangential divergence of N ∈ Norφ(∂E) defined as in [38]. Set

K(N) :=

∫
∂E

φo(νE)(divτN)2 dH2, N ∈H 2
div(∂E). (3.5)

The following result is proven in [38].

(4)Recall (1.5).
(5)In particular, Theorems 3.11-3.13 can be generalized to every dimension n ≥ 2.
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Theorem 3.11 (First variation in the nonregular case). Suppose that E is Lip
φ-regular. Then

inf
ψ∈Lip(∂E),∫

∂E
φo(νE)ψ2 dH2≤1

lim inf
δ→0+

Pφ(Ψδ(E))− Pφ(E)

δ
= − inf

N∈H 2
div(∂E)

(K(N))
1
2 . (3.6)

The minimization problem in (3.6) may admit, in general, more than one solution.
Nevertheless, by the strict convexity of K in the divergence, two minimizers have the
same divergence. In the following, we denote by

Nmin ∈H 2
div(∂E)

any minimizer of (3.5).

Definition 3.12 (Anisotropic mean curvature). The φ-mean curvature κEφ of ∂E
is defined as

κEφ := divτNmin.

Actually, Lip φ-regular sets have anisotropic mean curvature which is more than just
square integrable on ∂E: indeed, the following result holds [39].

Theorem 3.13 (Boundedness of κEφ ). We have κEφ ∈ L∞(∂E).

Some further regularity properties of κEφ are expected for those 2-dimensional por-
tions of ∂E which correspond (via the map Tφo) to 2-dimensional portions of ∂Bφ. We
shall collect some of these results in Section 3.3.

3.3 Anisotropic mean curvature on facets

Let E be a Lip φ-regular set. We say that F ⊂ ∂E is a (two-dimensional) facet of ∂E if
F is the closure of a connected component of the relative interior of ∂E∩Tx∂E, for some
x ∈ ∂E such that the tangent space Tx∂E of ∂E at x exists. Given a facet F ⊂ ∂E, by
ΠF ⊂ R3 we denote the affine plane spanned by F . Whenever necessary, we identify ΠF

with the plane parallel to ΠF and passing through the origin, and F with its orthogonal
projection on this latter plane.

Definition 3.14 (Facets of ∂E corresponding to facets of the Wulff shape). We
write

F ∈ Facetsφ(∂E)

if F is parallel to a facet B̃Fφ of ∂Bφ, and νφo(F ) = νφo(B̃
F
φ ).

If F ∈ Facetsφ(∂E), then B̃Fφ = Tφo(νφo(F )). With a slight abuse of notation, we

can see B̃Fφ as a subset of ΠF . We shall assume, unless otherwise specified, that B̃Fφ is a

convex body which is symmetric with respect to the origin of ΠF . Let φ̃F : ΠF → [0,+∞)

be the (convex) anisotropy on ΠF such that {φ̃F ≤ 1} = B̃Fφ . We denote by φ̃oF the dual

of φ̃F . We denote by κB
φ̃

the φ̃-curvature of the boundary of a Lip φ̃-regular set B ⊂ ΠF .

If no confusion is possible, we shall omit the dependence on F of φ̃F , thus writing φ̃ in
place of φ̃F .

The following regularity result is proven in [39].

Theorem 3.15 (Bounded variation of κEφ ). Let F ∈ Facetsφ(∂E). Then

κEφ ∈ BV (int(F )).

Another result related to Facetsφ(∂E) allows to detect the anisotropic mean curvature
of ∂E at a facet F from a minimization problem on F (Proposition 3.22). We need the
following definition.



54 Chapter 3. Crystalline mean curvature of facets

Definition 3.16 (Convexity at a facet). We say that E is convex (resp. concave) at
F if E lies, locally around F , in the half-space obtained as that side of ΠF opposite to
(resp. same as) the exterior normal to E at F .

We recall from [39] a regularity result for the boundary of F , which will be used to
give a meaning to the normal trace of a selection (Definition 3.18).

Theorem 3.17. Let F ∈ Facetsφ(∂E). Then there exists a finite set ZF ⊂ ∂F such
that, for any x ∈ ∂F \ ZF , ∂F is a Lipschitz graph locally around x. Moreover, if E is
convex (or concave) at F , then F is Lipschitz.

Now, let N ∈ Norφ(∂E) ∩ Lip(∂E;R3). Notice that the orthogonal component of N
with respect to the plane ΠF is constant. Hence,

divτN = div(projF (N)), (3.7)

where projF (N) : F → ΠF is the projection of N on F , and its divergence is computed
in ΠF . Let ν̃F be the outer Euclidean unit normal to ∂F (when it exists).

It turns out that

ν̃F · projF (N) =

{
φ̃o(ν̃F (x)) if ν̃F (x) points outside E,

−φ̃o(ν̃F (x)) if ν̃F (x) points inside E,
(3.8)

for any x ∈ ∂∗F (see [38, 39]).

Definition 3.18 (Maximal/minimal normal trace cφF ). Let E be a Lip φ-regular
set, and F ∈ Facetsφ(∂E). The φ-normal trace at ∂F ,

cφF ∈ L
∞(∂F ),

is defined as the right hand side of (3.8).

When E is convex (resp. concave) at the facet F , we have cφF = φ̃o(ν̃F ) (resp.

cφF = −φ̃o(ν̃F )).

We recall [18] that any N ∈H 2
div(∂E) admits a normal trace(6) which we shall denote

by 〈ν̃F ,projF (N)〉, and we have 〈ν̃F ,projF (N)〉 ∈ L∞(∂F ). However, we cannot say in

general that 〈ν̃F ,projF (N)〉 = cφF , for any N ∈ H 2
div(∂E). The result is true under

stronger regularity assumptions on the behaviour of ∂E around F . We refer the reader
to [37] for a related discussion. To our purposes, we can confine ourselves to the case
described in Proposition 3.19 below.

We say that ∂E \ F and F are transversal if, for H1-a.e. x ∈ ∂F , the blow-up of ∂E
around x is the union of two non parallel planes Π1 and Π2, with Π2 = ΠF , see [37].

Proposition 3.19. Suppose

F Lipschitz, ∂E \ F and F are transversal. (3.9)

Then 〈ν̃F ,projF (N)〉 = cφF , for any N ∈H 2
div(∂E).

It is now natural to look at the family

H 2
div(F ) :=

{
Ñ ∈ Norφ(F ) : divÑ ∈ L2(F ), 〈ν̃F , Ñ〉 = cφF H

1-a.e. on ∂F
}
,

where Norφ(F ) :=
{
Ñ ∈ L∞(F ; ΠF ) : Ñ(x) ∈ B̃Fφ for H2-a.e. x ∈ F

}
. Notice that

H 2
div(F ) 6= ∅, by the Lip φ-regularity of E. Set also(7)

KF (Ñ) :=

∫
F

(divÑ)2 dx, Ñ ∈H 2
div(F ). (3.10)

(6)See (3.25) below, with X := projF (N).
(7)For notational simplicity, hereafter we shall identify the H2-measure on F with the two-

dimensional Lebesgue measure on ΠF .
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The minimum problem

inf
{
KF (Ñ) : Ñ ∈H 2

div(F )
}

(3.11)

admits a solution, and two minimisers have the same divergence. Notice that the mini-
mum problem (3.11) is nonlocal, since it depends on the shape of ∂E around F .

Definition 3.20 (Optimal selection). Given F ∈ Facetsφ(∂E), we call optimal selec-

tion in F , and we denote by Ñmin ∈H 2
div(F ), any solution of (3.11).

Incidentally, we recall [97] that it is not possible for an optimal selection in F to
coincide with the gradient of a scalar function, unless the facet is the unit disk.

Remark 3.21 (Minimality criterion). Let Ñ0 ∈H 2
div(F ) be such that∫

F

div(Ñ0) div(Ñ0 − Ñ) dx ≤ 0, Ñ ∈H 2
div(F ). (3.12)

Then Ñ0 is an optimal selection in F . In particular, if there exists Ñ0 ∈ H 2
div(F ) such

that divÑ0 is constant on F , then Ñ0 is optimal (condition (3.12) is satisfied with equality
instead of the inequality), and necessarily

divÑ0 =
1

|F |

∫
F

divÑ0 dx =
1

|F |

∫
∂F

cφF dH
1.

Let Ñmin ∈H 2
div(F ) be an optimal selection in F , and set

κφ,F := div(Ñmin).

The following result allows to look at the restriction of κEφ at the facet F by studying
a problem defined just on the facet. For the sake of completeness, we repeat the proof
given in [37, Remark 4.4 and Proposition 4.6].

Proposition 3.22 (Restriction and localization on facets). Assume (3.9). Let
Nmin ∈ H 2

div(∂E) be so that κEφ = divτNmin. Then projF (Nmin) is an optimal selection
in F . In particular,

κEφ = κφ,F H2-a.e. in F. (3.13)

Proof. Let Nmin ∈H 2
div(∂E) (resp. Ñmin ∈H 2

div(F )) be a minimizer of K (resp. of KF ),
where K and KF are defined respectively in (3.5) and in (3.10). Let N ∈ L∞(∂E;R3) be

such that N = Nmin on ∂E \ F , and such that projF (N) = Ñmin. By Proposition 3.19,
N ∈H 2

div(∂E). Thus

K(Nmin) ≤ K(N) =

∫
F

(divÑmin)2 dH2 +

∫
∂E\F

(divτNmin)2 dH2

≤
∫
F

(divτNmin)2 dH2 +

∫
∂E\F

(divτNmin)2 dH2

=

∫
∂E

(divτNmin)2 dH2 = K(Nmin),

which gives the statement.

Despite its obviousness, the following observation will be used repeatedly in Section
3.5.

Remark 3.23. If there exists Ñ0 ∈H 2
div(F ) such that divÑ0 = κφ,F in int(F ), then Ñ0

is an optimal selection in F , since∫
F

(
divÑ0

)2

dx =

∫
F

(κφ,F )2 dx =

∫
F

(
divÑmin

)2

dx ≤
∫
F

(
divÑ

)2

dx,

for any Ñ ∈H 2
div(F ).
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For notational simplicity, and whenever no confusion is possible, we set

κmin := ess inf κφ,F , κmax := ess supκφ,F . (3.14)

Now, we recall from [37, 38] some results on regularity of facets and on the function κφ,F .

Theorem 3.24 (Regularity of facets). Let F ∈ Facetsφ(∂E), and let E be convex (or

concave) at F . Then F is Lip φ̃-regular.

For β ∈ [κmin, κmax], define

ΩFβ := {x ∈ int(F ) : κφ,F (x) < β} ,
ΘF
β := {x ∈ int(F ) : κφ,F (x) ≤ β} .

(3.15)

Theorem 3.25 (Sublevels of the anisotropic mean curvature). Let F ∈ Facetsφ(∂E),
and suppose that E is convex at F . Then

κmin > 0.

Moreover, for any β ∈ [κmin, κmax],∫
ΩFβ

κφ,F dx = Pφ̃(ΩFβ ),

∫
ΘFβ

κφ,F dx = Pφ̃(ΘF
β ), (3.16)

and ΩFβ and ΘF
β are solutions of the variational problem

inf
{
Pφ̃(B)− β|B| : B ⊆ F

}
. (3.17)

Remark 3.26. In the setting of Theorem 3.24, assume further φ̃ ∈ Mreg(ΠF ). Let

β ∈ [κmin, κmax]. Since ΘF
β solves (3.17), the φ̃-mean curvature of ∂ΘF

β is less than or

equal to β, and equality holds in int(F ) ∩ ∂ΘF
β . A similar result holds for ΩFβ .

In the general case, the following result holds [130]: for any β ∈ [κmin, κmax], int(F )∩
∂ΩFβ and int(F ) ∩ ∂ΘF

β are contained in a translated copy of β−1∂B̃Fφ .

We see from Theorem 3.25 that the sublevel sets of κφ,F solve a prescribed anisotropic
mean curvature problem, recall Section 3.1. Now, we want to show that the minimal level
set of the curvature corresponds to the maximal φ̃-Cheeger subset of F (Definition 3.5).

Theorem 3.27. Let F ∈ Facetsφ(∂E), and assume that E is convex in F . Then

ΘF
κmin

= Chφ̃(F ). (3.18)

Proof. We start with two preliminary steps.

Step 1: |ΘF
κmin
| > 0. Essentially, this fact has been observed in [37, Remark 5.3]. We

repeat the proof, for the sake of completeness. Let β ∈ (κmin, κmax], so that in particular

|ΘF
β | > 0. From Theorem 3.25, using (1.3) (with φ̃ replacing φ), we get

0 = Pφ̃(∅)− β|∅| ≥ Pφ̃(ΘF
β )− β|ΘF

β | ≥ γφ̃
√
|ΘF
β | − β|Θ

F
β |,

where γφ̃ := Pφ̃(B̃Fφ )|B̃Fφ |1/2. Thus, we deduce the estimate

|ΘF
β | ≥ β−2 γ2

φ̃
≥ κ−2

max γ
2
φ̃
, β ∈ (κmin, κmax]. (3.19)

By (3.19), and since ΘF
κmin

=
⋂
β>κmin

ΘF
β , we get Step 1.

Step 2: The φ̃-Cheeger constant of F equals κmin. By definition of hφ̃(F ), using Step

1 and (3.16), we get

hφ̃(F ) ≤
Pφ̃(ΘF

κmin
)

|ΘF
κmin
|

=

∫
ΘFκmin

κφ,F dx

|ΘF
κmin
|

= κmin. (3.20)
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On the other hand, let C be a φ̃-Cheeger subset of F . Then, thanks to Theorem 3.25,
we get

0 = Pφ̃(ΘF
κmin

)− κmin|ΘF
κmin
| ≤ Pφ̃(C)− κmin|C| = (hφ̃(F )− κmin)|C|. (3.21)

Coupling (3.20) with (3.21), we get hφ̃(F ) = κmin. In particular, ΘF
κmin

is a φ̃-Cheeger

subset of F and ΘF
κmin
⊆ Ch(F ).

Now, we prove (3.18). Suppose, by contradiction, that there exists a φ̃-Cheeger
subset C ⊆ F such that |C \ ΘF

κmin
| > 0. We observe that κφ,F > κmin on C \ ΘF

κmin
,

hence

κmin|C| <
∫
C

κφ,F dx =

∫
C

divÑmin dx =

∫
∂∗C

〈ν̃F , Ñmin〉 dH1 ≤ Pφ̃(C), (3.22)

where Ñmin is any optimal selection on F . At the same time, since C is a φ̃-Cheeger
subset of F , using Step 2 we have Pφ̃(C) = κmin|C|, which, coupled with (3.22), leads to
a contradiction.

If E is convex at F , and F itself is convex in the Euclidean sense, then a stronger
regularity result for κφ,F has been proven in [37], which we recall in the following Theo-
rem.

Theorem 3.28. Let F ∈ Facetsφ(∂E), and assume that E is convex at F . Assume
further that F is convex. Then

κφ,F is convex.

Moreover,

ΩFβ =
⋃{

B ⊆ int(F ) : B is a translated copy of β−1B̃Fφ

}
, β > κmin,

ΘF
β =

⋃{
B ⊆ F : B is a translated copy of β−1B̃Fφ

}
, β ≥ κmin.

3.4 Calibrability of facets

Let φ ∈ M(R3) \Mreg(R3), and let E be a Lip φ-regular set. We shall focus on those
F ∈ Facetsφ(∂E) such that κφ,F is constant, which we shall call φ-calibrable. From now
on in this chapter, we shall assume (3.9), so that (Proposition 3.22) κφ,F is the restriction
of κEφ to F .

Recalling also Remark 3.21, it follows that κφ,F is constant in F ∈ Facetsφ(∂E) if

and only if there exists Ñ ∈ L∞(F ; ΠF ) such that
Ñ(x) ∈ B̃Fφ H2-a.e. x ∈ F,

divÑ = 1
|F |
∫
∂F
cF dH1 in F,

〈ν̃F , Ñ〉 = cφF H1-a.e. on ∂F.

(3.23)

The following definition has been proposed in [37].

Definition 3.29 (Calibrability). We say that F ∈ Facetsφ(∂E) is φ-calibrable if there
exists a solution of (3.23).

From the view point of crystalline mean curvature flow, the right hand side of the
PDE in (3.23), namely

vF :=
1

|F |

∫
∂F

cφF dH
1,



58 Chapter 3. Crystalline mean curvature of facets

can be interpreted as the “mean velocity” of F (in direction normal to int(F )), at time
zero. We want to define a similar quantity also for subsets of the facet since, heuristically,
subsets of F are expected to move not slower than F , consistently with the comparison
principle for crystalline mean curvature flow [34], see Theorem 3.30 below.

Let B ⊆ F be a nonempty set of finite perimeter. We define cφB : ∂B → R as

cφB :=

{
φ̃(ν̃B) on ∂∗B \ ∂F,
cφF otherwise,

(3.24)

and we set

vB :=
1

|B|

∫
∂∗B

cφB dH
1.

Let us recall [19], [18] that, given a function u ∈ BV (int(F )) and a vector field X ∈
L∞(F ; ΠF ) with L2(F )-summable divergence, it is possible to define a Radon measure
(X,Du) on F by setting

(X,Du) : w 7→ −
∫

int(F )

uw divX dx−
∫

int(F )

uX · ∇w dx, w ∈ C∞c (int(F ));

moreover, there exists a function 〈ν̃F , X〉 ∈ L∞(∂F ) such that the following generalized
Gauss-Green formula holds:∫

int(F )

udivX dx+

∫
int(F )

θ(X,Du) d|Du| =
∫
∂F

〈ν̃F , X〉 u dH1; (3.25)

here, θ(X,Du) ∈ L∞|Du|(F ) denotes the density [12] of the measure (X,Du) with respect

to |Du|. We recall that in [39, Proposition 7.7] it has been shown that, for every optimal

selection Ñmin,

− θ(Ñmin, D1ΩFβ
) = φ̃o(ν̃ΩFβ ) = cφ

ΩFβ
, for a.e. β ∈ R, (3.26)

where ΩFβ is the β-sublevel set of κφ,F (see (3.15)), and where 1A denotes the character-
istic function of a subset A ⊆ F .

Theorem 3.30 ([37], Characterization of φ-calibrable facets). Let F ∈ Facetsφ(∂E).
Then, F is φ-calibrable if and only if

vF ≤ vB , B ⊆ F, B 6= ∅. (3.27)

Proof. Assume Ñ to be a solution of (3.23). In particular, divÑ = vF in F . Let B ⊆ F
be a nonempty set of finite perimeter. Integrating divÑ on B and using (3.25) we get

vF |B| =
∫
B

divÑ dx =

∫
∂∗B

〈ν̃B , Ñ〉 dH1 ≤
∫
∂∗B

cφB dH
1,

where we used (3.24) and (3.23). This gives (3.27).
The converse implication can be proved as follows. Assume that F is not φ-calibrable.

Let Ñmin ∈H 2
div(F ) be an optimal selection on F . Recalling that almost every sublevel

set of a BV function has finite perimeter, there exists β < vF such that ΩFβ 6= ∅, and ΩFβ
has finite perimeter. Applying (3.25) with the choice u := 1ΩFβ

and X := Ñmin, we have∫
ΩFβ

divÑmin dx = −
∫

int(F )∩∂∗ΩFβ
θ(Ñmin, D1ΩFβ

) dH1 +

∫
∂F

〈ν̃F , Ñmin〉 1ΩFβ
dH1

= −
∫

int(F )∩∂∗ΩFβ
θ(Ñmin, D1ΩFβ

) dH1 +

∫
∂F∩∂∗ΩFβ

〈ν̃F , Ñmin〉 dH1.
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Observe that, by definition, 〈ν̃F , Ñmin〉 = cφF = cφ
ΩFβ

on ∂F ∩ ∂∗ΩFβ . Therefore,

recalling also (3.26), we get∫
ΩFβ

divÑmin dx =

∫
∂∗ΩFβ

cφ
ΩFβ

dH1.

Hence,

vF > β >
1

|ΩFβ |

∫
ΩFβ

divÑmin dx =
1

|ΩFβ |

∫
∂∗ΩFβ

cφ
ΩFβ

dH1 = vΩFβ
,

which contradicts (3.27).

In view of Theorem 3.30, we give the following definition.

Definition 3.31 (Strict φ-calibrability). We say that F is strictly φ-calibrable if

vF < vB for every nonempty B ⊂ F.

Condition (3.27) is very similar to the definition of φ̃-Cheeger set (recall one more
Definition 3.4), as clarified in the following remark.

Remark 3.32 (Calibrability versus Cheeger sets). Suppose that E is convex at F .
In this case, the mean velocity of any nonempty finite perimeter set B ⊆ F is

vB =
1

|B|

∫
∂∗B

cφB dH1 =
1

|B|

∫
∂∗B

φ̃o(ν̃B) dH1 =
Pφ̃(B)

|B|
. (3.28)

Then, using Theorem 3.30, and recalling also Section 3.1, φ-calibrability (resp. strict

φ-calibrability) of F is equivalent to the property that F is a φ̃-Cheeger (resp. strict

φ̃-Cheeger) set.

In the same paper [37], the authors characterize convex φ-calibrable facets F ∈
Facetsφ(∂E) such that E is convex at F .

Theorem 3.33 (φ-calibrability for convex E at F and convex F ). Suppose that
E is convex at F ∈ Facetsφ(∂E), and that F is convex. Then, F is φ-calibrable if and
only if

ess sup
∂F

κF
φ̃
≤
Pφ̃(F )

|F |
. (3.29)

Hence, under the assumptions of Theorem 3.33, problem (3.23) is solvable if and only

if the φ̃-curvature of ∂F is bounded above by the mean velocity of F ; this means, roughly
speaking, that the edges of ∂F cannot be too “short”. When φ̃ is the Euclidean norm of
ΠF , (3.29) has been given by Giusti in [101], compare Theorem 3.41.

Definition 3.34 (φ̃-convexity). We say that F ∈ Facetsφ(∂E) is φ̃-convex if κF
φ̃
≥ 0.

One can ask whether the convexity assumption in Theorem 3.33 can be relaxed to
just φ̃-convexity of F ; the next example shows that this can not be expected in general.

Example 3.35. Let φ̃ be the two-dimensional crystalline metric having as unit ball the
square with side ` > 0, centered at the origin. Let F be as in Figure 3.1, where B1 and
B2 are two copies of {φ̃ ≤ 1}, rescaled by a factor L/`, and Rε,M is a rectangle of height
ε and base M . We recall [151] that, for planar crystalline sets, κF

φ̃
is the derivative of the

vector field obtained as the linear interpolation of the vectors at the vertices represented
in the figure. Thus, κF

φ̃
equals `/L on the sides a, d, e and h, while κF

φ̃
vanishes on the

sides b, c, f , and g; hence, F is φ̃-convex.
Now, let φ be the “cylindrical” norm defined as

φ(ξ) := φ(ξ1, ξ2, ξ3) := max{φ̃(ξ1, ξ2), |ξ3|},
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B1

Rε,M

B2

B̃F
φ

a

g

c

bh

d

e

f

Figure 3.1: An example of φ̃-convex facet F satisfying (3.29), and not φ-calibrable

(ε > 0 is sufficiently small and M sufficiently large). Here, B̃Fφ is the square of length `
represented on the top right. In grey, a subset of the facet with mean velocity smaller
than the mean velocity of F .

and let E ⊂ R3 be any prism with base F , for instance E = F × [0, 1]; in particular,
F ∈ Facetsφ(∂E), and E is convex at F .(8)

Recalling (3.28), we can compute explicitely the mean velocity of F :

vF =
Pφ̃(F )

|F |
=

2 (4L− ε+M)

2L2 + εM
.

Hence κF
φ̃
≤ vF when

ε ≤ 2L(−L`+ 4L+M)

`M + 2L
,

the right hand side being positive for M large enough. Now, the mean velocity of B1 is

vB1 =
Pφ̃(B1)

|B1|
=

4

L
.

Therefore

vB1 < vF ⇐⇒ ε <
ML

2M + L
.

Hence, for ε > 0 small enough and M large enough, F is not φ-calibrable (Theorem 3.33).

However, for φ̃-convex facets, it is still possible to recover one implication from The-
orem 3.33.

Theorem 3.36. Assume that E is convex at F ∈ Facetsφ(∂E). Suppose that φ̃ is

crystalline, and that F is a φ̃-convex, φ-calibrable facet. Then (3.29) holds.

Proof. We closely follow the argument in [37, Theorem 8.1]. By contradiction, let x ∈ ∂F
be a point where κF

φ̃
(x) >

P
φ̃

(F )

|F | . Then, x belongs to the relative interior of an edge L

that is parallel to an edge of B̃Fφ , and such that F is convex at L (indeed, κF
φ̃

vanishes in

all portions of ∂F that do not satisfy the previous requirements, see [151]); with a small
abuse of language, we denote by L also the length of this edge, while ` is the length of
the corresponding edge of B̃Fφ . Since F is φ̃-regular, we can deduce that BL/` ∩ U ⊂ F ,

(8)Other choices of φ ∈M(R3) \Mreg(R3) are possible, for which there exists E ⊂ R3, E Lip
φ-regular, such that F ∈ Facetsφ(∂E) and (3.9) holds.
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where U is a neighbourhood of the side L, while BL/` denote the rescaled copy of B̃Fφ
having an edge in L, and lying on the same half-plane of F around L. Applying [37,
Lemma 8.3], we get

κF
φ̃

(x) <
`

L
. (3.30)

Following [37, Theorem 8.1, Step 3], let us define, for ε > 0 sufficiently small, the set
Fε of all points of F having Euclidean distance from the line through L greater than or
equal to ε. Set F̂ε := Fε ∪ (BL/` ∩ F ), see Figure 3.2.

It is possible to prove that, for ε sufficiently small,(9)

|F | = |F̂ε|+ o(ε2), Pφ̃(F ) = Pφ̃(F̂ε). (3.31)

Moreover, we notice that
|F̂ε| − |Fε| = εL+ o(ε), (3.32)

and, using [37, Lemma 8.5],

Pφ̃(F̂ε)− Pφ̃(Fε) = ε`+ o(ε). (3.33)

Let β ∈
(
P
φ̃

(F )

|F | , κ
F
φ̃

(x)
)

. Then, coupling (3.31), (3.32), and (3.33), also recalling (3.30),

we get

Pφ̃(Fε)− β|Fε| =Pφ̃(F )− ε`+ β(εL− |F |) + o(ε)

=Pφ̃(F )− β|F |+ ε(βL− `) + o(ε) < Pφ̃(F )− β|F |,
(3.34)

for ε > 0 sufficiently small. But then, since F is φ-calibrable, F = ΩFβ , so that (3.34)
violates Theorem 3.25, a contradiction.

BL/`

Fε

F̂ε
ε

B̃F
φ

x

L

Figure 3.2: The construction used to prove Theorem 3.36: F̂ε is obtained by slightly
modifying F near the edge L (the original boundary is drawn with a dotted line); BL/`

is the rescaled copy of B̃Fφ (represented on the top right) having L as an edge; Fε is the
competitor subset.

3.4.1 Annular facets

In this section we prove some facts about the φ-calibrability of “annular facets” F ∈
Facetsφ(∂E). A more general case with Bφ the Euclidean cylinder is covered in [29].

For x ∈ ΠF and ρ > 0, we let Bφ̃(x; ρ) be the copy of ρB̃Fφ centered at x.

(9)Clearly, we just need to justify the second equality in (3.31). Let Γ be a connected component

of ∂F \ ∂F̂ε, and let ε > 0 be so small that ν̃F|Γ lies between two consecutive vertices ν1, ν2 of

the unit ball of φ̃o. Then,
∫

Γ
φ̃o(ν̃F ) dH1 = φ̃o

( ∫
Γ
ν̃F dH1

)
, where we used Jensen’s inequality

(which holds with equality, since the restriction of φ̃o on the segment between ν1, ν2 is a linear
function). Now, a direct computation shows that the right hand side in the previous equality
only depends on the ending points of Γ.
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Theorem 3.37. Let F ∈ Facetsφ(∂E). Assume that there exist x1, x2 ∈ int(F ), and
R > r > 0 such that

F = Bφ̃(x1;R) \ int(Bφ̃(x2; r)), Bφ̃(x2; r) ⊂⊂ Bφ̃(x1;R),

and that ν̃F points outside of E along ∂Bφ̃(x1;R), and inside of E along ∂Bφ̃(x2; r).(10)

Then, F is φ-calibrable.

BR

Br

C

BR

B̃F
φBr

U

Figure 3.3: On the top right, as an example we take the square as the unit ball B̃Fφ . We
shorthand Bφ̃(x1;R) with BR and Bφ̃(x2; r) with Br. On the left, the facet F , which

can be seen as an “annulus”. We assume that ν̃F points outside (resp. inside) of E
on ∂BR (resp. on ∂Br). In grey, the sets U and C used in Theorem 3.37 to prove the
φ-calibrability of F .

Proof. We start by computing the mean normal velocity of F :

vF =
Pφ̃(B̃Fφ )

|B̃Fφ |
R− r
R2 − r2

=
Pφ̃(B̃Fφ )

|B̃Fφ |
1

R+ r
. (3.35)

Let C be any subset of F obtained as the difference of two rescaled φ̃-balls, namely C =
Bφ̃(x; t)\Bφ̃(x2; s) for suitable x ∈ int(F ) and t ∈ (r,R] such that Bφ̃(x2; r) ⊂⊂ Bφ̃(x; t).

Then, recalling (3.24),

vC =
Pφ̃(B̃Fφ )

|B̃Fφ |
t− r
t2 − r2

=
Pφ̃(B̃Fφ )

|B̃Fφ |
1

t+ r
. (3.36)

In particular,
vF ≤ vC . (3.37)

Now, let U ⊂ F be a nonempty open finite perimeter set; we have to show that vU ≥ vF .
Write

∂−U := ∂U ∩ ∂Bφ̃(x2; r), ∂+U := ∂U \ ∂−U, Û := U ∪Bφ̃(x2; r).

Let t ∈ (r,R] be such that |Û | = |Bφ̃(x; t)|, where x ∈ int(F ) is such that Bφ̃(x2; r) ⊂⊂
Bφ̃(x; t) ⊂ Bφ̃(x1;R). By the anisotropic isoperimetric inequality (1.3) (with φ replaced

by φ̃), we get

Pφ̃(Û) ≥ Pφ̃(Bφ̃(x; t)),

that is∫
∂+U

φ̃o(ν̃U ) dH1 +

∫
∂B

φ̃
(x2;r)

φ̃o(ν̃F ) dH1 −
∫
∂−U

φ̃o(ν̃F ) dH1 ≥
∫
∂B

φ̃
(x;t)̃

φo(ν̃Bφ̃(x;t)) dH1.

(3.38)

(10)In particular, E is not convex at F .
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Let C := Bφ̃(x; t) \Bφ̃(x2; r). Notice that |C| = |U |. Then, using also (3.38) and (3.37),
we get

vU =

∫
∂+U

φ̃o(ν̃U ) dH1 −
∫
∂−U

φ̃o(ν̃F ) dH1

|U |
≥ vC ≥ vF .

Remark 3.38. We cannot expect in general to prove φ-calibrability of a facet F such
that E is convex at F , and which is obtained by removing from a ball a smaller ball. This
is a difference compared to what happens when E is not convex at F (Theorem 3.37).
To show this fact, let us consider the bidimensional anisotropy having a square of side
` as unit ball, and let us consider the facet F in Figure 3.4, obtained by removing from
S
` B̃

F
φ the ball Bφ̃(x; s` ), where S and s are the Euclidean lengths of the sides of the two

squares, and x lies on the diagonal of the bigger one. Let a be the Euclidean distance
between the boundaries of the two balls. The mean velocity of the facet is vF = 4

S−s . If
we consider the set B in Figure 3.4 we get

vB =
4S

S2 − (a+ s)2
,

and the inequality vB < vF is verified when a < −s+
√
Ss.

S

B̃F
φ

B

sa

a

Figure 3.4: If F is a nonconcentric annulus and E is convex at F , then F is non φ-
calibrable if the distance a between the two connected components of ∂F is small enough.

3.4.2 Closed strips

The case of strips has been investigated in [113] in the Euclidean setting. Our aim is to
generalize it to the anisotropic setting.

Assume the facet F to have the following shape. Let Γ := ∂Ω be a closed planar
simple curve, where Ω is a φ̃-regular and φ̃-convex set. For some positive integers 0 < l ≤
k, we denote by Γi, i = 1, .., l, the relatively open edges of Γ parallel to some edges on the
ball B̃Fφ and with nonzero φ̃-mean curvature, and by Γj , j = l + 1, ..., k, each relatively

open connected component of Γ when the φ̃-mean curvature vanishes (if k = l, we mean

that there is no such a connected component); κi denotes the value of the φ̃-curvature
of Γi. On Γ we take the optimal selection NΓ, defined as the linear interpolation of the
(uniquely determined) vectors on the vertices of Γ; while, on each Γj , NΓ is a constant
vector, which we denote by NΓj .

For a > 0 such that a ≤ infi=1,...,l κ
−1
i , set

F := {x ∈ R2 : x = q + tNΓ(q), q ∈ Γ, |t| ≤ a}. (3.39)

Due to the φ̃-convexity of Γ and to the bound on a, for any x ∈ F the φ̃-projection q(x)
is uniquely determined, and it satisfies x = q(x) + t(x)NΓ(q(x)) with t(x) := −dΩ

φ̃
(x).(11)

(11) Recalling the notation in Section 1.2, by dΩ
φ̃

we denote the φ̃-signed distance function from

∂Ω, positive in the interior of Ω.
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Γ3

Γ2

Γ4

Γ1

Γ5

Γ6

B̃F
φ

x2

Figure 3.5: The dotted curve Γ is the boundary of a φ̃-convex set, where B̃Fφ is repre-
sented in the corner of the picture. Here l = 4 and k = 6. We represent also the optimal
selection NΓ on the vertices of Γ. In grey we draw the set F defined in (3.39). Finally

the point x2 is the center of the ball κ−1
i B̃Fφ having Γi as an edge, lying on the side of Γ

opposite to the direction of NΓ.

Theorem 3.39. Assume that E is convex at F . Then F is φ-calibrable, and κφ,F = 1
a .

Proof. In order to prove the statement, recalling also Remark 3.21, we want to construct
a selection with divergence constantly equal to 1

a . Following [113],(12) we define the

vector field Ñ on F as

Ñ(x) :=


(

1− (κ−1
i −a)(κ−1

i +a)

(φ̃(x−xi))2

)
x−xi

2a , q(x) ∈ Γi, i = 1, ..., l

−
dΩ

φ̃
(x)

a NΓj , q(x) ∈ Γj , j = l + 1, ..., k,

where, for i = 1, . . . , l, xi is the center of the copy of κ−1
i Bφ̃ having Γi as an edge, lying

in the side of Γi opposite to the direction of NΓ. An immediate computation shows that
φ̃(Ñ(x)) ≤ 1, and 〈ν̃F , Ñ〉 = 1 = cF , so that Ñ is a selection on F .

Moreover, we notice that
Ñ ∈H 2

div(F ). (3.40)

Indeed, for every x ∈ F , Ñ(x) is parallel to NΓ(q(x)),(13) which implies that divÑ ∈
L2(F ), and hence (3.40).

Let us explicitely compute the divergence of Ñ . For any i = 1, ..., l and for any x ∈ F
such that q(x) ∈ Γi, there holds

divÑ(x) =
1

a

(
(φ̃(x− xi))2 − (κ−1

i )2 + a2

(φ̃(x− xi))2

)

+
((κ−1

i )2 − a2)
(
Tφ̃(x− xi) · (x− xi)

)
a (φ̃(x− xi))4

=
1

a
,

where in the last equality we noticed that Tφ̃(x − xi) · (x − xi) = (φ̃(x − xi))2. When

x ∈ F is such that q(x) ∈ Γj , j = l + 1, .., k we get:

divÑ(x) = −
∇dΩ

φ̃
(x) ·NΓj

a
=

1

a
.

Hence, Ñ has constant divergence in F . By 3.21, the proof is completed.

(12)See also [29] for a similar computation.
(13) In general, Ñ is not continuous in F , since it may jump on {x ∈ F : q(x) is a vertex of Γ}.
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Remembering Remark 3.38, we observe that in Theorem 3.39 we cannot easily drop
the symmetry with respect to the curve Γ.

3.5 Optimal selections in facets for the φc-norm

In this section we shall restrict our attention to the case in which

φ = φc

is the Euclidean cylindrical norm in R3 = R2 × R, i.e. the norm of R3 whose unit ball
Bφc is given by

Bφc :=

{
(ξ1, ξ2, ξ3) ∈ R3 : max

(√
ξ2
1 + ξ2

2 , |ξ3|
)
≤ 1

}
,

see Figure 3.6.

Bφc B(φc)o

T(φc)o

Tφc

Figure 3.6: The unit ball of φc (on the left) and its dual (on the right). Colours are
used in order to represent the action of the duality maps Tφc and T(φc)o . In particular:
the interior of the upper facet of Bφc is mapped by Tφc onto the upper vertex of B(φc)o ;
each point of the boundary of the facet is mapped onto an edge of the upper half-cone;
finally, a vertical edge of Bφc is mapped onto a point of the circle separeting the two
half-cones of B(φc)o .

We shall assume that E is a Lip φ-regular set, F ∈ Facetsφ(∂E), and

E is convex at F.

Hence, by Theorems 3.25 and 3.13, we have κmin > 0 and κmax < +∞.

Notice that φ̃F = φ̃ is the Euclidean norm in the plane ΠF (identified with the hori-
zontal plane R2), so that F is of class C1,1 (Theorem 3.24). To avoid possible ambiguity
in the notation, in this section we shall restore symbol κF

φ̃
in order to denote the (Eu-

clidean) curvature of ∂F . From now on, by h(F ) we mean h(int(F )), and by Ch(F ) we
mean Ch(int(F )). It is useful to remember that, by Theorem 3.27, we have h(F ) = κmin.

Remark 3.40. We recall κφc,F ∈ Liploc(int(F )), see [64, Theorem 2].

We recall that, by Remark 3.32, F is strictly φc-calibrable if and only if F is
a strict Cheeger set, which in turn is equivalent, when F is convex, to require that
ess supx∈∂Fκ

F
φ̃

(x) ≤ h(F ) (Theorem 3.33).

Let us now state the following remarkable result, proven by Giusti in [101], which
will play a crucial role in the remaining of this section. We refer the reader for instance
to Appendix B for a brief discussion on the action principle for a capillary.
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Theorem 3.41. Let Ω ⊂ Rk be a bounded connected open set with Lipschitz boundary,

and let h := P (Ω)
|Ω| . Then there exists a solution u ∈ C2(Ω) of

div

(
∇u√

1 + |∇u|2

)
= h in Ω (3.41)

if and only if

h <
P (B)

|B|
, B ⊂ Ω, B 6= ∅. (3.42)

Moreover, if Ω is of class C2, the solution is unique up to an additive constant, bounded
from below in Ω, and its graph is vertical at the boundary of Ω, in the sense that

∇u√
1 + |∇u|2

→ νΩ uniformly on ∂Ω. (3.43)

Finally, if k = 2 and Ω is convex, (3.42) is in turn equivalent to assume that the curvature
of ∂Ω, at all points of ∂Ω where it is defined, is less than or equal to h.

Remark 3.42. Let u be a solution of (3.41), with Ω := int(F ) and h := h(F ). Repeating
the proof in [101, Section 2], which is still valid assuming Ω of class C1,1, one proves that
u is bounded from below in int(F ) and satisfies (3.43).

As a corollary of Theorem 3.41, we get the following result.

Proposition 3.43 (Optimal selection in strictly φc-calibrable facets). Suppose F
to be strictly φc-calibrable. Then there exists u solving (3.41) in Ω := int(F ). Moreover,
the vector field

Ñ :=


∇u√

1+|∇u|2
in int(F ),

ν̃F on ∂F,

(3.44)

is an optimal selection in F , continuous in F and analytic in int(F ).

Proof. The first assertion follows recalling Remark 3.32 and Theorem 3.41. By con-
struction, using also Remark 3.42, Ñ belongs to H 2

div(F ) and satisfies (3.23). Analytic

regularity of Ñ follows from elliptic regularity.

Clearly, the vector field Ñ in (3.44) is, up to the sign, the “horizontal” component
of the Euclidean outer normal to the subgraph of u.

Remark 3.44 (Lipschitz regularity). Assuming also that ess supx∈∂Fκ
F
φ̃

(x) < P (F )
|F | =

h(F ), then (compare [101, p.125])

Ñ ∈ Lip(F ; ΠF ).

Remark 3.45 (Total variation flow). It is worth to notice that, by virtue of [6,
Theorem 17], and for a convex facet F of class C1,1, our construction provides also the
solution of the total variation flow in R2

∂tu = div

(
Du

|Du|

)
, (3.45)

with initial datum the characteristic function of F . Heuristically, if u is a solution
of (3.45), and p(t) = (x, u(t, x)) is a point of graph(u(t)) ⊂ R3 around which u(t) is
sufficiently smooth with nonzero gradient, then the vertical velocity of p(t) equals the
mean curvature of the level set of u(t) passing through x; strictly φc-calibrable flat regions
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F of graph(u(t)) evolve in vertical direction(14) with velocity equal to P (F )/|F |; vertical
walls (provided u(t) is discontinuous) of graph(u(t)) do not move; finally, isolated points
where the gradient of u(t) vanishes, such as local minima or local maxima, may develop
instantaneously flat horizontal regions. See also [29, 30, 6, 62], or the last section in [9].
Therefore, there are analogies between the total variation flow in R2 and the anisotropic
mean curvature flow of φc-calibrable facets; however the two motions differ immediately
after the initial time. Indeed, even for φc-calibrable facets, the graph of v = 1F decreases
its height without distortion of the boundary, while the shape of F is expected in general
to change for t > 0.

We now give some examples of non φc-calibrable facets F for which we can exhibit
an optimal continuous selection.

Example 3.46 (Non φc-calibrable convex facets). Let F be convex and not φc-
calibrable (see Theorem 3.33). By virtue of Theorem 3.6, the maximal Cheeger subset
Ch(F ) of F is strictly Cheeger, and (Theorem 3.1) it is of class C1,1. Moreover (Theorem
3.27) Ch(F ) = ΘF

κmin
. Applying Proposition 3.43 with Ch(F ) in place of F , we get a

function u ∈ C2(int(Ch(F ))) solving (3.41) in int(Ch(F )) with h := h(F ). Set

Ñ :=
∇u√

1 + |∇u|2
in int(Ch(F )).

By Theorem 3.28, κφ,F is convex in F , so that there cannot be subsets of F with
positive Lebesgue measure where κφ,F is constant, except for ΘF

κmin
. Hence, for ev-

ery β ∈ [κmin, κmax), int(F ) ∩ ∂ΘF
β = {x ∈ int(F ) : κφ,F (x) = β}. From Theorems 3.25

and 3.28, each connected component of int(F ) ∩ ∂ΘF
β is contained in a circumference of

radius β−1. Thus, we extend Ñ in int(F ) \ ΘF
κmin

as the outward normal unit vector to

the level curves of κφ,F — namely, Ñ := ν̃∂ΘFβ on {κφ,F = β}. By construction, recalling

also Remark 3.42, divÑ = κφ,F in int(F ), and Ñ verifies the third equation in (3.23).

Hence, Ñ ∈ H 2
div(F ), and Ñ is an optimal selection in F (Remark 3.23). Moreover, Ñ

is continuous in F , analytic in int(ΘF
κmin

), and Ñ(x) ∈ ∂B̃Fφ for any x ∈ int(F ) \ΘF
κmin

.

The following examples have been inspired by [88, 114]. For r > 0 and (x̄1, x̄2) ∈ R2,
we set Br(x̄1, x̄2) := {x = (x1, x2) ∈ R2 : (x1 − x̄1)2 + (x2 − x̄2)2 ≤ r2}.

Example 3.47 (Rounded two circle facets). Let θ ∈ (0, π2 ), and

Pθ := B1(0, 0) ∪Bsin θ(cos θ, 0).

One can prove [114] the following facts: Pθ admits a unique (hence maximal) Cheeger
subset Ch(Pθ) (as in Figure 3.7(a)); moreover, there exists a unique θ0 ∈ (0, π2 ) such that
Pθ0 is Cheeger. Our idea is to construct an optimal selection, solving (3.41) in Ch(Pθ)
(for θ 6= θ0), and then foliate the remaining part of Pθ with arcs of circles, taking as
vector field the outward unit normal to the arcs. Fix θ 6= θ0, so that

h(Pθ) =
P (Ch(Pθ))

|Ch(Pθ)|
<
P (Pθ)

|Pθ|
. (3.46)

Notice that

h(Pθ) <
1

sin θ
, (3.47)

since h(Pθ) equals the curvature of int(Pθ) ∩ ∂Ch(Pθ), which is strictly less than 1
sin θ

by the geometry of Pθ.
Even if Pθ is regarded as a facet of a three-dimensional set E convex at Pθ, the set E

cannot be Lip φc-regular, since Pθ is not of class C1,1.(15) Thus we perform the following

(14)Upwards or downwards depending on whether F consists of points of local minimum or local
maximum of u(t).
(15)Therefore, strictly speaking, we cannot apply Theorem 3.11 in order to define κEφ on Pθ.
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Pθ

Ch(Pθ)

θ

(a)

pε1
qε1

pε2

qε2
Bε

2

Bε
1

(b)

pε1 qε1

pε2 qε2

(c)

Figure 3.7: In (a), the set Pθ and its maximal Cheeger subset Ch(Pθ) (in grey). In
(b), the construction of the facet F = Fε in Example 3.47. In (c), some sublevel sets
ΘF
β of κφc,F are represented. For every β ∈ (κmin, κmax), int(F ) ∩ ∂ΘF

β is an arc of

circumference with radius β−1, and tangent to ∂F . For any β ∈ (1, 1
sin θ ), such an arc is

unique, and its terminal points belong to the arcs bounded by pεj and qεj , for j = 1, 2.

smoothing construction near the non-differentiability points of ∂Pθ. For ε > 0, let Bε1, Bε2
be the two closed disks satisfying the following properties: for j = 1, 2, Bεj is externally
tangent to Pθ, and Pθ∩Bεj = {pεj , qεj}, for some pεj ∈ ∂B1(0, 0), and qεj ∈ ∂Bsin θ(cos θ, 0).
According to Figure 3.7(b), we define F = Fε as the union of Pθ with the curved triangles
having vertices pεj , q

ε
j , and (cos θ, (−1)j sin θ), for j = 1, 2.

By construction F is of class C1,1 (and it is not convex). Recalling also (3.46), we
choose ε > 0 so small that∣∣∣∣P (Pθ)

|Pθ|
− P (F )

|F |

∣∣∣∣ = O(ε) <
P (Pθ)

|Pθ|
− P (Ch(Pθ))

|Ch(Pθ)|
. (3.48)

In particular,
P (Ch(Pθ))

|Ch(Pθ)|
<
P (F )

|F |
,

which implies that F is not Cheeger, or equivalently (Remark 3.32) that F is not φc-
calibrable. It must be underlined that our argument neither provides nor excludes the
φc-calibrability of F := Pε

θ0
. We observe that, for any β ∈ (1, 1

sin θ ), there is a unique

circumference Γ̂β ⊂ F , with curvature β, and tangent to ∂F at two points, lying on
the arcs of ∂F bounded by pεj , q

ε
j , for j = 1, 2: see Figure 3.7(c). We denote by Γβ the

shortest connected component of int(F )∩ Γ̂β . Then Ch(F ) is determined as the subset of
F containing B1(0, 0),(16) and such that int(F )∩ ∂Ch(F ) = Γh(F ). In particular, Ch(F )

(16)Actually, we have B1(0, 0) ⊂ Ch(F ), since it can be proven that B1(0, 0) ⊂ Ch(Pθ).
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is strictly Cheeger and of class C1,1. Furthermore, recalling Remark 3.26, and taking into
account the geometry of F , we have

int(F ) ∩ ∂ΘF
β = Γβ = int(F ) ∩ ∂ΩFβ , β ∈ (κmin, κmax). (3.49)

Now, we exclude the presence of regions in int(F ) \ Ch(F ) where κφc,F is constant.
Suppose by contradiction that there exists β̄ ∈ (κmin, κmax] such that {κφc,F = β̄} has
positive Lebesgue measure. If β̄ < κmax, then

int(F ) ∩ ∂ΘF
β̄ 6= int(F ) ∩ ∂ΩFβ̄ , (3.50)

which contradicts (3.49). If β̄ = κmax, then ∂ΘF
κmax

= ∂F , and so (Remark 3.26)
ess supκF

φ̃
= 1

sin θ ≤ κmax. On the other hand, since we are assuming int(F )∩∂ΩFκmax
6= ∅,

int(F ) ∩ ∂ΩFκmax
should be an arc of circumference with curvature κmax, and tangent to

∂F . In particular, by the geometry of F , κmax <
1

sin θ , a contradiction.
As a consequence, we have

κmax =
1

sin θ
,

otherwise κφc,F would be constantly equal to κmax in the full-measure subset of F
bounded by Γκmax , and not containing B1(0, 0) — again a contradiction.

We define Ñ in F as follows: Ñ := ∇u√
1+|∇u|2

in int(Ch(F )), where u is given by

Theorem 3.41, with Ω = int(Ch(F )) and h = h(F ); while, for β ∈ (h(F ), 1
sin θ ) and

x ∈ Γβ , Ñ(x) is the outward unit normal to ΘF
β at x. Notice that Ñ ∈H 2

div(F ) (Remark

3.42), and it is an optimal selection in F (Remark 3.23). Concerning the regularity of Ñ ,

we notice that Ñ is continuous in F , and analytic in int(Ch(F )). Moreover, Ñ(x) ∈ ∂B̃Fφ
for any x ∈ int(F ) \ Ch(F ).

By modifying Example 3.47, we now build an optimal selection for a facet F admitting
an open region outside of ΘF

κmin
where κφc,F is constant (and equal to κmax).

Example 3.48 (Rounded proboscis). Let M > 0, and let θ, θ0 and Pθ be as in
Example 3.47. Set

Pθ,M := B1(0, 0) ∪ {x ∈ R2 : x = y + (c, 0), y ∈ Bsin θ(cos θ, 0), c ∈ [0,M ]},

see Figure 3.8(a).
We claim that, for any M > 0 and any θ < θ0,

P (Pθ)

|Pθ|
<
P (Pθ,M )

|Pθ,M |
. (3.51)

Indeed, since P (Pθ) = 2(π−θ)+π sin θ, |Pθ| = π+ π
2 sin2 θ−(θ−sin θ cos θ), P (Pθ,M ) =

P (Pθ) + 2M , and |Pθ,M | = |Pθ| + 2M sin θ, (3.51) is equivalent to P (Pθ) sin θ < |Pθ|,
i.e.

(π − θ) (2 sin θ − 1)− sin θ cos θ +
π

2
sin2 θ < 0. (3.52)

Let us show that the left hand side of (3.52) is strictly increasing in (0, π2 ). Indeed,
computing the first derivative (w.r.t. θ), we get

2(π − θ) cos θ + π cos θ sin θ + 2 sin θ(sin θ − 1). (3.53)

Notice that, since θ ∈ (0, π2 ), the first term in (3.53) is greater than π cos θ. Now, using

for instance the identities sin θ = 2t
1+t2 , cos θ = 1−t2

1+t2 , since t ∈ (0, 1), it is easy to show
that

π cos θ(1 + sin θ) + 2 sin θ(sin θ − 1) =
1− t

(1 + t2)2

[
π(1 + t)(t2 + 2t+ 1)− 2t(1− t)

]
≥ 1− t

(1 + t2)2

[
π(1 + t)3 − 1

2

]
> 0,
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Pθ,M

Ch(Pθ,M )

(a)

Pε
θ,M

Ch(Pε
θ,M )

(b)

Figure 3.8: In (a), the set Pθ,M and its Cheeger subset Ch(Pθ,M ). In (b), the facet
F = Fε described in Example 3.48. In this case, there are two full-measure subsets where
κφc,F is constant.

for every θ ∈ (0, π2 ). As a consequence, the left hand side of (3.52) is strictly increasing
in [0, π2 ], and it is zero just at one value of θ ∈ (0, π2 ), which must coincide with θ0.

Fix θ ∈ (0, θ0). For ε > 0, let Pε
θ,M be the set of class C1,1 obtained by taking

the union of Pθ,M with the curved triangles, bounded by Pθ,M and a disk with radius
ε and externally tangent to Pθ,M : see Figure 3.8(b). Similarly to Example 3.47, we
choose ε > 0 so small (depending on the difference between the two terms in (3.51)) that
F = Fε := Pε

θ,M is not Cheeger.
By construction, F is neither convex nor φc-calibrable. Moreover, for any β ∈

(1, 1
sin θ ), there still exists a unique circumference Γ̂β ⊂ F with curvature β, and tan-

gent to ∂F at two points; again, referring to Figure 3.8(b), these points must lie on
the arcs bounded by pεj , q

ε
j , where j = 1, 2. We denote by Γβ the shortest connected

component of int(F ) ∩ Γ̂β .
Similarly to Example 3.47, we can still determine Ch(F ) as the unique subset of F

(strictly) containing B1(0, 0), and such that int(F ) ∩ ∂Ch(F ) = Γh(F ). In particular,

Ch(F ) is strictly Cheeger. Moreover, reasoning as in Example 3.47,(17) there is no β̄ ∈
(h(F ), 1

sin θ ) such that κφc,F = β̄ in some subset of F with positive Lebesgue measure.
Therefore:

- for any β ∈ (h(F ), 1
sin θ ), ΘF

β is the closed subset of F containing B1(0, 0), and

such that int(F ) ∩ ∂ΘF
β = Γβ ;

- κmax = 1
sin θ , and κφc,F = κmax in int(F ) \

⋃
β< 1

sin θ
ΘF
β .

Also in this case, we can exhibit an optimal selection Ñ (Remarks 3.23-3.42) which is

continuous in F , and analytic in int(Ch(F )). More precisely, Ñ is defined as follows:

Ñ := ∇u√
1+|∇u|2

in int(Ch(F )), where u is given in Theorem 3.41 (with the choice Ω :=

int(Ch(F )), and h := h(F )); for β ∈ (h(F ), 1
sin θ ) and x ∈ Γβ , Ñ(x) is the outer normal

to ΘF
β at x; finally, if κφc,F (x) = κmax, we set Ñ(x) := Ñ(x̃), where x̃ ∈ int(F ) ∩ ∂ΩF 1

sin θ

is such that x̃2 = x2.

(17)Recall in particular the proof of (3.50).
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We notice the presence of a full-measure subset of F , unrelated to the maximal
Cheeger subset of F , and where it is possible to construct an optimal selection without
making use of Theorem 3.41.

We conclude this section with an example in which we are not able to provide an
explicit optimal selection, even if we determine the φc-mean curvature of F .

Example 3.49 (“Dumbbell-like” facet). Let θ and θ0 be as in Example 3.47, and
suppose θ ∈ (0, θ0). Let M > 2 sin θ+1, and let Dθ,M be the set obtained as the union of
Pθ ∪P′θ, and the strip [cos θ, cos θ+M ]× [− sin θ, sin θ], where Pθ is the set in Example
3.47, and P′θ is its symmetric with respect to the straight line {(x1, x2) ∈ R2 : x2 =
cos θ + M

2 }.

Dε
θ,M

(pε2)′

(pε1)′

(qε1)′

(qε2)′

pε1
qε1

pε2

qε2 Γκmax
Γ′κmax

Figure 3.9: The dumbbell facet Dε
θ,M in Example 3.49. In grey, its maximal Cheeger

subset, some level sets of κφc,F , and the set {κφc,F = κmax} bounded by the arcs Γκmax

and Γ′κmax
. Notice that in this case κmax <

1
sin θ .

We observe that

P (Dθ,M )

|Dθ,M |
=

M + 2(π − θ)
cos θ sin θ + π − θ +M sin θ

, (3.54)

which, as M → +∞, tends to 1
sin θ . In particular, since θ < θ0, recalling also (3.46) and

(3.47),
P (Ch(Pθ))

|Ch(Pθ)|
<
P (Dθ,M )

|Dθ,M |
, (3.55)

for M > 0 sufficiently large.
For ε > 0, let Bεj and (Bεj)

′ for j = 1, 2, be the four balls of radius ε externally
tangent to Dθ,M in pεj and qεj , and in (pεj)

′ and (qεj)
′ respectively. For M such that (3.55)

holds, let F = Fε := Dε
θ,M be the set of class C1,1 obtained by taking the union of Dθ,M

with the four curved triangles, bounded by pεj , q
ε
j and (cos θ, (−1)j sin(θ)) and (pεj)

′, (qεj)
′

and (cos θ+M, (−1)j sin(θ)) respectively, see Figure 3.9. Then, we choose ε > 0 so small
that (3.55) holds with F replacing Dθ,M ; hence, F is not φc-calibrable.

For any β ∈ (1, 1
sin θ ) let Γβ (resp. Γ′β) be the arc of minimal length of the circumfer-

ence of radius 1
β , which is internally tangent to ∂F in two points, belonging to the arcs

bounded by pεj and qεj (resp. (pεj)
′ and (qεj)

′), for j = 1, 2. Let Cβ ⊂ F be the disconnected
set bounded by Γβ ∪ Γ′β , let C 1

sin θ
:= ∪β∈(1, 1

sin θ )Cβ , and let Γ 1
sin θ

and Γ′ 1
sin θ

be the two

connected components of int(F ) ∩ ∂C 1
sin θ

.

Reasoning as in Example 3.47, Ch(F ) is the disconnected subset of F bounded by
Γh(F ) and Γ′h(F ) (see again Figure 3.9). Moreover,(18) for all β̄ ∈ (κmin, κmax), we can still

exclude the presence of regions of the form {κφc,F = β̄} with positive Lebesgue measure.
As a consequence,

int(F ) ∩ ∂ΘF
β = Γβ ∪ Γ′β = int(F ) ∩ ∂ΩFβ , β ∈ (κmin, κmax).

(18)Recall once again the proof of (3.50).
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By the geometry of F , κmax ≤ 1
sin θ . Therefore, we have |F \ ΩFκmax

| > 0: indeed, if
Q ⊂ F is the connected (full-measure) set bounded by Γ 1

sin θ
∪Γ′ 1

sin θ

, then Q ⊆ F \ΩFκmax
.

It is interesting to show now that, differently from Example 3.48, the maximal value
κmax of κφc,F depends on M , and

κmax <
1

sin θ
. (3.56)

Indeed, recalling (3.16) and the equality F = ΘF
κmax

, the value κmax must verify

P (F )− P (ΩFκmax
) = κmax|F \ ΩFκmax

|. (3.57)

Notice that
P (F )− P (ΩFκmax

) = 2M − 2H1(Γκmax
) +O(ε). (3.58)

We estimate H1(Γκmax
) with the length of the arc of circumference of curvature κmax

contained in Bsin θ(cos θ, 0), and passing through the points (cos θ,± sin θ). We denote
by ω := ω(κmax) the angle such that

sinω = κmax sin θ. (3.59)

Notice that proving (3.56) is in turn equivalent to show that ω 6= π
2 . From (3.58), we get

P (F )− P (ΩFκmax
) = 2

[
M − 2ω

sin θ

sinω

]
+O(ε). (3.60)

Similarly, we estimate |F \ ΩFκmax
| with the area of the connected subset of the strip

[cos θ, cos θ + M ] × [− sin θ, sin θ] bounded by two arcs of circumference of curvature
κmax, and passing through the vertices of the strip. Thus

|F \ ΩFκmax
| = 2

[
M sin θ − ω sin2 θ

sin2 ω
+ sin2 θ

cosω

sinω

]
+O(ε). (3.61)

Combining (3.57), (3.60), and (3.61) we get

M (1− sinω) = ω
sin θ

sinω
+ sin θ cosω +O(ε), (3.62)

which does not admit ω = π
2 as a solution, for ε > 0 sufficiently small. This proves (3.56).

Remark 3.50. Referring to Example 3.49, we notice that we can still apply Theorem
3.41 separately in each connected component of Ch(F ), thus obtaining a subunitary
vector field X satisfying divX = h(F ) in Ch(F ), and (3.43) on ∂F ∩ ∂Ch(F ).

If we extend X following the normal direction of the curvature level lines in ΩFκmax
\

Ch(F ), and then transporting the field parallelly to itself in ΘF
κmax

\ ΩFκmax
, we end up

with a field not belonging to H 2
div(F ). Indeed we cannot avoid the field to jump in the

normal direction of some vertical discontinuity segment.
We observe that the difficulty for building an optimal selection seems to be related

to the presence of two minimal Cheeger subsets of F . We are not aware whether there
exists an optimal selection equal to X in Ch(F ).

As we have already said, we are not able to find an optimal selection Ñmin in F : we
notice that [101, Theorem 1.1] cannot be applied with the choice of h = κφc,F , since any
ΩFβ violates [101, formula (1.3)].



Chapter 4

Constrained BV functions on
coverings

Summary. In Section 4.1, we define the family of admissible cuts, the space BV (YΣ;V ),
and we give a handy formula for the total variation. In Section 4.2, we introduce the
family of constrained BV functions, and we set up the minimization problem. In Section
4.2.1, we show that, actually, the model does not depend on the admissible cuts, while in
Section 4.2.2 we give a compactness result which allows to prove existence of minimizers,
and we give our definition of constrained covering solutions. Another key result is a
“nonconstancy lemma”, showing that the jump set of any constrained function turns out
to have strictly positive Hn−1-measure in the fibers over any open set containing a loop
around the boundary frame S. Then, in Section 4.3, we lift the constraint on the fibers to
the class of Sobolev functions on YΣ, showing that our formulation naturally leads to a Γ-
convergence result. Section 4.4.1 is devoted to the case when S consists of m ≥ 2 distinct
points, and we show that a constrained covering solution coincides with the Steiner
graph over S. In Section 4.4.2 we test the model in the case of the standard Plateau’s
problem in R3, showing that our model is equivalent to solving Plateau’s problem using
the theory of integral currents modulo 2. Finally (Section 4.4.3), in the aim to extend
our model to more general choices of S, we consider the case when the boundary frame
is the one-dimensional skeleton of a regular tetrahedron.

4.1 BV functions on coverings

Let n ∈ N, n ≥ 2. For r > 0 and x ∈ Rn, we set Br(x) := {x′ ∈ Rn : |x′ − x| < r}, and
Br := Br(0). Throughout this chapter, Ω ⊆ Rn denotes a nonempty connected open set.
Unless otherwise specified, we let S ⊂ Ω be a boundaryless, compact, embedded, smooth
submanifold of dimension n− 2, not necessarily connected nor oriented.

We define the base set as
M := Ω \ S, (4.1)

which is path connected.

Example 4.1. Typical choices will be:

- n = 2, and S a finite number m of distinct points;

- n = 3, and S a tame link (that is, a finite number of disjoint closed embedded
smooth space curves).

We shall perform a different covering construction depending on the dimension n.
Indeed, apart from the construction in Section 4.4.3, our covering space will consist of
m := m(n) sheets, where

m :=

{
cardinality of S if n = 2,

2 if n > 2.
(4.2)

73



74 Chapter 4. Constrained BV functions on coverings

The family of admissible cuts is defined distinguishing between the following two alter-
natives. We say that an (n − 1)-dimensional submanifold Σ ⊂ Ω is Lipschitz provided
that, locally around any of its points, Σ is the graph of a Lipschitz function defined on
a suitable (n− 1)-orthonormal frame.

Definition 4.2 (Admissible cuts, n = 2). Let n = 2, and S := {p1, . . . , pm}. We
denote by Cuts(Ω, S) the set of all Σ := ∪m−1

i=1 Σi ⊂ Ω where:

- for i = 1, . . . ,m − 1, Σi is a Lipschitz simple curve, starting at pi and ending at
pi+1;

- if m > 2, then Σi ∩ Σi+1 = {pi+1} for i = 1, . . . ,m− 2;

- Σi ∩ Σl = ∅ for any 1 ≤ i < l ≤ m− 1, with l 6= i+ 1.

We also denote by Cuts(Ω, S) the set of all pairs Σ := (Σ,Σ′) such that:

(i) Σ,Σ′ ∈ Cuts(Ω, S), and Σ ∩ Σ′ = S;

(ii) for m > 2, and for any i = 2, . . . ,m−1, let Ci be a sufficiently small disk centered
at pi, and denote by xi (resp. yi) the intersection of Ci with Σi−1 (resp. with
Σi). Then, there exists an arc of Ci connecting xi and yi, and not intersecting
Σ′ = ∪m−1

j=1 Σ′j.

Roughly speaking, condition (ii) in Definition 4.2 means that Σ lies from one side of
Σ′ locally around S.

M

p1 p2

p3

Σ′1

Σ1

I2

I1

O

Σ2

Σ′2

Figure 4.1: The base set M = Ω \ S, when n = 2, m = 3, Ω is a rectangle, and
S = {p1, p2, p3}. In the figure, an example of admissible pair of cuts is shown.

Definition 4.3 (Admissible cuts, n > 2). Let n > 2. We denote by Cuts(Ω, S) the
set of all (n− 1)-dimensional compact embedded Lipschitz submanifolds Σ ⊂ Ω having S
as topological boundary.

We also let Cuts(Ω, S) be the set of all pairs Σ := (Σ,Σ′) such that Σ,Σ′ ∈
Cuts(Ω, S), and Σ ∩ Σ′ = S.

Referring to Definitions 4.2-4.3, we call the elements of Cuts(Ω, S) (resp. of Cuts(Ω, S))
admissible cuts (resp. admissible pairs of cuts). When n > 2, we shall always suppose
that Cuts(Ω, S) and Cuts(Ω, S) are nonempty. A typical situation is when S is the topo-
logical boundary of some (n − 1)-dimensional, compact, embedded, orientable, smooth
submanifold Σ ⊂ Ω. Indeed, the orientability of Σ gives a unit normal vector field on
Σ\S— hence, in particular, a direction to follow in order to “enlarge” the cut, separating
its two faces. The construction is standard (in the case n = 3, it is given for instance
in [118, p.147]). Necessary and sufficient conditions for the existence of this (n − 1)-
dimensional orientable submanifold can be found in [154]. When n = 3, and S is a tame
link, there exists [137, Theorem 4, p.120] an embedded orientable surface, called Seifert
surface, whose boundary is S.
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S

Σ′

Σ

Figure 4.2: An example of admissible pair of cuts in the case S ⊂ R3 is a circle. In
the figure, Σ is a closed half-sphere, while Σ′ is a portion of cylinder under S, with the
addiction of the lower base.

Remark 4.4. An m-sheeted covering of M can be constructed in a standard way [118,
p.147] using a single orientable cut Σ ∈ Cuts(Ω, S), by suitably identifying m copies
of Ω \ Σ. This construction is perhaps more intuitive than the one based on (4.5) and
corresponds, essentially, to the case in which Σ and Σ′ coincide. However, in order to
rigorously define the covering, one needs to slightly separate the “faces” of Σ. Since our
minimization problem (see (4.19) below) depends on the metric on the covering space,
we find more convenient to use the construction via admissible pairs of cuts. However,
it is worth noticing that, concretely, it will be enough to deal with only one of the two
cuts of the pair Σ.

4.1.1 “Cut and paste” construction of the covering

In this section we explicitly construct the covering (YΣ, πΣ,M ). As a consequence, we
shall end up with local parametrizations which naturally bring the Euclidean metric on
YΣ.

Let n ≥ 2 and m be as in (4.2). Let Σ = (Σ,Σ′) ∈ Cuts(Ω, S). We consider m
disjoint copies of the open sets

D := Ω \ Σ, D′ := Ω \ Σ′, (4.3)

which we denote respectively by

(D, j), j = 1, . . . ,m, (D′, j′), j′ = m+ 1, . . . , 2m. (4.4)

Points in the space

X :=

m⋃
j=1

(D, j) ∪
2m⋃

j′=m+1

(D′, j′)

are identified as follows. For i = 1, . . . ,m−1, let Ii be the bounded open set enclosed by Σi
and Σ′i; set alsoO := Ω\∪m−1

i=1 Ii. Let x, x′ ∈M , j ∈ {1, . . . ,m}, and j′ ∈ {m+1, . . . , 2m};
then (x, j) ∼ (x′, j′) if and only if x = x′, and one of the following conditions holds:{

j ≡ j′ (mod m), x = x′ ∈ O,
j ≡ j′ − i (mod m), x = x′ ∈ Ii, i = 1, . . . ,m− 1.

(4.5)

Of course, any point is also identified with itself. See Figures 4.1-4.3 for an example in
the case n = 2, m = 3.

Then ∼ is an equivalence relation, and the quotient space

YΣ := X/ ∼
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is endowed with the quotient topology given by the projection π̃ : X → YΣ induced by
∼. The covering space YΣ will depend on the choice of Ω; for notational simplicity we
shall not indicate such a dependence.

We set π : (x, j) ∈ X 7→ x ∈M , and we denote by

πΣ,M : YΣ →M (4.6)

the projection πΣ,M (π̃(x, j)) := x, for any (x, j) ∈ X . This latter map is well defined,
since if (x, j) ∼ (x′, j′), then πΣ,M (π̃(x, j)) = x = x′ = πΣ,M (π̃(x′, j′)). Therefore, we
have the following commutative diagram:

X π̃ //

π
  

YΣ

πΣ,M

��
M

(4.7)

Definition 4.5 (Local parametrizations). We set

Ψj : D → π̃
(
(D, j)

)
, Ψj := π̃ ◦

(
π|(D,j)

)−1
, j = 1, . . . ,m,

Ψj′ : D
′ → π̃

(
(D′, j′)

)
, Ψj′ := π̃ ◦

(
π|(D′,j′)

)−1
, j′ = m+ 1, . . . , 2m.

(4.8)

The covering space(1) YΣ admits a natural structure of differentiable manifold, with
2m local parametrizations Ψj , Ψj′ given by (4.8).

Remark 4.6. For j ∈ {1, . . . ,m} and j′ ∈ {m+ 1, . . . , 2m}, we have

Ψ−1
j′ ◦Ψj = id = Ψ−1

j ◦Ψj′ on D ∩D′,

where id is the identity map on D ∩D′. The pair (YΣ, πΣ,M ) is an m-sheeted covering
of M . Notice that ∪mj=1Ψj(D) = YΣ \ π −1

Σ,M (Σ \ S).

Remark 4.7 (Non-zero thickness wires). Our covering construction applies without
modifications to the (simpler) case of a base domain M := Ω \C, where C ⊂ Ω is a thin
open neighbourhood of S.

4.1.2 Total variation on the m-sheeted covering

The covering space YΣ is an n-dimensional connected orientable smooth non complete
manifold; it is endowed with a natural volume measure µ, which is the push-forward Ln#
of the n-dimensional Lebesgue measure Ln in M via the maps (4.8). More specifically,
let E ⊆ YΣ be a Borel set. Then we can write E as the union of the following 2m disjoint
Borel sets

E ∩ π̃((D, j)), j = 1, . . . ,m, E ∩ π̃((Σ \ S, j′)), j′ = m+ 1, . . . , 2m, (4.9)

and we set

µ(E) :=

m∑
j=1

Ψj#Ln(E ∩ π̃((D, j))) =

m∑
j=1

Ln(πΣ,M (E ∩ π̃((D, j)))).

Notice that Σ′ does not appear in (4.9). Choosing D′ in place of D amounts in considering
Σ′ in place of Σ and does not change the subsequent discussion.

For k ∈ N, k ≥ 1, we set L1(YΣ;Rk) := L1
µ(YΣ;Rk) and L1

loc(YΣ;Rk) := L1
µloc

(YΣ;Rk).
The relevant case in this paper will be

k := m− 1,

where we recall that m is defined in (4.2).

(1)Since S has been removed, YΣ is not branched.
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Definition 4.8 (The functions vh(u)). Let u : YΣ → Rk. For j = 1, . . . ,m and
j′ = m+ 1, . . . , 2m, we let vj(u) : D → Rk, vj′(u) : D′ → Rk be the maps defined by

vj(u) := u ◦Ψj , vj′(u) := u ◦Ψj′ . (4.10)

Clearly, if u ∈ L1(YΣ;Rk) then vj(u) ∈ L1(D;Rk), vj′(u) ∈ L1(D′;Rk).
By construction (recall (4.5)), we have

vj(u) = vj′(u) in O if j ≡ j′ (mod m), (4.11)

vj(u) = vj′(u) in Ii if j ≡ j′ − i (mod m), i = 1, . . . ,m− 1. (4.12)

Let Ω be bounded. Our aim is to define the total variation of a function u ∈ L1(YΣ;Rk).
We say that u is in BVµ(YΣ;Rk) =: BV (YΣ;Rk) if its distributional gradient(2) Du : η ∈
(C1

c (YΣ))k 7→ −
∫
YΣ

∑k
l=1 ul∇ηl dµ ∈ Rn is a bounded (k×n)-matrix of Radon measures

on YΣ. Let us denote by |Du| the total variation measure of Du [12]; we recall [12,
Proposition 1.47] that, for any open subset E ⊆ YΣ, we have

|Du|(E) = sup

{
k∑
l=1

∫
E

ul divηl dµ : η ∈
(
C1
c (E;Rn)

)k
, ||η||∞ ≤ 1

}
, (4.13)

which is L1(YΣ)-lower semicontinuous.

Remark 4.9 (Representation of the total variation, I). Let u ∈ BV (YΣ;Rk) and
E ⊆ YΣ be a Borel set. Then

|Du|(E) =

m∑
j=1

|Dvj(u)|
(
πΣ,M

(
E ∩ π̃((D, j))

))

+

2m∑
j′=m+1

|Dvj′(u)|
(
πΣ,M

(
E ∩ π̃((Σ \ S, j′))

))
.

(4.14)

In order to prove (4.14), let us first assume E ⊆ φ̃((D, 1)) is open. Then, recalling (4.13),
we have

|Du|(E) = sup

{
k∑
l=1

∫
Ψ−1

1 (E)

(v1(u))l divηl dLn : η ∈
(
C1
c (Ψ−1

1 (E);Rn)
)k
, ||η||∞ ≤ 1

}
= |Dv1(u)|(Ψ−1

1 (E)) = |Dv1(u)|(πΣ,M (E)),

(4.15)

which gives (4.14). From (4.15) and [12, Proposition 1.43], we get (4.14) for every Borel
set E ⊆ YΣ contained in a single chart. The general case follows by the splitting in (4.9).

Example 4.10. Let n = 2, m = 3, S = {p1, p2, p3}, Σ = Σ1 ∪ Σ2 and Σ′ = Σ′1 ∪ Σ′2 be
as in Figure 4.1. For j = 1, 2, 3, fix αj , βj ∈ R2, and let u ∈ BV (YΣ;R2) be such that,
for every j = 1, 2, 3, vj(u) is equal to αj inside a disk B ⊂M of radius r > 0 compactly
contained in O (or in I1, or in I2) and βj outside. Then, from (4.14), it follows

|Du|(YΣ) =

3∑
j=1

|Dvj(u)|(B ∩D) +

6∑
j′=4

|Dvj′(u)|(Σ \ S)

=2πr

3∑
j=1

|βj − αj |+H1(Σ)

3∑
j,l=1
j<l

|βl − βj |.
(4.16)

(2)Let φ ∈ C1
c (YΣ). For i = 1, . . . , n, let ei be the i-th element of the canonical basis of Rn.

Then∇iφ(y) := limh→0 h
−1
(
φ(Ψ1(πΣ,M (y)+hei))−φ(y)

)
is well-defined for every y ∈ π̃((D, 1)).

Similarly for other points in YΣ. We set ∇φ := (∇1φ, . . . ,∇nφ). For Φ := (φ1, . . . , φn) ∈
C1
c (YΣ;Rn), we set divΦ :=

∑n
i=1∇iφi.
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On the other hand, if B is centered at a point of Σ \ S, and B ∩ Σ′ = ∅, then

|Du|(YΣ) =2πr

3∑
j=1

|βj − αj |+H1(Σ ∩B)

3∑
j,l=1
j<l

|αl − αj |

+
(
H1(Σ)−H1(Σ ∩B)

) 3∑
j,l=1
j<l

|βl − βj |.

(4.17)

In particular, if α1, α2, α3 are the vertices of an equilateral triangle in R2 having side of
length `, and if β1 := α2, β2 := α3, β3 := α1,(3) both (4.16) and (4.17) reduce to

3`
(

2πr +H1(Σ)
)
.

4.2 The constrained minimum problem

Let ` > 0, and let V := {α1, . . . , αm} ⊂ Rm−1 be such that

|αj − αl| = `, j, l = 1, . . . ,m, j 6= l.

We define

BV (YΣ;V ) :=
{
u ∈ BV (YΣ;Rm−1) : u(x) ∈ V µ – a.e. in YΣ

}
.

We denote by
T (V )

the set of all maps τ : V → V such that, for h ∈ {1, . . . ,m− 1} coprime with m,

τ(αj) = αl where l ≡ j + h (mod m), j ∈ {1, . . . ,m}.

For τ ∈ T (V ), define τ0 := id in V , and τ l := τ ◦ (τ)l−1, for any l ∈ N, l ≥ 1. Notice
that m coincides with the smallest positive integer κ such that τκ = id (we call τ a
transposition of V of order m).

Definition 4.11 (Constrained BV functions on coverings). We denote by

BVconstr(YΣ;V )

the set of all u ∈ BV (YΣ;V ) for which there exists τ ∈ T (V ) such that

vj(u) = τ j−1 ◦ v1(u), j = 1, . . . ,m. (4.18)

Remark 4.12. In view of (4.11) and (4.12), the constraint (4.18) is equivalent to require
vj′(u) = τ j

′−1 ◦ vm+1(u), for j′ = m+ 1, . . . , 2m.

To have an idea of the meaning of the constraint (4.18) in the case m = 3, the reader
may refer to Figure 4.4.

Our constrained minimization problem, which in principle could depend on the choice
of Σ, can be now stated as follows:

A Ω
constr(S,Σ) := inf

{
|Du|

(
YΣ

)
: u ∈ BVconstr(YΣ;V )

}
. (4.19)

The independence of A Ω
constr(S,Σ) of Σ will be shown in Corollary 4.18.

(3)With this choice, and letting V = {α1, α2, α3}, u belongs to BVconstr(YΣ;V ), see Definition
4.11) in Section 4.2.
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(D, 1) (D′, 4)

(D′, 6)

(D′, 5)

(D, 3)

(D, 2)

Figure 4.3: The triple covering space YΣ, for M as in Figure 4.1. A dashed curve
denotes that an admissible cut has been removed. In the picture, some examples of
admissible neighbourhoods are shown. Identifications are meant by using the same grey
level and shape. Note that a complete counterclockwise (small) turn around any point of
S corresponds to move one sheet forward in YΣ. Moreover, m = 3 turns around a point
of S correspond to a single turn in YΣ.

Remark 4.13. When m = 2, we fix the choice ` := 2 and V := {±1}, so that

BVconstr(YΣ; {±1}) =
{
u ∈ BV (YΣ) : |u| = 1, v1(u) = −v2(u)

}
.
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(D, 1)

{u = α1}

(D, 2)

{u = α2}

{u = α3}
(D, 3)

{u = α3}

{u = α2}

Figure 4.4: A function u ∈ BV (YΣ;V )\BVconstr(YΣ;V ), where YΣ is the covering space
in Figure 4.3. Notice that we need to specify the values of u just on the three charts
drawn in the picture.

Clearly, u ∈ BVconstr(YΣ; {±1}) if and only if u ∈ BV (YΣ; {±1}) and∑
πΣ,M (y)=x

u(y) = 0. (4.20)

Notice that the sum in (4.20) contains only 2 terms.

The functional in (4.19) attains the same value when evaluated at u and at τ ◦ u,
for any τ ∈ T (V ). By virtue of the constraint, A Ω

constr(S,Σ) will turn out to be strictly
positive (see Theorem 4.24 below).

Remark 4.14 (Unbounded open sets). Let Ω be unbounded. Then, instead of (4.19),
we shall consider the minimization problem

A Ω
constr(S,Σ) := inf

{
|Du|(YΣ) : u ∈ BV loc

constr(YΣ;V )
}
, (4.21)

where

BV loc
constr(YΣ;V ) :=

{
u ∈ L1

loc(YΣ;V ) : |Du|(E) <∞, E ⊂ YΣ open rel. compact,

∃ τ ∈ T (V ) s.t. vj(u) = τ j−1 ◦ v1(u), j = 1, . . . ,m
}
.

We notice that the previous discussion (in particular, formula (4.14)) still holds true
when Ω is unbounded.

The next observation shows a difference between our model and the model in [55],
while Remark 4.16 seems to suggest a model closer to the one in [55].

Remark 4.15 (Monotonicity with respect to the base domain). Let Ω, Ω′ ⊆ Rn
be connected open sets, such that Ω ⊆ Ω′. Then

A Ω
constr(S,Σ) ≤ A Ω′

constr(S,Σ). (4.22)

Indeed, let us assume that Ω′ is bounded (the case in which Ω or Ω′ are unbounded
being similar). For Σ ∈ Cuts(Ω, S) ⊆ Cuts(Ω′, S), let us denote by Y ′Σ the covering
space of M ′ := Ω′ \ S. It is natural to see YΣ as a subset of Y ′Σ, so that, for any u ∈
BVconstr(Y

′
Σ;V ), we have u|YΣ

∈ BVconstr(YΣ;V ). In particular, |Du|(YΣ) ≤ |Du|(Y ′Σ),

which gives (4.22).

Remark 4.16 (A Dirichlet-type formulation). By slightly modifying our construc-
tion, it is possible to set up a minimization problem such that the minimum value de-
creases when the base domain becomes larger (the opposite of (4.22)). Let Ω,Ω′ ⊂ Rn
be connected open sets, such that Ω ⊂ Ω′ and Ω′ \ Ω 6= ∅. Fix α ∈ V , and let
Σ ∈ Cuts(Ω, S) ⊆ Cuts(Ω′, S). Let us consider the following Dirichlet-type problem:

BΩ
constr(S,Σ,Ω

′) := inf{|Du|(Y ′Σ) : u ∈ BVconstr(Y
′
Σ;V ), v1(u) = α in Ω′ \ Ω}.

Then, the larger is Ω, the smaller is the value of BΩ
constr(S,Σ,Ω

′).
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4.2.1 Independence of the admissible pair of cuts

In this section we show that constrained – covering solutions are independent of admissible
cuts. Our proof of Theorem 4.17 relies on general facts in coverings’ theory, which we
recall in Appendix C. Nevertheless, at least when m = 2, it is possibile to give a different
proof which is independent of the abstract covering construction performed at the end
of this paper.

For any u ∈ BVconstr(YΣ;V ), let

Ju ⊂ YΣ

be the set of approximate jump points of u in YΣ, which is defined as follows (here,
we adapt [12, Definition 3.67, p.163] to our setting): let y ∈ Ψ1(D, 1), x := πΣ,M (y),
and let r > 0 be such that Br(x) is contained in D. Given a unit vector ν ∈ Rn, set
Br(y) := Ψ1(Br(x)), B+

r,ν(y) := {y′ ∈ Br(y) : (πΣ,M (y′) − x) · ν > 0}, B−r,ν(y) :=
{y′ ∈ Br(y) : (πΣ,M (y′) − x) · ν < 0}. Now, we say that y is an approximate jump
point of u if there exist a unit vector ν ∈ Rn, and two distinct α, β ∈ V satisfying
limr→0+ r−n

∫
B+
r,ν(y)

|u−α| dµ = 0 = limr→0+ r−n
∫
B−r,ν(y)

|u−β| dµ. Similarly we proceed

when y belongs to the other covering sheets.

Theorem 4.17. Let Ω be bounded. Let Σ ∈ Cuts(Ω, S), and let u ∈ BVconstr(YΣ;V ).

Then, for any Σ̂ ∈ Cuts(Ω, S), there exists û ∈ BVconstr(YΣ̂;V ) such that

πΣ,M (Ju) = πΣ̂,M (Jû). (4.23)

Proof. Let f : YΣ → YΣ̂ be the homeomorphism defined in (C.5) below. We set û : YΣ̂ →
V as

û := u ◦ f−1.

By definition of f, it follows that u ∈ BVconstr(YΣ̂;V ), and Jû = f(Ju). Hence

πΣ̂,M (Jû) = πΣ̂,M (f(Ju)) = πΣ,M (Ju),

where in the last equality we have made use of (C.5).

Corollary 4.18 (Independence). The value A Ω
constr(S,Σ) in (4.19) is independent of

Σ ∈ Cuts(Ω, S).

Proof. We consider the case in which Ω is bounded, the unbounded case being similar.
Let Σ, Σ̂ ∈ Cuts(Ω, S). Let umin ∈ BVconstr(YΣ;V ) be such that A Ω

constr(S,Σ) =
m`Hn−1(πΣ,M (Jumin

)). Let û ∈ BVconstr(YΣ̂;V ) be the function given by Theorem 4.17,
applied with u = umin. Then, by (4.29) below and (4.23), we have

A Ω
constr(S, Σ̂) ≤ m`Hn−1(πΣ̂,M (Jû)) = m`Hn−1(πΣ,M (Jumin

)) = A Ω
constr(S,Σ).

Arguing similarly for the converse inequality, we get A Ω
constr(S, Σ̂) = A Ω

constr(S,Σ).

In accordance with Corollary 4.18, we set

A Ω
constr(S) := A Ω

constr(S,Σ).

Corollary 4.19 (Upper bound). We have

A Ω
constr(S) ≤ m` inf

{
Hn−1(Σ) : Σ ∈ Cuts(Ω, S)

}
. (4.24)

Proof. Let τ ∈ T (V ). Let u be the τ -constrained lift of v (Definition 4.20 below), with
v identically equal to some α ∈ V . Then (4.26) holds, and (4.24) follows.

In Sections 4.4.1 and 4.4.2 we shall prove that, when m = 2, n ≤ 7, and Ω = Rn,
(4.24) holds as an equality (see Corollary 4.35 and Theorem 4.39). Notice that, by the
regularity of area minimizing currents modulo 2 [144, Theorem 6.2.1], the infimum on
the right hand side of (4.24) is a minimum, provided n ≤ 7.
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4.2.2 Existence of minimizers

Let Σ = (Σ,Σ′) ∈ Cuts(Ω, S). Concerning functions defined on the base set, clearly
BV (M ;V ) = BV (Ω;V ), and moreover(4)

BV (Ω;V ) = BV (D;V ),

so that any v ∈ BV (D;V ) (or more generally any v ∈ BV (Ω \ C;V ), with C a finite
union of cuts) can be considered also as a BV function in Ω, whose total variation in
general may increase by a contribution due to the two traces of v on Σ (more generally
on C). In the following, we denote by

Jv ⊂ Ω

the set of approximate jump points of v considered as a function in BV (Ω;V ).

The next definition will be frequently used in the remaining of the chapter.

Definition 4.20 (Constrained lift). Let v ∈ BV (D;V ), and let τ ∈ T (V ). Then the
function defined as

u := τ j−1 ◦ v ◦Ψ−1
j in Ψj(D), j = 1, . . . ,m, (4.25)

is in BVconstr(YΣ;V ), and v1(u) = v. We call u the τ -constrained lift of v.

In particular, when v is identically equal to some α ∈ V , we have

πΣ,M (Ju) = Σ \ S, (4.26)

for every τ ∈ T (V ).

Lemma 4.21 (Splitting of the projection of the jump). Let Σ ∈ Cuts(Ω, S), and
let u ∈ BVconstr(YΣ;V ). Then

πΣ,M (Ju) =
(
Jv1(u) \ (Σ \ S)

)
∪
(
Jvm+1(u) ∩ (Σ \ S)

)
. (4.27)

Proof. Let us split Ju as the union of the following 2m disjoint sets:

Ju ∩ π̃((D, j)), j = 1, . . . ,m, Ju ∩ π̃((Σ \ S, j′)), j′ = m+ 1, . . . , 2m. (4.28)

By the constraint (4.18), for each j = 2, . . . ,m (resp. for each j′ = m + 2, . . . , 2m), to
each point in Ju ∩ π̃((D, j)) (resp. in Ju ∩ π̃((Σ \ S, j′))) there corresponds a unique
point in Ju ∩ π̃((D, 1)) (resp. in Ju ∩ π̃((Σ \S,m+ 1))), belonging to the same fiber, and
viceversa. Hence

πΣ,M (Ju) = πΣ,M

(
Ju ∩ π̃((D, 1))

)
∪ πΣ,M

(
Ju ∩ π̃((Σ \ S,m+ 1))

)
.

By definition of Ju, Jv1(u), Jvm+1(u), using also the local parametrizations Ψ1, Ψm+1, it

follows that πΣ,M

(
Ju ∩ π̃((D, 1))

)
= Jv1(u) \ (Σ \S), and πΣ,M

(
Ju ∩ π̃((Σ \S,m+ 1))

)
=

Jvm+1(u) ∩ (Σ \ S), and (4.27) follows.

Next lemma seems to be consistent with [55, Lemma 10.1]. From formula (4.29)
below, we see that |Du|(YΣ) is indeed independent of the orientation of Σ.

Lemma 4.22 (Representation of the total variation on the covering, II). Let
Σ = (Σ,Σ′) ∈ Cuts(Ω, S), and let u ∈ BVconstr(YΣ;V ). Then

|Du|(YΣ) =m`
(
Hn−1(Jv1(u) \ Σ) +Hn−1(Jvm+1(u) ∩ Σ)

)
=m`Hn−1(πΣ,M (Ju)).

(4.29)

(4)We recall from (4.3) that D = Ω \ Σ.
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Proof. Recall the splitting in (4.14), with the choice E := YΣ. By (4.11), we have

|Dvj(u)|(D) = |Dv1(u)|(D), j = 1, . . . ,m,

|Dv′j(u)|(Σ) = |Dvm+1(u)|(Σ), j′ = m+ 1, . . . , 2m.
(4.30)

By [12, Theorem 3.84], we have

|Dv1(u)|(D) = `Hn−1(Jv1(u) \ Σ), |Dvm+1(u)|(Σ) = `Hn−1(Jvm+1(u) ∩ Σ). (4.31)

Substituting (4.31) into (4.14), and recalling (4.30), we get the first equality in (4.29).
The second equality is now a consequence of (4.27).

We are now in the position to prove the following compactness result.

Corollary 4.23 (Compactness). Let Ω be bounded with Lipschitz boundary. Let
(uh)h∈N ⊂ BVconstr(YΣ;V ) be such that suph∈N |Duh|(YΣ) < +∞. Then there exist
u ∈ BVconstr(YΣ;V ) and a subsequence of (uh)h∈N converging to u in L1(YΣ;Rm−1).

Proof. For h ∈ N, define v1(uh) ∈ BV (D;V ) = BV (Ω;V ) as in (4.10). From (4.14) and
(4.30) we have

sup
h∈N
|Dv1(uh)|(Ω) = sup

h∈N

[
|Dv1(uh)|(D) + |Dv1(uh)|(Σ)

]
≤ 1

m
sup
h∈N
|Duh|(YΣ) + `Hn−1(Σ) < +∞.

Since Ω is a bounded Lipschitz domain, there exists v ∈ BV (Ω;V ) such that, up to a
not relabelled subsequence, v1(uh) → v in L1(Ω;Rk). The proof is completed, letting u
be defined as in (4.25).

We are now in the position to show that problem (4.19) has a solution; a key result
is represented by Lemma 4.25 below.

Theorem 4.24 (Existence of minimizers). Let Ω be a bounded connected open set
with Lipschitz boundary. Let Σ ∈ Cuts(Ω, S). Then A Ω

constr(S) is a minimum, and
A Ω

constr(S) > 0.

Proof. By the lower semicontinuity of the total variation, also recalling Corollary 4.23,
existence of minimizers for problem (4.19) follows by direct methods. Positivity of
A Ω

constr(S) follows from (4.33) below, with the choice A := Ω.

Next lemma shows, in particular, that the jump set of any function in BVconstr(YΣ;V )
has strictly positive Hn−1 – measure in the fibers over any open subset of Ω containing a
loop around a point of S. We stress that this is due just to the constraint (4.18).

Lemma 4.25 (Non-constancy). Let A ⊆ Ω be a nonempty connected open set such
that π −1

Σ,M (A \ S) does not consist of m connected components. Then, for every u ∈
BVconstr(YΣ;V ),

Hn−1
(
A ∩ πΣ,M (Ju)

)
> 0. (4.32)

Moreover, if A is bounded with Lipschitz boundary, then

inf
{
Hn−1

(
A ∩ πΣ,M (Ju)

)
: u ∈ BVconstr(YΣ;V )

}
> 0. (4.33)

Proof. In order to show (4.32), suppose by contradiction that there exists u ∈ BVconstr(YΣ;V )
such that

Hn−1
(
A ∩ πΣ,M (Ju)

)
= 0. (4.34)

Applying (4.27) to (4.34), we get

0 = Hn−1(A ∩ (Jv1(u) \ Σ)) +Hn−1(A ∩ Jvm+1(u) ∩ Σ). (4.35)
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Now, consider the (connected open) set AS := A \ S. Applying (4.14) with the choice
E := π−1

Σ,M (AS), we get

|Du|(π −1
Σ,M (AS)) =m |Dv1(u)|

(
πΣ,M (π −1

Σ,M (AS) ∩ π̃((D, 1)))
)

+m |Dvm+1(u)|
(
πΣ,M (π −1

Σ,M (AS) ∩ π̃(Σ \ S,m+ 1)))
)

=m |Dv1(u)|
(
AS \ Σ

)
+m |Dvm+1(u)|

(
AS ∩ Σ

)
=m`

(
Hn−1(A ∩ (Jv1(u) \ Σ)) +Hn−1(A ∩ Jvm+1(u) ∩ Σ)

)
,

(4.36)

which, coupled with (4.35), implies |Du|(π −1
Σ,M (AS)) = 0. Then(5) u is constant on

each connected component of π −1
Σ,M (AS). By the assumption on A, there exists at least

one connected component of π −1
Σ,M (AS), not contained in a single covering sheet. This

contradicts the validity of the constraint (4.18), proving (4.32).
Now, let us suppose, still by contradiction, that there exists a sequence (uh)h ⊂

BVconstr(YΣ;V ) such that limh→+∞Hn−1
(
A ∩ πΣ,M (Juh)

)
= 0. For h ∈ N, set ûh :=

uh|
π
−1

Σ,M
(AS)

. In particular, reasoning as above, |Dûh|(π −1
Σ,M (AS)) = m`Hn−1(A∩πΣ,M (Juh)).

Let us apply Corollary 4.23, replacing Ω with A. Then, up to a not relabelled subse-
quence, there exists û ∈ BVconstr(π

−1
Σ,M (AS);V ) such that ûh → u in L1(π −1

Σ,M (AS);V ),
and by lower semicontinuity,

|Dû|(π −1
Σ,M (AS)) ≤ lim inf

h→+∞
|Dûh|(π −1

Σ,M (AS)) = m` lim
h→+∞

Hn−1
(
A ∩ πΣ,M (Juh)

)
= 0.

Hence û is constant on π −1
Σ,M (AS), a contradiction with (4.32).

As a further consequence of Lemma 4.25, the boundary datum S is covered by any
constrained function in the covering space. In Theorem 4.36, using also (4.38) below, we
shall prove that equality holds in (4.37) when 2 < n ≤ 7 and u is a minimizer.

Corollary 4.26. Let Ω be bounded (resp. unbounded), and let u ∈ BVconstr(YΣ;V ) (resp.
u ∈ BV loc

constr(YΣ;V )). Then

S ⊆ πΣ,M (Ju) \ πΣ,M (Ju). (4.37)

Proof. The relation S ∩ πΣ,M (Ju) = ∅ is trivial, recall also (4.27). Now, suppose by

contradiction that there exists a point p ∈ S \ πΣ,M (Ju). Take an open ball B centered

at p, with B ⊂ Ω \ πΣ,M (Ju), and apply Lemma 4.25 with the choice A := B. Then,
since A ∩ πΣ,M (Ju) = ∅, we end up with a contradiction with (4.32).

In view of Lemma 4.22, we give the following definition.

Definition 4.27 (Constrained-covering solutions). Let Ω be bounded with Lipschitz
boundary and let umin be a minimizer of problem (4.19). We call

πΣ,M (Jumin
)

a constrained-covering solution (in Ω) with boundary S.

A similar definition is given when Ω is unbounded, assuming existence of umin mini-
mizing (4.21).

Remark 4.28. No topological restrictions on πΣ,M (Jumin
) are required.

(5) See [12, Proposition 3.2]; this constancy result can be generalized to our setting, considering
first the case in which a connected open set E ⊆ YΣ is contained in a single chart, and then
reasoning for each connected component of E ∩ π̃((D, 1)), E ∩ π̃((D′,m+ 1)).
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Recalling Remark 4.6, we observe that the proof of analytic regularity for the reduced
boundary of minimizing clusters [115] applies in our setting. Indeed, since the classical
arguments (such as monotonicity formula, excess decay, tilt lemma) are local, they can
be symmetrically reproduced on the m sheets of the covering space, thus respecting the
constraint on the fibers. In particular, the following results hold.

Theorem 4.29 (Regularity, n = 2). Let Ω ⊂ R2 be a bounded connected open set with
Lipschitz boundary (resp. an unbounded connected open set) , and let umin be a minimizer
of (4.19) (resp. of (4.21)). Then Jumin

, and hence, πΣ,M (Jumin
), is the union of finitely

many segments. Moreover, for each singular point x of πΣ,M (Jumin) there exist exactly
three segments of πΣ,M (Jumin) having x as one of their endpoints, and meeting at x at
2π
3 -angles. Moreover,

πΣ,M (Jumin
) \ πΣ,M (Jumin

) ⊆ S ∪ ∂Ω. (4.38)

Proof. We can confine ourselves to the proof of (4.38). Recalling Lemma 4.21, we have(
πΣ,M (Jumin

) \ πΣ,M (Jumin
)
)
∩D =

(
Jv1(umin) \ Jv1(umin

)
)
∩D. (4.39)

By the regularity of local minimizing clusters, Jv1(umin) ∩ D coincides with the relative
boundary in D of the set ∪α∈V {v1(umin) = α}. In particular, Jv1(umin) ∩D is relatively
closed in D, which by (4.39) implies(

πΣ,M (Jumin) \ πΣ,M (Jumin)
)
∩D = ∅.

Similarly we argue on D′, and (4.38) follows.

The proof of the regularity result in the case m = 2 is analogous, so that we omit
the details.

Theorem 4.30 (Regularity, m = 2). Let Ω ⊂ Rn be a bounded connected open set
with Lipschitz boundary (resp. an unbounded connected open set), and let umin be a
minimizer of (4.19) (resp. of (4.21)). Then Jumin

, and hence πΣ,M (Jumin
), is an analytic

submanifold, possibly excepting for a set of Hausdorff dimension at most n−8. Moreover,
(4.38) holds.

4.3 Regularization

The interest in using V -valued BV functions in the context of covering spaces is sub-
stantiated by a Γ-,convergence result.

Let us first consider the case m = 2. Let Ω be bounded with Lipschitz boundary.
The main idea is to lift the constraint (4.18) onto the Sobolev space H1(YΣ) := {u ∈
L2
µ(YΣ) : Du ∈ L2

µ(YΣ;Rn)}. Recalling Remark 4.13, we set

H1
constr(YΣ) :=

{
u ∈ H1(YΣ) :

∑
πΣ,M (y)=x

u(y) = 0 for a.e. x ∈M
}
. (4.40)

For ε ∈ (0, 1), let us consider the functionals Fε : L1(YΣ)→ [0,+∞], defined as

Fε(u) :=

∫
YΣ

[
ε|∇u|2 +

1

ε
(1− u2)2

]
dµ if u ∈ H1

constr(YΣ),

and extended to +∞ in L1(YΣ) \H1
constr(YΣ).

Proposition 4.31 (Γ-convergence, m = 2). Assume n ≥ 2 and m = 2. If (uεh)h ⊂
L1(YΣ) is such that suph Fεh(uεh) < +∞, then there exist u ∈ L1(YΣ) and a subsequence
of (uεh)h converging to u in L1(YΣ). Moreover,

(
Γ(L1(YΣ))− lim

ε→0+
Fε
)
(u) =

{
c0
2 |Du|(YΣ), if u ∈ BVconstr(YΣ; {±1}),

+∞, otherwise in L1(YΣ),

where c0 := ξ(1)− ξ(−1), and ξ(t) := 2
∫ t

0
|1− s2| ds.
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Proof. The proof of the equicoerciveness statement is standard (see, e.g., [123]). The
Γ-lim inf inequality follows using the lower semicontinuity of the total variation, and the
fact that the constraint (4.20) is closed under almost everywhere convergence in YΣ.
The Γ-lim sup construction follows by recalling that the local parametrizations of YΣ are
the identity (Remark 4.6); in order to get the validity of the constraint in (4.40), it is
sufficient to use the standard construction, since the optimal one-dimensional profile is
odd (hence, the corresponding recovering sequence is in H1

constr(YΣ)). See [123] for the
details.

Now, let us conclude this section with the case n = 2 and m = 3. Let V :=
{α1, α2, α3} ⊂ R2 be the set of vertices of an equilateral triangle, centered at the origin.
With a slight abuse of notation, it is natural to identify T (V ) with { 2π

3 ,
4π
3 }, see (4.42)

below. The idea is now to lift the constraint (4.18) onto the Sobolev space H1(YΣ;R2) :=
{u ∈ L2

µ(YΣ;R2) : Du ∈ L2
µ(YΣ;R2 × R2)}, by asking that

∃ θ ∈
{2π

3
,

4π

3

}
s.t. vj(u) = ei(j−1)θ ◦ v1(u), j = 1, 2, 3, (4.41)

and then setting

H1
constr(YΣ;R2) :=

{
u ∈ H1(YΣ;R2) : (4.41) holds

}
. (4.42)

where, for θ ∈ [0, 2π), eiθ : R2 → R2 is the counterclockwise rotation of angle θ.

Let W̃ : R2 → [0,+∞) be a triple-well potential with superlinear growth at infinity,

and such that W̃−1(0) = V . We assume also that

W̃ (eiθx) = W̃ (x), x ∈ R2, θ ∈
{2π

3
,

4π

3

}
. (4.43)

For instance, one could consider the choice W̃ (x) :=
∏3
j=1 |x − αj |2. For ε ∈ (0, 1), let

us consider the functionals Gε : L1(YΣ;R2)→ [0,+∞], defined as

Gε(u) :=

∫
YΣ

[
ε|∇u|2 +

1

ε
W̃ (u)

]
dµ if u ∈ H1

constr(YΣ;R2),

and extended to +∞ in L1(YΣ;R2) \H1
constr(YΣ;R2).

Proposition 4.32 (Γ – convergence, m = 3). Assume n = 2 and m = 3. If (uεh)h ⊂
L1(YΣ;R2) is such that suphGεh(uεh) < +∞, then there exist u ∈ L1(YΣ;R2) and
a subsequence of (uεh)h converging to u in L1(YΣ;R2). Moreover, there exists the
Γ(L1(YΣ;R2))-limit of (Gε)ε as ε→ 0+, which is finite just on functions u ∈ BVconstr(YΣ;V ),

and it equals |Du|(YΣ) up to a positive multiplicative constant depending only on W̃ .

Proof. Again, the proof of the equicoerciveness statement is standard (see, e.g., [20]). Let
(uε)ε ⊂ H1

constr(YΣ;R2) be such that (Gε(uε))ε is equibounded, and uε → u in L1(YΣ;R2)

for some u ∈ L1(YΣ;R2). Then W̃ (u) = 0 a.e. in YΣ, or equivalently u(x) ∈ V a.e. in
YΣ. The fact that u satisfies (4.18) for some τ ∈ T (V ) follows at once by the constraint
in (4.42). The Γ− lim inf inequality is now a consequence of the lower semicontinuity of
the total variation.

Let us sketch the proof of the Γ−lim sup construction, which is a slight modification of
the one provided in [20]. Without loss of generality, we can assume u ∈ BVconstr(YΣ;V ),
and πΣ,M (Ju) contained in the union of a finite number of segments. For small ε > 0,
consider an ε-tubular neighbourhood Tε ⊂ Ω of πΣ,M (Ju); let also Zε ⊂ Tε be the

Lipschitz open set containing the triple junctions, such that πΣ,M (Zε) =
⋂3
j=1{|dj | < ε},

where, for every j = 1, 2, 3, dj denotes a signed distance from {u = αj}. Then, we
construct a map uε ∈ H1(YΣ;R2) so that:

- uε = u in YΣ \ π−1
Σ,M (Tε),
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- in π−1
Σ,M (Tε\Zε), uε represents the transition between the two corresponding zeroes

of W , along suitable optimal profiles which depend only on W (see [20]);

- uε in π−1
Σ,M (Zε) is defined by interpolating the trace of uε on ∂π−1

Σ,M (Zε) with zero
(the barycenter of V ) along the segments starting at the triple junction.

Here we notice that, since u ∈ BVconstr(YΣ;V ), and thanks to the simmetry assumption

(4.43) on W̃ , uε satisfies (4.41), and therefore uε ∈ H1
constr(YΣ;R2). Moreover, the

contribution to Gε(uε) on π−1
Σ,M (Zε) is of order ε. Then the statement follows.

Remark 4.33. Proposition 4.32 can be extended to the case m ≥ 3, combining the
standard tools in [20] (which actually hold for every m ≥ 2).

4.4 Constrained covering solutions when n = 2, 3

4.4.1 Minimal networks in the plane

In this section we exploit the case n = 2, m ≥ 2, and S := {p1, . . . , pm} ⊂ Ω, with pj 6= pl
for any j, l = 1, . . . ,m, j 6= l.

Theorem 4.34. Assume that

dist(S, ∂Ω) > inf{H1(Σ) : Σ ∈ Cuts(Ω, S)}. (4.44)

Then πΣ,M (Jumin
) is connected.

Proof. By contradiction, suppose that there exist two disjoint nonempty sets C1, C2,
relatively closed in πΣ,M (Jumin

), and such that C1 ∪ C2 = πΣ,M (Jumin
). By Theorem

4.29, for each j = 1, 2, Cj consists of segments (possibly meeting at triple junctions);
moreover, by virtue of (4.44), also recalling (4.29) and (4.24), we have Cj ∩ ∂Ω = ∅. Set
Sj := Cj ∩ S, for j = 1, 2. Note that

Sj 6= ∅, j = 1, 2. (4.45)

Indeed, suppose by contradiction that (for example) S1 = ∅; then, by (4.38), C1 \ C1 ⊂
∂Ω, and therefore there exists a connected open set A ⊂ Ω such that Ω ∩ ∂A ⊆ C1, and
A ∩ S = ∅. Thanks to Theorem 4.17, it is not restrictive to assume also that A ∩Σ = ∅.
Now, it is immediate to modify v1(umin) inside A so that it does not jump anymore
on Ω ∩ ∂A. Taking any constrained lift of the modified function, minimality of umin is
contradicted, proving (4.45).

Let us choose now two tubular neighborhoods T , U of C1, so that T ⊂⊂ U ,

(U \ T ) ∩ πΣ,M (Jumin
) = ∅, (4.46)

and T ∩ C2 = ∅. In particular, there must be j ∈ {1, . . . ,m} such that Σj connects a
point of S1 with a point of S2. Therefore, π−1

Σ,M (U \ T ) does not consist of m distinct

connected components, so that, applying Lemma 4.25 with the choice A := U \ T , we
get a contradiction with (4.46).

Corollary 4.35. Assume (4.44). Then πΣ,M (Jumin
) is a Steiner graph(6) connecting the

points of S.

Proof. Let C ⊂ Ω be a Steiner graph connecting the points of S. By Theorems 4.29-
4.34, H1(πΣ,M (Jumin

)) ≤ H1(C). On the other hand, fix any Σ ∈ Cuts(Ω, S) such that
Σ ∩ C = S. Then, define v ∈ BV (Ω;V ) so that: for j = 1, . . . ,m − 1, v := αj on the
connected open set whose boundary contains Σj , and is contained in Σj ∪ C; v := αm
elsewhere in Ω. Finally, consider the τ -contrained lift u ∈ BVconstr(YΣ;V ) of v, where
τ(j) := j − 1 (mod m). By construction, πΣ,M (Ju) = C, and the statement follows.

(6)See, e.g., [99].
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In order to get Corollary 4.35, we cannot avoid condition (4.44), see Figure 4.5
for a counterexample when m = 2. This is another difference with respect to the model
proposed in [55]: in our model the boundary of Ω is “wettable” in principle, and therefore,
in order to avoid a minimizer to touch ∂Ω, we need a condition of the form (4.44) (see
also Remark 4.16).

Σ

p1 p2

Σ

p1 p2

{u = 1}

{u = −1}

Ψ1(D) MΨ2(D)

Σ

p1 p2

{u = −1}

{u = 1}

Figure 4.5: Let Ω be the “bean-shaped” domain in the picture, let S := {p1, p2},
and let Σ ∈ Cuts(Ω, S) be the dashed curve. The two pictures on the left show the
constrained covering solution, while the right picture shows the solution of [55].

4.4.2 Plateau’s problem

In this section we exploit the case n = 3, hence m = 2, so that YΣ is a double-covering
space of M .

Let S ⊂ R3 be a tame link. Let Ω ⊂ R3 be bounded with Lipschitz boundary, and
Σ ∈ Cuts(Ω, S). Let umin ∈ BVconstr(YΣ; {±1}) be a minimizer of problem (4.19). By
Theorem 4.30, πΣ,M (Jumin) is an embedded analytic surface in M . We ask now whether

πΣ,M (Jumin) \ πΣ,M (Jumin) coincides with S (compare with (4.38)). To this aim, we

need an assumption, analogous to (4.44), in order to avoid components of πΣ,M (Jumin)
touching ∂Ω; roughly speaking, we have to show that “long thin” hairs reaching the
boundary of Ω cannot occur in a constrained double – covering solution.

Theorem 4.36 (Attaining the boundary condition). Let 2 ≤ n ≤ 7. Let r̄ > 0
be such that S ⊂ Br̄. There exists R > r̄ such that, if Ω ⊃ BR, then any minimizer
umin ∈ BVconstr(YΣ; {±1}) of problem (4.19) satisfies

πΣ,M (Jumin) \ πΣ,M (Jumin) = S. (4.47)

Proof. Fix Σ = (Σ,Σ′) ∈ Cuts(Br̄, S) ⊂ Cuts(Ω, S). Set

A (r) := A Br
constr(S), r ≥ r̄,

and let ur ∈ BVconstr(Y
r
Σ; {±1}) be a minimizer of problem (4.19) for Ω = Br; here, Y rΣ

denotes the double covering space of the base set Br \ S.
By (4.22), A (·) is nondecreasing; in addition, it is bounded (see (4.24)). Set ε :=

4Hn−1(Σ)−A (r̄) ≥ 0, so that by (4.24),

A (r)−A (r̄) ≤ ε, r ≥ r̄. (4.48)

Write A (r) = 4Hn−1(πΣ,M (Jur )∩Br̄)+4t(r, r̄), where t(r, r̄) := Hn−1(πΣ,M (Jur )\Br̄).
Since πΣ,M (Jur ) ∩Br̄ is a competitor for the computation of A (r̄), we have

A (r̄) ≤4Hn−1(πΣ,M (Jur ) ∩Br̄)
≤4Hn−1(πΣ,M (Jur ) ∩Br̄) + 4 t(r, r̄) = A (r).

(4.49)

Coupling (4.48) and (4.49), we get

4t(r, r̄) ≤ A (r)−A (r̄) ≤ ε, r ≥ r̄. (4.50)
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Suppose ε = 0. Then, by (4.50), we have Hn−1(πΣ,M (Jur ) \ Br̄) = 0, which, by the
assumption 2 ≤ n ≤ 7 and Theorem 4.30, implies that the constrained double – covering
solution does not reach ∂Br, for any r > r̄. Then the statement follows, taking an
arbitrary R > r̄.

Suppose ε > 0, and let r > r̄ be such that
(
πΣ,M (Jur ) \Br̄

)
∩ ∂Br 6= ∅. By the

assumption 2 ≤ n ≤ 7 and Theorem 4.30, there exists x ∈ (πΣ,M (Jur ) \Br̄)∩ ∂B(r+r̄)/2.
Take δ ∈ (0, (r−r̄)/2). By the lower density estimate for local minimizers of the perimeter
functional (see for instance [115, Theorem 21.11]), we have

cnδ
n−1 ≤ 4Hn−1(πΣ,M (Jur ) ∩Bδ(x)) ≤ 4t(r, r̄) ≤ ε, (4.51)

for some positive constant cn depending only on n. Inequalities (4.51) hold for each

δ ∈ (0, (r− r̄)/2); this is possible only if r ≤ rε := r̄+ 2(ε/cn)
1

n−1 . Hence, taking R > rε,
the assertion follows.

Now, we compare the constrained double – covering solutions with other classical
notions of solutions to Plateau’s problem.

Remark 4.37 (Area-minimizing currents). Let n = 3, and assume that Ω con-
tains the closed convex envelope of S. Let Tmin be a rectifiable two-current [86] solving
Plateau’s problem with boundary S in the sense of currents. By [125, Theorem 5.6],
the support of Tmin is contained in Ω; moreover, by [105], it is an embedded, orientable
smooth surface Σmin ⊂ Ω up to the boundary S. In particular, Σmin ∈ Cuts(Ω, S).
Hence, by (4.24)

A Ω
constr(S) ≤ 4 M(Tmin), (4.52)

where M(Tmin) is the mass of Tmin.
It is worth noticing that there is not an absolute positive constant c ∈ (0, 4], satisfying

A Ω
constr(S) ≥ cM(Tmin) (4.53)

for any S. As a counterexample, let B̂1 := {x ∈ R3 : x2
1 + x2

2 < 1, x3 = 0}, let S := ∂B̂1,

and, for ε > 0, let Ω := (1 + ε)B̂1 × (−2, 2). As admissible pair of cuts, we take as Σ

the closure of B̂1, and Σ′ := {x ∈ R3 : x2
1 + x2

2 ≤ 1, x3 = −
√

1− x2
1 − x2

2}. Now, let
v ∈ BV (Ω; {±1}) be defined as v(x1, x2, x3) := 1 if x3 > 0, and −1 elsewhere. Finally,
let u ∈ BVconstr(YΣ; {±1}) be the constrained lift of v. Then, recalling (4.29), it is
immediate to verify that

A Ω
constr(S) ≤ |Du|(YΣ)

4
= π

(
(1 + ε)2 − 1

)
→ 0 as ε→ 0+.

At the same time, the minimal mass in the sense of currents is π (the area of B̂1),
independently of ε.

Another (not rigorous but more intuitive) example of the failure of inequality (4.53)
can be obtained taking as S the boundary of a very thin Möbius band: in this case a
surface similar to the Möbius band is expected to be the double covering solution with
boundary S, while the support of the minimal current is expected to be approximately
a double disk.

Remark 4.38 (Disk-type area-minimizers). Let n = 3 and suppose that S is con-
nected. Recalling (4.52) and the results in [129], [81], we have

A Ω
constr(S) ≤ 4 min{area(X) : X ∈ H1(D;R3), X spans S}, (4.54)

where D ⊂ R2 is the unit disk, area(X) :=
∫

D
|∂x1X ∧ ∂x2X| dx1 dx2, and the meaning

of “X spans S” is given for instance in [81]. We observe that (4.54) can be obtained
independently of (4.52), by reproducing the proof of Theorems 4.17 and 4.39.

Now, we show that, when n < 8, constrained double – covering solutions give an
equivalent way to solve Plateau’s problem in the sense of integral currents modulo 2 [86].
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Theorem 4.39 (Area-minimizing integral currents mod 2). Let 2 ≤ n ≤ 7, and
let Ω be as in Theorem 4.36. Let umin ∈ BVconstr(YΣ; {±1}) be a minimizer of problem
(4.19). Then πΣ,M (Jumin) can be seen as an integral current modulo 2 with boundary
S, and A Ω

constr(S) coincides with 4M2(T2,min), where M2 is the mass and T2,min is a
mass-minimizing integral current modulo 2 having boundary S.

Proof. By Theorems 4.30 and 4.36, πΣ,M (Jumin
) is an embedded analytic hypersurface

satisfying (4.47). In particular, πΣ,M (Jumin) can be considered as the support of an
integral current modulo 2 having S as boundary support. This gives

A Ω
constr(S) = 4Hn−1(πΣ,M (Jumin

)) ≥ 4 M2(T2,min).

The converse inequality follows from the interior regularity of minimal integral currents
modulo 2 [144, Theorem 6.2.1] and Corollary 4.19, since the area-minimizing current
mod 2 with boundary S belongs to Cuts(Ω, S).

Remark 4.40. Let n ≥ 2. Recalling Theorem 4.30 and Lemma 4.25, we have

A Ω
constr(S) ≥ 4 inf

{
Hn−1(K) : K ⊂M rel. closed, K ∩ ρ(S1) 6= ∅

for every S-simple link ρ ∈ C(S1;M)
}
,

(4.55)

where, according to [103, p.4], ρ is said an S-simple link if link(ρ;C) = 1 for some
connected component C of S, and link(ρ;C ′) = 0 for all connected components C ′ of
S \ C.(7) The right hand side of (4.55) has been recently investigated in [103] and [77],
for more general choices of S.

We notice that, in general, we cannot expect the inequality in (4.55) to be an equality.
A counterexample, with n = 2 and m = 6, is obtained taking S as the set of (six) vertices
of two triangles, as in Figure 4.6. Then the right hand side of (4.55) is attained by the
union of G1 and G2, the two Steiner graphs corresponding to the triangles. On the other
hand, by Theorem 4.34, A Ω

constr(S) is strictly larger than H1(G1) +H1(G2).

MM

G2G1

Figure 4.6: Let S be the set of vertices of two triangles, which are sufficiently far one
from the other. In the left picture, the constrained covering solution is shown, in the
case Ω = R2. Notice that A R2

constr(S) is strictly larger than the length of the two Steiner
graphs drawn in the right picture.

4.4.3 The tetrahedron

We end this section coming back to the m-sheeted covering construction given in Section
4.1, for a possible interesting extension in dimension n = 3. As for the case of minimal
networks, Example 4.41 below shows that the covering construction has essentially to be

(7)Here, link(ρ;C) denotes the linking number [106] between ρ ∈ C(S1;M) and a boundaryless
compact embedded Lipschitz (n− 1)-dimensional submanifold C ⊂M .
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chosen depending on the solution that one would like to obtain. In our present case, we
aim to design a covering construction giving, possibly, the solution obtained by J. Taylor
in [148].

Example 4.41. Let S ⊂ R3 be the one-skeleton of a regular tetrahedron T centered at
0 (here, Ω can be thought of as a large ball containing S). Referring to Figure 4.7, let us
denote by Fj the (closed) facet of T opposite to the vertex pj , for j = 1, 2, 3. We now
aim to define a 4-sheeted, “cut and paste” covering of M := Ω\S following the procedure
described in Section 4.1.1. To this aim, we take as family Cuts(Ω,S) of admissible cuts
the collection of all Σ = ∪3

j=1Σj ⊂ Ω such that:

- for j = 1, 2, 3, Σj is a 2-dimensional compact embedded Lipschitz submanifold,
having the edges of Fj as topological boundary;

- for j, l = 1, 2, 3, j 6= l, Σj ∩Σl equals the intersection of the topological boundaries
of Fj and Fl.

Clearly, the easiest example of an element of Cuts(Ω,S) is given by ∪3
j=1Fj . Then, we

select the family Cuts(Ω,S) of admissible pairs of cuts as the collection of all pairs
Σ := (Σ,Σ′) such that Σ,Σ′ ∈ Cuts(Ω,S), and Σ ∩ Σ′ = S; moreover, as in Definition
4.2-(ii), we require Σ to “lie on one side” of Σ′ locally around S.

Fix now Σ = (Σ,Σ′) ∈ Cuts(Ω,S). Then, the covering (YΣ, πΣ,M) is obtained
identifying four copies of the open sets D := Ω \ Σ, D′ := Ω \ Σ′ as in (4.5) (with the
choice m = 4). Namely, assuming for simplicity Σ = ∪3

j=1Fj , crossing the facet Fj coming
from Ω\T (resp. from T ) corresponds to moving j-sheets forward (resp. backward) in the
covering, for j = 1, 2, 3. Finally, the minimization problem can be set up as in Section 4.2;
here, V := {α1, . . . , α4} ⊂ R3 is the set of vertices of a regular tetrahedron centered at 0
(not necessarily equal to T ). Existence of minimizers in the class BVconstr(YΣ;V ) follows
by adapting the arguments in Theorem 4.24.(8) Concerning regularity of minimizers, and
referring to [2] for the notion of (1, δ)-restricted sets, we can state the following result.

Proposition 4.42. Let umin ∈ BVconstr(YΣ;V ) be a minimizer of problem (4.19). Let
x ∈ πΣ,M(Jumin

), and let r > 0 be such that Br(x) ⊆ Ω. Then πΣ,M(Jumin
) ∩ Br(x) is

(1, δ)-restricted with respect to Ω \Br(x), for any δ ∈ (0, r).

Proof. Fix a perturbation ϕ ∈ Lip(Ω; Ω) of the identity, compactly supported in Br(x).
Using the same construction as in [23, Theorem 2], we define a function v∗ ∈ BV (Ω;V )
such that

v∗ = v1(umin) outside Br(x), Jv∗ ∩Br(x) = ϕ(Jv1(umin) ∩Br(x)). (4.56)

Let τ ∈ T (V ) be such that vj(umin) = τ j−1 ◦ v1(umin), for j = 2, 3, 4. Then, we define
u∗ ∈ BVconstr(YΣ;V ) as the τ -constrained lift of v∗. The statement now follows recalling
[23, Corollary 1], (4.56), and using the minimality of umin.

Assume that there exists r > 0 such that dist(πΣ,M(Jumin
), ∂Ω) > r. Then, as a

consequence of Proposition 4.42, and by the general theory of Almgren’s minimal sets
[2], we get that πΣ,M(Jumin

) is (M, 0, r)-minimal. Figure 4.7 represents a minimizer
umin ∈ BVconstr(YΣ;V ) of problem (4.19), where Σ := ∪3

j=1Fj , and Σ′ lies in Ω\T (the cut
Σ′ is not drawn in the picture). More precisely, let v ∈ BV (Ω;V ) be such that: v := α1

in Ω\T and in the tetrahedron with vertices 0, p1, p2, p3; v := α2 in the tetrahedron with
vertices 0, p1, p2, p4; v := α3 in the tetrahedron with vertices 0, p1, p3, p4; v := α4, in the
tetrahedron with vertices 0, p2, p3, p4. Let also τ ∈ T (V ) be the transposition such that
τ(j) := j + 1, for j = 1, 2, 3. Then, umin is defined as the τ -constrained lift of v, recall
Definition 4.20. By construction, u does not jump on the fiber of the facets Fj ’s. Notice
that πΣ,M(Jumin) = int(T ) ∩ C, where C is the (infinite) cone over S, and it coincides
with the solution provided by [148].

(8)It is possible to check that, up to a homeomorphism, the covering construction is independent
of the chosen admissible pair of cuts.
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p4
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{u = α4}

{u = α3}

{u = α1}
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{u = α1}

{u = α4}
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Figure 4.7: A minimizer u ∈ BVconstr(YΣ;V ), when S is the one-skeleton of a regular
tetrahedron centered at 0. The picture refers to the choice Σ := ∪3

j=1Fj . The copies of
the facet F2 have been coloured in grey to denote that they have been removed from the
covering sheets drawn in the figure.



Appendix A

Remarks on the generalized
inverted anisotropic ratio

In Section 1.3 we have seen that, if K1 and K2 are two convex bodies, then their star-
shaped combination K1?K2 (Definition 1.13) is not in general a convex body. An explicit
counterexample has been given in [43], involving the two ellipses

K1 :=
{

(x, y) ∈ R2 : x2 + ρy2 = 1
}
, K2 :=

{
(x, y) ∈ R2 : ρx2 + y2 = 1

}
, (A.1)

defined for ρ > 0. In this case, we say that K1 and K2 satisfy the inverted anisotropic
ratio. Then, we recall from Remark 1.14 that K1 ?K2 is (smooth and) not convex if and
only if ρ < 1

3 or ρ > 3.

In this section we want to consider a slightly more general situation. For n = 2 and
V = R2, let φ1, φ2 be the linear anisotropies on R2 such that

Bφ1 = {(x, y ∈ R2 : x2 + ay2 = 1}, Bφ2 = {(x, y ∈ R2 : bx2 + cy2 = 1},

for given a, b, c > 0. Notice that the usual inverted anisotropic ratio (A.1) corresponds
to the choice

a := b := ρ, c := 1. (A.2)

Consistently with the notation in Example 1.18, set φj(θ) := φj((cos θ, sin θ)), for j = 1, 2
and θ ∈ [0, 2π), and set Φ(θ) := φ1(θ) ? φ2(θ). By (1.9), we have

(φ2
1 + φ2

2)Φ2 = φ2
1φ

2
2. (A.3)

After some computation, (A.3) can be rewritten as

2(p+ q cos 2θ)Φ2 = u cos 4θ + v cos 2θ + w, (A.4)

with p := 1 + a + b + c, q := 1 − a + b − c, u := (a−1)(c−b)
2 , v := 2(b − ac), and

w := 3ac+3b+ab+c
2 .

We now want to study whether Φ is convex. Since we need to twice differentiate Φ
(recall condition (1.11)), we see immediately from (A.4), that a special case of combined
anisotropy corresponds to the choice q = 0, i.e.

1 + b = a+ c, (A.5)

so that (A.4) reduces to

2pΦ2(θ) = u cos 4θ + v cos 2θ + w. (A.6)

Notice that (A.2) can be seen as a particular case of (A.5). For this reason, and in
analogy with the standard terminology, we say that φ1 and φ2 realize a generalized
inverted anisotropic ratio provided (A.5) holds.
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Differentiating (A.6) and dividing by 2, we get

2pΦ(θ)Φ′(θ) = −2u sin 2θ − v sin 2θ,

which entails

Φ′(θ) = −2u sin 4θ + v sin 2θ

2pΦ(θ)
. (A.7)

Differentiating again, and dividing by 2, we end up with

u(Φ′(θ))2 + Φ(θ)Φ′′(θ) = −4u cos 4θ − v cos 2θ. (A.8)

Now, notice that Φ + Φ′′ ≥ 0 if and only if

2p(Φ2 + ΦΦ′′) ≥ 0. (A.9)

Substituting (A.6), (A.8) and (A.7) into (A.9), after some computation we obtain

7u cos 4θ + v cos 2θ +
(2u sin 4θ + v sin 2θ)2

u cos 4θ + v cos 2θ + w
− w ≤ 0.

Multiplying previous line by the positive(1) quantity (u cos 4θ + v cos 2θ + w), and re-
ordering terms, we can rephrase (A.9) as

3u2 cos2 4θ + 8uv cos 4θ cos 2θ − 8uv cos3 2θ

+ 6uw cos 4θ + 8uv cos 2θ + 4u2 + v2 − w2 ≤ 0.
(A.10)

Set z := cos 2θ, z ∈ [−1, 1]. Then, after some computation, we can rewrite the convexity
condition (A.10) as

12u2z4 + 8uvz3 + 12u(w − u)z2 + 7u2 + v2 − z2 − 6uw ≤ 0. (A.11)

Let F (z) denote the left hand side of (A.11). We now claim that F attains its maximum
on the interval [−1, 1] at z = 0 (i.e., θ = π

4 ). Indeed, one can easily see that F ′(z) ≥ 0 if
and only if uz ≥ 0; by (A.5), we have 2u = −(a− 1)2 ≤ 0, and so F ′(z) ≥ 0 if and only
if z ≤ 0, which proves our claim.

As a consequence,

F (z) ≤ F (0) = 7u2 + v2 − w2 − 6uw, z ∈ [−1, 1]. (A.12)

From (A.12), we deduce that (A.11) holds (and hence, Φ is a convex anisotropy) if and
only if F (0) ≤ 0; on the contrary, if F (0) > 0, there is some range of directions around
θ = π

4 where BΦ is nonconvex.
Next Lemma gives an explicit formula in order to represent the values of a, c > 0

such that F (0) = 0, see Figure A.1.

Lemma A.1. We have 7u2 + v2 − w(w + 6u) = g(a, c), where

g(a, c) := 3a4 + 4a3c− 8a3 − 16ac2 − 20a2c+ 12ac+ 6a2 + 4c− 1. (A.13)

Proof. Let us separately compute the two terms I := 7u2 + v2, and II := −w(6u + w).
We have

I =7
(a− 1)4

4
+ 4(a− 1)2(1− c)2 =

(a− 1)2

4
[7(a− 1)2 + 16(1− c)2]

=
(a− 1)2

4
[7a2 − 14a+ 16c2 − 32c+ 23],

(A.14)

(1)Indeed, this quantity corresponds to the right hand side of (A.3).
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while

II =
w

2

(
−6(a− 1)2 + 4c(a+ 1) + (a− 1)(c+ 3)

)
=
w

2
((a− 1)(−5a+ 9) + 4c(a+ 1))

=
4c(a+ 1) + (a− 1)(c+ 3)

4
[(a− 1)(−5a+ 9) + 4c(a+ 1)]

=
1

4

[
16c2(a+ 1)2 + 4c(a− 1)(a+ 1)(9− 5a) + (a− 1)2(a+ 3)(9− 5a)

+4c(a+ 1)(a− 1)(a+ 3)]

=
1

4

[
16c2(a+ 1)2 + 4c(a− 1)(12− 4a) + (a− 1)2(−5a2 − 6a+ 27)

]
.

(A.15)

Putting together (A.14) and (A.15), we get:

4(I + II) =(a− 1)2[7a2 − 14a+ 16c2 − 32c+ 23 + 5a2 + 6a− 27]

− 16c2(a+ 1)2 − 4c(a− 1)(12− 4a)

=(a− 1)2[12a2 + 16c2 − 8a− 32c− 4]− 16c(a+ 1)[ac− a2 + 4a+ c− 3]

=(a2 − 2a+ 1)[12a2 + 16c2 − 8a− 32c− 4]

− 16(ac+ c)[ac− a2 + 4a+ c− 3]

=12a4 + 16a2c2 − 8a3 − 32a2c− 4a2 − 24a3 − 32ac2

+ 16a2 + 64ac+ 8a+ 12a2 + 16c2 − 8a− 32c− 4

− 16(a2c2 − a3c+ 4a2c+ ac2 − 3ac+ ac2 − a2c+ 4ac+ c2 − 3c).

Reordering terms, after some cancellations we finally get

4(I + II) =12a3 + 16a3c− 32a3 − 64ac2 − 80a2c+ 48ac+ 24a2 + 16c− 4,

which gives (A.13).
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Figure A.1: The plot of the curve Γ := {(a, c) ∈ R2 : a, c > 0, g(a, c) = 0} (using
“Maple 16”). The regions of nonconvexity of Φ corresponds to the unbounded sets
coloured in grey. When c = 1 (inverted anisotropic ratio), we retrieve the values a = 1

3
and a = 3 (consistently with the result in [43]). Notice that Γ does not intersect the
vertical line {a = 1}, since in this case φ1 is the Euclidean norm and Φ is a multiple of
φ1.



Appendix B

The capillary problem in the
absence of gravity

We give here a brief overview of the action principle for a capillary, referring the reader
for instance to [117, 88, 51], and references therein, for a more complete discussion on
this topic.

In the absence of gravity, the capillary problem on a bounded connected Lipschitz
open set Ω ⊂ Rk (k = 2 being the physical case) can be stated as follows: given b, µ ∈ R,
solve

inf

{
Gµ(u) : u ∈ BV (Ω),

∫
Ω

u dx = b

}
, (B.1)

where BV (Ω) is the space of functions with bounded variation in Ω, and Gµ is the strictly
convex functional

Gµ(u) :=

∫
Ω

√
1 + |Du|2 −

∫
∂Ω

µu dHk−1. (B.2)

Here,
∫

Ω

√
1 + |Du|2 is the area of the (generalised) graph of u [117, 102], u can be

thought of as the height of the liquid, and the last term in (B.2) involves the trace of u on
∂Ω. Let µ ≥ 0 (up to a change of sign of b, this is not restrictive, since Gµ(u) = G−µ(−u).)
Then, one can show [117] that, when µ > 1, the functional Gµ is unbounded from below,
while, if µ = 0, then problem (B.1) is trivially solved by a suitable constant. In what
follows, we shall confine ourselves to the case

µ ∈ (0, 1].

We then set µ = cos γ, where γ represents, for m = 2, the (assigned) contact angle
between the liquid and the bounding walls of the capillary tube Ω × R. From the first
variation computation of Gµ, supposing for simplicity that ∂Ω is of class C1, it turns out
that if µ ∈ (0, 1), then solving (B.1) is equivalent to find

u ∈ C2(Ω) ∩ C1(Ω) (B.3)

such that

div

(
∇u√

1 + |∇u|2

)
= h in Ω (B.4)

for a suitable constant h ∈ R independent of b. The prescribed mean curvature equation
(B.4) is coupled with the Neumann-type boundary condition

∇u√
1 + |∇u|2

· νΩ = µ on ∂Ω. (B.5)

The constant h is identified integrating by parts, since

h =
1

|Ω|

∫
Ω

div

(
∇u√

1 + |∇u|2

)
dx =

1

|Ω|

∫
∂Ω

∇u√
1 + |∇u|2

·νΩ dHk−1 =
µP (Ω)

|Ω|
. (B.6)
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From (B.5), it follows that solutions of (B.1) can be expected only when µ < 1. Once
µ has been chosen, the problem becomes to find necessary and sufficient conditions on
the set Ω ensuring existence of solutions of (B.3), (B.4) and (B.5). In this respect, it
is convenient to introduce the prescribed mean curvature functionals defined, for λ ∈ R,
and µ ∈ [−1, 1], as

Fλ,µ(B) := P (B,Ω) + µHm−1(∂∗B ∩ ∂Ω)− λ|B|, B ⊆ Ω,

where ∂∗B denotes the reduced boundary [12] of the finite perimeter set B, and P (·,Ω)
is the perimeter in Ω (if µ = 1 we have Fλ,1(B) = P (B) − λ|B| for any B ⊆ Ω). The
problem

inf {Fλ,µ(B) : B of finite perimeter, B ⊆ Ω} (B.7)

has been studied by several authors, see for instance [145, 88, 42, 65], (see also [24, 45,
46, 47, 48, 49, 50]) and references therein. By direct methods, it turns out that there
exists a solution of (B.7) and, again, if such a solution is sufficiently regular, its boundary
inside Ω has mean curvature equal to λ, and contact angle with ∂Ω equal to arccosµ.

Now, let µ ∈ (0, 1) and h be as in (B.6).(1) Then [88, Chapter 7] there exists a
solution of (B.3), (B.4) and (B.5) if and only if

0 = Fh,µ(∅) = Fh,µ(Ω) < Fh,µ(B), B ⊂ Ω, B 6= ∅; (B.8)

moreover, the solution is unique up to an additive constant, and it is bounded from
below in Ω. On the other hand [89], if (B.8) is violated, still (B.4) admits a solution in
some nonempty set B∗ ⊂ Ω, and such a solution becomes unbounded on Ω ∩ ∂B∗. In
this situation, the expected physical phenomenon is that the height of the fluid increases
unboundedly on Ω \B∗, until part of the base in B∗ remains uncovered.

In connection with the case µ = 1, and for taking into account unbounded functions
u, we mention that problem (B.1) can be generalised into a minimization over subsets
which are not necessarily subgraphs of a function. This formulation is originally due to
M. Miranda [120, 121], and has led to the notion of generalised solution.

Theorem B.1 shows that (B.8) is a necessary and sufficient condition also in the
case µ = 1, thus identifying a “maximal” set Ω where the elliptic equation (B.4) has
a solution. The result in [101] is given, more generally, for a right hand side of (B.4)
belonging to Lip(Ω) ∩ L∞(Ω).

Theorem B.1 ([101]). Let Ω ⊂ Rk be a bounded connected open set with Lipschitz

boundary, and let h := P (Ω)
|Ω| . Then there exists a solution u ∈ C2(Ω) of

div

(
∇u√

1 + |∇u|2

)
= h in Ω (B.9)

if and only if

h <
P (B)

|B|
, B ⊂ Ω, B 6= ∅. (B.10)

Moreover, if Ω is of class C2, the solution is unique up to an additive constant, bounded
from below in Ω, and its graph is vertical at the boundary of Ω, in the sense that

∇u√
1 + |∇u|2

→ νΩ uniformly on ∂Ω. (B.11)

Finally, if k = 2 and Ω is convex, (B.10) is in turn equivalent to assume that the curvature
of ∂Ω, at all points of ∂Ω where it is defined, is less than or equal to h.

Similarly to the case µ ∈ (0, 1), if Ω does not satisfy (B.10), the fluid height is
expected to become unbounded in correspondence of the complement of some nonempty
regular set B? ⊂ Ω, such that Ω ∩ ∂B? has mean curvature equal to h. Moreover, it is
proven in [101, Theorem 3.2] that u is unbounded from above around a relatively open
region (if any) of ∂Ω where the maximum of the mean curvature of ∂Ω equals P (Ω)/|Ω|.

(1)Note that, for any B ⊆ Ω, there holds Fh,µ(Ω \ B) = F̃ (B), where we set F̃ (B) :=
P (B,Ω)− µHm−1(∂∗B ∩ ∂Ω) + h|B|.



Appendix C

An abstract covering
construction

In this appendix we give an alternative construction of the covering of M built up in
Section 4.1. The construction is standard (see, e.g., [104, 118]), and has the advantage
to avoid all issues about the definition of admissible cuts. Setting up the minimization
problem on the covering space MH below could have an independent interest; we have
preferred to use the “cut and paste” construction (and next proving independence of the
cuts) in order to deal with a more “handy” formula (like (4.29)) for the total variation
of a BV function defined on the covering space.

Let Ω, S, M , and m be as in Section 4.1. Fix x0 ∈ M , and set Cx0
([0, 1];M) :=

{γ ∈ C
(
[0, 1];M

)
: γ(0) = x0}. For γ ∈ Cx0([0, 1];M), let [γ] be the class of paths

in Cx0
([0, 1];M) which are homotopic to γ with fixed endpoints. We recall that the

universal covering of M is the pair (M̃, p), where M̃ :=
{

[γ] : γ ∈ Cx0
([0, 1];M)

}
and

p : [γ] ∈ M̃ 7→ p([γ]) := γ(1) ∈ M . A basis for the topology of M̃ is given by the family

{[γλ] : [γ] ∈ M̃, γ(1) ∈ B open ball, λ ∈ C([0, 1];B), λ(0) = γ(1)}.
Let π1(M,x0) be the first fundamental group of M with base point x0 ∈M , and let

H := {[ρ] ∈ π1(M,x0) : link(ρ;S) ≡ 0 (mod m)}.

Remark C.1. H is a (normal) subgroup of π1(M,x0) of index m.

For γ ∈ Cx0([0, 1];M), set γ̄(t) := γ(1 − t) for all t ∈ [0, 1]. Associated with H, we

can consider the following equivalence relation ∼H on M̃ : for [γ], [λ] ∈ M̃ ,

[γ] ∼H [λ] ⇐⇒ γ(1) = λ(1), link(γλ̄;S) ≡ 0 (mod m).

We denote by [γ]H the equivalence class of [γ] ∈ M̃ induced by ∼H , and we set

MH := M̃/ ∼H .

Letting p̃H : M̃ →MH be the projection induced by ∼H , we endow MH with the corre-
sponding quotient topology. We set pH,M : [γ]H ∈MH 7→ γ(1) ∈M , so that we have the
following commutative diagram

M̃
p̃H //

p
!!

MH

pH,M

��
M

(C.1)

and the pair (MH , pH,M ) is a covering of M , see [104, Proposition 1.36].
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Let (Y, πY ) be a covering of M , and let y0 ∈ π−1
Y (x0). By (πY )∗ : π1(Y, y0) →

π1(M,x0) we denote the homomorphism defined as (πY )∗([%]) := [πY ◦ %]. By [104,
Proposition 1.36], we have

(pH,M )∗(π1(MH , [x0]H)) = H. (C.2)

Proposition C.2. Let Σ ∈ Cuts(Ω, S). Then YΣ and MH are homeomorphic.

Proof. Recall the notation in Section 4.1.1. By [104, p. 28], it is not restrictive to assume
that x0 ∈ O. Let y0 ∈ π−1

Σ,M (x0), and let [%] ∈ π1(YΣ, y0). By [104, Proposition 1.36],

since H and (πΣ,M )∗
(
π1(YΣ, y0)

)
have the same index, the statement follows if we are

able to prove that (πΣ,M )∗([%]) ∈ H, or equivalently that

link(πΣ,M ◦ %;S) ≡ 0 (mod m), (C.3)

where m is given in (4.2).
Let us first consider the case n = 2. Notice that

link(πΣ,M ◦ %;S) =

m∑
j=1

link(πΣ,M ◦ %; pj), (C.4)

and, for any j = 1, . . . ,m, link(πΣ,M ◦ %; pj) equals the number of times that πΣ,M ◦ %
turns around pj , a counterclockwise (resp. clockwise) turn around pj being counted with
positive (resp. negative) sign. By construction (see for instance Figure 4.3 when m = 3),
any counterclockwise (resp. clockwise) turn of πΣ,M ◦ % around a point in S corresponds
to moving one sheet forward (resp. backward) in YΣ. Thus, the sum in the right hand
side of (C.4) is equal to the number of sheets visited by the loop % until it comes back
to y0. It is now clear that this number can be only a multiple of m, proving (C.3).

The case n > 2 is even simpler, since we have m = 2, and (C.3) follows noticing that
[%] can change sheet in YΣ just an even number of times.

Let Σ, Σ̂ ∈ Cuts(Ω, S). By Proposition C.2, and by general results in coverings
theory [104], there exists a homeomorphism f : YΣ → YΣ̂ such that

πΣ,M = πΣ̂,M ◦ f. (C.5)

The map f is defined by path-lifting. More precisely, fix x0 ∈ M , and let y0 ∈ YΣ,
ŷ0 ∈ YΣ̂ be such that πΣ,M (y0) = x0 = πΣ̂,M (ŷ0). Let y ∈ YΣ, and let γ ∈ C([0, 1];YΣ)

be such that γ(0) = y0, γ(1) = y. Then, f(y) ∈ YΣ̂ is defined as the ending point of the
lift of πΣ,M ◦ γ to YΣ̂, starting at ŷ0.
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C. R. Acad. Sci. Sér. I Math 309 (1989), 453-458.

[79] P. De Mottoni, and M. Schatzman, Geometrical evolution of developed interfaces,
Trans. Amer. Math. Soc. 347 (1995), 1533-1589.

[80] U. Dierkes, S. Hildebrandt, A. Kuster, and O. Wohlrab, Minimal Surfaces (three
vol.), Springer – Verlag, Berlin, 1992.

[81] U. Dierkes, S. Hildebrandt, and F. Sauvigny, Minimal Surfaces, Springer – Verlag,
Berlin, 2010.

[82] R. S. Eisenberg, and E. A. Johnson, Three-dimensional electric field problems in
physiology, Prog. Biophys. Mol. Biol. 20 (1970), 1-65.

[83] C. M. Elliott, M. Paolini, and R. Schätzle, Interface estimates for the fully
anisotropic Allen-Cahn equation and anisotropic mean-curvature flow, Math. Mod-
els Methods Appl. Sci. 6 (1996), 1103-1118.

[84] C. M. Elliott, and R. Schätzle, The limit of the anisotropic double-obstacle AllenC-
ahn equation, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), 1217-1234.

[85] L. Esposito, N. Fusco, and C. Trombetti, A quantitative version of the isoperimetric
inequality: the anisotropic case, Ann. Scuola Norm. Sup. Pisa 5 (2005), 619-652.

[86] H. Federer, Geometric Measure Theory, Springer – Verlag, Berlin, 1968.

[87] F. Fierro, R. Goglione, M. Paolini, Numerical simulations of mean curvature flow
in presence of a nonconvex anisotropy, Math. Models Methods Appl. Sci. 8 (1998),
573-601.

[88] R. Finn, Equilibrium Capillary Surfaces, Springer – Verlag, New York, 1986.

[89] B. S. Fischer, and R. Finn, Existence theorems and measurement of the capillary
contact angle, Zeit. Anal. Anwend. 12 (1993), 405-423.

[90] I. Fonseca, The Wulff theorem revisited, Proc. Roy. London Soc. 432 (1991), 125-
145.

[91] I. Fonseca, and S Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc.
Edinburgh 119 (1991), 125-136.

[92] G. P. Galdi, An introduction to the Mathematical Theory of the Navier-Stokes Equa-
tions, Springer, 2011.

[93] Y. Giga, Surface Evolution Equations. A level set approach., Monographs in Math-
ematics 99, Birkhäuser, Basel, 2006.
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