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ABSTRACT 

 

Background: Prion diseases or transmissible spongiform encephalopathies (TSE) are 

a class of fatal infectious neurodegenerative disorders whose pathogenesis 

mechanisms are not fully understood. The diseases manifest as sporadic, genetic or 

acquired. So far, neither specific biomarkers for early diagnosis nor effective 

therapeutic targets have been identified. The pathological molecular component of 

the diseases is a misfolded isoform of the prion protein (PrP) denoted as prion. 

Mounting evidence suggests that in addition to gene coding for the PrP (PRNP) other 

genes may contribute to the genetic susceptibility of TSE. In this context, microarray-

based gene expression analyses offer unique tools to approach neurodegenerative 

disorders. In particular, transcriptome profiling can be used to identify altered 

transcripts in response to pathogens, and select potential targets for novel 

therapeutic approaches. Up to date, a number of studies have been carried out in 

order to investigate the gene expression alterations occurring in prion-infected 

organisms, but most of them involved animal models such as mice, sheep and cattle, 

which are not closely related to humans. Several studies have been performed on 

non-human primates but none of them have investigated the genomic outcome of 

prion infection. 

In this study, we performed the first large-scale transcriptome gene expression 

analysis on BSE-infected cynomolgus macaques (Macaca fascicularis), which are an 

excellent model for studying human acquired prion disease. Indeed, cynomolgus 

macaques are evolutionary very close to humans, have a high degree of amino acid 

homology in PrP sequence. In addition, like the human sequence, macaque PrP 

possesses the same polymorphism at codon 129. Furthermore, BSE can be 

transmitted either intracranially or orally to these animals leading to a disease that is 
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very similar to the human disorder, as regards preclinical incubation time, clinical 

symptoms and pathophysiology. 

 

Aim of the work: The initial objective of the present work was to identify the main 

genes that are differentially expressed in the frontal cortex of intracranially infected 

monkeys compared to non-infected ones. This approach could shed some light on 

the biological processes underlying the pathogenesis of human prion diseases, 

which may therefore become potential targets for both diagnostic and therapeutic 

strategies.  

Following the encouraging results obtained in monkeys, we decided to further 

confirm the dysregulation pattern highlighted in macaques in human prion disorders. 

At this step of the study, the final aim was to investigate the specificity of the 

identified gene signature for CJD in comparison to both healthy subjects and to other 

neurodegenerative diseases. This further analysis aimed at highlighting not only 

prion disease specific molecular mechanisms, but also potential common 

neurodegeneration processes. 

Methods: Total RNA from the gyrus frontalis superior of 12 animals – 6 intracranially 

BSE-challenged (A1-A6), 1 orally BSE-infected (B6) and 5 non-infected age- and 

sex-matched control macaques (CovA, CovB, CovC, CovD1, CovD2) – was isolated 

homogenizing the material with micro pestles in TRIzol (Invitrogen). DNase I 

digestion was then performed and RNA was checked for quantity and purity on a 

NanoDrop 2000 spectrophotometer (Thermo Scientific™) and integrity on a 2100 

Bioanalyzer (Agilent Technologies). Samples were labeled using the GeneChip
 
3’IVT 

Express Kit (Affymetrix) and hybridized to a GeneChip
 
Rhesus Macaque Genome 

Array (Affymetrix). The bioinformatics analysis identified 300 probe sets that were up- 

or down- regulated about twofold (≥|1.95|). Because among them no candidate 
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appeared using FDR 0.05, we chose as criteria an unadjusted p-value of ≤0.005 

together with a fold change ≥|2.0|. We then used the Ingenuity Pathways Analysis 

(IPA) to annotate genes according to their functional relationships and determine 

potential regulatory networks and pathways. In order to confirm the array results 

using an independent and more sensitive technique, we performed RT-qPCR for a 

subset of differentially expressed genes, with GAPDH and ACTB as reference 

genes. –RT controls were included in the plates for each primer pair and sample. 

The relative expression ratio was calculated using the 2-∆∆CT method. Statistical 

significance was calculated with the unpaired student t-test (p<0.05).    Regarding 

human samples, we collected about 120 samples from frontal cortex of frozen 

postmortem brain tissue, including: prion-infected patients (vCJD, sCJD, iCJD), 

neurodegeneration affected patients (AD, PD, CBD, tauopathies) and controls 

(healthy subjects). RNA was extracted using TRIzol with PureLink® RNA Mini Kit 

(Life Technologies) and on-column DNase I digestion. Quantity and integrity were 

checked as above, and only samples with a RIN around 4.5 or higher were included 

in the study. Reverse transcription was then carried out using Superscript III and RT-

qPCR was performed for the previously selected gene transcripts, with ACTB and 

RPL19 as reference genes. In addition, for all macaque and human samples, 

erythrocyte markers expression analysis was performed in order to exclude any 

relevant blood contamination. Results: The microarray-based transcriptome analysis 

of brains from BSE-infected macaques revealed 300 transcripts with expression 

changes greater than twofold. Among these, the bioinformatics analysis identified 86 

genes with known functions, most of which are involved in cellular development, cell 

death and survival, lipid metabolism and transport and acute phase response 

signaling. RT-qPCR was performed on selected gene transcripts in order to validate 

the differential expression in infected animals versus controls. The results obtained 
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with the microarray technology were confirmed and a five-gene signature was 

identified. In brief, HBB (hemoglobin, beta chain) and HBA2 (hemoglobin, alpha 

chain 2) were down-regulated in intracranially infected macaques, whereas TTR 

(transthyretin), APOC1 (apolipoprotein C1) and SERPINA3 (serpin peptidase 

inhibitor 3) were up-regulated. Interestingly, we found a completely different 

expression pattern for B6, the only orally-infected sample available, in comparison to 

the intracranially infected animals, for three genes (USP16, NR4A2, HBB), 

suggesting that the route of infection might play a substantial role in determining the 

gene expression regulation. Given that the autopsy procedure could have led to the 

presence of some blood in the brain material, we analyzed all the samples also for 

expression of two specific erythrocyte markers, ALAS2 (5'-aminolevulinate synthase 

2) and RHAG (Rh-associated glycoprotein), in order to assess the reliability of the 

results related to the regulation of both chains of hemoglobin and exclude any major 

influence of potential blood contamination. RT-qPCR analysis for both markers 

revealed negligible blood contamination (CT ≥ 35) within some samples. 

Given the encouraging results found in macaques, we decided to investigate if this 

BSE-infection gene signature was reliable also in discriminating CJD patients from 

healthy ones. In humans, the disease that corresponds to BSE infection in macaques 

would be vCJD, which arose in human population in late 90s after consumption of 

BSE contaminated bovine meat. However, given the limited numbers of definitive 

diagnosed vCJD patients (slightly more than 200 worldwide, two of which are in Italy) 

and considered their reduced accessibility, we decided to extend our analysis also to 

sCJD patients. This would also allow us to shed some light on the possible 

differences in gene regulation mechanisms between acquired and sporadic human 

prion disorders. In addition, to better investigate the influence of different etiologies, 
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we also included some patients with iatrogenic CJD (iCJD), an acquired prion 

disease -as vCJD- but with a different origin, in this case patients that followed 

treatment with growth hormone derived from prion contaminated cadavers. 

Regarding control samples, we had to face the very limited availability of brain 

samples from healthy subjects, either age-matched with vCJD (around 30 years) or 

with sCJD (around 65 years). Therefore, we decided to introduce in our study some 

samples from patients with non-CJD neurodegenerative disorders as an additional 

“control” group; this would also enable the identification of possible prion-specific 

gene expression alterations. In general, the gene expression trend observed in 

macaques was confirmed in humans, with similar FC values, for four out of five 

genes: HBA1/2 is down-regulated in both sCJD cases and also in patients affected 

by other non-CJD neurodegenerative diseases, while APOC1, TTR and SERPINA3 

are up-regulated in CJD patients, but not in patients affected by other 

neurodegenerative diseases, as they show levels of expression not different from 

that of the healthy controls (FC < |2|).                                                               

Conclusions: In our work we used both microarray and RT-qPCR technologies that 

allowed us to identify a gene signature able to distinguish BSE-infected macaques 

from control animals. The identified genes are involved in oxygen transport and iron 

homeostasis (HBB, HBA2), cholesterol metabolism and lipid transport (APOC1, 

SERPINA3) as well as acute phase response (SERPINA3, TTR). Therefore, these 

results suggest that, in order to identify potential biomarkers and drug targets for 

prion diseases and other neurodegenerative disorders, a combination of various 

pathways has to be targeted, including oxygen homeostasis, cholesterol metabolism 

and inflammation response. Importantly, the dysregulation of four of these genes 

(HBA2, APOC1, TTR, SERPINA3) has been validated with similar FC values also in 
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CJD affected human samples, confirming the reliability of our previous analysis on 

BSE-infected monkeys and providing important hints on some prion-specific 

alterations in CJD disease. These results could be extremely helpful in 

understanding the mechanism underlying the progression of the disease, allowing for 

the identification of some key players which, if not being the cause of the onset, 

could however be some of the target genes affected by the disease. In addition, 

some of our findings support the hypothesis of a potential shared mechanism 

underlying the onset and the development of all neurodegenerative disorders. This is 

in agreement with recent data supporting the idea of a unifying role of prions in these 

diseases in general and maybe a prion-like behavior for most neurodegenerative 

disorder. 

 

INTRODUCTION 

In the last decades, the striking advancements of our knowledge in biomedicine have 

led to a significant improvement of health conditions. This fact has ultimately led to 

the lengthening of life expectancy: by 2050, almost 400 million people all over the 

world will be ≥ 80 years old.  As a consequence, the prevalence of 

neurodegenerative disorders has rapidly increased. The fact of this augment is likely 

to represent a major social and economic issue in the near future, not only for high-

income countries but also in low- and middle-income ones [1]. 

Even though great efforts have been dedicated to research for many years, we are 

still far from understanding the precise molecular mechanisms that lead to 

neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, Huntington’s or 
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Creutzfeldt-Jakob’s disease. In addition, for all these disorders no therapy is still 

available [2]. 

In general, these disorders share a common mechanism of aberrant folding of 

distinct proteins that, upon misfolding, become more prone to aggregation, and, in 

turn, may become highly neurotoxic. This mechanism is nowadays referred to as 

“prion paradigm”. The latter can be explained in a canonical model for the seeded 

aggregation of misfolded proteins: (i) recruitment of monomers by aggregates of 

misfolded proteins that impose their aberrant structure on the native polypeptides; (ii) 

growth and fragmentation of oligomers; (iii) spreading of the pathology [2]. Since the 

1930s, when a spongiform encephalopathy of a sheep was shown to exhibit atypical 

infectivity; such as very long incubation period, absence of inflammation, no 

demonstrable microbial or viral agent, several other species, including humans, have 

been found to be affected by a similar pathology. Only half a century later, Prusiner 

and colleagues were able to show that the infectious agent of these transmissible 

spongiform encephalopathies (TSEs) consists solely of an abnormally folded protein, 

hereafter called “prion” – an acronym to indicate a proteinaceous infectious particle. 

The physiological cellular prion-related protein (PrPC) is a membrane-bound protein 

predominantly expressed in the nervous tissue, where it probably plays a role in 

neuronal development and function [3]. When in its misshapen state, the molecules 

aggregate with one another and impose its anomalous structure on benign PrP 

molecules. Prions thus act as corruptive templates (seeds) that initiate a chain-

reaction of PrP misfolding and aggregation. As prions grow, fragment and spread, 

they cause neuronal loss perturbing the function of the nervous system and 

ultimately cause the death of the affected individual [4].  
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Prion protein structure 

The human PRNP gene is located on the short arm of chromosome 20 and, in all 

mammals, contains three exons. The open reading frame (ORF) lies entirely within 

exon 3 and transcribes an mRNA of 2.1–2.5 kb in length, with approximately 50 

copies/cell in neurons [5]. PrPC is the related encoded glycoprotein that resides in 

lipid rafts and is attached to the outer leaflet of the plasma membrane via a C-

terminal glycosylphosphatidyl inositol (GPI) anchor. Following the cleavage of the N-

terminal signal peptide, PrPC is exported to the cell surface. Then, after ~5 h at the 

cell surface (its average half-life) it is internalized through a caveolae-dependent 

mechanism and is degraded in the endolysosome compartment [6]. Human PrPC is a 

253 amino acid protein, which has a molecular weight of 35-36 kDa [7].	 Its highly 

conserved structure is composed of a flexible unfolded N-terminal domain and an α-

helical enriched globular domain; in the N-terminus of the protein there is a cleavable 

signal peptide and a glycine-rich octapeptides region – made up of four octarepeats - 

that binds copper and other divalent cations. In addition, a non-octarepeat copper 

binding site can be found immediately after this region. The C-terminal moiety is 

composed of a cleaved signal peptide, 3 α-helices and a short 2-stranded antiparallel 

β-sheet, and also contains a disulfide bridge linking α2-α3 helices and 2 N-linked 

glycosylation sites (Figure 1) [8].	 PrPC is present in un-, mono- or di-glycosylated 

forms, which correspond to the variable N-glycan attachment to two highly conserved 

residues, asparagine 181 and 197 in the human protein. While the ratios of the 

various glycosylated forms of PrPC remain reasonably constant in uninfected 

individuals, the ratios of the glycosylated bands of PrPSc are highly variable in brains 

infected with different TSE agents. Moreover, it has been recently shown that the 

glycosylation status of PrPC affects the inter-species transmissibility of some prion 

diseases [9]. 
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Figure 1. Schematic representation of human PrP. 
The unprocessed PrP is 253 amino acid residues in length and includes a signal peptide (1–22), four 
OR, a hydrophobic region (113–135), one disulfide bond between cysteine residues (179–214), two N-
linked glycosylation sites (at residues 181 and 197), and a GPI-anchor attached to the C-terminus of 
PrP replacing the GPI-anchor signal (residues 232 to 254).  A palindromic region, AGAAAAGA (113–
120), lies in the hydrophobic region (113–135) and is thought to be important in the conversion of PrPC 
to PrPSc. OR: Octapeptide repeat; GPI: glycophosphatidylinositol; PK: proteinase K; CHO: 
carbohydrates (from Acevedo-Morantes 2014) 
 
 

As regards non-human primates, the Macaca genus is closely related to humans, 

thanks to a common ancestor ≈25 million years ago. Nevertheless, some studies 

have shown that in general macaques harbor much higher genetic diversity than 

humans [10]; however, Mauritian macaques used in this study have been known to 

show extremely low genetic diversity, due to their recent colonization [11]. It is known 

that amino acid substitutions in PrP gene sequence can alter susceptibility to TSE 

agents [12]. The macaque PRNP shares a 96% identity with the human sequence, 

with 32 residues differing within the CDS region (Figure 2). Similarly, also the two 

proteins show a 96% identity, with 9 residues (97, 100, 108, 138, 143, 155, 166, 168 

and 220) that differ between macaque and human primary sequence.  
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Figure 2. Sequence identity between human and macaque PrP sequences. 
Numbering is based on the human sequence. Dots indicate residues different from human residues. 
Alignment of the sequences was obtained from Ensembl database. Macaca mulatta and Macaca 
fascicularis protein sequences are identical. 
 

Notably, both species display serine homozygosity at codon 170, whose 

polymorphism has been recently linked with transmission of infectivity in red-backed 

vole (RBV). Indeed, amplification of human vCJD PrPSc in PMCA occurred only with 

RBV 170S/S and not in RBV 170N/N or 170S/N [13, 14]. Considering all these 

notions, we can assume that the macaques involved in this study represent an 

accurate model for a human species barrier. 

 
 
Prion protein expression and function 

Prion protein is highly conserved in mammals, where it is almost ubiquitously 

expressed, suggesting some relevant physiological roles particularly in the central 

nervous system and in the immune system. Indeed, together with neurons, 

lymphocytes and antigen presenting cells (such as dendritic cells and monocytes) 

show the highest levels of PrPC expression [15]. However, the biological functions of 

PrPC still remain elusive. Numerous experiments using mice and murine cell lines in 



	
	

15	

which the expression of PrP is abolished (Prnp0/0) suggest that PrPC is involved in 

several physiological functions such as myelin maintenance, metal homeostasis, 

apoptosis prevention and also hematopoiesis and erythroid differentiation [16]. In 

particular, in different cell culture models PrPC showed to promote neurite outgrowth 

and to prevent neuronal cell death, particularly through inhibition of the mitochondrial 

proapoptotic pathway [17-19]. PrPC is also involved in early synaptic transmission, in 

regulation of circadian activity and in memory formation [15]. In addition, Prnp0/0 are 

resistant to prion infection and that neuron-restricted PrPC expression is sufficient to 

allow and sustain scrapie infection in transgenic mice [20]. Even if some evidences 

suggest an implication of PrPC in the activation of T lymphocytes and phagocytosis, 

the precise role of PrPC in both innate and adaptive immune system still remains 

unclear [15].  

 

PrPSc formation 

The stochastic, genetically- or infectivity- linked misfolding of the essentially α-helical 

PrPC entails a 40% β-sheet enrichment of the aberrant PrPSc isoform, whose different 

biophysical characteristics favor attraction and conformational conversion of other 

PrPC molecules. This process leads to the formation of soluble oligomers of 

increasing length (Figure 3). In this chain reaction of elongation, PrPSc functions as a 

template that imposes its aberrant structure on native PrPC molecules, resulting in 

drastic modifications of PrPC biochemical properties [2]. Indeed, PrPSc is insoluble in 

non-denaturant detergents, it is only partially hydrolyzed by proteases to form a 

fragment designated PrP 27-30, denoted after its electrophoretic mobility in reducing 

and denaturing SDS-PAGE, and it accumulates in the brain with a pattern distinct 

from the distribution of PrPC [21]. It has been speculated that the PrPC conversion to 

PrPSc may occur in caveolae-like domains [7]. Oligomers and larger aggregates can 
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fragment, amplifying in this way the seeding capacity, and may ultimately deposit 

outside neurons as insoluble amyloid fibrils, characterized by ordered β-sheet 

repeats perpendicularly oriented to the fiber axis [2]. In particular, the oligomeric 

states of pathogenic mammalian prions are thought to be the toxic forms, and 

assembly into larger polymers, such as amyloid fibrils, seems to be a mechanism for 

minimizing toxicity [22].  

 

Figure 3. The prion paradigm of template-assisted, seeded protein aggregation. 
A schematic diagram shows the hypothetical series of events leading from the misfolding and self-
aggregation of protein molecules to the formation of characteristic lesions. The assemblies that act as 
seeds for the templated misfolding of other molecules can vary in size from small oligomers to large 
polymers. These seeds initiate and sustain the disease process and may be the agents by which the 
aggregates proliferate and spread within the nervous system. In addition, small, oligomeric assemblies 
have been identified as cytotoxic agents in several instances. The lesions that result from the seeding 
cascade can occur as intracellular inclusions (such as neurofibrillary tangles or Lewy bodies) or 
extracellular masses (such as amyloid plaques). (from Walker 2015) 
 
 

 

Prion diseases 

Pathologically, prion diseases are marked by spongiform change (vacuolation) in the 

brain, neuronal loss, astrocytosis, and the accumulation of PrPSc [3]. TSEs are 

mostly idiopathic in origin and typically late-onset, while the genetic forms (about 

10%) have a slightly earlier age at onset and a slower course. Iatrogenic cases are 

due to contaminated neurosurgical instruments, brains derivatives such as pituitary 
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hormones, corneal transplantation, dura mater graft. In addition, more recently, 

consumption of prion-tainted beef products and transfusion of prion-infected blood 

has occurred [2].  

Prion diseases are infectious provided that the amino acid sequences between PrPSc 

in the inoculum and PrPC expressed in the recipient are identical; therefore, PrPSc 

from one species fail to or inefficiently transmit the disease to an organism 

expressing heterologous PrPC, a feature known as transmission barrier [23]. 

Furthermore, differences in incubation time can occur also when the invading PrPSc 

and the host PrPC have identical sequences. This phenomenon is caused by the 

existence of prion strains that have the ability to generate distinct incubation times 

and neuropathological lesions in homologous hosts. Given that structural information 

for PrPSc is not available at high resolution, this theory is currently based on distinct 

biochemical and biophysical properties of different strains. One tempting hypothesis 

would be that the transmission barrier is determined as well by distinct conformations 

of PrPSc in different species [24].  

 

Animal TSEs 

Animal prion diseases include scrapie in sheep and goats, the aforementioned 

bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) 

in cervids, transmissible mink encephalopathy in ranch-raised mink, feline 

spongiform encephalopathy (FSE) in cats and exotic ungulate spongiform 

encephalopathy (EUE) of captive wild ruminants. In contrast to humans, animal TSEs 

are generally acquired (Table 1). 

Also, as already mentioned above, it is known that there are transmission barriers 

that operate at the molecular level, whose efficacy depends on compatibility between 

the PrPSc from the infecting species and the PrPC from the host. Similarities in the 
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species-specific primary PRNP sequences may account for part of this effect, but 

prion strains and host PRNP polymorphic genotype may affect susceptibility in ways 

not yet fully understood [25]. 

Animals affected by TSEs increase the risk of transmission to humans, as in the case 

of BSE that captured worldwide attention in the 1990s because of food-borne 

transmission to humans, causing a fatal variant form of Creutzfeldt-Jakob disease 

(CJD). The frequency of classical BSE cases has declined dramatically following the 

implementation of appropriate measures to control animal feed. However, atypical 

forms of BSE have recently been described in Europe, Japan and North America, 

posing major concerns for public health [26-28]. These atypical forms are bovine 

amyloidotic spongiform encephalopathy (L-type BSE) and H-type BSE, both with a 

pathology and epidemiology distinct from classical BSE, thus representing distinct 

prion strains [25]. Some studies suggest that L-type BSE, but not H-type, is able to 

infect cynomolgus macaques [29, 30] and humanized transgenic mice, indicating that 

a zoonotic risk may exist [31].  

Concerning cervids, in North America both the native and farmed deer and elk 

populations are currently suffering the rapid spread of CWD; whether it has the 

potential to be infectious to humans is uncertain and represents a relevant concern 

[32]. Indeed, while CWD transmission failed to occur in humanized mice 

overexpressing human PrP bearing the129M polymorphism [33-35], squirrel 

monkeys, but not cynomolgus macaques, are susceptible to CWD infection [36, 37]. 

Furthermore, brain homogenate from CWD infected cervids, used as a seed in 

PMCA reaction, was able to convert normal human PrPC, indicating that there is not 

an absolute barrier between human PrP and cervids PrPSc [25].  
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Regarding sheep, both classical and atypical scrapie are considered to represent a 

negligible risk to the human population as they appear not to be infectious to humans 

[32].  

 

 

Table 1. Animal transmissible spongiform encephalopathies (from Head 2012) 
 
 

Human TSEs 

Human prion diseases include of Creutzfeldt-Jakob disease (CJD), Gerstmann-

Sträussler-Scheinker syndrome (GSS), kuru, fatal familial insomnia (FFI), PrP 

cerebral amyloid angiopathy (PrP-CAA) and variably protease-sensitive prionopathy 

(VPSPr). CJD is by far the most common prion disorder in humans, with a worldwide 

incidence of 1-2 cases per million of population per annum; among these, the vast 

majority of cases are idiopathic and then termed sporadic CJD. With lower incidence 

are familial or genetic (fCJD or gCJD) cases and are found in association with a 

growing list of mutations in the ORF of the PrP gene, PRNP. The remaining are 

acquired (iCJD) through contaminated surgical instruments or cadaveric derivatives 

(growth hormone, dura mater and corneal transplantation) or, as mentioned above, 

following the consumption of infected bovine meat (vCJD) [38]. Besides CJD, there 

are other even rarer prion diseases, either inherited such as FFI and GSS, sporadic 

such as fatal insomnia or acquired due to mortuary feast rituals such as kuru (Table 
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2). Regardless of the origin, it seems as though PRNP gene has an influence on 

prion susceptibility [39]. Indeed, codon 129 is the site of a common methionine 

(M)/valine (V) polymorphism: in the Caucasian population around 51% of individuals 

are heterozygous (M/V), 37% M homozygous (M/M) and 12% are V homozygous 

(V/V) [38]. Interestingly, the phenotype of the prion diseases, whether sporadic, 

familial or acquired, often differs depending on the 129 genotype of the affected 

subject. Furthermore, more than 70% of sporadic and 100% of variant CJD are M 

homozygous, providing evidences of a genetic predisposition for human prion 

diseases [40]. Another well-known non-pathogenic polymorphism in the PRNP gene 

is glutamic acid (E) or lysine (K) at codon 219, which is mainly found in Asian and 

Pacific population where 219E/K heterozygosity seems to confer resistance against 

sCJD but not entirely against the acquired or genetic form of prion disease [41]. 

 

 

Table 2. Human prion diseases  
The probable source of infectivity in the acquired forms shown in parenthesis. (from Head 2012) 
 
 
Genetic prion diseases 

In particular, regarding familial prion diseases, there are a number of polymorphisms 

and more than 40 different pathogenic mutations in the human PRNP gene that are 
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linked to familial CJD, FFI or GSS; they include 35 point mutations and expansions 

or deletions within an unstable region of PRNP rich in proline, glycine and glutamine 

(octapeptide repeat region) (Figure 4).  Interestingly, one to four additional 

octarepeats cause late-onset fCJD with a mean age of 62 years, while 5 to eight 

additional octarepeats cause early-onset fCJD or GSS with a mean age of 32 [22]. 

Curiously, one particular mutation, Asp178Asn, is related with fCJD – if valine is 

present at codon 129 – or FFI -if methionine is instead encoded at codon 129. In 

general, codon 129 determines earlier onset and a shorter course of genetic prion 

diseases for M/M homozygous individuals [39, 42]. 

Generally, these diseases manifest with cognitive difficulties, ataxia and myoclonus 

and show different neuropathological features according to different causative 

mutations. While fCJD is characterized by spongiform degeneration with diffuse 

astrogliosis throughout the brain cortex and deep nuclei, GSS shows multiple PrP-

positive amyloid plaques and FFI presents a relative lack of spongiform degeneration 

together with neuronal dropout and gliosis in the thalamus and brain stem [43, 44]. 

The age at onset ranges from the third to the ninth decade of life, while the course 

ranges from a few months to several years with death occurring often from infection 

(pneumonia or urosepsis).  

With regards to fCJD, progressive confusion and memory impairment are the first 

symptoms, and the typical age of manifestation is from 30 to 50 years. Clinical 

symptoms of GSS usually develop between 40 to 60 years of age, with cerebellar 

dysfunction (unsteady gait, mild dysarthria) together with spasticity and bradykinesia, 

and a slow progression from a few to seven years. A typical sign of FFI is insomnia, 

with disruptions in autonomic functions followed by ataxia. The age of onset for FFI 

spans from 40 to 50 years. Disease duration is generally 12 months in individuals 

homozygous for the disease causing mutation and becomes significantly longer in 
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heterozygous individuals (around 21 months. This suggests a gene dosage effect 

[32, 43]. 

Interestingly, mutations that generate a premature stop codon in the PRNP gene are 

known to cause a particular prion disease characterized by neurofibrillary tangles 

and PrP-positive amyloid fibril deposits in arteries and arterioles walls, a condition 

known as cerebral amyloid angiopathy (CAA). As for GSS, the truncated C-termini 

resulting from these mutations determine the loss of the GPI anchor, required to 

attach the protein to the outer leaflet of the plasma membrane; this indicates that the 

GPI moiety might interfere with the ability of PrP to form amyloid fibrils and that its 

absence could trigger the cerebrovascular amyloid deposition of these readily formed 

fibrils [45, 46].  

 

Figure 4. Schematic representation of human PrP mutations and polymorphisms.  
The N-terminal octapeptide repeat motif is comprised of eight residues: P(H/Q)GGG(-/G)WGQ. 
Normal PrP contains five copies of this motif; a single OR deletion is considered a non-pathogenic 
polymorphism. However, insertional mutations consisting of one to nine additional OR are pathogenic. 
Polymorphisms and pathogenic mutations of the PRNP gene are represented above and below the 
schematic, respectively. Letters preceding the numbers indicate the normal amino acid residue for the 
position and letters following the numbers designate the new residue. (from Acevedo-Morantes 2014) 
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Sporadic prion diseases 

 

Sporadic Creutzfeldt-Jakob disease (sCJD)  

One other major disease modifier, together with the polymorphism at codon 129, is 

the type of PrPSc present in the affected individual: indeed, type 1 PrPSc is mainly 

associated with the MM genotype (60-70% of all sCJD cases) while type 2 PrPSc is 

more often present with MV or VV genotype [39]. These two types of prions differ by 

the molecular weight of the unglycosylated band, which migrates at 21kDa in type 1 

and at 19kDa in type 2, on Western blot [47]. Phenotypic heterogeneity indeed is one 

of the most intriguing features of prions, influencing the progression rate of the 

disease, the pattern of PK-resistant fragments of PrPSc, the neuropathological 

characteristics of brain lesions and transmissibility properties in mice. For instance, it 

has been recently shown that human MM1 sCJD prion replication rate in vitro is 

markedly higher than that of MM2 sCJD: this diversity is probably the consequence 

of specific structural features of each PrPSc type that control the intrinsic growth rate 

of the aggregates [48]. The issue is further complicated by the fact that around 25% 

of sCJD cases present both type 1 and type 2 PrPSc, with their ratio varying among 

different brain regions, suggesting regional or cellular tropism of PrPSc  [47]. 

Based on the polymorphism at codon 129 and the type of PrPSc present, sCJD has 

been historically divided into six phenotypically different subtypes: 

Subtype 1: MM1 and MV1 – this is the most common subtype of sCJD, with a large 

prevalence of MM homozygosity. Symptoms, mainly cognitive impairment, arise 

around a mean of 65 years of age, with a mean clinical duration of 4 months. 

Histopathologically, this subtype presents with diffuse fine spongiform degeneration 

particularly severe in the cortex, astrogliosis and neuronal loss. PrP immunostaining 

is synaptic-like. 
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Subtype 2: VV2 – this is the next common subtype, accounting for 16% of all sCJD 

cases, and is also known as “cerebellar” or “ataxic” variant. Indeed, the main 

difference with the subtype 1 relies on the fact that ataxia is the most recurrent 

symptom at diagnosis. One other distinctive characteristic is the presence of focal 

PrP plaque-like aggregates, especially in the cerebellum. 

Subtype 3: MV2 – this subtype comprises around 9% of all sCJD cases. Its main 

characteristics are a longer clinical duration (average of 17 months) and the 

presence of kuru plaques in the cerebellum. Ataxia and cognitive impairment are 

almost equally the earliest signs of disease at the onset.  

Subtype 4: MM2 – this is a quite rare subtype (2-8% of all cases) with a clinical 

duration similar to that of MV2 subtype including cognitive impairment as the first 

most common symptom. The hallmark here is the spongiform degeneration with 

large vacuoles, referred as “coarse spongiosis”, diffused in the cortex and thalamus 

together with astrogliosis. 

Subtype 5: VV1 – it represents about 1% of all sCJD cases, with an early onset of, 

on average, 39 years and a clinical duration of about 15 months. The main symptom 

is a fronto-temporal dementia, with severe fine spongiform degeneration and a faint 

synaptic-like PrP immunostaining pattern.  

Subtype 6: sporadic fatal insomnia (sFI) – this subtype, also referred as “thalamic” 

variant, accounts for about 2% of the sporadic prion diseases and it’s phenotypically 

identical to FFI. sFI is linked to the 129MM genotype and PrPSc type 2, but it differs 

from MM2 subtypes as it has a significantly longer clinical duration (average of 24 

months) and the eventual presence of insomnia at diagnosis. The main 

histopathological feature is severe astrogliosis and neuronal loss in the thalamus 

without spongiosis. The PrPSc type 2 of sFI shows however a different glycoform ratio 

compared to that of FFI. Indeed, while in the genetic form of the disease there is a 
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marked under-representation of the unglycosylated form, in sFI the ratio of the three 

glycoforms is similar to that of the other sCJD subtypes. As mentioned above, about 

one fourth of all the sCJD cases present both type 1 and type 2 PrPSc, either in the 

same anatomical region or not, with predominance of type 1 in MM cases and 

predominance of type 2 in VV cases, which also dictates the related phenotype [39]. 

 

Variably Protease-Sensitive Prionopathy (VPSPr) 

In 2008, a new human sporadic disease involving PrP was reported in the USA, with 

some other cases later identified also in the UK, Netherlands and Spain. This 

disease has a distinctive neuropathology characterized by the presence of 

microplaques, but it is defined by the observation that PrPSc in the brain is less 

resistant to protease digestion than the PrPSc in other human prion diseases and by 

the presence of N- and C-terminally cleaved ≈ 8kDa PK-resistant PrP [49].  The 

mean age of onset is around 67 years with an average duration of disease of about 

30 months. However, in the presence of 129VV genotype there is a slight prevalence 

for an earlier onset and shorter disease duration. As for sCJD, this prion disease also 

displays heterogeneity, indeed according to the genotype at codon 129 VPSPr can 

be classified into three subtypes. In 129VV cases, which represent around 65% of 

total VPSPr cases, the first clinical symptoms are psychiatric signs such as mood 

and behaviour changes, speech deficit and cognitive impairment, while 129MV cases 

(≈23%) and 129MM subjects (≈12%) often present with parkinsonism followed by 

ataxia/myoclonus and progressive cognitive impairment. The common hallmark 

among all 129 genotypes is the presence of moderate spongiform degeneration with 

vacuoles in the major cerebral regions, together with occasional cerebellar 

microplaques in 129VV e 129MV cases; these genotypes generally have more 

severe lesions. Also, all three genotypes are characterized by a ladder-like 
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electrophoretic profile of PK-resistant fragments, consisting of 5 major bands 

migrating approximately at 26kDa, 23kDa, 20kDa, 17kDa and 7kDa, the latter being 

highly PK resistant in all subtypes. 129MM cases display relatively high PK 

resistance, the genotype 129MV display intermediate PK resistance while cases with 

the 129VV genotype show low or are even lacking band profile [50]. To date, no 

published studies on VPSPr transmissibility are available; however preliminary data 

indicate that transmission, if it occurs at all, is not efficient, specifically in comparison 

to CJD [49].  

 

Acquired prion diseases 

 

Variant Creutzfeldt-Jakob disease (vCJD) 

In 1996, the National CJD Surveillance Unit reported a new form of human prion 

disease in the UK, now known as variant CJD (vCJD). This form of the disease has a 

clinical and pathological phenotype that is distinct from sporadic CJD. Interestingly, 

all confirmed cases of vCJD to date are MM homozygous at codon 129, a very 

strong association, but it is not yet clear whether the polymorphism is the major 

determinant of susceptibility or only of incubation time [32, 51]. Indeed, in 2008 in the 

UK a new case of vCJD has been diagnosed in a patient who was MV heterozygous 

at codon 129. However no autopsy was performed to confirm the diagnosis [52]. 

Experimental transmission studies of BSE and vCJD to inbred and transgenic mice 

found that the transmissible agent was the same, confirming the epidemiological 

evidence that vCJD is acquired from another species [40, 53]. The main 

distinguishing features of vCJD as opposed to sCJD are the clinical presentation, a 

younger age at clinical onset (mean around 28 years) and the speed at which the 

disease progresses to death (average of 13 months) [32]. Given that the most likely 
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route of infection from contaminated BSE-affected bovine meat is the oral one, it was 

predictable that both PrPSc and infectivity are detectable within lymphoid tissues. 

Indeed, unlike sCJD and iCJD, in vCJD the infectious agent can be detected in 

tonsils, lymph nodes, spleen and appendix even in the preclinical phase of the 

disease [53]. More importantly, this evidence suggests that lymphocytes may carry 

infectivity in blood during the incubation period of vCJD, which poses a major health 

issue considering that the estimated prevalence of asymptomatic individuals in the 

UK as determined by epidemiological studies and from the retrospective screening of 

appendix and tonsil tissues is around 1 per 2000-10000 [40, 54-56]. Furthermore, 

one recent model predicts more than 300 further cases in the next 150 years, most of 

which are predicted to be the result of blood-derived infection [57].  

Regarding clinical features, the most common sign is dementia together with ataxia, 

involuntary movements and psychiatric features [58]. Currently, 226 vCJD cases 

have been reported worldwide, 175 had been UK residents during the high-risk 

period 1980-1996. To date, cases were registered in several other countries in 

addition to the UK, including France, Ireland, Italy, USA, Canada, Saudi Arabia, 

Japan, Netherlands, Portugal, Spain and Taiwan (data as of 29-04-2015 from 

National Creutzfeldt-Jakob Disease Research & Surveillance Unit). Successful prion 

disease transmission is thought to be dependent on the strain of the prion agent and 

its genetic compatibility with the host. Experimental transmission studies in mice 

have shown that the strain of agent causing vCJD has identical properties to that of 

BSE, which differs from the scrapie or sCJD strains [59].  

Interestingly, although the UK population at different ages has been exposed to BSE 

in the food chain, the majority of vCJD cases are younger than 40-years-old [51]. 

This suggests a higher rate of dietary exposure, increased susceptibility to infection 

or a reduced incubation period in this age group [60]. Another possible explanation is 
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that as part of the development of the human immune system, there is a greater 

volume of gut-associated lymphoid tissues when younger, with a consequent higher 

volume of available tissue to absorb the infected material and therefore a more 

efficient infection [51].   

 

Kuru 

Kuru is an epidemic disease that in the 1950s had a dramatic impact on a restricted 

geographic area of the Papua New Guinea highlands, leading to more than 1800 

deaths and therefore providing evidence for direct human-to-human prion 

transmission [61]. Indeed, the current hypothesis is that a sporadic case of CJD was 

propagated by mortuary feast practice of deceased tribe members, leading to an 

epidemic that affected predominantly women and children, the main participants of 

these mortuary feasts. In 1959 cannibalism was banned and since then no new 

cases have been reported. 

As with other prion disorders, codon 129 homozygosity has been associated with an 

earlier onset and a shorter clinical duration. In general, the mean incubation period 

for kuru has been estimated to be around 12 years, however in some cases it may 

exceed five decades [62]. Some years ago a polymorphism was identified in codon 

127 (G127V) whose heterozygosity seemed to provide strong resistance to kuru. 

Given the highly restricted geographic distribution of the protective V127-associated 

haplotype, it is believed that this genetic resistance developed as a consequence of 

the selective pressure imposed by kuru in the 20th century [61]. Very recently, the 

heterozygosity at codon 127 polymorphism confers complete protection against kuru 

and sCJD, but not vCJD in transgenic mice. Also, given the observation that V127 

was seen exclusively on a M129 PRNP allele, its interaction with the common 

M129V PrP polymorphism was investigated. Notably, homozygosity for V127 
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polymorphism completely prevented the infection of 18 different human prion disease 

isolates –comprised of kuru, vCJD, iCJD and sCJD-, regardless of the 129 codon 

genotype of the inoculum. Therefore, this polymorphism seems to act in a different 

manner than that in codon 129. Indeed, while 129 polymorphism is partially 

protective against sCJD only in the heterozygous state, probably through inhibition of 

protein-protein interactions during the process of prion propagation, V127 seems to 

act as a dominant-negative inhibitor of prion conversion and propagation [63]. 

 

Iatrogenic Creutzfeldt-Jakob disease (iCJD) 

iCJD is caused by the accidental transmission of prions from person to person during 

medical or surgical procedures. Several routes of transmission have been implicated 

such as a corneal transplant from a donor with sCJD [64], or human dura mater 

grafts from a contaminated commercial source that have resulted in over 200 

iatrogenic infections worldwide [32, 65]. A similar number of cases arose from the 

use of growth hormone and gonadotropin derived from pituitary glands of CJD 

affected cadavers. One other minor route of transmission is represented by the re-

use of neurosurgical instruments and intracerebral electrodes used on CJD affected 

patients. Regarding vCJD, but not sCJD, transmission via blood transfusion or 

infected blood-derived products in human patients has been reported in four clinical 

cases and one asymptomatic case, all in the UK [32, 55]. Interestingly, while the four 

symptomatic cases showed typical MM homozygosity at codon 129 and presented 

with the same clinical and pathological characteristic of BSE-derived vCJD, the 

neurologically asymptomatic patient had the 129MV genotype and presented with 

only splenic and lymph node infection [51].  

Differentiating iCJD from sCJD cases is important for the identification and 

prevention of human-to-human prion transmission. Despite no significant differences 
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identified in gel profiles, stability and PrPSc infectivity between the two CJD forms, 

protein misfolding cyclic amplification (PMCA) conversion efficiency is greater for 

iCJD in comparison to sCJD [66]. Additionally, iCJD (as is the case for vCJD) often 

lacks the C-terminal 12-13kDa fragment present in sCJD cases, suggesting that 

acquired and spontaneous prion diseases may have distinct prion formation 

pathways [66].  

 

Prion-like diseases 

Clinical outcome of prion disorders, such as a high percentage of sporadic cases and 

late onset of the inherited forms, are also shared by many other neurodegenerative 

diseases, such as Alzheimer’s diseases, Parkinson’s diseases and amyotrophic 

lateral sclerosis (ALS) (Table 3). This suggests that certain molecular events may 

occur with aging that lead disease-specific proteins to become pathogenic. More 

than two decades ago, Prusiner suggested that this event involves the stochastic 

refolding of the etiologic protein into a misfolded infectious state known as “prion” 

that, when it exceeds a certain threshold, impairs the degradation pathways, thereby 

enabling the prion to self-propagate [67, 68]. This issue has been recently addressed 

by a number of groups that proposed different definitions for these disorders in 

relation to the particular behavior of their disease causing agent [69]. Fernandez-

Borges and colleagues proposed the term “prion-like diseases”, highlighting the 

similarities with prion protein self-perpetuating aggregation and spreading 

characteristics [70]. Aguzzi and Rajendran coined the term “prionoids” given that, 

unlikely prions, none of the other misfolded proteins presents high infectivity under 

natural conditions [71]. The lack of global scientific consensus on a unique definition 

is considerably dependent on the meaning of “infectivity”. Very recently, Castilla 

proposed to consider “infection” as a process by which and exogenous or 
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spontaneously generated self-propagating agent interacts with the host – with or 

without causing damage and/or disease - as a consequence of its intrinsic capacity 

to replicate itself through diverse mechanisms [69]. 

Regardless the definitions used, there is much evidence that points out to the 

observation that many neurodegenerative diseases should effectively be considered 

prion-like disorders, notwithstanding the involvement of misfolded proteins being 

bona fide prions. For example, many of the mutant proteins causing heritable 

neurodegenerative diseases are found in insoluble aggregates known as amyloid 

deposits, such as amyloid-β plaques and neurofibrillary tangles (NTs) in AD, and 

Lewy bodies in PD. Moreover, both seeding and cell-to-cell transmission has been 

shown for AD, PD, ALS and AA amyloidosis [69]. As regards the latter, evidence 

exists for transmission of serum amyloid A (SAA) protein in a prion-like manner. 

SAA, an acute phase apolipoprotein reactant, can undergo N-terminal cleavage 

leading to the formation of amyloid protein A (AA) that is then deposited 

extracellularly and systemically as amyloid in vital organs. In humans, this process 

appears as a complication of chronic inflammatory diseases -such as rheumatoid 

arthritis- in which the plasma SAA levels are consistently high [72]. This stimulus is 

supposed to trigger an autonucleation-dependent process in which AA protein 

interacts with AA-derived fibril seeds, possibly leading to the formation of SAA 

oligomeric conformers. Regarding mice, it has been shown in secondary reactive 

amyloidosis that small quantities of misfolded AA aggregates can be orally 

transmitted between individuals and cause disease [73]. In addition, bovine AA-fibrils 

demonstrated to be able to induce AA- amyloidosis in mice, but with a reduced 

efficiency if compared to murine AA-fibril, a phenomenon reminiscent of the species 

barrier observed for prions [72].  
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Also, Huntington’s disease (HD), an autosomal-dominant neurodegenerative disorder 

caused by an increased number of CAG repeats in the huntingtin gene, is 

characterized by the accumulation of abnormal aggregates largely composed of N-

terminal fragments of the mutant huntingtin protein (mHTT) [74]. Furthermore, 

seeded aggregation occurs in mammalian cells. Indeed, internalized fibrillar 

polyglutamine peptide aggregates were able to selectively recruit soluble cytoplasmic 

sequence-homologous proteins [75]. In addition, transneuronal propagation of mHTT 

occurs in neural networks, both in cell models and in mice [74].  

However, despite that sequence-specific nucleated protein aggregation constitutes 

the molecular basis of prion formation, one key feature of all prions is that they do not 

need to polymerize into fibrils, but can undergo self-propagation as oligomers, which 

are increasingly thought to represent the toxic species [68, 76].  

 

Table 3. Neurodegenerative diseases caused by prions or prion-like proteins (from Prusiner 

2013) 
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Alzheimer’s Disease (AD) 

AD, the most common human neurodegenerative disease, is clinically defined by a 

progressive decline in memory and cognitive functions and neuropathologycally by 

atrophy and the accumulation of extracellular amyloid plaques made of aggregated 

amyloid-β (Aβ) peptide as well as intracellular neurofibrillary tangles composed of 

aggregated and hyperphosphorylated tau protein in the brain [77]. The Aβ peptide is 

generated by the subsequent cleavage of the amyloid precursor protein (APP) by β- 

and γ-secretase enzymes. The amyloid cascade hypothesis suggests that the 

accumulation and subsequent deposition of Aβ in the brain are the initiating 

pathological events in AD that lead to the downstream aggregation of tau [78]. In 

order to assess transmissibility of the disease, some years ago AD brain 

homogenate was intracerebrally inoculated into marmosets, leading to the 

development of Aβ amyloid plaques after ≈4 years and thus showing that the disease 

may be transmissible [79]. Similar results have been obtained using APP transgenic 

mice and rats (Table 4) [80-82]. Ultimately, using Aβ synthetic peptides, it has been 

shown that the disease agent consists solely of Aβ prions [83].  Like prions, Aβ seeds 

range in size from small, soluble, protease-sensitive aggregates to large, insoluble, 

protease-resistant fibrils. Moreover, the recent finding of the existence of “strain-like” 

Aβ morphotypes which retain their properties after repeated passaging between 

animals might at least partly explain the heterogeneous morphology, pathogenicity 

and progression of Aβ lesions and associated pathologies in AD [84]. Additionally, it 

further supports the concept of prion-like templated misfolding of Aβ [4]. 

 

Parkinson Disease (PD) 

PD is the second-most common neurodegenerative disease whose symptoms 

include progressive bradykinesia and additionally one among rigidity, resting tremor 
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or gait disturbance [85]. PD is characterized by the widespread degeneration of 

subcortical structures of the brains, particularly dopamine neurons in the substantia 

nigra pars compacta, coupled with the accumulation of α-synuclein within Lewy 

bodies (LBs) in neurons [77]. The cause of cell death in PD is still not known, but 

proteolytic stress with the accumulation of misfolded proteins has been implicated 

[86]. α-synuclein, a 140-amino acid protein that is highly enriched in presynaptic 

nerve terminals, usually seems to be in an unstructured form when in aqueous 

buffers or in a α-helical-rich form when bound to membranes. However, α-synuclein 

can also adopt a β-sheet-rich conformation that easily polymerizes into fibrils when 

present in high concentration or in a mutant form and that is able to seed aggregation 

of the soluble protein [68, 87]. Furthermore, α-synuclein is a key player also in the 

pathogenesis of a group of other neurodegenerative diseases defined as 

synucleinopathies, comprised of dementia with Lewy bodies (DLB) and multiple 

system atrophy (MSA) [88]. It is likely that β-sheet-enriched α-synuclein can transmit 

through a cell-to-cell mechanism from neurons of patients with PD into transplanted 

fetal mesencephalic dopaminergic neurons inducing the formation of de novo Lewy 

bodies in the grafted cells [89]. Moreover, it has been shown that intracranial 

inoculation of brain extracts from DLB affected patients into wild-type mice is 

sufficient to cause the appearance of LBs/neurite-like α-synuclein in vivo [90]. Further 

evidence for α-synuclein “prions” come from studies with recombinant α-synuclein 

fibrils able to induce self-propagation as well as aggregation in transgenic mice [91] 

and in cell culture models [88] (Table 4). Moreover, in both wild-type mice and 

macaques, intranigral or intrastriatal inoculations of PD-derived LB extracts resulted 

in progressive nigrostriatal neurodegeneration together with intracellular and 

presynaptic accumulation of pathological α-synuclein in different brain areas, 

processes reminiscent of PD neuropathology [92]. Similar results were observed 
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after inoculation of TgM83(+/-) mice heterozygous for a mutant A53T alpha-synuclein 

transgene with brain homogenate from MSA affected patients [93].  Recently, the 

existence of distinct α-synuclein strains that differentially promote tau inclusion in 

neurons has been reported. Strains are a feature typical of prions, and this may 

explain the tremendous heterogeneity of synucleinopathies [94]. 

 

Amyotrophic lateral sclerosis (ALS) 

ALS is a motor neuron degenerative disease affecting two out of 100,000 individuals 

worldwide, with death occurring within 3 years after diagnosis in over than 80% of 

cases [95]. The etiology of sporadic ALS is still unknown, however at least two 

proteins associated with this disease have to date demonstrated multiple aspects of 

prion-like activity: SOD1 and TDP-43 [96]. After the identification of SOD1 mutations 

in familial cases (less than 10% of the total) [97], some years later misfolded SOD1-

containing inclusions were identified in both familial and some sporadic cases [98]. 

Moreover, it has been shown that the vast majority of sporadic ALS cases present 

TDP-43 cytosolic inclusion [99]. There is increasing evidence that all types of ALS 

are associated with misfolded and aggregated SOD1 [100, 101], which also seems to 

have the ability to impose its misfolded conformation to the native protein [102, 103] 

in a sequence/structure-dependent way, reminiscent of the species barrier 

phenomenon observed in classical prion diseases [103]. Similarly, 

hyperphosphorylated and aggregated TDP-43 is found mislocalized in cytoplasmic 

inclusions both in frontotemporal dementia (FTD) and ALS [104]. In addition, TDP-43 

displays a C-terminal prion-like domain prone to misfolding which is essential for 

aggregation and toxicity [105] and also self-propagation and seeded aggregation 

properties have been observed (Table 4) [106, 107].  
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Tauopathies 

Tau is a cytoplasmic protein that normally stabilizes microtubules, but it becomes 

hyperphosphorylated and prone to aggregation during the course of a variety of 

neurodegenerative diseases such as Pick's disease, progressive supranuclear palsy 

(PSP), argyrophilic grain disease (AGD) and corticobasal degeneration (CBD), 

collectively called tauopathies [68, 108]. In human adult brain, six tau isoforms 

ranging from 352 to 441 amino acids are produced through the alternative mRNA 

splicing from MAPT gene, but only the three forms containing four repeats are 

present in PSP, CBD and AGD [77].  

Hyperphosphorylated tau is a component of the neurofibrillary tangles present in 

several neurodegenerative diseases, including AD. Also, tau mutations cause familial 

forms of FTD, indicating that tau protein dysfunction is sufficient to cause 

neurodegeneration and dementia. Evidence for mutant tau transmissibility also 

exists; indeed, the injection of brain homogenate from mutant P301S tau-expressing 

mice into transgenic wild-type expressing animals induced the formation of tau 

aggregates one year after inoculation (Table 4) [108]. More recently, intracerebral 

injections of brain extracts from various human tauopathies (AGD, PSP, CBD) have 

been shown to cause filament formation and neurodegeration in mutant tau-

overexpressing mice, similar to what happens in the human diseases. Importantly, 

the induced formation of tau aggregates could be propagated between mouse brains 

[109]. As in the case of prions, tau seeds are of many sizes with small, soluble 

assemblies being the effective seeds [110].  Assembled tau can behave like prion; in 

the human AD brain, neurofibrillary lesions appear to spread along neural pathways 

from one brain region to another, following the opposite direction to Aβ plaques. 

Even though tau deposition is probably necessary, but not sufficient for AD 
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development, it is still unclear whether tau inclusions and Aβ plaques formation is 

independent from each other [77]. 

 

Table 4. Summary of studies showing the transmissibility of non-prion protein aggregates.  
(modified from Guo 2014) 
 

Non-human primate models 

Several animal models have been employed to investigate neurodegenerative 

diseases, from invertebrates such as Caenorhabditis elegans or Drosophila 

melanogaster to numerous mouse strains and transgenics and several primate 

species as marmosets or macaques [111]. The transmissibility of human prion 

diseases to non-human primates was first shown in 1966 when kuru was 

successfully transmitted to chimpanzees and, a couple of years later, the same 

results were obtained for CJD [112, 113]. Later on, prion diseases were efficiently 

transmitted also to marmosets, macaques, gibbons and other primate species. In the 

80’s, oral transmission to primates was reported for kuru, CJD (both sporadic and 
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iatrogenic) and scrapie: the latter, however, to date has never been reported to be 

transmitted to humans [114]. Evidence also exists for the transmissibility of both GSS 

and FFI to primates. In general, all these studies indicated that efficiency of 

transmission depends on the primate species (host), the origin of the inoculated 

material (donor) as well as the inoculation route. These studies also indicated that 

incubation times varied greatly among different animals even within the same 

species [115]. After the BSE epidemic and the following characterization of vCJD, a 

second round of experiments involving primates was initiated, with the main objective 

to assess the zoonotic potential and risk of transmissibility of BSE and vCJD [116]. 

However, due to ethical considerations, the use of non-human primates was 

drastically reduced and therefore the number of animals used in these studies, 

mainly cynomolgus and rhesus macaques, is usually small [117]. Importantly, rhesus 

and cynomolgus macaques are evolutionary very close to humans, have a high 

degree of amino acid sequence identity in the PrP sequence and bear also the 

polymorphism at codon 129 [118]. In 1996 BSE was successfully transmitted by 

intracerebral inoculation, leading to a pathology which resembled vCJD: “florid” 

plaques in brain tissue, identical vCJD PrPSc type, and the same clinical presentation 

[119]. Years later, secondary transmission of macaque adapted BSE, both via 

intravenous or intracerebral inoculation, lead to a shortening in incubation time. In 

particular, as shown in figure 5, both routes of inoculation led to similar 

immunopathological lesions such as severe vacuolation and astrocytosis in the 

thalamus, together with a patchy distribution of vacuolation in the cortex with 

presence of dense plaques harboring, in some cases, a florid morphology. 

Importantly, the pattern of PrP deposition and plaque morphology were identical to 

those observed at first passage of BSE in adult inoculated animals, reminiscent of 

human vCJD immunopathology [53].  
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In 2004 oral transmission of BSE was accomplished, showing however a 

considerably longer incubation time [120]. The recent discovery of atypical forms of 

BSE, L-BSE/BASE and H-BSE, gave rise to questions about their transmissibility to 

humans. This has been shown for BASE both via intracerebral and oral inoculation, 

to macaques and lemurs, respectively [30, 121]. Showing that the BSE agent 

behaves similarly in humans and macaques, all these studies indicate that non-

human primates are an excellent model for studying human prion diseases, since 

they reproduce all the main characteristics in terms of incubation time, clinical 

symptoms and neuropathological signs.  

 

 

Figure 5. Immunopathology of BSE in cynomolgus macaques.  
All panels show the pattern of PrP deposition with the 3F4 antibody, except a, which depicts glial 
fibrillary acidic protein immunohistochemistry. (a) Thalamus in BSE, ×10. (b) Cerebral cortex in BSE 
(i.v.), ×2.5. (c) Cerebral cortex in BSE (i.c.), ×2.5. (d) Immature florid plaque with a dense core of PrP 
surrounded by few vacuoles in the cerebral cortex (BSE, i.c.), ×20. (modified from Lasmezas 2001) 
 

Diagnosis 

Concerning sporadic CJD, the diagnosis is complicated by the fact that the clinical 

presentation is highly variable, often with a subacute onset. Most diagnostic criteria 
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are generally based on the recognition of progressive dementia together with two of 

the following symptoms: myoclonus, visual/cerebellar dysfunction, 

pyramidal/extrapyramidal signs, akinetic mutism. These criteria have been developed 

primarily for epidemiological purposes and therefore are not particularly sensitive 

early in the disease course as many of the symptoms are common also among the 

other neurodegenerative diseases. Brain MRI is currently the most accurate 

diagnostic criterion for early detection of sCJD, through the identification of 

characteristic hyperintensity patterns. Cerebrospinal fluid (CSF) instead is typically 

normal in sCJD, with only a mild and low specific increase in neuron-specific enolase 

14-3-3 and total tau protein [47, 122]. Also, EEG generally shows relatively specific 

sharp waves in about two-thirds of sCJD patients [123]. 

Even for genetic prion disease, the diagnosis poses some issues. Indeed, a single 

PRNP mutation can be associated with different phenotypes and up to 60% of the 

genetic cases do not have a positive family history, either due to previous AD or PD 

misdiagnosis or to incomplete penetrance [124]. Recently, CSF RT-QuIC showed 

modest sensitivity but high specificity for sCJD and, more interestingly, RT-QuIC 

using nasal brushings from 15 sCJD and 2 fCJD patients was able to detect PrPSc in 

all of the samples [125-127]. 

Acquired prion diseases, mainly iCJD and vCJD, are less common in comparison to 

sporadic cases but, due to their higher potential for human-to-human transmission, 

their diagnosis is of particular relevance. Concerning iCJD, the main indication would 

come from the report of the use of cadaveric-derived hormones or tissues from 

afterwards diagnosed CJD patients. Variant CJD is typically distinguished from sCJD 

by its younger age of onset and prominent early psychiatric symptoms that often 

precede neurologic symptoms. While EEG rarely shows anomalies, brain MRI 

usually shows the characteristic “pulvinar sign”, a highly specific hyperintense signal 
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in the posterior thalamus [128]. Recently, both a novel stainless steel powder-based 

blood test and a PMCA-based urine test were able to detect vCJD with high 

specificity [129, 130].  Nevertheless, it is unclear whether these tests can be used for 

preclinical diagnosis of asymptomatic CJD patients. Nonetheless, for all CJD cases, 

current criteria for definite diagnosis require brain biopsy or autopsy for evidence of 

positive PrPSc tissue immunoreactivity.  

 

Therapy 

Despite all active efforts, there are no currently available drugs to change disease 

progression of prion disorders. Symptomatic treatment is the only available option, 

including antipsychotics such quetiapine, clonazepam to treat myoclonus and 

selective serotonin re-uptake inhibitors (SSRIs) to treat depression [131].  

Clinical trials have been done with flupirtine and pentosan polysulfate, but both have 

failed to show consistent benefits. Two recently published randomized, double blind 

placebo-controlled trials with quinacrine and doxycycline were, as well, unable to 

demonstrate significant improvements [132, 133]. Despite this, doxycycline is 

currently being tested in presymptomatic patients from a family with FFI in order to 

assess whether the drug is able   to delay the onset of the disease [47]. 

Currently, drug discovery for the identification of compounds for the treatment of 

prion diseases follows two main strategies. One is the so-called small molecule 

design, whose rationale relies in the ability of a given compound to interfere with 

PrPC conversion into PrPSc thereby blocking self-amplification of misfolded proteins 

and, hopefully, halting the pathology spreading [134]. The other option is to 

investigate the molecular mechanism underlying the onset and the progression of 

prion disorders, identifying the specific altered pathways that may be therefore 

become potential targets for new drugs [135].  
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Functional genomic approach in prion disorder 

For early ante-mortem diagnosis of prion diseases, neither specific biomarkers nor 

effective therapeutic targets have been identified. Increasing evidence suggests that 

other genes in addition to PRNP also contribute to the genetic susceptibility of 

acquired TSEs [26]. In this context, microarray-based gene expression analysis offer 

unique tools to approach neurodegenerative disorders. In particular, transcriptome 

profiling can be used to find altered transcripts in response to pathogens and select 

potential targets for novel therapeutic approaches [136]. In the prion biology field, 

several studies have been performed in order to identify differentially expressed 

genes (DEGs) in healthy and diseased systems, such as cell cultures and mouse 

models in addition to sheep and cattle [26]. 

These analyses identified molecular pathways that are altered upon prion infection, 

including cholesterol synthesis, apoptosis, lysosomal pathway, immune and 

inflammation response [136]. The commonalities among prion diseases and PD and 

AD disorders highlight either similar neurodegenerative molecular mechanisms or 

similar pathological secondary events. Comparative analyses of altered pathways in 

prion diseases, PD and AD could expose characteristic gene targets that could be 

used as potential diagnostic biomarkers for risk determination and also as general 

indicators of disease progression [26, 136]. 

 

AIM OF THE WORK 

 

To date, a number of studies have been carried out to investigate the gene 

expression alterations occurring in prion-infected organisms (reviewed in [26, 135]), 

but most involved animal models such as mice [137-142], sheep [143-147] and cattle 
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[27, 28, 148-151]. Some studies have been performed on non-human primates [37, 

152-155], but none have investigated the genomic outcome of prion infection. 

In this study, I performed a whole transcriptome gene expression analysis on BSE-

infected cynomolgus macaques (Macaca fascicularis), which are an excellent model 

for studying human acquired prion disease [154-158]. Indeed, BSE can be 

transmitted either intracranially or orally to these animals leading to a disease that is 

very close to the human one with regards to preclinical incubation time, clinical 

symptoms and pathophysiology [120, 156]. 

The initial objectives of the present work were to identify the main genes that are 

differentially expressed in the frontal cortex of intracranially infected monkeys 

compared to non-infected ones. This analysis would help to shed some light on the 

biological processes underlying the pathogenesis of human prion diseases that may 

therefore become potential targets for both diagnostic and therapeutic strategies.  

Following the encouraging results obtained in monkeys, I decided to further confirm 

the dysregulation pattern in human prion disorders. For this second analysis I 

investigated the specificity of the identified gene signature for CJD in comparison to 

both healthy subjects and to other neurodegenerative diseases such as AD and PD. 

This approach could shed some light not only on prion disease molecular 

mechanisms, but also on neurodegeneration processes in general. 

 

MATERIALS AND METHODS 

 

Ethics statement 

Ethical approval for the animal study was released by the Lower Saxony Ministry for 

consumer protection and food safety (509.42502/08/07.98). Animal experimentation 

was performed in accordance with section 8 of the German Animal Protection Law in 
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compliance with EC Directive 86/609. Ethical committee authorization for human 

samples is currently under approval. 

 

Animals 

Cynomolgus macaques (Macaca fascicularis) were obtained from the Centre de 

Recherche en Primatologie, Mauritius and maintained in social groups of six 

monkeys housed in a microbiological containment BSL3 facility. Six 1-year old 

female cynomolgus macaques (A1-A6), all MM homozygous at codon 129, were 

intracerebrally inoculated with 50 mg of bovine BSE-positive brain stem material 

derived from an EU-standard inoculum. The inoculum was a pool of homogenized 

bovine brain stems from 11 naturally infected, histopathologically and 

immunohistochemically confirmed cases of BSE. The BSE stock tested positive for 

PK-resistant prion protein by Western blotting. Inoculation was performed via slow 

injection of 250 µl of a 20% BSE brain homogenate (w/v) diluted in sucrose into the 

right hemisphere through the dura mater into the caudo-putamen region. The 

preclinical incubation time was on average 1,100 days. One additional cynomolgus 

macaque (B6) was orally challenged with the same material; inoculation was 

performed per os, as single dose. The preclinical incubation time of this animal was 

1950 days. Brain material from age-and sex-matched non-infected cynomolgus 

macaques (CovA, CovB, CovC, CovDI, CovDII) was obtained from Covance 

Laboratory Münster GmbH and processed with the same protocol. It should be taken 

into account that the diet and housing conditions of the experimental and the control 

animals were not perfectly identical. These differences may have led to some inter-

individual variations among the animal groups. 
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Patient samples  

A total of 37 brains were collected. 16 of them were from sCJD affected patients, 11 

were Type 1, 5 were Type 2. 6 brains were from vCJD patients (one from Italy and 

five from France), 5 were from iCJD ones (growth hormone treatment), 6 were from 

non-CJD neurodegenerative disease affected patients (NEG), 4 were from healthy 

subjects (CTRL). All vCJD patients were MM homozygous at codon 129, while iCJD 

cases were either MM homozygous (3) or MV heterozygous (2). 

All the samples were kindly provided by Fondazione I.R.C.C.S Istituto Neurologico 

Carlo Besta, (via Celoria 11, Milan, Italy) with the exception of 5 vCJD and all iCJD 

samples that were provided by ICM-Hôpital Pitié-Salpêtrière (47, Boulevard Hôpital, 

75013 Paris – France) and two control samples that were kindly provided by 

University of Verona, Department of Neurological and Movement Sciences, 

Policlinico G.B. Rossi (P.le L.A. Scuro 10, Verona, Italy). 

 

Tissues and RNA extraction 

Seven BSE-infected cynomolgus macaques at advanced stage of disease and five 

non-infected control animals were sacrificed, and for each animal one hemisphere of 

the brain was dorso-ventrally sliced and immediately frozen on dry-ice. The gyrus 

frontalis superior region was macroscopically identified on the frozen tissue and 

removed via a biopsy stamp. Tissues were manually homogenized with micro pestles 

(Kisker Biotech GmbH) and total RNA was isolated using TRIzol (Invitrogen). 

Following RNA isolation, DNase I digestion was performed using 1 unit of enzyme 

per µg RNA (Fermentas) for 30 min at 37°C and then heat inactivated for 5 min at 

95°C followed by precipitation with Sodium Acetate / Ethanol. RNA was checked for 

quantity and purity on a Spectrophotometer 2000 (PEQLAB) and for integrity of the 
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18S and 28S ribosomal band by capillary electrophoresis using the 2100 Bioanalyzer 

(Agilent Technologies).  

Regarding human samples, total RNA was isolated from about 100mg of frontal 

cortex from each of the following individuals: vCJD (n=6), iCJD (n=5), sCJD T1 

(n=11), sCJD T2 (n=5) affected patients; CJD negative patients affected by other 

neurodegenerative diseases (NEG) (n=6) and controls (n=4). The brain material was 

manually homogenized with pestles and glass vessels using TRIzol (Invitrogen). 

Then, RNA was extracted with PureLink RNA Mini Kit (Life Technologies) and on-

column DNA digestion was performed using PureLink DNase Set (Life 

Technologies). RNA was checked for quantity and purity on a NanoDrop 2000 

spectrophotometer (Thermo Scientific) and integrity on a 2100 Bioanalyzer (Agilent 

Technologies).  

 

Immunoblot analysis  

PK-treated (50 µg/mL for 1 hour at 37°C) and untreated brain homogenates were 

separated on 12% Bis/Tris Acrylamide gels (NuPAGE, Invitrogen) and transferred to 

nitrocellulose membranes (Protran, Schleicher & Schüll, Germany). Detection of 

macaque PrPSc was performed using the monoclonal anti-PrP antibody 11C6 and a 

HRP-conjugated anti-mouse IgG-antibody (Sigma-Aldrich, Germany). Signal was 

visualized using a chemiluminescent substrate (Super Signal West Pico, Pierce) and 

high sensitivity films (Amersham). Densitometric analysis of PrPSc was performed 

using the Image J program 1.37v.  
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Microarray analysis using the GeneChip® Rhesus Macaque genome array  

Microarray analyses using the GeneChip® Rhesus Macaque genome array samples 

were labeled using the GeneChip® 3’IVT Ex- press Kit (Affymetrix®). Reverse 

transcription of RNA was achieved using 500 ng of total RNA to synthesize first-

strand cDNA. This cDNA was then converted into a double-stranded DNA template 

for transcription. In vitro transcription included a linear RNA amplification (aRNA) and 

the incorporation of a biotin-conjugated nucleotide. The aRNA was then purified to 

remove un-incorporated NTPs, salts, enzymes, and inorganic phosphate. The 

labeled aRNA of each animal was fragmented (50–100 bp) and hybridized to a 

GeneChip® Rhesus Macaque Genome Array (Cat N° 900656; Affymetrix®). The 

degree of fragmentation and the length distribution of the aRNA were checked by 

capillary electrophoresis using the Agilent 2100 Bioanalyzer (Agilent Technologies). 

The hybridization was performed for 16 h at 1 × g and 45°C in the GeneChip® 

Hybridization Oven 640 (Affymetrix®). Washing and staining of the arrays was 

performed on the Gene Chip® Fluidics Station 450 (Affymetrix®) according to the 

manufacturer's recommendations. The antibody signal amplification, washing and 

staining protocol were used to stain the arrays with streptavidin R-phycoerythrin 

(SAPE; Invitrogen). To amplify staining, SAPE solution was added twice with a 

biotinylated anti-streptavidin antibody (Vector Laboratories, Burlingame, CA, USA) 

staining step in-between. Arrays were scanned using the GeneChip® Scanner 3000 

7G (Affymetrix®).  

 

Microarray data analysis 

Intensity data from the CEL files were imported to the Partek® software including a 

quality control based on internal controls. All chips passed the quality control and 
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were analyzed using the Limma package [159] of Bioconductor [160, 161] and the 

Partek® software. The microarray data discussed in this paper were generated 

conforming to the MIAME guidelines and are deposited in the NCBI’s Gene 

Expression Omnibus (GEO) database [162]. They are accessible through GEO 

series accession number GSE52436 (see section: Availability of supporting data). 

The microarray data analysis consisted of the following steps: 1. quantile method 

normalization, 2. global clustering and PCA-analysis, 3. fitting the data to a linear 

model, 4. detection of differential gene expression and 5. over-representation 

analysis of differentially expressed genes. Quantile-normalization was applied to the 

log2- transformed intensity values as a method for between array normalization to 

ensure that the intensities had similar distributions across arrays. For cluster 

analysis, we used a hierarchical approach with the average linkage-method. 

Distances were measured as 1 - Pearson's Correlation Coefficient. The PCA was 

performed using the princomp-function in the Partek® software. To estimate the 

average group values for each gene and assess differential gene expression, a 

simple linear model was fitted to the data, and group-value averages and standard 

deviations for each gene were obtained. To find genes with significant expression 

changes between groups, empirical Bayes statistics were applied to the data by 

moderating the standard errors of the estimated values [159]. P-values were 

obtained from the moderated t-statistic and corrected for multiple testing with the 

Benjamini–Hochberg method [163]. The p-value adjustment guarantees a smaller 

number of false positive findings by controlling the false discovery rate (FDR). For 

each gene, the null hypothesis, that there is no differential expression between 

degradation levels, was rejected when its FDR was lower than 0.05. Because no 

candidates appeared using FDR 0.05, we made the selection using another p-value 

(unadjusted p-value ≤ 0.005) and a fold change ≥ |2|.  
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Reverse transcription and qPCR 

Quantitative reverse transcription real-time PCR (RT-qPCR) was performed using 

gene-specific primer pairs. For macaque samples, cDNA synthesis was 

accomplished using 100ng RNA, 10ng random hexamer primer, 2 mM dNTPs, 0.5 U 

RNase inhibitor and 5 U reverse transcriptase (Bioline) in 1 x reaction buffer. For 

human samples, cDNA was obtained using 3µg RNA, 1µl 50µM oligo(dT)20, 1µl 

10mM dNTP mix, 40 U RNAse inhibitor and 200 U Superscript III Reverse 

Transcriptase (Life Technologies). 

For each sample a negative control was performed by omission of the reverse 

transcriptase (-RT control). The cDNA was diluted 1:10 (macaques) or 1:15 

(humans) prior to RT-qPCR. The reaction mix included 2x iQ TM SYBR® Green 

Supermix (Bio-Rad Laboratories, Inc.) and 400 nM of the corresponding forward and 

reverse primer (Sigma). Technical triplicates were quantified on an iQ5 Multicolor 

Real-Time PCR Detection System (Bio-Rad Laboratories, Inc.). All primers used for 

RT-qPCR are listed in Table 5 and 6. 
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Gene	 Chromosome	 Primer	and	probe	sequence	 Amplicon			
length	(bp)	 Accession	number	

ACTB	 3	 F:	 GTTGCGTTACACCCTTTCTTG	 146	 NM_001033084.1	
	 	 R:	 CTGTCACCTTCACCGTTCC	 	 	
	 	 P:	 ACAAGATGAGATTGGCATGGC	 	 	
GAPDH	 11	 F:	 CCTGCACCACCAACTGCTTA	 74	 NM_001195426.1	
	 	 R:	 CATGAGTCCTTCCACGATACCA	 	 	
	 	 P:	 CTGGCCAAGGTCATCCATGA	 	 	
AKR1C1	 9	 F:	 CCGCCATATTGATTCTGCTCAT	 132	 NM_001195574.1		
		 		 R:	 TGGGAATTGCACCAAAGCTT	 	 		
NCAM1	 14	 F:	 GAGCAAGAGGAAGATGACGAG	 150	 	XM_001083697.2	
		 		 R:	 GACTTTGAGGTGGATGGTCG	 	 		
NR4A2	 12	 F:	 CCAGTGGAGGGTAAACTCATC	 145	 NM_001266910.2	
		 		 R:	 AGGAGAAGGCAGAAATGTCG	 	 		
USP16	 3	 F:	 GCAGAACTTGTCACAAACACC	 146	 	NM_001260999.2	
		 		 R:	 CTAAAGTAAGAGGGCCTGGAG	 	 		
SAP18	 17	 F:	 GGAAATGTACCGTCCAGCGA	 109	 NM_001261034.1	
	 	 R:	 TGCCCTTCTTTCTAGCTTCTGG	 	 	
IRF3	 19	 F:	 TGGGTTGTGTTTAGCAGAGG	 90	 NM_001135797	
	 	 R:	 GAAAAGTCCCCAACTCCTGAG	 	 	
SERPINA3	 7	 F:	 GCTGGGCATTGAGGAAGTCT	 123	 NM_001195350.1	
	 	 R:	 GTGCCCTCCTCAGACACATC	 	 	
	 	 P:	 TTCCTGGCCCCTGTGATCCC	 	 	
HBA2	 20	 F:	 CGACAAGAGCAACGTCAAGG	 126	 NM_001044724.1	
	 	 R:	 TCGAAGTGGGGGAAGTAGGT	 	 	
	 	 P:	 TGGCGAGTATGGTGCGGAGG	 	 	
HBB	 14	 F:	 GTCCTCTCCTGATGCTGTTATG	 102	 NM_001164428.1		
	 	 R:	 TTGAGGTTGTCCAGGTGATTC	 	 	
	 	 P:	 AAGTGCTTGGTGCCTTTAGTGATGG	 	 	
APOC1*	 19	 F:	 TTCTGTCGATGGTCTTGGAAG	 138	 AK240617.1	
	 	 R:	 CACTCTGTTTGATGCGGTTG	 	 	
	 	 P:	 TGGAGGACAAGGCTTGGGAAGTG	 	 	
TTR	 18	 F:	 TCACTTGGCATCTCCCCATTC	 114	 NM_001261679														
	 	 R:	 GGTGGAATAGGAGTAGGGGCT	 	 	
	 	 P:	 ATCGTTGGCTGTGAATACCACCTCTG	 	 	
ALAS2	 X	 F:	 TCCCTTCATGCTGTCGGAAC	 108	 XM_002806252.1	
		 		 R:	 GAGCTAGGCAGATCTGTTTTGAA	 	 		
RHAG	 4	 F:	 AGGCAAGCTCAACATGGTTC	 87	 NM_001032815.1	
		 		 R:	 GGGTGAATTGCCATATCCGC	 	 		

 
Table 5. Genes analyzed in macaques by RT-qPCR  
Primers (F: forward and R: reverse) and probes (P: probe) used for gene amplification, amplicon 
length, and GenBank accession numbers of the macaque cDNA sequences used for primer design. 
All primers were designed according to the genome sequence of Macaca mulatta.  
*Apolipoprotein C-I (APOC1) primers and probe were designed according to the genome sequence of 
Macaca fascicularis because the Macaca mulatta mRNA sequence was not annotated (TSA Macaca 
mulatta Mamu_450725, accession number: JV045807.1). Homology between the two sequences was 
99%.   
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Gene	 Chromosome	 Primer	sequence	 Amplicon	length	
(bp)	 Accession	number	

ACTB	 7	 F:	 AGAGCTACGAGCTGCCTGAC	 184	 NM_001101.3	
		 		 R:	 AGCACTGTGTTGGCGTACAG	 		 		
RPL19	 17	 F:	 CTAGTGTCCTCCGCTGTGG	 169	 NM_000981.3	
		 		 R:	 AAGGTGTTTTTCCGGCATC	 		 		
HBB	 11	 F:	 AGGAGAAGTCTGCCGTTACTG	 190	 NM_000518.4	
	 	 R:	 CCGAGCACTTTCTTGCCATGA	 	 	

SERPINA3	 14	 F:	 TGCCAGCGCACTCTTCATC	 167	 NM_001085.4	
		 		 R:	 TGTCGTTCAGGTTATAGTCCCTC	 		 		
HBA1/	 16	 F:	 GCTCTGCCCAGGTTAAGGG	 160	 NM_000558.4	

HBA2	 		 R:	 CAGTGGCTTAGGAGCTTGAAG	 		 NM_000517.4	

APOC1	 19	 F:	 GTCACCCTTCAGGTCCTCAT	 145	 NM_001645.3	
	 	 R:	 AACACACTGGAGGACAAGGC	 	 	

TTR	 18	 F:	 AGCCGTGGTGGAATAGGAG		 131	 NM_000371.3		

		 		 R:	 CTTACTGGAAGGCACTTGGC	 		 		
PRNP	 20	 F:	 CTTCTTGCAGAGGCCCAG	 113	 NM_000311.3	

		 		 R:	 CGAGCTTCTCCTCTCCTCAC	 		 		
ALAS2	 X	 F:	 TGTCCGTCTGGTGTAGTAATGA	 150	 NM_001037968.3	
		 		 R:	 GCTCAAGCTCCACATGAAACT	 		 		
RHAG	 6	 F:	 AGGCAAGCTCAACATGGTTC	 87	 NM_000324.2	

		 		 R:	 GGGTGAATTGCCATATCCGC	 		 		
 
Table 6. Genes analyzed in humans by RT-qPCR  
Primers (F: forward and R: reverse) used for gene amplification, amplicon length, and GenBank 
accession numbers of the human cDNA sequences used for primer design. 
 
 
 
The cycling conditions included an initial denaturation of 3 min at 95°C then 45 

cycles at 95°C for 15 sec and 58°C for 1 min. Differential gene expression of 

candidates was normalized to GAPDH and ACTB (macaques) or ACTB and RPL19 

(humans) expression. –RT controls were included in the plates for each primer pair 

and sample. The relative expression ratio was calculated using the 2-∆∆CT	method 

[164]. Statistical significance was calculated with the unpaired student t-test (p<0.05). 

Fold change values smaller than 1 were converted using the equation -1/fold change, 

for ease of representation. Melting curve analysis and gel electrophoresis of 

amplification products was performed for each primer pair to verify that artificial 
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products or primer dimers were not responsible for the obtained signals. Some 

results on macaque samples were further confirmed using TaqMan® MGB probes 

and iQTM Multiplex Powermix (Bio-Rad Laboratories, Inc.). The primer sequences, 

the reaction setup and the cycling conditions were the same described above. The 

FAM-probes used are listed in Table 5. 

 

Immunohistochemistry on human brain slices  

Immunohistochemistry analysis was performed on alcolin-fixed paraffin-embedded 

7µm-thick frontal cortex brain slices. In order to eliminate paraffin, glass slides were 

kept at 56° C for 20 min and then immersed in xylene for 20 min. After this, slides 

were re-hydrated using decreasing ethanol concentrations (from 100% to 70%) for 5 

min each and lastly put in water for 10 min. Antigen retrieval was achieved with pH6 

citrate buffer (100° C for 20 min). Endogenous peroxidase blocking was 

accomplished by treating slides with 6% H2O2 for 20min. Goat serum (1:20 in PBS-

Tween) was incubated for 20 min at RT, and then primary antibodies were incubated 

overnight. After washing the slides with PBS-tween (3 times, 2 min each) secondary 

anti-rabbit HRP-polymer Ab EnVision™ (Dako) was incubated for 1h at RT. After 

washing, DAB was added to each slide and, after development, it was blocked in 

water. Counterstaining with hematoxylin was also performed in some cases. 

Antibodies and dilutions used were: Anti-TTR (1:200), Anti-APOC1 (1:100), Anti-

SERPINA3 (1:1000), Anti-HBB (1:100), from Sigma, Anti-HBA2 (1:50) from Thermo 

Scientific.  

 

Availability of supporting data 

The microarray data set supporting the results illustrated here is available in the 

Gene Expression Omnibus (GEO) repository 



	
	

53	

[http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=wnmjowqqhrcpzod&acc=GSE

52436]. The DEGs were analyzed for their functions, pathways and networks using 

Ingenuity Pathways Analysis (IPA) [http://www.ingenuity.com/products/ipa/try-ipa-for-

free].  

 

 

RESULTS 

PrPSc content in brain tissue of macaques 

PrPSc presence in brain homogenate of 6 BSE-infected macaques was assessed by 

Western Blot (Figure 6).  

 

Figure 6.  PrPSc profile of macaque-adapted BSE in comparison to human CJD.  
Brain homogenates from human sCJD type 1, sCJD type 2, vCJD, and BSE-infected macaques were 
subjected to PK treatment, separated on 12% sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis, and blotted onto nitrocellulose membranes. PrPSc for human and macaque brain was 
detected with the widely used monoclonal antibody 3F4 or with 11C6. (from Montag 2013) 
 
 

Densitometric analysis of the monoglycosylated band revealed that the relative 

amount of PrPSc strongly differed between individual macaques. We hypothesized 

that this variation was dependent either on the preclinical incubation time or rather it 

corresponded to the gradual accumulation of PrPSc during the clinical phase of 

disease as reported for sCJD [165, 166]. As anticipated, we found a significant 
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correlation between PrPSc content and the duration of the symptomatic phase (Figure 

7). 

 

 

Figure 7. Correlation between PrPSc content and duration of clinical phase. 
WB analysis from PK-treated homogenates of brain samples derived from BSE-infected macaques 
was performed. The monoglycosylated bands of PrPSc were analyzed by densitometry. Relative 
amounts of PrPSc from brain homogenates were averaged and correlated to the disease duration. 
 
 

This correlation analysis included only the 6 intracranially inoculated macaques. 

Given that these animals were housed within the same social group, environmental 

factors, which could influence the disease course and duration, were identical. These 

factors can slightly differ for the orally inoculated animal, which was therefore omitted 

from this analysis. All infected animals were sacrificed at an advanced stage of prion 

disease; the details of their clinical course have been previously described [155]. 

Briefly, animal A1 showed the shortest duration of disease (17 days) and a short pre-

clinical incubation time (931 days) together with the lowest PrPSc content, while 

animal A5 showed the longest survival period (143 days), compared to an average 

clinical phase of about 90 days, together with the highest PrPSc content and the 

second longest pre-clinical phase (1340 days). In general, animals A1, A3, A4 and 

A6 were considered as early onset, while A2 and A5 were late onset, the difference 
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between the two groups being statistically significant. Early symptoms included 

coordination impairment and ataxia, followed by dysmetria and dementia [155]. As 

regards B6, the only orally inoculated animal, limited data are available. However, 

from another study involving animals orally infected with the very same inoculum as 

the one used in the present study, it is known that the main neurological symptoms 

(gait ataxia, disturbed social behavior or loss of social status ranking, panic-stricken 

responses provoked by optical stimuli, reduced escape reactions in the presence of 

humans, abnormal shrieking, decreased competitiveness, restlessness) are present 

in BSE-infected monkeys regardless of the route of infection, and the same for 

spongiosis and PrPSc deposits [158]. Of note, no florid plaques were observed; 

neither in IC nor in orally inoculated animal brains, in contrast with what has been 

shown in a similar study involving IV and IC infected monkeys [53, 119]. It should be 

considered however that in Yutzy et al. the IC inoculum was a low-dose one (5mg) 

while in our case (and in Lasmezas et. al one too) it was ten times higher. 

Nevertheless, some evidence (orally infected animals showed absence of the “stage 

1” characterized by disturbed body growth, no neurological signs, CSF-negative for 

14-3-3 proteins) exist that the clinical course may be influenced by the inoculation 

route [158]. 

 

Microarray analysis of brain gene expression in cynomolgus macaques 

To investigate differential mRNA expression in BSE-infected macaques (Macaca 

fascicularis) we used brain samples from 6 animals that were intracranially 

challenged [155]. One macaque that was orally infected with 50 mg BSE-

homogenate was also included in our study. For comparison purposes, we used 5 

brain samples derived from non-infected age- and sex-matched control macaques. 
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RNA was isolated from the gyrus frontalis superior of all animals and checked for 

quality by nano-scale electrophoresis, which resulted in an overall RNA Integrity 

Number (RIN) of about 6. This value suggest that the RNA was at least partially 

degraded; one possible explanation for the limited RNA integrity in the samples may 

reside in the procedure used to remove the gyrus frontalis superior region from the 

frozen tissue slice. Indeed, the biopsy stamp was attached to a cordless screwdriver 

that was used to drill a borehole in the frozen tissue block of +/- 1 cm height. This 

technique was preferred in order to ensure that the tissue did not thaw; however, the 

local heat induced by the rotating biopsy stamp may have led to substantial 

degradation of the RNA. Nevertheless, human brain material showing a comparable 

RIN value was successfully used for similar studies [167]. All samples were analyzed 

using the GeneChip® Rhesus Macaque Genome Array (Affymetrix®) that contains 

more than 50,000 rhesus probe sets to enable gene expression studies of Macaca 

mulatta transcriptome interrogating more than 47,000 transcripts. The genomes of M. 

mulatta and M. fascicularis display a small genetic divergence of around 0.4% [168] 

[169], which confidently allows the detection of homologue transcripts with a high 

specificity.  

Raw data were quality checked and analyzed using Affymetrix® proprietary analysis 

tools, a hierarchical clustering performed and a heat map generated. Then the 

signals were aligned to the annotation library and a spreadsheet containing gene 

symbols, p-values and expression fold changes was created. Microarray data were 

submitted to Gene Expression Omnibus (GEO). The bioinformatics analysis 

identified 300 probe sets that were up- or down-regulated about twofold (≥| 1.95|). 

Since among them no candidate appeared using FDR 0.05, we chose as criteria an 

unadjusted p-value of ≤0.005 together with a fold change ≥| 2.0|. Additional table 1 
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lists the resulting 86 probe sets that were then used to generate the heat map shown 

in Figure 8. 

 

Figure 8. Condition trees of the clustering analysis 
The cluster analysis was performed using a hierarchical approach with the average linkage-method (R 
and Partek® Software, Partek® Inc.): 86 probe sets showed a differential expression with FC ≥ 2. The 
color represents the level of expression (red: up-regulation, blue: down-regulation) and the sample 
information is listed across the bottom. The names of the known genes are indicated. More details on 
all genes are reported in Additional file 
 

Functional classification of differentially expressed genes (DEGs) in macaques 

We used the Ingenuity Pathways Analysis (IPA®, see section: Availability of 

supporting data) to annotate genes according to their functional relationships and to 

determine potential regulatory networks and pathways. Among the 300 differentially 

expressed (about twofold, ≥| 1.95|) probe sets identified, 105 were associated to 

mapped IDs. Of them, 53 were identified as network eligible genes, while 86 were 

identified as function eligible genes. We would like to clarify that the designation of 
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functional classes in this study cannot be considered definitive or exclusive, given 

that the annotation of gene function is incomplete and that the same multifunctional 

gene products can be involved in several different cellular pathways. 

As a first step we identified key biological functions and/or diseases that contain a 

disproportionately high number of genes from the DEGs list compared to the total 

gene population from the microarray. The analysis was initiated by identifying the top 

categories (p<0.01) of DEGs within three main classes (Table 7). In the “Diseases 

and Disorders” class the top scoring categories were cancer and developmental 

disorder, while within the “Molecular and Cellular functions” class most genes were 

involved in cellular development and cell death/survival. The two main categories for 

the “Physiological System Development and Function” class were tissue morphology 

together with nervous system development and function.  

 

Table 7. Top three classes of key biological functions and/or diseases. 



	
	

59	

 

Subsequently, genes were clustered in relation to the main pathways they belong to: 

the top three canonical pathways (p-value < 0.005) in our DEGs list were LXR/RXR 

activation, which is associated with lipid metabolism and transport, acute phase 

response signaling and the neutral pathway of bile acid biosynthesis, which is also 

involved in lipid metabolism and is a major route of cholesterol catabolism (Figure 9). 

 

Figure 9. Top 10 significant canonical pathways over-represented in the DEGs list 

 

Identification of biologically relevant networks in macaques 

To further investigate the global expression response to BSE infection and to define 

interactions among the identified specific pathways containing the regulated genes, 

potential networks of interacting DEGs were identified using IPA®. All potential 

networks with score >9 (a score ≥3 was considered significant, p<0.001) are listed in 
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Table 8, with information on network genes, score, focus molecules and top functions 

associated with the focus genes in each network. 

ID Molecules in Network Score Focus 
Molecules Top Functions 

1 

ACVR1C, AKR1D1, Alp, AMPK, Ap1, APOC1, 
Calcineurin protein(s), CARTPT, caspase, CD3, 
CHI3L1, Creb, cytochrome C, DACH1, DLK1, 
ERK, ERK1/2, F13A1, Focal adhesion kinase, 
GNRH1, HBA1/HBA2, HBB, HDL, hemoglobin, 
HEY2, HINT1, HIPK2, Ikk (family), IL1, IRF3, Jnk, 
KDELR2, LDL, LGALS1, Mapk, MEF2C, Mek, 
MET, MT2A, N4BP1, NADPH oxidase, NGFR, 
NR4A2, OTX2, P38 MAPK, p85 (pik3r), Pdgf 
(complex), PDGF BB, PI3K (complex), PI3K 
(family), PIK3R3, Pkc(s), PLC gamma, PON3, 
Pro-inflammatory Cytokine, Ras, SERPINA1, 
SERPINA3, Shc, SHOC2, SLCO1A2, Sos, STK4, 
TCF, TCR, TNFSF10, TTR, TWIST1, Vegf, 
WSB1 

71 35 Tissue Morphology, Cell Death and 
Survival, Developmental Disorder 

2 

ABR, ACTL6B, ARMC6, ASB6, C10orf137, 
C6orf211, CAMKV, CHMP2A, CLIC4, CLPP, 
CSNK1G3, CTBP2, DCLRE1A, DDX19B, DGKE, 
ECT2, FHL3, FLVCR1, GALNTL5, GLOD4, 
HEATR6, HSP90AA1, HSPA12A, ITFG1, KLF3, 
KPNA6, MCTS1, MEIG1, METTL7B, MRPL44, 
MXD3, MYBPC1, NCLN, NIPBL, NOL4, 
OSBPL10, PCBP3, PLEKHA8, PMM2, POLR2J, 
PPAP2C, PRCP, PROSC, RAI2, SAP18, 
SCAND1, SEPT6, SGTB, SMARCC1, SMC3, 
SPATA22, SPSB3, SRPK3, SSU72, STAG1, 
TATDN1, TESPA1, TM7SF3, TNK1, TNNI3K, 
TP53BP1, TRAPPC2L, TRIP12, TUFM, TXNL4A, 
UBC, ZNF131, ZNF235, ZNF397, ZNF420 

54 28 Developmental Disorder, Hereditary 
Disorder, Hematological Disease 

3 

26s Proteasome, ADCY, AKR1C1/AKR1C2, Akt, 
APP, ARL4C, Arntl-Clock, AVP, AVPR1B, 
CACNA1B, CAMKV, CARTPT, CBLN2, 
CEACAM6, CLDN10, CLOCK, COX4I2, CTF1, 
DNAJC12, endocannabinoid, estrogen receptor, 
FAM46A, FSH, GABRE, GNA15, GPR158, 
GPX1, GPX2, GSK3A, Histone h3, HMGCR, 
HNF4A, HSPA12A, Insulin, JPH3, KCNC3, 
KCNS1, LINGO1, LPAR1, LXN, MGAT2, miR-
125b-5p (and other miRNAs w/seed CCCUGAG), 
Mmp, MST1, NFkB (complex), Npff, OPN1LW, 
PDX1, PIK3R5, Pka, PKM, PLC, Proinsulin, 
RAB39A, RAI2, RIOK2, RUFY3, SERPINA3, 
SMAD5, SMC4, SOX7, SYT17, TCF19, 
Tnfrsf22/Tnfrsf23, TOR2A, tretinoin, trypsin, 
TXNL4B, ZBTB44, ZFHX3 

36 21 
Cellular Development, Neurological 
Disease, Skeletal and Muscular 
System Development and Function 

Table 8.  List of 3 Ingenuity networks generated by mapping the focus genes that were 
differentially expressed between non-infected and BSE-infected samples. Names in lowercase 
are genes/molecules that are not from the DEGs list but are associated with some of them within 
pathways identified by Ingenuity Pathway Knowledge Base (IPKB). 
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The highest ranked network identified by IPA® (Figure 10) was associated with tissue 

morphology (specifically the determination of cell quantity), developmental disorder 

and biological processes controlling cell death and survival (Table 8).  

 

Figure 10. Identification of biologically relevant networks 
Top ranking network generated by mapping the genes that were differentially expressed in infected 
animals vs controls. Pathway analysis based on the Ingenuity Pathway Knowledge Base (IPKB) is 
shown. Color shading corresponds to the type of dysregulation: red for up-regulated and green for 
down-regulated genes according to the microarray fold change calculation method. White open nodes 
are not from the list of 300 DEGs, but are transcription factors that are associated with the regulation 
of some of these genes identified by IPKB. The shape of the node indicates the major function of the 
protein. A line denotes binding of the products of the two genes, while a line with an arrow denotes 
'acts on'. A dotted line denotes an indirect interaction. 
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This network contained genes that are known to be involved in several neurological 

diseases and nervous system functions, as shown in Figure 11.  

 

Figure 11. Schematic representation of nervous system-related functions for selected DEGs 
according to IPKB 

 

Validation of differentially expressed genes in macaques by RT-qPCR 

To further confirm the array results using an independent and more sensitive 

technique, we performed RT-qPCR analyses for a subset of differentially expressed 

genes. This group (Additional table 2) was selected in the subsequent steps. First, 

among the 86 probe sets identified in the microarray analysis (Additional table 1) we 

selected the top 36 with fold change ≥| 2.5| and p ≤ 0.005. Then, we noticed that 

many were not annotated or did not have a known function and therefore we 

extended the selection to additional 29 probe sets having fold change ≥| 2.5| but 

0.005≤p≤0.05; however, even with these lower stringent criteria we still had few 
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eligible genes and so in the end we decided to consider for our analysis some 

additional probe sets with a consistent fold change of ≥| 2.5| but p>0.05 (24 

candidates). At this point, having identified only 13 feasible candidate transcripts, we 

further added seven probe sets (corresponding to 5 additional transcripts) selected 

among those with a slightly lower fold change (FC>2 for at least 1 probe) but 

possessing an interesting function as indicated by the IPA® analysis or according to 

the literature. Finally, HBA2 was added to the list because of its tight relationship with 

one of the previously selected genes of the hemoglobin complex (HBB), as revealed 

by the top ranking network from the IPA® analysis (Figure 10). Summarizing, we 

designed RT-qPCR assays for 19 genes (Table 9), most of which were already 

known to be involved in neurodegenerative disorders or nervous system regulation, 

even though very few had been implicated in prion diseases. 
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Gene Accession 
number Known relation with PrP/nervous system References 

AKR1C1 NM_001195574.1  putative role in myelin formation [170] 

HBB NM_001164428.1  putative role in intraneuronal oxygen homeostasis, reduced in Alzheimer's and Parkinson's 
disease [171]  

NCAM1 XM_001083697.2 PrP/N-CAM complexes found in prion infected N2a cells [172] 

NR4A2 NM_001266910.2 Mutations related to dopaminergic dysfunction, including Parkinson schizophrenia and depression [173] 

USP16 NM_001260999.2 depletion of USP16 prevented ATMi from restoring transcription after DSB induction [174] 

CALB1 XM_001085269.2 plays a protective role in neurodegenerative disorders (depleted in HD) [175]  

DACH1 XM_001082371.2  required for normal brain development [176] 

LXN NM_001266988.1 marker for the regional specification of the neocortex [177]  

PIK3R3 NM_001266826.1  involved in β-amyloid plaque formation and regulatory pathways in the AD brain [178, 179] 

SAP18 NM_001261034.1 possibly related to AD [180]  

SERPINA3 NM_001195350.1 increased in schizophrenia, SNPs affecting onset and duration of AD [181, 182] 
 

TNFSF10 NM_001266034.1 implicated in pathogenesis of MS  (causing demyelination) [183]  

HBA2 NM_001044724.1 putative role in intraneuronal oxygen homeostasis, reduced in Alzheimer's and Parkinson's 
disease [171]  

GNRH1 NM_001195436.1 key regulator of the reproductive neuroendocrine system in vertebrates [184] 

IRF3 NM_001135797 putative protective role against prion infection [185]  

APOC1* AK240617.1 binds to ApoE, risk factor for Alzheimer's disease [186] 

TM7SF3 XM_001099269.2 - - 

MYBPC1 XM_001091952.1 - - 

TTR NM_001261679              amyloid neuropathies, interaction with Aβ [187] 

 
 
Table 9. Candidate genes for validation  
List of 19 identified genes selected on the basis of FC value and known relevance for 
neurodegeneration. Because of very low signal (LXN, PIK3R3, TNFSF10, GNRH1) or lack of reliable 
sequence data (CALB1, DACH1, TM7SF3, MYBPC1), only 11 genes (in bold) were successfully 
analyzed. *Macaca fascicularis transcript. 
 

 

Among these, we were able to successfully analyze only 11 genes (reported in bold 

Table 9) together with 2 housekeeping genes (ACTB and GAPDH), since all the 

other RT-qPCR assays either showed too low expression (CT >35) or amplification of 

trace amounts of gDNA. In addition, because several gene names have changed 
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since the first annotation was done, updated names from the latest Affymetrix® 

annotated library are provided in Additional table 2, together with the old ones. 

In order to achieve optimal RT-qPCR conditions we performed titration of template 

and primers as well as optimization of cycling conditions using human cDNA from 

SH-SY5Y neuroblastoma cells, in order to save the scarce macaque cDNA available 

for definitive assays. To assess the specificity of the chosen primer pairs prior to 

performing the final quantitative assays, some experiments were performed using 

macaque cDNA obtained from a different brain region of control animals, in order to 

check the correct amplicon length. Two housekeeping genes, GAPDH and ACTB 

[188], were selected as reference genes to normalize RT-qPCR data. Both genes 

were monitored across infected and control macaques in order to evaluate their 

expression stability, yielding very similar results (Figure 12). 

	
	
Figure 12. Evaluation of reference gene expression stability across non-infected and BSE-
infected samples. For each sample, average values of absolute CTs (+/−SD) of triplicate wells for 
GAPDH (grey) and ACTB (white) are shown. 
 

After these preliminary optimizations, we performed the quantitative analysis and in 

general we observed a large intra-assay variability for most genes across different 

samples, both for infected (Figure 13) and for control animals (Figure 14). 
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Figure 13. Variability of ΔCT values among BSE-infected macaques. 

 

Figure 14.  Variability of ΔCT values among non-infected macaques 

 

Interestingly, we found a completely different expression pattern for B6, the only 

orally-infected sample available, in comparison to the intracranially infected animals, 
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for three genes (USP16, NR4A2, HBB), suggesting that the route of infection might 

play a substantial role in determining the gene expression regulation (Figure 15).  

 

Figure 15.  Comparison between the intracranially infected samples (A1-A6) and the orally 
infected one (B6) 
 

In light of these results, we decided to carry out another microarray clustering 

analysis excluding this animal in order to assess its influence on the final results. As 

shown in Figure 16, the comparison of the two clustering analysis with (panel A) or 

without (panel B) the orally challenged animal (B6) does not show marked 

differences.  

 

Figure 16. Cluster analysis	
Cluster analysis was performed using a hierarchical approach with the average linkage-method for all 
animals (panel A) or excluding the orally infected one, B6 (panel B). 
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Using SYBR® Green-based RT-qPCR we were able to confirm the statistically 

significant up-regulation of TTR (FC= 7.11), SERPINA3 (FC= 18.73) and APOC1 

(FC= 6.33) as well as the down-regulation of HBB (FC= 5) and HBA2 (FC= -4.5), 

normalizing the data against GAPDH. Very similar results were obtained against 

ACTB (Figure 17). 

Regarding all the other genes analyzed, the RT-qPCR results confirmed the 

regulation pattern observed in the microarrays, but without statistical significance (p-

value> 0.05).  

 

Figure 17.  SYBR Green-based RT-qPCR validation of microarray results  
Relative expression levels of 11 genes normalized against GAPDH o ACTB in BSE-infected 
cynomolgus macaques. 
 

In order to further confirm the SYBR® Green-based results we performed additional 

RT-qPCR analyses using FAM-labeled TaqMan® probes, therefore providing higher 

sensitivity and specificity for those genes that showed a significant fold change. 

Using this approach we confirmed the regulation of SERPINA3, APOC1, HBB and 
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HBA2, but not of TTR, which showed a comparable fold change but lost statistical 

significance (Figure 18).  

 

 
 
Figure 18.  Comparison between microarray, SYBR Green-based and TaqMan probe-based 
results for the five selected genes.  
Expression levels for each transcript are normalized against GAPDH. All three technologies yielded 
similar results.  
 

This may depend on the higher variability among triplicates, due to CT values higher 

than 35 obtained with the TaqMan® probe chemistry compared to SYBR® Green 

detection system (Figure 19). 

(n.s)
.	
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Figure 19. Comparison between SYBR-Green and TaqMan-based CT values for TTR 

 

In summary, we were able to confirm the results of the array platform obtaining 

consistent fold change values for all genes analyzed, even though we validated with 

statistical significance using the specific TaqMan® detection system only four of 

them: HBB, HBA2, APOC1, SERPINA3 (see Table 10 for details on p-values and 

FC).  
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Gene	symbol	 Microarray	fold	change	 		 RT-qPCR	fold	change			

	 	 	 	 	 SYBR®	 TaqMan®	

		 Min	 Max	 Mean	 		 FC	 	P	value	 FC	 	P	value	

AKR1C1	 2.3	 2.9	 2.5	 	 1.7	 0.433	 2.4	 0.235	
	 	 	 	 	 	 	 	 	
HBB	 -2.2	 -2.6	 -2.4	 	 -5.3	 0.020	 -3.7	 0.021	
	 	 	 	 	 	 	 	 	
NCAM1	 -1.1	 2.5	 -0.3	 	 -1.9	 0.160	 -	 -	
	 	 	 	 	 	 	 	 	
NR4A2	 1.1	 -2.1	 -1.6	 	 -2.5	 0.248	 -	 -	
	 	 	 	 	 	 	 	 	
USP16	 -1.2	 -5.5	 -2.6	 	 -2.0	 0.308	 	 	
	 	 	 	 	 	 	 	 	
SAP18	 -1.2	 -2.6	 -1.7	 	 -1.2	 0.393	 -	 -	
	 	 	 	 	 	 	 	 	
SERPINA3	 10.0	 16.0	 13.0	 	 18.7	 0.0001	 15.3	 0.0005	
	 	 	 	 	 	 	 	 	
HBA2	 -	 -	 -	 	 -4.5	 0.041	 -6.0	 0.019	
	 	 	 	 	 	 	 	 	
IRF3	 2.0	 2.1	 2.0	 	 1.3	 0.123	 -	 -	
	 	 	 	 	 	 	 	 	
APOC1	 4.3	 -	 4.3	 	 6.3	 0.047	 			6.8*	 			0.028*	
	 	 	 	 	 	 	 	 	
TTR	 3.1	 -	 3.1	 	 7.1	 0.025	 5.9	 0.076	
		 		 		 		 		 		 		 		 		

 
Table 10. RT-qPCR confirmation of microarray results  
Differential expression of selected genes analyzed by microarray and RT-qPCR. For microarray 
analysis, the lowest (Min), the highest (Max) and the average (Mean) fold change values of all the 
respective probes are shown. For RT-qPCR analysis, fold change (FC) and statistical significance (p-
value) for both SYBR Green and TaqMan results are shown. In bold, genes validated with statistical 
significance. HBA2 did not have a related probe set on the microarray. *normalization performed only 
against ACTB. 
 
 
In addition, given that the autopsy procedure for these animals could have led to the 

presence of some blood in the brain material, and considering that some recent 

studies have highlighted the existence of active transcription within human red blood 

cells [189], we decided to analyze our samples also for the expression of two 

erythrocyte markers, ALAS2 and RHAG, in order to ensure that the RT-qPCR signals 

of both hemoglobin-related genes (HBB and HBA2) reflected the actual brain gene 

expression dysregulation and not a blood contamination. In particular, ALAS2 (5'-

aminolevulinate synthase 2) gene product specifies an erythroid-specific 
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mitochondrially located enzyme, which catalyzes the first step in the heme 

biosynthetic pathway. RHAG (Rh-associated glycoprotein) instead, codes for an 

erythrocyte-specific protein which is thought to be part of a membrane channel that 

transports ammonium and carbon dioxide across the blood cell membrane and also it 

is thought to interact with Rh blood group antigens. The microarray data for these 

genes suggested a negligible but identical presence of blood in control and infected 

samples, RT-qPCR analysis revealed a small blood contamination (CT ≥ 34 for 

ALAS2, CT ≥ 36 for RHAG) within two samples, one control (CovDI) and one infected 

sample (A4) (Figures 20 and 21).  

 

Figure 20. Blood erythrocyte markers expression across BSE-infected and non-infected 
macaque samples 
Absolute CT values for Rh-associated glycoprotein gene (RHAG) 
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Figure 21. Blood erythrocyte markers expression across BSE-infected and non-infected 
macaque samples 
Absolute CT values for 5'-aminolevulinate synthase 2 (ALAS2)  
 

In light of these results, we performed an additional gene expression analysis for 

HBB and HBA2 excluding these two samples. As expected, we obtained slightly 

different results (FC~0.3 for HBB and FC~0.2 for HBA2 using TaqMan® probes), but 

a relevant down-regulation still persisted with statistical significance. Given some 

recent reports about neuroinflammation involvement in sCJD patients [190], we 

wondered if immune system genes dysregulation occurred in BSE-infected 

macaques. However, analysis of the microarray data did not reveal relevant 

deregulation of cytokines that might be involved in neuroinflammation and/or immune 

response. Indeed for GFAP, a known marker of microgliosis, only one probe gave an 

indication of up-regulation (FC= ~1.97). For IL6 and TNFα, all the probes showed 

FCs around 1 with and CD68, another microglial marker, the single probe available 

showed a border-line up-regulation (FC~ 1.65). These data suggest that 

inflammatory responses may not be particularly relevant in this primate model or in 

the specific area of the frontal cortex that was examined. 
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Furthermore, one of our first candidates (TNFSF10), which is a member of the TNF 

family that triggers the release of pro-inflammatory cytokines [191], was down-

regulated (FC= -2.7 and -2.08) for only two out of four probes. It was then analyzed 

by RT-qPCR, but the assay was not robust due to primer design difficulties. 

Therefore, this target was not validated. 

Also, we noticed that a couple of genes coding for subunits of mitochondrial 

complexes, namely MT-CYTB and MT-ND4, were significantly dysregulated in our 

microarray data (Additional table 1). However, the very high FC value (> 300) 

observed for one of the probes led us to assume that probably it could have been a 

spurious result. Furthermore, we considered that the array probe was designed on 

Macaca mulatta genome which does not have a strong similarity with the Macaca 

fascicularis one in this region. Indeed, it is known that mitochondrial DNA displays 

substantial sequence diversity even between subpopulations of the same species, 

mainly due to high mutation rate [192]. Therefore, given also the very limited amount 

of cDNA available, we decided not to further investigate mitochondrial transcripts in 

macaque samples. Analyses on human samples are currently ongoing.  

 

Validation of the gene signature in humans by RT-qPCR 

Given the encouraging results found in macaques, we wondered if BSE-infection 

gene signature was reliable also in discriminating CJD patients from healthy ones. 

One of the closest human diseases to that of BSE-infected macaques is vCJD. 

However, given the limited numbers of definitive diagnosed vCJD patients (slightly 

more than 200 worldwide, two from Italy) and considered their reduced accessibility, 

we decided to extend our analysis including also sCJD patients. This would also 

allow us to shed some light on the possible differences in gene regulation 
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mechanisms between acquired and sporadic human prion disorders. In addition, to 

better investigate the influence of different etiologies, we also included some patients 

with iatrogenic CJD (iCJD), an acquired prion disease -as vCJD- but with a different 

origin, in this case treatment with growth hormone derived from prion contaminated 

cadavers. Regarding control samples, there is a limited availability of brain samples 

from healthy subjects, either age-matched with vCJD (around 30 years) or with sCJD 

(around 65 years). This is because for young individuals, the relatively rare deaths 

usually occur as a consequence of accidents (mainly unintentional injuries) or known 

diseases -all cases that generally do not contemplate autopsies since the cause of 

death is already established- while for aged people, in general it is likely that they 

present some neuropathological sign. Therefore, we decided to introduce in our 

study some samples from patients with non-CJD neurodegenerative disorders as an 

additional “control” group. This would also enable the identification of possible prion-

specific gene expression alterations. Two additional common issues with postmortem 

human brain samples that we had to deal with were the stability of endogenous 

reference genes and the RNA integrity [193]. A number of different variables have 

been supposed to negatively correlate to different extents with RNA integrity: for 

example, higher degradation is observed in samples subjected to prolonged thawing 

[194] or storage [195] as well as in samples of patients showing longer agony before 

death (probably due to brain acidosis) [196]. Clearly, in studies involving postmortem 

human tissue is not possible to control all the variables that might impair RNA quality. 

This inevitably leads to non-homogenous sample collections with high degree of 

biological variance. However, it is widely accepted that moderate degradation does 

not preclude reliable analyses of small amount of RNA. Indeed, it has been shown 

that gene expression profiles from partially degraded RNA samples with still visible 

ribosomal bands are highly similar to that of intact samples [195], especially if the 
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RT-qPCR amplified products are smaller than 250bp [197]. This is not particularly 

surprising considering that reference genes transcripts most likely degrade gradually 

and in parallel with target ones [193]. For all these reasons, a minimum RIN ≥ 3.95 

was suggested as including threshold for human brain tissue [198]. In order to 

ensure a sufficient reliability of the samples, in our study we applied a slightly more 

stringent threshold; indeed, only RNA that showed RIN around 4.5 or higher were 

selected for further analysis. As regards housekeeping genes, there is a lack of 

consensus about the optimal reference genes in postmortem brain tissues. Indeed, 

while some issues have been reported about GAPDH involvement in human 

neurodegenerative processes [199], ACTB and the ribosomal protein family seem to 

show good stability across different RIN values [196] and brain samples [199]. 

Therefore, we decided to use ACTB and RPL19 as reference genes to normalize RT-

qPCR data, also given that in our preliminary optimizations GAPDH showed sensibly 

higher CT values in comparison to the two other housekeeping genes analyzed.  

As for macaque samples, the relative mRNA levels were calculated using the 2-∆∆C
T 

method and two reference genes (ACTB and RPL19, CV < 0.5, M value < 1 for both), 

obtaining very similar results. Firstly, the two housekeeping genes were analyzed 

across diseased and control patients in order to assess their expression stability 

(Figure 22).  
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Figure 22. Comparison between RPL19 and ACTB stability across control, CJD and non-CJD 
samples.  
For each group, average values of absolute CTs among the samples for RPL19 (dark grey) and ACTB 
(light grey) are shown. Each sample was analyzed in triplicates. 
 

Fold change values smaller than 1 were converted using the equation -1/fold change, 

for ease of representation.  

In general, the gene expression trend observed in macaques was statistically 

confirmed, with consistent FC values, for four out of five genes. HBA1/2 (FC ~ -5.0) 

is down-regulated in both Type 1 (T1) and Type 2 (T2) sCJD patients, but not in 

vCJD and iCJD cases. As regards patients affected by other non-CJD 

neurodegenerative diseases (NEG), a trend of down-regulation (FC ~ -3) was 

observed as well, but without statistical significance. A similar trend was found also 

for HBB, which indeed showed a slight down-regulation in sCJD and NEG patients, 

even though without statistical significance (Figure 23, upper panel).  

SERPINA3 is up-regulated in both sCJD T1 and T2 patients (FC ~6) as well as in 

vCJD (FC ~ 8.5) and iCJD (FC ~ 19) cases. APOC1 shows an up-regulation in both 

sCJD T1 and T2 patients (FC ~7) and in iCJD cases (FC ~4.5), but not in vCJD 

patients. Both the two genes are not regulated in patients affected by other 
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neurodegenerative diseases (NEG), as they show levels of expression similar to that 

of the controls (FC < |2|) (Figure 23, lower panel). 

 

 

 

Figure 23. RT-qPCR validation of gene signature 
Relative expression levels of HBB, HBA1/2 (upper panel), APOC1, SERPINA3 (lower panel) 
normalized against RPL19 or ACTB in sCJD, vCJD, iCJD and NEG patients. sCJD T1 and 
T2, showing similar results, were grouped for ease of representation.  
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Regarding TTR, an up-regulation which is consistent with the results obtained in 

BSE-infected macaques was found in both iCJD (FC~18) and sCJD cases (FC~2.5), 

but not in vCJD and NEG patients (Figure 24). 

	

 

 
Figure 24. RT-qPCR analysis of TTR in human samples  
Relative expression levels of TTR normalized against RPL19 or ACTB in sCJD, vCJD, iCJD and NEG 
patients. sCJD T1 and T2, showing very similar results, were grouped for ease of representation.  
 
 

For some genes, statistical significance was obtained only in a few cases (*), mainly 

due to the lack of appropriate sample size of control samples (N=4) and to the high 

variability of the samples within certain groups. Nevertheless, when comparing BSE-

infected macaques with human vCJD, iCJD and sCJD patients, we observed 

consistent results between macaques and humans for all the genes, with the 

exception of HBB (Figure 25). 
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Figure 25. Comparison between BSE-infected macaques and CJD patients 
Relative expression levels of HBB, HBA1/2, APOC1, TTR and SERPINA3 normalized against ACTB 
in BSE-infected macaques, sCJD, vCJD, iCJD and NEG patients. sCJD T1 and T2, showing similar 
results, were grouped for ease of representation. 
 

 

Therefore, we could confidently assume that our results on human patients may be 

reliable, despite the lack of statistical significance in some cases. 

With regards to other neurodegenerative diseases (NEG), both HBB and HBA were 

found down-regulated similarly to BSE-infected macaques and CJD patients, while 

for APOC1, SERPINA3 and TTR no significant dysregulation was observed. This last 

evidence prompted us to perform an additional analysis for these three genes, 

normalizing the data on NEG samples as a surrogate “control” group, in order to 

highlight a potential role of specific CJD markers in comparison to other 
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neurodegenerative diseases for these genes. In this case, the up-regulation of all 

genes in CJD samples was even stronger, in terms of FC values and/or statistical 

significance, suggesting that the dysregulation of these three genes might be specific 

to CJD (Figure 26). 

 

 
 
Figure 26. RT-qPCR results for SERPINA3, APOC1 and TTR in sCJD, vCJD and iCJD patients in 
comparison with NEG group. 
Relative expression of SERPINA3, APOC1 and TTR normalized against ACTB or RPL19 in sCJD, 
iCJD and vCJD patients. In this analysis, FC for sCJD, iCJD and vCJD group was calculated 
normalizing ΔCT average of each group on the ΔCT average of NEG group. sCJD T1 and T2, showing 
similar results, were grouped for ease of representation. 
 
 

In addition to this, we analyzed all the samples for expression of two erythrocyte 

markers, ALAS2 and RHAG, to exclude any major blood contamination that may be 

present as a consequence of the autopsy procedure. RT-qPCR analysis of RHAG 
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revealed a negligible blood contamination (CT ≥ 35) within some samples, even 

though ALAS2 CTs were slightly lower (≥30) (Figure 27). However, the difference in 

the expression levels of ALAS2 between brain and blood samples (used as control) 

was ≥10 CT, confirming the very limited influence of blood contamination in our 

analysis. In addition, blood traces were almost uniformly present in all the groups; 

therefore, we can conclude that our results were not significantly affected by blood 

presence. 
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Figure 27. Blood erythrocyte markers expression across control, NEG and CJD patients 
Absolute CT values for RHAG (upper panel) and ALAS2 (lower panel)  
 
 
Lastly, we investigated the gene expression pattern of PRNP. No significant change 

of PRNP expression was observed in any of the groups analyzed. However, a 

different behavior clearly emerged between vCJD and iCJD: while iCJD samples 

showed a down-regulation of PRNP, vCJD samples showed an up-regulation. 

Indeed, the difference between the two groups was statistically significant, 

suggesting a role of the infection route in the modulation of PrP mRNA levels (Figure 

28).  
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Figure 28.  PRNP expression levels in CJD and NEG patients. 

 

Immunohistochemistry  

We are also conducting immunohistochemistry analyses on these brains to check the 

expression of the proteins encoded by the five genes. Preliminary analyses have 

been already performed for TTR, APOC1 and SERPINA3 on AD and sCJD brain 

slices in order to establish a suitable IHC protocol and check the specificity of the 

selected antibodies. So far, all the tested antibodies displayed a specific reactivity 

that mirrored the localization reported in literature for each of the related proteins 

(Figure 29). Further analyses on these and the remaining antibodies in other patient 

samples are ongoing, both in IHC and Western blot. 
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Figure 29. Immunohistochemistry analysis on human brain slices. 
APOC1 antibody staining (upper boxes) in AD brain slice shows endothelial reactivity and co-
localization with Aβ plaques. These slices were counterstained with hematoxylin. SERPINA3 antibody 
staining in sCJD brain slice (lower left box) shows endothelial/perivascular reactivity and 
extracellular/cytoplasmic localization. TTR antibody staining in sCJD brain slice shows endothelial 
reactivity and subpial mater localization. Magnification: 10X 
 
 
DISCUSSION 
 
To date, an in-depth knowledge of the molecular processes that lead to 

neurodegeneration onset and progression in TSEs is still missing. In this context, 

genomic approaches are unbiased and powerful tools to investigate the molecular 

basis of these complex diseases. In addition, since neither effective therapy nor 

specific diagnosis is available yet, genomics may also allow the identification of new 

potential biomarkers. Many investigators in past years have performed genomic 

analyses of brain tissues from different models of animal TSE; some of the studies 

involved the mRNA profiling of cattle BSE [27, 149-151] or ovine scrapie [143-147, 
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189], but obviously the vast majority employed rodent-adapted models of prion 

disease [137-142, 200, 201]. In a number of these prion-infected mouse models, 

genomic expression profiling showed increased oxidative and endoplasmic reticulum 

(ER) stress, activated ER and mitochondrial apoptosis pathways together with 

induction of cholesterol biosynthesis in the CNS of preclinical mice [201]. 

We present here the first large-scale transcriptome study of the superior frontal gyrus 

of BSE-infected macaques. This specific region was selected due to its 

histopathological and functional relevance in the majority of neurodegenerative 

disorders [179] and ultimately because it corresponds to Broadmann areas 10 and 

11, known to be involved in strategic processes in memory recall, diverse executive 

functions (domain-general function in “cognitive branching”) as well as in planning, 

reasoning, and decision making [202], all processes known to be affected by 

neurodegeneration.  

As starting point, the microarray analysis revealed 300 transcripts that were 

differentially regulated in BSE-infected animals versus controls. Among these, 97 

probe sets were selected as candidates for validation with RT-qPCR, a technique 

well known for its high sensitivity and wide dynamic range [203].  

Due to the shortage of cDNA availability and to the technical difficulties in designing 

the RT-qPCR primers for some of the genes -the macaque genome has been 

recently sequenced, but it’s far from being completely validated [10]- only 11 DEGs 

were actually analyzed by RT-qPCR.  

In general, variations of the expression levels observed with RT-qPCR were slightly 

larger than those seen in the microarray analysis. This is an obvious consequence of 

the different detection ranges of the two techniques.  Microarray platform tends to 

have a lower dynamic range in comparison to RT-qPCR, the latter is used to validate 

array results [203]. RT-qPCR results confirmed the regulation trend seen in the 
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microarray platform for all the analyzed genes, providing very similar FC values using 

either GAPDH or ACTB for normalization. For five of them (HBB, HBA2, TTR, 

SERPINA3, APOC1) we obtained statistical significance with one or both qPCR 

detection systems we used (SYBR Green® and TaqMan® probes). As highlighted 

from functional classification of the identified DEGs reported in the Results section, 

some genes were involved in the top three canonical pathways: APOC1 and TTR are 

part of the LXR/RXR activation pathway, which is associated with lipid metabolism 

and transport, and are also involved in the neutral pathway of bile acid biosynthesis, 

which is a major route of cholesterol catabolism. Indeed, the liver X receptors (LXRs) 

are central players in cholesterol homeostasis throughout the periphery, where they 

function as sterol sensor to induce expression of genes involved in the regulation of 

cholesterol and lipid metabolism:  APOC1 is one of the several apolipoproteins 

involved in reverse cholesterol transport, and is also a transcriptional target for LXRs 

[204, 205]. Both subtypes of LXR, LXRα and LXRβ, are expressed and functional in 

the CNS, the second being present 2 to 5 fold higher than in the liver, demonstrating 

the importance of these receptors in CNS cholesterol metabolism [205]. Interestingly, 

these pathways have been previously related to prion infection, particularly at the 

preclinical stage, suggesting a potential involvement of these two genes in the onset 

of the disease [201, 206-208].  On the other hand TTR, as well as SERPINA3, are 

also involved in the acute phase response signaling pathway, a systemic reaction to 

inflammation that may arise also in response to the extracellular protein deposition. 

This has been associated with prion and in general neurodegenerative diseases in 

the literature [209-211]. All the other genes analyzed seemed to reside in the grey 

zone of both platforms and therefore their FC values could not be considered 

reliable. Nevertheless, it would be premature to conclude that no other DEGs are 

present in this BSE model, since the sample size we analyzed was modest for the 
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large animal-to-animal variability that characterized this study and therefore weak 

effects (FC <|2|) could have not been detected with statistical significance [212]. 

Analyzing the clinical and histological data available for the macaques, we observed 

that animal A1 showed the shortest preclinical incubation period, a very short 

duration of disease [155] and the lowest deposition of PrPSc in brain tissue (Figure 7). 

This may be explained considering that PrP deposits are more stable and hence less 

pathogenic/infective than smaller oligomers [68]. Thus, since this sample exhibits a 

low amount of deposited protein, a higher amount of free PrP seeds might be 

present, and it is known that this form is more prone to trigger a rapidly progressive 

disease. Moreover, sample A5 behaves in quite the opposite way, showing the 

highest PrPSc deposition, the longest survival time and nearly the longest preclinical 

incubation time among intracranially infected animals [155], supporting the above 

mentioned hypothesis.   

When coming to validate the microarray data with RT-qPCR, the first evidence we 

noticed was a considerable variability among samples, both within controls and 

infected groups. A reason for this inhomogeneity could be that, unlike other common 

animal models, non-human primates involved in this study were not inbred. 

Therefore, different genomic backgrounds may have substantially contributed to the 

inter-individual variations among the animals, leading to a remarkable variation in 

time of disease onset [155] and in gene expression within the same group. Curiously, 

for some of the most strongly regulated genes (APOC1, HBB, HBA2) the variability 

resulted even more prominent within the control group than within infected group. 

One possible explanation might be that BSE infection plays such a dramatic 

influence on the host organism that the normal biological differences in gene 

expression within healthy animals are somehow flattened toward up- or down-

regulation in diseased ones, as a consequence of the powerful effect of the 
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pathology. In addition, infected and control animals were kept in different animal 

facilities, leading to possible differences in diet and/or housing conditions that may 

have contributed to these diversities.  

Concerning the orally infected sample (B6), we observed a peculiar dysregulation 

pattern for a number of genes, which displayed a completely opposite trend 

compared to intracranially infected animals (Figure 15). Even though we have no 

data for PrPSc deposition in any tissue of this animal, the significantly longer 

incubation period (1950 days vs 1100 days) could indicate a correlation between the 

gene expression profile and the route of infection [183]. Of particular interest, HBB 

seemed to be expressed at a higher level in the orally infected animal compared to 

intracranially infected ones, both in the array platform and in RT-qPCR (FC≈+6 in B6, 

FC ≈ -6 in A1-A6 animals). This might give some clues on a possible protective role 

of hemoglobin in prion infection, which may lead to a slower progressing disease and 

maybe even to a milder phenotype. This model of oral transmission of BSE is 

particularly reliable since the old-world monkeys, besides being MM homozygous at 

129 codon of PRNP, show a digestive physiology similar to that of human beings 

[119, 120, 156]. Of course, we should have had some gene expression data about 

the preclinical phase of these monkeys in order to conclude that the higher level of 

HBB found in B6 is due to the root of infection and not to a pre-existing higher 

expression of hemoglobin of the animal itself. Also, the different age at euthanasia 

should be taken into account while considering this different transcription pattern; the 

orally infected animal was almost 10 years old while, on average, intracranially 

infected animals were around 7 years old.	 Clearly, we are aware that one single 

sample is not enough to make any conclusion, however this striking difference is 

anyhow interesting. 
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Several of our DEGs were already found to be somehow associated with 

neurodegenerative diseases. Regarding hemoglobin (Hb), some years ago it was 

unexpectedly found to be expressed in mesencephalic dopaminergic neurons of 

different mouse strains, as well as in rats and humans. Later, its presence was also 

confirmed in substantia nigra (SN) of human Parkinson's disease (PD) postmortem 

brains and in multiple sclerosis (MS) postmortem brains, suggesting the intriguing 

hypothesis of a role for Hb in brain physiology and PD pathogenesis, presumably 

related to the respiration processes [213-215]. 

It has been already established that Hb expression decreases in neurons of PD, 

Alzheimer’s disease (AD), argyrophilic grain disease (AGD) and dementia with Lewy 

bodies (DLB) brains [171] and that it can be regulated by both histone acetylation 

and CpG methylation of regulatory regions in erythroid cells [216, 217]. Furthermore, 

one interesting study suggests that HBB gene transcription is susceptible to (down-) 

regulation by histone deacetylase (HDAC) inhibition in the cortex of thricostatin 

(TSA)-treated mice, providing evidence for epigenetic mechanisms in the regulation 

of hemoglobin expression in neurons as well [218]. Substantial evidence already 

exists for hemoglobin and Hb-related proteins’ involvement in neurodegenerative 

disorders in different animal models. Hba-a1 and Hbb-y were found to be down-

regulated both in the preclinical and clinical phase in the CNS of scrapie-infected 

mice [137, 138] confirming the importance of these genes as pre-clinical 

neurodegeneration markers.  

Interestingly, haptoglobin (Hpt), an Hb-binding protein involved in hemoglobin 

catabolism, exhibited late up-regulation (45 mpi) in the medulla of orally BSE-infected 

cattle [27]. In addition, an antioxidant role for Hpt has been proposed in human CSF 

[219]. Haptoglobin precursor has been found to be up-regulated also in the medulla 

oblongata of symptomatic naturally infected scrapie sheep [19]. Furthermore, since 
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hemoglobin is the most abundant source of peripheral iron in humans, one clear 

implication of its dysregulation would be iron homeostasis alteration.  

An expanding body of evidence exists about iron dysregulation in the brain of many 

neurodegenerative disease affected patients: iron accumulation in AD brains [220], 

iron deposition in CNS and SN in PD patients [221, 222], and iron imbalance in prion 

disease affected brains [223]. Moreover, a possible iron-dependent translational 

control of human α-synuclein mRNA [224]. Also, in regards to AD, it is well known 

that hypoxic conditions, which may be present as a consequence of hemoglobin 

down-regulation, up-regulate APP mRNA and protein expression. In addition, it has 

been shown that Hb is able to bind to Aβ enhancing its aggregation and this in turn 

co-localizes in amyloid plaques in AD brains [225]. Therefore, if we envision a similar 

mechanism for prion diseases in which Hb interacts with β-rich PrPSc isoforms, we 

could hypothesize that down-regulated Hb fails to promote aggregation of the prion 

protein, determining an increased presence of toxic species such as oligomers [226]. 

In addition, the decrease in Hb would determine an increased amount of free iron 

which is highly toxic due to its ability to generate reactive oxygen species via the 

Fenton and Haber-Weiss reactions [227]. This released iron would be bound by 

ferritin, creating a redox-active and cytotoxic complex with PrPSc, ultimately lead to 

iron imbalance (deficiency phenotype) and to an increase of PrPSc toxic species 

[227], supporting the progression of the disease. This hypothesis is supported by the 

finding of redox-active iron in association with PrPSc plaques in vCJD brains [228], α-

synuclein aggregates in Lewy bodies in PD brains [229] as well as an increase of 

total iron coupled with a paradoxical iron deficiency in CJD brains [230]. Furthermore, 

in PD it has been proposed that Hb may act as storage molecule for oxygen which, if 

necessary, could be released from oligodendrocytes to neighboring neurons in order 

to counteract hypoxia conditions and maintain the aerobic metabolism [213, 214]. 
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Therefore, if down-regulated, Hb could not exert this function and neuronal 

functionality would be impaired by defective oxygen homeostasis.  

In our study, we show a consistent down-regulation of both HBB and HBA, either in 

late-stage BSE-infected macaques or in post-mortem sCJD and neurodegenerative 

affected patients. The robustness of the assay was proved through a stringent 

analysis that excluded any relevant influence of potential blood contamination: small 

traces of erythrocyte-specific markers were inevitably detected in some samples; 

however, this negligible blood presence was homogeneously distributed among 

healthy and diseased groups. These results provide compelling evidence for a 

common role of Hb and iron dysregulation in neurodegeneration, possibly related to 

an alteration of O2 homeostasis and oxidative metabolism [193]. These pathways 

seem to be shared among different diseases and species, reinforcing the emerging 

hypothesis of a prion-like mechanism for most –if not all- neurodegenerative 

disorders [55]. Additional investigations are needed to assess whether this down-

regulation occurs as an early/late consequence of the disease, or if it represents a 

pre-existing condition that may act as a susceptibility factor for the onset of the 

pathology. One possible explanation for this Hb mRNA down-regulation could reside 

in a more general alteration of brain energy metabolism due to extensive 

neurodegeneration occurring in late/end stage disease, when our samples were 

collected. However, it is known that the specific region we selected for our analysis –

superior frontal gyrus- is only moderately affected by CJD-related neurodegenerative 

processes. This would allow us to identify gene expression alterations which are 

directly related to early/moderately advanced changes occurring in CJD, and not to 

secondary effects of cell death occurring with disease progression. 

Furthermore, given that our study was performed on whole frontal cortex tissue, we 

cannot discriminate if this down-regulation occurs in neurons or in glial cells. 
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However, as discussed previously, array data about some glial markers such as 

GFAP and CD68 does not suggest any relevant deregulation in this cell population. 

One other molecule that appears to be central in neurodegeneration, APOC1, was 

found to be significantly up-regulated in BSE-infected macaques as well in iCJD and 

sCJD patients. APOC1 is part of the APOE/C-I/C-IV/C-II gene cluster and codes for 

apolipoprotein C-I (apoC-I), a small 6.6 kDa apolipoprotein component of lipoproteins 

(mainly HDL) that is known to inhibit receptor-mediated lipoprotein clearance, in 

particular particles containing apoE, via direct blockade of the low density lipoprotein 

(LDL) and VLDL receptors and LDL receptor-related protein [231]. Increasing 

evidence indicates a role for this gene in neurodegenerative disorders, especially AD 

and MS. APOC1 has been previously found to be in linkage disequilibrium with 

APOE 4 in AD [232]. In particular, the H2 allele of APOC1 is a susceptibility factor for 

LOAD [233] and its mRNA was found to be down-regulated in the frontal cortex –

similar to what we found in our NEG samples- especially in H2-allelic individuals 

[208]. Moreover, its AA genotype has been shown to determine a younger age-of-

onset in African American female multiple sclerosis patients, together with a higher 

progression index and MS severity score [234]. Impairment in lipid metabolism and 

signaling is one of the early alterations present in many neurodegenerative diseases, 

including prion diseases [210, 235]. Several studies focus on cholesterol metabolites 

with the aim of identifying early biomarkers for neurodegenerative disorders [236-

238]. A number of genes involved in cholesterol metabolism and lipid biosynthesis 

have been found to be up-regulated in preclinical scrapie-infected mice [201]. ApoCI, 

together with ApoE and ApoAI, able to activate cholesterol esterification via lecithin-

cholesterol acyltransferase (LCAT) [239], a pathway that contributes to excessive 

cholesterol elimination from the brain [219]. Indeed, brain cholesterol is mostly 

converted into an oxysterol (24S-hydroxycholesterol) that can freely diffuse to blood 
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but, upon esterification, it can also be exported to the liver embedded within 

lipoproteins throughout circulation [240]. Under normal conditions, this second 

pathway could be of minor relevance in regulating the efflux of cholesterol from the 

brain [241], but it could play an important role in triggering the increase of cholesterol 

accumulation – and particularly the consequent increase of the neurotoxic oxysterol- 

within neuronal cells	upon prion infection [207]. If we add to this scenario the fact that 

Hpt, an above-mentioned hemoglobin-binding protein, has shown to be able to bind 

also ApoE and ApoAI [219] and that ApoAI has been found to interact with ApoCI 

[242], we can try to put together in the same pathway both the up-regulation of 

APOC1 and the down-regulation of Hb. As already mentioned, it is known that prion 

infection reduces cholesterol efflux from neuronal cells leading to an increase in 

cellular cholesterol [207, 236], the main component of lipid rafts where PrPC 

conversion into PrPSc is thought to occur [243, 244]. With this mechanism, prions 

might promote an increase of cellular cholesterol content in order to have more 

favorable environment to allow/enhance their conversion [207]. This increase in 

cholesterol would lead to a simultaneous activation of Hpt that in case of oxidative 

stress -presumably triggered by increased oxysterol- is expected to work in the CNS 

[245] preventing oxidative injuries to ApoE and ApoAI, thus saving their esterification 

function [246]. This Hpt-ApoAI complex could in turn stimulate ApoCI, further raising 

the esterification of cholesterol in order to increment its displacement from the brain 

toward the liver, where cholesterol is then catabolized into bile acids [219]. In 

addition, to increase Hpt available sites to bind apoliproteins, Hb is down-regulated 

(or due to a negative feedback because Hpt binds less Hb and therefore free Hb 

levels increase). This decrease in Hb would result in an increase in free iron that, 

upon binding to ferritin, stimulates the formation of a toxic ferritin-PrPSc complex 

which ultimately leads to iron deficiency and increase in PrPSc toxic species [227]. 
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Consistent with this hypothesis, some in vitro studies have shown that depletion of 

cellular cholesterol reduces the conversion of PrPC to PrPSc [243]. Taken together, 

these data suggest that both Hb and ApoCI could represent extremely powerful drug 

targets as well as potentially useful biomarkers to assess the efficacy of possible 

therapies. 

Another gene that we found highly up-regulated in BSE-infected monkeys -as well as 

in vCJD, iCJD and sCJD patients- is SERPINA3, a serpin peptidase inhibitor 

extensively reported to be regulated in several neurodegenerative disease models. 

The encoded protein is involved in acute phase response pathways and it is well 

known for its interaction with APP in promoting amyloid plaque formation —a 

hallmark of AD [247]. Indeed, increased levels of SERPINA3 protein have been 

found in the brain and peripheral blood of AD patients [248], mainly due to persistent 

inflammation [249]. Furthermore, a polymorphism in its gene promoter has been 

identified as a disease modifier both for AD and PD: the TT genotype resulted as a 

risk factor for EOAD [250], while the AA genotype has been suggested to play a 

modest protective role against early-onset PD in women, especially in the Taiwanese 

population [251]. In prion disease models, SERPINA3 was increased in urine and 

cerebrospinal fluid of CJD patients and also in brains of scrapie-infected mice [235, 

252]. Moreover, it is up-regulated after 10 weeks post inoculation (prior to clinical 

sign manifestation) in mice infected with RML prion strain, probably due to activation 

of astrocytes and microglia [253]. Being an acute phase protein, its up-regulation is 

generally explained by the onset of an inflammation condition, particularly as a 

response of the innate immunity to infection [254]. However, inflammation and 

immune system activation seem not to be a hallmark of prion diseases themselves, 

and is more likely an eventual consequence of massive late-stage neuronal 

degeneration [209]; therefore, an alternative role for SERPINA3 in prion disorder 
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should be considered. Of particular interest, two β-sheets of SERPINA3 exhibit a 

polymorphism mimicking changes in the serpin structure that normally occur during 

the formation of its stable complex with the target proteinase. In this conformation, 

SERPINA3 can bind Aβ, thus imposing a β-strand conformation that upon 

dissociation leads to a faster formation of fibrils [247]. Therefore, an intriguing 

hypothesis may be proposed in which PrP conversion into β-sheet conformation can 

be assisted by the “chaperone” SERPINA3, which would then accelerate the 

formation of toxic species like PrP oligomers. In addition, SERPINA3 expression in 

the brain can be regulated in vivo by ApoE [255]. Also, some in vitro studies 

indicated that SERPINA3 is able to bind cholesterol [256]. Therefore we hypothesize 

that abnormal cholesterol levels might trigger SERPINA3 up-regulation as a 

supplementary reinforcement for cholesterol binding and transport when ApoE and 

other lipoproteins are saturated and therefore no longer available. Nevertheless, due 

to its presumable capability to bind β-sheet enriched PrPSc, the SERPINA3 increase 

would lead to a sustained conversion of the prion protein, therefore supporting the 

disease progression. Despite SERPINA3 protein has been found up-regulated in 

several neurodegenerative disease, in addition to CJD, we did not observe up-

regulation at the mRNA level in non-CJD affected patients. Therefore, we suggest 

that transcriptional regulation is a unique mechanism occurring in CJD disorder and 

that, as well as APOC1, represents a specific prion disease marker that could be 

considered as a potential diagnostic and therapeutic tool. 

In the same pathway of acute phase response, also the transthyretin gene was up-

regulated in our BSE-infected macaques, even though we were not able to confirm 

the statistical significance with the more specific TaqMan assay. Nevertheless, we 

found similar results also in human samples; indeed, both sCJD and especially iCJD 

patients showed an upregulation for TTR. TTR is a prealbumin, best known as a 
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carrier of the thyroid hormone thyroxine (T4) in serum and CSF. Also, when 

associated with retinol-binding protein (RBP) in the serum, it can transport retinol as 

well. TTR is associated with systemic amyloidosis characterized by deposition of 

aggregated protein in various tissues, but it has been also associated with an anti-

amyloidogenic effect in regard to Aβ. Like SERPINA3, TTR binds to beta amyloid, 

but in this case the binding seems to prevent Aβ deposition. In fact, TTR not only 

inhibits Aβ fibril formation, but also neutralizes the toxicity of pre-formed oligomers by 

promoting their further assembly into larger aggregates, as shown in neuroblastoma 

cells and primary rat neurons [257]. Moreover, increased mRNA and protein levels 

have been reported in neurons from the AD mouse model ‘APP23’ and in human AD 

brain. This suggests that TTR transcription and synthesis may be up-regulated and 

sustained by the increased production of Aβ or its precursors. The subsequent 

interaction between TTR and Aβ and the formation of TTR- Aβ complexes with 

reduction of toxic aggregates may be a protective mechanism in response to AD 

[258]. Furthermore, silencing the endogenous TTR gene accelerated the disease 

pathogenesis in the well validated AD mouse model APP23, and TTR 

overexpression suppressed the behavioral symptoms of AD [76], confirming the 

neuroprotective role of this protein. Even in prion models TTR levels have been 

found strongly increased in the cortex of scrapie-infected mice [139]. Our study now 

provides evidence that upregulation of TTR is also found in BSE-infected macaques 

and CJD affected patients, further expanding the view that this is an important player 

in human neurodegeneration. If we hypothesize a common mechanism in AD and 

TSEs, we can speculate a possible up-regulation of TTR, promoted by the presence 

of PrP toxic oligomeric species, as a “protective” mechanism that would facilitate the 

formation of larger non-toxic PrP aggregates. Taken together, the data on 

SERPINA3 and TTR suggest an implication of innate immune system activation and 
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inflammatory response, as suggested by some authors [259, 260]. Fratini et al. also 

reported a clear increase of seven proteins all belonging to the acute phase 

response processes in a study of plasma samples from sporadic CJD patients [261]. 

This suggests not only a localized inflammatory condition at brain level, but also a 

possible generalized systemic inflammation in sCJD. However, analysis of our 

microarray data did not reveal any relevant deregulation of other genes typically 

involved in neuroinflammation and/or immune response. Indeed, cytokines and other 

mediators such as IL6, TNFα, GFAP and CD68 showed FC < |2|, indicating that 

inflammatory responses seem not be of particular relevance in this prion model or in 

the area of the CNS that was examined. However, since we found a trend of down-

regulation of TTR in non-prion neurodegenerative diseases -for which involvement of 

inflammation has been proposed [247, 262, 263]- we can consider that the TTR 

dysregulation in this case may be actually related to activation of inflammatory 

responses. It is known that as soon as the inflammation process starts, the synthesis 

of the negative acute phase proteins, such as TTR, decrease in order to provide 

more amino acids for the synthesis of positive acute phase ones. Nevertheless, we 

could suggest a different explanation for TTR involvement in neurodegeneration that 

regards, again, cholesterol. It has been reported that TTR is able to bind membrane 

lipids via electrostatic interactions [264] and this binding appears to be influenced by 

the concentration of cholesterol and the lipid composition of the membrane. This 

membrane binding is also correlated with the cytotoxic effect of TTR oligomers [265]. 

Therefore, we could hypothesize that TTR in neurodegenerative diseases behaves to 

some extent similarly to PrP in prion disorders, binding preferentially to lipid rafts in 

the plasma membrane where it promotes the formation of toxic oligomers that 

ultimately lead to neuronal degeneration. 
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Concerning the other genes we analyzed, microarray and RT-qPCR platforms 

indicated a concordant expression trend. Some of these genes, e.g. NR4A2 and 

IRF3, have been previously reported in association with prion infection and other 

neurodegenerative disorders. Our data showed down-regulation for NR4A2 and 

slight up-regulation for IRF3 and, even though we did not obtain statistically 

significant results, they are in line with the findings of these reports [144, 185, 266-

268]. 

One further interesting point that remains to be elucidated regards the expression of 

the prion protein gene itself in the different diseases models we studied. In literature, 

some contradictory results are present; indeed, while some studies reported no 

PRNP alterations during BSE infection in cattle [191], in a recent work Llorens and 

colleagues found that sCJD MM1 patients displayed a significant slight decrease in 

PRNP mRNA levels which was not found in sCJD VV2 patients [259]. Due to 

shortage of macaque cDNA, we were not able to investigate PRNP levels in BSE-

infected samples; nevertheless, our microarray data suggested that, at least at the 

mRNA level, no changes occur between control and infected animals. However, in 

humans we were able to analyze PRNP mRNA levels across the different groups. 

Also in this case, no significant alterations were observed between controls and CJD 

affected patients. Given that genetic analysis was available only for a limited number 

of the analyzed patients, we were not able to discriminate the influence of the codon 

129 genotype and/or the PrPSc type on the PRNP mRNA levels. However, we were 

able to highlight a difference between the two acquired CJD groups. Indeed, vCJD 

patients showed a significantly higher level of PRNP mRNA levels in comparison with 

iCJD ones. In light of these findings, we could hypothesize that the route of infection 

might somehow influence the mRNA levels of PrP. As regards cellular prion protein, 

its levels have been investigated little due to the concurrent presence of PrPSc, which 
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is often present in molar excess and complicates the analysis. Reduced levels of total 

prion protein has been detected in the CSF of a number of neurodegenerative 

diseases, including CJD, AD, DLB, PD and MS [269]. However, by using velocity 

gradient centrifugation and CDI, Safar and colleagues recently highlighted a down-

regulation of PrPC in end stage WT mice infected with scrapie, CJD and CWD prion 

strains. They also found this down-regulation in preclinical WT mice infected with 

RML, suggesting the occurrence of proteostasis as a host protective response 

triggered by the presence of PrPSc [270].  

Summarizing, our results suggest that while hemoglobin seems to be involved in 

unspecific pathways shared among many different neurodegenerative diseases, 

APOC1, TTR and particularly SERPINA3 seem to represent specific CJD alterations. 

Interestingly, for TTR, APOC1 and PRNP we observed a significantly different 

behavior between vCJD and iCJD patients, indicating that the route of infection plays 

a major role in the regulation of these genes and presumably also of the related 

pathways. 

One other main consequence of these results is that these genes, in particular 

APOC1 and SERPINA3, upon further validation, could be exploited as potential 

biomarkers for both diagnostic purposes and also as promising targets for therapy. 

All together, these data strongly suggest the crucial role of impaired cholesterol 

metabolism in prion disease onset and progression, as well as iron imbalance in 

general neurodegeneration processes. 

 

 

CONCLUSIONS 
 
As far as we know, this is the first genome-wide expression study in the frontal cortex 

of cynomolgus macaques inoculated with BSE. In our work we used both microarray 
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and RT-qPCR technologies that allowed us to identify a gene signature able to 

distinguish BSE-infected macaques from control animals. The identified genes are 

involved in oxygen transport and iron metabolism (HBB, HBA2), cholesterol 

metabolism and lipid transport (APOC1, SERPINA3) as well as acute phase 

response (SERPINA3, TTR). 

Importantly, the dysregulation of four of these genes (HBA2, APOC1, TTR, 

SERPINA3) have been validated with consistent FC values also in CJD affected 

human samples, confirming the reliability of our previous analysis in BSE-infected 

monkeys and providing important hints on some prion-specific alterations in CJD 

disease. These results could be extremely helpful in understanding the mechanism 

underlying the progression of the disease, possibly leading to the identification of 

some key players which, even if not the cause of onset, could be some of the target 

genes affected by the disease. In addition, the two genes related to hemoglobin were 

found similarly (down-)regulated also in non-CJD neurodegenerative disorders, 

shedding some light on common pathways underlying neurodegeneration. Therefore, 

some of our findings support the hypothesis of a potential shared mechanism 

underlying the onset and the development of all neurodegenerative disorders. This is 

in concordance with very recent data supporting the idea of a unifying role of prions 

in these diseases in general and maybe a prion-like behavior for most 

neurodegenerative disorder [68].  

Moreover, all the DEGs we validated were also expressed also in blood. It is 

reasonable to believe that the genome is equivalent in sequence and structure in all 

cells and tissues of the same organism [271]. Indeed, in most instances the genome 

observed in peripheral blood is highly similar to that in the brain – with an overlapping 

of about 70-80% [272-274]-, allowing for investigation of transcriptional alterations in 

blood that would reflect brain disorders. Therefore, validating their consistent 
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dysregulation in blood, would open the interesting possibility to employ these 

transcripts as "readily available" biomarkers for both diagnostic and therapeutic 

purposes. Even more important, this could allow to investigate the gene expression 

pattern of these biomarkers also in earlier stages of the disease, providing an 

invaluable insight about the pathogenic mechanism underlying the onset of these 

disorders and, therefore, also a potential tool for early diagnosis and eventual 

therapy monitoring.  

In conclusion, our data suggest that, in order to identify diagnostic and/or therapeutic 

approaches for prion diseases and other neurodegenerative disorders, a combination 

of various pathways has to be targeted, including oxygen and iron homeostasis, 

inflammation response and in particular cholesterol and lipid metabolism. 
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APPENDIX  

  Probe ID Gene 
Symbol Gene name RefSeq Transcript ID P-value FC 

1 Mmu.6048.1.S1_s_at --- --- --- 1.47E-09 394.064 

2 MmuSTS.2150.1.S1_at LOC574106 alpha-1-antichymotrypsin XM_001096947 2.76E-03 16.002 

3 Mmu.10083.1.S1_s_at LOC574106 alpha-1-antichymotrypsin XM_001096947 4.30E-03 10.108 

4 MmuSTS.1168.1.S1_at LOC703401 similar to chitinase 3-like 1 XM_001103739 2.44E-03 3.875 

5 MmugDNA.25842.1.S1_at --- --- --- 2.64E-04 3.820 

6 MmugDNA.31051.1.S1_at --- --- --- 1.00E-05 3.477 

7 MmugDNA.28171.1.S1_at --- --- --- 3.79E-03 3.385 

8 MmugDNA.14064.1.S1_at --- --- --- 9.17E-04 3.198 

9 
MmugDNA.23791.1.S1_s_a

t PROSC Proline synthetase co-transcribed homolog XM_001089087 7.65E-04 3.044 

10 MmugDNA.13972.1.S1_at --- --- --- 1.26E-03 2.949 

11 Mmu.2091.1.S1_x_at MAMU-AG major histocompatibility complex, class I, AG NM_001134230 3.96E-04 2.699 

12 MmugDNA.651.1.S1_at --- --- --- 2.80E-03 2.617 

13 MmuSTS.1024.1.S1_at LILRBB Leukocyte immunoglobulin-like receptor, subfamily B, member b --- 6.20E-04 2.560 

14 MmugDNA.15540.1.S1_at PAPLN papilin, proteoglycan-like sulfated glycoprotein XM_001088864 1.95E-03 2.399 

15 MmugDNA.26476.1.S1_at --- --- --- 2.00E-03 2.369 

16 MmuSTS.242.1.S1_at LOC710534 hypothetical protein LOC710534 XM_001099170 4.61E-04 2.288 

17 MmugDNA.26095.1.S1_at --- --- --- 4.07E-03 2.280 

18 Mmu.13692.1.S1_at --- --- --- 1.67E-03 2.244 

19 MmugDNA.19355.1.S1_at --- --- --- 5.19E-04 2.161 

20 MmugDNA.5017.1.S1_at LOC694227 similar to msh homeobox 2 XM_001082405 2.30E-03 2.151 

21 MmugDNA.42101.1.S1_at LOC709549 hypothetical protein LOC709549 XM_001110840 9.04E-04 2.146 

22 MmugDNA.39745.1.S1_at LOC712270 Similar to TBC1 domain family, member 10C XM_001106367 /// XM_001106431 2.28E-04 2.146 

23 Mmu.5468.1.S1_at IRF3 interferon regulatory factor 3 NM_001135797 /// XM_001115379 1.26E-03 2.109 

24 MmugDNA.6086.1.S1_at PLEKHA8 
pleckstrin homology domain containing, family A 
(phosphoinositide binding specif XM_001086047 /// XM_001086163 /// XM_001086395 1.33E-04 2.108 

25 Mmu.2066.1.A1_at --- --- --- 2.33E-03 2.079 

26 MmugDNA.38248.1.S1_at --- --- --- 2.82E-03 2.073 

27 MmugDNA.15190.1.S1_at --- --- --- 8.00E-04 2.058 

28 Mmu.6867.3.S1_s_at --- --- --- 1.20E-03 2.045 

29 MmugDNA.1315.1.S1_at --- --- --- 1.60E-03 2.034 

30 MmuSTS.242.1.S1_x_at LOC710534 hypothetical protein LOC710534 XM_001099170 6.68E-04 2.030 

31 MmugDNA.21023.1.S1_at IRF3 interferon regulatory factor 3 NM_001135797 /// XM_001115379 2.58E-04 2.015 

32 MmugDNA.29834.1.S1_at --- --- --- 1.58E-05 2.013 

33 MmugDNA.13998.1.S1_at --- --- --- 5.50E-05 2.007 

34 MmuSTS.1253.1.S1_at --- --- --- 4.26E-03 2.005 

35 MmugDNA.42687.1.S1_at LOC714858 similar to ribosomal protein L35a XM_001103775 /// XM_001103861 2.12E-03 2.002 

36 MmugDNA.24820.1.S1_at CSNK1G3 casein kinase 1, gamma 3 
XM_001093600 /// XM_001093723 /// XM_001093838 /// 
XM_001093954 4.27E-03 -2.027 

37 MmugDNA.2165.1.S1_at LOC701418 similar to small nuclear ribonucleoprotein E XM_001099502 /// XM_001099697 9.82E-04 -2.040 

38 MmugDNA.27879.1.S1_at --- --- --- 4.90E-03 -2.063 

39 MmugDNA.33232.1.S1_at --- --- --- 1.26E-03 -2.079 

40 MmugDNA.23281.1.S1_at --- --- --- 2.83E-03 -2.089 

41 MmugDNA.36827.1.S1_at ACVR1C activin A receptor, type IC 
XM_001088259 /// XM_001088355 /// XM_001088467 /// 
XM_001088578 4.84E-03 -2.119 

42 MmunewRS.391.1.S1_at LOC711550 
similar to UDP-GalNAc:betaGlcNAc beta 1,3-
galactosaminyltransferase, polypeptide XM_001101191 2.64E-03 -2.149 

43 MmugDNA.2696.1.S1_at TXNL4A Thioredoxin-like 4A XM_001089626 3.97E-03 -2.150 

44 MmugDNA.7163.1.S1_at --- --- --- 4.23E-03 -2.163 

45 MmuMitochon.12.1.S1_s_at --- --- --- 3.45E-04 -2.163 

46 MmugDNA.5156.1.S1_at FLVCR feline leukemia virus subgroup C cellular receptor XM_001107314 5.05E-04 -2.181 

47 MmugDNA.42527.1.S1_at --- --- --- 1.92E-03 -2.189 

48 MmuSTS.2949.1.S1_at KPNA6 karyopherin alpha 6 
XM_001101656 /// XM_001101838 /// XM_001102023 /// 
XM_001102113 /// XM_001102197 5.93E-04 -2.189 

49 MmugDNA.5766.1.S1_at TM7SF3 transmembrane 7 superfamily member 3 XM_001099269 4.47E-04 -2.211 

50 MmugDNA.9234.1.S1_at --- --- --- 2.34E-03 -2.217 

51 MmugDNA.23612.1.S1_at --- --- --- 2.89E-03 -2.218 

52 MmugDNA.8176.1.S1_at --- --- --- 1.41E-03 -2.238 
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53 MmugDNA.34611.1.S1_at --- --- --- 1.12E-03 -2.270 

54 MmugDNA.41713.1.S1_at --- --- --- 1.70E-04 -2.309 

55 MmugDNA.22094.1.S1_at PMM2 Phosphomannomutase 2 XM_001102327 3.60E-03 -2.319 

56 MmuSTS.1753.1.S1_at --- --- --- 3.86E-03 -2.324 

57 MmugDNA.15864.1.S1_at --- --- --- 3.28E-03 -2.335 

58 MmugDNA.9027.1.S1_at RIOK2 RIO kinase 2 (yeast) XM_001095785 2.20E-04 -2.344 

59 MmugDNA.5351.1.S1_at --- --- --- 4.00E-03 -2.413 

60 MmugDNA.1268.1.S1_at --- --- --- 1.58E-05 -2.444 

61 
MmugDNA.34998.1.S1_s_a

t LOC720089 similar to CG16989-PA XM_001115127 1.74E-04 -2.459 

62 MmugDNA.24219.1.S1_at --- --- --- 3.51E-03 -2.466 

63 MmugDNA.21409.1.S1_at --- --- --- 4.81E-05 -2.472 

64 
MmugDNA.23359.1.S1_x_a

t --- --- --- 4.79E-03 -2.506 

65 MmuSTS.3838.1.S1_at SLCO1A2 solute carrier organic anion transporter family, member 1A2 
XM_001097798 /// XM_001097901 /// XM_001097987 /// 
XM_001098080 3.17E-03 -2.518 

66 MmugDNA.3753.1.S1_at SAP18 Sin3A-associated protein, 18kDa XM_001085227 /// XM_001085342 1.44E-03 -2.602 

67 MmugDNA.12750.1.S1_at --- --- --- 3.65E-04 -2.704 

68 MmugDNA.2556.1.S1_at STX16 syntaxin 16 XM_001084489 /// XM_001084615 /// XM_001084730 6.39E-04 -2.728 

69 MmugDNA.2127.1.S1_at SMARCC1 
SWI/SNF-related matrix-associated actin-dependent regulator of 
chromatin c1 XR_012360 2.69E-03 -2.735 

70 MmuMitochon.4.1.S1_at --- --- --- 4.17E-05 -2.801 

71 MmugDNA.24987.1.S1_at --- --- --- 2.29E-04 -2.895 

72 MmugDNA.24269.1.S1_at --- --- --- 4.18E-04 -2.923 

73 MmugDNA.1402.1.S1_at --- --- --- 8.07E-04 -2.935 

74 MmugDNA.41331.1.S1_at --- --- --- 3.77E-03 -2.959 

75 MmugDNA.12544.1.S1_at LOC703458 Similar to Histidine acid phosphatase domain containing 1 
XM_001097844 /// XM_001098229 /// XM_001098433 /// 
XM_001098530 3.11E-03 -3.102 

76 MmugDNA.6830.1.S1_at ZNF397 zinc finger protein 397 XR_013079 3.65E-03 -3.113 

77 Mmu.10780.1.S1_at SERPINA1 
Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, 
antitrypsin), membe 

XM_001098533 /// XM_001098837 /// XM_001098941 /// 
XM_001099044 /// XM_001099150 1.21E-03 -3.289 

78 MmugDNA.39622.1.S1_at --- --- --- 5.51E-04 -3.498 

79 MmugDNA.15556.1.S1_at --- --- --- 6.24E-04 -3.558 

80 MmugDNA.32444.1.S1_at GALNTL2 similar to UDP-N-acetyl-alpha-D-galactosamine:polypeptide XM_001083446 8.93E-05 -3.746 

81 MmuSTS.944.1.S1_at TM7SF3 transmembrane 7 superfamily member 3 XM_001099269 1.59E-04 -3.922 

82 MmugDNA.32138.1.S1_at LOC712125 similar to zinc transporter like 2 
XM_001108032 /// XM_001108096 /// XM_001108147 /// 
XM_001108199 2.35E-07 -4.922 

83 MmugDNA.30314.1.S1_at --- --- --- 6.21E-05 -5.067 

84 MmugDNA.23886.1.S1_at LOC718977 similar to dynein, cytoplasmic, heavy polypeptide 1 XM_001112424 1.41E-07 -5.109 

85 MmugDNA.22310.1.S1_at --- --- --- 5.67E-04 -6.042 

86 MmuAffx.78.1.S1_s_at --- --- --- 2.77E-08 -21.150 

 
Additional table 1. List of 86 differentially expressed probe sets with p values ≤ 0.005 and 
FC ≥ │2│. Probe ID, Gene Symbol, Gene Name and RefSeq Transcript IDs annotation as of release 
29 of the Affymetrix® Rhesus Annotation library (01/July/09). P-values and fold changes are reported 
for all 86 probe sets. 
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  Probe ID 
Previous gene 

symbol 
Current gene 

symbol Gene name RefSeq Transcript ID P-value FC 

  FC ≥ |2.5|, p≤0.005 
(36 rows)             

1 
MmuAffx.78.1.S1_s_

at --- MT-CYB-201 MT:14741-15881(1) --- 
2.77E-

08 

-
21.15

0 

2 Mmu.6048.1.S1_s_at --- ND4 NADH dehydrogenase subunit 4 (mitochondrion) JN709966.1 
1.47E-

09 
394.0

64 

3 
MmugDNA.23886.1.S

1_at LOC718977 DYNC1H1-201 similar to dynein, cytoplasmic, heavy polypeptide 1 XM_001112424 
1.41E-

07 -5.109 

4 
MmugDNA.32138.1.S

1_at LOC712125 SLC30A7 solute carrier family 30 (zinc transporter), member 7 NM_001266184.1 
2.35E-

07 -4.922 

5 
MmugDNA.31051.1.S

1_at --- --- 8:119157054-119157347(-1) --- 
1.00E-

05 3.477 

6 
MmuMitochon.4.1.S1

_at --- 
COXI-201/COXII-

201 cytochrome c oxidase subunit II (mitochondrion) AY972676.1  [Source:RefSeq peptide;Acc:YP_026107] 
4.17E-

05 -2.801 

7 
MmugDNA.30314.1.S

1_at --- --- 2:27904497-27904521(1) --- 
6.21E-

05 -5.067 

8 
MmugDNA.32444.1.S

1_at GALNTL2 GALNTL2 similar to UDP-N-acetyl-alpha-D-galactosamine:polypeptide --- 
8.93E-

05 -3.746 

9 
MmuSTS.944.1.S1_a

t TM7SF3 TM7SF3 transmembrane 7 superfamily member 3 XM_001099269.2 
1.59E-

04 -3.922 

10 
MmugDNA.24987.1.S

1_at --- --- 1:165875041-165875065(-1) --- 
2.29E-

04 -2.895 

11 
MmugDNA.25842.1.S

1_at --- RPL27A_hu 
Homo sapiens ribosomal protein L27a 

--- 
2.64E-

04 3.820 

12 
MmugDNA.12750.1.S

1_at --- --- 7:130441604-130441628(-1) --- 
3.65E-

04 -2.704 

13 Mmu.2091.1.S1_x_at MAMU-AG --- 1099214726397:214-2416(1) 
Uncharacterized protein 
[Source:UniProtKB/TrEMBL;Acc:H9H4X3] 

3.96E-
04 2.699 

14 
MmugDNA.24269.1.S

1_at --- --- 10:89173266-89173290(1) --- 
4.18E-

04 -2.923 

15 
MmugDNA.39622.1.S

1_at --- --- X:22370278-22370302(1) --- 
5.51E-

04 -3.498 

16 
MmugDNA.22310.1.S

1_at --- NUP50_hu Homo sapiens nucleoporin 50kDa --- 
5.67E-

04 -6.042 

17 
MmuSTS.1024.1.S1_

at LILRBB NEDD4L-205 neural precursor cell expressed, developmentally down-regulated 4-like  [Source:UniProtKB/TrEMBL;Acc:F7AXT7] 
6.20E-

04 2.560 

18 
MmugDNA.15556.1.S

1_at --- PLEKHA3-201 
pleckstrin homology domain containing, family A (phosphoinositide binding 
specific) member 3  [Source:UniProtKB/TrEMBL;Acc:F6WME3] 

6.24E-
04 -3.558 

19 
MmugDNA.2556.1.S1

_at STX16 STX16 syntaxin 16 XM_001084489 /// XM_001084615 /// XM_001084730 
6.39E-

04 -2.728 

20 
MmugDNA.23791.1.S

1_s_at PROSC --- 18:39890353-39890377(-1) --- 
7.65E-

04 3.044 

21 
MmugDNA.1402.1.S1

_at --- --- 2:74621205-74621229(-1) --- 
8.07E-

04 -2.935 

22 
MmugDNA.14064.1.S

1_at --- --- 3:75751313-75751337(1) --- 
9.17E-

04 3.198 

23 Mmu.10780.1.S1_at SERPINA1 ABCD3-201 ATP-binding cassette sub-family D member 3-like  
Uncharacterized protein 
[Source:UniProtKB/TrEMBL;Acc:F6QHX4] 

1.21E-
03 -3.289 

24 
MmugDNA.13972.1.S

1_at --- --- 13:80841373-80841397(1) --- 
1.26E-

03 2.949 

25 
MmugDNA.3753.1.S1

_at SAP18 SAP18 histone deacetylase complex subunit SAP18 NM_001261034.1 
1.44E-

03 -2.602 

26 
MmuSTS.1168.1.S1_

at LOC703401 CHI3L1-201 chitinase-3-like protein 1 precursor  NM_001265920.1 
2.44E-

03 3.875 

27 
MmugDNA.2127.1.S1

_at SMARCC1 MMU.10107-202  2:88839715-88936168(1) 
Uncharacterized protein 
[Source:UniProtKB/TrEMBL;Acc:F7HJG9] 

2.69E-
03 -2.735 

28 
MmuSTS.2150.1.S1_

at LOC574106 SERPINA3 
serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), 
member 3 precursor  

NM_001195350.1 [Source:RefSeq 
peptide;Acc:NP_001182279] 

2.76E-
03 

16.00
2 

29 
MmugDNA.651.1.S1_

at --- --- 16:47032713-47032737(1) --- 
2.80E-

03 2.617 

30 
MmugDNA.12544.1.S

1_at LOC703458 ACSL3-201 acyl-CoA synthetase long-chain family member 3 
Uncharacterized protein 
[Source:UniProtKB/TrEMBL;Acc:F7GUH7] 

3.11E-
03 -3.102 

31 
MmuSTS.3838.1.S1_

at SLCO1A2 SLCO1A2 solute carrier organic anion transporter family, member 1A2 
XM_001097798 /// XM_001097901 /// XM_001097987 
/// XM_001098080 

3.17E-
03 -2.518 

32 
MmugDNA.6830.1.S1

_at ZNF397 ZNF397 zinc finger protein 397 XR_013079 
3.65E-

03 -3.113 

33 
MmugDNA.41331.1.S

1_at --- --- 13:86724520-86724544(1) --- 
3.77E-

03 -2.959 

34 
MmugDNA.28171.1.S

1_at --- --- 14:9000414-9000438(-1) --- 
3.79E-

03 3.385 

35 
Mmu.10083.1.S1_s_a

t LOC574106 SERPINA3 
serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), 
member 3 precursor  

NM_001195350.1 [Source:RefSeq 
peptide;Acc:NP_001182279] 

4.30E-
03 

10.10
8 

36 
MmugDNA.23359.1.S

1_x_at --- --- ---  
4.79E-

03 -2.506 

  
FC ≥ |2.5|, 

0.005≤p≤0.05 (29 
rows) 

            

37 
MmugDNA.43301.1.S

1_at --- --- 2:27907866-27907890(1) --- 
5.12E-

03 -3.093 

38 
MmugDNA.23664.1.S

1_at SGCB --- 4:26168443-26168467(1) --- 
5.46E-

03 -3.523 

39 
MmugDNA.18153.1.S

1_at --- --- 
2: 96,954,542-96,954,566 

--- 
5.56E-

03 -2.543 

40 
MmugDNA.11249.1.S

1_at --- --- --- --- 
6.25E-

03 2.513 

41 
MmugDNA.35181.1.S

1_s_at --- MTRNR2L1_hu 
Homo sapiens MT-RNR2-like 1 

--- 
6.29E-

03 -8.751 

42 
MmugDNA.8255.1.S1

_at --- --- 16:73401096-73401120(-1) --- 
6.35E-

03 -2.728 

43 Mmu.1942.1.S1_at SLC26A2 --- 6:146464760-146464784(1) --- 
7.07E-

03 -3.483 

44 
MmugDNA.454.1.S1_

at CLIC4 CLIC4 chloride intracellular channel protein 4 XM_001106291 /// XM_001106424 /// XM_001106485 
7.51E-

03 -2.576 

45 
MmugDNA.10294.1.S

1_at LOC712063 --- 2:138477793-138477817(1) --- 
9.84E-

03 -2.824 

46 
MmugDNA.15322.1.S

1_at --- --- 9:112213128-112213152(1) --- 
1.05E-

02 -2.733 

47 MmuAffx.161.1.S1_at --- DNAH2-201 
dynein, axonemal, heavy chain 2 Uncharacterized protein 

[Source:UniProtKB/TrEMBL;Acc:F7EE86] 
1.15E-

02 2.675 

48 
MmugDNA.17327.1.S

1_at LOC700825 MMU.13505-201 TIA1 cytotoxic granule-associated RNA binding protein  [Source:RefSeq peptide;Acc:NP_001248687] 
1.22E-

02 -2.864 

49 
Mmu.12003.1.S1_s_a

t --- --- 5:12449924-12449948(1) --- 
1.28E-

02 -3.417 

50 
MmugDNA.14890.1.S

1_at TNFSF10 TNFSF10 tumor necrosis factor (ligand) superfamily, member 10 NM_001266034.1 
1.39E-

02 -2.726 
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51 
MmugDNA.30129.1.S

1_at --- --- 14:39186783-39186807(-1) --- 
1.46E-

02 -2.765 

52 
MmugDNA.6026.1.S1

_at --- ZBTB33-201 transcriptional regulator Kaiso  [Source:RefSeq peptide;Acc:NP_001253879] 
1.50E-

02 -3.084 

53 
MmugDNA.42515.1.S

1_at --- RICTOR-201 RPTOR independent companion of MTOR, complex 2 
Uncharacterized protein 
[Source:UniProtKB/TrEMBL;Acc:F7GUW7] 

1.71E-
02 2.865 

54 
MmugDNA.37382.1.S

1_s_at LOC696955 MYBPC1 myosin binding protein C, slow type isoform 1 XM_001091952.1 
1.90E-

02 2.503 

55 
MmugDNA.27998.1.S

1_at --- --- 
5: 77,332,249-77,332,273 

--- 
1.98E-

02 -3.780 

56 
MmugDNA.36174.1.S

1_s_at LOC698803 --- 2:96954542-96954566(-1) --- 
2.11E-

02 -3.144 

57 
MmugDNA.21587.1.S

1_at --- --- 16:73399355-73399379(-1) --- 
2.36E-

02 -2.769 

58 
MmugDNA.1587.1.S1

_at LOC706963 PIK3R3-201 phosphoinositide-3-kinase, regulatory subunit 3 (gamma) --- 
3.43E-

02 4.697 

59 Mmu.12263.1.S1_at NGFR MRPL42-201 
mitochondrial ribosomal protein L42 

--- 
3.70E-

02 4.006 

60 
MmugDNA.32666.1.S

1_s_at LOC706963 APOC1 apolipoprotein C-I AK240617.1 
4.19E-

02 4.326 

61 
MmugDNA.28692.1.S

1_at NCAM1 NCAM1 neural cell adhesion molecule 1  XM_001083697.2 
4.34E-

02 2.501 

62 
MmugDNA.11141.1.S

1_at --- --- 12:41239625-41239649(-1) --- 
4.41E-

02 -3.359 

63 
MmugDNA.28863.1.S

1_at LOC715676 MRPL42-201 similar to Mitochondrial 28S ribosomal protein S32 (S32mt) (MRP-S32) XM_001106011 
4.47E-

02 -2.778 

64 
MmugDNA.39988.1.S

1_at LOC710110 --- 11:46397739-46401158(1) 
Uncharacterized protein 
[Source:UniProtKB/TrEMBL;Acc:F7DXF0] 

4.71E-
02 2.917 

65 
MmugDNA.27963.1.S

1_at PIK3R3 PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (gamma) NM_001266826.1 
4.81E-

02 -2.712 

  

FC ≥ |2.5|, p>0.05 (24 
rows) 

            

66 
MmugDNA.19449.1.S

1_at LOC713498 --- 17:10740623-10740647(1) --- 
5.49E-

02 -3.017 

67 
MmugDNA.40194.1.S

1_at DCLRE1A USP16 ubiquitin carboxyl-terminal hydrolase 16 NM_001260999.2 
6.25E-

02 -5.477 

68 
MmugDNA.22629.1.S

1_at --- LRRC8B_hu Homo sapiens leucine rich repeat containing 8 family, member B --- 
6.61E-

02 -5.313 

69 
MmugDNA.2186.1.S1

_at LOC711628 COMMD7-202 similar to COMM domain containing 7 XR_013448 
6.75E-

02 -2.651 

70 
MmugDNA.33730.1.S

1_at --- --- 7:151376049-151376073(-1) --- 
8.23E-

02 -2.522 

71 
MmuSTS.2380.1.S1_

at LOC707772 MMU.18647-204 similar to nucleolar protein 4 
XM_001101858 /// XM_001102048 /// XM_001102225 
/// XM_001102410 /// XM_001102505 

8.39E-
02 -2.513 

72 
MmugDNA.18446.1.S

1_s_at KDELR2 AKR1C1 
aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 
20-alpha (3-alpha)-hydroxysteroid dehydrogenase) NM_001195574.1 

8.82E-
02 2.917 

73 
MmugDNA.35992.1.S

1_at --- --- 11:96705943-96705967(1) --- 
9.93E-

02 2.572 

74 
MmuSTS.2185.1.S1_

at LOC703879 CBLB-201 Cbl proto-oncogene B, E3 ubiquitin protein ligase 
Uncharacterized protein 
[Source:UniProtKB/TrEMBL;Acc:F6T053] 

9.97E-
02 2.605 

75 Mmu.586.2.S1_at --- EFR3A-201 EFR3 homolog A (S. cerevisiae) [Source:UniProtKB/TrEMBL;Acc:F6YPW8] 
1.30E-

01 -3.490 

76 
MmugDNA.2571.1.S1

_s_at USP14 HBB globin, beta NM_001164428.1 
1.37E-

01 -2.601 

77 
MmugDNA.2571.1.S1

_x_at HBB HBB globin, beta NM_001164428.1 
1.38E-

01 -2.551 

78 
MmugDNA.36491.1.S

1_s_at KDELR2 AKR1C1 
aldo-keto reductase family 1, member C1 (dihydrodiol dehydrogenase 1; 
20-alpha (3-alpha)-hydroxysteroid dehydrogenase) NM_001195574.1 

1.42E-
01 2.514 

79 
MmuAffx.2181.1.S1_

s_at GNRH1 GNRH1 gonadotropin-releasing hormone 1 (luteinizing-releasing hormone) NM_001195436.1 
1.61E-

01 -2.506 

80 
MmuSTS.2937.1.S1_

at --- KCNS1_hu 
Homo sapiens potassium voltage-gated channel, delayed-rectifier, 
subfamily S, member 1 --- 

1.77E-
01 4.059 

81 
MmugDNA.35031.1.S

1_at LOC694086 --- 6:155104908-155104932(-1) --- 
1.88E-

01 -2.551 

82 
MmuSTS.4627.1.S1_

at TWIST1 TWIST1 twist homolog 1 (Drosophila) XM_001103003 
2.07E-

01 2.796 

83 
MmugDNA.36621.1.S

1_s_at LOC709936 TTR transthyretin NM_001261679.1 
2.28E-

01 3.096 

84 
MmugDNA.33249.1.S

1_at --- --- 16:65362929-65362953(1) --- 
2.36E-

01 -2.614 

85 
MmugDNA.20093.1.S

1_at LOC704597 MMU.19037-201 thymocyte expressed, positive selection associated 1 Source:RefSeq peptide;Acc:NP_001180892] 
2.47E-

01 3.516 

86 
MmugDNA.41313.1.S

1_at LOC697541 OXT-201 oxytocin, prepropeptide 
Uncharacterized protein 
[Source:UniProtKB/TrEMBL;Acc:F7AXI7] 

2.66E-
01 -3.671 

87 
MmuSTS.2987.1.S1_

at MEF2C MEF2C myocyte enhancer factor 2C 
XM_001086062 /// XM_001086412 /// XM_001086519 
/// XM_001086651 /// XM_001086773 

2.72E-
01 2.680 

88 
MmugDNA.34254.1.S

1_at LOC709882 TNNT2-205 
similar to Troponin T, cardiac muscle (TnTc) (Cardiac muscle troponin T) 
(cTnT) XM_001098451 

3.47E-
01 2.704 

89 
MmugDNA.11820.1.S

1_at DNAJC12 DNAJC12 DnaJ (Hsp40) homolog, subfamily C, member 12 XM_001088102 /// XM_001088215 
3.92E-

01 -2.800 

  

FC 1 probe  ≥ |2.0| (7 
rows)  

            

90 
MmugDNA.16474.1.S

1_at LXN LXN latexin NM_001266988.1 
1.34E-

02 -2.224 

91 
MmugDNA.21023.1.S

1_at  IRF3  IRF3  interferon regulatory factor 3 NM_001135797 
2.58E-

04 2.015 

92 
MmugDNA.5766.1.S1

_at TM7SF3 TM7SF3 transmembrane 7 superfamily member 3 XM_001099269.2 
4.47E-

04 -2.211 

93 Mmu.5468.1.S1_at IRF3 IRF3 interferon regulatory factor 3 NM_001135798 
1.26E-

03 2.109 

94 
MmugDNA.25397.1.S

1_at DACH1 DACH1 dachshund homolog 1 (Drosophila) XM_001082371.2 
5.79E-

03 -2.197 

95 
MmugDNA.23169.1.S

1_at NR4A2 NR4A2 nuclear receptor subfamily 4, group A, member 2 NM_001266910.2 
8.35E-

02 -2.073 

96 
MmugDNA.41067.1.S

1_at HINT1 CALB1 Histidine triad nucleotide binding protein 1 XM_001085269.2 
3.31E-

01 -2.059 

  

Relevant from 
literature (1 row) 

            

97 
MmugDNA.32562.1.S

1_s_at HBQ1 HBA2 hemoglobin, alpha 2 NM_001044724.1 
2.76E-

01 -1.446 

 
Additional table 2. List of 97 differentially expressed probe sets selected as RT-qPCR 
candidates. Probe IDs and Previous Gene Symbol annotation as of release 29 of the Affymetrix® 
Rhesus Annotation library (01/July/09). Current Gene Symbol annotation as of the latest Affymetrix® 
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Rhesus Annotation library (release 32 - 09/June/11). Gene Name and RefSeq Transcript IDs as of 
Ensembl release 72 (June 2013). Annotation using alignment with the human genome has been 
performed (as stated in the gene name column) for the most highly regulated probe sets with unknown 
macaque annotation. P-values and fold changes are reported for all genes. 
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Abstract

Background: Prion diseases are fatal neurodegenerative disorders whose pathogenesis mechanisms are not fully
understood. In this context, the analysis of gene expression alterations occurring in prion-infected animals represents a
powerful tool that may contribute to unravel the molecular basis of prion diseases and therefore discover novel
potential targets for diagnosis and therapeutics. Here we present the first large-scale transcriptional profiling of brains
from BSE-infected cynomolgus macaques, which are an excellent model for human prion disorders.

Results: The study was conducted using the GeneChip® Rhesus Macaque Genome Array and revealed 300 transcripts
with expression changes greater than twofold. Among these, the bioinformatics analysis identified 86 genes with
known functions, most of which are involved in cellular development, cell death and survival, lipid homeostasis, and
acute phase response signaling. RT-qPCR was performed on selected gene transcripts in order to validate the differential
expression in infected animals versus controls. The results obtained with the microarray technology were confirmed
and a gene signature was identified. In brief, HBB and HBA2 were down-regulated in infected macaques, whereas TTR,
APOC1 and SERPINA3 were up-regulated.

Conclusions: Some genes involved in oxygen or lipid transport and in innate immunity were found to be dysregulated
in prion infected macaques. These genes are known to be involved in other neurodegenerative disorders such as
Alzheimer’s and Parkinson’s diseases. Our results may facilitate the identification of potential disease biomarkers for
many neurodegenerative diseases.

Keywords: Prion diseases, BSE, Non-human primates, Neurodegeneration, Transcriptome, Microarray, RT-qPCR,
Biomarker, Serpina3, Hemoglobin

Background
Prion diseases, or transmissible spongiform encephalop-
athies (TSEs), are incurable and fatal neurodegenerative
disorders that affect both humans and animals; their origin
may be sporadic, acquired or genetic [1,2]. TSEs include
Creutzfeldt-Jakob Disease (CJD), Gerstmann-Sträussler-
Scheinker syndrome (GSS), kuru and fatal familial insomnia
(FFI) in humans [2], bovine spongiform encephalopathy

(BSE) in cattle [3], scrapie in sheep and goats [4], chronic
wasting disease (CWD) in cervids [5], transmissible mink
encephalopathy, and feline spongiform encephalopathy
(FSE) [6].
A major event that leads to the development of prion

diseases is the conversion of the cellular form of the prion
protein (PrPC) into an abnormally folded, β-sheet enriched
and protease resistant isoform (PrPSc). PrPSc is prone to
accumulate and aggregate in the brain of affected individ-
uals [1,2,4] leading to neuronal loss, spongiosis and astro-
gliosis, which are hallmarks of neurodegeneration. The
underlying conversion mechanism of PrPC into PrPSc is
poorly understood and it is further complicated by the ex-
istence of several different strains characterized by distinct
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tertiary and quaternary structures as well as different clin-
ical patterns [7,8]. Several hypotheses exist about the con-
tribution of unknown molecules other than PrP to prion
propagation [9-11]. To address this issue, several animal
studies have investigated the host response to prion infec-
tion of different origin and strain. The differential tran-
scription profile after prion infection has been extensively
explored (reviewed in [6,12]); however, most of the studies
involved animal models such as mice [13-18], sheep
[4,19-22] and cattle [23-28], all not closely related to
humans. Some expression analyses have been conducted
in non-human primates focusing mainly on the suscepti-
bility to the infection and the variety of clinical symptoms
[29-33], but none has investigated large-scale transcrip-
tome changes due to prion infection. All these investiga-
tions suggest that besides the PrP-encoding gene (PRNP
in humans), other genes are key players and contribute to
the genetic susceptibility to acquired TSEs [6,34]. The
main genes identified so far are related to oxidative stress,
mitochondrial apoptotic pathways, endosome/lysosome
function, immunity, synapse function, metal ion binding,
activated cholesterol biosynthesis, immune and inflamma-
tory response, protease inhibitors, calcium binding pro-
teins, regulation of the actin cytoskeleton, ion transport,
cell adhesion, and transcription processes [6]. Dysregula-
tion of these genes seems to cause increased oxidative
stress that in turn determines oxidation of proteins,
lipids and DNA as well as mitochondrial dysfunction
and ER stress [6]. Apart from TSEs, transcriptional
changes of these genes are common to other neurode-
generative pathologies [12] and, together with func-
tional proteomics data, may help to identify novel
selective biomarkers of prion diseases and neurodegen-
eration in general.
To accomplish that, we performed a large-scale tran-

scriptional profiling in BSE-infected cynomolgus ma-
caques (Macaca fascicularis). They are known to be an
excellent model for studying human acquired prion dis-
eases [32,33,35-37], as shown by BSE transmission via
the intracranial and oral routes, which lead to a disease
pattern comparable to that of human maladies in terms
of preclinical incubation time, clinical symptoms and
pathophysiology [35]. The objective of this study was to
identify genes that are differentially expressed in brain
tissue of intracranially infected monkeys compared to
non-infected ones using an unbiased genomic approach
such as expression microarrays with subsequent data
validation by RT-qPCR. Our study aims at revealing bio-
logical processes that are relevant to the pathogenesis of
human prion diseases using a systematic approach that
connects the identified DEGs into potential networks of
interacting pathways. This may allow us to discover
novel selective markers as potential targets for diagnostic
and therapeutic strategies.

Results
PrPSc content in brain tissue
The relative amount of PrPSc in brain homogenate of 6
BSE-infected macaques was examined by Western Blot.
Densitometric analysis of the monoglycosylated band re-
vealed that the relative amount of PrPSc strongly differed
between the individual macaques. We wondered whether
this discrepancy might be due to the preclinical incubation
time or rather correspond to the gradual accumulation of
PrPSc during the clinical phase of disease as reported for
sCJD [38,39]. As anticipated, we found a significant correl-
ation between PrPSc content and the duration of the
symptomatic phase (Figure 1). The correlation analysis in-
cludes only the 6 intracranially inoculated macaques.
Since these animals were housed in one social group, en-
vironmental factors, which may influence the disease
course and duration, are identical. Such factors can be dif-
ferent for the orally inoculated animal, which was there-
fore omitted from the analysis. The infected animals were
at an advanced stage of prion disease and the details of
their clinical course have been previously described [33].
Briefly, animal A1 showed the shortest duration of disease
(17 days) and a short pre-clinical incubation time
(931 days) together with the lowest PrPSc content, while
animal A5 showed the longest survival period (143 days),
compared to an average clinical phase of about 90 days,
together with the highest PrPSc content and the second
longest pre-clinical phase (1340 days).

Microarray analysis of brain gene expression in
cynomolgus macaques
To investigate differential mRNA expression in BSE-
infected macaques we used brain samples from 6 animals
that were intracranially challenged [33]. One macaque that

Figure 1 Correlation between PrPSc content and duration of
clinical phase. Western Blot analysis from PK-treated homogenates
of brain samples derived from BSE-infected macaques was performed.
The monoglycosylated bands of PrPSc were analyzed densitometrically.
Relative amounts of PrPSc from brain homogenates were averaged and
correlated to the disease duration.
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was orally infected with 50 mg BSE-homogenate was also
included in our study. For comparison purposes, we used
5 brain samples derived from non-infected age- and sex-
matched control macaques.
RNA was isolated from the gyrus frontalis superior of

all animals and checked for quality by nano-scale elec-
trophoresis, which resulted in an overall RNA Integrity
Number (RIN) of about 6. This value is indicative of at
least partially degraded RNA within the sample; one
possible reason for the reduced RNA integrity may be
the procedure utilized to remove the gyrus frontalis su-
perior region from the frozen tissue slide. The biopsy
stamp was plugged into a cordless screwdriver that was
used to drill a borehole in the frozen tissue block of +/−
1 cm height. This method was chosen to ensure that the
material did not thaw; however, the local heat induced
by the rotating biopsy stamp may have led to substantial
degradation of the RNA. Nonetheless, human brain ma-
terial exhibiting a comparable RIN value was successfully
used for similar studies [40]. All samples were analyzed
using the GeneChip® Rhesus Macaque Genome Array
(Affymetrix®) that contains 52,024 rhesus probe sets to
enable gene expression studies of Macaca mulatta tran-
scriptome interrogating more than 47,000 transcripts.
The genomes of M. mulatta and M. fascicularis exhibit
a small genetic divergence of approximately 0.4% [41,42]
that presumably allows for the detection of homologue
transcripts with high specificity.

Raw data were quality checked and analyzed using
Affymetrix® proprietary analysis tools, a hierarchical
clustering was performed and a heat map was generated.
Then the signals were aligned to the annotation library
and a spreadsheet containing gene symbols, p-values
and expression fold changes was created. Microarray
data were submitted to Gene Expression Omnibus (GEO).
The bioinformatics analysis identified 300 probe sets that
were up- or down-regulated about twofold (≥ |1.95|). Be-
cause among them no candidate appeared using FDR
0.05, we chose as criteria an unadjusted p-value of ≤ 0.005
together with a fold change ≥ |2.0|. Additional file 1 lists
the resulting 86 probe sets that were then used to generate
the heat map shown in Figure 2.

Functional classification of differentially expressed genes
(DEGs)
We used the Ingenuity Pathways Analysis (IPA®, see sec-
tion: Availability of supporting data) to annotate genes
according to their functional relationships and to deter-
mine potential regulatory networks and pathways. Among
the 300 differentially expressed (about twofold, (≥ |1.95|)
probe sets identified, 105 were associated to mapped IDs;
53 of the latter were identified as network eligible genes,
while 86 were identified as function eligible genes. It
should be emphasized that the designation of functional
class in the present study is neither definitive nor exclu-
sive, as annotation of gene function is incomplete, and

Figure 2 Condition trees of the clustering analysis. The cluster analysis was performed using a hierarchical approach with the average
linkage-method (R and Partek® Software, Partek® Inc.): 86 probe sets showed a differential expression with FC ≥ 2. The color represents the level of
expression (red: up-regulation, blue: down-regulation) and the sample information is listed across the bottom. The names of the known genes
are indicated. More details on all genes are reported in Additional file 1.
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multifunctional gene products can be involved in several
cellular pathways. First, we identified key biological func-
tions and/or diseases that contain a disproportionately
high number of genes from the DEG list compared to the
total gene population from the microarray. The analysis
was started by identifying the top categories (p < 0.01) of
DEGs within three main classes. In the “Diseases and
Disorders” class the categories were cancer and develop-
mental disorder, while within the “Molecular and Cellular
functions” class most genes were involved in cellular de-
velopment and cell death/survival. The main categories
for the “Physiological System Development and Function”
class were tissue morphology as well as nervous system
development and function. As a second step, genes were
clustered in relation to the main pathways they belong to:
the top two canonical pathways in our DEG list were
LXR/RXR activation, which is associated with lipid metab-
olism and transport, and acute phase response signaling.

Identification of biologically relevant networks
To further investigate the global expression response to
BSE infection and to define interactions among the iden-
tified specific pathways containing the regulated genes,
potential networks of interacting DEGs were identified
using IPA®. All potential networks with score > 9 (a
score ≥ 3 was considered significant, p < 0.001) are listed
in Table 1 with information on network genes, score,
focus molecules and top functions associated with the
focus genes in each network. The highest ranked

network identified by IPA® was associated with tissue
morphology (specifically the determination of cell quan-
tity), developmental disorder and biological processes
controlling cell death and survival (Figure 3a). This net-
work contained genes that are known to be involved in
several neurological diseases and nervous system func-
tions, as shown in Figure 3b.

Validation of differentially expressed genes by RT-qPCR
To further confirm the array results using an independ-
ent and more sensitive technique, we decided to perform
RT-qPCR for a subset of differentially expressed genes.
This subset (Additional file 2) was selected in subse-
quent steps: first, among the 86 probe sets identified
during the microarray analysis (Additional file 1) we se-
lected the top 36 with fold change ≥ |2.5| and p ≤ 0.005.
Then, after realizing that many were not annotated or did
not have a known function, we extended the selection to
additional 29 probe sets having fold change ≥ |2.5| but
0.005 ≤ p ≤ 0.05; for the same reasons stated above, we ex-
tended the list of candidates one more time using as cri-
teria fold change ≥ |2.5| and p > 0.05 (24 candidates). At
this point, having still some cDNA available and only 13
feasible candidate transcripts, we added seven probe sets,
corresponding to 5 additional transcripts, selected among
the ones with a slightly lower fold change (FC ≥ 2 for at
least 1 probe) but possessing an interesting function as re-
vealed by the IPA® analysis or according to the literature.
Lastly, HBA2 was added to the list because of its tight

Table 1 List of 3 Ingenuity networks generated by mapping the focus genes that were differentially expressed between
non-infected and BSE-infected samples
ID Molecules in network Score Focus

molecules
Top functions

1 ACVR1C, AKR1D1, Alp, AMPK, Ap1, APOC1, Calcineurin protein(s), CARTPT, caspase,
CD3, CHI3L1, Creb, cytochrome C, DACH1, DLK1, ERK, ERK1/2, F13A1, Focal adhesion
kinase, GNRH1, HBA1/HBA2, HBB, HDL, hemoglobin, HEY2, HINT1, HIPK2, Ikk (family),
IL1, IRF3, Jnk, KDELR2, LDL, LGALS1, Mapk, MEF2C, Mek, MET, MT2A, N4BP1, NADPH
oxidase, NGFR, NR4A2, OTX2, P38 MAPK, p85 (pik3r), Pdgf (complex), PDGF BB, PI3K
(complex), PI3K (family), PIK3R3, Pkc(s), PLC gamma, PON3, Pro-inflammatory Cytokine,
Ras, SERPINA1, SERPINA3, Shc, SHOC2, SLCO1A2, Sos, STK4, TCF, TCR, TNFSF10, TTR,
TWIST1, Vegf, WSB1

71 35 Tissue Morphology, Cell Death and
Survival, Developmental Disorder

2 ABR, ACTL6B, ARMC6, ASB6, C10orf137, C6orf211, CAMKV, CHMP2A, CLIC4, CLPP,
CSNK1G3, CTBP2, DCLRE1A, DDX19B, DGKE, ECT2, FHL3, FLVCR1, GALNTL5, GLOD4,
HEATR6, HSP90AA1, HSPA12A, ITFG1, KLF3, KPNA6, MCTS1, MEIG1, METTL7B, MRPL44,
MXD3, MYBPC1, NCLN, NIPBL, NOL4, OSBPL10, PCBP3, PLEKHA8, PMM2, POLR2J,
PPAP2C, PRCP, PROSC, RAI2, SAP18, SCAND1, SEPT6, SGTB, SMARCC1, SMC3,
SPATA22, SPSB3, SRPK3, SSU72, STAG1, TATDN1, TESPA1, TM7SF3, TNK1, TNNI3K,
TP53BP1, TRAPPC2L, TRIP12, TUFM, TXNL4A, UBC, ZNF131, ZNF235, ZNF397, ZNF420

54 28 Developmental Disorder, Hereditary
Disorder, Hematological Disease

3 26 s Proteasome, ADCY, AKR1C1/AKR1C2, Akt, APP, ARL4C, Arntl-Clock, AVP, AVPR1B,
CACNA1B, CAMKV, CARTPT, CBLN2, CEACAM6, CLDN10, CLOCK, COX4I2, CTF1,
DNAJC12, endocannabinoid, estrogen receptor, FAM46A, FSH, GABRE, GNA15,
GPR158, GPX1, GPX2, GSK3A, Histone h3, HMGCR, HNF4A, HSPA12A, Insulin, JPH3,
KCNC3, KCNS1, LINGO1, LPAR1, LXN, MGAT2, miR-125b-5p (and other miRNAs w/seed
CCCUGAG), Mmp, MST1, NFkB (complex), Npff, OPN1LW, PDX1, PIK3R5, Pka, PKM,
PLC, Proinsulin, RAB39A, RAI2, RIOK2, RUFY3, SERPINA3, SMAD5, SMC4, SOX7, SYT17,
TCF19, Tnfrsf22/Tnfrsf23, TOR2A, tretinoin, trypsin, TXNL4B, ZBTB44, ZFHX3

36 21 Cellular Development, Neurological
Disease, Skeletal and Muscular System
Development and Function

Names in lowercase are genes/molecules that are not from the DEG list but are associated with some of them within pathways identified by Ingenuity Pathway
Knowledge Base (IPKB).
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Figure 3 (See legend on next page.)
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relationship with one of the previously selected genes of
the hemoglobin complex (HBB), as revealed in the top
ranking network from the IPA® analysis (Figure 3a). In
summary, we designed RT-qPCR assays for 19 genes
(Table 2) and most of them were already known to be in-
volved in neurodegenerative disorders or nervous system
regulation, even though very few had been implicated in
prion diseases. Among these, we were able to successfully
analyze only 11 (reported in Table 3 together with 2
housekeeping genes, ACTB and GAPDH), since the RT-
qPCR assays for the remaining 8 genes either showed too
low expression (CT > 35) or amplification of trace
amounts of residual gDNA. Furthermore, because several
gene names have changed since the first annotation was
done, updated names from the latest Affymetrix® anno-
tated library are provided in Additional file 2, together
with the old ones.

In order to achieve optimal RT-qPCR conditions we
performed titration of template and primers as well as
optimization of cycling conditions using human cDNA
from SH-SY5Y neuroblastoma cells (macaque cDNA
was scarce). To assess the specificity of the chosen oligo-
nucleotides prior to performing the quantitative assays,
some reactions were carried out using macaque cDNA
obtained from control animals to verify the correct
amplicon length. Two housekeeping genes, GAPDH and
ACTB [61], were used as reference genes to normalize
RT-qPCR data. Both genes were monitored across sam-
ples derived from infected and control macaques in
order to evaluate their expression stability, yielding very
similar results (Additional file 3).
At this point we performed the quantitative analysis and

in general we observed large intra-assay variability for
most genes across different samples, both for infected

(See figure on previous page.)
Figure 3 Identification of biologically relevant networks. (a) Top ranking network generated by mapping the focus genes that were
differentially expressed in infected animals. Pathway analysis based on the Ingenuity Pathway Knowledge Base (IPKB) is shown. Color shading
corresponds to the type of dysregulation: red for up-regulated and green for down-regulated genes according to the microarray fold change
calculation method. White open nodes are not from the list of 300 DEGs, but are transcription factors that are associated with the regulation
of some of these genes identified by IPKB. The shape of the node indicates the major function of the protein. A line denotes binding of the
products of the two genes, while a line with an arrow denotes 'acts on'. A dotted line denotes an indirect interaction. (b) Schematic representation
of nervous system-related functions for selected DEGs. The most regulated/interesting DEGs were selected and associated to known nervous system-
related functions according to the Ingenuity Pathway Knowledge Base (IPKB) software.

Table 2 Candidate genes for validation
Gene Accession number Known relation with PrP/nervous system References

AKR1C1 NM_001195574.1 Putative role in myelin formation [43]

HBB NM_001164428.1 Putative role in intraneuronal oxygen homeostasis, reduced in Alzheimer's and Parkinson's disease [44]

NCAM1 XM_001083697.2 PrP/N-CAM complexes found in prion infected N2a cells [45]

NR4A2 NM_001266910.2 Mutations related to dopaminergic dysfunction, including Parkinson schizophrenia and depression [46,47]

USP16 NM_001260999.2 Depletion of USP16 prevented ATMi from restoring transcription after DSB induction [48]

CALB1 XM_001085269.2 Plays a protective role in neurodegenerative disorders (depleted in HD) [49]

DACH1 XM_001082371.2 Required for normal brain development [50]

LXN NM_001266988.1 Marker for the regional specification of the neocortex [51]

PIK3R3 NM_001266826.1 Linked to β-amyloid plaque formation in AD brain [52]

SAP18 NM_001261034.1 Possibly related to AD [53]

SERPINA3 NM_001195350.1 Increased in schizophrenia, SNPs affecting onset and duration of AD [54,55]

TNFSF10 NM_001266034.1 Implicated in pathogenesis of MS (causing demyelination) [56]

HBA2 NM_001044724.1 Putative role in intraneuronal oxygen homeostasis, reduced in Alzheimer's and Parkinson's diseases [44]

GNRH1 NM_001195436.1 Key regulator of the reproductive neuroendocrine system in vertebrates [57]

IRF3 NM_001135797 Putative protective role against prion infection [58]

APOC1* AK240617.1 Binds to ApoE, risk factor for Alzheimer's disease [59]

TM7SF3 XM_001099269.2 - -

MYBPC1 XM_001091952.1 - -

TTR NM_001261679 Amyloid neuropathies, interaction with Aβ [60]

List of 19 identified genes selected on the basis of fold change value and known relevance for neurodegeneration. Because of very low signal (LXN, PIK3R3,
TNFSF10, GNRH1) or lack of reliable sequence data (CALB1, DACH1, TM7SF3, MYBPC1), only 11 genes (in bold) were successfully analyzed. *Macaca fascicularis transcript.
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(Additional file 4) and for control animals (Additional file 5).
Interestingly, we found a completely different expression
pattern for B6, the only orally-infected sample, compared
to the intracranially infected animals, except for a couple
of genes (AKR1C1, NCAM1), suggesting that the route
of infection might play a role in determining the gene
expression changes (Additional file 6). Therefore we de-
cided to rerun the microarray clustering analysis exclud-
ing this animal in order to verify its influence on the
final results. As shown in Additional file 7, the compari-
son of the clustering analysis with (panel A) and without
(panel B) the orally challenged animal B6 does not show
marked differences.
Using SYBR® Green-based RT-qPCR we confirmed

the statistically significant up-regulation of TTR (FC =
7.11), SERPINA3 (FC = 18.73) and APOC1 (FC = 6.33)
as well as the down-regulation of HBB (FC = 0.19) and

HBA2 (FC = 0.22), normalizing the data against GAPDH
(Figure 4). Similar results were obtained against ACTB
(Additional file 8). For all the other genes the RT-qPCR
results confirmed the regulation trend of the microarrays,
but without statistical significance (p-value > 0.05).
In order to confirm the SYBR® Green -based results

we performed an additional RT-qPCR analysis using
FAM-labeled TaqMan® probes, providing more sensitive
and specific detection signals for those genes that
showed a significant fold change. Using this approach
we confirmed the regulation of SERPINA3, APOC1,
HBB and HBA2, but not of TTR, which showed com-
parable trends in FC but lost statistical significance
(Figure 5). This may be due to higher variability among
triplicates, caused by CT values higher than 35 obtained
with the TaqMan® probe chemistry compared to SYBR®
Green detection system (Additional file 9).

Table 3 Genes analyzed by RT-qPCR
Gene Chromosome Primer sequence Amplicon length (bp) Accession number

ACTB 3 F: GTTGCGTTACACCCTTTCTTG 146 NM_001033084.1

R: CTGTCACCTTCACCGTTCC

GAPDH 11 F: CCTGCACCACCAACTGCTTA 74 NM_001195426.1

R: CATGAGTCCTTCCACGATACCA

AKR1C1 9 F: CCGCCATATTGATTCTGCTCAT 132 NM_001195574.1

R: TGGGAATTGCACCAAAGCTT

HBB 14 F: GTCCTCTCCTGATGCTGTTATG 102 NM_001164428.1

R: TTGAGGTTGTCCAGGTGATTC

NCAM1 14 F: GAGCAAGAGGAAGATGACGAG 150 XM_001083697.2

R: GACTTTGAGGTGGATGGTCG

NR4A2 12 F: CCAGTGGAGGGTAAACTCATC 145 NM_001266910.2

R: AGGAGAAGGCAGAAATGTCG

USP16 3 F: GCAGAACTTGTCACAAACACC 146 NM_001260999.2

R: CTAAAGTAAGAGGGCCTGGAG

SAP18 17 F: GGAAATGTACCGTCCAGCGA 109 NM_001261034.1

R: TGCCCTTCTTTCTAGCTTCTGG

SERPINA3 7 F: GCTGGGCATTGAGGAAGTCT 123 NM_001195350.1

R: GTGCCCTCCTCAGACACATC

HBA2 20 F: CGACAAGAGCAACGTCAAGG 126 NM_001044724.1

R: TCGAAGTGGGGGAAGTAGGT

IRF3 19 F: TGGGTTGTGTTTAGCAGAGG 90 NM_001135797

R: GAAAAGTCCCCAACTCCTGAG

APOC1* 19 F: TTCTGTCGATGGTCTTGGAAG 138 AK240617.1

R: CACTCTGTTTGATGCGGTTG

TTR 18 F: TCACTTGGCATCTCCCCATTC 114 NM_001261679

R: GGTGGAATAGGAGTAGGGGCT

Primers (F: forward and R: reverse) used for gene amplification, amplicon length and GenBank® accession numbers of the macaque cDNA sequences used for
primer design. All primers were designed according to the genome sequence of Macaca mulatta.
*Apolipoprotein C-I (APOC1) primers were designed according to the genome sequence of Macaca fascicularis because the Macaca mulatta mRNA sequence was
not annotated (TSA Macaca mulatta Mamu_450725, accession number: JV045807.1). Homology between the two sequences was 99%.
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Figure 4 SYBR® Green-based RT-qPCR validation of microarray results. Relative expression levels of 11 genes normalized against GAPDH in
BSE-infected cynomolgus macaques.

Figure 5 Comparison between SYBR® Green-based and TaqMan® probe-based results. TaqMan® (white) versus SYBR® Green-based (grey)
expression levels for each transcript. Both detection systems yielded similar results. Data are normalized against GAPDH. Similar results were
obtained with normalization against ACTB (data not shown).
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In general, we were able to confirm the results of
the array platform obtaining consistent fold change
values for all genes analyzed, even though we validated
with statistical significance using the specific TaqMan®
detection system only four of them: HBB, HBA2,
APOC1, SERPINA3 (see Table 4 for details on p-values
and FC).
In addition, dealing with animals whose brain mate-

rial isolation may be susceptible to blood contami-
nation, and as several works in the last few years have
shown the presence of active transcription within hu-
man red blood cells [62], we decided to analyze the
samples also for expression of some erythrocyte
markers, such as ALAS2 and RHAG, in order to verify
the reliability of the results related to the regulation of
both chains of hemoglobin (HBB and HBA2). Al-
though the array data for these genes suggested a neg-
ligible and virtually identical presence of blood in both
control and infected samples, RT-qPCR analysis revealed
a small blood contamination (CT ≥ 34 for ALAS2, CT ≥
36 for RHAG) within two samples, one control (CovD1)
and one infected sample (A4) (Additional file 10 and
Additional file 11). In light of these results, we performed
an additional gene expression analysis for HBB and
HBA2 excluding these two samples. As expected, we
obtained slightly different results (FC ~ 0.3 for HBB
and 0.2 for HBA2 using TaqMan® probes), but a rele-
vant down-regulation still persisted with statistical
significance.

Discussion
The precise mechanisms regulating the molecular pro-
cesses that lead to neurodegeneration in TSEs remain
unknown. Genomic approaches represent unbiased and
powerful tools to uncover the molecular basis of these
complex mechanisms and they may also contribute to
discover new biomarkers for these diseases. Several stud-
ies have presented genomic analyses of brain tissues
from animal models of TSE; a few of them involved the
mRNA profiling of cattle BSE [23,25-27] or ovine scrapie
[4,19-22,63] whereas the vast majority was performed on
rodent-adapted models of prion disease [13-18,64]. In
several of these prion-infected mice, genomic expression
profiles revealed the induction of oxidative and endoplas-
mic reticulum (ER) stress, activated ER and mitochondrial
apoptosis pathways as well as activated cholesterol biosyn-
thesis in the CNS of preclinical mice [64].
We report here the first large-scale transcriptome

analysis of the superior frontal gyrus of BSE-infected
macaques. This region was selected based on its histo-
pathological and functional relevance in the majority of
neurodegenerative disorders [65] and because it corre-
sponds to Brodmann areas 10 and 11, known to be in-
volved in strategic processes in memory recall, various
executive functions as well as in planning, reasoning,
and decision making [66], all processes known to be dis-
turbed by neurodegeneration. In general, RT-qPCR re-
sults confirmed the regulation trend seen in the
microarray platform for all the 11 genes analyzed with
very similar values using either GAPDH or ACTB for
normalization. For five of them (HBB, HBA2, TTR, SER-
PINA3, APOC1) we obtained statistical significance with
one or both qPCR detection systems utilized in this
study (SYBR® Green and TaqMan® probes) and some of
them were involved in the top two canonical pathways
identified during the functional classification reported in
the Results section: APOC1 and TTR are part of the
LXR/RXR activation pathway, which is associated with
lipid metabolism and transport, whereas SERPINA3 and
TTR are involved in the acute phase response signaling
pathway. All the other genes seemed to fall in the grey
zone of both platforms and therefore their FC values
could not be considered reliable.
When validating the array results by RT-qPCR, the

first evidence obtained was a marked variability among
the samples of the same group, either control or infected
animals. Unlike other animal models, nonhuman pri-
mates are usually not inbred. Therefore, differences in
the genomic background of the animals in our study
may have contributed to the variability in the time of
disease onset [33] and in gene expression within the
same group. Paradoxically, for some genes that resulted
strongly regulated (APOC1, HBB, HBA2) the variability
resulted even more accentuated within the control group

Table 4 RT-qPCR confirmation of microarray results
Gene symbol Microarray fold change RT-qPCR fold change

SYBR® Green TaqMan®

Min Max Mean FC P value FC P value

AKR1C1 2.3 2.9 2.5 1.7 0.433 2.4 0.235

HBB −2.2 −2.6 −2.4 0.2 0.020 0.3 0.021

NCAM1 −1.1 2.5 −0.3 0.5 0.160 - -

NR4A2 1.1 −2.1 −1.6 0.4 0.248 - -

USP16 −1.2 −5.5 −2.6 0.5 0.308 - -

SAP18 −1.2 −2.6 −1.7 0.8 0.393 - -

SERPINA3 10.0 16.0 13.0 18.7 0.0001 15.3 0.0005

HBA2 - - - 0.2 0.041 0.2 0.019

IRF3 2.0 2.1 2.0 1.3 0.123 - -

APOC1 4.3 - 4.3 6.3 0.047 6.8* 0.028*

TTR 3.1 - 3.1 7.1 0.025 5.9 0.076

Differential expression of selected genes analyzed by microarray and RT-qPCR.
For microarray analysis, the lowest (Min), the highest (Max) and the average
(Mean) fold change values of all the respective probes are shown. For RT-qPCR
analysis, fold change (FC) and statistical significance (p-value) for both SYBR®
Green and TaqMan® results are shown. In bold are the genes validated with
statistical significance. HBA2 was not present in the array chip.
*Normalization performed vs. ACTB only.
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if compared to that of the infected group. The experi-
mental and control animals were housed in different
animal facilities and this may have generated slight dif-
ferences in diet and/or housing conditions that may have
contributed to the above-mentioned effect.
We also reported a peculiar dysregulation pattern of

the orally infected sample (B6) for several genes, show-
ing a completely opposite trend compared to intracrani-
ally infected animals. Although no data are available for
PrPSc deposition in brain or other tissues of this animal,
the significantly longer incubation period (1950 days
compared to an average of 1100 days for the other ani-
mals) could suggest a correlation between the mRNA
expression profile and the route of infection [67]. None-
theless, this different pattern may be due to the age dif-
ference at the time of euthanasia: 7.1 +/− 0.7 years for
the intracranially infected macaques versus 9.9 years for
the orally infected animal.
Concerning hemoglobin (Hb), a few years ago its ex-

pression was unexpectedly discovered in mesencephalic
dopaminergic neurons of different mouse strains, as well
as in rats and humans affected by Parkinson's disease
(PD) and multiple sclerosis (MS) [68-70].
Hb expression is known to decrease in neurons of PD,

Alzheimer’s disease (AD), argyrophilic grain disease
(AGD) and dementia with Lewy bodies (DLB) brains
[44] as well as in the CNS of scrapie-infected mice
[13,14]. Also, it has been shown that Hb binds to Aβ en-
hancing its aggregation and co-localizes in amyloid pla-
ques in AD brains [71]. If we consider a possible similar
interaction with β-rich PrPSc isoforms in prion diseases,
we can hypothesize that in our animal model down-
regulated Hb fails to promote aggregation of the prion
protein, thus leading to a higher presence of toxic spe-
cies like oligomers [72]. Moreover, in PD it has been hy-
pothesized that Hb may act as oxygen storage molecule
in oligodendrocytes [68]. Oxygen would be later released
to neighboring neurons in hypoxia conditions to main-
tain the aerobic metabolism [68,69]. When down-
regulated, Hb would not be available for this function and
cells would be damaged by the defective oxygen homeo-
stasis. Our results indicated a strong down-regulation
(about 70-80% lower expression than normal) of both
HBB and HBA2 in symptomatic advanced-stage BSE-
infected macaques. The data were analyzed with a very
stringent procedure after excluding any major effect of po-
tential blood contamination, thus confirming the robust-
ness of the results.
Taken together, all these data indicate a possible gen-

eral role for hemoglobin in neurodegenerative disorders,
possibly related to an alteration of O2 homeostasis and
oxidative metabolism [68]. One point that needs further
investigation is whether this alteration (down-regulation)
occurs as an early/late consequence of the disease, or

may act as a susceptibility factor that influences the onset
of the pathology. Furthermore, future studies may investi-
gate the localization of the observed down-regulation in
terms of cell population: it could involve neurons as well
as astrocytes or microglia.
Another crucial molecule, APOC1, was significantly

up-regulated in BSE-infected brains samples compared
to controls. Apolipoprotein C-I, whose gene APOC1 is
part of the APOE/C-I/C-IV/C-II gene cluster, (apoC-I) is
a small 6.6 kDa component of lipoproteins (mainly
HDL) that is known to inhibit receptor-mediated lipo-
protein clearance, especially particles containing apoE
[73]. Increasing evidence indicates a role for this gene in
neurodegenerative disorders, especially in AD and MS
[74-76]. A disruption in lipid metabolism and signaling
is one of the early alterations apparent in many neurode-
generative diseases, including prion diseases [77,78]; in-
deed, cholesterol metabolites are investigated by a
number of studies aimed at the identification of early
biomarkers for neurodegenerative disorders [79-81]. Sev-
eral genes involved in cholesterol metabolism and lipid
biosynthesis have been found to be up-regulated in
preclinical scrapie-infected mice [64]. Since APOC1 is
able to activate cholesterol esterification via lecithin-
cholesterol acyltransferase [75], its up-regulation could
lead to an increase in cholesterol biosynthesis, consistent
with the concomitant presence of prion disease. In fact,
in vitro studies have shown that depletion of cellular
cholesterol reduces the conversion of PrPC to PrPSc [82]
and evidence exists also in AD, where altered cholesterol
metabolism has been found [83]. Hypercholesterolemia
has also been shown to influence amyloid precursor pro-
tein processing [84]. One explanation for altered choles-
terol homeostasis affecting prion disease development
could lie in the fact that PrP is localized in cholesterol-
rich lipid rafts [85].
SERPINA3, a serpin peptidase inhibitor involved in

acute phase response pathways, is another gene that we
found highly regulated in our animal model. It is exten-
sively reported to be regulated in other neurodegenera-
tive disease models and in particular it is well known to
interact with APP to promote amyloid plaque formation —
a hallmark of AD [86]. Indeed, increased levels of
SERPINA3 have been found in the brain and peri-
pheral blood of AD patients [87], mainly due to per-
sistent and almost chronic inflammation [88]. In prion
disease studies, SERPINA3 was found increased in brains
of scrapie-infected mice [77], in mice infected with RML
prior to clinical onset [89] as well as in urine and cerebro-
spinal fluid of CJD patients [90]. Being an acute phase
protein, its up-regulation is explained by the onset of an
inflammatory condition, particularly as a response of the
innate immune system [91]. Interestingly, two β-sheets of
SERPINA3 exhibit a polymorphism mimicking changes in
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the serpin structure that normally occur during the forma-
tion of its stable complex with the target proteinase. In
this conformation, SERPINA3 can bind Aβ, thus imposing
a β-strand conformation that upon dissociation leads to a
faster formation of fibrils [86]. Therefore, an intriguing hy-
pothesis may be envisioned in which PrP conversion into
β-sheet conformation can be assisted by SERPINA3,
which would accelerate the formation of toxic species like
PrP oligomers.
Transthyretin, a protein in the same pathway of acute

phase response as SERPINA3, was found to be up-
regulated at the transcription level in our BSE-infected
macaques according to the SYBR® Green assay. Even
though we were not able to confirm the statistical sig-
nificance using the TaqMan® assay, this gene seems to be
of interest. Indeed, TTR, carrier of the thyroid hormone
thyroxine (T4) in serum and CSF, is associated with
systemic amyloidosis in humans [92], but also with an
anti-amyloidogenic effect preventing Aβ deposition in
neuronal cell cultures [93]. Moreover, increased mRNA
and protein levels have been shown in neurons from the
AD mouse model ‘APP23’ and in human AD brain with
a neuroprotective role [94,95]. Even in prion models
TTR levels have been found strongly increased in the
cortex of scrapie-infected mice [15]. Our study now pro-
vides indication that up-regulation of TTR may also be
found in BSE-infected macaques, further reinforcing the
hypothesis of a common mechanism in AD and TSEs.
Taken together, these data may suggest innate immune
system activation and inflammatory response in these
diseases [96], leading to a sustained up-regulation of
both SERPINA3 and TTR genes simultaneously: SER-
PINA3 as inflammation effect, TTR as attempt to
neutralize the infectious agent preventing its deposition.
However, analysis of the microarray data did not reveal
relevant deregulation of other genes typically involved in
neuroinflammation and/or immune response, such as
cytokines and other mediators. Even though some au-
thors have reported alteration of these pathways [97], in
our array IL6, TNFα, GFAP and CD68 showed a fold
change < |2|, suggesting that inflammatory responses
may not be particularly severe in this model.
One last point that remains to be addressed is the ex-

pression of the prion protein gene itself (PRNP in
humans) upon infection. Because of shortage of cDNA,
we were not able to validate its levels in our samples.
Nevertheless, our microarray data did not identify any
changes between control and infected samples, at least
at the mRNA level. This is in agreement with findings
reported for BSE-infected cattle [3], but differs from the
situation in sporadic CJD patients who show reduced
mRNA expression [97]. Whether this disagreement is
related to the host or the infectious agent needs to be
explored.

Conclusions
To our knowledge, this is the first genome-wide expres-
sion study in the gyrus frontalis superior region of cyno-
molgus macaques inoculated with BSE. Using microarray
and RT-qPCR technologies we identified a gene signature
able to distinguish infected macaques from control ani-
mals. These results could be extremely helpful in under-
standing the progression of the disease, allowing for the
identification of some key players which, if not being the
cause of the onset, could be some of the target genes af-
fected by the disease. Therefore, after deeper investiga-
tions to validate these targets at the protein level and
confirm their specificity for prion diseases, they may be
exploited as potential biomarkers to set up pre-clinical
diagnostic tests.
In particular, our findings support the hypothesis of a

potential shared mechanism underlying the onset and
the development of all neurodegenerative disorders, as
the majority of our DEGs are known to be involved in
other diseases such as AD or PD. This is in concordance
with very recent data supporting the idea of a unifying
role of prions in these diseases in general and maybe a
prion-like behavior for most neurodegenerative disorders
[98]. Furthermore, some of the DEG transcripts we found
are present also in blood (hemoglobin, transthyretin, ser-
pin peptidase inhibitor) and among them hemoglobin ex-
hibited decreased expression throughout the entire course
of the infection, including preclinical time points, in
mouse models. Therefore, there is the intriguing possibil-
ity to employ these "readily available" biomarkers for diag-
nostic purposes, especially if additional studies will
confirm the expression level of the proteins encoded by
these DEGs in brain and/or blood tissue.
In general, our results suggest that, in order to identify

potential biomarkers and drug targets for prion diseases
and other neurodegenerative disorders, a combination of
various pathways has to be targeted, including oxygen
homeostasis, lipid metabolism and inflammation response.
In summary, large-scale transcriptome analyses of hu-

man TSEs are rare [97,99] and primate models are a
valid approach to better understand the mechanisms of
these fatal diseases. Even with all the limitations dis-
cussed above, our BSE-infected macaques are, to our
knowledge, the closest available model for human vCJD
and these results, obtained with an unbiased metho-
dology as the gene expression microarray technology,
are contributing to shed some light on the molecular
basis of TSEs as well as neurodegeneration as a whole.

Methods
Ethics statement
Ethics approval for the study was issued by the Lower
Saxony Ministry for consumer protection and food
safety (509.42502/08/07.98). Animal experimentation
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was performed in accordance with section 8 of the German
Animal Protection Law in compliance with EC Directive
86/609.

Samples
Samples were derived from six BSE-infected macaques,
Macaca fascicularis (A1 to A6) that were intracranially
inoculated with a single dose of 50 mg brain homoge-
nate (10% wt/vol) [33,37]. One cynomolgus macaque
(B6) was orally inoculated with the same material; inocu-
lation was performed per os, as single dose.
Brain material from five age- and sex-matched non-

infected cynomolgus macaques (CovA, CovB, CovC, CovD1,
CovD2) was obtained from Covance Laboratory Münster
GmbH and processed in an equivalent manner.

Tissue and RNA extraction
At autopsy of seven BSE-infected cynomolgus macaques at
advanced stage of disease and five non-infected control ani-
mals, one hemisphere of the brain was sliced dorso-ventrally
and snap-frozen on dry-ice plates. The gyrus frontalis superior
region was macroscopically identified on the frozen tissue and
removed via a biopsy stamp. Total RNA (RNA>200 bases)
was isolated by manually homogenizing the material with
micro pestles (Kisker Biotech GmbH) in TRIzol (Invitro-
gen). RNA isolation was performed according to the sup-
plier’s instructions. Following RNA isolation, a DNase I
digestion was performed using 1 unit of enzyme per μg
RNA (Fermentas) for 30 min at 37°C, and heat inactivated
for 5 min at 95°C followed by precipitation with Sodium
Acetate/Ethanol. RNA was checked for quantity and purity
on a Spectrophotometer 2000 (PEQLAB) and for integrity of
the 18S and 28S ribosomal bands by capillary electro-
phoresis using the 2100 Bioanalyzer (Agilent Technologies).

Immunoblot analysis
PK-treated (50 μg/mL for 1 hour at 37°C) and untreated
brain homogenates corresponding to 0.7 mg or 0.3 mg
brain tissue, respectively, were separated on 12% Bis/Tris
Acrylamide gels (NuPAGE, Invitrogen) and transferred
to nitrocellulose membranes (Protran, Schleicher &
Schüll, Germany). Detection of macaque PrPSc was per-
formed using the monoclonal anti-PrP antibody 11C6
and a Peroxidase conjugated anti-mouse IgG-antibody
(Sigma-Aldrich, Germany). Signal was visualized using a
chemiluminescent substrate (Super Signal West Pico,
Pierce) and high sensitivity films (Amersham). Densito-
metric analysis of PrPSc was performed using the Image
J program 1.37v.

Microarray analysis using the GeneChip® Rhesus Macaque
genome array
Samples were labeled using the GeneChip® 3’IVT Ex-
press Kit (Affymetrix®). Reverse transcription of RNA

was performed using 500 ng of total RNA to synthesize
first-strand cDNA. This cDNA was then converted into
a double-stranded DNA template for transcription. In
vitro transcription included a linear RNA amplification
(aRNA) and the incorporation of a biotin-conjugated
nucleotide. The aRNA was then purified to remove un-
incorporated NTPs, salts, enzymes, and inorganic phos-
phate. The labeled aRNA of each animal was fragmented
(50–100 bp) and hybridized to a GeneChip® Rhesus Ma-
caque Genome Array (Cat N° 900656; Affymetrix®). The
degree of fragmentation and the length distribution of
the aRNA were checked by capillary electrophoresis using
the Agilent 2100 Bioanalyzer (Agilent Technologies).
The hybridization was performed for 16 h at 1 × g

and 45°C in the GeneChip® Hybridization Oven 640
(Affymetrix®). Washing and staining of the arrays were
performed on the Gene Chip® Fluidics Station 450
(Affymetrix®) according to the manufacturer's recommen-
dations. The antibody signal amplification and washing
and staining protocol were used to stain the arrays with
streptavidin R-phycoerythrin (SAPE; Invitrogen). To amp-
lify staining, SAPE solution was added twice with a bio-
tinylated anti-streptavidin antibody (Vector Laboratories,
Burlingame, CA, USA) staining step in-between. Arrays
were scanned using the GeneChip® Scanner 3000 7G
(Affymetrix®).

Microarray data analysis
Intensity data from the CEL. files were imported to the
Partek® software including a quality control based on in-
ternal controls. All chips passed the quality control and
were analyzed using the Limma package [100] of Bio-
conductor [101,102] and the Partek® software. The
microarray data discussed in this paper were generated
conforming to the MIAME guidelines and are deposited
in the NCBI’s Gene Expression Omnibus (GEO) data-
base [103]. They are accessible through GEO series ac-
cession number GSE52436 (see section: Availability of
supporting data).
The microarray data analysis consisted of the following

steps: 1. quantile method normalization, 2. global clus-
tering and PCA-analysis, 3. fitting the data to a linear
model, 4. detection of differential gene expression and 5.
over-representation analysis of differentially expressed
genes. Quantile-normalization was applied to the log2-
transformed intensity values as a method for between-
array normalization to ensure that the intensities had
similar distributions across arrays.
For cluster analysis, we used a hierarchical approach

with the average linkage-method. Distances were mea-
sured as 1 - Pearson's Correlation Coefficient. The PCA
was performed using the princomp-function in the
Partek® software. To estimate the average group values
for each gene and assess differential gene expression, a
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simple linear model was fitted to the data, and group-
value averages and standard deviations for each gene
were obtained. To find genes with significant expression
changes between groups, empirical Bayes statistics were
applied to the data by moderating the standard errors of
the estimated values [100].
P-values were obtained from the moderated t-statistic

and corrected for multiple testing with the Benjamini–
Hochberg method [104]. The p-value adjustment guaran-
tees a smaller number of false positive findings by control-
ling the false discovery rate (FDR). For each gene, the null
hypothesis, that there is no differential expression between
degradation levels, was rejected when its FDR was lower
than 0.05. Because no candidates appeared using FDR
0.05, we made the selection using another p-value
(unadjusted p-value ≤ 0.005) and a fold change ≥ |2|.

Reverse transcription and RT-qPCR
Validation by quantitative reverse transcription real-time
PCR (RT-qPCR) was performed using gene-specific pri-
mer pairs. cDNA synthesis was accomplished using
100 ng RNA, 10 ng random hexamer primer, 2 mM
dNTPs, 0.5 U RNase inhibitor and 5 U reverse tran-
scriptase (Bioline) in 1× reaction buffer. For each sample
a negative control was carried along by omission of the
reverse transcriptase (−RT control).
The cDNA was diluted 1:10 prior to RT-qPCR. Ten ng

RNA equivalent was added to the reaction mix including
2× iQ™ SYBR® Green Supermix (Bio-Rad Laboratories,
Inc.), 400 nM of the corresponding forward and reverse
primer (Sigma), and quantified in technical triplicates on
an iQ5 Multicolor Real-Time PCR Detection System
(Bio-Rad Laboratories, Inc.). All primers used for RT-
qPCR are listed in Table 3.
After initial denaturation for 3 min at 95°C, 45 cy-

cles were performed at 95°C for 15 sec and 58°C for
1 min. Differential gene expression of candidates was
normalized to GAPDH and ACTB expression. –RT
controls were included in the plates for each primer
pair and sample. The relative expression ratio was
calculated using the ΔΔCT method [105,106]. Signifi-
cance was calculated with the unpaired student t-test
(p < 0.05). Melting curve analysis and gel electrophor-
esis of amplification products were performed for
each primer pair to verify that artificial products or
primer dimers were not responsible for the signals
obtained. Some results were further confirmed using
TaqMan® MGB probes and iQ™ Multiplex Powermix
(Bio-Rad Laboratories, Inc.). The primer sequences,
the reaction setup and the cycling conditions were
the same as described above.
The probe sequences used for the detection of specific

targets were:

GAPDH: 5’-FAM CTGGCCAAGGTCATCCATGA-3’;
ACTB: 5’-FAM-ACAAGATGAGATTGGCATGGC-3’;
HBB: 5’-FAM-AAGTGCTTGGTGCCTTTAGTGATGG-3’;
HBA2: 5’-FAM-TGGCGAGTATGGTGCGGAGG-3’;
SERPINA3: 5’-FAM-TTCCTGGCCCCTGTGATCCC-3’;
TTR: 5’-FAM-ATCGTTGGCTGTGAATACCACCTCTG-3’;
APOC1: 5’-FAM-TGGAGGACAAGGCTTGGGAAGTG-3’.

Availability of supporting data
The microarray data set supporting the results of this
article is available in the Gene Expression Omnibus
(GEO) repository, [http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?token=wnmjowqqhrcpzod&acc=GSE52436].
The DEGs were analyzed for their functions, pathways

and networks using Ingenuity Pathways Analysis-IPA®
[http://www.ingenuity.com/products/ipa/try-ipa-for-free].

Additional files

Additional file 1: List of 86 differentially expressed probe sets with
p values ≤ 0.005 and FC ≥ │2│. Probe ID, Gene Symbol, Gene Name and
RefSeq Transcript IDs annotation as of release 29 of the Affymetrix®
Rhesus Annotation library (01/July/09). P-values and fold changes are
reported for all 86 probe sets.

Additional file 2: List of 97 differentially expressed probe sets
selected as RT-qPCR candidates. Probe IDs and Previous Gene Symbol
annotation as of release 29 of the Affymetrix® Rhesus Annotation library
(01/July/09). Current Gene Symbol annotation as of the latest Affymetrix®
Rhesus Annotation library (release 32 - 09/June/11). Gene Name and
RefSeq Transcript IDs as of Ensembl release 72 (June 2013). Annotation
using alignment with the human genome has been performed (as stated
in the gene name column) for the most highly regulated probe sets with
unknown macaque annotation. P-values and fold changes are reported
for all genes.

Additional file 3: Evaluation of reference gene expression stability
across non-infected and BSE-infected samples. For each sample,
average values of absolute CTs (+/−SD) of triplicate wells for GAPDH
(grey) and ACTB (white) are shown.

Additional file 4: ΔCT values for all genes showing variability
among BSE-infected samples. ΔCT values (+/−SD) normalized against
GAPDH. Very similar results were obtained with normalization against
ACTB (data not shown).

Additional file 5: ΔCT values for all genes showing variability
among non-infected samples. ΔCT values (+/−SD) normalized against
GAPDH. Very similar results were obtained with normalization against
ACTB (data not shown).

Additional file 6: ΔΔCT values of selected genes in the infected
samples. ΔΔCT values (+/−SD) for HBB, NR4A2, NCAM1, USP16 and
AKR1C1 normalized against GAPDH in the orally-infected animal B6 (white)
compared to intracranially infected samples A1-A6 (grey). Only 5 genes were
analyzed for animal B6 due to shortage of cDNA.

Additional file 7: Cluster analysis. Cluster analysis was performed using
a hierarchical approach with the average linkage-method for all animals
(panel A) or excluding the orally infected one, B6 (panel B).

Additional file 8: SYBR® Green-based RT-qPCR validation of microarray
results. Relative expression levels of 11 genes in BSE-infected cynomolgus
macaques normalized against ACTB as reference gene.

Additional file 9: Comparison between SYBR® Green -based and
TaqMan® probe-based results for TTR. Average values of absolute CTs
(+/− SD) of triplicate wells for TTR obtained with SYBR® Green (grey) and
TaqMan® probe (white) detection methods in
BSE-infected samples are shown.
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Additional file 10: RT-qPCR analysis of blood specific marker RHAG.
CT values for the erythrocyte marker RHAG were monitored across
BSE-infected (solid fill) and non-infected (dotted fill) samples. Human
blood cDNA was used as positive control (gradient fill). Note that for
almost all the samples CT values were ≥ 35 therefore indicating a very
low expression level. Primer sequence (3’-5’): RHAG: F = AGGCAAGCTCAA
CATGGTTC, R = GGGTGAATTGCCATATCCGC.

Additional file 11: RT-qPCR analysis of blood specific marker
ALAS2. CT values for the erythrocyte marker ALAS2 were monitored
across BSE-infected (solid fill) and non-infected (dotted fill) samples.
Human blood cDNA was used as positive control (gradient fill). Note that
for almost all the samples CT values were≥ 35 therefore indicating a very
low expression level. Primer sequence (3’-5’): ALAS2: F = TCCCTTCA
TGCTGTCGGAAC, R = GAGCTAGGCAGATCTGTTTTGAA.
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