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Abstract

The experimental evidences of neutrino oscillation, caused by non-zero neutrino masses and
neutrino mixing, which were obtained in the experiments with solar, atmospheric, accel-
erator and reactor neutrinos, opened new field of research in elementary particle physics.
The principal goal is to understand at fundamental level the mechanism giving rise to
non-zero neutrino masses and neutrino mixing. The open fundamental questions include
those of the nature — Dirac or Majorana — of massive neutrinos, of the type of spectrum
neutrino masses obey, of the status of CP symmetry in the lepton sector, of the absolute
scale of neutrino masses, and more generally, of understanding the origin of flavour in
particle physics. The smallness of neutrino masses suggests that their values are related
to the existence of a new fundamental mass (energy scale) in particle physics, i.e., to New
Physics beyond that predicted by the Standard Theory. The New Physics can manifest
itself in the Majorana nature of massive neutrinos, in the existence of sterile neutrinos with
masses at the eV scale, in the existence of new non-standard interactions (NSI) of neutri-
nos, etc. The present Ph.D. thesis explores aspects of this neutrino-related New Physics.
More specifically, we first employ the discrete flavour symmetry approach i) to construct
a self-consistent theory of lepton flavour, ii) to understand the pattern of neutrino mixing
and to describe it quantitatively, and iii) to derive predictions for leptonic Dirac CP viola-
tion. Next we investigate the effects of existence of sterile neutrinos with a Majorana mass
at the eV scale on the predictions for the neutrinoless double beta decay effective Majorana
mass. Further we present a possible interpretation of the results of the reactor neutrino and
accelerator experiments (Daya Bay, RENO, Double Chooz and T2K) on the reactor angle
θ13 in the neutrino mixing matrix in terms of non-standard interactions (NSI) of neutrinos.
We also analyse the signatures of sterile neutrinos in reactor antineutrino experiments and,
in particular, constrain the active-sterile mixing angle using the high-precision data of the
Daya Bay reactor experiment. We finally investigate the impact of sterile neutrinos on
precision measurements of the standard neutrino oscillation parameters in the upcoming
neutrino experiment JUNO.
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CHAPTER 1

Introduction

1.1 Motivations

There have been remarkable discoveries in neutrino physics in the last 18 years, marked
by the 2015 Nobel prize for Physics to Dr. T. Kajita and Prof. A. McDonald for the
discovery of neutrino oscillations — transitions in flight between different types (“flavours")
of neutrinos, induced by nonzero neutrino masses and non-trivial neutrino mixing. An
impressive number of experiments has not only provided compelling evidence for neutrino
oscillations, but neutrino mass and mixing parameters, responsible for the oscillations,
have also been measured with a relatively high precision (see, e.g., [1]). In spite of this
remarkable progress, one has to admit that at present we are still completely ignorant about
the fundamental aspects of neutrino mixing. We have no information about the nature
— Dirac or Majorana — of massive neutrinos. We do not know what kind of spectrum
— with normal or inverted ordering — the neutrino masses obey. The absolute neutrino
mass scale is still unknown; it follows from the current data only that the neutrino masses
should be smaller than roughly 1 eV. And at present we have no information about the
status of the CP symmetry in the lepton sector. Is the observed pattern of neutrino mixing
related to the existence of a new fundamental symmetry of particle interactions? Is there
any relation between neutrino mixing and quark mixing? Is the CP symmetry violated by
the neutrino mixing? What is the mechanism at the origin of non-zero neutrino masses
and mixing? What is the role of neutrinos in the unification of forces and in the mechanism
which generates the observed baryon asymmetry in the Universe?

The enormous disparity between the neutrino masses and the masses of the charged
leptons and quarks suggests that the existence of nonzero neutrino masses is related to a
new fundamental mass scale in Particle Physics, i.e., a New Physics beyond that predicted
by the Standard Theory of particle interactions. This hypothetical neutrino-related New
Physics can manifest itself, in particular, i) in the Majorana nature of massive neutrinos,
and/or ii) in the existence of more than three neutrinos with masses at the eV scale or
heavier scales, and/or iii) in the existence of new non-standard neutrino interactions (NSI),
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CHAPTER 1. INTRODUCTION

iv) in the existence of new particles (heavy Majorana neutrinos, doubly charged Higgs
scalar, etc.) at the TeV scale, etc.

The present Ph.D. thesis is devoted to the problem of understanding at fundamental
level the mechanism giving rise to neutrino masses and mixing and to the non-conservation
of the individual, and possibly of the total lepton charges. This includes, in particular,
understanding the origin of the patterns of neutrino mixing and masses suggested by the
data. Different types of symmetries (discrete, combination of discrete and GUT symme-
tries, etc.) have been employed to try to understand the pattern of neutrino mixing, and
the phenomenological consequences in each case have been investigated. We have analysed
the possibility that the observed patterns of neutrino mixing and of neutrino mass squared
differences, measured in neutrino oscillation experiments, are related to the existence of a
new fundamental discrete flavour symmetry in the lepton sector of particle interactions.
More specifically, we have constructed a self-consistent model with T ′ lepton flavor symme-
try, which allows to describe quantitatively the neutrino mixing and predicts i) the value
of the absolute neutrino mass scale, ii) maximal Dirac CP violation in the lepton sector,
and iii) the values of the Majorana phases in the neutrino mixing matrix.

Performing these studies we have found that in a large class of theories of neutrino
masses and lepton mixing, based on the idea of existence of (approximate) discrete flavour
symmetry in the lepton sector, the value of the Dirac CP violation phase in the Pontecorvo,
Maki, Nakagawa and Sakata (PMNS) neutrino mixing matrix U is related to (determined
by) the values of the lepton mixing angles. It follows from these studies, in particular,
that the measurement of the Dirac phase in the PMNS mixing matrix, together with an
improvement of the precision on the lepton mixing angles, can provide unique information
about the possible existence of new fundamental symmetry in the lepton sector of particle
interactions. This conclusion reinforces the importance of the experiments searching for
CP violation in neutrino oscillations, as well as of the experiments aiming at improving
further the precision of measurements of the lepton mixing angles.

As we have already noticed, the smallness of the neutrino masses suggests the exis-
tence of a new fundamental mass scale in Particle Physics, i.e., a New Physics beyond that
predicted by the Standard Theory of particle interactions. And as we have indicated, this
hypothetical neutrino-related New Physics can manifest itself, in particular, i) in the Majo-
rana nature of massive neutrinos, and/or ii) in the existence of more than three neutrinos
with masses at the eV scale, and/or iii) in the existence of new non-standard neutrino
interactions (NSI), etc.

We have investigated various physics aspects of these three possible manifestations of
the neutrino related New Physics. More specifically, we have studied in detail the effects of
the existence of one or two additional massive neutrinos with masses at the eV scale on the
predictions for the effective Majorana mass in neutrinoless double beta decay — the only
experimentally feasible process, the studies of which have the potential of establishing that
the massive neutrinos are Majorana particles. We have also investigated the effects of the
existence of new neutrino interactions on the interpretation of the recent intriguing results
of the long baseline T2K experiment with accelerator neutrinos, which, when combined
with the results of the Daya Bay reactor antineutrino experiment, lead to an indication
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CHAPTER 1. INTRODUCTION

that the Dirac CP violation phase in the PMNS neutrino mixing matrix has a value close
to 270 degrees. We have shown, in particular, that these data could be interpreted as an
indication for existence of NSI (new non-standard neutrino interactions). Future experi-
ments searching for CP violation and/or NSI effects in neutrino oscillations will certainly
provide a critical test of the possible NSI effects discussed in our studies. We have also
investigated the signatures of sterile neutrinos in reactor antineutrino experiments, in par-
ticular, constraining the active-sterile mixing angle using the high-precision data of the
Daya Bay reactor experiment. And we have analysed the impact of sterile neutrinos on
precision measurements of the standard neutrino oscillation parameters and the neutrino
mass hierarchy.

1.2 Three neutrino mixing

All compelling data on neutrino masses, mixing and oscillations are compatible with the
existence of mixing of three light neutrinos νi, i = 1, 2, 3, with masses mi ∼< 1 eV, in the
weak charged lepton current (see, e.g., [1]). In the widely used standard parametrisation [1],
U is expressed in terms of the solar, atmospheric and reactor neutrino mixing angles θ12,
θ23 and θ13, respectively, and one Dirac — δ, and two Majorana [2] — β1 and β2, CP
violation phases:

U = V (θ12, θ23, θ13, δ)Q(β1, β2) , (1.2.1)

where

V =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
− i δ

0 1 0
−s13e

i δ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 , (1.2.2)

or equivalently

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.2.3)

and we have used the standard notation cij ≡ cos θij, sij ≡ sin θij, 0 ≤ θij ≤ π/2, 0 ≤ δ ≤
2π. The matrix Q contains the two physical Majorana CP violation (CPV) phases:

Q = Diag(e− iβ1/2, e− iβ2/2, 1) . (1.2.4)

The parametrization of the phase matrix Q in Eq. (1.2.4) differs from the standard one [1]
Q = Diag(1, eiα21/2, eiα31/2), where

U = V Q , Q = diag
(

1, ei
α21
2 , ei

α31
2

)
. (1.2.5)

Obviously, one has α21 = (β1 − β2) and α31 = β1. In the case of the seesaw mechanism
of neutrino mass generation the Majorana phases β1 and β2 (or α21 and α31) vary in the
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interval [3] 0 ≤ β1,2 ≤ 4π 1. If CP invariance holds, we have δ = 0, π, 2π, and [5]
β1(2) = k(′) π, k(′) = 0, 1, 2, 3, 4.

The data on neutrino oscillation allowed to determine the angles θ12, θ23 and θ13 and
the two neutrino mass squared differences ∆m2

21 and ∆m2
31 (or ∆m2

32), which drive the
observed oscillations involving the three active flavour neutrinos and antineutrinos, νl and
ν̄l, l = e, µ, τ , with a relatively high precision [6, 7]. In Table 1.1 we give the values of the
3-flavour neutrino oscillation parameters as determined in the global analysis performed
in [6].

As is well known, depending on the sign of ∆m2
31(2), which cannot be fixed using the

presently available neutrino oscillation data, two types of neutrino mass spectrum are
possible:
i) spectrum with normal ordering (NO): m1 < m2 < m3, ∆m2

31 > 0, ∆m2
21 > 0, m2(3) =

(m2
1 + ∆m2

21(31))
1
2 ;

ii) spectrum with inverted ordering (IO): m3 < m1 < m2, ∆m2
32 < 0, ∆m2

21 > 0, m2 =

(m2
3 + ∆m2

23)
1
2 , m1 = (m2

3 + ∆m2
23 −∆m2

21)
1
2 .

Depending on the value of the lightest neutrino mass, min(mj), the neutrino mass spectrum
can be:
a) Normal Hierarchical (NH): m1 � m2 < m3, m2

∼= (∆m2
21)

1
2 ∼= 8.68 × 10−3 eV, m3

∼=
(∆m2

31)
1
2 ∼= 4.97× 10−2 eV; or

b) Inverted Hierarchical (IH): m3 � m1 < m2, with m1,2
∼= |∆m2

32|
1
2 ∼= 4.97× 10−2 eV; or

c) Quasi-Degenerate (QD): m1
∼= m2

∼= m3
∼= m0, m2

j � |∆m2
31(32)|, m0 ∼> 0.10 eV,

j = 1, 2, 3.
The current data are compatible with all different types of neutrino mass spectrum

listed above.
An inspection of Table 1.1 shows, in particular, that although θ13 6= 0, θ23 6= π/4

and θ12 6= π/4, the deviations from these values are relatively small, in fact we have
sin θ13

∼= 0.16� 1, π/4−θ23
∼= 0.11 and π/4− θ12

∼= 0.20, where we have used the relevant
best fit values in Table 1.1. More recent results from global fit of neutrino oscillation data,
which we will use in Chapter 3, are given in ref. [8] (for a similar analysis see also [9]). The
best fit values and 3σ allowed ranges of sin2 θ12, sin2 θ23 and sin2 θ13 found in [8] read:

(sin2 θ12)BF = 0.308 , 0.259 ≤ sin2 θ12 ≤ 0.359 , (1.2.6)

(sin2 θ23)BF = 0.437 (0.455) , 0.374 (0.380) ≤ sin2 θ23 ≤ 0.626 (0.641) , (1.2.7)

(sin2 θ13)BF = 0.0234 (0.0240) , 0.0176 (0.0178) ≤ sin2 θ13 ≤ 0.0295 (0.0298) , (1.2.8)

where the values (values in brackets) correspond to neutrino mass spectrum with normal
ordering (inverted ordering), denoted further as NO (IO) spectrum.

The status of CP symmetry in the lepton sector is still unknown. The Dirac phase δ
1The interval beyond 2π, 2π ≤ β1,2 ≤ 4π, is relevant, e.g., in the calculations of the baryon asymmetry

within the leptogenesis scenario [3], in the calculation of the neutrinoless double beta decay effective
Majorana mass in the TeV scale version of the type I seesaw model of neutrino mass generation [4], etc.
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Parameter best-fit (±1σ) 3σ

∆m2
21 [10−5 eV2] 7.54+0.26

−0.22 6.99 - 8.18
|∆m2

31| (NO) [10−3 eV2] 2.47+0.06
−0.10 2.19 - 2.62

|∆m2
32| (IO) [10−3 eV2] 2.46+0.07

−0.11 2.17 - 2.61
sin2 θ12 (NO or IO) 0.307+0.018

−0.016 0.259 - 0.359
sin2 θ23 (NO) 0.386+0.024

−0.021 0.331 - 0.637
(IO) 0.392+0.039

−0.022 0.335 - 0.663
sin2 θ13 (NO) 0.0241+0.0025

−0.0025 0.0169 - 0.0313
(IO) 0.0244+0.0023

−0.0025 0.0171 - 0.0315

Table 1.1: The best-fit values and 3σ allowed ranges of the 3-flavour neutrino oscillation
parameters derived from a global fit of the current neutrino oscillation data (from [6]). The
3σ allowed range for θ23 takes into account the statistical octant degeneracy resulting from
the analysis. If two values are given, the upper one corresponds to neutrino mass spectrum
with normal hierarchy (NO) and the lower one to spectrum with inverted hierarchy (IO)
(see text for further details).

in the neutrino mixing matrix can cause CP violating effects in neutrino oscillations, i.e.,
a difference between the probabilities of νl → νl′ and ν̄l → ν̄l′ oscillations in vacuum [10]
and [2], P (νl → νl′) and P (ν̄l → ν̄l′), l 6= l′ = e, µ, τ . The magnitude of CP violation
(CPV) effects is determined, in particular, by the rephasing invariant associated with the
Dirac phase present in the neutrino mixing matrix [11]:

JCP = Im
{
U∗e1U

∗
µ3Ue3Uµ1

}
=

1

8
sin δ sin 2θ13 sin 2θ23 sin 2θ12 cos θ13 . (1.2.9)

There exist hints from the current data that δ ∼= 3π/2 (see, e.g., [12]). If this result on δ
will be confirmed by future data, we will have JCP

∼= −0.035, where we used the best fit
values of θ12, θ23 and θ13. Such a relatively large value of |JCP| will allow to establish Dirac
violation of the CP symmetry in the lepton sector at high confidence level in the future
planned experiments (DUNE [13,14], T2HK [15]).

If the neutrinos with definite masses νi, i = 1, 2, 3, are Majorana particles, the 3-
neutrino mixing matrix contains two additional Majorana CPV phases [2]. However, the
flavour neutrino oscillation probabilities P (νl → νl′) and P (ν̄l → ν̄l′), l, l′ = e, µ, τ , do
not depend on the Majorana phases [2,16]. The Majorana phases can play important role
in processes which are characteristic of the Majorana nature of massive neutrinos and in
which the total lepton charge changes by two units, |∆L| = 2. A widely known example
of such process is neutrinoless double beta decay [17–20]

(A,Z)→ (A,Z + 2) + e− + e−, (1.2.10)

of even-even nuclei 48Ca, 76Ge, 82Se, 100Mn, 116Cd, 130Te, 136Xe, 154Nd. At present this
is the only |∆L| = 2 process, the experimental searches of which have reached sensitivity
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that might allow to observe it if it is triggered by the exchange of the light neutrinos νj
(see, e.g., refs. [19–21]).

Our interest in the CPV phases present in the neutrino mixing matrix is stimulated
also by the intriguing possibility that the Dirac phase and/or the Majorana phases in
UPMNS can provide the CP violation necessary for the generation of the observed baryon
asymmetry of the Universe [22,23].

Data on the absolute ν mass scale from the tritium β-decay experiments performed at
Mainz and Troitsk show that (see, e.g., [24–28]):

m(νe) ≤ [2.1, 2.3] eV/c2 at 95% confidence level. (1.2.11)

We have m(νe) ∼= m{1,2,3} for the QD spectrum. These limits have been derived analysing
the end point of the spectrum of the electrons of the tritium β-decay process. The upcoming
3H β−decay experiment KATRIN is planned to have ∼ 10 times better sensitivity at 90%
confidence level [29].

In what concerns the combined cosmological limits on the mass of neutrinos, they
depend on the model and the data used as input in the analysis. The Planck collaboration
has derived the following bounds on the sum of neutrino masses [30]:∑

i

mνi ≤ 0.23 eV/c2 at 95% confidence level (Planck+WP+BAO). (1.2.12)

The sensitivity to the sum of neutrino masses of the cosmological data is expected to be
improved by one order of magnitude by the EUCLID mission [31,32].

1.3 Neutrinoless double beta decay

In (ββ)0ν-decay, and within the reference 3-neutrino mixing scheme, two neutrons of the ini-
tial nucleus (A,Z) transform by exchanging virtual Majorana neutrinos ν1,2,3 into two pro-
tons of the final state nucleus (A,Z+2) and two free electrons. The corresponding (ββ)0ν-
decay amplitude has the form (see, e.g., refs. [17, 19]): A((ββ)0ν) = G2

F 〈m 〉M(A,Z),
where GF is the Fermi constant, 〈m 〉 is the (ββ)0ν-decay effective Majorana mass and
M(A,Z) is the nuclear matrix element (NME) of the process. The (ββ)0ν-decay effective
Majorana mass 〈m 〉 contains all the dependence of A((ββ)0ν) on the neutrino mass and
mixing parameters. The expression for |〈m〉| (see, e.g., [17–19]), when the (ββ)0ν-decay is
induced by the exchange of the three light Majorana neutrinos ν1, ν2, ν3, has the form:

|〈m〉| =
∣∣∣∣∣

3∑
i=1

miU
2
ei

∣∣∣∣∣
=
∣∣m1 cos2 θ12 cos2 θ13 +m2 sin2 θ12 cos2 θ13e

iα21 +m3 sin2 θ13e
i(α31−2δ)

∣∣ , (1.3.1)

m1,2,3 being the light Majorana neutrino masses. The effective Majorana mass |〈m〉| is a
function of the absolute neutrino mass scale (or equivalently of min(mj)), of the type of
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spectrum of neutrino masses obey and of the Majorana phase α21 and the Majorana-Dirac
phase difference (α31 − 2δ).

Using the values of the neutrino oscillation parameters and their 3σ allowed ranges one
finds that [21] (see also, e.g., [1,33]) |〈m 〉(3ν)| ∼< 0.005 eV in the case of 3-neutrino mass spec-
trum of NH type, while if the spectrum is of the IH type one has [33] 0.014 eV ∼< |〈m 〉(3ν)|
∼< 0.050 eV.

The current experimental limits on |〈m〉| are in the range of (0.1 − 0.7) eV. Most
importantly, a large number of experiments of a new generation aim at sensitivity to
|〈m〉| ∼ (0.01 − 0.05) eV (for a detailed discussion of the current limits on |〈m〉| and of
the currently running and future planned (ββ)0ν-decay experiments and their prospective
sensitivities see, e.g., the recent review article [20]).

1.4 Sterile neutrinos at the eV scale

A look at Table 1.1 makes evident that neutrino physics has entered the phase of preci-
sion measurements. With the future upcoming data, the focus is now to determine the
missing fundamental parameters such as the neutrino mass ordering, the leptonic Dirac
CP-violating phase, and the absolute neutrino mass scale. In addition to the standard neu-
trino parameters, theoretical and phenomenological investigations of beyond-the-Standard-
Model scenarios as sub-leading effects have also full attention. Such scenarios include non-
standard neutrino interactions, unitarity violation, CPT and Lorentz invariance violation,
and models with sterile neutrinos.

Sterile neutrinos, or strictly speaking fermionic SM singlets, are even more elusive than
ordinary active neutrinos, since their interaction with matter, if they exist, should be much
weaker than the weak interaction of active (flavour) neutrinos. However, sterile neutrinos
could mix with active neutrinos and can have a Majorana mass term, which calls for physics
beyond the Standard Model.

At present there are a number of hints of existence of light sterile neutrinos with masses
at the eV scale. They originate from the re-analyses of the short baseline (SBL) reactor
neutrino oscillation data using newly calculated fluxes of reactor ν̄e, which show a pos-
sible “disappearance” of the reactor ν̄e (“reactor neutrino anomaly”), from the results of
the calibration experiments of the Gallium solar neutrino detectors GALLEX and SAGE
(“Gallium anomaly”) and from the results of the LSND and MiniBooNE experiments (for
a summary of the data and complete list of references see, e.g., [34–41]). The evidences for
sterile neutrinos from the different data are typically at the level of up to approximately
3σ, except in the case of the results of the LSND experiment which give much higher C.L.

Significant constraints on the parameters characterising the oscillations involving sterile
neutrinos follow from the negative results of the searches for νµ → νe and/or ν̄µ → ν̄e
oscillations in the KARMEN [42], NOMAD [43] and ICARUS [44] experiments, and from
the nonobservation of effects of oscillations into sterile neutrinos in the solar neutrino
experiments and in the studies of νµ and/or ν̄µ disappearance in the CDHSW [45], MINOS
[46] and SuperKamiokande [47] experiments.
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Constraints on the number and masses of sterile neutrinos are provided by cosmological
data. The recent Planck results, in particular, on the effective number of relativistic degrees
of freedom at recombination epoch Neff, can be converted into a constraint on the number
of (fully thermalised) sterile neutrinos [48] (see also, e.g., [49, 50] and references quoted
therein). The result one obtains depends on the model complexity and the input data
used in the analysis. Assuming the validity of the Λ CDM (Cold Dark Matter) model and
combining the i) Planck and WMAP CMB data, ii) Planck, WMAP and Baryon Acoustic
Oscillation (BAO) data, iii) Planck, WMAP, BAO and high multipole CMB data, for the
best fit value and 95% C.L. interval of allowed values of Neff it was found [48]: i) 3.08,
(2.77 - 4.31), ii) 3.08, (2.83 - 3.99), ii) 3.22, (2.79 - 3.84). The prediction in the case of three
light (active) neutrinos reads Neff = 3.046. The quoted values are compatible at 2σ with
the existence of extra radiation corresponding to one (fully thermalised) sterile neutrino,
while the possibility of existence of two (fully thermalised) sterile neutrinos seems to be
disfavored by the available cosmological data. In what concerns the combined cosmolog-
ical limits on the mass and number of sterile neutrinos, they depend again on data used
as input in the analysis: in the case of one fully thermalised sterile neutrino, the upper
limits at 95% C.L. are typically of approximately 0.5 eV, but is relaxed to 1.4 eV if one
includes in the relevant data set the results of measurements of the local galaxy cluster
mass distribution [51]. The existence of one sterile neutrino with a mass in the 1 eV range
and couplings tuned to explain the anomalies described briefly above would be compatible
with the cosmological constraints if the production of sterile neutrinos in the Early Uni-
verse is suppressed by some non-standard mechanism (as like as large lepton asymmetry,
see, e.g., [52]), so that Neff < 3.8 [51].

The bounds on Neff and on the sum of the light neutrino masses will be improved by
current or forthcoming observations. For instance, the EUCLID survey [31] is planned to
determine the sum of neutrino masses with a 1σ uncertainty of ∼ 0.01 eV, combining the
EUCLID data with measurements of the CMB anisotropies from the Planck mission. This
would lead to strong constrains on extra sterile neutrino states.

Two possible “minimal” phenomenological models (or schemes) with light sterile neu-
trinos are widely used in order to explain the reactor neutrino and Gallium anomalies, the
LSND and MiniBooNE data as well as the results of the negative searches for active-sterile
neutrino oscillations: the so-called “3 + 1” and “3 + 2” models, which contain respectively
one and two sterile neutrinos (right-handed sterile neutrino fields). The latter are as-
sumed to mix with the 3 active flavour neutrinos (left-handed flavour neutrino fields) (see,
e.g., [53, 54]). Thus, the “3 + 1” and “3 + 2” models have altogether 4 and 5 light massive
neutrinos νj, which in the minimal versions of these models are Majorana particles. The
additional neutrinos ν4 and ν4, ν5, should have masses m4 and m4, m5 at the eV scale (see
further). It follows from the data that if ν4 or ν4, ν5 exist, they couple to the electron and
muon in the weak charged lepton current with couplings Uek and Uµk, k = 4; 4, 5, which
are approximately |Uek| ∼ 0.1 and |Uµk| ∼ 0.1. The hypothesis of existence of light sterile
neutrinos with eV scale masses and the indicated charged current couplings to the electron
and muon will be tested in a number of experiments with reactor and accelerator neutrinos,
and neutrinos from artificial sources, some of which are under preparation and planned to
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start taking data already this year (see, e.g., [34] for a detailed list and discussion of the
planned experiments).

It was noticed in [55,56] and more recently in [57–59] that the contribution of the addi-
tional light Majorana neutrinos ν4 or ν4,5 to the neutrinoless double beta ((ββ)0ν-) decay
amplitude, and thus to the (ββ)0ν-decay effective Majorana mass |〈m〉| (see, e.g., [17–19]),
can change drastically the predictions for |〈m〉| obtained in the reference 3-flavour neu-
trino mixing scheme, |〈m 〉(3ν)|. We recall that the predictions for |〈m 〉(3ν)| depend on the
type of the neutrino mass spectrum [18, 33]. The three light Majorana neutrino exchange
predictions for |〈m〉| (see Section 1.3) are significantly modified, e.g., in the 3+1 scheme
due to the contribution of ν4 to |〈m〉| [57]. Now |〈m〉| in the NH case satisfies |〈m〉| ≥ 0.01
eV and can lie in the interval (0.01 − 0.05) eV, and we can have |〈m〉| ∼< 0.005 eV if the
3-neutrino mass spectrum is of the IH type.

From a theoretical point of view, a lot of novel models have been constructed with the
aim of embedding sterile neutrinos in a more fundamental framework. Such possibilities
include models of extra dimensions with exponentially suppressed sterile neutrino masses,
see for instance Ref. [60,61]. A model with slightly-broken flavor symmetry can generate a
neutrino with much smaller mass than the masses of other two, allowed by the symmetry.
This mechanism has been proposed in Refs. [62, 63] to generate seesaw neutrinos at the
keV mass scale, which can play the role of dark matter. While the commonly studied flavor
models with non-Abelian discrete symmetries cannot easily produce a non-trivial hierarchy
between fermion masses, the Froggatt–Nielsen mechanism is capable of doing it [64]. The
latter has been proposed to generate seesaw neutrinos of eV–keV scales in Refs. [57, 65].
Extensions or variants of the canonical type-I seesaw mechanism often contain additional
mass scales, which can be arranged to generate light sterile neutrinos [57, 66].

The important measurement of θ13 in 2011 by Daya Bay, RENO, Double Chooz opened
the possibility for searching CPV in neutrino oscillation. The Daya Bay experiment first
found evidence of non-zero θ13 at statistical significance more than 5σ [67]. This very precise
measurement and the huge amount of data form reactor antineutrino experiments could
also help us to probe new physics as non-standard effects in neutrino oscillations [68–73].

1.5 Thesis structure

This thesis is organized as follows. In Chapter 2 we analyse the interplay of generalised
CP transformations and the non-Abelian discrete group T ′ and use the semi-direct product
Gf = T ′ o HCP, as family symmetry acting in the lepton sector. The family symmetry
is shown to be spontaneously broken in a geometrical manner. In the resulting flavour
model, naturally small Majorana neutrino masses for the light active neutrinos are obtained
through the type I see-saw mechanism. The known masses of the charged leptons, lepton
mixing angles and the two neutrino mass squared differences are reproduced by the model
with a good accuracy. The model allows for two neutrino mass spectra with normal ordering
(NO) and one with inverted ordering (IO). For each of the three spectra the absolute scale
of neutrino masses is predicted with relatively small uncertainty. The value of the Dirac CP
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violation (CPV) phase δ in the lepton mixing matrix is predicted to be δ ∼= π/2 or 3π/2.
Thus, the CP violating effects in neutrino oscillations are predicted to be maximal (given
the values of the neutrino mixing angles) and experimentally observable. We present also
predictions for the sum of the neutrino masses, for the Majorana CPV phases and for the
effective Majorana mass in neutrinoless double beta decay. The predictions of the model
can be tested in a variety of ongoing and future planned neutrino experiments.

In Chapter 3 we will be concerned with the predictions for the Dirac phase δ in the
PMNS matrix. More specifically, we will be interested in the predictions for the Dirac
CPV phase δ which are based on the so-called “sum rules” for cos δ [74,75]. The sum rules
of interest appear in an approach aiming at quantitative understanding of the pattern
of neutrino mixing on the basis of symmetry considerations (see, e.g., [76–78]). In this
approach one exploits the fact that, up to perturbative corrections, the PMNS matrix
has an approximate form, Uν , which can be dictated by symmetries. The matrix Uν is
assumed to originate from the diagonalisation of the neutrino Majorana mass term. The
angles in Uν have specific symmetry values which differ, in general, from the experimentally
determined values of the PMNS angles θ12, θ13 and θ23, and thus need to be corrected. The
requisite perturbative corrections, which modify the values of the angles in Uν to coincide
with the measured values of θ12, θ13 and θ23, are provided by the matrix Ue arising from the
diagonalisation of the charged lepton mass matrix, U = U †e Uν . In the sum rules derived
in [75] we will analyse in detail the Dirac phase δ, more precisely, cos δ, is expressed, in
general, in terms of the mixing angles θ12, θ13 and θ23 of the PMNS matrix U and the
angles present in Uν , whose values are fixed, being dictated by an underlying approximate
discrete symmetry of the lepton sector (see, e.g., [76–78]).

In Chapter 4 we show that the relatively large best fit value of sin2 2θ13 = 0.14 (0.17)
recently measured in the T2K experiment for fixed values of i) the Dirac CP violation
phase δ = 0, and ii) the atmospheric neutrino mixing parameters θ23 = π/4, |∆m2

32| =
2.4× 10−3 eV2, can be reconciled with the Daya Bay result sin2 2θ13 = 0.090± 0.009 if the
effects of non-standard neutrino interactions (NSI) in the relevant ν̄e → ν̄e and νµ → νe
oscillation probabilities are taken into account.

In Chapter 5 we investigate the predictions of neutrinoless double beta ((ββ)0ν-) decay
effective Majorana mass |〈m〉| in the 3 + 1 and 3 + 2 schemes with one and two additional
sterile neutrinos with masses at the eV scale. The two schemes are suggested by the
neutrino oscillation interpretation of the reactor neutrino and Gallium “anomalies” and of
the data of the LSND and MiniBooNE experiments. We analyse in detail the possibility
of a complete or partial cancellation between the different terms in |〈m〉|, leading to a
strong suppression of |〈m〉|. We determine the regions of the relevant parameter spaces
where such a suppression can occure. This allows us to derive the conditions under which
the effective Majorana mass satisfies |〈m〉| > 0.01 eV, which is the range planned to be
exploited by the next generation of (ββ)0ν-experiments.

In Chapter 6, we will use the existing data of the Daya Bay experiment as well as the
sensitivity of the future JUNO experiment to put constraints on sterile neutrinos using
scenarios with 3+1 neutrinos [79–81]. We will show that the high-precision data of the
Daya Bay experiment constrain the 3+1 neutrino scenario imposing upper bounds on the
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relevant active-sterile mixing angle sin2 2θ14 . 0.06 at 3σ confidence level for the mass-
squared difference ∆m2

41 in the range (10−3, 10−1) eV2. The latter bound can be improved
by six years of running of the JUNO experiment, sin2 2θ14 . 0.016, although in the smaller
mass range ∆m2

41 ∈ (10−4, 10−3) eV2. We will also investigate the impact of sterile neutrinos
on precision measurements of the standard neutrino oscillation parameters θ13 and ∆m2

31

(at Daya Bay and JUNO), θ12 and ∆m2
21 (at JUNO), and most importantly, the neutrino

mass hierarchy (at JUNO).
Chapter 7 contains an Outlook.
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CHAPTER 2

Generalised Geometrical CP Violation

2.1 Introduction

Understanding the origin of the patterns of neutrino masses and mixing, emerging from
the neutrino oscillation, 3H β−decay, cosmological, etc. data is one of the most challenging
problems in neutrino physics. It is part of the more general fundamental problem in particle
physics of understanding the origins of flavour, i.e., of the patterns of the quark, charged
lepton and neutrino masses and of the quark and lepton mixing.

The value of θ13 and the magnitude of deviations of θ23 and θ12 from π/4 (see Table 1.1
and text below) suggest that the observed values of θ13, θ23 and θ12 might originate from
certain “symmetry” values which undergo relatively small (perturbative) corrections as
a result of the corresponding symmetry breaking. This idea was and continues to be
widely explored in attempts to understand the pattern of mixing in the lepton sector (see,
e.g., [82–91]) and [74,75]. Given the fact that the PMNS matrix is a product of two unitary
matrices,

U = U †e Uν , (2.1.1)

where Ue and Uν result respectively from the diagonalisation of the charged lepton and
neutrino mass matrices, it is usually assumed that Uν has a specific form dictated by a
symmetry which fixes the values of the three mixing angles in Uν that would differ, in
general, by perturbative corrections from those measured in the PMNS matrix, while Ue
(and symmetry breaking effects that we assume to be subleading) provide the requisite
corrections. A variety of potential “symmetry” forms of Uν , have been explored in the
literature on the subject (see, e.g., [92]). Many of the phenomenologically acceptable
“symmetry” forms of Uν , as the tribimaximal (TBM) [93] and bimaximal (BM) [94, 95]
mixing, can be obtained using discrete flavour symmetries (see, e.g., the reviews [76,78,96]
and the references quoted there in). Discrete symmetries combined with GUT symmetries
have been used also in attempts to construct realistic unified models of flavour (see, e.g.,
[76, 78]).

Here we will exploit the approximate flavour symmetry based on the group T ′, which is
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the double covering of the better known group A4 (see, e.g., [96]), with the aim to explain
the observed pattern of lepton (neutrino) mixing and to obtain predictions for the CP
violating phases in the PMNS matrix and possibly for the absolute neutrino mass scale
and the type of the neutrino mass spectrum [98]. Flavour models based on the discrete
symmetry T ′ have been proposed by a number of authors [97,99–101] before the angle θ13

was determined with a high precision in the Day Bay [67] and RENO [102] experiments
(see also [103–105]). All these models predicted values of θ13 which turned out to be much
smaller than the experimentally determined value.

In [99–101], in particular, an attempt was made to construct a realistic unified super-
symmetric model of flavour, based on the group SU(5) × T ′, which describes the quark
masses, the quark mixing and CP violation in the quark sector, the charged lepton masses
and the known mixing angles in the lepton sector, and predicts the angle θ13 and possibly
the neutrino masses and the type of the neutrino mass spectrum as well as the values of the
CPV phases in the PMNS matrix. The light neutrino masses are generated in the model
by the type I seesaw mechanism [106] and are naturally small. It was suggested in [99–101]
that the complex Clebsch-Gordan (CG) coefficients of T ′ [107] might be a source of CP
violation and hence that the CP symmetry might be broken geometrically [108] in models
with approximate T ′ symmetry. Since the phases of the CG coefficients of T ′ are fixed, this
leads to specific predictions for the CPV phases in the quark and lepton mixing matrices.
Apart from the incorrect prediction for θ13, the authors of [99–101] did not address the
problem of vacuum alignment of the flavon vevs, i.e., of demonstrating that the flavon
vevs, needed for the correct description of the quark and lepton masses and of the mixing
in both the quark and lepton sectors, can be derived from a flavon potential and that
the latter does not lead to additional arbitrary flavon vev phases which would destroy the
predictivity, e.g., of the leptonic CP violation of the model.

A SUSY SU(5)× T ′ model of flavour, which reproduces the correct value of the lepton
mixing angle θ13 was proposed in [90], where the problem of vacuum alignment of the
flavon vevs was also successfully addressed 1. In [90] it was assumed that the CP violation
in the quark and lepton sectors originates from the complexity of the CG coefficients of
T ′. This was possible by fixing the phases of the flavon vevs using the method of the
so-called “discrete vacuum alignment”, which was advocated in [109] and used in a variety
of other models with discrete flavour symmetries [110]. The value of the angle θ13 was
generated by charged lepton corrections to the TBM mixing using non-standard GUT
relations [88–91,111].

After the publication of [90] it was realised in [112, 113] that the requirement of CP
invariance in the context of theories with discrete flavour symmetries, imposed before the
breaking of the discrete symmetry leading to CP nonconservation and generation of the
masses of the matter fields of the theory, requires the introduction of the so-called “gener-
alised CP transformations” of the matter fields charged under the discrete symmetry. The

1A modified version of the model published in [99–101], which predicts a correct value of the angle θ13,
was constructed in [101], but the authors of [101] left open the issue of the vacuum alignment of the flavon
vevs.
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explicit form of the generalised CP transformations is dictated by the type of the discrete
symmetry. It was noticed in [112], in particular, that due to a subtle intimate relation be-
tween CP symmetry and certain discrete family symmetries, like the one associated with
the group T ′, it can happen that the CP symmetry does not enforce the Yukawa type cou-
plings, which generate the matter field mass matrices after the symmetry breaking, to be
real but to have certain discrete phases predicted by the family symmetry in combination
with the generalised CP transformations. In the SU(5)× T ′ model proposed in [90], these
phases, in principle, can change or modify completely the pattern of CP violation obtained
by exploiting the complexity of some of the T ′ CG coefficients.

In the present chapter we address the problem of the relation between the T ′ symmetry
and the CP symmetry in models of lepton flavour. After some general remarks about the
connection between the T ′ and CP symmetries in Section 2.2, we present in Section 2.3
a fully consistent and explicit model of lepton flavour with a T ′ family symmetry and
geometrical CP violation. We show that the model reproduces correctly the charged lepton
masses, all leptonic mixing angles and neutrino mass squared differences and predicts the
values of the leptonic CP violating phases and the neutrino mass spectrum. We show
also that this model indeed exhibits geometrical CP violation. We clarify how the CP
symmetry is broken in the model by using the explicit form of the constructed flavon
vacuum alignment sector; without the knowledge of the flavon potential it is impossible
to make conclusions about the origin of CP symmetry breaking in flavour models with T ′
symmetry. In the Appendix we give some technical details about the group T ′ and present
a “UV completion” of the model, which is necessary in order to to select correctly certain
T ′ contractions in the relevant effective operators.

2.2 T ′ Symmetry and Generalised CP Transformations

In this Section we would like to clarify the role of a generalised CP transformation combined
with the non-Abelian discrete symmetry group T ′. Let Gf = T ′ oHCP be the symmetry
group acting in the lepton sector such that both T ′ and HCP act on the lepton flavour
space. Motivated by this study we will present in the next section a model where Gf is
broken such that all lepton mixing angles and physical CP phases of the PMNS mixing
matrix can be predicted in terms of two mixing angles and two phases. The breaking of Gf

will be achieved through non zero vacuum expectation values (vevs) of some scalar fields,
the so-called flavons.

2.2.1 The consistency conditions

The discrete non-Abelian family symmetry group T ′ is the double covering of the tetrahe-
dral group A4 and its complete description in terms of generators, elements and represen-
tations is given in Appendix A.1. An interesting feature of this group is the fact that it
is the smallest group that admits 1-, 2-, and 3-dimensional representations and for which
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the three representations can be related by the multiplication rule 2⊗ 2 = 3⊕ 12. T ′ has
seven different irreducible representations: the 1- and 3-dimensional representations 1, 1′,
1′′, 3 are not faithful, i.e., not injective, while the doublet representations 2, 2′ and 2′′ are
faithful. One interesting feature of the T ′ group is related to the tensor products involving
the 2-dimensional representation since the CG coefficients are complex.

We define now the transformation of a field φ(x) under the group T ′ and HCP respec-
tively as:

φ(x)→ ρr(g)φ(x), φ(x)→ Xrφ
∗(x′), (2.2.1)

where ρr(g) is an irreducible representation r of the group element g ∈ T ′, x′ ≡ (x0,−~x)
and Xr is the unitary matrix representing the generalised CP transformation. In order
to introduce consistently the CP transformation for the family symmetry group T ′, the
matrix Xr should satisfy the consistency conditions [112,113,115]:

Xrρ
∗
r(g)X−1

r = ρr(g
′) , g, g′ ∈ T ′ . (2.2.2)

Following the discussion given in [112,113,115] it is important to remark that the con-
sistency condition corresponds to a similarity transformation between the representation
ρ∗r and ρ ◦ CP. Since the structure of the group is preserved and an element g ∈ T ′ is
always mapped into an element g′ ∈ T ′, this map defines an automorphism of the group.
In general g and g′ might belong to different conjugacy classes: in this case the map defines
an outer automorphism 3.

It is worth noticing that the matrices Xr are defined up to an arbitrary global phase.
Indeed, without loss of generality, for each matrix Xr, one can define different phases θr
for different irreducible representations and moreover one can define Xr up to a group
transformation (change of basis): in fact the consistency conditions in Eq. (2.2.2) are
invariant under Xr → ei θrXr and Xr → ρr(g̃)Xr with g̃ ∈ T ′.

It proves convenient to use the freedom associated with the arbitrary phases θr to define
the generalised CP transformation for which the vev alignments of the flavon fields can
be chosen to be all real. We will show later on that the phases θr are not physical and
therefore the results we present are independent from the specific values we assume. In the
context of the T ′ group this choice however helps us to extract a real flavon vev structure
which is a distinctive feature of some models proposed in the literature where the origin of
the physical CP violation arising in the lepton sector is tightly related to the combination
of real vevs, complex CGs 4 and eventual phases arising from the requirement of invariance
of the superpotential under the generalised CP transformation.

Before going into details of the computations, let us comment that in the analysis pre-
sented in [112] related to the group T ′, the CP transformations are defined as elements
of the outer automorphism group and are derived up to inner automorphisms of T ′ (up

2 The only other 24-element group that has representation of the same dimensions is the octahedral
group O (which is isomorphic to S4). In this case, however, the product of two doublet reps does not
contain a triplet [114].

3For details concerning the group of outer and inner automorphisms, Out(G) and Inn(G), see [112,115].
4This idea was pioneered in [99].
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to conjugacy transformations). In the present work we will consider instead all the pos-
sible transformations including the inner automorphism group and we will discuss all the
convenient CP transformations which can be used to clarify the role of a generalised CP
symmetry in the context of the group T ′.

2.2.2 Transformation properties under generalised CP

We give now all the possible equivalent choices of generalised CP transformations for any
irreducible representation of T ′.

The group T ′ is defined by the group generators T and S, then from the consistency
conditions in Eq. (2.2.2) it is sufficient to require that

Xrρ
∗
r(S)X−1

r = ρr(Ŝ) , Xrρ
∗
r(T )X−1

r = ρr(T̂ ) . (2.2.3)

It is easy to show that the CP transformation leaves invariant the order of the element
of the group g meaning that denoting n(g) the order of g, we have n(g) = n(g′). Since
the element S has order four and the element T has order three we have Ŝ ∈ 6C4 and
T̂ ∈ 4′C3 [116]. The latter result is derived using the action of CP on the one-dimensional
representations, i.e. ρ1,1′,1′′(T̂ ) = ρ∗1,1′,1′′(T ) which can be satisfied only if T̂ ∈ 4′C3.

The conjugacy classes 6C4 and 4′C3 contain the group elements

Ŝ ∈ 6C4 =
{
S, S3, TST 2, T 2ST, S2TST 2, S2T 2ST

}
,

T̂ ∈ 4′C3 =
{
T 2, S2TST, S2T 2S, S3T 2

}
.

(2.2.4)

We recall that we have the freedom to choose arbitrary phases θr, so for instance in the
case of X1, X1′ and X1′′ we are allowed to write the most general CP transformations for
the three inequivalent singlets of T ′ as

1→ ei θ11∗ , 1′ → ei θ1′1′∗ , 1′′ → ei θ1′′1′′∗ . (2.2.5)

Differently from the case of the A4 family symmetry discussed in [115] in which one
can show that the generalised CP transformation can be represented as a group transfor-
mation, in the case of T ′ we will show that this is true only for the singlet and the triplet
representations. For the doublets the action of the CP transformation cannot be written
as an action of a group element (i.e. @ g ∈ T ′ such that Xr = ρr(g) for r = 2,2′,2′′).

We give a list of all the possible forms of Xr, which can be in general different for each
representation: the CP transformations on the singlets, X1,1′,1′′ , are complex phases, as
mentioned above while the CP transformations on the doublets, X2,2′,2′′ , and the triplets
X3, are given respectively in Table 2.1 and 2.2. We stress that all the possible forms of Xr

are defined up to a phase, which can be in general different for each representation. Each
CP transformation we found generates a Z2 symmetry.

The generalised CP transformation HCP, acting on the lepton flavour space is given by,
see also [112],

u :

{
T → T 2 ,

S → S2T 2ST .
(2.2.6)
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g, g′ X3 = ρ3(g) = ρ3(g′) T → T̂ S → Ŝ

T , S2T

 1 0 0
0 ω 0
0 0 ω2

 T 2 S3

T 2, S2T 2

 1 0 0
0 ω2 0
0 0 ω

 T 2 S2TST 2

E, S2

 1 0 0
0 1 0
0 0 1

 T 2 S2T 2ST

TS, S2TS

 −1/3 2/3ω 2/3ω2

2/3 −1/3ω 2/3ω2

2/3 2/3ω −1/3ω2

 S2T 2S S

TST 2, S2TST 2

 −1/3 2/3 2/3
2/3 −1/3 2/3
2/3 2/3 −1/3

 S2T 2S T 2ST

S2TST , TST

 −1/3 2/3ω2 2/3ω
2/3 −1/3ω2 2/3ω
2/3 2/3ω2 −1/3ω

 S2T 2S S2TST 2

ST , S3T

 −1/3 2/3ω2 2/3ω
2/3ω2 −1/3ω 2/3
2/3ω 2/3 −1/3ω2

 S2TST S3

S3T 2, ST 2

 −1/3 2/3 2/3
2/3ω2 −1/3ω2 2/3ω2

2/3ω 2/3ω −1/3ω

 S2TST TST 2

S, S3

 −1/3 2/3ω 2/3ω2

2/3ω2 −1/3 2/3ω
2/3ω 2/3ω2 −1/3

 S2TST T 2ST

S3TS, STS 1
9

 4ω2 + 4ω + 1 −2ω2 − 2ω + 4 −2ω2 − 2ω + 4
−2ω2 + 4ω − 2 4ω2 + ω + 4 −2ω2 + 4ω − 2
4ω2 − 2ω − 2 4ω2 − 2ω − 2 ω2 + 4ω + 4

 S3T 2 S

S2T 2S, T 2S

 −1/3 2/3ω 2/3ω2

2/3ω −1/3ω2 2/3
2/3ω2 2/3 −1/3ω

 S3T 2 TST 2

T 2ST , S2T 2ST

 −1/3 2/3ω2 2/3ω
2/3ω −1/3 2/3ω2

2/3ω2 2/3ω −1/3

 S3T 2 S2T 2ST

Table 2.1: The generalised CP transformation for the triplet representation of the group
T ′ derived using the consistency conditions. We have defined ω = ei 2π/3.
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X2, X2′ , X2′′ T → T̂ S → Ŝ X2, X2′ , X2′′ T → T̂ S → Ŝ(
p̄5 0
0 p5

)
T 2 S3

√
2
3

(
p̄5/
√

2 1

1 p̄7/
√

2

)
S2TST S3

(
p̄ 0
0 p

)
T 2 S2TST 2 1√

3

(
p5

√
2q√

2q5 p̄5

)
S2TST TST 2

(
eiπ/4 0

0 e−iπ/4

)
T 2 S2T 2ST

(
eiπ/4

√
2q5

√
2q e−iπ/4

)
S2TST T 2ST(

p
√

2q̄5
√

2q̄ p̄

)
S2T 2S S 1√

3

(
p

√
2q̄√

2q̄5 p̄

)
S3T 2 S

1√
3

(
e−iπ/4 −i

√
2

−i
√

2 eiπ/4

)
S2T 2S T 2ST 1√

3

(
p̄
√

2√
2 p

)
S3T 2 TST 2

√
2
3

(
q4/
√

2 p̄

p5 q̄/
√

2

)
S2T 2S S2TST 2

√
2
3

(
ei 5π/8/

√
2 e−iπ/24

e−i7π/24 e−i7π/8/
√

2

)
S3T 2 S2T 2ST

Table 2.2: The generalised CP transformation for the doublet representation of the
group T ′ derived using the consistency conditions. We have defined ω = ei 2π/3, p = eiπ/12,
q = eiπ/6 and note that ωp̄5 = eiπ/4.

This definition of the CP symmetry is particularly convenient because it acts on the 3- and
1- dimensional representations trivially. This particular transformation however is related
to any other possible CP transformation by a group transformation.

In other words, different choices of CP are related to each other by inner automorphisms
of the group, i.e., the CP transformations listed in Tables 2.1 and 2.2 are related to each
other through a conjugation with a group element. For example, another possible CP
transformation would be

v :

{
T → T 2 ,

S → S3 ,
(2.2.7)

which is related to u via u = conj(T 2) ◦ v. Indeed

S
v7−→ S3 conj(T 2)7−−−−−→ T 2S3(T 2)−1 = S2T 2ST ,

T
v7−→ T 2 conj(T 2)7−−−−−→ T 2T 2(T 2)−1 = T 2 .

(2.2.8)

Without loss of generality we choose as CP transformation the one defined through
Eq. (2.2.6) and from Eq. (2.2.1) using the results of Table 2.1 and Table 2.2 we can write
the representation of the CP transformation acting on the fields as

1→ ei θ11∗ , 1′ → ei θ1′1′∗ , 1′′ → ei θ1′′1′′∗ , 3→ ei θ33∗ , (2.2.9)

2→ ei θ2
(
ωp̄5 0
0 ω̄p5

)
2∗ , 2′ → ei θ2′

(
ωp̄5 0
0 ω̄p5

)
2′
∗
, 2′′ → ei θ2′′

(
ωp̄5 0
0 ω̄p5

)
2′′
∗
,

where ω = ei 2π/3, p = eiπ/12 and ωp̄5 = eiπ/4. Notice that we did not specify the values
of the phases θr. Further we can check that the CP symmetry transformation chosen
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generates a Z2 symmetry group. Indeed it is easy to show that u2 = E, therefore the
multiplication table of the group HCP = {E, u} is obviously equal to the multiplication
table of a Z2 group, from which we can write HCP

∼= Z2.
Since we want to have real flavon vevs – following the setup given in [90] – it turns out

to be convenient to select the CP transformations with θ1 = θ1′ = θ1′′ = θ3 = 0 and θ2′′ =
−θ2′ = π/4 5. With this choice the phases of the couplings of renormalisable operators is
fixed up to a sign by the CP symmetry. In fact, supposing one has a renormalisable operator
of the form λO = λ(A× B × C) where λ is the coupling constant and A, B, C represent
the fields, then the generalised CP phase of the operator is defined as β ≡ CP[O]/O∗. The
phase of λ is hence given by the equation λ = βλ∗ which is solved by{

arg(λ) = arg(β)/2 or arg(β)/2− π if arg(β) > 0 ,

arg(λ) = arg(β)/2 or arg(β)/2 + π if arg(β) ≤ 0 .
(2.2.10)

In Table 2.3 we give a list of the phases of λ for all renormalisable operators without fixing
the θr and with the above choice for θr in Table 2.4.

Under the choice we made, the CP transformation acting on the fields using the above
choice for the θr reads

1→ 1∗ , 1′ → 1′
∗
, 1′′ → 1′′

∗
, 3→ 3∗ ,

2′ →
(

1 0
0 − i

)
2′
∗
, 2′′ →

(
i 0
0 1

)
2′′
∗
,

(2.2.11)

where we have again skipped the 2 representation because we will not need it later on.

2.2.3 Conditions to violate physical CP

In this section we try to clarify the origin of the phases entering the Lagrangian after T ′
breaking which are then responsible for physical CP violation. We will use the choice of
the θr discussed in the previous section, i.e. θ1 = θ1′ = θ1′′ = θ3 = 0 and θ2′′ = −θ2′ = π/4.

We already know that the singlets and triplets do not introduce CP violation, see
also [112]. Therefore we only want to consider the doublets. Suppose we couple the
doublet flavons ψi to an operator Or containing matter fields and transforming in the
representation r of T ′. This means that the superpotential contains the operator

W ⊃ OrΦr̄ , where Φr̄ =

(∏
i

ψi

)
r̄

. (2.2.12)

In order to obtain a singlet, the flavons (the doublets) have to be contracted to the repre-
sentation r̄ which is the complex conjugate representation of r.

5Since in our model later on we do not have fields in a 2 representation of T ′ the phase θ2 is irrelevant
in our further discussion and we do not fix its value. A possible convenient choice might be θ2 = 0 which
makes the mass term of a two-dimensional representation real.
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λO = λ(A×B × C) β ≡ CP[O]/O∗

(2× 2)1 × 1 ei(θ1+2θ2)

(2′ × 2′′)1 × 1 ei(θ1+θ2′+θ2′′ )

(2′ × 2′)1′′ × 1′ ei(θ1′+2θ2′ )

(2× 2′′)1′′ × 1′ ei(θ1′+θ2+θ2′′ )

(2′′ × 2′′)1′ × 1′′ ei(θ1′′+2θ2′′ )

(2× 2′)1′ × 1′′ ei(θ1′′+θ2+θ2′ )

[(2× 2)3 × 3]1 − i ei(2θ2+θ3)

[(2′ × 2′′)3 × 3]1 − i ei(θ2′+θ2′′+θ3)

[(2′ × 2′)3 × 3]1 − i ei(2θ2′+θ3)

[(2× 2′′)3 × 3]1 − i ei(θ2+θ2′′+θ3)

[(2′′ × 2′′)3 × 3]1 − i ei(2θ2′′+θ3)

[(2× 2′)3 × 3]1 − i ei(θ2+θ2′+θ3)

[(3× 3)1 × 1]1 ei(θ1+2θ3)

[(3× 3)1′ × 1′′]1 ei(θ1′′+2θ3)

[(3× 3)1′′ × 1′]1 ei(θ1′+2θ3)

[(3× 3)3S ,3A
× 3]1 e3iθ3

[(1× 1)1 × 1]1 ei(3θ1)

[(1′ × 1′)1′′ × 1′]1 ei(3θ1′ )

[(1′′ × 1′′)1′ × 1′′]1 ei(3θ1′′ )

[(1′ × 1′′)1 × 1]1 ei(θ1+θ1′+θ1′′ )

Table 2.3: List of operators, which form a singlet and constraints on the phase of the
coupling λ from the invariance under the generalised CP transformations Eq. (2.2.9).
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λO = λ(A×B × C) β ≡ CP[O]/O∗ arg(λ)

(2′ × 2′′)1 × 1 1 0, π
(2′ × 2′)1′′ × 1′ − i ±Ω̄
(2′′ × 2′′)1′ × 1′′ i ±Ω

[2′ × (2′′ × 3)2′′ ]1 1 0, π
[2′′ × (2′ × 3)2′ ]1 1 0, π
[(2′ × 2′′)3 × 3]1 − i ±Ω̄
[(2′ × 2′)3 × 3]1 −1 ±π/2
[(2′′ × 2′′)3 × 3]1 1 0, π

[(3× 3)1 × 1]1 1 0, π
[(3× 3)1′ × 1′′]1 1 0, π
[(3× 3)1′′ × 1′]1 1 0, π
[(3× 3)3S ,3A

× 3]1 1 0, π

[(1× 1)1 × 1]1 1 0, π
[(1′ × 1′)1′′ × 1′]1 1 0, π
[(1′′ × 1′′)1′ × 1′′]1 1 0, π
[(1′ × 1′′)1 × 1]1 1 0, π

Table 2.4: List of some operators, for which it is possible construct a singlet, and con-
straints on the phase of the coupling λ from invariance under the generalised CP transfor-
mations Eq. (2.2.9) with the choice θ1 = θ1′ = θ1′′ = θ3 = 0 and θ2′′ = −θ2′ = π/4. We
have omitted the transformations which include the 2 representation of T ′ because they
do not appear in our model, but they can be read off from Table 2.3 after choosing θ2.
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If the operator Or by itself conserves physical CP – by which we mean that it does
not introduce any complex phases into the Lagrangian including the associated coupling
constant – the only possible source of CP violation is coming from the doublet vevs and
the complex CG factors appearing in the contraction with the operator and the doublets.
For illustrative purpose we want to discuss this explicitly if we have two doublets ψ′ ∼ 2′

and ψ′′ ∼ 2′′.
For r = 1 there is only one possible combination using only ψ′ and ψ′′ which is

(ψ′ ⊗ ψ′′)1. Using the tensor products of T ′ —see for example [90]— we find that the
combination is real if the vevs fulfill the following conditions

ψ′ =

(
X1 eiα
X2 eiβ

)
, ψ′′ =

(
Y1 e− iβ

Y2 e− iα

)
, (2.2.13)

with X1, X2, Y1, Y2, α and β real parameters. For r = 1′ and r = 1′′ the only possible
contractions (ψ′ ⊗ ψ′)1′′ and (ψ′′ ⊗ ψ′′)1′ vanish due to the antisymmetry of the contraction.

For r = 1 there are three possible contractions. Either a flavon with itself or both
flavons together.

• For the selfcontractions (ψ′ ⊗ ψ′)3 and (ψ′′ ⊗ ψ′′)3 the Lagrangian will not contain a
phase if the flavon fields ψ′ and ψ′′ have the following structure

ψ′ =

(
X1 eiα

X2 e− i(α+π/4)

)
, ψ′′ =

(
Y1 e− i(β−π/4)

Y2 eiβ

)
, (2.2.14)

with X1, X2, Y1, Y2 being real and α, β = 0, ±π/2, π.

• The contraction (ψ′ ⊗ ψ′′)3 does not introduce phases if ψ′, ψ′′ have the following
structure:

ψ′ ∼
(
X1 ei(β−π/4)

X2 ei(α+π/4)

)
, ψ′′ ∼

(
Y1 e−iβ
Y2 e−iα

)
, (2.2.15)

with X1, X2, Y1, Y2 real and β − α = −π/4.
The previous results allow us to distinguish in a particular model the alignments which

can introduce phases with a specific superpotential in the Yukawa sector. For example,
if we consider a model in which one entry of the Yukawa matrix is filled by a term of
the form (ψ′ ⊗ ψ′′)3 and another entry by (ψ′ ⊗ ψ′′)1 we see that we cannot fulfill both
conditions simultaneously if the doublet vevs do not vanish. That means we would expect
CP violation if both of these contractions are present in a given model.

Later on in our model we will have real doublet alignments with

ψ′ ∼
(

1
0

)
and ψ′′ ∼

(
0
1

)
. (2.2.16)

These alignments would conserve CP for sure only if the model contains only the contrac-
tions (ψ′ ⊗ ψ′)3, (ψ′′ ⊗ ψ′′)3 and (ψ′ ⊗ ψ′′)1. Adding the contraction (ψ′ ⊗ ψ′′)3 would add
a phase to the Yukawa matrix resulting possibly in physical CP violation.
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2.3 The Model

In this section we discuss a supersymmetric model of lepton flavour based on T ′ as a family
symmetry. Because it considers only the lepton sector we can consider it as a toy model.
The generalised CP symmetry will be broken in a geometrical way as we will discuss later
on and we can fit all the available data of masses and mixing in the lepton sector.

The gauge symmetry of the model is the Standard Model gauge group GSM = SU(3)c×
SU(2)L×U(1)Y . The discrete symmetries of the model are T ′oHCP×Z8×Z2

4 ×Z2
3 ×Z2,

where the Zn factors are the shaping symmetries of the superpotential required to forbid
unwanted operators.

There are a few comments about this symmetry in order. First of all, the symmetry
seems to be rather large but in fact compared to the first works on T ′ with geometrical
CP violation [99–101] we have only added a factor of Z8 × Z2 but included the full flavon
vacuum alignment and messenger sector. This symmetry is also much smaller than the
shaping symmetry we have used before in [90].

One might wonder where this symmetry originates from and it might be embedded
into (gauged) continuous symmetries or might be a remnant of the compactification of
extra-dimensions. But a discussion of such an embedding goes clearly beyond the scope of
this work where we just want to discuss the connection of a T ′ family symmetry with CP
and illustrate it by a toy model which is nevertheless in full agreement with experimental
data.

In this section we will only discuss the effective operators generated after integrating out
the heavy messenger fields. The full renormalisable superpotential including the messenger
fields is given in Section 2.4.

2.3.1 The Flavon Sector

We will start the discussion of the model with the flavon sector which is self-contained.
How the flavons couple to the matter sector will be discussed afterwards.

The model contains 14 flavon fields in 1-, 2- and 3-dimensional representations of T ′
and 5 auxiliary flavons in 1-dimensional representations. Before we will discuss the super-
potential which fixes the directions and phases of the flavon vevs we will first define them.
We have four flavons in the 3-dimensional representation of T ′ pointing in the directions

〈φ〉 =

 0
0
1

φ0 , 〈φ̃〉 =

 0
1
0

 φ̃0 , 〈φ̂〉 =

 1
0
0

 φ̂0 , 〈ξ〉 =

 1
1
1

 ξ0 . (2.3.1)

The first three flavons will be used in the charged lepton sector and the fourth one couples
only to the neutrino sector. These flavon vevs, like all the other flavon vevs, are real.

Further we introduce three doublets of T ′: ψ′ ∼ 2′, ψ′′ ∼ 2′′ and ψ̃′′ ∼ 2′′. We recall
that the doublets are the only representations of the family group T ′ which introduce
phases, due to the complexity of the Clebsh-Gordan coefficients. For the doublets we will
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GSM T ′ U(1)R Z8 Z4 Z4 Z3 Z3 Z2

φ (1,1, 0) 3 0 2 0 0 1 0 1
φ̃ (1,1, 0) 3 0 2 0 2 0 1 0
φ̂ (1,1, 0) 3 0 5 0 3 2 0 0
ξ (1,1, 0) 3 0 0 2 2 0 0 0

ψ′ (1,1, 0) 2′ 0 3 2 3 2 0 0
ψ′′ (1,1, 0) 2′′ 0 7 2 1 2 0 1
ψ̃′′ (1,1, 0) 2′′ 0 1 2 3 0 1 1

ζ (1,1, 0) 1 0 5 0 1 2 0 1
ζ ′ (1,1, 0) 1′ 0 4 0 2 0 0 1
ζ̃ ′ (1,1, 0) 1′ 0 2 0 2 0 1 0
ζ ′′ (1,1, 0) 1′′ 0 2 0 0 1 0 1
ζ̃ ′′ (1,1, 0) 1′′ 0 0 0 0 0 1 0
ρ (1,1, 0) 1 0 0 2 2 0 0 0
ρ̃ (1,1, 0) 1 0 0 2 2 0 0 0

ε1 (1,1, 0) 1 0 4 1 0 0 0 0
ε2 (1,1, 0) 1 0 4 2 2 0 0 1
ε3 (1,1, 0) 1 0 4 2 0 0 0 0
ε4 (1,1, 0) 1 0 0 0 0 1 1 0
ε5 (1,1, 0) 1 0 0 0 0 2 2 0

Table 2.5: List of the flavon fields and their transformation properties. We also list here
the auxiliary flavon fields εi, i = 1, . . . , 5, which are needed to fix the phases of the vevs of
the other flavon fields.
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GSM T ′ U(1)R Z8 Z4 Z4 Z3 Z3 Z2

Dφ (1,1, 0) 3 2 0 2 0 1 0 0
D̃φ (1,1, 0) 3 2 0 3 0 0 1 0
D̂φ (1,1, 0) 3 2 6 0 2 1 2 0
Dψ (1,1, 0) 3 2 2 0 2 2 0 0
D̄ψ (1,1, 0) 3 2 2 0 2 2 0 0
D̃ψ (1,1, 0) 3 2 6 0 2 0 1 0
Dξ (1,1, 0) 3 2 4 2 2 0 0 1

Sζ (1,1, 0) 1 2 6 0 2 2 0 0
S ′ζ (1,1, 0) 1′ 2 0 0 0 0 0 0
S̃ ′ζ (1,1, 0) 1′ 2 4 0 0 0 1 0
P (1,1, 0) 1 2 0 0 0 0 0 0

Table 2.6: List of the driving fields and their T ′ transformation properties. The field P
stands for the fields S̃ζ , Sξ, Sρ and Sεi , with i = 1, . . . , 5, which all have the same quantum
numbers.

find the alignments

〈ψ′〉 =

(
1
0

)
ψ′0 , 〈ψ′′〉 =

(
0
1

)
ψ′′0 , 〈ψ̃′′〉 =

(
0
1

)
ψ̃′′0 . (2.3.2)

And finally, we introduce 7 flavon fields in one-dimensional representations of the family
group. In particular, we have (the primes indicate the types of singlet)

〈ζ ′〉 = ζ ′0 , 〈ζ ′′〉 = ζ ′′0 , 〈ζ̃ ′〉 = ζ̃ ′0 , 〈ζ̃ ′′〉 = ζ̃ ′′0 , 〈ζ〉 = ζ0 , 〈ρ〉 = ρ0 , 〈ρ̃〉 = ρ̃0 .
(2.3.3)

The ρ and ρ̃ couple only to the neutrino sector while the other one-dimensional flavons
couple only to the charged lepton sector. Also the five auxiliary flavons εi, i = 1, . . . , 5 get
real vevs which we do not label here explicitly.

The flavon quantum numbers are summarized in Table 2.5. In this table we have also
included the five auxiliary flavon fields εi which are only needed to fix the phases of the
other flavon vevs and all acquire real vevs by themselves.

We discuss now the superpotential in the flavon sector which “aligns” the flavon vevs.
We will use so-called F -term alignment where the vevs are determined from the F -term
conditions of the driving fields. The driving fields are listed with their quantum numbers in
Table 2.6, where we have indicated for simplicity P = S̃ζ , Sξ, Sρ and Sεi , with i = 1, . . . , 5,
because they have all the same quantum numbers under the whole symmetry group.

The fields labeled as P play a crucial role in fixing the phases of the flavon vevs. They
are fixed by the discrete vacuum alignment method as it was first proposed in [109]. Having
a flavon ε (for the moment we assume it is a singlet under the family symmetry) charged
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under a Zn symmetry the superpotential will contain a term

W ⊃ P

(
εn

Λn−2
∓M2

)
. (2.3.4)

Remember that the P fields are total singlets. Due to CP symmetry in this simple example
all parameters and couplings are real. The F -term equation for P reads

|FP |2 =

∣∣∣∣ εn

Λn−2
∓M2

∣∣∣∣2 = 0. (2.3.5)

which gives for the phase of the flavon vev

arg(〈ε〉) =

{
2π
n
q , q = 1, . . . , n for “−” in Eq. (2.3.5),

2π
n
q + π

n
, q = 1, . . . , n for “+” in Eq. (2.3.5).

(2.3.6)

This method will be used to fix the phases of the singlet and triplet flavon vevs (including
the εi). Note that we have to introduce for every phase we fix in this way a P field and
only after a suitable choice of basis for this fields we end up with the simple structure we
show later, see also the appendix of [109]. For the directions of the triplets we use standard
expressions, cf. also the previous paper [90].

For the doublets, nevertheless, we use here a different method. Take for example the
term Dψ

[
(ψ′′)2 − φ ζ ′

]
. The F -term equations read

|FDψ1 | = (ψ′′2)2 − φ3 ζ
′ = 0 , (2.3.7)

|FDψ1 | = i(ψ′′1)2 − φ2 ζ
′ = 0 , (2.3.8)

|FDψ1 | = (1− i)ψ′′1 ψ
′′
2 − φ1 ζ

′ = 0 . (2.3.9)

Note the phases coming from the complex CG coefficients of T ′. Plugging in the (real)
vevs of φ and ζ ′ it turns out that only the second component of ψ′′ does not vanish and is
indeed real as well.

The full superpotential for the flavon vacuum alignment reads

Wf =
Dφ ε3

Λ

[
φ2 − φ ζ ′′

]
+
D̃φ ε1

Λ

[
φ̃2 − φ̃ ζ̃ ′

]
+
D̂φ

Λ

[
ε4 φ̂ φ̂+ ε5 φ̃ ζ̃

′′ +
ε2

4 ζ̃
′′ φ̃

Λ

]

+Dψ

[
(ψ′′)

2 − φ ζ ′
]

+ D̄ψ (iψ′ ψ′ + φ ζ ′) + D̃ψ

[(
ψ̃′′
)2

− φ̃ ζ̃ ′′ − ε2
4 φ̂ φ̂

Λ2

]

+ S ′ζ

(
ζ ′ ζ ′ − ξ ξ − ε2

2 ξ
2

Λ2

)
+ S̃ ′ζ

(
ζ̃ ′ ζ̃ ′ − φ̃ φ̃

)
+
S̃ζ
Λ

[(
ζ̃ ′′
)3

−M3
ζ̃′′

]
+ Sζ

(
ζ ζ + φ̂ φ̂

)
+
Sε1
Λ2

(
ε4

1 −M4
ε1

)
+ Sε4

(
ε3

4

Λ
−M2

ε4

)
+ Sε3

(
ε2

2 −M2
ε2

)
+ Sε3

(
ε2

3 −M2
ε3

)
+ Sε5

(
ε4 ε5 −M2

ε5

)
+
Dξ ε2

Λ

(
ξ2 + ξρ+ ξρ̃

)
+ Sξ

(
ξ2 −M2

ξ

)
+ Sρ

(
ρ2 + ρ̃2 −M2

ρ

)
.

(2.3.10)
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L Ē Ē3 NR Hd Hu

SU(2)L 2 1 1 1 2 2
U(1)Y -1 2 2 0 -1 1

T ′ 3 2′′ 1′′ 3 1 1
U(1)R 1 1 1 1 0 0
Z8 5 7 2 4 7 7
Z4 1 3 1 3 2 2
Z4 1 2 1 3 2 2
Z3 0 0 2 0 0 0
Z3 2 0 0 0 1 1
Z2 0 1 1 0 0 0

Table 2.7: List of the matter and Higgs fields of the model and their transformation prop-
erties under T ′, U(1)R and the shaping symmetries. We also give the quantum numbers
under SU(2)L × U(1)Y . All fields are singlets of SU(3)C .

We will not go through all the details and discuss each F -term condition but this potential
is minimized by the vacuum structure as in Eqs. (2.3.1), (2.3.2) and (2.3.3). Finally, we
want to remark that the F -term equations do not fix the phase of the field ζ. However, the
phase of this field will turn out to be unphysical because it can be canceled out through
an unphysical unitary transformation of the right-handed charged lepton fields as we will
show later explicitly.

2.3.2 The Matter Sector

Since we have discussed now the symmetry breaking flavon fields we will now proceed with
the discussion on how these fields couple to the matter sector and generate the Yukawa
couplings and right-handed Majorana neutrino masses.

The model contains three generations of lepton fields, the left-handed SU(2)L doublets
are organized in a triplet representation of T ′, the first two families of right-handed charged
lepton fields are organized in a two dimensional representation, 2′′, and the third family
sits in a 1′′. There are two Higgs doublets as usual in supersymmetric models. They are
both singlets, 1 under T ′. The model includes three heavy right-handed Majorana neutrino
fields N , which are organized in a triplet. The light active neutrino masses are generated
through the type I seesaw mechanism [106]. At leading order tri-bimaximal mixing (TBM)
is predicted in the the neutrino sector which is corrected by the charged lepton sector
allowing a realistic fit of the measured parameters of the PMNS mixing matrix. The
quantum numbers of the matter fields are summarized in Table 2.7.

In this work we use the right-left convention for the Yukawa matrices

−L ⊃ (Ye)ij ēR i eL jHd + H.c. , (2.3.11)
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i.e. there exists a unitary matrix Ue which diagonalizes the product Y†e Ye and contributes
to the physical PMNS mixing matrix.

The Charged Lepton Sector

The Yukawa matrix Ye is generated after the flavons acquire their vevs and T ′ is broken.
The effective superpotential describing the couplings of the matter sector to the flavon
sector is given by

WYe =
y

(e)
33

Λ

(
Ē3Hd

)
1′′

(Lφ)1′ +
y

(e)
32

Λ2

(
Ē3Hd

)
1′′

(
L φ̂
)
1′
ζ +

ŷ
(e)
32

Λ2
Ω̄
(
Ē3Hd

)
1′′

[L (ψ′ ψ′′)3]1′

+
y

(e)
22

Λ2

(
Ē ψ′

)
1
Hd (Lφ)1 +

y
(e)
21

Λ3
Ω̄
(
Ē ψ′

)
1
Hd [(ψ′ ψ′′)3 L]1

+
y

(e)
11

Λ3
Ω
(
Ē ψ̃′′

)
1′
Hd ζ̃

′
(
L φ̃
)
1′
, (2.3.12)

where Λ denotes a generic messenger scale. Note the explicit phase factors Ω = (1 +
i)/
√

2 and Ω̄ = (1 − i)/
√

2 appearing in some of the operators. They are determined by
the invariance under the generalised CP transformations and they can be evaluated from
Table 2.4. We also give here explicitly the contraction of T ′ as indices at the brackets.
These contractions are determined by the messenger sector which will be discussed in
Appendix 2.4.

After plugging in the flavon vevs from Eqs. (2.3.1)-(2.3.3) we find for the structure of
the Yukawa matrix Ye

Ye =

 Ω a 0 0
i b c 0
0 d+ i k e

 ≡
 Ω a 0 0

i b c 0
0 ρ ei η e

 , (2.3.13)

where we define ρ =
√
d2 + k2 and η = arg (d+ i k).

The parameters a, b, c, d, e, k depend on the unfixed phase of the vev of ζ, ζ0, which
can be explicitly factorized as

Ye =

Ω ā(ζ0) 0 0

i ζ3
0 b ζ3

0 c 0

0 ζ2
0 (d+ i k) ζ2

0 e

 =

ei arg(Ω ā(ζ0)) 0 0
0 ζ3

0 0
0 0 ζ2

0

|Ω ā(ζ0)| 0 0

i b c 0

0 d+ i k e

 ,

(2.3.14)
from which it is clear that an eventual phase of ζ0 drops out in the physical combination
Y†eYe and we can choose the parameters in the Yukawa matrix to be real.

We remind that there are in principle three possible sources of complex phases which
can lead to physical CP violation: complex vevs, complex couplings whose phases are deter-
mined by the invariance under the generalised CP symmetry and complex CG coefficients.
In our model all vevs are real due to our flavon alignment and the convenient choice of the
θr phases.
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Then the (physical) phases in Ye are completely induced by the complex couplings and
complex CG coefficients. In fact the insights we have gained before in Section 2.2.3 can
be used here. The phase in the 1-1 element is unphysical (it drops out in the combination
Y†e Ye. So the physical CP violation is to leading order given by the phases of the ratios
(Ye)21/(Ye)22 and (Ye)32/(Ye)33. Let us study for illustration the second ratio which has
two components, one with a non-trivial relative phase and one without. The real ratio d/e
is coming from the operators with the coefficients y(e)

32 and y(e)
33 and from the viewpoint of

T ′ oHCP there is not really any difference between the two because we have only added a
singlet which cannot break CP in our setup as we said before.

For the second ratio i k/e this is different. Using the notation from Section 2.2.3 we
have O3Φ3 =

(
Ē3Hd

)
1′′

(LΦ3)1′ . If Φ3 = φ (the operator with y
(e)
32 ) we cannot have a

phase because φ is a triplet flavon. For Φ3 = (ψ′ψ′′)3 (the operator with ŷ
(e)
32 ) we can

check if condition (2.2.15) is fulfilled which is not the case because both vevs are real,
while the condition demands a relative phase difference between the vevs of π/4. This
demonstrates the usefulness of the conditions given in Section 2.2.3 in understanding the
origin of physical CP violation in this setup.

The Neutrino Sector

The neutrino sector is constructed using a superpotential similar to that used in [90]: the
light neutrino masses are generated through the type I see-saw mechanism, i.e. introducing
right-handed heavy Majorana states which are accommodated in a triplet under T ′. We
have the effective superpotential

WYν = λ1N N ξ +N N (λ2ρ+ λ3ρ̃) +
yν
Λ

(NL)1(Huρ)1 +
ỹν
Λ

(NL)1(Huρ̃)1 . (2.3.15)

The Dirac and the Majorana mass matrices obtained from this superpotential are identical
to those described in [90] and we quote them here for completeness

MR =

2Z +X −Z −Z
−Z 2Z −Z +X
−Z −Z +X 2Z

 , MD =

1 0 0
0 0 1
0 1 0

 ρ′

Λ
, (2.3.16)

where X,Z and ρ′ are real parameters which can be written explicitly as

X =
λ2√

3
ρ0 +

λ3√
3
ρ̃0 , Z =

λ1√
18
ξ0 and ρ′ =

yν√
3
ρ0vu +

ỹν√
3
ρ̃0vu . (2.3.17)

The right-handed neutrino mass matrix MR is diagonalised by the TBM matrix [93]

UTBM =


√

2/3
√

1/3 0

−
√

1/6
√

1/3 −
√

1/2

−
√

1/6
√

1/3
√

1/2

 , (2.3.18)
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such that the heavy RH neutrino masses read:

UT
TBMMR UTBM = DN = Diag(3Z +X,X, 3Z −X)

= Diag(M1 eiφ1 ,M2 eiφ2 , M3 eiφ3) , M1,2,3 > 0 .
(2.3.19)

Since X and Z are real parameters, the phases φ1, φ2 and φ3 take values 0 or π. A light
neutrino Majorana mass term is generated after electroweak symmetry breaking via the
type I see-saw mechanism:

Mν = −MT
DM

−1
R MD = U∗ν Diag (m1,m2,m3)U †ν , (2.3.20)

where

Uν = i UTBM Diag
(
eiφ1/2, eiφ2/2, eiφ3/2

)
≡ i UTBM Φν , Φν ≡ Diag

(
eiφ1/2, eiφ2/2, eiφ3/2

)
,

(2.3.21)
and m1,2,3 > 0 are the light neutrino masses,

mi =

(
ρ′

Λ

)2
1

Mi

, i = 1, 2, 3 . (2.3.22)

The phase factor i in Eq. (2.3.21) corresponds to an unphysical phase and we will drop it
in what follows. Note also that one of the phases φk, say φ1, is physically irrelevant since
it can be considered as a common phase of the neutrino mixing matrix. In the following
we will always set φ1 = 0. This corresponds to the choice (X + 3Z) > 0.

2.3.3 Comments about the θr
At this point we want to comment on the role of the phases θr appearing in the definition of
the CP transformation in Eq. (2.2.11). These phases are arbitrary and hence they should
not contribute to physical observables. This means, for instance, that these arbitrary
phases must not appear in the Yukawa matrices after T ′ is broken. However it is not
enough to look at the Yukawa couplings alone but one also has to study the flavon vacuum
alignment sector. We want to show next a simple example for which, as expected, these
phases turn out to be unphysical.

In order to show this we consider as example (Ye)22 and (Ye)21 respectively generated
by the following operators:

(Ye)22 ∼
(
Ē ψ′

)
1

(Lφ)1 ζ Hd , (Ye)21 ∼
(
Ē ψ′

)
1

(Lφ)1′′ ζ
′Hd . (2.3.23)

The fields together with their charges have been defined before in Table 2.5. We will now
be more explicit and consider all the possible phases arising in each of the given operators
under the CP transformation of Eq. (2.2.9) where the θr were included explicitly. For each
flavon vev in the operators we will denote the arising phase with a bar correspondingly,
i.e. for the vev of the flavon φ we will have φ→ ei φ̄φ0 where φ0 is the modulus of the vev.
Then using the transformations in Eq. (2.2.9) and Table 2.2.9 we get

arg ((Ye)22 − (Ye)21) = ζ̄ − ζ̄ ′ + (θ1 − θ1′)/2 . (2.3.24)
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The vevs of the flavons ζ and ζ ′ are determined at leading order by

Sζ

[
ζ2 − (φ̂ φ̂)1

]
and Sζ′

[
(ζ ′)2 − (ξ ξ)1′′

]
. (2.3.25)

where Sζ,ζ′ are two of the so-called “driving fields” which in this case are singlet of type
1 and 1′ under T ′. From the F -term equations one gets that ζ̄ =

¯̂
φ + (θ3 − θ1)/2 and

ζ̄ ′ = ξ̄ + (θ3 − θ1′)/2 and thus in the physical phase difference

arg ((Ye)22 − (Ye)21) =
¯̂
φ− ξ̄ . (2.3.26)

the phases θ1, θ1′ and θ3 cancel out.
This shows how the θr cancel out in a complete model and become unphysical. Including

them only in one sector, for instance, in the Yukawa sector they might appear to be physical
and only after considering also the flavon alignment sector it can be shown that they are
unphysical which is nevertheless quite cumbersome in a realistic model due to the many
fields and couplings involved.

2.3.4 Geometrical CP violation and residual symmetries

In this section we want to provide a better understanding of the quality of symmetry
breaking our model exhibits. To be more precise we will argue that our model breaks
CP in a geometrical fashion and then we will discuss the residual symmetries of the mass
matrices.

Geometrical CP violation was first defined in [108] and there it is tightly related to the
so-called “calculable phases” which are phases of flavon vevs which do not depend on the
parameters of the potential but only on the geometry of the potential. This applies also
to our model. All complex phases are determined in the end by the (discrete) symmetry
group of our model. In particular the symmetries T ′ o HCP and the Zn factors play a
crucial role here. For the singlets and triplets in fact the Zn symmetries (in combination
with CP) make the phases calculable using the discrete vacuum alignment technique [109].
For the doublets then the symmetry T ′oHCP enters via fixing the phases of the couplings
and fixing relative phases between different components of the multiplets. In particular,
all flavon vevs are left invariant under the generalised CP symmetry and hence protected
by it. However the calculable phases are necessary but not sufficient for geometrical CP
violation. For this we have to see if CP is broken or not.

For this we will have a look at the residual symmetries of the mass matrices after
T ′oHCP is broken. First of all, we observe that the vev structure mentioned in Section 2.3
gives a breaking pattern which is different in the neutrino and in the charged lepton sector,
i.e. the residual groups Gν and Ge are different.

In the charged lepton sector the group T ′ is fully broken by the singlet, doublet and
triplet vevs. If it exists, the residual group in the charged lepton sector is defined through
the elements which leave invariant the flavon vevs and satisfy

ρ†(gei) Y†e Ye ρ(gei) = Y†e Ye with gei ∈ Ge < T ′ oHCP ,

X†e
(
Y†e Ye

)
Xe =

(
Y†e Ye

)∗ with Xe ∈ Ge < T ′ oHCP .
(2.3.27)
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The first condition is the ordinary condition to study residual symmetries while the second
one is relevant only for models with spontaneous CP violation.

In our model this conditions are not satisfied for any ρ(g) or Xe. Hence there is
no residual symmetry group in the charged lepton sector and even more CP is broken
spontaneously. Together with the fact that all our phases are determined by symmetries
(up to signs and discrete choices) we have demonstrated now that our model exhibits
geometrical CP violation.

In the neutrino sector we can write similar relations that take into account the sym-
metrical structure of the Majorana mass matrix, and in particular as before the residual
symmetry is defined through the elements which leave invariant the flavon vevs and satisfy

ρT (gνi)Mν ρ(gνi) = Mν with gνi ∈ Gν < T ′ oHCP ,

XT
ν Mν Xν = M∗

ν with Xν ∈ Gν < T ′ oHCP .
(2.3.28)

In our modelMν is a real matrix and therefore ρ(gνi) and Xν are defined through the same
conditions. Defining O as the orthogonal matrix which diagonalizes the real symmetric
matrix Mν we find from Eq. (2.3.28)

(OXT
ν O

T )Mdiag
ν (OXν O

T ) = Mdiag
ν (2.3.29)

and hence the matrix D = OXν O
T has to be of the form

D =

(−1)p 0 0
0 (−1)q 0
0 0 (−1)p+q

 . (2.3.30)

The same argument can be applied to the matrix ρ(gνi), because the matrices Xν , ρ(gνi)
and Mν are simultaneously diagonalisable by the same orthogonal matrix O. It is easy to
find that

O =

 1/
√

3 1/
√

3 1/
√

3

0 −1/
√

2 1/
√

2

−
√

2/3 1/
√

6 1/
√

6

 , (2.3.31)

which is expected since Mν is diagonalized by UTBM and O is just a permutation of UT
TBM

which corresponds to a permutation of the eigenvalues.
The residual symmetry coming from T ′ is generated only by

T S T 2 = OT ·

1 0 0
0 −1 0
0 0 −1

 ·O , (2.3.32)

which also leaves invariant the vev structure. This symmetry is a Z2 symmetry. In summary
the residual symmetry in the neutrino sector is a Klein group K4

∼= Z2 ×Z2, in which one
Z2 comes from HCP and the other one from T ′. HCP is conserved because in the neutrino
sector Xν can be chosen as the identity matrix and Mν is real.
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Combining the two we find

Gf ≡ T ′ oHCP ≡ T ′ o Z2 −→
{
Ge = ∅ ,
Gν = K4 ,

(2.3.33)

so that T ′ oHCP is completely broken and there is no residual symmetry left.

2.3.5 Predictions

Absolute Neutrino Mass Scale

Before we consider the mixing angles and phases in the PMNS matrix we first will discuss
the neutrino spectra predicted by the model. We get the same results as in [90] because
our neutrino mass matrix has exactly the same structure. The forms of the Dirac and
Majorana mass terms given in Eq. (2.3.16) imply that in the model considered by us both
light neutrino mass spectra with normal ordering (NO) and with inverted ordering (IO)
are allowed (see also [90]). In total three different spectra for the light active neutrinos
are possible. They correspond to the different choices of the values of the phases φi in
Eq. (2.3.21)). More specifically, the cases φ1 = φ2 = φ3 = 0 and φ1 = φ2 = 0 and φ3 = π
correspond to NO spectra of the type A and B, respectively. For φ1 = φ2 = 0 and φ3 = π
also IO spectrum is possible. The neutrino masses in cases of the three spectra are given
by:

NO spectrum A : (m1,m2,m3) = (4.43, 9.75, 48.73) · 10−3 eV , (2.3.34)

NO spectrum B : (m1,m2,m3) = (5.87, 10.48, 48.88) · 10−3 eV , (2.3.35)

IO spectrum : (m1,m2,m3) = (51.53, 52.26, 17.34) · 10−3 eV , (2.3.36)

where we have used the best fit values of ∆m2
21 and |∆m2

31(32)| given in Table 1. Employing
the 3σ allowed ranges of values of the two neutrino mass squared differences quoted in
Table 1, we find the intervals in which m1,2,3 can vary:

• NO spectrum A:
m1 ∈ [4.23, 4.66] · 10−3 eV, m2 ∈ [9.23, 10.17] · 10−3 eV, m3 ∈ [4.28, 5.56] · 10−2 eV;

• NO spectrum B:
m1 ∈ [5.56, 6.20] · 10−3 eV, m2 ∈ [9.83, 11.20] · 10−3 eV, m3 ∈ [4.23, 5.74] · 10−2 eV;

• IO spectrum:
m1 ∈ [4.57, 5.87] · 10−2 eV, m2 ∈ [4.63, 5.96] · 10−2 eV, m3 ∈ [1.53, 1.98] · 10−2 eV.
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Correspondingly, we get for the sum of the neutrino masses:

NO A :
3∑
j=1

mj = 6.29× 10−2 eV , 5.63× 10−2 ≤
3∑
j=1

mj ≤ 7.04× 10−2 eV , (2.3.37)

NO B :
3∑
j=1

mj = 6.52× 10−2 eV , 5.77× 10−2 ≤
3∑
j=1

mj ≤ 7.48× 10−2 eV , (2.3.38)

IO :
3∑
j=1

mj = 12.11× 10−2 eV , 10.73× 10−2 ≤
3∑
j=1

mj ≤ 13.81× 10−2 eV , (2.3.39)

where we have given the predictions using the best fit values and the 3σ intervals of the
allowed values of m1, m2 and m3 quoted above.

The Mixing Angles and Dirac CPV Phase

We will derive next expressions for the mixing angles and the CPV phases in the standard
parametrisation of the PMNS matrix in terms of the parameters of the model. The expres-
sion for the charged lepton mass matrix Ye given in Eq. (2.3.13) contains altogether seven
parameters: five real parameters and two phases, one of which is equal to π/2. Three
(combinations of) parameters are determined by the three charged lepton masses. The
remaining two real parameters and two phases are related to two angles and two phases
in the matrix Ue which diagonalises the product Y†e Ye and enters into the expression of
the PMNS matrix: UPMNS = U †eUν , where Uν is of TBM form (see Eq. (3.19)), while
Ue ∝ R23R12, R23 and R12 are orthogonal matrices describing rotations in the 2-3 and 1-2
planes, respectively. It proves convenient to adopt for the matrices Ue and Uν the notation
used in [74]: {

Ue = ΨeR
−1
23 (θe23)R−1

12 (θe12)

Uν = R23 (θν23)R12 (θν12) Φν

(2.3.40)

where Ψe = diag
(
1, eiψe , eiωe

)
, θν23 = −π/4, θν12 = sin−1(1/

√
3), Φν is a diagonal phase

matrix defined in Eq. (2.3.21), and

R12 (θe12) =

 cos θe12 sin θe12 0
− sin θe12 cos θe12 0

0 0 1

 , R23 (θe23) =

1 0 0
0 cos θe23 sin θe23

0 − sin θe23 cos θe23

 . (2.3.41)

Using the expression for the charged lepton mass matrix Ye given in Eq. (2.3.13) and
comparing the right and the left sides of the equation

Y†e Ye = Uediag
(
m2
e,m

2
µ,m

2
τ

)
U †e , (2.3.42)

we find that m2
e = a2, m2

µ = c2 and m2
τ = e2. For Ue given in Eq. (2.3.40) this equality

holds only under the condition that sin θe12 and sin θe23 are sufficiently small. Using the
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leading terms in powers of the small parameters sin θe12 and sin θe23 we get the approximate
relations:

sin θe12 e
iψe ' ± i

∣∣∣∣bc
∣∣∣∣ , sin θe23 e

i(ψe−ωe) =
e ρ

c2 − e2
ei η '

∣∣∣ρ
e

∣∣∣ ei ξe , (2.3.43)

where ψe = ±π/2, ξe = ψe − ωe, ξe ∈ [0, 2π], θe12 ' |b/c| and θe23 ' |ρ/e|.
In the discussion that follows θe12, θe23, ψe and ωe are treated as arbitrary angles and

phases, i.e., no assumption about their magnitude is made.
The lepton mixing we obtain in the model we have constructed, including the Dirac CPV

phase but not the Majorana CPV phases, was investigated in detail on general phenomeno-
logical grounds in ref. [74] and we will use the results obtained in [74]. The three angles θ12,
θ23 and θ13 and the Dirac and Majorana CPV phases δ and β1 and β2 (see Eqs. (1.1) - (1.3)),
of the PMNS mixing matrix UPMNS = U †eUν = R12(θe12)R23(θe23)Ψ∗eR23(θν23)R12(θν12) Φν , can
be expressed as functions of the two real angles, θe12 and θe23, and the two phases, ψe and
ωe present in Ue. However, as was shown in [74], the three angles θ12, θ23 and θ13 and the
Dirac phase δ are expressed in terms of the angle θe12, an angle θ̂23 and just one phase φ,
where

sin2 θ̂23 =
1

2
(1− 2 sin θe23 cos θe23 cos(ωe − ψe)) , (2.3.44)

and the phase φ = φ(θe23, ωe, ψe). Indeed, it is not difficult to show that (see the Appendix
in [74])

R23(θe23) Ψ∗e R23(θν23) = P ΦR23(θ̂23)Q̃ . (2.3.45)

Here P = diag(1, 1, e− iα), Φ = diag(1, eiφ, 1) and Q̃ = diag
(
1, 1, eiβ

)
, where

α = γ + ψe + ωe , β = γ − φ , (2.3.46)

and

γ = arg
(
−e− iψe cos θe23 + e− iωe sin θe23

)
, φ = arg

(
e− iψe cos θe23 + e− iωe sin θe23

)
. (2.3.47)

The phase α is unphysical (it can be absorbed in the τ lepton field). The phase β con-
tributes to the matrix of physical Majorana phases, which now is equal to Q = Q̃Φν . The
PMNS matrix takes the form:

UPMNS = R12(θe12) Φ(φ)R23(θ̂23)R12(θν12)Q , (2.3.48)

where θν12 = sin−1(1/
√

3). Thus, the four observables θ12, θ23, θ13 and δ are functions of
three parameters θe12, θ̂23 and φ. As a consequence, the Dirac phase δ can be expressed
as a function of the three PMNS angles θ12, θ23 and θ13, leading to a new “sum rule”
relating δ and θ12, θ23 and θ13 [74]. Using the measured values of θ12, θ23 and θ13, the
authors of [74] obtained predictions for the values of δ and of the rephasing invariant
JCP = Im(U∗e1U

∗
µ3Ue3Uµ1), which controls the magnitude of CP violating effects in neutrino

oscillations [11], as well as for the 2σ and 3σ ranges of allowed values of sin θ12, sin θ23 and
sin θ13. These predictions are valid also in the model under discussion.
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To be more specific, using Eq. (2.3.48) we get for the angles θ12, θ23 and θ13 of the
standard parametrisation of UPMNS [74]:

sin θ13 = |Ue3| = sin θe12 sin θ̂23,

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
=

sin2 θ̂23 − sin2 θ13

1− sin2 θ13

, cos2 θ23 =
cos2 θ̂23

1− sin2 θ13

,

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=

1

3

(
2 +

√
2 sin 2θ23 sin θ13 cosφ− sin2 θ23

1− cos2 θ23 cos2 θ13

)
,

(2.3.49)

where the first relation sin θ13 = sin θe12 sin θ̂23 was used in order to obtain the expressions
for sin2 θ23 and sin2 θ12. Clearly, the angle θ̂23 differs little from the atmospheric neutrino
mixing angle θ23. For sin2 θ13 = 0.024 and sin2 θ23

∼= 0.39 we have sin θe12
∼= 0.2. Comparing

the imaginary and real parts of U∗e1U∗µ3Ue3Uµ1, obtained using Eq. (2.3.48) and the standard
parametrisation of UPMNS, one gets the following relation between the phase φ and the Dirac
phase δ [74]:

sin δ = − 2
√

2

3

sinφ

sin 2θ12

, (2.3.50)

cos δ =
2
√

2

3 sin 2θ12

cosφ

(
−1 +

2 sin2 θ23

sin2 θ23 cos2 θ13 + sin2 θ13

)

+
1

3 sin 2θ12

sin 2θ23 sin θ13

sin2 θ23 cos2 θ13 + sin2 θ13

. (2.3.51)

The results quoted above, including those for sin δ and cos δ, are exact. As can be shown,
in particular, we have: sin2 δ + cos2 δ = 1.

Equation (2.3.49) allows to express cosφ in terms of θ12, θ23 and θ13, and substituting
the result thus obtained for cosφ in Eqs. (2.3.50) and (2.3.51), one can get expressions for
sin δ and cos δ in terms of θ12, θ23 and θ13. We give below the result for cos δ [74]:

cos δ =
tan θ23

3 sin 2θ12 sin θ13

[
1 +

(
3 sin2 θ12 − 2

) (
1− cot2 θ23 sin2 θ13

)]
. (2.3.52)

For the best fit values of sin2 θ12, sin2 θ23 and sin θ13, one finds in the case of NO and IO
spectra 6 (see also [74]):

cos δ ∼= − 0.069 , sin δ = ±0.998 . (2.3.53)

These values correspond to

δ = 93.98◦ or δ = 266.02◦ . (2.3.54)
6 Due to the slight difference between the best fit values of sin2 θ23 and sin θ13 in the cases of NO and

IO spectra (see Table 1), the values we obtain for cos δ in the two cases differ somewhat. However, this
difference is equal to 10−4 in absolute value and we will neglect it in what follows.
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Thus, our model predicts δ ' π/2 or 3π/2. The fact that the value of the Dirac CPV
phase δ is determined (up to an ambiguity of the sign of sin δ) by the values of the three
mixing angles θ12, θ23 and θ13 of the PMNS matrix, (2.3.52), is the most striking prediction
of the model considered. For the best fit values of θ12, θ23 and θ13 we get δ ∼= π/2 or
3π/2. These result implies also that in the model under discussion, the JCP factor, which
determines the magnitude of CP violation in neutrino oscillations, is also a function of the
three angles θ12, θ23 and θ13 of the PMNS matrix:

JCP = JCP(θ12, θ23, θ13, δ(θ12, θ23, θ13)) = JCP(θ12, θ23, θ13) . (2.3.55)

This allows to obtain predictions for the range of possible values of JCP using the current
data on sin2 θ12, sin2 θ23 and sin2 θ13. For the best fit values of these parameters (see Table
1) we find: JCP ' ±0.034.

The quoted results on δ and JCP were obtained first on the basis of a phenomenological
analysis in [74]. Here they are obtained for the first time within a selfconsistent model of
lepton flavour based on the T ′ family symmetry.

In [74] the authors performed a detailed statistical analysis which permitted to deter-
mine the ranges of allowed values of sin2 θ12, sin2 θ23, sin θ13, δ and JCP at a given confidence
level. We quote below some of the results obtained in [74], which are valid also in the model
constructed by us.

Most importantly, the CP conserving values of δ = 0;π; 2π are excluded with respect to
the best fit CP violating values δ ∼= π/2; 3π/2 at more than 4σ. Correspondingly, JCP = 0
is also excluded with respect to the best-fit values JCP ' (−0.034) and JCP ' 0.034 at
more than 4σ. Further, the 3σ allowed ranges of values of both δ and JCP form rather
narrow intervals. In the case of the best fit value δ ∼= 3π/2, for instance, we have in the
cases of NO and IO spectra:

NO : JCP ∼= −0.034 , 0.028 ∼< JCP ∼< 0.039 , or (2.3.56)
−0.039 ∼< JCP ∼< − 0.028 , (2.3.57)

IO : JCP ∼= −0.034 , 0.027 ∼< JCP ∼< 0.039 , or (2.3.58)
−0.039 ∼< JCP ∼< − 0.026 , (2.3.59)

where we have quoted the best fit value of JCP as well. The positive values are related to
the χ2 minimum at δ = π/2.

The preceding results and discussion are illustrated qualitatively in Fig. 2.1, where
we show the correlation between the value of sin δ and JCP for the 1σ and 2σ ranges of
allowed values of sin2 θ12, sin2 θ23 and sin2 θ13, which were taken from Table 1. The figure
was produced assuming flat distribution of the values of sin2 θ12, sin2 θ23 and sin2 θ13 in the
quoted intervals around the corresponding best fit values. As can be seen from Fig. 2.1,
the predicted values of both sin δ and JCP thus obtained form rather narrow intervals 7.

7The 2σ ranges of allowed values of sin δ and JCP shown in Fig. 2.1 match approximately the 3σ ranges
of allowed values of sin δ and JCP obtained in [74] by performing a more rigorous statistical (χ2) analysis.
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Figure 2.1: Possible values of sin δ and JCP, obtained by using the 1σ (light brown areas)
and 2σ ranges (blue + light brown areas) of allowed values of the mixing angles θ12, θ23

and θ13 for NO spectrum (left panels) and IO spectrum (right panels), and for sin δ < 0
(upper panels) and sin δ > 0 (lower panels). The predictions for the best fit values of θ12,
θ23 and θ13, corresponding to δ = 266.02◦ (sin δ < 0) and δ = 93.98◦ (sin δ > 0), are
indicated with crosses. See text for further details.
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As it follows from Table 1, the angle θ23 is determined using the current neutrino
oscillation data with largest uncertainty. We give next the values of the Dirac phase δ for
two values of sin2 θ23 from its 3σ allowed range, sin2 θ23 = 0.50 and 0.60, and for the best
fit values of sin2 θ12 and sin2 θ13:

sin2 θ23 = 0.50 : cos δ = − 0.123 , δ = 97.09◦ or 262.91◦ ; (2.3.60)

sin2 θ23 = 0.60 : cos δ = − 0.176 , δ = 100.12◦ or 259.88◦ . (2.3.61)

These results show that | sin δ|, which determines the magnitude of the CP violation effects
in neutrino oscillations, exhibits very weak dependence on the value of sin2 θ23: for any
value of sin2 θ23 from the interval 0.39 ≤ sin2 θ23 ≤ 0.60 we get | sin δ| ≥ 0.98.

The predictions of the model for δ and JCP will be tested in the experiments searching
for CP violation in neutrino oscillations, which will provide information on the value of the
Dirac phase δ.

The Majorana CPV Phases

Using the expressions for the angles θe12 and θ̂23 and for cosφ in terms of sin θ13, sin θ12 and
sin θ23 and the best fit values of sin θ13, sin θ12 and sin θ23, we can calculate the numerical
form of UPMNS from which we can extract the values of the physical CPV Majorana phases.
We follow the procedure described in [117]. Obviously, there are two such forms of UPMNS

corresponding to the two possible values of δ. In the case of δ = 266.02◦ and φ ' 102.55◦

we find:

UPMNS =

 0.822 e− i 7.47◦ 0.547 ei 16.04◦ 0.155 ei 102.55◦

0.436 e− i 104.08◦ 0.658 ei 114.67◦ 0.614 ei 102.55◦

0.365 −0.517 0.774

 Q . (2.3.62)

Recasting this expression in the form of the standard parametrisation of UPMNS we get:

UPMNS = P

 0.822 0.547 0.155 ei 93.98◦

0.436 ei 169.41◦ 0.658 ei 4.65◦ 0.614
0.365 ei 16.04 0.517 ei 172.53 0.774

 Q2 Q , (2.3.63)

where P = diag(ei(16.04−7.47)◦ , ei 102.55◦ , 1), Q2 = diag(e− i 16.04◦ , ei 7.47◦ , 1) and ei 93.98◦ =
e− i(360−93.98)◦ = e− i 266.02◦ .
Similarly, in the case of δ = 93.98 and φ ' 257.45◦ we obtain:

UPMNS =

 0.822 ei 7.47◦ 0.547 e− i 16.04◦ 0.155 e− i 102.55◦

0.436 ei 104.08◦ 0.658 e− i 114.67◦ 0.614 e− i 102.55◦

0.365 −0.517 0.774

 Q . (2.3.64)
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Extracting again phases in diagonal matrices on the right hand and left hand sides to get
the standard parametrisation of UPMNS we find:

UPMNS = P̃

 0.822 0.547 0.155 e− i 93.98◦

0.436 e− i 169.41◦ 0.658 e− i 4.65◦ 0.614
0.365 e− i 16.04 0.517 e− i 172.53 0.774

 Q̃2 Q , (2.3.65)

where P = diag(ei(−16.04+7.47)◦ , e− i 102.55◦ , 1) and Q̃2 = diag(ei 16.04◦ , e− i 7.47◦ , 1). The phases
in the matrices P and P̃ can be absorbed by the charged lepton fields and are unphysical.
In contrast, the phases in the matrices Q2 and Q̃2 contribute to the physical Majorana
phases. We can finally write the Majorana phase matrix in the parametrization given in
(1.2.1) (φ1 = 0):

−β1

2
= ∓16.04◦ − β − φ3

2
, sin δ = ∓ 0.976 , (2.3.66)

−β2

2
= ±7.47◦ − β − φ3 − φ2

2
, sin δ = ∓ 0.976 . (2.3.67)

In order to calculate the phase β = γ−φ we have to find the value of γ. It follows from
Eqs. (3.1.8) and (3.1.11) that

cos γ =
sin θe23 cosωe√

2 sin θ̂23

, sin γ =
± cos θe23 − sin θe23 sinωe√

2 sin θ̂23

, (2.3.68)

cosφ =
sin θe23 cosωe√

2 cos θ̂23

, sinφ =
∓ cos θe23 − sin θe23 sinωe√

2 cos θ̂23

, (2.3.69)

where we used the fact that ψe = ±π/2. These equations imply the following relations:

cos γ = cosφ
cos θ̂23

sin θ̂23

, (2.3.70)

sinφ cos θ̂23 + sin γ sin θ̂23 = −
√

2 sin θe23 sinωe . (2.3.71)

It is clear from Eq. (2.3.70) that the value of cos γ can be determined knowing the values
of cosφ and sin θ̂23, independently of the values of θe23 and ωe. This, obviously, allows to
find also | sin γ|, but not the sign of sin γ. In the case of sin θe23 sinωe � 1 of interest, Eq.
(2.3.71) allows to correlate the sign of sin γ with the sign of sinφ and thus to determine
γ for a given φ: we have sin γ < 0 if sinφ > 0, and sin γ > 0 for sinφ < 0. Thus, for
φ = 102.5530◦ (corresponding to δ = 266.02◦) we find γ = − 105.4118 and β = γ − φ =
− 207.9648◦ = − (180+27.9648)◦, while for φ = − 102.5530◦ (corresponding to δ = 93.98◦)
we obtain γ = + 105.4118 and β = +207.96◦ = + (180 + 27.96)◦.

The results thus derived allow us to calculate numerically the Majorana CPV phases.
For the best fit values of the neutrino mixing angles we get:

β1 = (23.84 + 360 + φ3)◦ , β2 = (70.88 + 360− φ2 + φ3)◦ for φ = −102.55◦ (δ = 93.98◦) ;
(2.3.72)
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β1 = (−23.84− 360 + φ3)◦ = (−23.84 + 360 + φ3)◦ ,

β2 = (−70.88− 360− φ2 + φ3)◦ = (−70.88 + 360− φ2 + φ3)◦ for φ = 102.55◦ (δ = 266.02◦) ,
(2.3.73)

where we have used the fact that β1(2) and β1(2) + 4π lead to the same physical results. In
the cases of the three types of neutrino mass spectrum allowed by the model, which are
characterised, in particular, by specific values of the φ2 and φ3 we find:

• NO A spectrum, i.e., φ2 = φ3 = 0:

β1 = (23.84 + 360)◦ , β2 = (70.88 + 360)◦ for φ = −102.55◦ (δ = 93.98◦) ,
β1 = (−23.84 + 360)◦ , β2 = (−70.88 + 360)◦ for φ = 102.55◦ (δ = 266.02◦) ;

(2.3.74)

• NO B spectrum, i.e., φ2 = 0 and φ3 = π:

β1 = (23.84 + 540)◦ , β2 = (70.88 + 540)◦for φ = −102.55◦ (δ = 93.98◦) ,
β1 = (−23.84 + 540)◦ , β2 = (−70.88 + 540)◦for φ = 102.55◦ (δ = 266.02◦) ;

(2.3.75)

• IO spectrum, φ3 = 0 and φ2 = π:

β1 = (23.84 + 360)◦ , β2 = (70.88 + 180)◦ for φ = −102.55◦ (δ = 93.98◦) ,
β1 = (−23.84 + 360)◦ , β2 = (−70.88 + 180)◦ for φ = 102.55◦ (δ = 266.02◦) ,

(2.3.76)

where again we have used the fact that β1(2) and β1(2) +4π are physically indistinguishable.

The Neutrinoless Double Beta Decay Effective Majorana Mass

Knowing the values of the neutrino masses and the Majorana and Dirac CPV phases we
can derive predictions for the neutrinoless double beta ((ββ)0ν-) decay effective Majorana
mass |〈m〉| (see, e.g., [17]). Since |〈m〉| depends only on the cosines of the CPV phases, we
get the same result for φ = + 102.55◦ (δ = 266.02◦) and φ = − 102.55◦ (δ = 93.98◦).

Thus, for φ = ±102.55◦, using the best fit values of the neutrino mixing angles, we
obtain:

|〈m〉| = 4.88× 10−3 eV , NO A spectrum ; (2.3.77)

|〈m〉| = 7.30× 10−3 eV , NO B spectrum ; (2.3.78)

|〈m〉| = 26.34× 10−3 eV , IO spectrum . (2.3.79)
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Figure 2.2: The 3σ allowed regions of values of the effective Majorana mass |〈m〉| as
functions of the lightest neutrino mass mmin for the NO (blue area) and IO (red area)
neutrino mass spectra. The regions are obtained by using the experimentally determined
values of the neutrino oscillation parameters (including the 1σ uncertainties) quoted in
Table 1. The black crosses correspond to the predictions of the model constructed in
the present chapter, Eqs. (2.3.77) - (2.3.79). The horizontal band indicates the upper
bound |〈m〉| ∼ 0.2 − 0.4 eV obtained using the 90 % C.L. limit on the half-life of 76Ge
reported in [118]. The dotted line represents the prospective upper limit from the β-decay
experiment KATRIN [29].
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In Fig. 2.2 we show the general phenomenologically allowed 3σ range of values of |〈m〉|
for the NO (blue area) and IO (red area) neutrino mass spectra as a function of the lightest
neutrino mass. The values of |〈m〉| quoted above and corresponding to the three types of
neutrino mass spectrum (NO A, NO B and IO), predicted by the model constructed in the
present chapter, are indicated with black crosses. The vertical lines in Fig. 2.2 correspond
to mmin = 8.6 × 10−4 eV and 1.0 × 10−2 eV; for a given value of mmin from the interval
determined by these two values, [8.6 × 10−4, 1.0 × 10−2] eV, one can have |〈m〉| = 0 for
specific values of the Majorana CPV phases.

Limiting Cases

Finally, there are two interesting limiting forms of the charged lepton Yukawa coupling
(mass) matrix Ye: they correspond to i) k = 0, i.e., η = 0 or π, and ii) d = 0, i.e.,
η = ±π/2. In the case of k = 0, the TBM prediction for θ12 does not depend on θe23

anymore; if d = 0, even θ23 itself does not depend on θe23 anymore. Up to next-to-leading
order we find:

i) sin2 θ12 =
1

3
+

1

3
sin2 θ13 ≈

1

3
for k = 0, η = 0, π ,

ii) sin2 θ23 =
1

2
− 1

2
sin2 θ13 ≈

1

2
for d = 0, η = ±π/2 ,

(2.3.80)

where we have written the corrections in terms of θ13. Both cases could be realised by
choosing a certain set of messengers. If we remove the messenger pair ΣA

2′ , Σ̄A
2′′ , our model

would correspond to the case i), while if we remove the messenger pair ΣC
1′′ , Σ̄C

1′ , the model
would correspond to the case ii). The model we have constructed, which includes both
messenger pairs, gives a somewhat better description of the current data on the neutrino
mixing angles. This brief discussion shows how important the messenger sector can be for
getting meaningful predictions.

2.4 Messenger Sector

The effective model we have considered so far contains only non-renormalisable operators
allowed by the symmetry group Gf×Z2×Z2

3×Z2
4×Z8×U(1)R. But in fact using only this

symmetry there would be more effective operators allowed which might spoil our model
predictions.

Therefore we discuss in this section the so-called ultraviolet completion defining a renor-
malisable theory which gives the effective model described in the previous sections after
integrating out the heavy messenger superfields. In this way we can justify why we have
chosen only a certain subset of the effective operators allowed by the symmetries. The
quantum numbers of the messenger fields are given in Table 2.8. We label them with Σ, Ξ
and ∆ for the charged lepton, neutrino and flavon sector respectively.
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SU(2) U(1)Y T ′ U(1)R Z8 Z4 Z4 Z3 Z3 Z2

Ξ1 , Ξ̄1 2 ,2 1,1 1 ,1 0,2 7,1 0,0 0,0 0,0 1,2 0,0

ΣA
1 ,Σ̄A

1 2 ,2 1,1 1 ,1 1,1 1,7 3,1 3,1 2,1 1,2 1,1
ΣB

1 ,Σ̄B
1 1 ,1 2,2 1 ,1 1,1 2,6 1,3 1,3 2,1 0,0 1,1

ΣA
1′ ,Σ̄A

1′′ 2 ,2 1,1 1′,1′′ 1,1 7,1 3,1 3,1 0,0 2,1 0,0
ΣB

1′ ,Σ̄B
1′′ 1 ,1 2,2 1′,1′′ 1,1 0,0 1,3 1,3 0,0 1,2 0,0

ΣA
1′′ ,Σ̄A

1′ 2 ,2 1,1 1′′ ,1′ 1,1 1,7 3,1 3,1 2,1 1,2 1,1
ΣB

1′′ ,Σ̄B
1′ 2 ,2 1,1 1′′ ,1′ 1,1 1,7 3,1 1,3 0,0 0,0 0,0

ΣC
1′′ ,Σ̄C

1′ 2 ,2 1,1 1′′ ,1′ 1,1 6,2 3,1 0,0 1,2 1,2 0,0
ΣA

2′ ,Σ̄A
2′′ 2 ,2 1,1 2′,2′′ 1,1 0,0 1,3 0,0 1,2 1,2 0,0

ΣA
2′′ ,Σ̄A

2′ 2 ,2 1,1 2′′ ,2′ 1,1 0,0 1,3 0,0 1,2 1,2 0,0

∆A
1 ,∆̄A

1 1 ,1 0,0 1 ,1 0,2 0,0 2,2 0,0 0,0 0,0 0,0
∆B

1 ,∆̄B
1 1 ,1 0,0 1 ,1 0,2 0,0 0,0 0,0 2,1 2,1 0,0

∆A
1′ ,∆̄A

1′′ 1 ,1 0,0 1′,1′′ 0,2 0,0 0,0 0,0 0,0 2,1 0,0
∆A

2′ ,∆̄A
2′′ 1 ,1 0,0 2′,2′′ 0,2 0,0 0,0 3,1 1,2 1,2 1,1

∆A
3 ,∆̄A

3 1 ,1 0,0 3 ,3 0,2 4,4 0,0 0,0 0,0 0,0 1,1
∆B

3 ,∆̄B
3 1 ,1 0,0 3 ,3 0,2 6,2 2,2 0,0 1,2 0,0 1,1

∆C
3 ,∆̄C

3 1 ,1 0,0 3 ,3 0,2 6,2 1,3 2,2 0,0 1,2 0,0
∆D

3 ,∆̄D
3 1 ,1 0,0 3 ,3 0,2 5,3 0,0 3,1 0,0 1,2 0,0

∆E
3 ,∆̄E

3 1 ,1 0,0 3 ,3 0,2 2,6 0,0 2,2 2,1 0,0 0,0

Table 2.8: List of the messengers fields and their transformation properties.
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Figure 2.3: The supergraphs before integrating out the messengers for the charged lepton
sector.

For the charged lepton sector we find the renormalisable superpotential Wren
e

Wren
e = LφΣA

1′′ + LφΣA
1 + Ē3Hd Σ̄A

1′ + L φ̂ΣC
1′′ + ζ Σ̄C

1′ Σ
A
1′′ +Hd Σ̄A

1 ΣB
1

+ Ē ψ′ Σ̄B
1 + Lψ′ΣA

2′′ + ψ′′ Σ̄A
2′ Σ

A
1 + L φ̃ΣB

1′ + ζ̃ ′ Σ̄B
1′ Σ

B
1′

+Hd Σ̄B
1′′ Σ

C
1′ + Ē ψ̃′′ Σ̄C

1′′ + Lψ′ΣA
2′ + ψ′′ Σ̄A

2′′ Σ
A
1′′ ,

(2.4.1)

which through the diagrams of Fig. 2.3 generates at low energy the non-renormalisable
superpotential WYe of Eq. (2.3.12).

For the neutrino and the flavon sector we obtained similarly to the previous case

Wren
ν = N2ξ +N2ρ+N2ρ̃+ LNΞ1 +HuΞ̄1ρ+HuΞ̄1ρ̃ , (2.4.2)

Wren
flavon = Dφ φ∆B

3 + ε3 φ ∆̄B
3 +Dφ ζ

′′∆B
3 + D̃φ φ̃∆C

3 + ε1 φ̃ ∆̄C
3 + D̃φ ζ̃

′∆C
3

+ D̂φ φ̂∆D
3 + ε4 φ̂ ∆̄D

3 + D̂φ ζ̃
′′∆E

3 + ε5 φ̃ ∆̄E
3 + S̃ζ ζ̃

′′∆A
1′ + ζ̃ ′′ ζ̃ ′′ ∆̄A

1′′

+ Sε4 ε4 ∆B
1 + ε4 ε4 ∆̄B

1 + ε1 ε1 ∆̄A
1 + Sε1 ∆A

1 ∆A
1 .

(2.4.3)

The corresponding diagrams that generate the effective operators in the neutrino and flavon
sector in our model are given in Figs. 2.4 and 2.5.
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Figure 2.4: The supergraphs before integrating out the messengers for the neutrino
sector.

Dφ

φ , ζ ′′
∆B

3 ∆̄B
3

ε3

φ ∆C
3 ∆̄C

3

D̃φ

φ̃ , ζ̃ ′

ε1

φ̃

D̂φ

φ̂ ∆D
3 ∆̄D

3

ε4

φ̃

D̂φ

∆E
3 ∆̄E

3

ε5

φ̃ζ̃ ′′

S̃ζ

ζ̃ ′′ ∆A
1′ ∆̄A

1′′

ζ̃ ′′

ζ̃ ′′
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Figure 2.5: The supergraphs before integrating out the messengers for the flavon sector.
We have omitted for simplicity the supergraphs of the higher order corrections in the flavon
superpotential.
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2.5 Summary and Conclusions

We have analyzed the presence of a generalised CP symmetry, HCP, combined with the non-
Abelian discrete group T ′ in the lepton flavour space, i.e. the possibility of the existence of a
symmetry group Gf = T ′oHCP acting among the three generations of charged leptons and
neutrinos. The phenomenological implications of the breaking of such a symmetry group
both in the charged lepton and neutrino sectors are thus explored especially in connection
with the CP violation appearing in the leptonic mixing matrix, UPMNS.

First of all we have derived in Section 2.2 all the possible generalised CP transformations
for all the representations of the T ′ group i.e. we found all possible outer automorphisms
of the group T ′ following the consistency conditions given in [112,113,115]. We have cho-
sen as generalised CP symmetry the transformation u : (T, S) → (T 2, S2T 2S T ) which
corresponds to a Z2 symmetry and it is defined up to an inner automorphism. The trans-
formation u is particularly convenient since, in the basis chosen for the generators S and
T , for the 1 and 3-dimensional representations it is trivially defined as the identity up to
a global unphysical phase θr where the index r refers to the representation. More impor-
tantly we found that, given this specific generalised CP symmetry combined with T ′, it is
possible to fix the vevs of the flavon fields to real values in such a way that no complex
phases, and thus no physical CP violation, stem from the vevs themselves.

Moreover, for a list of possible renormalisable operators, namely λO = λ(A × B × C)
where λ is the coupling constant and A, B, C are fields, we derived the constraints on
the phase λ under the assumption of invariance under the generalised CP transformation.
This list of possible operators can be used to construct a CP-conserving renormalisable
superpotential for the flavon sector and therefore can be used in order to show that real
vev structures can be achieved.

Motivated by this preliminary study we constructed in Section 2.3 a supersymmetric
flavour model able to describe the observed patterns and mixing for three generations of
charged lepton fields and the three light active neutrinos.

We have constructed an effective superpotential with operators up to mass dimension
six giving the charged lepton and neutrino Yukawa couplings and the Majorana mass term
for the RH neutrinos. Naturally small neutrino masses are generated by the type I see-saw
mechanism. At leading order, the mixing in the neutrino sector is described by the tri-
bimaximal mixing, which is then perturbed by additional contributions coming from the
charged lepton sector. The latter are responsible for the compatibility of the predictions
on the mixing angles with the experimental values and, in particular, with the non-zero
value of the reactor mixing angle θ13.

Similarly to what was found in [90], we find that both types of neutrino mass spectrum
— with normal ordering (NO) and inverted ordering (IO) — are possible within the model
and that the NO spectrum can be of two varieties, A and B. They differ by the value
of the lightest neutrino mass. Only one spectrum of the IO type is compatible with the
model. For each of the three neutrino mass spectra, NO A, NO B and IO, the absolute
scale of neutrino masses is predicted with relatively small uncertainty. This allows us to
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predict the value of the sum of the neutrino masses for the three spectra. The Dirac
phase δ is predicted to be approximately δ ∼= π/2 or 3π/2. More concretely, for the
best fit values of the neutrino mixing angles quoted in Table 1.1 we get δ = 93.98◦ or
δ = 266.02◦. The deviations of δ from the values 90◦ and 270◦ are correlated with the
deviation of atmospheric neutrino mixing angle θ23 from π/4. Thus, the CP violating
effects in neutrino oscillations are predicted to be nearly maximal (given the values of the
neutrino mixing angles) and experimentally observable. The values of the Majorana CPV
phases are also predicted by the model. This allows us to predict the neutrinoless double
beta decay effective Majorana mass in each of the three cases of neutrino mass spectrum
allowed by the model, NO A, NO B and IO. The predictions of the model can be tested
in ongoing and future planned i) accelerators experiments searching for CP violation in
neutrino oscillations (T2K, NOνA, etc.), ii) experiments aiming to determine the absolute
neutrino mass scale, and iii) experiments searching for neutrinoless double beta decay.

It is important to comment that in this model the physical CP violation emerging
in the PMNS mixing matrix stems only from the charged lepton sector. Indeed, in the
neutrino sector the Majorana mass matrix and the Dirac Yukawa couplings are real and the
CP violation is caused by the complex CP violating phases arising in the charged lepton
sector. The presence of the latter is a consequence of the requirement of invariance of the
theory under the generalised CP symmetry at the fundamental level and of the complex
CGs of the T ′ group.

We also found that the residual group in the charged lepton sector is trivial i.e. Ge = ∅
and since the phases of the flavon vevs are completely independent of the coupling constants
of the flavon superpotential, the CP symmetry is broken geometrically (according to the
definition of “geometrical CP violation” given in [108]). In the neutrino sector, the residual
subgroup is instead a Klein group, Gν = K4 = Z2 × Z2 with one Z2 coming from the
generalised CP symmetry HCP.

Concluding, we have shown that the spontaneous breaking of a symmetry group Gf =
T ′ o HCP in the leptonic sector through a real flavon vev structure is possible and, at
the same time, CP violation in the leptonic sector can take place. In this scenario the
appearance of the CP violating phases in the PMNS mixing matrix can be traced to two
factors: i) the requirement of invariance of the Lagrangian of the theory under HCP at
the fundamental level, and ii) the complex CGs of the T ′ group. The model we have
constructed allows for two neutrino mass spectra with normal ordering (NO) and one
with inverted ordering (IO). For each of the three spectra the absolute scale of neutrino
masses is predicted with relatively small uncertainty. The value of the Dirac CP violation
(CPV) phase δ in the lepton mixing matrix is predicted to be δ ∼= π/2 or 3π/2. Thus,
the CP violating effects in neutrino oscillations are predicted to be nearly maximal and
experimentally observable. We present also predictions for the sum of the neutrino masses,
for the Majorana CPV phases and for the effective Majorana mass in neutrinoless double
beta decay. The predictions of the model can be tested in a variety of ongoing and future
planned neutrino experiments.
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CHAPTER 3

Dirac CP Violation Phase from Sum
Rules

3.1 The Sum Rules

In the present Chapter we continue the investigation of the discrete symmetry approach
to understanding of the pattern of neutrino mixing. In Chapter 2 we have done it on
the example of a specific self-consistent model with T ′ lepton flavour symmetry we have
constructed. In this Chapter we follow a more general phenomenological approach [119].
We consider several possible symmetry forms of the matrix Uν of the PMNS matrix U =
U †eUν combined with the requirement that the “correcting” matrix Ue has a minimal possible
form in terms of number of angles and phases it contains. We further analyse in detail the
predictions for the Dirac phase δ which can be obtained for the different symmetry forms
of Uν within the outlined approach.

In the framework of the reference 3 flavour neutrino mixing we will consider in this
chapter, the PMNS neutrino mixing matrix is always given by Eq. 2.1.1. We will suppose
in what follows that Uν has a form which is dictated by symmetries. More specifically, we
will assume that

Uν = Ψ1 Ũν Q0 = Ψ1R23 (θν23)R12 (θν12)Q0 , (3.1.1)

where R23(θν23) and R12(θν12) are orthogonal matrices describing rotations in the 2-3 and
1-2 planes, respectively, and Ψ1 and Q0 are diagonal phase matrices each containing two
phases. Obviously, the phases in the matrix Q0 give contribution to the Majorana phases
in the PMNS matrix. In the present chapter we will consider the following symmetry forms
of the matrix Ũν : i) tri-bimaximal (TBM) [93], ii) bimaximal (BM), or due to a symmetry
corresponding to the conservation of the lepton charge L′ = Le − Lµ − Lτ (LC) [94, 95],
iii) golden ratio type A (GRA) form [120,121], iv) golden ratio type B (GRB) form [122],
and v) hexagonal (HG) form [92, 123]. The TBM, BM, GRA, GRB and HG forms can
be obtained respectively from, e.g., T ′/A4, S4, A5, D10 and D12 discrete (lepton) flavour
symmetries (see, e.g., [77, 98, 100, 101, 120–123]). In all these cases we have θν23 = −π/4,
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and the matrix Ũν is given by

Ũν =


cos θν12 sin θν12 0

−sin θν12√
2

cos θν12√
2

− 1√
2

−sin θν12√
2

cos θν12√
2

1√
2

 . (3.1.2)

The TBM, BM (LC), GRA, GRB and HG forms of Ũν correspond to different fixed values
of θν12 and thus of sin2 θν12, namely, to i) sin2 θν12 = 1/3, ii) sin2 θν12 = 1/2, iii) sin2 θν12 = (2 +
r)−1 ∼= 0.276, r being the golden ratio, r = (1+

√
5)/2, iv) sin2 θν12 = (3−r)/4 ∼= 0.345, and

v) sin2 θν12 = 1/4. Thus, the matrix Ue in eq. (2.3.40) should provide corrections which not
only generate nonzero value of θ13, but also lead to reactor, atmospheric and solar neutrino
mixing angles θ13, θ23 and θ12 which have values compatible with the current data, including
a possible sizeable deviation of θ23 from π/4. As was shown in [74], the “minimal” form of
Ue, in terms of angles and phases it contains, that can provide the requisite corrections to
Uν includes a product of two orthogonal matrices describing rotations in the 2-3 and 1-2
planes, R23(θe23) and R12(θe12), θe23 and θe12 being two (real) angles. In what follows we will
adopt this minimal form of Ue. It proves convenient to cast it in the form [74]:

Ue = Ψ†2 Ũe = Ψ†2R
−1
23 (θe23)R−1

12 (θe12) , (3.1.3)

where Ψ2 is a diagonal phase matrix including two phases, and

R12 (θe12) =

 cos θe12 sin θe12 0
− sin θe12 cos θe12 0

0 0 1

 , R23 (θe23) =

1 0 0
0 cos θe23 sin θe23

0 − sin θe23 cos θe23

 . (3.1.4)

Thus, the PMNS matrix in the approach we are following is given by

U = U †e Uν = R12 (θe12) R23 (θe23) ΨR23 (θν23)R12 (θν12)Q0 , Ψ = Ψ2Ψ1 , θ
ν
23 = − π

4
. (3.1.5)

The matrices Ψ and Q0 are diagonal phase matrices each containing, in general, two phys-
ical CPV phases 1 [83]:

Ψ = diag
(
1, e−iψ, e−iω

)
, Q0 = diag

(
1, ei

ξ21
2 , ei

ξ31
2

)
. (3.1.6)

As was explained earlier, the requirement that Ue has a “minimal” form in terms of
angles and phases it contains, needed to provide the requisite corrections to Uν , makes
not necessary the inclusion in Ũe of the orthogonal matrix describing the rotation in the
1-3 plane, R13(θe13). Effectively, this is equivalent to the assumption that the angle θe13, if

1The diagonal phase matrix Ψ, as we see, can originate from the charged lepton or the neutrino sector,
or else can receive contributions from both sectors [83].
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nonzero, is sufficiently small and thus is either negligible, or leads to sub-dominant effects
in the observable of interest in the present analysis, cos δ. We will use θe13

∼= 0 to denote
values of θe13 which satisfy the indicated condition.

We note that θe13
∼= 0 is a feature of many theories of charged lepton and neutrino mass

generation (see, e.g., [86, 88–91, 98, 100, 101, 120, 124]). The assumption that θe13
∼= 0 was

also used in a large number of studies dedicated to the problem of understanding the origins
of the observed pattern of lepton mixing (see, e.g., [83–86, 91, 125, 126]). In wide class of
GUT inspired models of flavour, the matrix Ue is directly related to the quark mixing
matrix (see, e.g., [86, 88–91, 100, 101, 127]). As a consequence, in this class of models we
have θe13

∼= 0. We will comment later on the possible effects of θe13 6= 0, | sin θe13| � 1, on
the predictions for cos δ, which are of principal interest of the present study.

More generally, the approach to understanding the observed pattern of neutrino mixing
on the basis of discrete symmetries employed here, which leads to the sum rule of interest
for cos δ, is by no means unique — it is one of the several possible approaches discussed
in the literature on the subject (see, e.g., [78]). It is employed in a large number of
phenomenological studies (see, e.g., [83–86, 91, 125, 126]) as well as in a class of models
(see, e.g., [86, 88–91, 98, 100, 101, 127]) of neutrino mixing based on discrete symmetries.
However, it should be clear that the conditions which define the approach used here, are
not fulfilled in all models with discrete flavour symmetries. For example, they are not
fulfilled in the models with discrete flavour symmetry ∆(6n2) studied in [128, 129], with
the S4 flavour symmetry constructed in [130] and in the models discussed in [91].

Following [74], we will use the following rearrangement of the product of matrices
R23(θe23)ΨR23(θν23 = −π/4) in the expression eq. (3.1.5) for UPMNS:

R23(θe23) ΨR23(θν23 = −π/4) = P1 ΦR23(θ̂23)Q1 , (3.1.7)

where the angle θ̂23 is determined by

sin2 θ̂23 =
1

2
(1− 2 sin θe23 cos θe23 cos(ω − ψ)) , (3.1.8)

and

P1 = diag
(
1, 1, e− iα

)
, Φ = diag

(
1, eiφ, 1

)
, Q1 = diag

(
1, 1, eiβ

)
. (3.1.9)

In eq. (3.1.9)
α = γ + ψ + ω , β = γ − φ , (3.1.10)

and

γ = arg
(
−e−iψ cos θe23 + e−iω sin θe23

)
, φ = arg

(
e−iψ cos θe23 + e−iω sin θe23

)
. (3.1.11)

The phase α in the matrix P1 can be absorbed in the τ lepton field and, thus, is unphysical.
The phase β gives a contribution to the matrix Q̂ = Q1Q0; the diagonal phase matrix Q̂
contributes to the matrix of physical Majorana phases. In the setting considered the PMNS
matrix takes the form:

UPMNS = R12(θe12) Φ(φ)R23(θ̂23)R12(θν12) Q̂ , (3.1.12)
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where θν12 has a fixed value which depends on the symmetry form of Ũν used. For the
angles θ13, θ23 and θ12 of the standard parametrisation of the PMNS matrix U we get in
terms of the parameters in the expression eq. (3.1.12) for U [74]:

sin θ13 = |Ue3| = sin θe12 sin θ̂23 , (3.1.13)

sin2 θ23 =
|Uµ3|2

1− |Ue3|2
= sin2 θ̂23

cos2 θe12

1− sin2 θe12 sin2 θ̂23

=
sin2 θ̂23 − sin2 θ13

1− sin2 θ13

, (3.1.14)

sin2 θ12 =
|Ue2|2

1− |Ue3|2
=
(
1− cos2 θ23 cos2 θ13

)−1
[

sin2 θν12 sin2 θ23

+ cos2 θν12 cos2 θ23 sin2 θ13 +
1

2
sin 2θν12 sin 2θ23 sin θ13 cosφ

]
, (3.1.15)

where eq. (3.1.13) was used in order to obtain the expression for sin2 θ23 in terms of θ̂23 and
θ13, and eqs. (3.1.13) and (3.1.14) were used to get the last expression for sin2 θ12. Within
the approach employed, the expressions in eqs. (3.1.13) – (3.1.15) are exact.

It follows from eqs. (1.2.5), (1.2.3) and (3.1.12) that the four observables θ12, θ23, θ13

and δ are functions of three parameters θe12, θ̂23 and φ. As a consequence, the Dirac phase
δ can be expressed as a function of the three PMNS angles θ12, θ23 and θ13 [74], leading to
a new “sum rule” relating δ and θ12, θ23 and θ13. For an arbitrary fixed value of the angle
θν12 the sum rule for cos δ reads [75]:

cos δ =
tan θ23

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) (
1− cot2 θ23 sin2 θ13

)]
. (3.1.16)

For θν12 = π/4 and θν12 = sin−1(1/
√

3) the expression eq. (3.1.16) for cos δ reduces to those
found in [74] in the BM (LC) and TBM cases, respectively. A similar sum rule for an
arbitrary θν12 can be derived for the phase φ [74, 75]. It proves convenient for our further
discussion to cast the sum rules for cos δ and cosφ of interest in the form:

sin2 θ12 = cos2 θν12 +
sin 2θ12 sin θ13 cos δ − tan θ23 cos 2θν12

tan θ23(1− cot2 θ23 sin2 θ13)
, (3.1.17)

sin2 θ12 = cos2 θν12 +
1

2
sin 2θ23

sin 2θν12 sin θ13 cosφ− tan θ23 cos 2θν12

(1− cos2 θ23 cos2 θ13)
. (3.1.18)

The phases δ and φ are related by [75]:

sin δ = − sin 2θν12

sin 2θ12

sinφ , (3.1.19)

cos δ =
sin 2θν12

sin 2θ12

cosφ

(
−1 +

2 sin2 θ23

sin2 θ23 cos2 θ13 + sin2 θ13

)

+
cos 2θν12

sin 2θ12

sin 2θ23 sin θ13

sin2 θ23 cos2 θ13 + sin2 θ13

. (3.1.20)
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Within the scheme considered the sum rules eqs. (3.1.16) – (3.1.18) and the relations
eqs. (3.1.19) and (3.1.20) are exact. In a complete self-consistent theory of (lepton) flavour
based on discrete flavour symmetry, the indicated sum rules and relations are expected
to get corrections due to, e.g., θe13 6= 0, renormalisation group (RG) effects, etc. Analytic
expression for the correction in the expression for cos δ, eq. (3.1.16), due to | sin θe13| � 1
was derived in [75]. As was shown in [75], for the best fit values of the lepton mixing angles
θ12, θ13 and θ23, a nonzero θe13 ∼< 10−3 produces a correction to the value of cos δ obtained
from the “exact” sum rule eq. (3.1.16), which does not exceed 11% (4.9%) in the TBM
(GRB) cases and is even smaller in the other three cases of symmetry forms of Ũν analysed
here. A value of θe13 ∼< 10−3 is a feature of many theories and models of charged lepton and
neutrino mass generation (see, e.g., [86, 88–91, 98, 100, 101, 120, 124]). The RG effects on
the lepton mixing angles and the CPV phases are known to be negligible for hierarchical
neutrino mass spectrum (see, e.g., [131,132] and the references quoted therein); these effects
are relatively small for values of the lightest neutrino mass not exceeding approximately
0.05 eV 2. We will call the sum rules and the relations given in eqs. (3.1.16) – (3.1.18),
(3.1.19) and (3.1.20) “exact”, keeping in mind that they can be subject to corrections,
which, however, in a number of physically interesting cases, if not absent, can only be
sub-dominant.

A parametrisation of the PMNS matrix, similar to that given in eq. (3.1.5), has been
effectively employed in ref. [86]: the hierarchy of values of the angles in the matrices
Ue and Uν assumed in [86] leads the authors to consider the angles θe13 and θν13 of the
1-3 rotations in Ue and Uν as negligibly small. As a consequence, the PMNS matrix is
effectively parametrised in [86] with four angles θe12, θe23, θν12, θν23 and 3 four phases δe12, δe23,
δν12, δν23. As is shown in Appendix C.1 (see also ref. [75]), these phases are related to the
phases ψ, ω, ξ21 and ξ31 present in the parametrisation in eq. (3.1.5) as follows:

ψ = δe12 − δν12 + π , ω = δe23 + δe12 − δν23 − δν12 , (3.1.21)
ξ21 = −2δν12 , ξ31 = −2(δν12 + δν23) . (3.1.22)

Treating sin θe12 and sin θe23 as small parameters, | sin θe12| � 1, | sin θe23| � 1, neglecting
terms of order of, or smaller than, O((θe12)2), O((θe23)2) and O(θe12θ

e
23), and taking into

account that in this approximation we have sin θe12 =
√

2 sin θ13, the following “leading
order” sum rule was obtained in [86]:

θ12
∼= θν12 + θ13 cos δ . (3.1.23)

This sum rule can be derived from the sum rule

sin θ12
∼= sin θν12 +

sin 2θν12

2 sin θν12

sin θ13 cos δ , (3.1.24)

2In supersymmetric theories this result is valid for moderate values of the parameter tanβ ∼< 10 (see
[131,132]); for tanβ = 50 the same statement is true for values of the lightest neutrino mass smaller than
approximately 0.01 eV.

3In contrast to θν23 = π/4 employed in [86], we use θν23 = −π/4. The effect of the difference in the signs
of sin θe12 and sin θe23 utilised by us and in [86] is discussed in Appendix C.1.
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by treating sin 2θν12 sin θ13 cos δ ∼= sin 2θν12θ13 cos δ as a small parameter and using the Taylor
expansion sin−1(a+ b x) ∼= sin−1(a) + b x/

√
1− a2, valid for |bx| � 1.

From eqs. (3.1.17) and (3.1.18), employing the approximations used in ref. [86], we get:

sin2 θ12
∼= sin2 θν12 + sin 2θ12 sin θ13 cos δ , (3.1.25)

sin2 θ12
∼= sin2 θν12 + sin 2θν12 sin θ13 cosφ . (3.1.26)

The first equation leads (in the leading order approximation used to derive it and using
sin 2θ12

∼= sin 2θν12) to eq. (3.1.23), while from the second equation we find:

sin θ12
∼= sin θν12 +

sin 2θν12

2 sin θν12

sin θ13 cosφ , (3.1.27)

and correspondingly,
θ12
∼= θν12 + θ13 cosφ . (3.1.28)

This implies that in the leading order approximation adopted in ref. [86] we have [75]
cos δ = cosφ. Note, however, that the sum rules for cos δ and cosφ given in eqs. (3.1.25)
and (3.1.26), differ somewhat by the factors multiplying the terms ∼ sin θ13.

As was shown in [75], the leading order sum rule (3.1.23) leads in the cases of the TBM,
GRA, GRB and HG forms of Ũν to largely imprecise predictions for the value of cos δ: for
the best fit values of sin2 θ12 = 0.308, sin2 θ13 = 0.0234 and sin2 θ23 = 0.425 used in [75],
they differ approximately by factors (1.4 – 1.9) from the values found from the exact sum
rule. The same result holds for cosφ. Moreover, the predicted values of cos δ and cosφ differ
approximately by factors of (1.5 – 2.0), in contrast to the prediction cos δ ∼= cosφ following
from the leading order sum rules. The large differences between the results for cos δ and
cosφ, obtained using the leading order and the exact sum rules, are a consequence [75] of
the quantitative importance of the next-to-leading order terms which are neglected in the
leading order sum rules (3.1.23) – (3.1.28). The next-to-leading order terms are significant
for the TBM, GRA, GRB and HG forms of Ũν because in all these cases the “dominant”
terms |θ12 − θν12| ∼ sin2 θ13, or equivalently 4 | sin2 θ12 − sin2 θν12| ∼ sin2 θ13. It was shown
also in [75] that in the case of the BM (LC) form of Ũν we have |θ12 − θν12| ∼ sin θ13 and
the leading order sum rules provide rather precise predictions for cos δ and cosφ.

The results quoted above were obtained in [75] for the best fit values of the neutrino
mixing parameters sin2 θ12, sin2 θ23 and sin2 θ13. In the present chapter we investigate in
detail the predictions for cos δ and cosφ in the cases of the TBM, BM (LC), GRA, GRB and
HG forms of Ũν using the exact sum rules given in eqs. (3.1.17) (or (3.1.16)) and (3.1.18)
and the leading order sum rules in eqs. (3.1.25) and (3.1.26), taking into account also the
uncertainties in the measured values of sin2 θ12, sin2 θ23 and sin2 θ13. This allows us to
better assess the accuracy of the predictions for cos δ and cosφ based on the leading order

4Note that [75] since cos δ and cosφ in eqs. (3.1.23) – (3.1.28) are multiplied by sin θ13, the “dominant”
terms |θ12−θν12| and the next-to-leading order terms ∼ sin2 θ13 give contributions to cos δ and cosφ, which
are both of the same order and are ∼ sin θ13.
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sum rules and its dependence on the values of the neutrino mixing angles. We investigate
also how the predictions for cos δ and cosφ, obtained using the exact and the leading order
sum rules, vary when the PMNS neutrino mixing parameters sin2 θ12, sin2 θ23 and sin2 θ13

are varied in their respective experimentally allowed 3σ ranges.
In what follows we will present numerical results using the values of sin2 θ12, sin2 θ23

and sin2 θ13 quoted in eqs. (1.2.6) – (1.2.8) and corresponding to NO spectrum of neutrino
masses, unless another choice is explicitly specified. The results we obtain in the case of
IO spectrum differ insignificantly from those found for NO spectrum.

3.2 The Case of Negligible θe23

The case of negligible θe23
∼= 0 was investigated by many authors (see, e.g., [76,84–90,125]).

It corresponds to a large number of theories and models of charged lepton and neutrino
mass generation (see, e.g., [76, 86, 88–91, 100, 101]). For θe23

∼= 0, the sum rules of interest
given in eqs. (3.1.17) (or (3.1.16)), (3.1.18) and in eqs. (3.1.25), (3.1.26) were analysed in
detail in ref. [75].

In the limit of negligibly small θe23 we find from eqs. (3.1.8), (3.1.10) and (3.1.11):

sin2 θ̂23 =
1

2
, γ = −ψ + π , φ = −ψ = δν12 − δe12 − π , β = γ − φ = π . (3.2.1)

The phase ω is unphysical.
In the limiting case of negligible θe23 the exact sum rules for cos δ and cosφ take the

following form [75]:

cos δ =
(1− 2 sin2 θ13)

1
2

sin 2θ12 sin θ13

[
cos 2θν12 +

(
sin2 θ12 − cos2 θν12

) 1− 3 sin2 θ13

1− 2 sin2 θ13

]
, (3.2.2)

cosφ =
1− sin2 θ13

sin 2θν12 sin θ13 (1− 2 sin2 θ13)
1
2

[
sin2 θ12 − sin2 θν12 − cos 2θν12

sin2 θ13

1− sin2 θ13

]
.

(3.2.3)

From the above equations, to leading order in sin θ13 we get:

cos δ =
1

sin 2θ12 sin θ13

(
sin2 θ12 − sin2 θν12

)
+O(sin θ13) , (3.2.4)

cosφ =
1

sin 2θν12 sin θ13

(
sin2 θ12 − sin2 θν12

)
+O(sin θ13) , (3.2.5)

or equivalently,

sin2 θ12 = sin2 θν12 + sin 2θ12 sin θ13 cos δ +O(sin2 θ13) , (3.2.6)
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sin2 θ12 = sin2 θν12 + sin 2θν12 sin θ13 cosφ+O(sin2 θ13) . (3.2.7)

The last two equations coincide with eqs. (3.1.25) and (3.1.26) which were derived from
the exact sum rules keeping the leading order corrections in both sin θ13 and sin θe23. This
implies, in particular, that the correction due to | sin θe23| � 1 appears in the sum rules of
interest only in the next-to-leading order terms. Casting the results obtained in a form we
are going to use in our numerical analysis, we obtain:

sin θ12 = sin θν12 +
sin 2θ12

2 sin θν12

sin θ13 cos δ +O(sin2 θ13) (3.2.8)

= sin θν12 +
sin 2θν12

2 sin θν12

sin θ13 cos δ +O(sin2 θ13) , (3.2.9)

sin θ12 = sin θν12 +
sin 2θν12

2 sin θν12

sin θ13 cosφ+O(sin2 θ13) . (3.2.10)

We have replaced sin 2θ12 with sin 2θν12 in eq. (3.2.9), so that it corresponds to eqs. (3.1.23)
and (3.1.24). In the cases of the TBM, GRA, GRB and HG symmetry forms of Ũν we are
considering and for the best fit value of sin2 θ12 = 0.308 we indeed have | sin θ12− sin θν12| ∼
sin2 θ13. Thus, if one applies consistently the approximations employed in [86], which lead
to eqs. (3.1.23) – (3.1.28) (or to eqs. (3.2.4) and (3.2.5)), one should neglect also the
difference between θ12 and θν12. This leads to cos δ = cosφ = 0.

In Fig. 3.1 we show predictions for cos δ and cosφ in the cases of the TBM, GRA, GRB
and HG forms of the matrix Ũν , as functions of sin θ13 which is varied in the 3σ interval
given in eq. (1.2.8) and corresponding to NO neutrino mass spectrum. The predictions
are obtained for the best fit value of sin2 θ12 = 0.308 using the exact sum rules eqs. (3.2.2)
and (3.2.3) for cos δ (solid lines) and cosφ (dashed lines) and the leading order sum rules
eqs. (3.2.9) and (3.2.10) (dash-dotted lines). As we see in Fig. 3.1, the predictions for cos δ
vary in magnitude and sign when one varies the symmetry form of Ũν . More specifically,
from the exact sum rule in eq. (3.2.2), using the best fit value of sin2 θ13 = 0.0234 we get
for cos δ in the cases of the TBM, BM (LC), GRA, GRB and HG forms of Ũν , respectively:
cos δ = (−0.114); (−1.29); 0.289; (−0.200); 0.476.

The unphysical value of cos δ in the case of the BM (LC) form of Ũν is a reflection of the
fact that the scheme under discussion with the BM (LC) form of the matrix Ũν does not
provide a good description of the current data on θ12, θ23 and θ13 [74]. One gets a physical
result for cos δ, cos δ = −0.973, for, e.g., values of sin2 θ12 = 0.32, and sin θ13 = 0.16, lying
in the 2σ experimentally allowed intervals of these neutrino mixing parameters. We have
checked that for the best fit value of sin2 θ13, physical values of (cos δ)E, (cos δ)LO and
(cosφ)E in the BM (LC) case can be obtained for relatively large values of sin2 θ12. For,
e.g., sin2 θ12 = 0.359 and sin2 θ13 = 0.0234 we find (cos δ)E = −0.915, (cos δ)LO = −0.998
and (cosφ)E = −0.922. In this case the differences between the exact and leading order
sum rule results for cos δ and cosφ are relatively small.

The above results imply that it would be possible to distinguish between the different
symmetry forms of Ũν considered by measuring cos δ [75], provided sin2 θ12 is known with
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Figure 3.1: Predictions for cos δ and cosφ in the cases of the TBM (upper left panel),
GRA (upper right panel), GRB (lower left panel) and HG (lower right panel) forms of
the matrix Ũν , as functions of sin θ13 and for the best fit value of sin2 θ12 = 0.308. The
solid lines (dashed lines) correspond to cos δ (cosφ) determined from the exact sum rule
given in eq. (3.2.2) (eq. (3.2.3)). The dash-dotted line in each of the 4 panels represents
(cos δ)LO = (cosφ)LO obtained from the leading order sum rule in eq. (3.2.9). The vertical
dash-dotted line corresponds to the best fit value of sin2 θ13 = 0.0234; the three coloured
vertical bands indicate the 1σ, 2σ and 3σ experimentally allowed ranges of sin θ13 (see text
for further details).

sufficiently high precision. Even determining the sign of cos δ will be sufficient to eliminate
some of the possible symmetry forms of Ũν .

The leading order sum rules eqs. (3.2.9) and (3.2.10) lead to values of cos δ and cosφ,
(cos δ)LO and (cosφ)LO, which coincide: (cos δ)LO = (cosφ)LO. These values differ, how-
ever, from the values obtained employing the exact sum rules: (cos δ)E 6= (cos δ)LO,
(cosφ)E 6= (cosφ)LO. The exact sum rule values of cos δ and cosφ also differ: (cos δ)E 6=
(cosφ)E. We are interested both in the predictions for the values of (cos δ)E, (cos δ)LO,
(cosφ)E and (cosφ)LO, and in the differences between the exact and the leading order sum

61



CHAPTER 3. DIRAC CP VIOLATION PHASE FROM SUM RULES

sin2 θ12 = 0.308 TBM GRA GRB HG

(cos δ)E −0.114 0.289 −0.200 0.476
(cos δ)LO −0.179 0.225 −0.265 0.415

(cos δ)E/(cos δ)LO 0.638 1.29 0.756 1.15
(cosφ)E −0.231 0.153 −0.309 0.347

(cos δ)E/(cosφ)E 0.494 1.89 0.649 1.37
(cosφ)E/(cosφ)LO 1.29 0.680 1.16 0.837

Table 3.1: The predicted values of cos δ and cosφ, obtained from the exact sum rules
in eqs. (3.2.2) and (3.2.3), (cos δ)E and (cosφ)E, and from the leading order sum rule
in eq. (3.2.9), (cos δ)LO = (cosφ)LO, using the best fit values of sin2 θ13 = 0.0234 and
sin2 θ12 = 0.308, for the TBM, GRA, GRB and HG forms of the matrix Ũν . The values of
the ratios (cos δ)E/(cos δ)LO, (cos δ)E/(cosφ)E and (cosφ)E/(cosφ)LO are also shown.

rule predictions. In Table 3.1 we give the values of (cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO,
and of the ratios (cos δ)E/(cosφ)E, (cos δ)E/(cos δ)LO and (cosφ)E/(cosφ)LO, calculated for
the best fit values of sin2 θ13 = 0.0234 and sin2 θ12 = 0.308.

As Fig. 3.1 indicates, the differences |(cos δ)E − (cos δ)LO| and |(cosφ)E − (cosφ)LO|
exhibit weak dependence on the value of sin θ13 when it is varied in the 3σ interval quoted
in eq. (1.2.8). The values of cos δ, obtained using the exact sum rule eq. (3.2.2) in the TBM,
GRA, GRB and HG cases, differ from those calculated using the approximate sum rule
eq. (3.2.9) by the factors 0.638, 1.29, 0.756 and 1.15, respectively. The largest difference is
found to hold in the TBM case. As was shown in [75], the correction to (cos δ)LO — the
leading order sum rule result for cos δ— is given approximately by cos 2θν12 sin θ13/(sin 2θ12).
For given θν12, the relative magnitude of the correction depends on the magnitude of the
ratio | sin2 θ12 − sin2 θν12|/ sin θ13. The largest correction occurs for the symmetry form of
Ũν , for which this ratio has the smallest value. For the best fit value of sin2 θ12, the smallest
value of the ratio of interest corresponds to the TBM form of Ũν and is equal approximately
to 0.166.

The absolute values of the difference |(cos δ)E − (cos δ)LO| for the TBM, GRB, GRA
and HG symmetry forms, as it follows from Table 3.1, lie in the narrow interval (0.061 –
0.065). These differences seem to be rather small. However, they are sufficiently large to
lead to misleading results. Indeed, suppose cos δ is measured and the value determined
experimentally reads: cos δ = −0.18 ± 0.025. If one compares this value with the value
of cos δ predicted using the leading order sum rule, (cos δ)LO, one would conclude that
data are compatible with the TBM form of Ũν and that all the other forms considered by
us are ruled out. Using the prediction based on the exact sum rule, i.e., (cos δ)E, would
lead to a completely different conclusion, namely, that the data are compatible only with
the GRB form of Ũν 5. In this hypothetical example, which is included to illustrate the
significance of the difference between the predictions for cos δ obtained using the exact and

5The same hypothetical example can be used to illustrate the significance of the difference between the
exact and the leading order sum rule predictions for cos δ also in the case of θe23 6= 0 (see Table 3.4).
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the leading order sum rules, we have assumed that the prospective uncertainties in the
predicted values of (cos δ)LO and (cos δ)E due to the uncertainties in the measured values
of sin2 θ12, sin2 θ13 and sin2 θ23 are sufficiently small. These uncertainties will be discussed
in Section 3.4 (see Fig. 3.13). The relative difference between (cos δ)E and (cos δ)LO, i.e.,
the ratio |(cos δ)E− (cos δ)LO|/|(cos δ)E|, is also significant. For the TBM, GRA, GRB and
HG symmetry forms it reads: 57.0%, 22.1%, 32.5% and 12.8%, respectively.

The behaviour of cos δ and cosφ when sin θ13 increases is determined by the sign of
(sin2 θ12 − sin2 θν12): cos δ and cosφ increase (decrease) when this difference is negative
(positive). For the best fit value of sin2 θ12 = 0.308, this difference is negative in the TBM
and GRB cases, while it is positive in the GRA and HG ones. For the four symmetry
forms of Ũν , TBM, GRB, GRA and HG, and the best fit values of sin2 θ13 = 0.0234
and sin2 θ12 = 0.308, the ratio (sin2 θ12 − sin2 θν12)/ sin θ13 reads, respectively: (−0.166),
(−0.245), 0.207 and 0.379.
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Figure 3.2: The same as in Fig. 3.1, but for sin2 θ12 = 0.259 (see text for further details).

Given the fact that the magnitude of the ratio (sin2 θ12−sin2 θν12)/ sin θ13 determines the
factor by which (cos δ)E and (cos δ)LO (and (cosφ)E and (cosφ)LO) differ, we have checked
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sin2 θ12 = 0.259 TBM GRA GRB HG

(cos δ)E −0.469 −0.0436 −0.559 0.153
(cos δ)LO −0.548 −0.129 −0.637 0.0673

(cos δ)E/(cos δ)LO 0.855 0.338 0.878 2.28
(cosφ)E −0.571 −0.206 −0.646 −0.0225

(cos δ)E/(cosφ)E 0.821 0.212 0.866 −6.82
(cosφ)E/(cosφ)LO 1.04 1.59 1.01 −0.334

Table 3.2: The same as in Table 3.1, but for sin2 θ12 = 0.259.

how the results described above change when sin2 θ12 is varied in its 3σ allowed region,
eq. (1.2.6). In Figs. 3.2 and 3.3 we show the dependence of the predicted values of (cos δ)E,
(cosφ)E and (cos δ)LO = (cosφ)LO on sin θ13 for the minimal and maximal 3σ allowed values
of sin2 θ12, sin2 θ12 = 0.259 and 0.359. The results shown correspond to the TBM, GRA,
GRB, HG forms of Ũν . For sin2 θ12 = 0.259 (sin2 θ12 = 0.359) and sin2 θ13 = 0.0234, the
ratio (sin2 θ12 − sin2 θν12)/ sin θ13 in the TBM, GRA, GRB and HG cases takes respectively
the values: (−0.486), (−0.114), (−0.565) and 0.059 (0.168, 0.540, 0.088 and 0.713). As in
the preceding case, we give the predicted values of (cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO,
and the ratios between them, for sin2 θ12 = 0.259 (sin2 θ12 = 0.359) and sin2 θ13 = 0.0234
in Table 3.2 (Table 3.3).

It follows from the results presented in Tables 3.1 – 3.3 that the exact sum rule
predictions of cos δ, (cos δ)E, for the three values of sin2 θ12 = 0.308, 0.259 and 0.359,
differ drastically. For the TBM form of Ũν , for instance, we get, respectively, the values:
(cos δ)E = (−0.114), (−0.469) and 0.221. For the GRA and GRB forms of Ũν we have,
respectively, (cos δ)E = 0.289, (−0.044), 0.609, and (cos δ)E = (−0.200), (−0.559), 0.138.
Similarly, for the HG form we find for the three values of sin2 θ12: (cos δ)E = 0.476, 0.153,
0.789. Thus, in the cases of the symmetry forms of Ũν considered, the exact sum rule
predictions for cos δ not only change significantly in magnitude when sin2 θ12 is varied in
its 3σ allowed range, but also the sign of cos δ changes in the TBM, GRA and GRB cases
(see Fig. 3.4).

We observe also that for sin2 θ12 = 0.259, the values of cos δ, obtained using the exact
sum rule eq. (3.2.2) in the TBM, GRA, GRB and HG cases differ from those calculated
using the leading order sum rule in eq. (3.2.9) by the factors 0.855, 0.338, 0.878 and 2.28,
respectively; in the case of sin2 θ12 = 0.359 the same factors read: 1.27, 1.08, 1.50 and 1.05.

For sin2 θ12 = 0.259, the largest difference between the exact and leading order sum
rule results for cos δ occurs for the GRA and HG forms of Ũν , while if sin2 θ12 = 0.359, the
largest difference holds for the TBM and GRB forms.

As Figs. 3.1 – 3.3 and Tables 3.1 – 3.3 show, similar results are valid for cosφ obtained
from the exact and the leading order sum rules.

It is worth noting also that the values of cosφ and cos δ, derived from the respective
exact sum rules differ significantly for the TBM, GRA, GRB and HG forms of Ũν consid-
ered. As pointed out in [75], for the best fit values of sin2 θ13 and sin2 θ12 they differ by
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Figure 3.3: The same as in Fig. 3.1, but for sin2 θ12 = 0.359 (see text for further details).

sin2 θ12 = 0.359 TBM GRA GRB HG

(cos δ)E 0.221 0.609 0.138 0.789
(cos δ)LO 0.175 0.564 0.092 0.749

(cos δ)E/(cos δ)LO 1.27 1.08 1.50 1.05
(cosφ)E 0.123 0.526 0.042 0.733

(cos δ)E/(cosφ)E 1.80 1.16 3.29 1.08
(cosφ)E/(cosφ)LO 0.702 0.931 0.456 0.979

Table 3.3: The same as in Table 3.1, but for sin2 θ12 = 0.359.

factors (1.4 – 2.0), as can be seen also from Table 3.1. This difference can be much larger
for sin2 θ12 = 0.259 and 0.359: for these two values of sin2 θ12, cos δ and cosφ differ in the
cases of the different symmetry forms of interest approximately by factors (1.2 – 6.8) and
(1.1 – 3.3), respectively.
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Figure 3.4: The same as in Fig. 3.1, but for sin2 θ13 = 0.0234 and varying sin2 θ12 in the
3σ range. The vertical dash-dotted line corresponds to the best fit value of sin2 θ12 = 0.308
(see text for further details).

3.3 The Case of Nonzero θe23

For θe23 = 0 we have in the scheme we are considering: θ23
∼= π/4− 0.5 sin2 θ13. A nonzero

value of θe23 allows for a significant deviation of θ23 from π/4. Such deviation is not excluded
by the current data on sin2 θ23, eq. (1.2.7): at 3σ, values of sin2 θ23 in the interval (0.37 –
0.64) are allowed, the best fit value being sin2 θ23 = 0.437 (0.455). The exact sum rules for
cos δ and cosφ, eqs. (3.1.16), (3.1.17) and (3.1.18), depend on θ23, while the leading order
sum rules, eqs. (3.1.23) and (3.1.28), are independent of θ23. In this Section we are going
to investigate how the dependence on θ23 affects the predictions for cos δ and cosφ, based
on the exact sum rules.

We note first that from the exact sum rules in eqs. (3.1.17) and (3.1.18) we get to
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leading order in sin θ13:

sin2 θ12 = sin2 θν12 +
sin 2θ12

tan θ23

sin θ13 cos δ +O(sin2 θ13) , (3.3.1)

sin2 θ12 = sin2 θν12 +
sin 2θν12

tan θ23

sin θ13 cosφ+O(sin2 θ13) . (3.3.2)

It follows from eqs. (3.1.8) and (3.1.14) that in the case of | sin θe23| � 1 considered in
ref. [86], we have [75] (tan θ23)−1 ∼= 2 cos2 θ23 = 1+O(sin θe23). Applying the approximation
employed in ref. [86], in which terms of order of, or smaller than, sin2 θ13, sin2 θe23 and
sin θ13 sin θe23, in the sum rules of interest are neglected, we have to set (tan θ23)−1 = 1 in
eqs. (3.3.1) and (3.3.2). This leads to eqs. (3.1.25) and (3.1.26) and, correspondingly, to
eqs. (3.1.23) and (3.1.28).

In Fig. 3.5 we show the predictions for cos δ and cosφ in the cases of the TBM, GRA,
GRB and HG forms of the matrix Ũν , derived from the exact sum rules in eqs. (3.1.17) and
(3.1.18), (cos δ)E (solid line) and (cosφ)E (dashed line), and from the leading order sum rule
in eq. (3.1.24) (eq. (3.1.27)), (cos δ)LO = (cosφ)LO (dash-dotted line). The results presented
in Fig. 3.5 are obtained for the best fit values of sin2 θ12 = 0.308 and sin2 θ23 = 0.437. The
parameter sin2 θ13 is varied in its 3σ allowed range, eq. (1.2.8). In Table 3.4 we give the
values of (cos δ)E, (cos δ)LO, (cosφ)E and of their ratios, corresponding to the best fit values
of sin2 θ12, sin2 θ23 and sin2 θ13. We see from Table 3.4 that for the TBM, GRA, GRB and
HG forms of Ũν , cos δ determined from the exact sum rule takes respectively the values
(−0.091), 0.275, (−0.169) and 0.445. The values of cos δ, found using the exact sum rule,
eq. (3.1.17), differ in the TBM, GRA, GRB and HG cases from those calculated using the
leading order sum rule, eq. (3.1.24), by the factors 0.506, 1.22, 0.636 and 1.07, respectively.
Thus, the largest difference between the predictions of the exact and the leading order sum
rules occurs for the TBM form of Ũν .

Since the predictions of the sum rules depend on the value of θ12, we show in Fig. 3.6
and Fig. 3.7 also results for the values of sin2 θ12, corresponding to the lower and the upper
bounds of the 3σ allowed range of sin2 θ12, sin2 θ12 = 0.259 and 0.359, keeping sin2 θ23 fixed
to its best fit value. The predictions for (cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO and their
ratios, obtained for the best fit values of sin2 θ13 = 0.0234 and sin2 θ23 = 0.437, and for
sin2 θ12 = 0.259 (sin2 θ12 = 0.359) are given in Table 3.5 (Table 3.6). For sin2 θ12 = 0.259,
the exact sum rule predictions of cos δ for the TBM, GRA, GRB and HG forms of Ũν
read (see Table 3.5): (cos δ)E = (−0.408), (−0.022), (−0.490) and 0.156. As in the case of
negligible θe23 analysed in the preceding Section, these values differ drastically (in general,
both in magnitude and sign) from the exact sum rule values of cos δ corresponding to the
best fit value and the 3σ upper bound of sin2 θ12 = 0.308 and 0.359. The dependence of
(cos δ)E, (cos δ)LO and (cosφ)E on sin2 θ12 under discussion is shown graphically in Fig. 3.8.

Further, for sin2 θ12 = 0.259, the ratio (cos δ)E/(cos δ)LO in the TBM, GRA, GRB
and HG cases reads, respectively, 0.744, 0.172, 0.769 and 2.32 (see Table 3.5). Thus, the
predictions for cos δ of the exact and the leading order sum rules differ by the factors of 5.8
and 2.3 in the GRA and HG cases. For the upper bound of the 3σ range of sin2 θ12 = 0.359,
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Figure 3.5: Predictions for cos δ and cosφ in the cases of the TBM (upper left panel),
GRA (upper right panel), GRB (lower left panel) and HG (lower right panel) forms of
the matrix Ũν , as functions of sin θ13 and for the best fit values of sin2 θ12 = 0.308 and
sin2 θ23 = 0.437. The solid lines (dashed lines) correspond to cos δ (cosφ) determined
from the exact sum rule given in eq. (3.1.17) (eq. (3.1.18)). The dash-dotted line in each
of the 4 panels represents (cos δ)LO = (cosφ)LO obtained from the leading order sum rule
in eq. (3.1.24) (eq. (3.1.27)). The vertical dash-dotted line corresponds to the best fit
value of sin2 θ13 = 0.0234; the three coloured vertical bands indicate the 1σ, 2σ and 3σ
experimentally allowed ranges of sin θ13 (see text for further details).

the ratio (cos δ)E/(cos δ)LO takes the values 1.2, 0.996, 1.46 and 0.969 for the TBM, GRA,
GRB and HG forms of Ũν , respectively (see Table 3.6). For the GRA and HG symmetry
forms the leading order sum rule prediction for cos δ is very close to the exact sum rule
prediction, which can also be seen in Fig. 3.7.

We will investigate next the dependence of the predictions for cos δ and cosφ on the
value of θ23 given the facts that i) sin2 θ23 is determined experimentally with a relatively
large uncertainty, and ii) in contrast to the leading order sum rule predictions for cos δ and
cosφ, the exact sum rule predictions depend on θ23. In Figs. 3.9 and 3.10 we show the
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(sin2 θ12, sin
2 θ23) = (0.308, 0.437) TBM GRA GRB HG

(cos δ)E −0.0906 0.275 −0.169 0.445
(cos δ)LO −0.179 0.225 −0.265 0.415

(cos δ)E/(cos δ)LO 0.506 1.22 0.636 1.07
(cosφ)E −0.221 0.123 −0.290 0.297

(cos δ)E/(cosφ)E 0.41 2.24 0.581 1.50
(cosφ)E/(cosφ)LO 1.23 0.547 1.10 0.716

Table 3.4: The predicted values of cos δ and cosφ, obtained from the exact sum rules
in eqs. (3.1.17) and (3.1.18), (cos δ)E and (cosφ)E, and from the leading order sum
rule in eq. (3.1.24) (eq. (3.1.27)), (cos δ)LO = (cosφ)LO, using the best fit values of
sin2 θ13 = 0.0234, sin2 θ12 = 0.308 and sin2 θ23 = 0.437, for the TBM, GRA, GRB and HG
forms of the matrix Ũν . The values of the ratios (cos δ)E/(cos δ)LO, (cos δ)E/(cosφ)E and
(cosφ)E/(cosφ)LO are also shown.

dependence of predictions for cos δ and cosφ on sin θ13 for the best fit value of sin2 θ12 =
0.308 and the 3σ lower and upper bounds of sin2 θ23 = 0.374 and 0.626, respectively. For
sin2 θ23 = 0.374 (0.626) and the best fit values of sin2 θ13 and sin2 θ12, the exact and the
leading order sum rule results (cos δ)E, (cosφ)E, (cos δ)LO = (cosφ)LO and their ratios are
given in Tables 3.7 and 3.8. Comparing the values of (cos δ)E quoted in Tables 3.7 and
3.8 with the values given in Table 3.4 we note that the exact sum rule predictions for
cos δ for sin2 θ23 = 0.374 (lower 3σ bound) and sin2 θ23 = 0.437 (best fit value) do not
differ significantly in the cases of the TBM, GRA, GRB and HG forms of Ũν considered.
However, the differences between the predictions for sin2 θ23 = 0.437 and sin2 θ23 = 0.626
are rather large — by factors of 2.05, 1.25, 1.77 and 1.32 in the TBM, GRA, GRB and HG
cases, respectively.

In what concerns the difference between the exact and leading order sum rules predic-
tions for cos δ, for the best fit values of sin2 θ13 and sin2 θ12, and for sin2 θ23 = 0.374, the
ratio (cos δ)E/(cos δ)LO = 0.345, 1.17, 0.494 and 0.993 for TBM, GRA, GRB and HG forms
of Ũν . For sin2 θ23 = 0.626 we have for the same ratio (cos δ)E/(cos δ)LO = 1.04, 1.52, 1.13
and 1.42. Thus, for sin2 θ23 = 0.374 (0.626), the leading order sum rule prediction for cos δ
is rather precise in the HG (TBM) case. For the other symmetry forms of Ũν the leading
order sum rule prediction for cos δ is largely incorrect. As can be seen from Figs 3.5 – 3.10
and Tables 3.4 – 3.8, we get similar results for cosφ.

In the case of the BM (LC) form of Ũν , physical values of (cos δ)E, (cosφ)E and (cos δ)LO

can be obtained for the best fit values of sin2 θ13 and sin2 θ23 if sin2 θ12 has a relatively
large value. For, e.g., sin2 θ12 = 0.359, sin2 θ13 = 0.0234 and sin2 θ23 = 0.437 we find
(cos δ)E = −0.821, (cos δ)LO = −0.998, (cosφ)E = −0.837, and (cos δ)E/(cos δ)LO = 0.823.
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Figure 3.6: The same as in Fig. 3.5, but for sin2 θ12 = 0.259 (lower bound of the 3σ
interval in eq. (1.2.6)) and sin2 θ23 = 0.437 (best fit value).

(sin2 θ12, sin
2 θ23) = (0.259, 0.437) TBM GRA GRB HG

(cos δ)E −0.408 −0.0223 −0.490 0.156
(cos δ)LO −0.548 −0.129 −0.637 0.0673

(cos δ)E/(cos δ)LO 0.744 0.172 0.769 2.32
(cosφ)E −0.529 −0.202 −0.596 −0.0386

(cos δ)E/(cosφ)E 0.771 0.110 0.822 −4.05
(cosφ)E/(cosφ)LO 0.966 1.57 0.935 −0.573

Table 3.5: The same as in Table 3.4, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 =
0.259 (lower bound of the 3σ range) and sin2 θ23 = 0.437 (best fit value).
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Figure 3.7: The same as in Fig. 3.5, but for sin2 θ12 = 0.359 (upper bound of the 3σ
interval in eq. (1.2.6)) and sin2 θ23 = 0.437 (best fit value).

(sin2 θ12, sin
2 θ23) = (0.359, 0.437) TBM GRA GRB HG

(cos δ)E 0.210 0.562 0.135 0.725
(cos δ)LO 0.175 0.564 0.092 0.749

(cos δ)E/(cos δ)LO 1.20 0.996 1.46 0.969
(cosφ)E 0.100 0.461 0.0279 0.647

(cos δ)E/(cosφ)E 2.09 1.22 4.83 1.12
(cosφ)E/(cosφ)LO 0.573 0.817 0.303 0.864

Table 3.6: The same as in Table 3.4, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 =
0.359 (upper bound of the 3σ range) and sin2 θ23 = 0.437 (best fit value).

3.4 Statistical Analysis

In the present Section we perform a statistical analysis of the predictions for δ, cos δ
and the rephasing invariant JCP which controls the magnitude of CPV effects in neutrino
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Figure 3.8: The same as in Fig. 3.5, but for sin2 θ13 = 0.0234, sin2 θ23 = 0.437 (best fit
values) and varying sin2 θ12 in the 3σ range. The vertical dash-dotted line corresponds to
the best fit value of sin2 θ12 = 0.308.

(sin2 θ12, sin
2 θ23) = (0.308, 0.374) TBM GRA GRB HG

(cos δ)E −0.0618 0.262 −0.131 0.412
(cos δ)LO −0.179 0.225 −0.265 0.415

(cos δ)E/(cos δ)LO 0.345 1.17 0.494 0.993
(cosφ)E −0.211 0.0866 −0.271 0.237

(cos δ)E/(cosφ)E 0.293 3.03 0.483 1.74
(cosφ)E/(cosφ)LO 1.18 0.385 1.02 0.572

Table 3.7: The same as in Table 3.4, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 =
0.308 (best fit value) and sin2 θ23 = 0.374 (lower bound of the 3σ range).

oscillations [11], in the cases of the TBM, BM (LC), GRA, GRB and HG symmetry forms
of the matrix Ũν (see eq. (3.1.2)). In this analysis we use as input the latest results on
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Figure 3.9: The same as in Fig. 3.5, but for sin2 θ12 = 0.308 (best fit value) and
sin2 θ23 = 0.374 (lower bound of the 3σ interval in eq. (1.2.7)).

(sin2 θ12, sin
2 θ23) = (0.308, 0.626) TBM GRA GRB HG

(cos δ)E −0.186 0.343 −0.299 0.588
(cos δ)LO −0.179 0.225 −0.265 0.415

(cos δ)E/(cos δ)LO 1.04 1.52 1.13 1.42
(cosφ)E −0.272 0.244 −0.376 0.506

(cos δ)E/(cosφ)E 0.684 1.41 0.794 1.16
(cosφ)E/(cosφ)LO 1.52 1.09 1.42 1.22

Table 3.8: The same as in Table 3.4, but for sin2 θ13 = 0.0234 (best fit value), sin2 θ12 =
0.308 (best fit value) and sin2 θ23 = 0.626 (upper bound of the 3σ range).

sin2 θ12, sin2 θ13, sin2 θ23 and δ, obtained in the global analysis of the neutrino oscillation
data performed in [8]. Our goal is to derive the allowed ranges for δ, cos δ and JCP,
predicted on the basis of the current data on the neutrino mixing parameters for each of
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Figure 3.10: The same as in Fig. 3.5, but for sin2 θ12 = 0.308 (best fit value) and
sin2 θ23 = 0.626 (upper bound of the 3σ interval in eq. (1.2.7)).

the symmetry forms of Ũν considered. We recall that in the standard parametrisation of
the PMNS matrix, the JCP factor reads (see, e.g., [1]):

JCP = Im
{
U∗e1U

∗
µ3Ue3Uµ1

}
=

1

8
sin δ sin 2θ13 sin 2θ23 sin 2θ12 cos θ13 . (3.4.1)

We construct χ2 for the schemes considered — TBM, BM (LC), GRA, GRB and HG —
as described in Appendix B.2. We will focus on the general case of non-vanishing θe23 in
order to allow for possible sizeable deviations of θ23 from the symmetry value π/4.

In the five panels in Fig. 3.11 we show Nσ ≡
√
χ2 as a function of δ for the five

symmetry forms of Ũν we have studied. The dashed lines correspond to the results of the
global fit [8]. The solid lines represent the results we obtain by minimising the value of χ2

in sin2 θ13 and sin2 θ23 (or, equivalently, in sin2 θe12 and sin2 θ̂23) for a fixed value of δ 6.

6We note that in the scheme considered by us, fixing the value of δ implies that one of the three neutrino
mixing angles is expressed in terms of the other two. We choose for convenience this angle to be θ12.
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The blue (red) lines correspond to NO (IO) neutrino mass spectrum. The value of χ2 at
the minimum, χ2

min, which determines the best fit value of δ predicted for each symmetry
form of Ũν , allows us to make conclusions about the compatibility of a given symmetry
form of Ũν with the current global neutrino oscillation data.

It follows from the results shown in Fig. 3.11 that the BM (LC) symmetry form is
disfavoured by the data at approximately 1.8σ, all the other symmetry forms considered
being compatible with the data. We note that for the TBM, GRA, GRB and HG symmetry
forms, a value of δ in the vicinity of 3π/2 is preferred statistically. For the TBM symmetry
form this result was first obtained in [74] while for the GRA, GRB and HG symmetry
forms it was first found in [75]. In contrast, in the case of the BM (LC) form the best
fit value is very close to π [74, 75]. The somewhat larger value of χ2 at the second local
minimum in the vicinity of π/2 in the TBM, GRA, GRB and HG cases, is a consequence of
the fact that the best fit value of δ obtained in the global analysis of the current neutrino
oscillation data is close to 3π/2 and that the value of δ = π/2 is statistically disfavoured
(approximately at 2.5σ). In the absence of any information on δ, the two minima would
have exactly the same value of χ2, because they correspond to the same value of cos δ. In
the schemes considered, as we have discussed, cos δ is determined by the values of θ12, θ13

and θ23. The degeneracy in the sign of sin δ can only be solved by an experimental input
on δ. In Table 3.9 we give the best fit values of δ and the corresponding 3σ ranges for the
TBM, BM (LC), GRA, GRB and HG forms of Ũν , found by fixing

√
χ2 − χ2

min = 3.
In Fig. 3.12 we show the likelihood function versus cos δ for NO neutrino mass spectrum.

The results shown are obtained by marginalising over all the other relevant parameters of
the scheme considered (see Appendix B.2 for details). The dependence of the likelihood
function on cos δ in the case of IO neutrino mass spectrum differs little from that shown
in Fig. 3.12. Given the global fit results, the likelihood function, i.e.,

L(cos δ) ∝ exp

(
−χ

2(cos δ)

2

)
, (3.4.2)

represents the most probable value of cos δ for each of the considered symmetry forms of
Ũν . The nσ confidence level region corresponds to the interval of values of cos δ in which
L(cos δ) ≥ L(χ2 = χ2

min) · L(χ2 = n2).
As can be observed from Fig. 3.12, a rather precise measurement of cos δ would allow one

to distinguish between the different symmetry forms of Ũν considered by us. For the TBM
and GRB forms there is a significant overlap of the corresponding likelihood functions.
The same observation is valid for the GRA and HG forms. However, the overlap of the
likelihood functions of these two groups of symmetry forms occurs only at 3σ level in a
very small interval of values of cos δ, as can also be seen from Table 3.9. This implies that
in order to distinguish between TBM/GRB, GRA/HG and BM symmetry forms a not very
demanding measurement (in terms of accuracy) of cos δ might be sufficient. The value of the
non-normalised likelihood function at the maximum in Fig. 3.12 is equal to exp(−χ2

min/2),
which allows us to make conclusions about the compatibility of the symmetry schemes with
the current global data, as has already been pointed out.
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In the left panel of Fig. 3.13 we present the likelihood function versus cos δ within the
Gaussian approximation (see Appendix B.2 for details), using the current best fit values of
the mixing angles for NO neutrino mass spectrum in eqs. (1.2.6) – (1.2.8) and the prospec-
tive 1σ uncertainties in the determination of sin2 θ12 (0.7% from JUNO [133]), sin2 θ13

(almost 3% derived from an expected error on sin2 2θ13 of 3% from Daya Bay, see A. de
Gouvea et al. in [134]) and sin2 θ23 (5% 7 derived from the potential sensitivity of NOvA
and T2K on sin2 2θ23 of 2%, see A. de Gouvea et al. in [134]). The BM case is very
sensitive to the best fit values of sin2 θ12 and sin2 θ23 and is disfavoured at more than 2σ for
the current best fit values quoted in eqs. (1.2.6) – (1.2.8). This case might turn out to be
compatible with the data for larger (smaller) measured values of sin2 θ12 (sin2 θ23), as can
be seen from the right panel of Fig. 3.13, which was obtained for sin2 θ12 = 0.332. With
the increase of the value of sin2 θ23 the BM form becomes increasingly disfavoured, while
the TBM/GRB (GRA/HG) predictions for cos δ are shifted somewhat — approximately
by 0.1 — to the left (right) with respect to those shown in the left panel of Fig. 3.13. This
shift is illustrated in Fig. 3.14, which is obtained for sin2 θ23 = 0.579, more precisely, for the
best fit values found in [9] and corresponding to IO neutrino mass spectrum. The measure-
ment of sin2 θ12, sin2 θ13 and sin2 θ23 with the quoted precision will open up the possibility
to distinguish between the BM, TBM/GRB, GRA and HG forms of Ũν . Distinguishing
between the TBM and GRB forms would require relatively high precision measurement of
cos δ.

We have performed also a statistical analysis in order to derive predictions for JCP. In
Fig. 3.15 we present Nσ ≡

√
χ2 as a function of JCP for NO and IO neutrino mass spectra.

Similarly to the case of δ, we minimise the value of χ2 for a fixed value of JCP by varying
sin2 θ13 and sin2 θ23 (or, equivalently, sin2 θe12 and sin2 θ̂23). The best fit value of JCP and the
corresponding 3σ range for each of the considered symmetry forms of Ũν are summarised
in Table 3.9. As Fig. 3.15 shows, the CP-conserving value of JCP = 0 is excluded in the
cases of the TBM, GRA, GRB and HG neutrino mixing symmetry forms, respectively, at
approximately 5σ, 4σ, 4σ and 3σ confidence levels with respect to the confidence level of
the corresponding best fit values 8. These results correspond to those we have obtained for
δ, more specifically to the confidence levels at which the CP-conserving values of δ = 0, π,
2π, are excluded (see Fig. 3.11).

In contrast, for the BM (LC) symmetry form, the CP-conserving value of δ, namely, δ ∼=
π, is preferred and therefore the CP-violating effects in neutrino oscillations are predicted
to be suppressed. At the best fit point we obtain a value of JCP = −0.005 (−0.002) for NO
(IO) neutrino mass spectrum, which corresponds to the best fit value of δ/π = 1.04 (1.02).
The allowed range of the JCP factor in the BM (LC) includes the CP-conserving value
JCP = 0 at practically any confidence level. As can be seen from Table 3.9, the 3σ allowed
intervals of values of δ and JCP are rather narrow for all the symmetry forms considered,
except for the BM (LC) form.

7This sensitivity can be achieved in future neutrino facilities [135].
8The confidence levels under discussion differ in the cases of NO and IO neutrino mass spectra, but as

Fig. 3.15 indicates, in the cases considered these differences are rather small and we have not given them.
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Figure 3.11: Nσ ≡
√
χ2 as a function of δ. The dashed lines represent the results of

the global fit [8], while the solid lines represent the results we obtain for the TBM, BM
(LC), GRA (upper left, central, right panels), GRB and HG (lower left and right panels)
symmetry forms of Ũν . The blue (red) lines are for NO (IO) neutrino mass spectrum (see
text for further details).

Finally, for completeness, we present in Appendix B.3 also results of a statistical analysis
of the predictions for the values of sin2 θ23 for the TBM, BM (LC), GRA, GRB and HG
neutrino mixing symmetry forms considered. We recall that of the three neutrino mixing
parameters, sin2 θ12, sin2 θ13 and sin2 θ23, sin2 θ23 is determined in the global analyses of
the neutrino oscillation data with the largest uncertainty.

77



CHAPTER 3. DIRAC CP VIOLATION PHASE FROM SUM RULES

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

cos ∆

L
ik

el
ih

oo
d

@N
O

D

BM
GRB
TBM
GRA
HG

Figure 3.12: The likelihood function versus cos δ for NO neutrino mass spectrum after
marginalising over sin2 θ13 and sin2 θ23 for the TBM, BM (LC), GRA, GRB and HG
symmetry forms of the mixing matrix Ũν (see text for further details).
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Figure 3.13: The same as in Fig. 3.12, but using the prospective 1σ uncertainties in
the determination of the neutrino mixing angles within the Gaussian approximation (see
text for further details). In the left (right) panel sin2 θ12 = 0.308 (0.332), the other mixing
angles being fixed to their NO best fit values.

3.5 Summary and Conclusions

Using the fact that the neutrino mixing matrix U = U †eUν , where Ue and Uν result from the
diagonalisation of the charged lepton and neutrino mass matrices, we have analysed the
sum rules which the Dirac phase δ present in U satisfies when Uν has a form dictated by, or
associated with, discrete symmetries and Ue has a “minimal” form (in terms of angles and
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Figure 3.14: The same as in Fig. 3.13, but using the IO best fit values taken from [9].

phases it contains) that can provide the requisite corrections to Uν , so that the reactor,
atmospheric and solar neutrino mixing angles θ13, θ23 and θ12 have values compatible with
the current data.

We have considered the following symmetry forms of Uν : i) tri-bimaximal (TBM), ii)
bimaximal (BM) (or corresponding to the conservation of the lepton charge L′ = Le −
Lµ − Lτ (LC)), iii) golden ratio type A (GRA), iv) golden ratio type B (GRB), and v)
hexagonal (HG). For all these symmetry forms Uν can be written as Uν = Ψ1 Ũν Q0 =
Ψ1R23(θν23)R12(θν12)Q0, where R23(θν23) and R12(θν12) are orthogonal matrices describing
rotations in the 2-3 and 1-2 planes, respectively, and Ψ1 and Q0 are diagonal phase matrices
each containing two phases. The phases in the matrix Q0 give contribution to the Majorana
phases in the PMNS matrix. The symmetry forms of Ũν of interest, TBM, BM (LC), GRA,
GRB and HG, are characterised by the same value of the angle θν23 = −π/4, but correspond
to different fixed values of the angle θν12 and thus of sin2 θν12, namely, to i) sin2 θν12 = 1/3
(TBM), ii) sin2 θν12 = 1/2 (BM (LC)), iii) sin2 θν12 = (2 + r)−1 ∼= 0.276 (GRA), r being the
golden ratio, r = (1 +

√
5)/2, iv) sin2 θν12 = (3− r)/4 ∼= 0.345 (GRB), and v) sin2 θν12 = 1/4

(HG).
The minimal form of Ue of interest that can provide the requisite corrections to Uν , so

that the neutrino mixing angles θ13, θ23 and θ12 have values compatible with the cur-
rent data, including a possible sizeable deviation of θ23 from π/4, includes a product
of two orthogonal matrices describing rotations in the 2-3 and 1-2 planes [74], R23(θe23)
and R12(θe12), θe23 and θe12 being two (real) angles. This leads to the parametrisation
of the PMNS matrix U given in eq. (3.1.5), which can be recast in the form [74]:
U = R12(θe12)Φ(φ)R23(θ̂23)R12(θν12) Q̂, where Φ = diag

(
1, eiφ, 1

)
, φ being a CP violation

phase, θ̂23 is a function of θe23 (see eq. (3.1.8)), and Q̂ is a diagonal phase matrix. The
phases in Q̂ give contributions to the Majorana phases in the PMNS matrix. The angle
θ̂23, however, can be expressed in terms of the angles θ23 and θ13 of the PMNS matrix
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Figure 3.15: Nσ ≡
√
χ2 as a function of JCP. The dashed lines represent the results of

the global fit [8], while the solid lines represent the results we obtain for the TBM, BM
(LC), GRA (upper left, central, right panels), GRB and HG (lower left and right panels)
neutrino mixing symmetry forms. The blue (red) lines are for NO (IO) neutrino mass
spectrum (see text for further details).

(eq. (3.1.14)) and the value of θ̂23 is fixed by the values of θ23 and θ13.
In this scheme the four observables θ12, θ23, θ13 and the Dirac phase δ in the PMNS

matrix are functions of three parameters θe12, θ̂23 and φ. As a consequence, the Dirac phase
δ can be expressed as a function of the three PMNS angles θ12, θ23 and θ13, leading to a
new “sum rule” relating δ and θ12, θ23 and θ13. This sum rule is exact within the scheme
considered. Its explicit form depends on the symmetry form of the matrix Ũν , i.e., on the
value of the angle θν12. For arbitrary fixed value of θν12 the sum rule of interest is given in
eq. (3.1.16) (or the equivalent eq. (3.1.17)) [75]. A similar exact sum rule can be derived
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Symmetry form Best fit 3σ range

TBM JCP (NO) −0.034 −0.038÷−0.028⊕ 0.031÷ 0.036
JCP (IO) −0.034 −0.039÷−0.025⊕ 0.029÷ 0.037
δ/π (NO) 1.48 0.49÷ 0.58⊕ 1.34÷ 1.57
δ/π (IO) 1.48 0.47÷ 0.65⊕ 1.30÷ 1.57
cos δ (NO) −0.07 −0.47÷ 0.21
cos δ (IO) −0.07 −0.60÷ 0.23

BM (LC) JCP (NO) −0.005 −0.026÷ 0.021
JCP (IO) −0.002 −0.025÷ 0.023
δ/π (NO) 1.04 0.80÷ 1.24
δ/π (IO) 1.02 0.79÷ 1.23
cos δ (NO) −0.99 −1.00÷−0.72
cos δ (IO) −1.00 −1.00÷−0.72

GRA JCP (NO) −0.033 −0.037÷−0.027⊕ 0.030÷ 0.035
JCP (IO) −0.033 −0.037÷−0.025⊕ 0.028÷ 0.036
δ/π (NO) 1.58 0.35÷ 0.46⊕ 1.50÷ 1.70
δ/π (IO) 1.58 0.31÷ 0.48⊕ 1.47÷ 1.74
cos δ (NO) 0.25 −0.08÷ 0.69
cos δ (IO) 0.25 −0.08÷ 0.69

GRB JCP (NO) −0.034 −0.039÷−0.026⊕ 0.031÷ 0.036
JCP (IO) −0.033 −0.039÷−0.022⊕ 0.026÷ 0.037
δ/π (NO) 1.45 0.51÷ 0.61⊕ 1.31÷ 1.54
δ/π (IO) 1.45 0.50÷ 0.70⊕ 1.25÷ 1.54
cos δ (NO) −0.15 −0.57÷ 0.13
cos δ (IO) −0.15 −0.70÷ 0.13

HG JCP (NO) −0.031 −0.035÷−0.020⊕ 0.026÷ 0.034
JCP (IO) −0.031 −0.036÷−0.015⊕ 0.019÷ 0.034
δ/π (NO) 1.66 0.27÷ 0.41⊕ 1.55÷ 1.80
δ/π (IO) 1.63 0.19÷ 0.42⊕ 1.55÷ 1.86
cos δ (NO) 0.47 0.16÷ 0.80
cos δ (IO) 0.40 0.16÷ 0.80

Table 3.9: Best fit values of JCP, δ and cos δ and corresponding 3σ ranges (found fixing√
χ2 − χ2

min = 3) in our setup using the data from [8].

for the phase φ (eq. (3.1.18)) [75].
A parametrisation of the PMNS matrix, similar to that given in eq. (3.1.5), has been

effectively employed in ref. [86]. Treating sin θe12 and sin θe23 as small parameters, | sin θe12| �
1, | sin θe23| � 1, and neglecting terms of order of, or smaller than, O((θe12)2), O((θe23)2)
and O(θe12θ

e
23), the following “leading order” sum rule was obtained in [86]: θ12

∼= θν12 +
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θ13 cos δ. This sum rule, in the approximation used to obtain it, is equivalent to the sum
rule sin θ12

∼= sin θν12+cos θν12 sin θ13 cos δ, which was shown in ref. [75] to be the leading order
approximation of the exact sum rule given in eq. (3.1.16) (or the equivalent eq. (3.1.17)).
In the present chapter we have investigated the predictions for cos δ in the cases of TBM,
BM (LC), GRA, GRB and HG symmetry forms of the matrix Ũν using the exact and the
leading order sum rules for cos δ discussed above and given in eqs. (3.1.17) and (3.1.24). It
was shown in [75], in particular, using the best fit values of the neutrino mixing parameters
sin2 θ12, sin2 θ23 and sin2 θ13 and the exact sum rule results for cos δ derived for the TBM,
GRA, GRB and HG forms of Ũν , that the leading order sum rule provides largely imprecise
predictions for cos δ. Here we have performed a thorough study of the exact and leading
order sum rule predictions for cos δ in the TBM, BM (LC), GRA, GRB and HG cases taking
into account the uncertainties in the measured values of sin2 θ12, sin2 θ23 and sin2 θ13. This
allowed us, in particular, to assess the accuracy of the predictions for cos δ based on the
leading order sum rules and its dependence on the values of the indicated neutrino mixing
parameters when the latter are varied in their respective 3σ experimentally allowed ranges.
In contrast to the leading order sum rule, the exact sum rule for cos δ depends not only on
θ12 and θ13, but also on θ23, and we have investigated this dependence as well.

In the present study we have analysed both the cases of θe23 = 0, in which sin2 θ23
∼=

0.5(1− sin2 θ13), and of arbitrary θe23. In the second case θ23 can deviate significantly from
π/4.

We confirm the result found in [75] that the exact sum rule predictions for cos δ vary
significantly with the symmetry form of Ũν . This result implies that the measurement of
cos δ can allow us to distinguish between the different symmetry forms of Ũν [75] provided
sin2 θ12, sin2 θ13 and sin2 θ23 are known with a sufficiently good precision. Even determining
the sign of cos δ will be sufficient to eliminate some of the possible symmetry forms of Ũν .

We find also that the exact sum rule predictions for cos δ exhibit strong dependence
on the value of sin2 θ12 when the latter is varied in its 3σ experimentally allowed range
(0.259 – 0.359) (Tables 3.1 – 3.6). The predictions for cos δ change significantly not only in
magnitude, but in the cases of TBM, GRA and GRB forms of Ũν also the sign of cos δ can
change. These significant changes take place both for θe23 = 0 and θe23 6= 0.

We have investigated the dependence of the exact sum rule predictions for cos δ in the
cases of the symmetry forms of Ũν considered on the value of sin2 θ23 varying the latter in
the respective 3σ allowed interval 0.374 ≤ sin2 θ23 ≤ 0.626 (Figs. 3.9 and 3.10, and Tables
3.7 and 3.8). The results we get for sin2 θ23 = 0.374 and sin2 θ23 = 0.437, setting sin2 θ12

and sin2 θ13 to their best fit values, do not differ significantly. However, the differences
between the predictions for cos δ obtained for sin2 θ23 = 0.437 and for sin2 θ23 = 0.626 are
relatively large (they differ by the factors of 2.05, 1.25, 1.77 and 1.32 in the TBM, GRA,
GRB and HG cases, respectively).

In all cases considered, having the exact sum rule results for cos δ, we could investigate
the precision of the leading order sum rule predictions for cos δ. We found that the leading
order sum rule predictions for cos δ are, in general, imprecise and in many cases are largely
incorrect, the only exception being the case of the BM (LC) form of Ũν [75].

We have performed a similar analysis of the predictions for the cosine of the phase φ.
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The phase φ is related to, but does not coincide with, the Dirac phase δ. The parameter
cosφ obeys a leading order sum rule which is almost identical to the leading order sum
rule satisfied by cos δ. This leads to the confusing identification of φ with δ: the exact sum
rules satisfied by cosφ and cos δ differ significantly. Correspondingly, the predicted values
of cosφ and cos δ in the cases of the TBM, GRA, GRB and HG symmetry forms of Ũν
considered by us also differ significantly (see Figs. 3.1 – 3.10 and Tables 3.1 – 3.8). This
conclusion is not valid for the BM (LC) form: for this form the exact sum rule predictions
for cosφ and cos δ are rather similar. The phase φ appears in a large class of models of
neutrino mixing and neutrino mass generation and serves as a “source” for the Dirac phase
δ in these models.

Finally, we have performed a statistical analysis of the predictions for δ, cos δ and the
rephasing invariant JCP which controls the magnitude of CPV effects in neutrino oscillations
[11], in the cases of the TBM, BM (LC), GRA, GRB and HG symmetry forms of the matrix
Ũν considered. In this analysis we have used as input the latest results on sin2 θ12, sin2 θ13,
sin2 θ23 and δ, obtained in the global analysis of the neutrino oscillation data performed
in [8]. Our goal was to derive the allowed ranges for δ, cos δ and JCP, predicted on the basis
of the current data on the neutrino mixing parameters for each of the symmetry forms of
Ũν considered. The results of this analysis are shown in Figs. 3.11, 3.12 and 3.15, and
are summarised in Table 3.9, in which we give the predicted best fit values and 3σ ranges
of JCP, δ and cos δ for each of the symmetry forms of Ũν considered. We have shown, in
particular, that the CP-conserving value of JCP = 0 is excluded in the cases of the TBM,
GRA, GRB and HG neutrino mixing symmetry forms, respectively, at approximately 5σ,
4σ, 4σ and 3σ confidence levels with respect to the confidence level of the corresponding
best fit values (Fig. 3.15). These results reflect the predictions we have obtained for δ,
more specifically, the confidence levels at which the CP-conserving values of δ = 0, π, 2π,
are excluded in the discussed cases (see Fig. 3.11). We have found also that the 3σ allowed
intervals of values of δ and JCP are rather narrow for all the symmetry forms considered,
except for the BM (LC) form (Table 3.9). More specifically, for the TBM, GRA, GRB and
HG symmetry forms we have obtained at 3σ: 0.020 ≤ |JCP| ≤ 0.039. For the best fit values
of JCP we have found, respectively: JCP = (−0.034), (−0.033), (−0.034), and (−0.031).
Our results indicate that distinguishing between the TBM, GRA, GRB and HG symmetry
forms of the neutrino mixing would require extremely high precision measurement of the
JCP factor.

Using the likelihood method, we have derived also the ranges of the predicted values
of cos δ for the different forms of Ũν considered, using the prospective 1σ uncertainties
in the determination of sin2 θ12, sin2 θ13 and sin2 θ23 respectively in JUNO, Daya Bay and
accelerator and atmospheric neutrino experiments (Fig. 3.13). In this analysis the current
best fit values of sin2 θ12, sin2 θ13 and sin2 θ23 have been utilised (left panel of Fig. 3.13).
The results thus obtained show that i) the measurement of the sign of cos δ will allow to
distinguish between the TBM/GRB, BM and GRA/HG forms of Ũν , ii) for a best fit value
of cos δ = −1 (−0.1) distinguishing at 3σ between the BM (TBM/GRB) and the other
forms of Ũν would be possible if cos δ is measured with 1σ uncertainty of 0.3 (0.1).

The predictions for δ, cos δ and JCP in the case of the BM (LC) symmetry form of Ũν ,
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as the results of the statistical analysis performed by us showed, differ significantly from
those found for the TBM, GRA, GRB and HG forms: the best fit value of δ ∼= π, and,
correspondingly, of JCP

∼= 0. For the 3σ range of JCP we have obtained in the case of NO
(IO) neutrino mass spectrum: −0.026 (−0.025) ≤ JCP ≤ 0.021 (0.023), i.e., it includes a
sub-interval of values centred on zero, which does not overlap with the 3σ allowed intervals
of values of JCP in the TBM, GRA, GRB and HG cases.

The results obtained in the present study, in particular, reinforce the conclusion reached
in ref. [75] that the experimental measurement of the cosine of the Dirac phase δ of the
PMNS neutrino mixing matrix can provide unique information about the possible discrete
symmetry origin of the observed pattern of neutrino mixing.

84



CHAPTER 4

Non-Standard Neutrino Interactions

4.1 Introduction

An important aspect of the current studies in neutrino physics is the use of the high pre-
cision data of neutrino oscillation experiments to test models of neutrino related physics
beyond the Standard Theory of particle interactions. In the present Chapter we investigate
the possible effects of the existence of non-standard neutrino interactions on the interpreta-
tion of the results of the rector neutrino experiments Daya Bay, RENO and Double Chooz
and of the T2K accelerator neutrino experiment [136].

Recently the T2K collaboration reported a measurement of the reactor neutrino mixing
angle θ13 based on their latest νµ → νe oscillation data [137]. Fixing the values of i)
the Dirac CP violation (CPV) phase δ = 0, ii) the atmospheric neutrino mixing angle
θ23 = π/4, iii) sin2 θ12 = 0.306, iv) ∆m2

21 = 7.6×10−5 eV2 and v) |∆m2
32| = 2.4×10−3 eV2,

the T2K collaboration found:

sin2 2θ13 = 0.140+0.038
−0.032 (0.170+0.045

−0.037) , (4.1.1)

where the value (the value in brackets) corresponds to neutrino mass spectrum with normal
(inverted, IO) ordering (NO). The best fit value of sin2 2θ13 reported by the T2K collabo-
ration is significantly larger than that measured in the reactor neutrino experiments Daya
Bay, RENO and Double Chooz [102,104,138]. The most precise determination of sin2 2θ13

was reported by the Daya Bay collaboration [138]:

sin2 2θ13 = 0.090+0.008
−0.009 . (4.1.2)

Given the uncertainty in the T2K result, Eq. (4.1.1), the difference between the values of
sin2 2θ13 obtained in the T2K and Daya Bay experiments does not seem to be irreconcilable
and the most natural explanation of this difference can be attributed to setting δ = 0 and
θ23 = π/4. Indeed, the global analyses of the neutrino oscillation data, including the data
from T2K and Daya Bay, performed in [7,8] found a hint for non-zero value of δ and for a
deviation of θ23 from π/4: for the best fit values of δ and sin2 θ23 the authors of [8] obtained
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δ ' 3π/2 and sin2 θ23 = 0.42− 0.43. Similar results were obtained in [7].
On-going and future neutrino experiments [137, 139, 140] have the physics potential to
improve the data on the leptonic CP violation phase δ and thus to test the indications for
δ ∼ 3π/2 found in the global analyses [7, 8].

In this chapter we would like to entertain a different possibility, namely, that the dif-
ference between the values of sin2 2θ13 found in the T2K experiment for δ = 0, θ23 = π/4,
etc., and in the Daya Bay experiment is due to the presence of new physics in the neutrino
sector. More specifically, we consider the effects of non-standard neutrino interactions
(NSI) [141, 142] on the ν̄e → ν̄e and νµ → νe oscillation probabilities and show how the
values obtained in the two experiments can be reconciled.

4.2 Basic formalism

In what follows we consider the analytic treatment of Non Standard Interactions (NSI) as
described in [143], where it was assumed that NSI can affect both neutrino production and
detection processes. Matter effects can be safely neglected in the ν̄e → ν̄e and νµ → νe
oscillation probabilities, relevant for the interpretation of the Daya Bay and T2K data of
interest.

Effects of NSI can appear at low energy through unknown couplings εαβ, generated after
integrating out heavy degrees of freedom. These new couplings can affect neutrino produc-
tion s and detection d [142], so the neutrino states are a superposition of the orthonormal
flavor eigenstates |νe〉, |νµ〉 and |ντ 〉 [144–146]:

|νs
α〉 = |να〉+

∑
β=e,µ,τ

εsαβ|νβ〉 =
[
(1 + εs)|ν〉

]
α
, (4.2.1)

〈νd
β | = 〈νβ|+

∑
α=e,µ,τ

εdαβ〈να| =
[
〈ν|(1 + εd)

]
β
. (4.2.2)

The oscillation probability can be obtained by squaring the amplitude 〈νdβ|e−iHL|νsα〉:

Pνsα→νdβ = |〈νdβ|e−iHL|νsα〉|2

=
∣∣(1 + εd)γβ

(
e−iHL

)
γδ

(1 + εs)αδ
∣∣2.

Since the parameters εseα and εdαe receive contributions from the same higher dimensional
operators, one can constrain them by the relation:

εseα = εd∗αe ≡ εeαe
iφeα , (4.2.3)

εeα and φeα being the modulus and the argument of εseα. For εαβ there exist model inde-
pendent bounds derived in [147], which at 90% C.L. read:

εee < 0.041, εeµ < 0.025, εeτ < 0.041 ,

|εs,dµe | < 0.026, |εs,dµµ| < 0.078, |εs,dµτ | < 0.013 , (4.2.4)
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whereas for the CP violation phases φeα no constraints have been obtained so far. These
bounds can be further improved, e.g., by future reactor neutrino experiments [144] and
at neutrino factories [148], especially the bounds on non-diagonal couplings which are
expected to be constrained at the level of O(10−3). Recently it was shown in Ref. [72] that
the bound on εee can be improved by almost an order of magnitude by the most recent
data of the Daya Bay experiment [138], i.e. εee . 3.6× 10−3 at 90% confidence level.

In the case of the Daya Bay setup, the relevant features of the ν̄e → ν̄e survival prob-
ability at the far and near detectors can be already caught keeping terms up to O(ε) in
the expansion in the small couplings |εs,dαβ| and neglecting terms of O(∆m2

21/∆m
2
31) and of

O(ε sin2 θ13, sin
3 θ13).

On the other hand, for the T2K setup, the correct dependence on the Dirac phase δ is
reproduced keeping the first order terms in ∆m2

21, as discussed in [143].
In the limiting case εee = 0 (which is a good approximation since |εee cosφee| < O(10−3)
[72]), the νe → νe survival probability can be written for δ = 0 as:

P (νe → νe) = 1− sin2 2θ̂13 sin2

[
∆m2

31 L

4Eν

]
, (4.2.5)

where [68]

sin2 2θ̂13 = sin2 2θ13 + 4εeµ sin 2θ13 sin θ23 cos 2θ13 cos(φeµ)

+ 4εeτ sin 2θ13 cos θ23 cos 2θ13 cos(φeτ ) .
(4.2.6)

The terms involving the parameters εeµ and εeτ can affect significantly the determina-
tion of the reactor angle θ13, as pointed out in [68, 72]. Depending on the phases φeµ and
φeτ , relatively large values of εeµ and εeτ can lead to smaller (for φeµ = φeτ ' 0), equal (for
φeµ ' φeτ +π and εeµ ' εeτ ) or larger (for φeµ = φeτ ' π) values of θ13 than those obtained
in the standard case of absence of NSI.

The oscillation probability P (νµ → νe) relevant for the interpretation of the T2K data
on sin2 2θ13, can be written for δ = 0, ∆m2

21/|∆m2
31 � 1 and taking into account the NSI

as:

P (νµ → νe) ' sin2 θ23 sin2 2θ13 sin2 ∆m2
31L

4E
+ P0 + P1 , (4.2.7)

where P0 and P1 include respectively the zero and the first order contributions of the NSI,
derived for ∆m2

21L/(4Eν)� 1. Indeed, for the neutrino energy of Eν = 0.1 GeV we have:
∆m2

21L/(4Eν) = 2.7× 10−4 for L = 0.28 km, and ∆m2
21L/(4Eν) = 0.28 for L = 295 km.
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Using the constraints given in Eq. (4.2.3) and defining εs,dαβ = |εs,dαβ| exp(iφs,dαβ), we get:

P0 =− 4|εsµe| sin θ13 sin θ23 cos(φsµe) sin2

[
∆m2

31 L

4Eν

]
− 4|εsµe| sin θ13 sin θ23 sin(φsµe) sin

[
∆m2

31 L

4Eν

]
cos

[
∆m2

31 L

4Eν

]
− 4εeµ sin θ13 sin θ23 cos(φeµ) cos 2θ23 sin2

[
∆m2

31 L

4Eν

]
− 4εeµ sin θ13 sin θ23 sin(φeµ) sin

[
∆m2

31 L

4Eν

]
cos

[
∆m2

31 L

4Eν

]
+ 8εeτ sin θ13 sin2 θ23 cos θ23 cos(φeτ ) sin2

[
∆m2

31 L

4Eν

]
+O(ε sin2 θ13) +O(ε2) ,

(4.2.8)

P1 =− |εsµe| sin 2θ12 cos θ23 sinφsµe
∆m2

21L

2Eν

+ 2εeµ sin 2θ12 sin2 θ23 cos θ23 cosφeµ
∆m2

21L

4Eν
sin

[
∆m2

31 L

2Eν

]
+ εeµ sin 2θ12 cos θ23 sinφeµ

∆m2
21L

2Eν

[
1− 2 sin2 θ23 sin2

[
∆m2

31 L

4Eν

]]
+ 2εeτ sin 2θ12 sin θ23 cos2 θ23 cosφeτ

∆m2
21L

4Eν
sin

[
∆m2

31 L

2Eν

]
− 2εeτ sin 2θ12 sin θ23 cos2 θ23 sinφeτ

∆m2
21L

2Eν
sin2

[
∆m2

31 L

4Eν

]
+O

(
ε sin θ13

∆m2
21L

4Eν

)
+O(ε2) .

(4.2.9)

In the previous equations, the P0 term encodes the correlations between θ13 and the new
physics parameters so, as in the Daya Bay case, we expect a significant impact of de-
generacies on the determination of the reactor angle. The term P1 is subleading, whose
magnitude is controlled by ∆m2

21L/(4Eν)� 1.

4.3 Fit results

As we can see from the previous formulae, the parameter space for NSI relevant for our
analysis consists of six parameters, the moduli εeµ, εeτ , εsµe and the phases φeµ, φeτ , φsµe.
However, for the illustrative purposes of the present study it is sufficient to consider a
smaller parameter space with just two independent NSI parameters, specified below. We
consider two different scenarios: one in which a large sin2 2θ13 = 0.14 (sin2 2θ13 = 0.17) for
NO (IO) can be reconciled with both the Daya Bay and T2K data and a second where we
assume that sin2 2θ13 = 0.09.
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4.3.1 The case of sin2 2θ13 = 0.14 (0.17)

In this case we reduced the parameter space assuming:

ε = εeµ = εeτ = εsµe, φ = φeµ = φeτ , φsµe = 0. (4.3.1)

The choice of the parameter space is not completely arbitrary. For the large θ13 case we
need relatively large NSI effects to obtain an effective reactor angle satisfying the Daya
Bay measurement.

In Fig. 4.1 we show the best fit points and the 1, 2 and 3σ confidence level regions
for 1 degree of freedom (dof) after performing a combined fit to the Daya Bay [138] and
T2K [137] data (see the Appendix C.1 for a detailed description of the fitting procedure).
In the left panel of Fig. 4.1 we fixed sin2 θ12 = 0.306, ∆m2

21 = 7.6×10−5 eV2, sin2 θ23 = 0.5,
|∆m2

32| = 2.4 × 10−3 eV2, δ = 0 and sin2 2θ13 = 0.140, whereas in the right panel we al-
lowed θ13 to vary freely, using the mean value and the 1σ error as determined in the T2K
experiment, sin2 2θT2K

13 = 0.140± 0.038.
Results in the case of inverted hierarchy are shown in Fig. 4.2; the procedure adopted is
the same as the one used to obtain Fig. 4.1, the only difference being that the fixed value
of the reactor angle is now at sin2 2θ13 = 0.170 and that, when θ13 is left free to vary, we
used sin2 2θT2K

13 = 0.170± 0.045.
As it can be seen, in the left panels of Figs. 4.1 and 4.2, the same value of θ13 can give a
good description of both Daya Bay and T2K data under the hypothesis of relatively large
ε and for a phase φ which is almost CP conserving.
Since we are adopting the preferred T2K value of θ13, it is necessary to allow for relatively
large NSI couplings to reconcile sin2 2θ13 = 0.14 (sin2 2θ13 = 0.17) with the Daya Bay event
distribution. On the other hand, our choice of couplings, Eq. (4.3.1), does not lead to a
significant change of the fit to the T2K data.
In the case we vary freely θ13 (see Appendix C.1 for details) the sensitivity to ε is sig-
nificantly reduced (with the smallest statistical sensitivity at φ ∼ π), due to the strong
correlation between θ13 and the NSI parameters [72]. That means that there exist a vast
parameter space for NSI for which the data can be fitted simultaneously at the price of
changing accordingly the value of θ13. To give an example, at the best fit point we get:
sin2 2θ13 = 0.113 (sin2 2θ13 = 0.130) for the NO (IO) spectrum.
The values of ε , φ at the NO(IO) best fit point are given in Table 4.1. We notice that the

(log10 ε , φ) best fit left panel right panel
NO (−1.64 , 3.18) (−1.98 , 3.20)
IO (−1.44 , 3.34) (−1.74 , 3.32)

Table 4.1: Best fit points for the (log10 ε , φ) parameters obtained in our analysis. NO
refers to Fig. 4.1, IO to Fig. 4.2.

confidence level regions are slightly shifted to the left (right) if instead of the assumption in
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Figure 4.1: Allowed regions in the φ − log10(ε) plane, where ε and φ are respectively
the modulus and the phase of the NSI parameter, at 1σ, 2σ and 3σ confidence level (C.L.)
for 1 dof fitting the data of the Daya Bay and the T2K experiments in the case of NSI
with NO. The best fit points correspond to the crossed points. The vertical lines are at
log10 ε = log10 0.025.
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Figure 4.2: Same as Fig. 4.1 but for IO.

Eq. (4.3.1) we impose: εeµ = 2 εeτ = εsµe, φeµ = φeτ and φsµe = 0 (εeµ = εeτ = εsµe, φeµ = φeτ
and φsµe = π/2).
To demonstrate that for the obtained values of the NSI parameters one can describe both
the Daya Bay and T2K results, including the spectra, in the Left Panel of Fig. 4.3 we
show the oscillation probability P (νe → νe) as a function of Leff/Eν [138] for the NSI
model (solid red line) for NO spectrum and in the absence of NSI ("standard result"
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(SR)) (dotted black line); the mixing parameters are fixed as follows: sin2 θ12 = 0.306,
∆m2

21 = 7.6×10−5 eV2, sin2 θ23 = 0.5, |∆m2
32| = 2.4×10−3 eV2, δ = 0 and sin2 2θ13 = 0.140,

εeµ = εeτ = εsµe = 10−1.64, φeµ = φeτ = 3.18 and φsµe = 0. The triangular, square and circu-
lar data points refer to the EH1, EH2 (near detectors) and EH3 (far detector) Daya Bay
locations and have been taken from [138]. The Right Panel of Fig. 4.3 has been obtained
using the same values for the standard oscillation and NSI parameters and shows the num-
ber of candidate events in the appearance channel of the T2K experiment. The SR result
with sin2 2θ13 = 0.090 is shown with the dot-dashed line in the left panel and the T2K
best fit curve is represented with the blue line in the right panel. As it is clear from these
figures, the Daya Bay and the T2K spectral data are well reproduced.
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Figure 4.3: Left Panel. Oscillation probability P (νe → νe) as a function of Leff/Eν for
the NSI model (solid red line) and the SR with sin2 2θ13 = 0.140 (dashed black line) and
with sin2 2θ13 = 0.090 (dot-dashed black line). The triangular, square and circular data
points refer to the EH1, EH2 and EH3 locations and have been taken from [138]. Right
Panel. Number of νe candidate events as a function of the neutrino energy for the NSI
model (solid red line), the SR (dashed black line) and the T2K best fit curve (solid blue
line), the three curves being almost superimposed. The T2K data and the errors have
been taken from [137]. See the text for further details.

4.3.2 The case of sin2 2θ13 = 0.09

In the case of small θ13 we reduced the parameter space assuming:

ε = εeµ = εsµe, εeτ 6= 0, φeµ = φsµe = π, φeτ = 0. (4.3.2)

In the case of small θ13 the choice in Eq. (13) is dictated by the need of minimizing the
NSI effects in the ν̄e → ν̄e survival probability, so that the results of the Daya Bay fit
remain unaffected. In the Left Panel of Fig. 4.4 we show the best fit points and the 1, 2
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and 3σ confidence level regions for 1 dof after performing a combined fit to the Daya Bay
and to the T2K data for NO fixing sin2 θ12 = 0.306, ∆m2

21 = 7.6× 10−5 eV2, sin2 θ23 = 0.5,
|∆m2

32| = 2.4 × 10−3 eV2, δ = 0 and sin2 2θ13 = 0.09. In the Right Panel of Fig. 4.4 we
allowed θ13 to vary freely.
We do not show the results for the IO spectrum, because, under the assumptions made for
the parameter space, Eq. 4.3.2, they are the same as in the NO case.
In contrast to the large θ13 case, in order to reconcile the Daya Bay and the T2K spectral
data requires that the phase φeµ and φeτ are related through φeµ ' φeτ − π. This ensures
that sizeable NSI effects do not spoil the Daya Bay measurement of the reactor angle when
εeµ ∼ εeτ : in fact, P (νe → νe) is reduced essentially to the standard expression and no
significant effect has to be expected from the NSI parameters at leading order. On the
other hand, it is clear that relatively large values of ε are needed to fit the T2K data.
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Figure 4.4: Allowed regions in the log10 εeτ−log10 ε plane, where ε and φ are respectively
the modulus and the phase of the NSI parameter, at 1σ, 2σ and 3σ confidence level (C.L.)
for 1 dof fitting the data of the Daya Bay and the T2K experiments in the case of NSI with
NO. The best fit points correspond to the crossed points; the vertical lines are at log10 ε =
log10 0.025, the horizontal lines at log10 εeτ = log10 0.041. The circular and triangular
points are at (log10 ε , log10 εeτ ) = (−1.63 , −1.63) , (−1.80 , −1.80), respectively.

We give in Table 4.2 the best fit points we obtained in our analysis for Fig. 4.4. Notice
that they are close to the current upper limits, reported with dot-dashed lines.

best fit left panel right panel
(log10 ε , log10 εeτ ) (−1.36 , −1.36) (−1.36 , −1.36)

Table 4.2: Best fit points for the (log10 ε , log10 εeτ ) parameters obtained in our analysis.

Finally, in Fig. 4.5 we show the number of candidate events in the appearance channel of
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the T2K experiment (with mixing parameters fixed at the values discussed below Eq. 4.3.2).
Since the best fit points are outside the current 90% C.L. bounds on the NSI parameters, we
show the spectra for two points within the NSI bounds: one point is located in the 1σ region,
while the second is located in the 2σ region (see Fig. 4.4). In the Left Panel of Fig. 4.5
we fixed (log10 ε , log10 εeτ ) = (−1.63 , −1.63), in the Right Panel (log10 ε , log10 εeτ ) =
(−1.80 , −1.80). The T2K best fit curve is represented with the blue line. As it is clear
from these figures, the T2K spectral data are well reproduced.
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Figure 4.5: Left Panel. Number of νe candidate events as a function of the energy for the
NSI model (solid red line) with (log10 ε , log10 εeτ ) = (−1.63 , −1.63), the SR (dashed black
line) and the T2K best fit curve (solid thin blue line). The T2K data and the errors have
been taken from [137]. Right Panel. As in the Left Panel but using (log10 ε , log10 εeτ ) =
(−1.80 , −1.80). See the text for further details.

4.4 Summary and Conclusions

In the present chapter we have analyzed the most recent data of the Daya Bay [138] and
the T2K [137] experiments with the aim to study the possibility that NSI effects can
reconcile the different values of the reactor angle reported by the two experiments. We
recall that the best fit values of sin2 2θ13 found in the experiments, sin2 2θ13 = 0.090 [138]
and sin2 2θ13 = 0.140 (0.170) [137], differ by a factor 1.6 (1.9) in the case of NO (IO)
neutrino mass spectrum. The T2K result was obtained under the assumptions: i) the
Dirac CP violation phase δ = 0, ii) the atmospheric neutrino mixing angle θ23 = π/4, iii)
sin2 θ12 = 0.306, iv) ∆m2

21 = 7.6 × 10−5 eV2 and v) |∆m2
32| = 2.4 × 10−3 eV2. Given the

uncertainty in the T2K result, the difference between the values of sin2 2θ13 obtained in the
T2K and Daya Bay experiments does not seem to be irreconcilable and the most natural
explanation can be attributed to setting δ = 0 and θ23 = π/4. Here we have entertained
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a different possibility, namely, that the difference between the values of sin2 2θ13 found in
the T2K experiment for δ = 0 and in the Daya Bay experiment are due to the presence
of new physics in the neutrino sector in the form of non-standard neutrino interactions
(NSI). There are altogether six NSI parameters which can affect the ν̄e → ν̄e and νµ → νe
oscillation probabilities, relevant for the interpretation of the Daya Bay and T2K data on
sin2 2θ13: three complex, in general, NSI effective couplings, whose absolute values and
phases are εeµ, εeτ , εsµe and φeµ, φeτ , φsµe. We have considered two extreme cases: one
where the true value of θ13 is sin2 2θ13 = 0.140 for NO (sin2 2θ13 = 0.170 for IO), and the
other where the true value is sin2 2θ13 = 0.090. With the aim of finding a minimal model
with few new degrees of freedom for each of the two cases, we have simplified the NSI
parameter spaces, assuming ε = εeµ = εeτ = εsµe, φ = φeµ = φeτ , φ

s
µe = 0 for the large θ13

case and ε = εeµ = εsµe, εeτ 6= 0, φeµ = φsµe = π, φeτ = 0 for the small θ13 one. All other
mixing parameters are fixed to sin2 θ12 = 0.306, ∆m2

21 = 7.6 × 10−5 eV2, sin2 θ23 = 0.5,
|∆m2

32| = 2.4× 10−3 eV2, δ = 0. We have found that, contrary to the interpretation that
δ = 0 is disfavoured in the standard case, following from the global analysis of the neutrino
oscillation data [7, 8], it is possible to find a good agreement with both the hypothesis
of large, sin2 2θ13 = 0.14 (0.17), and small, sin2 2θ13 = 0.09, for δ = 0, in well defined
regions of the NSI parameter space. In a more general situation in which the NSI can
affect the neutrino flux in the near detector and without the restrictions we considered
on the parameter space, it will be possible to reconcile the Daya Bay and T2K data in a
bigger region of the NSI parameter space within the current upper bounds.
Given the relatively low statistics of the T2K νµ → νe oscillation data, our results on the
possible NSI effects should be considered as very preliminary. Future experiments searching
the CP violation and/or NSI effects in neutrino oscillations will certainly provide a critical
test of the possible NSI effects we have discussed.
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CHAPTER 5

Neutrinoless Double Beta Decay

5.1 Introduction

As we have discussed in the Introduction, at present there are a number of experimental
evidences for existence of sterile neutrinos with masses at the eV scale. We have also noted
that the relevant data is usually interpreted in terms of the “3+1” and “3+2” schemes, which
contain one — ν4 — or two — ν4,5 — massive neutrinos beyond the three light neutrinos.
The neutrinos ν4, or ν4,5, are assumed to have masses m4 ∼ 1 eV, or m4,5 ∼ 1 eV. In the
minimal versions of the “3 + 1” and “3 + 2” schemes the massive neutrinos νj, j = 1, 2, 3, 4,
and 5 are Majorana particles. In this the neutrinoless double beta decay is allowed: it
is triggered by the exchange of virtual Majorana neutrinos νj. In the Introduction we
have briefly discussed the predictions for the (ββ)0ν-decay effective Majorana mass in the
reference 3-neutrino mixing scheme with the light Majorana neutrinos ν1,2,3. In the present
chapter we investigate the predictions for |〈m〉| in the 3 + 1 and 3 + 2 schemes, which have
been discussed in the Introduction. More specifically, we analyze in detail the possibility of
a complete or partial cancellation between the different terms in |〈m〉|, leading to a strong
suppression of |〈m〉| [149]. Whenever possible (e.g., in the cases of the 3 + 1 scheme and
for the CP conserving values of the CP violation (CPV) phases in the 3 + 2 scheme), we
determine analytically the region of the relevant parameter spaces where such a suppression
can occur. In both the 3 + 1 and 3 + 2 schemes we perform also a numerical analysis to
derive the values of the CPV phases for which a complete cancellation can take place.
This allows us to derive the conditions under which the effective Majorana mass satisfies
|〈m〉| > 0.01 eV, which is the range planned to be exploited by the next generation of
(ββ)0ν-experiments. Our study is a natural continuation of the earlier studies [55, 56]
and [57–59] on the subject.
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5.2 One Sterile Neutrino: the 3+1 Model

In this Section we study the case of existence of one extra sterile neutrino. We will use the
parametrisation of the PMNS matrix adopted in [53]:

U = O24O23O14V13V12 diag(1, eiα/2, eiβ/2, eiγ/2), (5.2.1)

where Oij and Vkl describe real and complex rotations in i−j and k− l planes, respectively,
and α, β and γ are three CP violation (CPV) Majorana phases [2]. Each of the matrices
V12 and V13 contains one CPV phase, δ12 and δ13, respectively, in their only two nonzero
nondiagonal elements. The phases δ12 and δ13 enter into the expression for |〈m〉| in the
combinations α/2 − δ12 and β/2 − δ13. Therefore for the purposes of the present study
we can set δ12 = 0 and δ13 = 0 without loss of generality. With this set-up for the CPV
phases, the elements of the first row of the PMNS matrix, which are relevant for our further
discussion, are given by

Ue1 = c12c13c14,

Ue2 = eiα/2c13c14s12,

Ue3 = eiβ/2c14s13,

Ue4 = eiγ/2s14 ,

(5.2.2)

where we have used the standard notation cij ≡ cos θij and sij ≡ sin θij. The element Ue4,
and thus the angle θ14, describes the coupling of 4th neutrino ν4 to the electron in the weak
charged lepton current.

The masses of all neutrinos of interest for the present study satisfy mj � 1 MeV,
j = 1, 2, 3, 4. Therefore, the expression for the effective Majorana mass in the 3 + 1 model
has the form (see, e.g., [17–19]):

|〈m〉| =
∣∣m1|Ue1|2 +m2|Ue2|2eiα +m3|Ue3|2eiβ +m4|Ue4|2eiγ

∣∣ . (5.2.3)

In this study we will use two reference sets of values of the two sterile neutrino oscillation
parameters sin2 θ14 and ∆m2

41, which enter into the expression for |〈m〉| and which are
obtained in the analyses performed in [53, 54]. Some of the results obtained in [53] using
different data sets are given in Table 5.1. We will use the best fit values1

sin2 θ14 = 0.0225 , ∆m2
41 = 0.93 eV2 (A) , (5.2.4)

found in [53] in the global analysis of all the data (positive evidences and negative results)
relevant for the tests of the sterile neutrino hypothesis, and

sin2 θ14 = 0.023 , ∆m2
41 = 1.78 eV2 (B) , (5.2.5)

1We will use throughout all the text the notation ∆m2
41 in the case of NO spectrum and ∆m2

43 for the
IO spectrum.
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obtained in [53] from the fit of all the νe and ν̄e disappearance data (reactor neutrino
and Gallium anomalies, etc.) and quoted in Table 5.1. Global analysis of the sterile
neutrino related data was performed recently, as we have already noticed, also in [54]
(for earlier analyses see, e.g., [150]). The authors of [54] did not include in the data set
used the MiniBooNE results at Eν ≤ 0.475 GeV, which show an excess of events over
the estimated background [36, 151]. The nature of this excess is not well understood at
present. For the best values of sin2 θ14 and ∆m2

41 the authors [54] find: sin2 θ14 = 0.028
and ∆m2

41 = 1.60 eV2, which are close to the best fit values found in [53] in the analysis of
the νe and ν̄e disappearance data (see Table 5.1). Actually, in what concerns the problem
we are going to investigate, these two sets of values of sin2 θ14 and ∆m2

41 lead practically
to the same results.

sin2 2θ14 ∆m2
41 eV

SBL rates only 0.13 0.44
SBL incl. Bugey3 spectr. 0.10 1.75
SBL + Gallium 0.11 1.80
SBL + LBL 0.09 1.78
global νe disapp. 0.09 1.78

sin θ14 ∆m2
41 eV

global data 0.15 0.93

Table 5.1: The best fit values of the oscillation parameters sin2 2θ14 and ∆m2
41 obtained

in the 3+1 scheme in [53] using different data sets. The values in the last row are obtained
from the global fit of all available data and are reported in Table 8 in [53].

The authors of ref. [54] give also the allowed intervals of values of ∆m2
41 and sin2 θ14

at 95% C.L., which are correlated. The two values of ∆m2
41 correspond approximately to

the two extreme points of the ∆m2
41 interval. For ∆m2

41 = 0.9 eV2, the 2σ interval of
allowed values of sin2 θ14 reads: 0.022 ≤ sin2 θ14 ≤ 0.028. This interval is very narrow.
Varying sin2 θ14 in it in our analysis leads practically to the same results as those obtained
for sin2 θ14 = 0.0225 and we will present results only for sin2 θ14 = 0.0225. In the case of
∆m2

41 = 1.78 eV2, the corresponding 2σ interval of sin2 θ14 is:

∆m2
41 = 1.78 eV2 : 0.017 ≤ sin2 θ14 ≤ 0.047 , 95% C.L. . (5.2.6)

In this case the value we are using sin2 θ14 = 0.023 is approximately by a factor 1.35 bigger
(a factor of 2.04 smaller) then the 2σ minimal (maximal) allowed value of sin2 θ14. In what
follows we will present results for the best fit values ∆m2

41 = 1.78 eV2 and sin2 θ14 = 0.023
and will comment how the results change if one varies sin2 θ14 in the 2σ interval (5.2.6).
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Figure 5.1: The Mass spectrum in the 3 + 1 NO (NH) model.

5.2.1 The case of 3+1 Scheme with NO Neutrino Mass Spectrum

In the case of the 3 + 1 scheme with NO neutrino mass spectrum, m1 < m2 < m3 < m4,
we have:

|〈m〉| = |m1c
2
12c

2
13c

2
14 +m2e

iαc2
13c

2
14s

2
12 +m3e

iβc2
14s

2
13 +m4e

iγs2
14| , (5.2.7)

where we have used eq. (5.2.2). The masses m2,3,4 can be expressed in terms of the lightest
neutrino mass m1 and the three neutrino mass squared differences ∆m2

21 > 0, ∆m2
31 > 0

and ∆m2
41 > 0:

m1 ≡ mmin, m2 =
√
m2
min + ∆m2

21, m3 =
√
m2
min + ∆m2

31 and m4 =
√
m2
min + ∆m2

41 .

(5.2.8)

The mass spectrum of the 3 + 1 NO (NH) model is shown schematically in Fig. 5.1.
In Fig. 5.2 we show |〈m〉| as a function of the lightest neutrino mass mmin = m1. As we

have already indicated and was noticed in [57] (see also [55,56]), for the two sets of values of
ν4 oscillation parameters (5.2.4) and (5.2.5) and NH 3-neutrino spectrum (i.e.,m1 � m2,3,4)
we have, depending on the values of the Majorana phases, |〈m〉| ∼= (0.018 − 0.025) eV
and |〈m〉| ∼= (0.027 − 0.034) eV, respectively. This is in contrast with the prediction for
|〈m 〉(3ν)| ∼< 0.005 eV. Another important feature of the dependence of |〈m〉| onmmin, which
is prominent in Fig. 5.2, is the possibility of a strong suppression of |〈m〉| [57–59]. Such
a suppression can take place also for |〈m 〉(3ν)| and the conditions under which it occurs
have been studied in detail in [152]. In what follows we perform a similar study for |〈m〉|.
The aim is to determine the range of values of mmin and the Majorana phases α, β and γ
for which |〈m〉| ≥ 0.01 eV.

It proves convenient for the purposes of our analysis to work with the quantity |〈m〉|2
rather than with |〈m〉|, and to write |〈m〉|2 as

|〈m〉|2 = |a+ eiαb+ eiβc+ eiγd|2 . (5.2.9)
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Figure 5.2: Left Panel. The value of |〈m〉|as a function of mmin ≡ m1 in the NO case for
∆m2

41 = 0.93 eV2, sin θ14 = 0.15 and the best fit values of the oscillation parameters given
in Table 1.1. The green, red and orange lines correspond respectively to values of the three
CPV Majorana phases (α, β, γ) = (0, 0, 0), (0, 0, π), (π, π, π). The five gray curves show
|〈m〉|computed for the other five sets of CP conserving values of the phases. The interval
between the vertical left and right solid lines, corresponding to m1 = m1 ' 0.021 eV
and m1 = m1 ' 0.065 eV, indicates the region where |〈m〉|min = 0 for specific choices
of (α, β, γ). Right Panel. The same as in the left panel but for ∆m2

41 ≡ 1.78 eV2. The
vertical solid lines correspond to m1 = m1 ' 0.030 eV and m1 = m1 ' 0.091 eV. The
horizontal band indicates the upper bound |〈m〉| ∼ 0.2 − 0.4 eV obtained using the 90 %
C.L. limit on the half-life of 76Ge reported in [118]. See text for further details.

In the NO case under study the parameters a, b, c, and d read:

a = mminc
2
12c

2
13c

2
14

b =
√
m2
min + ∆m2

21c
2
13c

2
14s

2
12

c =
√
m2
min + ∆m2

31c
2
14s

2
13

d =
√
m2
min + ∆m2

41s
2
14 .

(5.2.10)

The first derivative of |〈m〉|2 with respect of α, β and γ leads to the following system of
three coupled equations:

−2b[a sin(α) + c sin(α− β) + d sin(α− γ)] = 0,

−2c[a sin(β)− b sin(α− β) + d sin(β − γ)] = 0,

2d[−a sin(γ) + b sin(α− γ) + c sin(β − γ)] = 0.

(5.2.11)

It is possible to solve this system of equations using the set of variables v = tan(α/2),
t = tan(β/2), u = tan(γ/2) with α, β, γ 6= π + 2kπ. We will give here only the basic
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formulas and will describe the results of such minimization using the best fit values given
in Table 1.1 and eqs. (5.2.4) and (5.2.5). In Appendix D.1 we describe in detail the
minimization procedure of the general expression of |〈m〉| in the 3+1 scheme and the 16
solutions found. We give explicit expressions for the solutions and derive the domain of
each of the 16 solutions. Eight of these solutions correspond to all possible combinations of
the phases having values 0 or π. Obviously, the solution (α, β, γ) = (0, 0, 0) corresponds to
an absolute maximum of the effective Majorana mass |〈m〉|. As we show in Appendix D.1,
the domains of the solutions of interest are determined by the properties of the functions
fi, i = 1, ..., 8:

f1 = a− b− c− d , f2 = a+ b− c− d ,
f3 = a+ b− c+ d , f4 = −a+ b+ c− d ,
f5 = a+ b+ c+ d , f6 = a− b+ c+ d ,

f7 = a− b+ c− d , f8 = a+ b+ c− d ,

(5.2.12)

where a, b, c and d for the NO case are defined in eq. (5.2.10).
We will focus first on the solutions which minimize |〈m〉| such that the minimum value

is exactly zero. As is shown in Appendix D.2, there are six physical solutions for which
|〈m〉|min = 0: (u±, v±, t±), (u±3 , v

±
3 , t

±
3 ), (v±4 (u), t±4 (u)). In order to study the domain of

existence of these solutions we define the following points m1 < m̂1 < m̃1 < m1 as the
zeros of the functions f8, f2, f7, f1, respectively:

f8(m1) = 0, f2(m̂1) = 0, f7(m̃1) = 0, f1(m1) = 0. (5.2.13)

We find from the numerical analysis performed in Appendix D.2 that i) the solution
(u±, v±, t±) is valid between the zeros of the function f2 and f1 (the region in which
f1f2f3f4 > 0), i.e. in the interval m̂1 < m1 < m1; ii) the solution (u±3 , v

±
3 , t

±
3 ) is valid

between the zeros of the function f7 and f1, i.e. in the interval m̃1 < m1 < m1; and finally
iii) the solution (v±4 (u), t±4 (u)) is valid in the interval between the zero of the function f8

and f1, i.e. for m1 < m1 < m1. In Appendix D.2 we give the numerical ranges that define
the domains of the solutions discussed above. Using the best fit values of the neutrino
oscillation parameters given in Table 1.1 and eqs. (5.2.4) and (5.2.5), we get the following
numerical values of 2 m1, m̂1, m̃1, m1:

• for ∆m2
41 = 0.93 eV2 we have (m1, m̂1, m̃1,m1) ' (0.021, 0.024, 0.055, 0.065) eV;

• if ∆m2
41 = 1.78 eV2 we get (m1, m̂1, m̃1,m1) ' (0.030, 0.033, 0.078, 0.091) eV.

For m1 = m1 and m1 = m1 the value of |〈m〉| is exactly zero for the CP conserving values
of the phases (α, β, γ) = (0, 0, π) and (π, π, π), respectively. In the intervals described
above (excluding the extrema), it is possible to have |〈m〉|min = 0 for specific values of

2Although it will not be specified further, whenever we present numerical results in the text or in
graphical form of figures in what follows, we will use the best fit values of the neutrino oscillation parameters
reported in Table 1.1 to obtain them.
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(α, β, γ), which are not necessarily CP conserving. This can be seen in Fig. 5.3. The
numerical minima depicted in Fig. 5.3 are obtained minimizing |〈m〉| by performing a scan
for different values of m1 and the CPV Majorana phases.

The grey horizontal band in Fig. 5.3 corresponds to |〈m〉|min ≤ 10−8 eV and reflects the
precision of the numerical calculation of |〈m〉|min = 0. The minima are reached at specific
values of the phases (α, β, γ) that can have either CP conserving or CP nonconserving
values. For ∆m2

41 = 0.93 eV2 and m1 = 0.03 eV, for instance, we have |〈m〉| = 0 if the three
CPV phases have the following CP nonconserving values: (α, β, γ) = (1.731, 0.023,−2.711).
Similarly, if ∆m2

41 = 1.78 eV2 and, e.g., m1 = 0.04 eV, we find that |〈m〉| = 0 for (α, β, γ) =
(1.511,−0.365,−2.761).
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Figure 5.3: Minimum |〈m〉|as function of mmin ≡ m1 for ∆m2
41 = 0.93 eV2 and sin θ14 =

0.15. The plot has been obtained numerically by performing a scan over a sufficiently large
sets of values of mmin and of each of the CPV phases (α, β, γ) in the interval [0, π]. The
black vertical lines correspond respectively to mmin = m1 ' 0.021 eV, mmin = m̂1 ' 0.024
eV and mmin = m1 ' 0.065 eV.

Combining the results described above we can conclude that the effective Majorana
mass |〈m〉| can be zero only for values of mmin from the following interval:

m1 ≤ mmin ≤ m1 . (5.2.14)

We will derive next simple approximate analytical expressions for m1 and m1. We
note first that for values of mmin in the range 0.02 − 0.10 eV, the term proportional to√
m2
min + ∆m2

31c
2
14s

2
13 is approximately by an order of magnitude smaller than the other

three terms in |〈m〉| (the terms with the factors a, b, d in eq. (5.2.9)). Neglecting it as well
as ∆m2

21 � ∆m2
31,∆m

2
41, we find the following rather simple analytic expressions for m1
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and m1, which are valid up to an error of about 10%:

m1 ≈
√

∆m2
41 sin4 θ14

cos4 θ13

(
− cos2 θ12 cos2 θ14 + sin2 θ12

)2 − sin4 θ14

,

m1 ≈
√

∆m2
41 sin4 θ14

cos4 θ13

(
cos2 θ12 cos2 θ14 + sin2 θ12

)2 − sin4 θ14

.

(5.2.15)

Using these expressions we get (m1,m1) ' (0.023, 0.060) eV for ∆m2
41 = 0.93 eV2 instead

of (0.021, 0.065) eV, and (m1,m1) ' (0.032, 0.085) eV for ∆m2
41 = 1.78 eV2 instead of

(0.030, 0.091) eV.
In Fig. 5.2 we show two plots of |〈m〉| as function of the lightest neutrino mass mmin ≡

m1 using ∆m2
41 = 0.93 eV2 and ∆m2

41 = 1.78 eV2. The shaded area is the region of allowed
values of |〈m〉|. One can see that the green curve represents the possible maximum value for
|〈m〉|corresponding to (α, β, γ) = (0, 0, 0). We notice also that in the limit of mmin → 0 the
minimum value of |〈m〉| > 0.01 eV. This limit will be analyzed in detail below. We also show
in Fig. 5.2 the prospective sensitivity to mmin of the β-decay experiment KATRIN [29],
which is under preparation.

As is well known, in the case of 3-neutrino mixing and IH (IO) neutrino mass spectrum
we have |〈m 〉(3ν)| > 0.01 eV (see, e.g., [1]). We find that in the 3+1 scheme under discussion
and NO neutrino mass spectrum we have always |〈m〉| > 0.01 eV for the following ranges
of mmin:

• mmin < 0.010 eV and mmin > 0.093 eV, if ∆m2
41 = 0.93 eV2;

• mmin < 0.020 eV and mmin > 0.119 eV, for ∆m2
41 = 1.78 eV2.

What would be the changes of our results presented for ∆m2
41 = 1.78 eV2 presented so

far if instead of sin2 θ14 = 0.023 we used the minimal (maximal) value of the 2σ interval
(5.2.6) of allowed values sin2 θ14 = 0.017 (sin2 θ14 = 0.047) in the analysis? Qualitatively no
new features appear and the results remain the same. Quantitatively some of the numarical
values of | < m > |, m1 and m1, quoted in the text and obtained for sin2 θ14 = 0.023, are
just shifted. More specifically, this will lead to the decreasing (increasing) of the values of
| < m > | at mmin . 10−3 eV and of m1 and m1 approximately by the same factor 1.35
(2.04).

For 0 ≤ m1 < m1 and m1 > m1, there are no physical solutions for the phases for which
|〈m〉| = 0. Moreover, (u±, v±, t±), (u±3 , v

±
3 , t

±
3 ) and (v±4 (u), t±4 (u)) are not well defined in the

indicated intervals. However, by studying the Hessian of |〈m〉|2, we find that there are phys-
ical solutions (among those listed in eq. (D.1.13) of Appendix D.1) for which |〈m〉|min 6= 0.
These solutions are realised for specific values of the phases, i.e., for (α, β, γ) = (0, 0, π) or
(π, π, π). The analysis performed in Appendix D.1 allowed to find the minima of |〈m〉|at
mmin < m1 for (α, β, γ) = (0, 0, π), and at mmin > m1 for (α, β, γ) = (π, π, π). The domain
of the solution at mmin < m1, corresponding to (α, β, γ) = (0, 0, π), is the common interval
of values of mmin in which the three inequalities c < d, b < d− c and f8 = a+ b+ c−d < 0
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hold. The domain of the solution at mmin > m1 with (α, β, γ) = (π, π, π) is determined
by the inequality f1 = a − b − c − d > 0. Actually, as it is possible to show, we have, in
particular, f8 < 0 at mmin < m1, and f1 > 0 for mmin > m1.
The analysis of the Hessian of |〈m〉|2 performed in Appendix D.1 shows that there can be
two more solutions for which |〈m〉|min 6= 0. They correspond two i) (α, β, γ) = (0, π, 0)
and ii) (π, 0, 0). The domains of these solutions (following from the Sylvester’s criterion)
are determined by i) c > d, b < c − d, −f3 = −a − b + c − d > 0, and ii) b > c + d,
−f6 = −a+b−c−d > 0. However, it is not difficult to convince oneself that for the values
of the neutrino oscillation parameters, including those of ∆m2

41 and sin2 θ14 used by us in
the present analysis, there are no physical values of mmin ≥ 0 for which the inequalities in
i) or in ii) are satisfied.

In Fig. 5.4 we show all the relevant functions entering in the four sets of inequali-
ties listed above (and in eq. (D.1.13) of Appendix D.1) which ensure that the minima
|〈m〉|min 6= 0. The figure is obtained for the best fit values of the oscillation param-
eters given in Table 1.1 and for ∆m2

41 = 0.93 eV2 (left panel) and ∆m2
41 = 1.78 eV2

(right panel). One can easily check that only the two sets of conditions, corresponding
to (α, β, γ) = (0, 0, π) or (π, π, π) and given above 3, are satisfied.

In Figs. 5.5 and 5.6 we show as an illustrative examples (tanα/2, tan β/2, tan γ/2) as
function of mmin for two of the physical solutions, namely, (u−, t−, v−) and (v+

4 , t
+
4 ), found

in Appendix D.1:

u± = ±
√

(−a+ b+ c− d)(a+ b− c+ d)

(a− b− c− d)(a+ b− c− d)
,

v± = ± (b+ c)

(b− c)
[(a+ b− c)2 − d2]√

(−a+ b+ c− d)(a+ b− c+ d)(a− d− c− b)(a− d− c+ b)
,

t± = ± a2 + b2 − c2 − d2√
(a− b− c− d)(a+ b− c− d)(−a+ b+ c− d)(a+ b− c+ d)

,

(5.2.16)


v±4 (u) =

4bdu± F (a, b, c, d, u)

−u2(a− b− c− d)(a− b+ c− d)− (a− b+ d)2 + c2
,

t±4 (u) =
− 4cdu± F (a, b, c, d, u)

u2(a− b− c− d)(a+ b− c− d) + (a− c+ d)2 − b2
,

(5.2.17)

where a, b, c and d are given in eq. (5.2.10) and

F (a, b, c, d, u) =

{[
− u2(a+ b− c− d)(a− b+ c− d)− (a+ d)2 + (b− c)2

]
×

×
[
a2
(
u2 + 1

)
− 2ad

(
u2 − 1

)
−
(
u2 + 1

)
(b+ c− d)(b+ c+ d)

]}1/2

.

3These are the first two conditions in eq. (D.1.13) of Appendix D.1 following from the Sylvester’s
criterion for a minimum.
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The corresponding figures for, e.g., the solutions (v+, t+, u+) and (v−4 , t
−
4 ) are obtained from

Figs. 5.5 and 5.6 by reversing the y−axis.
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Figure 5.4: Left Panel. The functions f8 (short-dashed blue), f1 (dot-dashed black),
b + c − d (solid red), c − d (large dashed brown), −f6 (dotted green) versus mmin ≡ m1

for ∆m2
41 = 0.93 eV2 and sin θ14 = 0.15. The vertical lines correspond to mmin = m1 '

0.021 eV and mmin = m1 ' 0.065 eV. Right Panel. The same as in the left panel,
but for ∆m2

41 = 1.78 eV2. The vertical lines now are at mmin = m1 ' 0.030 eV and
mmin = m1 ' 0.091 eV.

5.2.2 The Case of m1 = 0

The investigation of the minima of |〈m〉| in the NH case in the limit ofm1 = 0 and arbitrary
values of the relevant parameters b0, c0, d0 = b(m1 = 0), c(m1 = 0), d(m1 = 0), can be done
following the general analysis presented in Appendix D.1 and, more specifically, using the
system eq. (D.1.2) that can be written as

c0 sin(α− β + γ − γ) + d0 sin(α− γ) = 0

−b0 sin(α− β + γ − γ) + d0 sin(β − γ) = 0 ,
(5.2.18)

with

b0 =
√

∆m2
21c

2
13c

2
14s

2
12 , c0 =

√
∆m2

31c
2
14s

2
13 , d0 =

√
∆m2

41s
2
14 . (5.2.19)

We have solved the system eq. (5.2.18) in (α − γ) and (β − γ) and found the solution
sin(α− γ) = 0, sin(β− γ) = 0. The solution value of (α− γ, β− γ) = (0, 0) is a maximum,
while the second one (α − γ, β − γ) = (π, π) is a minimum. In other words, solving the
system of two equations we find a unique minimum at (α−γ, β−γ) = (π, π) independently
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Figure 5.5: Left Panel. The values of (tanα/2, tanβ/2, tan γ/2) – the large dashed
(brown), short dashed (blue), solid (red) lines – corresponding to the solution (v−, t−, u−)
as functions of m1 for ∆m2

41 = 0.93 eV2. The 2nd and the 3rd vertical lines from the left
are at m̂1 = 0.024 eV and m1 = 0.065 eV, and indicate the domain of existence of this
solution. The 1st vertical line from the left corresponds to m1 = 0.021 eV. Right Panel.
The values of (tanα/2, tanβ/2) – large dashed (brown), solid (red) lines – corresponding
to the solution (t+4 , v

+
4 ) as functions of m1 for γ ' π (u >> 1). The other parameters are

the same as in the left panel. The vertical lines from the left are respectively at m1 and
m̂1. This solution is well defined only for m1 ≤ m1 ≤ m̂1.
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Figure 5.6: Left Panel. The same as in Fig. 5.5, left panel, for ∆m2
41 = 1.78 eV2. The

2nd and the 3rd vertical lines from the left are at m̂1 = 0.033 eV and m1 = 0.091 eV and
indicate the domain of existence of the solution (u−, t−, v−). The 1st vertical line from
the left corresponds to m1 = 0.030 eV. Right Panel. The same as in Fig. 5.5, right panel,
for ∆m2

41 = 1.78 eV2. The vertical lines from the left are at m1 and m̂1. The solution
considered (t+4 , v

+
4 ) is well defined only in the interval m1 ≤ m1 ≤ m̂1.
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of the value of 4 ∆m2
41. The corresponding minimum value of |〈m〉|is 0.018 (0.027) eV in

the case of ∆m2
41 = 0.93 eV2 (1.78 eV2). This result is depicted in Fig. 5.7. The darkest

region in the figure corresponds to the minimum of |〈m〉|and the red cross indicates the
precise value of (α− γ, β − γ) at the minimum.

It follows from the results of our analysis that for m1 = 0 and any values of the CPV
phases (α− γ, β − γ) we have:

• |〈m〉| ≥ 0.018 eV if ∆m2
41 = 0.93 eV2;

• |〈m〉| ≥ 0.027 eV for ∆m2
41 = 1.78 eV2. If instead of sin2 θ14 = 0.0223 we use

sin2 θ14 = 0.017 (0.047), we get |〈m〉| ≥ 0.019 (0.059) eV .

Figure 5.7: The value of |〈m〉|for NH spectrum in the 3+1 scheme and mmin = 0.
The minimum corresponds to (α − γ, β − γ) =(π, π). At the minimum (the point with
the cross) |〈m〉| = 1.80 × 10−2 eV. The values in the first four contours are, respectively,
(1.88, 1.94, 2.01, 2.08) × 10−2 eV and obtained for ∆m2

41 = 0.93 eV2. See text for further
details.

5.3 The case of IO Spectrum in the 3+1 Scheme

In the case of 3+1 scheme with IO 3-neutrino mass spectrum, m3 < m1 < m2 < m4, one
can write the effective Majorana mass following the notation in [1] as:

|〈m〉| = |m1c
2
12c

2
13c

2
14 +m2e

iαc2
13c

2
14s

2
12 +m3e

iβc2
14s

2
13 +m4e

iγs2
14| . (5.3.1)

4For the specific values of the neutrino oscillation parameters used in the present analysis, the fact that
the minimum of |〈m〉|is reached for just one set of values of (α−γ, β−γ) = (π, π) follows from the explicit
expression for |〈m〉|, eqs. (5.2.7), in the case of m1 = 0.
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Figure 5.8: The mass spectrum in the 3+1 IO scheme.

The masses m1,2,4 can be expressed in terms of the lightest neutrino mass mmin = m3 and
the neutrino mass squared differences as follows:

m1 =
√
m2
min + |∆m2

32| −∆m2
21, m2 =

√
m2
min + |∆m2

32|, m4 =
√
m2
min + ∆m2

43 ,

m3 =mmin , ∆m2
21 > 0 , ∆m2

32 < 0 , ∆m2
43 > 0 .

(5.3.2)

The neutrino mass spectrum of this scheme is depicted schematically in Fig. 5.8.
The parameters a, b, c and d are given by:

a =
√
m2
min + |∆m2

32| −∆m2
21 c

2
12c

2
13c

2
14

b =
√
m2
min + |∆m2

32| c2
13c

2
14s

2
12

c = mmin c
2
14s

2
13

d =
√
m2
min + ∆m2

43 s
2
14

(5.3.3)

In this case only a few solutions among those found in Appendix D.1 are relevant
and their existence depends on the numerical values of the parameters a, b, c and d. In
Appendix D.2 we list the domain of existence of all the solutions. Here we will analyze the
solutions (u±, v±, t±), given in eq. (5.2.16) with the parameters a, b, c and d defined in eq.
(5.3.3), because their domain is the largest (the numerical details are given in Appendix
D.2).

We observe that the solutions (u±, v±, t±) are well defined when the product f1f2f3f4 is
positive, where f1,2,3,4 are given in eq. (5.2.12). Defining m3 as the zero of the function f1,
f1(m3) = 0, we find that the effective Majorana mass can be zero for m3 < m3 for specific
CP non-conserving values of the CPV phases α, β and γ. For ∆m2

43 = 0.93 (1.78) eV2 and
the best fit values of Table 1.1, we find m3 ' 0.038 (0.074) eV. These results are presented
graphically in Fig. 5.9, where we show the numerically calculated |〈m〉|min as function of
m3. The numerical minima depicted in Fig. 5.9 are obtained by performing a scan over the
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values of m3 and of each of the phases (α, β, γ) in the interval [0, 2π]. The grey horizontal
band in Fig. 5.9, corresponding to |〈m〉|min < 10−8 eV, reflect the precision of the numerical
calculation of |〈m〉|min = 0. The minima of |〈m〉|under discussion are reached for values of
the phases (α, β, γ) that can be either CP conserving or CP non-conserving.
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Figure 5.9: Minimum |〈m〉|as function of mmin ≡ m3. The figure has been obtained
numerically for ∆m2

43 = 0.93 eV2, sin θ14 = 0.15. The vertical line corresponds to mmin =
m3 ' 0.038 eV. See text for details.

We will find next an analytical approximation of m3. We observe that for values m3 in
the range m3 ≈ 0.05− 0.10 eV the term ∝ m3 cos2 θ14 sin2 θ13 is by approximately an order
of magnitude smaller then the other three terms in |〈m〉|. Neglecting it as well the term
∝ ∆m2

21, we find the following expression for m3, which is valid up to an error of about
the 15%:

m3 ≈
√

∆m2
43 sin4 θ14 − |∆m2

32| cos2 2θ12 cos4 θ13 cos4 θ14

cos2 2θ12 cos4 θ13 cos4 θ14 − sin4 θ14

. (5.3.4)

Using this approximation we get m3 ' 0.032 eV for ∆m2
43 = 0.93 eV2, and m3 ' 0.068 eV

for ∆m2
43 = 1.78 eV2, instead of 0.038 eV and 0.074 eV found numerically.

To find the minima of |〈m〉|for values of m3 > m3 we have to study the Hessian of
|〈m〉|. From the analysis in Appendix D.1 it follows that in the region in which f1 > 0
(corresponding to the region m3 > m3), the minimum of |〈m〉|(according to the Sylvester’s
criterion) takes place at (α, β, γ) = (π, π, π). In Fig. 5.10 we show all the relevant functions
entering in the conditions determining the minima, which are listed in eq. (5.2.12) (and
eq. (D.1.13)), with the parameters a, b, c and d defined in eq. (5.3.3).

In Fig. 5.11 we show as an example the values of the three phases versus mmin for the
solution (u−, v−, t−). The analogous figure for the solution (u+, v+, t+) is obtained formally
from Fig. 5.11 by reversing the y−axis.
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Figure 5.10: Left Panel. The functions f8 (short-dashed blue), f1 (dot-dashed black),
b+ c−d (solid red), c−d (large dashed brown), −f6 (dotted green) versus mmin ≡ m3 for
∆m2

43 = 0.93 eV2, sin θ14 = 0.15. The vertical line corresponds to mmin = m3 ' 0.038 eV.
Right Panel. The same as in the left panel, but for ∆m2

43 = 1.78 eV2. The vertical line
corresponds to mmin = m3 ' 0.074 eV.
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Figure 5.11: Left Panel. The values of (tanα/2, tanβ/2, tan γ/2) – large dashed
(brown), short dashed (blue), solid (red) lines – corresponding to the solution (v−, t−, u−),
eq. (5.2.16), as functions of m3 for ∆m2

43 = 0.93 eV2, sin θ14 = 0.15. The vertical line is
at m3 = 0.038 eV, indicating the domain of existence of this solution, m3 ≤ m3. Right
Panel. The same as in the left panel, but for ∆m2

43 = 1.78 eV2. The vertical line is at
m3 = 0.074 eV, indicating the domain of existence of the solution (v−, t−, u−), m3 ≤ m3.

Finally, we show in Fig. 5.12 |〈m〉|as function of the lightest neutrinos mass, mmin. In
this case the region of allowed values of |〈m〉|(the shaded area) is larger than in the NO
case since |〈m〉|can reach zero for any mmin ≤ m3. This is due to the fact that, depending
on the values of the CPV phases α, β and γ, a complete cancellation among the terms in
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the expression for |〈m〉|can occur.
The results of the analysis performed in this section show that we always have |〈m〉| >

0.01 eV for:

• mmin > 0.078 eV, if ∆m2
43 = 0.93 eV2;

• mmin > 0.108 eV, if ∆m2
43 = 1.78 eV2.
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Figure 5.12: Left Panel. The value of |〈m〉|as function of mmin = m3 for ∆m2
43 =

0.93 eV2, sin θ14 = 0.15. The green and orange lines correspond respectively to (α, β, γ) =
(0, 0, 0) and (π, π, π). The six gray curves correspond to the other possible sets of CP
conserving values 0 or π of the CPV phases (α, β, γ). The vertical line is at m3 = m3 '
0.038 eV. If m3 ≤ m3, we can have |〈m〉|min = 0 at any fixed m3 for specific values of
(α, β, γ), while for m3 > m3, the minimum of |〈m〉|is realized at (α, β, γ) = (π, π, π) and
|〈m〉|min 6= 0. Right Panel. The same as in the left panel, but for ∆m2

43 ≡ 1.78 eV2. The
vertical line is at m3 = m3 ' 0.074 eV. The horizontal band indicates the upper bound
|〈m〉| ∼ 0.2 − 0.4 eV obtained using the 90 % C.L. limit on the half-life of 76Ge reported
in [118].

If in the case of ∆m2
41 = 1.78 eV2, instead of sin2 θ14 = 0.023 we used the extreme value

of the 2σ allowed interval quoted in eq. (5.2.6), sin2 θ14 = 0.017 (sin2 θ14 = 0.047), this will
lead to the decreasing (increasing) of the numerical values of | < m > | at mmin . 10−3

eV and of m3, obtained for sin2 θ14 = 0.023, approximately by the factors 1.1 (1.4) and 2.0
(2.4), respectively.

5.3.1 The Case of m3 = 0

The effective Majorana mass in this case is

|〈m〉| =
∣∣∣∣√|∆m2

32| −∆m2
21 (c12c13c14)2 +

√
|∆m2

32| (c13c14s12)2eiα +
√

∆m2
43 s

2
14e

iγ

∣∣∣∣ .
(5.3.5)
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Now only two phases enter into the expression of |〈m〉|: α and γ. In this case the minima
of |〈m〉|can be obtained from the general solutions derived in Appendix D.1 and take place
for

sin γ± = ∓
√
−[(a0 − d0)2 − b2

0][(a0 + d0)2 − b2
0]

2a0d0

sinα± = ±
√
−[(a0 − d0)2 − b2

0][(a0 + d0)2 − b2
0]

2a0b0

(5.3.6)

where

a0 =
√
|∆m2

32| −∆m2
21 c2

12c
2
13c

2
14 ,

b0 =
√
|∆m2

32| c2
13c

2
14s

2
12 ,

d0 =
√

∆m2
43 s

2
14 .

(5.3.7)

Both minima correspond to |〈m〉| = 0 independently of the value of ∆m2
43. However,

the location of the minima on the α − γ plane depends on ∆m2
43. For instance, if we use

∆m2
43 = 0.93 eV2, the minima are at (sinα, sin γ) = (∓0.562,±0.373). This result is shown

in Fig. 5.13. We notice that the existence of solutions for (α, γ) such that |〈m〉| ∼ 0 is
clear from the expression in eq. (5.3.5) since for the values of the oscillation parameters
used in the present study a complete cancellation among the three terms in |〈m〉|can take
place. Indeed, in the case of the best fit values, for instance,

the first term ∝
√
|∆m2

32| −∆m2
21 (c12c13c14)2 ≈ 0.032, can be compensated completely

by the sum of the other two terms which are of the order of
√
|∆m2

32| (c13c14s12)2 ≈ 0.014

and
√

∆m2
43 s

2
14 ≈ 0.022, respectively.

It follows from our analysis that in the case of m3 = 0 we have |〈m〉| > 0.01 eV for
values of the phases α and γ outside the region delimited by the red line in Figure 5.13.

We note finally that in the limit m3 → 0 (or equivalently c → 0) there are four out
of the nine solutions determined analytically, which admit |〈m〉| = 0 (this can be seen in
Table D.2 in the Appendix D.2). The four solutions are (u±, v±, t±) and (v±4 (u), t±4 (u)). If
the solutions (v±4 (u), t±4 (u)) are evaluated at u±, i.e., v±4 (u±) → v±, in this case the two
minima of the first solution coincide with the two minima of the second one.

5.4 The 3+2 Scheme: Two Sterile Neutrinos

In this Section we analyze the case of two extra sterile neutrino states. In this case the
PMNS mixing matrix is a 5×5 unitary matrix. Following the parametrization used in [53]
it can be written as:

U = V35O34V25V24O23O15O14V13V12 diag(1, eiα/2, eiβ/2, eiγ/2, eiη/2) , (5.4.1)
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Figure 5.13: The values of |〈m〉|for the IH spectrum in the 3+1 scheme versus α and γ
in the case of mmin = m3 = 0, ∆m2

43 = 0.93 eV2 and sin θ14 = 0.15. In this case there are
two minima in the crossed points at (sinα, sin γ) = (∓0.562,±0.373), and |〈m〉|in these
minima is exactly zero. The red line corresponds to |〈m〉| = 0.01 eV. See text for details.

∆m2
41(43) [eV2] ∆m2

51(53) [eV2] θ14 θ15

0.47 0.87 0.13 0.14

Table 5.2: Best global fit values of the sterile neutrino oscillation parameters in the 3+2
scheme with NO (IO) neutrino mass spectrum (from [53]). The relation to the mixing
matrix elements is |Ue4| = cos θ15 sin θ14 and |Ue5| = sin θ15.

where η is an additional Majorana CPV phase. As in the case of the 3+1 scheme, we can
set to zero the phases in the matrices V25, V24, V13 and V12 without loss of generality. In
this case the elements of the first row of the PMNS matrix of interest for our analysis are
given by:

Ue1 = c12c13c14c15

Ue2 = eiα/2c13c14c15s12

Ue3 = eiβ/2c14c15s13

Ue4 = eiγ/2c15s14

Ue5 = eiη/2s15

(5.4.2)

The (ββ)0ν-decay effective Majorana mass reads:

|〈m〉| =
∣∣m1|Ue1|2 +m2|Ue2|2eiα +m3|Ue3|2eiβ +m4|Ue4|2eiγ +m5|Ue5|2eiη

∣∣ . (5.4.3)

The values for θ14, ∆m2
41(43), θ15 and ∆m2

51(53) — for NO (IO)—, obtained in the global
analysis performed in [53], are summarized in Table 5.2.
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5.5 The 3+2 Scheme with NO Spectrum

In the case of the 3+2 scheme with NO spectrum, m1 < m2 < m3 < m4 < m5, one can
write the effective Majorana mass as:

|〈m〉| = |m1c
2
12c

2
13c

2
14c

2
15+m2e

iαc2
13c

2
14c

2
15s

2
12+m3e

iβc2
14c

2
15s

2
13+m4e

iγc2
15s

2
14+m5e

iηs2
15| (5.5.1)

As in the case of the 3+1 scheme, it proves convenient to express the masses m2,3,4,5 in
terms of the lightest neutrino mass m1 and the neutrino mass squared differences:

mmin ≡ m1, m2 =
√
m2

1 + ∆m2
21, m3 =

√
m2

1 + ∆m2
31, m4 =

√
m2

1 + ∆m2
41,

m5 =
√
m2

1 + ∆m2
51, ∆m2

21 > 0, ∆m2
31 > 0, ∆m2

41 > 0 and ∆m2
51 > 0 .

(5.5.2)

The neutrino mass spectrum in 3+2 NO scheme is shown in Fig. 5.14.
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Figure 5.14: The neutrino mass spectrum in the 3+2 NO scheme.

In what follows we will analyze the conditions for minimization of |〈m〉|. As in the 3+1
case, we will work with |〈m〉|2 rather than with |〈m〉|:

|〈m〉|2 = |a+ eiαb+ eiβc+ eiγd+ eiηe|2 , (5.5.3)

where

a = mminc
2
12c

2
13c

2
14c

2
15 ,

b =
√
m2
min + ∆m2

21c
2
13c

2
14c

2
15s

2
12 ,

c =
√
m2
min + ∆m2

31c
2
14c

2
15s

2
13 ,

d =
√
m2
min + ∆m2

41c
2
15s

2
14 ,

e =
√
m2
min + ∆m2

51s
2
15 .

(5.5.4)
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The analytical study of the minima of |〈m〉|2 in this case is a non-trivial task since four
phases are involved and the non-linearity of the system of the first derivatives of |〈m〉|2
with respect to the four phases makes the analysis rather complicated. Therefore finding all
possible solutions of the minimization procedure in analytical form is a complex problem.
Thus, we have performed the general analysis of the minimization of |〈m〉|numerically. It is
possible, however, to perform analytically the analysis of the minima of |〈m〉|, correspond-
ing to the 16 sets of CP conserving values (either 0 or π) of the four phases α, β, γ and η.
This analysis is described in Appendix D.3. It follows from the results found in Appendix
D.3 that only (α, β, γ, η) = (π, π, π, π), (0, 0, 0, π), (0, 0, π, 0), (0, π, 0, 0) and (π, 0, 0, 0) can
correspond to minima of |〈m〉|. These minima take place in intervals of values of m1 which
are determined by the following sets of inequalities:

(α, β, γ, η) = (π, π, π, π) if F1 = a− b− c− d− e > 0,

(α, β, γ, η) = (0, 0, 0, π) if (d < e) ∧ (c < e− d) ∧ (b < −c− d+ e)∧
∧ (F8 = a+ b+ c+ d− e < 0),

(α, β, γ, η) = (0, 0, π, 0) if (d > e) ∧ (c < d− e) ∧ (b < −c+ d− e)∧
∧ (F3 = a+ b+ c− d+ e < 0),

(α, β, γ, η) = (0, π, 0, 0) if (c > d+ e) ∧ (b < c− d− e)∧
∧ (G3 = a+ b− c+ d+ e < 0),

(α, β, γ, η) = (π, 0, 0, 0) if (b > c+ d+ e) ∧ (F6 = a− b+ c+ d+ e < 0) .

(5.5.5)

The dependence of F1, F8, F3, G3, F6 and (d− e) on m1 is shown in the right panel of Fig.
5.15.

It is not difficult to check that for the values of the oscillation parameters quoted in
Tables 1.1 and 5.2, the sets of inequalities listed above in each of the cases of (α, β, γ, η) =
(0, 0, π, 0), (0, π, 0, 0) and (π, 0, 0, 0) cannot simultaneously be fulfilled for m1 ≥ 0. Thus,
only (α, β, γ, η) = (π, π, π, π) and (0, 0, 0, π) correspond to true minima of |〈m〉|. Defining
m1 and m1 as the zero of the functions F1 and F8,

F1(m1) = a− b− c− d− e = 0, F8(m1) = a+ b+ c+ d− e = 0 , (5.5.6)

we find that the minima of |〈m〉|for m1 > m1 take place only at (α, β, γ, η) = (π, π, π, π),
while for m1 < m1 they occur at (α, β, γ, η) = (0, 0, 0, π). Further, the numerical analysis
performed by us shows that in the interval of m1 < mmin < m1, the minimum value of
|〈m〉|is exactly zero and is reached, in general, for CP nonconserving values of the phases
(α, β, γ, η). These results are presented graphically in the left panel of Fig. 5.15. Figure
5.15 shows also, in particular, that at mmin → 0 we have |〈m〉| 6= 0.

In Fig. 5.16 we show |〈m〉|as a function of the lightest neutrino mass mmin. The
shaded area indicates the allowed values for |〈m〉|. The red, orange, green and gray lines
correspond to the different sets of CP conserving values (0 or π) of the CPV phases (α, β, γ).
The vertical solid lines are at m1 = m1 ' 4.44 × 10−3 eV (and (α, β, γ, η) = (0, 0, 0, π))
and m1 = m1 ' 8.84 × 10−2 eV (and (α, β, γ, η) = (π, π, π, π)). It is clear from the
figure that |〈m〉|can be zero in the interval m1 ≤ mmin ≤ m1, while for mmin → 0 we
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Figure 5.15: Left Panel. Minimum |〈m〉|as function of mmin ≡ m1. The figure has been
obtained numerically for ∆m2

41 = 0.47 eV2, ∆m2
51 = 0.87 eV2, sin θ14 = 0.13, sin θ15 = 0.14

(see Table 5.2) and performing a scan over a sufficiently large sets of values of mmin. The
vertical lines correspond to m1 ' 8.84× 10−2 eV and m1 ' 4.44× 10−3 eV. In the interval
m1 ≤ m1 ≤ m1 we have min(|〈m〉|) = 0. Right Panel. The functions F3 (dotted green),
F8 (large dashed brown), G3 (short-large dashed purple), F6 (dot-dashed black), F1 (solid
red), d− e (short-dashed blue), defined in eq. (5.5.6) as function of mmin for the best fit
values of Table 5.2. The vertical lines are at m1 ' 8.84× 10−2 eV and m1 ' 4.44× 10−3

eV.

have |〈m〉|min → 3.21 × 10−3 eV and max(|〈m〉|) = 0.033 eV. The indicated |〈m〉|min and
max(|〈m〉|) values at mmin = 0 in Fig. 5.16 are reached for (α, β, γ, η) = (0, 0, 0, π) and
(α, β, γ, η) = (0, 0, 0, 0) (corresponding to the red and green lines). At m1 = m1 and
m1 = m1, we have |〈m〉|min = 0: at m1 = m1 the first four terms in the expression for
|〈m〉|are positive and their sum is compensated by the last term,

√
∆m2

51 sin2 θ15, while
at m1 = m1 a cancellation occurs between the first term proportional to mmin and the
sum of all the other terms. We have also indicated in the figure with a dotted vertical
line the prospective constraint on mmin that might be obtained in the β-decay experiment
KATRIN [29]. We find that in 3+2 NO scheme under discussion one always has

• |〈m〉| > 0.01 eV for mmin > 0.118 eV.

5.5.1 The Case of m1 = 0

In the case of mmin ≡ m1 = 0, the expression of |〈m〉|symplifies to:

|〈m〉|2
∣∣∣∣
m1=0

= |eiαb0 + eiβc0 + eiγd0 + eiηe0|2 , (5.5.7)
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Figure 5.16: The value of |〈m〉|versus the lightest neutrino massm1 for ∆m2
41 = 0.47 eV2,

∆m2
51 = 0.87 eV2, sin θ14 = 0.13, sin θ15 = 0.14. The green, red and orange lines corre-

spond to (α, β, γ, η) = (0, 0, 0, 0), (0, 0, 0, π), (π, π, π, π), while the blue lines are obtained
for the other 13 sets of CP conserving values (0 or π) of the four CPV phases. The vertical
solid lines are at m1 = m1 ' 0.004 eV and m1 = m1 ' 0.088 eV. The minimum of |〈m〉|in
the interval m1 ≤ m1 ≤ m1 is exactly zero. The horizontal band indicates the upper
bound |〈m〉| ∼ 0.2 − 0.4 eV obtained using the 90 % C.L. limit on the half-life of 76Ge
reported in [118]. See text for further details.
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where the parameters b0, c0, d0 and e0 read:

b0 =
√

∆m2
21c

2
13c

2
14s

2
12 ,

c0 =
√

∆m2
31c

2
14c

2
15s

2
13 ,

d0 =
√

∆m2
41c

2
15s

2
14 ,

e0 =
√

∆m2
51s

2
15 .

(5.5.8)

The minimum of the effective Majorana mass is reached in this case for (α, β, γ, η) =
(0, 0, 0, π) and at the minimum |〈m〉| 6= 0. Indeed, numerically we have b0 ' 2.51 × 10−3

eV, c0 ' 1.14× 10−3 eV, d0 ' 1.13× 10−2 eV and e0 ' 1.82× 10−2 eV, and it is clear that
the four terms in the expression for |〈m〉|cannot compensate each other completely. For
the minimum value of |〈m〉|in the case under study we get |〈m〉| = 0.0032 eV. In Fig. 5.17
we show the values of |〈m〉|versus α− η and β − η, fixing for convenience γ − η = π. The
minimum is at the crossed point corresponding to at α− η = π, β− η = π. It follows from

Figure 5.17: The value of |〈m〉|in the 3+2 scheme with NO spectrum at mmin = 0
for γ − η = π. The minimum of |〈m〉|corresponds to (α − η, β − η) =(π, π) (the crossed
point). The values of |〈m〉|at this minimum is 3.21 × 10−3 eV. The red line corresponds
to |〈m〉| = 0.01 eV.

our analysis that in the case of m1 = 0 and γ − η = π we have |〈m〉| > 0.01 eV for values
of the phases α− η and β − η in the region delimited by the red lines in Figure 5.17.

5.6 The 3+2 Scheme with IO Spectrum

In the case of the 3+2 scheme with IO spectrum, m3 < m1 < m2 < m4 < m5, |〈m〉|can be
written as:

|〈m〉| = |m1c
2
12c

2
13c

2
14c

2
15 +m2e

iαc2
13c

2
14c

2
15s

2
12 +m3e

iβc2
14c

2
15s

2
13 +m4e

iγc2
15s

2
14 +m5e

iηs2
15| .

(5.6.1)
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We have:

m1 =
√
m2

3 −∆m2
32 −∆m2

21, m2 =
√
m2

3 −∆m2
32, m3 ≡ mmin, m4 =

√
m2

3 + ∆m2
43,

m5 =
√
m2

3 + ∆m2
53, ∆m2

21 > 0 , ∆m2
32 < 0 , ∆m2

43 > 0 , ∆m2
53 > 0 .

(5.6.2)

The neutrino mass spectrum in 3+2 IO scheme is shown schematically in Fig. 5.18.
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Figure 5.18: The neutrino mass spectrum in the 3+2 IO scheme.

We define:
|〈m〉|2 = |a+ eiαb+ eiβc+ eiγd+ eiηe|2 , (5.6.3)

where the parameters a, b, c, d and e in this case read:

a =
√
m2
min + |∆m2

32| −∆m2
21c

2
12c

2
13c

2
14c

2
15 ,

b =
√
m2
min + |∆m2

32|c2
13c

2
14c

2
15s

2
12 ,

c = mminc
2
14c

2
15s

2
13 ,

d =
√
m2
min + ∆m2

43c
2
15s

2
14 ,

e =
√
m2
min + ∆m2

53s
2
15 .

(5.6.4)

As in the case of NO spectrum, we have performed the general analysis of minimization
of |〈m〉| numerically. Analytical results have been obtained only for the CP conserving
values (0 or π) of the four CPV phases. As it follows from the analysis performed in
Appendix D.3, only one set of CP conserving values of the phases corresponds to a minimum
of |〈m〉|, namely, (α, β, γ, η) = (π, π, π, π). The domain of this minimization solution is
determined by the inequality F1(m3) ≡ (a − b − c − d − e) > 0. Let us define by m3

the zero of F1: F1(m3) = 0. As can be shown (and is seen also in Fig. D.1 in Appendix
D.3), the inequality of interest F1(m3) > 0 is satisfied for m3 > m3. Thus, for m3 > m3,
|〈m〉|takes minimum values only for the values of the phases (α, β, γ, η) = (π, π, π, π).
Moreover, the minima of |〈m〉|at m3 > m3 are different from zero. This follows from the

118



CHAPTER 5. NEUTRINOLESS DOUBLE BETA DECAY

fact that the minima under discussion correspond to the contribution of the first term
∝
√
m2
min + |∆m2

32| −∆m2
21 in the expression for |〈m〉|, eq. (5.6.1), being compensated by

the sum of the other terms in |〈m〉|, and that for the values of the oscillation parameters
used in the present analysis the compensation cannot be complete. For the indicated
values of the phases, a complete compensation leading to |〈m〉|min = 0 is possible only in
the point m3 = m3. At any given m3 < m3, as our numerical analysis shows, we have
|〈m〉|min = 0 and the minimum takes place, in general, for CP nonconserving values of
(α, β, γ, η). These results are illustrated in Fig. 5.19, where we show |〈m〉|min as function
of the lightest neutrino mass.
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Figure 5.19: Minimum |〈m〉|as a function of mmin ≡ m3. The plot has been obtained
numerically for ∆m2

43 = 0.47 eV2, ∆m2
53 = 0.87 eV2, sin θ14 = 0.13, sin θ15 = 0.14 (see

Table 5.2) by varying mmin in the interval [0.001, 1.000] eV and each of the four CPV
phases in the interval [0, 2π]. The vertical line corresponds to m3 ' 1.25 × 10−1 eV
(F1(m3) = 0). For any given m3 ≤ m3 we have |〈m〉|min = 0. For the different m3 < m3,
the minima of |〈m〉|occur at different sets of CP nonconserving values of (α, β, γ, η) (see
text for further details).

In Fig. 5.20 we show |〈m〉|as function of the lightest neutrino mass mmin = m3. The
gray lines correspond to |〈m〉|computed for CP conserving values of the phases (α, β, γ, η)
(either 0 or π). The shaded area indicates the possible allowed values of |〈m〉|and is
obtained for the values of the oscillation parameters quoted in Tables 1.1 and 5.2. The
vertical solid line corresponds to mmin = m3 ' 0.125 eV and (α, β, γ, η) = (π, π, π, π). At
mmin ≤ m3, we can have |〈m〉|min = 0 for specific, in general CP nonconserving, values
of the phases (α, β, γ, η). This behaviour of |〈m〉|min is very different from the behavior
in the case of NO spectrum discussed in the previous Section, where |〈m〉|min can be zero
only in a limited interval of values of mmin.

We find also that in the 3+2 IO scheme under discussion and the values of the neutrino
oscillation parameters used in the present analysis one always has

119



CHAPTER 5. NEUTRINOLESS DOUBLE BETA DECAY

• |〈m〉| > 0.01 eV for mmin > 0.178 eV.
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Figure 5.20: The value of |〈m〉|as function of mmin = m3 for ∆m2
43 = 0.47 eV2, ∆m2

53 =
0.87 eV2, sin θ14 = 0.13, sin θ15 = 0.14 (see Table 5.2). The green and orange lines
correspond to (α, β, γ) = (0, 0, 0, 0) and (π, π, π, π), while the gray lines corresponding
to the other 14 sets of CP conserving values (0 or π) of the four CPV phases. The
vertical solid line corresponds to mmin = m3 ' 0.125 eV. At mmin ≤ m3 we can have
|〈m〉|min = 0. The dotted line represents the prospective upper limit from the β-decay
experiment KATRIN [29]. The horizontal band indicates the upper bound |〈m〉| ∼ 0.2−0.4
eV obtained using the 90 % C.L. limit on the half-life of 76Ge given in [118].

5.6.1 The case of m3 = 0

In the limit mmin ≡ m3 = 0, (which implies c = 0 in eq. (5.6.3)), the analysis of the
minimization of the effective Majorana mass is exactly the same as in the case of the 3+1
scheme. This becomes clear after a redefinition of the phases and the coefficients involved.
For mmin ≡ m3 = 0, |〈m〉|2 can be written as:

|〈m〉|2
∣∣∣∣
m3=0

= |a0 + eiαb0 + eiγd0 + eiηe0|2 , (5.6.5)
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where

a0 =
√
|∆m2

32| −∆m2
21 c

2
12c

2
13c

2
14c

2
15 ,

b0 =
√
|∆m2

32| c2
13c

2
14c

2
15s

2
12 ,

d0 =
√

∆m2
43 c

2
15s

2
14 ,

e0 =
√

∆m2
53 s

2
15 .

(5.6.6)

Using the analysis performed in Appendix D.1 for the 3+1 scheme we find that the
solutions which minimize |〈m〉|, such that |〈m〉|min is exactly zero, are: (u±, v±, t±)≡
(tan(γ±/2), tan(α±/2), tan(η±/2)), (u±3 , v

±
3 , t

±
3 ) ≡ (tan(γ±3 /2), tan(α±3 /2), tan(η±3 /2)), and

(v±4 (u), t±4 (u)) ≡ (tan(α±4 /2), tan(η±4 /2)). The solutions (u±, v±, t±) and (v±4 (u), t±4 (u)) can
be obtained formally from eqs. (5.2.16) and (5.2.17) by replacing, respectively, a, b, c and
d with a0, b0, e0 and d0 defined in eq. (5.6.6), while the solution (u±3 , v

±
3 , t

±
3 ) is given by:

u±3 = ±
√

(−a0 + b0 − d0 + e0)(a0 − b0 + d0 + e0)√
(a0 − b0 − d0 − e0)(a0 − b0 − d0 + e0)

,

v±3 = ± a2
0 − b2

0 − d2
0 + e2

0√
(a0 − b0 − d0 − e0)(a0 − b0 − d0 + e0)

√
(−a0 + b0 − d0 + e0)(a0 − b0 + d0 + e0)

,

t±3 = ±(b0 + e0)(−a0 + b0 + d0 − e0)
√

(−a0 + b0 − d0 + e0)(a0 − b0 + d0 + e0)

(b0 − e0)
√

(a0 − b0 − d0 − e0)(a0 − b0 − d0 + e0)(−a0 + b0 − d0 + e0)
.

(5.6.7)

Using the best fit values ∆m2
43 = 0.47 eV2, ∆m2

53 = 0.87 eV2, sin θ14 = 0.13, sin θ15 =
0.14 we find that the minima corresponding to (u±, v±, t±) and to eq. (5.6.7) are given
numerically by:

u± ' ±1.44, v± ' ±18.5, t± ' ∓2.61 (5.6.8)

and
u±3 ' ±1.30, v±3 ' ∓2.63, t±3 ' ∓24.7 . (5.6.9)

The third minimum corresponding to the solution (v±4 (u), t±4 (u)) is not determined uniquely
since it depends on u. However, one can define the minimum for a specific choice of u, or
equivalently, for a value for one of the other phases, because the expressions of this solution
are invertible. In order to check numerically whether the three solutions are minima we
plot the dependence of |〈m〉|on two of the CPV phases (α, γ, η), fixing the value of the
third phase. It proves convenient to set the value of η, i.e. of t, equal to the values of
the solution (u±, v±, t±). One can, of course, do the same using the solutions (u±3 , v

±
3 , t

±
3 ),

or choosing an arbitrary value of η. Our aim is to show that in the 3+2 IO scheme with
m3 = 0, the two solutions (u+, v+, t+) and (v+

4 (u), t+4 (u)) represent two different minima,
in contrast to the case of 3+1 IO scheme with m3 = 0.

More specifically, if we fix t ' −2.61, we find v+
4 ' 1.68 at a value of u+

4 ' −59.3. The
Left Panel of Fig. 5.21 shows the values of |〈m〉|with t = t+ ' −2.61. The marked points
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correspond to the two different minima: the first corresponds to the solution (u+, v+, t+)
and takes place at (α, γ) = (3.03, 1.93), while the second one is associated with the so-
lution (v+

4 (u), t+4 (u)) and occurs at (α, γ) = (2.07, 3.17). In these two minima the ef-
fective Majorana mass is exactly zero. Repeating the same analysis with t ' 2.61, we
find v−4 ' −1.68 at the value of u−4 ' 59.3. The Right Panel of Fig. 5.21 shows the
values of |〈m〉| with t = t− ' 2.61. The points marked with a cross correspond to the
two different minima, one evaluated from the function (u−, v−, t−) and corresponding to
(α, γ) = (3.25, 4.35), and the second evaluated from the function (v−4 (u), t−4 (u)) and corre-
sponding to (α, γ) = (4.21, 3.11). As in the previous case, in these two minima the effective
Majorana mass is exactly zero. The existence of two minima in the 3+2 scheme in the
limit of m3 = 0 is very different from the 3+1 case where the two minima coincide.

Figure 5.21: Left Panel. The value of |〈m〉|in the 3+2 IO scheme for m3 ≡ mmin = 0
and the best fit values of Table 5.2. The phase η is set to the value η+, tan η+/2 ' −2.61.
The values of |〈m〉| in the marked points (α, γ) = (3.03, 1.93), (2.07, 3.17), are zero. The
red contour line corresponds to |〈m〉| = 0.01 eV. Right Panel. The same as in the left
panel, but setting η to the value η−, tan η−/2 ' 2.61. The values of |〈m〉| in the marked
points (α, γ) = (3.25, 4.35), (4.21, 3.11), are zero. The red contour line corresponds to
|〈m〉| = 0.01 eV. See text for details.

Finally, it follows from our analysis that for m3 = 0 in the cases we have considered
and which are illustrated in Fig. 5.21 we have |〈m〉| > 0.01 eV for values of the phases α
and γ outside the region delimited by the red line in Fig. 5.21.

5.7 Summary and Conclusions

In the present chapter we have investigated the predictions for neutrinoless double beta
((ββ)0ν-) decay effective Majorana mass |〈m〉| in the 3 + 1 and 3 + 2 schemes with one
and two additional sterile neutrinos with masses at the eV scale. These two schemes are
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widely used in the interpretation of the reactor neutrino and Gallium anomalies as well as
of the data of the LSND and MiniBooNE experiments in terms of active-sterile neutrino
oscillations. Due to the assumed active-sterile neutrino mixing, the “3 + 1” and “3 + 2”
models have altogether 4 and 5 light massive neutrinos νj coupled to the electron and
muon in the weak charged lepton current. In the minimal versions of these models the
massive neutrinos are Majorana particles. The additional neutrinos ν4 and ν4, ν5, should
have masses m4 and m4, m5 at the eV scale. It follows from the data that if ν4 or ν4,
ν5 exist, they should couple to the electron and muon in the weak charged lepton current
with couplings Uek ∼ 0.1 and Uµk ∼ 0.1, k = 4; 4, 5.

As was shown in [55, 56] and more recently in [57–59], the contribution of the ad-
ditional light Majorana neutrinos ν4 or ν4,5 to the (ββ)0ν-decay amplitude, and thus to
the (ββ)0ν-decay effective Majorana mass |〈m〉|, can change drastically the predictions for
|〈m〉| obtained in the reference 3-flavour neutrino mixing scheme, |〈m 〉(3ν)|. Using the
values of the neutrino oscillation parameters of the 3 + 1 and 3 + 2 schemes, obtained in
the global analyses of the data relevant for the active-sterile neutrino oscillation hypothe-
sis (positive evidence and negative results), performed in [53, 54] (see Tables 1.1, 5.1 and
5.2), we have investigated in detail in the present chapter the possibility of a complete or
partial cancellation among the different terms in |〈m〉|, leading to a strong suppression of
|〈m〉|. This was done in the 3 + 1 and 3 + 2 schemes both in the cases of 3-neutrino mass
spectra with normal ordering (NO) and inverted ordering (IO), as well as in the cases of
normal hierarchical (NH) and inverted hierarchical (IH) spectra with min(mj) = 0, where
j = 1, 2, 3, 4 (j = 1, 2, 3, 4, 5) for the 3 + 1 (3 + 2) scheme. In this type of analysis the free
parameters are the CP violation (CPV) Majorana phases and the lightest neutrino mass.
In the case of the 3 + 1 scheme, in which there are three physical CPV Majorana phases,
we have found all the solutions of the system of equations which determine the minima of
|〈m〉| as well as their domains (i.e., the regions of their validity), in analytic form. This was
done for all types of neutrino mass spectra we have considered. In the more complicated
case of 3 + 2 scheme with four physical CPV Majorana phases, the non-linearity of the
system of four equations which determine the extrema of |〈m〉| makes the analytical study
of the extrema of interest a complicated problem. Thus, in this case we have performed
the general analysis of the minimization of |〈m〉| numerically. It was possible, however, to
perform analytically the analysis of the minima of |〈m〉|, corresponding to the 16 sets of
CP conserving values (either 0 or π) of the four phases.

We have found that if the neutrino mass spectrum is of the NO type, we can have
|〈m〉| = 0, and thus strongly suppressed |〈m〉|, in a specific interval of values of min(mj) ≡
mmin, m1 ≤ mmin ≤ m1. This results is valid both for the 3 + 1 and 3 + 2 schemes. The
specific values of m1 and m1 depend on the scheme: they are determined by the values of
the oscillation parameters in each of the two schemes. For the best fit values reported in
Tables 1, 2 and 3, in the 3+1 with ∆m2

41 = 0.93 eV2, 3+1 with ∆m2
41 = 1.78 eV2 and 3+2

schemes they read, respectively: (m1,m1) = (0.021, 0.065) eV, (m1,m1) = (0.030, 0.091)
eV and (0.004, 0.088) eV. For the different values of mmin from the indicated interval, the
minimum |〈m〉| = 0 is reached for different sets of CP nonconserving, in general, values of
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the CPV Majorana phases.
For the best fit values reported in Tables 1, 2 and 3, we find that we always have

|〈m〉| > 0.01 eV,

• in the 3 + 1 scheme with ∆m2
41 = 0.93 eV2 – for mmin < 0.010 eV and mmin > 0.093

eV;

• in the 3 + 1 scheme with ∆m2
41 = 1.78 eV2 – for mmin < 0.020 eV and mmin > 0.119

eV;

• in the 3 + 2 scheme – for mmin > 0.118 eV.

The results we have obtained for IO spectrum are different. In this case one can have
|〈m〉| = 0 in the interval mmin ≤ m3, where m3 is determined by the values of neutrino
oscillation parameters. For a given mmin from the indicated interval, |〈m〉| = 0 takes
place for specific, in general, CP nonconserving values of the relevant Majorana phases.
The values of m3 in the two schemes, 3 + 1 and 3 + 2, differ. Using the values of the
oscillation parameters given in Tables 1, 2 and 3, we find: m3 = 0.038 (0.074) eV for
∆m2

41 = 0.93 (1.78) eV2 in the 3 + 1 scheme, and m3 = 0.125 in the 3 + 2 scheme.
Using the values of the oscillation parameters given in Tables 1, 2 and 3, we find also

that one has always |〈m〉| > 0.01 eV,

• in the 3 + 1 scheme with ∆m2
43 = 0.93 eV2 – for mmin > 0.078 eV;

• in the 3 + 1 scheme with ∆m2
43 = 1.78 eV2 – for mmin > 0.108 eV;

• in the 3 + 2 scheme – for mmin > 0.178 eV.

We have investigated also the specific cases of NH and IH spectra in the limit mmin = 0,
which present certain peculiarities both in the 3 + 1 and 3 + 2 schemes.

The analysis performed by us allowed to derive the general conditions under which the
effective Majorana mass satisfies |〈m〉| > 0.01 eV, and thus to determine the regions of
values mmin for which |〈m〉| is predicted to lie in the range planned to be explored by
the next generation of (ββ)0ν-experiments. The results of these experiments will provide
additional tests of the hypothesis of existence of sterile neutrinos with masses at the eV
scale, and couplings ∼ 0.1 to the electron and muon in the weak charged lepton current.
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CHAPTER 6

Constraining Sterile Neutrinos

6.1 Neutrino Oscillation Probabilities

In the preceding Chapter we have analysed the effects of existence of one or two sterile neu-
trinos with Majorana masses at the eV scale on the predictions for the effective Majorana
mass in neutrinoless double beta decay. Here we use the high precision data of the Daya
Bay experiment and the prospective precision data from the JUNO experiment to derive
constraints on the parameters which drive the oscillations of active electron antineutrinos
into sterile neutrinos [153]. In contrast to the results obtained in the preceding Chapter,
which are valid only in the case of massive neutrinos being Majorana particles, the results
derived in the present Chapter are valid independently of the nature — Dirac or Majorana
— of massive neutrinos.

In the presence of n sterile neutrinos, the neutrino mass matrix is an (n+ 3)× (n+ 3)
matrix, which can be diagonalized by means of an (n+ 3)× (n+ 3) unitary matrix U . In
general, one has (n+ 3)(n+ 2)/2 mixing angles and (n+ 2)(n+ 1)/2 Dirac phases. In the
case of only one sterile neutrino, U is typically parameterized by

U = R34R̃24R̃14R23R̃13R12P , (6.1.1)

where the matrix Rij is a rotation by the angle θij in the corresponding ij space, e.g.

R34 =


1 0 0 0
0 1 0 0
0 0 c34 s34

0 0 −s34 c34

 or R̃14 =


c14 0 0 s14e

−iδ14

0 1 0 0
0 0 1 0

−s14e
iδ14 0 0 c14

 (6.1.2)

with sij = sin θij and cij = cos θij. The diagonal matrix P contains three Majorana phases,
which are irrelevant to our discussion. In this parametrization, one can figure out that

|Ue1| = c14c13c12 , |Ue2| = c14c13s12 , |Ue3| = c14s13 , |Ue4| = s14 , (6.1.3)

indicating that only the mixing angle θ14 enters reactor electron antineutrino oscillations.
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The survival probability of electron antineutrinos from nuclear reactors can be written
as

Pēē ≡ Pee = 1− 4
∑
i<j

|Uei|2|Uej|2 sin2 ∆ji , (6.1.4)

where ∆ji ≡ ∆m2
jiL/(4E) denote the oscillation phases, L the baseline length, E the

neutrino energy, and ∆m2
ji ≡ m2

j −m2
i the mass-squared difference of two neutrino mass

eigenstates i and j. Using Eq. (6.1.3), we can rewrite the survival probability (6.1.4) as

Pee = 1− c4
14s

2
12 sin2 2θ13 sin2 ∆32 − c4

14c
2
12 sin2 2θ13 sin2 ∆31 − c4

14c
4
13 sin2 2θ12 sin2 ∆21

−s2
13 sin2 2θ14 sin2 ∆43 − c2

13s
2
12 sin2 2θ14 sin2 ∆42 − c2

13c
2
12 sin2 2θ14 sin2 ∆41 ,(6.1.5)

where the oscillation terms are cast into two rows. The first row collects the contributions
from active neutrinos, while the second row from sterile neutrinos. In what follows, we will
concentrate on the oscillation probability at the Daya Bay and JUNO setups, in which one
of the standard oscillation modes in the first row of Eq. (6.1.5) dominates the probability.
In addition, the ∆43 mode is further suppressed by both θ13 and θ14, and can therefore
be safely neglected. Thus, the oscillation probability (6.1.5), in the limit c2

13 = c2
14 = 1,

approximates to

Pee ' 1− s2
12 sin2 2θ13 sin2 ∆32 − c2

12 sin2 2θ13 sin2 ∆31 − sin2 2θ12 sin2 ∆21

−s2
12 sin2 2θ14 sin2 ∆42 − c2

12 sin2 2θ14 sin2 ∆41 . (6.1.6)

6.1.1 The Electron Antineutrino Survival Probability at Daya Bay

Since the baseline length of the Daya Bay detectors is relatively short, the ∆21 related
modes are strongly suppressed by L, and it is a good approximation to use ∆32 ' ∆31 and
∆42 ' ∆41. Hence, the oscillation probability (6.1.6) is simplified to

Pee ' 1− sin2 2θ13 sin2 ∆31 − sin2 2θ14 sin2 ∆41 , (6.1.7)

where terms like s2
13s

2
14 have been dropped. The last term appears in short-baseline re-

actor neutrino experiments when |∆m2
41| & 10−3 eV2, and may play an important role in

explaining the reactor neutrino anomaly. Furthermore, the sterile neutrino contributions
would make significant modifications to the electron antineutrino spectrum. In case of
a larger active-sterile mass-squared difference, the second term leads to fast oscillations,
which result in a shift of the total observed events.

In the interesting situation that ∆m2
31 ' ∆m2

41, the two terms in the oscillation prob-
ability can be combined, and one can define an effective mixing angle as sin2 2θ̃13 =
sin2 2θ13 + sin2 2θ14. In this case, sterile neutrinos induce mimicking effects that add a
correction to the observed mixing angle θ13. Accordingly, Daya Bay loses its sensitivity to
sterile neutrinos.

In Fig. 6.1, we illustrate the oscillation probability at the Daya Bay far detector with
baseline length L = 2 km and mixing sin2 2θ14 = 0.1 [cf. Eq. (6.2.2) for the other standard
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Figure 6.1: The oscillation probability Pee at Daya Bay as a function of neutrino energy
E for L = 2 km and sin2 2θ14 = 0.1 (left plot) as well as sin2 2θ14 = 0.01 (right plot). SD
refers to the standard oscillation probability.

oscillation parameters]. As one can read off from the plot, in the limit |∆m2
41| � |∆m2

32|,
the black solid and green dotted curves almost overlap, and hence, Daya Bay has no sen-
sitivity to sterile neutrinos in this mass regime. In the limit ∆m2

41 ∼ ∆m2
31, the sterile

polluted curve differs from the standard one. However, this difference can be compensated
by taking a smaller value for θ13. A combined analysis of reactor and long-baseline experi-
ments are therefore needed to discriminate this ambiguity. In the regime |∆m2

41| � |∆m2
32|,

the fast oscillations induced by sterile neutrinos lead to a clear distinction to the standard
oscillation behavior, and can be well constrained using the current Daya Bay data.

6.1.2 The Electron Antineutrino Survival Probability at JUNO

Different from the Daya Bay setup, the JUNO detector will be located around 50 km away
from the nuclear power plant, indicating that the ∆21 oscillation mode is dominating,
whereas the ∆31 and ∆32 related oscillation modes become fast oscillations. The sterile
neutrino related oscillation modes ∆4i induce corrections to the neutrino spectrum. Since
the JUNO energy resolution is optimized for the determination of the neutrino mass hi-
erarchy, the JUNO detector turns out to be sensitive to mass-squared differences between
10−5 eV2 and 10−2 eV2. Above this mass range, the oscillation frequency is too fast to be
distinguished, whereas, below this range, the oscillation behavior does not manifest due to
the suppression of baseline length and neutrino energy. Therefore, one may consider the
following three cases:
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Figure 6.2: The oscillation probability Pee at JUNO as a function of neutrino energy E
for L = 52.5 km and sin2 2θ14 = 0.1 (left plot) as well as sin2 2θ14 = 0.01 (right plot). Here
the normal mass hierarchy is assumed. SD refers to the standard oscillation probability.

1. The sterile neutrino is nearly degenerate with one of the three active neutrinos,
i.e. |∆m2

4i| < 10−5 eV2 (for i = 1, 2, or 3). The active-sterile mass-squared differences
can be ignored in this case, and the ∆42 and ∆41 terms in Eq. (6.1.6) can always be
absorbed into the standard oscillation terms. The role of sterile neutrinos is simply
to correct the standard neutrino mixing angles, implying loss of sensitivity to sterile
neutrinos.

2. In the case of a much larger active-sterile mass-squared difference, i.e. |∆m2
4i| >

10−2 eV2, the fast active-sterile oscillations are actually beyond the resolution limit
of JUNO. In this regime, the Daya Bay setup performs a better probe of sterile
neutrinos. The reason is that the baseline length of Daya Bay is much shorter than
that of JUNO (the Daya Bay baseline is only about 2 % of the JUNO baseline), and
hence, the fast oscillations at Daya Bay is milder, which provides us with a better
chance to distinguish the sterile neutrino induced oscillations from the standard ones.

3. In the range 10−5 eV2 < |∆m2
4i| < 10−2 eV2, the observed neutrino spectrum obtains

corrections from sterile neutrinos and one would expect a better sensitivity at JUNO.

In Fig. 6.2, the sterile neutrino corrections are illustrated for the JUNO setup. When the
active-sterile mixing is sizable, the effects of sterile neutrinos become more significant in the
large energy regime, in particular for the cases ∆m2

41 = 10−3 eV2 and ∆m2
41 = 10−4 eV2.

The shift of the energy spectrum provides us with the possibility to search for sterile
neutrinos. For the case of a small value for θ14, the deviation from the standard oscillations
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is less pronounced, and one needs in principle a challenging experimental setup with a very
high precision to detect sterile neutrinos.

Since the major purpose of JUNO is to settle the neutrino mass hierarchy, one may
wonder if the presence of sterile neutrinos may affect the determination of the neutrino
mass hierarchy at JUNO. To this end, we present the probability difference between the
normal and inverted mass hierarchy cases:

∆P = PNH
ee − P IH

ee

' 2 sin 2∆21

(
s2

12 sin2 2θ13 cos ∆31 sin ∆31 − c2
12 sin2 2θ14 cos ∆42 sin ∆42

)
,(6.1.8)

where NH stands for the normal mass hierarchy (m3 > m1) and IH the inverted mass
hierarchy (m3 < m1). One can clearly observe from Eq. (6.1.8) that there exists a very
interesting situation that in the limit

∆42 ' ∆31 , (6.1.9)
s2

12 sin2 2θ13 ' c2
12 sin2 2θ14 , (6.1.10)

the probability difference is equal to zero, i.e. ∆P = 0. In this special case, both normal
and inverted mass hierarchy fits would give the same minimal χ2, and the JUNO setup
loses its ability to determine the neutrino mass hierarchy. In other words, if JUNO cannot
discriminate between its normal and inverted mass hierarchy analyses, a light sterile neu-
trino with mass of the order ∆m2

41 ' ∆m2
32 and mixing sin2 2θ14 ' 0.04 could then be the

underlying reason.
In Fig. 6.3, the impact of sterile neutrinos on the mass hierarchy determination is

shown. One can observe from the left plot that when the conditions given in Eq. (6.1.10)
are fulfilled, normal and inverted mass hierarchy fits will give equally good or equally bad
fits to experimental data. In contrast, in the general case, the wrong-hierarchy oscillation
probability gives a worse fit, which is clearly seen in the right plot of Fig. 6.3.

6.2 Fit to Daya Bay data

In this section, we present the relevant features of the Daya Bay experiment and some of
the details of our statistical analysis. The Daya Bay experimental setup that we take into
account consists of six reactors [154], emitting antineutrinos ν̄e whose spectra have been
recently estimated in Refs. [155, 156]. The total flux of arriving ν̄e at the six antineutrino
detectors has been estimated using the convenient parametrization discussed in Ref. [155]
and taking into account all the distances between the detectors and the reactors (sum-
marised in Tab. 2 of Ref. [154]). For this analysis we use the data set accumulated during
217 days, which are extracted from Fig. 2 of Ref. [138]. The antineutrino energy E is
reconstructed by the prompt energy deposited by the positron Eprompt using the approxi-
mated relation [154] E ' Eprompt + 0.8 MeV. The energy resolution function is a Gaussian

129



CHAPTER 6. CONSTRAINING STERILE NEUTRINOS

-0.05

-0.025

 0

 0.025

 0.05

 2  3  4  5  6  7  8

P
S

D
e
e
  

 -
  

 P
e
e

E [MeV]

JUNO

sin
2
2θ14 = 0.04

∆m
2
41 = 2.51 × 10

-3
 eV

2

NH

IH

-0.05

-0.025

 0

 0.025

 0.05

 2  3  4  5  6  7  8

P
S

D
e
e
  

 -
  

 P
e
e

E [MeV]

JUNO

sin
2
2θ14 = 0.04

∆m
2
41 = 1.0 × 10

-4
 eV

2

NH

IH

Figure 6.3: The probability differences (P SD
ee )NH − Pee (solid curves) and (P SD

ee )IH − Pee
(dotted curves) as functions of neutrino energy E for sin2 2θ14 = 0.04 and ∆m2

42 = ∆m2
31

(left plot) as well as ∆m2
42 = 10−4 eV2 (right plot), where P SD

ee is the standard neutrino
oscillation probability. Here the normal mass hierarchy for Pee is assumed.

function, parametrized according to

σ(E)[MeV] =

{
γ
√
E/MeV − 0.8 , for E > 1.8 MeV ,

γ , for E ≤ 1.8 MeV ,
(6.2.1)

with γ = 0.08 MeV. The antineutrino cross section for the inverse beta decay process has
been taken from Ref. [157].

The statistical analysis is performed using a modified version of the GLoBES software
[158–160] and a χ2 function which takes into account several sources of systematic errors
and retrace the one used by the Daya Bay collaboration. Details can be found in Ref. [72].
We analyze the sensitivity of the Daya Bay experiment on the sterile parameters and
the effect of θ14 and ∆m2

41 on the determination of θ13 and ∆m2
31. Fit results have been

obtained after a marginalization over the parameters that are not shown in the figures.
In particular, we use Gaussian priors defined through the mean value and the 1σ error

as follows:

sin2 θ12 = 0.306(1± 5 %) ,

sin2 θ13 = 0.021(1± 20 %) ,

∆m2
21 = [7.58(1± 5 %)]× 10−5 eV2 ,∣∣∆m2

31

∣∣ = [(2.35(1± 20 %)]× 10−3 eV2 . (6.2.2)
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the Daya Bay data, in the (sin2 2θ14,∆m

2
41) and (sin2 θ13,∆m

2
41)-planes presented in the

left and right plots, respectively.

The central values in Eq. (6.2.2) have been obtained from Ref. [161], although with 1σ
errors slightly larger to account for possible (unevaluated) effects due to the presence of
sterile neutrinos. The new parameters θ14 and ∆m2

41 are considered as free parameters: the
mass-squared difference is completely unconstrained in the range (10−6, 1) eV2, while for the
mixing angle we only considered the upper bound θ14 < 20◦. In all figures the green dotted-
dashed, yellow dotted, and red solid curves refer to 1σ, 2σ, and 3σ regions in 2 degrees of
freedom (dof), respectively. The results in the (sin2 2θ14,∆m

2
41)-plane is shown in the left

plot of Fig. 6.4 after a marginalization over all the standard oscillation parameters using
the priors defined in Eq. (6.2.2), in which we can clearly see that at the smallest confidence
level a best fit point emerges at (sin2 2θ14,∆m

2
41) = (0.012, 0.039 eV2). However, since a

relatively large part of the parameter space is still allowed at 2σ, it is interesting to analyze
the impact of the presence of a third independent mass-squared difference ∆m2

41 on the
measurement of θ13. This is shown in the right plot of Fig. 6.4, obtained after marginalizing
over the undisplayed θ14 (limited by θ14 < 20◦) and the other standard parameters with pri-
ors as in Eq. (6.2.2). We can easily recognize the presence of two distinct regions. One for
∆m2

41 . 10−3 eV2 and ∆m2
41 & 5×10−3 eV2 (at 3σ) where, as also outlined in Ref. [79], the

measurement of θ13 is quite robust and almost unaffected by sterile neutrinos. The other for
10−3 eV2 . ∆m2

41 . 5×10−3 eV2 in which, given the strong interplay between θ13 and θ14 for
∆m2

41 ∼ ∆m2
31 in the oscillation probability, θ13 can also become vanishingly small. For our

purposes, it is enough to study three different cases, shown in Fig. 6.5 (obtained marginal-
izing over the other standard parameters and on θ14): (sin2 2θ14,∆m

2
41) = (10−2, 10−4 eV2)

(upper left plot), (sin2 2θ14,∆m
2
41) = (0.012, 0.039 eV2) (upper right plot, corresponding to
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the best-fit point shown in the left plot of Fig. 6.4) and ∆m2
41 = 2.5× 10−3 eV2 with free

θ14 (lower plot). As can be observed from the left and the right upper plots of Fig. 6.5, the
presence of sterile neutrinos does not affect significantly the determination of the standard
oscillation parameters θ13 and ∆m2

31 for mass-squared differences away from the region
10−3 eV2 . ∆m2

41 . 5×10−3 eV2. On the other hand, for a mass-squared difference within
this range we observe in the lower plot a much larger spread of the allowed values of θ13

and ∆m2
31, as a consequence of ∆m2

41 ≈ ∆m2
31. As we have mentioned below Eq. (7), the

existence of a sterile neutrino could mimick the effects of a large θ13 in this case. The
best-fit θ13 and ∆m2

31 are however in consistent with their true values. Concretely, we have
the best-fit values (sin2 θ13, ∆m2

31)= (0.022, 2.7 × 10−3 eV2), (0.020, 2.7 × 10−3 eV2) and
(0.021, 2.7× 10−3 eV2) for the upper left, upper right and lower plots, respectively.

6.3 Sensitivity at JUNO

The JUNO experiment [162] has been designed to determine the neutrino mass hierarchy,
i.e., the sign of ∆m2

31, by observing the disappearance of reactor electron antineutrinos at
a distance of 52.5 km. With high statistics of one hundred thousand ν̄e events in six years
and an excellent energy resolution γ = 0.03 MeV, the JUNO setup will also have a very
good sensitivity to the other standard neutrino oscillation parameters, in particular to θ12

and ∆m2
21. In this section, we explore the impact of sterile neutrinos with a mass-squared

difference ∆m2
41 ranging from 10−6 eV2 to 10−1 eV2 on precision measurements of (θ12,

∆m2
21) and (θ13, ∆m2

31), and the determination of the neutrino mass hierarchy at JUNO.
Moreover, the JUNO sensitivity to sterile neutrinos will be studied and compared with the
constraint from the Daya Bay data presented in Sec. 6.2.

Following the approach in Ref. [144], we perform our simulations for the JUNO setup by
using the GLoBES software [158–160]. The true values of the relevant standard parameters
are taken from the latest global-fit analysis of neutrino oscillation experiments [8]:

sin2 θ12 = 0.308± 0.017 ,

sin2 θ13 = 0.0234± 0.002 ,

∆m2
21 = (7.54± 0.26)× 10−5 eV2 ,∣∣∆m2

31

∣∣ = (2.43± 0.06)× 10−3 eV2 , (6.3.1)

where 1σ errors are assumed to be Gaussian and will be incorporated into our simulations
as priors for the corresponding parameters. It is worth mentioning that the true values
and uncertainties in Eq. (6.3.1) have been obtained by including the Daya Bay data [8],
in contrast to those in Eq. (6.2.2). Since JUNO is very sensitive to (θ12,∆m

2
21), the

priors on these are not relevant here. However, the prior knowledge on (θ13,∆m
2
31) from

existing reactor neutrino experiments, such as Daya Bay, is important and will be taken
into account.
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Figure 6.5: Confidence level regions at 1σ, 2σ, and 3σ for 2 dof in the (sin2 θ13,∆m
2
31)-

plane after performing a fit to the Daya Bay data. For the left and the right upper plots,
the sterile oscillation parameters are fixed to (sin2 2θ14,∆m

2
41) = (10−2, 10−4 eV2) and

(sin2 2θ14,∆m
2
41) = (0.012, 0.039 eV2), respectively. The lower plot has been obtained

fixing ∆m2
41 = 2.5× 10−3 eV2 and varying freely θ14.
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Figure 6.6: Illustration for the impact of sterile neutrinos on the experimental sensitivities
to (sin2 θ12,∆m

2
21) at JUNO. In our simulations, the true values in Eq. (6.3.1) have been

used. The red (dark-gray), orange (gray), and yellow (light-gray) areas stand respectively
for the 1σ, 2σ, and 3σ regions for 2 dof in the case of no sterile neutrinos, while the fit
results in the presence of sterile neutrinos are represented by the purple (dotted-dashed),
blue (dotted), and cyan (solid) curves. Left plot: For (sin2 2θ14,∆m

2
41) = (0.01, 1.0 ×

10−4 eV2), the best-fit values are (sin2 θ12,∆m
2
21) = (0.309, 7.56× 10−5 eV2). Right plot:

For (sin2 2θ14,∆m
2
41) = (0.012, 3.9× 10−2 eV2), the best-fit values coincide with those in

the case of no sterile neutrinos.

6.3.1 The Parameters θ12 and ∆m2
21

In order to illustrate how sterile neutrinos affect the precision measurement of (θ12,∆m
2
21),

we generate neutrino data at JUNO by assuming a light sterile neutrino with (sin2 2θ14,∆m
2
41) =

(0.01, 1.0 × 10−4 eV2). In addition, the true values of the relevant standard parameters
are given in Eq. (6.3.1). Then, the generated data are fitted by the standard parameters,
with θ13 and ∆m2

31 being marginalized over. As shown in the left plot of Fig. 6.6, the
best-fit values in this case turn out to be (sin2 θ12,∆m

2
21) = (0.309, 7.56 × 10−5 eV2) de-

noted by “×", which are significantly different from the best-fit values (sin2 θ12,∆m
2
21) =

(0.308, 7.54 × 10−5) denoted by “+" in the standard case. The purple dotted-dashed,
blue dotted, and cyan solid curves stand for the 1σ, 2σ, and 3σ contour curves, respec-
tively. The difference between best-fit and true values of θ12 can be well understood from
Eq. (6.1.6), where ∆42 and ∆41 are of the same order of ∆21 and lead to excessive dis-
appearance of reactor antineutrinos. The latter can also be explained by a larger value
of θ12, but without sterile neutrinos. On the other hand, for the chosen true values,
|∆41| > |∆21| > |∆42| and cos2 θ12 > sin2 θ12 indicate that sterile neutrinos introduce an
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additional term of faster oscillations, which can be mimicked by a larger ∆m2
21. However,

if the 1σ errors of the priors of θ13 and ∆m2
31 are taken of the order of 20%, the difference

between the standard and the nonstandard fits becomes insignificant. For comparison,
we present an analysis of JUNO sensitivity in the standard case without sterile neutrinos,
and the shaded areas correspond to the 1σ, 2σ, and 3σ regions, respectively. Given the
true values (sin2 2θ14,∆m

2
41) = (0.01, 1.0 × 10−4 eV2), it is obvious from Fig. 6.6 that the

JUNO sensitivity to (θ12,∆m
2
21) is essentially not changed, although the best-fit values

may deviate from the true values.
If the best-fit values (sin2 2θ14,∆m

2
41) = (0.012, 3.9 × 10−2 eV2) from Daya Bay data

are taken as true values in our simulations, the JUNO sensitivities to θ12 and ∆m2
21 are

almost unchanged, as shown in the right plot of Fig. 6.6. According to Eq. (6.1.6), ∆m2
41 >

∆m2
31 � ∆m2

21 implies that the contributions from sterile neutrinos can be hidden by the
uncertainties of (θ13,∆m

2
31), in particular for sin2 2θ14 � sin2 2θ13 in our case. For this set

of parameters, JUNO is not sensitive enough to place a restrictive constraint.
It is worthwhile to make a comparison between the sensitivity to (sin2 θ12,∆m

2
21) from

our simulations and that given by the JUNO Collaboration. In Fig. 6.6, the 1σ error on
sin2 θ12 is 0.0015 and that on ∆m2

21 is 0.014 × 10−5 eV2, corresponding to a precision of
0.49% and 0.19%, respectively. In our simulations, only one reactor with thermal power of
35.8 GW and a flux normalization uncertainty of 3% are considered, and we have ignored
the background and other systematics. For the nominal setup and systematic uncertainties
considered in Ref. [162], the estimates of the sensitivity to (sin2 θ12,∆m

2
21) from the JUNO

Collaboration are 0.54% and 0.24%, which are in reasonably good agreement with ours.
However, when the bin-to-bin energy uncorrelated uncertainty (1%), the energy linear scale
uncertainty (1%), the energy nonlinear uncertainty (1%), and the background (1%) are
taken into account, the precisions will be 0.67% and 0.59% [133]. Therefore, our simulated
sensitivity will be reduced if the background and the above systematic uncertainties are
included.

6.3.2 The Parameters θ13 and ∆m2
31

In a similar way, we now consider the impact of sterile neutrinos on the measurement of
(θ13,∆m

2
31) at JUNO. In Fig. 6.7, we show the fit of standard parameters to the data

generated by oscillation probabilities in the presence of sterile neutrinos. The fit to the
data generated with (sin2 2θ14,∆m

2
41) = (0.01, 1.0 × 10−4 eV2) is given in the left plot,

while that with (sin2 2θ14,∆m
2
41) = (0.012, 3.9× 10−2 eV2) in the right plot.

In the former case, the best-fit value of θ13 in the sterile neutrino case coincides exactly
with that in the standard case. Moreover, the 1σ, 2σ, and 3σ contour curves overlap
with the edges of shaded regions, which are obtained by generating neutrino data without
sterile neutrinos. The reason is two-fold. First, ∆41 ≈ ∆21 � ∆31 and the corrections
to the standard oscillation probability of three active neutrinos can be absorbed into the
uncertainties of (θ12, sin

2 ∆21). Second, the JUNO setup itself has limited sensitivity to
(θ13,∆m

2
31).

In the latter case, the deviation from the fit without sterile neutrinos is visible, but
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Figure 6.7: Illustration for the impact of sterile neutrinos on the experimental sensitivities
to (sin2 θ13,∆m

2
31) at JUNO. In our simulations, the true values in Eq. (6.3.1) have been

used. The red (dark-gray), orange (gray), and yellow (light-gray) areas stand respectively
for the 1σ, 2σ, and 3σ regions for 2 dof in the case of no sterile neutrinos, while the fit
results in the presence of sterile neutrinos are denoted by the purple (dotted-dashed), blue
(dotted), and cyan (solid) curves. Left plot: For (sin2 2θ14,∆m

2
41) = (0.01, 1.0×10−4 eV2),

the best-fit values coincide with those in the case of no sterile neutrinos. Right plot: For
(sin2 2θ14,∆m

2
41) = (0.012, 3.9× 10−2 eV2), the best-fit values deviate slightly from those

in the standard case.

insignificant. Due to ∆41 > ∆31, the best-fit point is now shifted to a larger value of
∆m2

31. It is now evident that a light sterile neutrino does not affect the measurement of
(θ13,∆m

2
31) at JUNO, which in any event is not very sensitive to these two parameters.

6.3.3 The Neutrino Mass Hierarchy

In Fig. 6.8, we show the JUNO sensitivity to the neutrino mass hierarchy in the presence of
sterile neutrinos. In our simulations, the neutrino data are generated in the NH case and
the true values of the standard parameters are given in Eq. (6.3.1). Additionally, the true
values of ∆m2

41 are specified in the plot, and the black solid, red dashed, blue double-dotted,
green dotted-dashed, and brown dotted curves correspond to ∆m2

41 = 1.0 × 10−4 eV2,
5.0× 10−4 eV2, 2.49× 10−3 eV2, 2.51× 10−3 eV2, and 1.0× 10−2 eV2, respectively. The fit
to the generated neutrino data has been carried out both in the NH and IH cases. In the
upper plot, the values χ2

min of the IH fits are denoted by thick curves, while those of the
NH fits by thin curves of the same kind. The absolute values of the differences between the
IH and NH fits, namely ∆χ2

min ≡ |χ2
min(IH)− χ2

min(NH)|, are shown in the lower plot. The
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Figure 6.8: Impact on the determination of neutrino mass hierarchy at JUNO. In our
simulations, neutrino data are generated in the NH case. In the upper plot, thick curves
refer to the fits with IH, while the corresponding thin curves to those with NH. In the lower
plot, the absolute values of differences between the IH and NH fits ∆χ2

min ≡ |χ2
min(IH) −

χ2
min(NH)| have been given for ∆m2

41 = 1.0 × 10−4 eV2 (solid), 5.0 × 10−4 eV2 (dashed),
2.49 × 10−3 eV2 (double-dotted), 2.51 × 10−3 eV2 (dotted-dashed), and 1.0 × 10−2 eV2

(dotted).

value of ∆χ2
min can be used to measure the capability of the JUNO setup to discriminate

between NH and IH.
It is interesting to observe from the lower plot of Fig. 6.8 that ∆χ2

min approximately
vanishes at sin2 2θ14 = 0.04 for ∆m2

41 = 2.51 × 10−3 eV2, which corresponds to the green
dotted-dashed curve. This can be perfectly understood with the help of Eqs. (6.1.8) and
(6.1.10), where one can see that the oscillation probabilities in the NH and IH cases are
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Figure 6.9: Experimental sensitivity to sterile neutrinos at JUNO. The green (dotted-
dashed), yellow (dotted), and red (solid) curves correspond to the 1σ, 2σ, and 3σ contours
for 2 dof, respectively. For comparison, the fit to Daya Bay data in Fig. 6.4 has been
reproduced, where the dark (light) shaded area is excluded by Daya Bay at the 3σ (2σ)
confidence level.

equal at this point in parameter space. Therefore, JUNO is unable to pin down the neutrino
mass hierarchy in this case. Note that there will be another zero point for ∆χ2

min around
sin2 2θ14 ≈ 0.1. However, now both χ2

min(IH) and χ2
min(NH) are quite large, implying that

three active neutrino oscillations in both the NH and IH cases cannot fit the data well.
This indicates that the JUNO setup is sensitive enough to constrain or discover a light
sterile neutrino with the corresponding mixing parameters. Except for the mass region
∆m2

41 ≈ ∆m2
31, sterile neutrinos have little impact on the determination of the neutrino

mass hierarchy.

6.3.4 The Sensitivity at JUNO

Finally, let us proceed to explore the sensitivity of the JUNO setup to the mixing param-
eters of sterile neutrinos. In our simulations, neutrino data are generated by the standard
oscillation probabilities and the true values are given in Eq. (6.3.1). The data are fitted
by the general oscillation probability with sterile neutrinos, and all the relevant standard
oscillation parameters (θ12,∆m

2
21) and (θ13,∆m

2
31) are marginalized over. Our results have

been depicted in Fig. 6.9, and compared with the fit to the Daya Bay data. The dark
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(light) shaded area is excluded by Daya Bay at the 3σ (2σ) confidence level. At the 3σ
confidence level, compared to the JUNO setup, the Daya Bay experiment has a better
sensitivity to sterile neutrinos with ∆m2

41 & 4.0 × 10−3 eV2. In the low-mass region, i.e.,
∆m2

41 < 4.0 × 10−3 eV2, JUNO always dominates over Daya Bay in constraining light
sterile neutrinos. In this sense, it is therefore clear that reactor neutrino experiments at
short and medium baselines are complementary to each other.

The JUNO setup is most sensitive to the mass region from ∆m2
41 = 10−4 eV2 to

∆m2
41 = 10−3 eV2, where the limit sin2 2θ14 < 10−2 can be reached. The sensitivity is

significantly diminished for ∆m2
41 ≈ ∆m2

21. In this case, the oscillation probability in
Eq. (6.1.5) is reduced to the standard one with two independent neutrino mass-squared
differences, where the spectral information is not useful in constraining sterile neutrinos.
In the limit of a vanishing ∆m2

41, we obtain sin2 ∆43 ≈ sin2 ∆31 and sin2 ∆42 ≈ sin2 ∆21,
implying that the standard neutrino oscillation terms in Eq. (6.1.5) receive corrections from
sterile neutrinos if θ14 is not vanishingly small. Since JUNO has an excellent sensitivity to
θ12, it will be able to set an upper bound on sin2 2θ14.

It is worthwhile to mention that the experimental constraints on sterile neutrinos exist
in the disappearance channel ν̄e → ν̄e at reactor neutrino experiments and νe → νe for solar
neutrino experiments. In Ref. [53], for ∆m2

41 � 10−2 eV2, the upper bounds sin2 2θ14 <
0.215 and sin2 2θ14 < 0.28 at 95 % confidence level have been derived from long-baseline
reactor experiments and from solar plus KamLAND data, respectively. Therefore, our
results from the Daya Bay experiment and the future JUNO experiment in Fig. 6.9 improve
the existing bounds in the high-mass region, and provide new constraints in the low-mass
region.

6.4 Summary and Conclusions

One goal of reactor neutrino experiments is to probe new physics beyond the standard-
oscillation paradigm as sub-leading effects in neutrino flavor transitions. Due to high sta-
tistical precision and good measurements with the Daya Bay experiment, one can obtain
some insight into the hypothesis of sterile neutrinos and put limits on light sterile neutri-
nos when the active-sterile mass-squared difference is located between 10−3 and 10−1 eV2.
Restricted by the baseline and energy resolution, the Daya Bay experiment has poor sensi-
tivity to sterile neutrinos with a mass-squared difference below 10−3 eV2. In contrast, the
future JUNO setup features a higher resolution on the neutrino spectrum and has a longer
baseline compared to Daya Bay, and hence plays a complementarity role to the current
measurements especially in the small mass-squared difference regime. This is particularly
relevant for solar neutrinos, since the MSW solution suggests a low energy of the spectra
of events at Super-Kamiokande and SNO, which is however not shown in the data. A
light sterile neutrino with a mass-squared difference of the order of 10−5 eV2 and a weak
mixing with active neutrinos could explain this suppression [163,164]. Furthermore, when
the recent detection of B mode polarization from the BICEP2 experiment [165] is consid-
ered, an analysis of the combined CMB data in the framework of LCDM+r models gives
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Neff = 4.00± 0.41 [166], which also prefers the existence of extra radiation.
In this work, we have therefore focused on the 3+1 neutrino scenario with only one

sterile neutrino and investigated the impact of light sterile neutrinos on short and medium-
baseline reactor antineutrino experiments. In particular, we have performed a detail study
of antineutrino oscillations and determined the sensitive mass regimes of sterile neutri-
nos for Daya Bay and JUNO. For both setups, active-sterile neutrino oscillations could in
principle mimic the standard oscillations when the active-sterile mass-squared difference
is close to one of the standard neutrino mass-squared differences, and hence, one looses
sensitivity to sterile neutrinos. Our numerical analysis indicates that the public Daya Bay
data suggests an upper limit on the sterile neutrino mixing angle sin2 2θ14 . 0.06 at 3σ
level for the mass-squared difference between 10−3 and 10−1 eV2. In addition, for fixed
sterile neutrino oscillation parameters, the effects of sterile neutrinos on the determination
of θ13 and ∆m2

31 are rather tiny and can be neglected in extracting the standard param-
eters. Regarding the JUNO setup, the high-energy resolution improves the sensitivity to
sin2 2θ14 . 0.016 for ∆m2

41 ∈ (10−4, 10−3) eV2 and six years of running. However, for a
relatively large mass-squared difference, the JUNO sensitivity is not comparable to the one
of Daya Bay, due to the longer baseline. When the active-sterile mass-squared difference
is around 10−4 eV2, the measured θ12 and ∆m2

21 deviate from their true values, whereas
θ13 and ∆m2

31 are not affected by the sterile neutrino pollution. We have also found a spe-
cial parameter region that, when sin2 2θ14 ' 0.04 and ∆m2

42 ' ∆m2
31, the sterile neutrino

polluted oscillation probability would be almost the same for both NH and IH, indicating
that the JUNO setup completely loses its power to discriminate the active neutrino mass
hierarchy.
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Outlook

In the present Ph.D. thesis we have discussed certain theoretical and phenomenological
aspects of neutrino related physics beyond the Standard Theory of particle interactions.
Additional studies were performed in the articles [72, 172–176], the results of which were
not included in the Thesis.

The experimental program of research in neutrino physics extends beyond 2030. The
status of CP symmetry in the lepton sector will be elucidated by the currently running
T2K [177] and NOνA [178] long baseline (LBL) neutrino oscillation experiments and in
the future planned DUNE [179] and T2HK [15] LBL oscillation experiments with large
scale detectors (34 kton liquid argon and ∼ 500 kton ultra pure water). DUNE and T2HK,
which have a very rich physics program, are planned to be operative in 2025-2026. For
these measurements the high precision determination of the reactor mixing angle θ13 in
the currently running Daya Bay experiment with reactor ν̄e [180], to be completed by
2018, will serve as a very important input. A very important input for the DUNE and
T2HK measurements of the Dirac CP violation phase in the neutrino mixing matrix will
be provided also by the data on the neutrino mass spectrum from the approved JUNO
experiment with reactor ν̄e [181,182], which is under construction and is scheduled to start
data taking in 2021, and from the planned PINGU detector [183] (within the IceCube
experiment at the South Pole) and ORCA detector [184] (in the Mediterranean sea within
the KM3Net project). Both PINGU and ORCA are designed to study the oscillations
of the atmospheric νµ, ν̄µ, νe and ν̄e in the energy range ∼ (2 − 10) GeV, in which the
Earth matter effects in the oscillations of neutrinos are significant. PINGU and ORCA
are planned to be operative in 2021-2022. The JUNO experiment (employing a 20 kton
liquid scintillator detector) has an extremely rich physics program [182]. It will make, in
particular, the most precise measurement of the solar neutrino mixing angle θ12 [185,186].

The nature of massive neutrinos — Dirac or Majorana — will be probed in ongoing
and future planned (ββ)0ν-decay experiments: CUORE (with 130Te), GERDA (with 76Ge),
KAMLAND-Zen (with 136Xe), EXO (with 136Xe), SNO+ (with 130Te), MAJORANA (with
76Ge), AMORE (with 100Mo), SuperNEMO (with a number of different isotopes), to name
a few (see, e.g., [20]). The goal of these experiments is to test the range of predictions of
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the effective Majorana mass |〈m〉| ∼> 0.01 eV, corresponding to IO neutrino mass spectrum
and, possibly, even to smaller values of |〈m〉|. The searches for (ββ)0ν-decay will extend
beyond 2020.

The hints of existence of additional neutrino states with masses at the eV scale, which
induce oscillations of the active νµ, ν̄µ and/or νe, ν̄e neutrinos into sterile neutrinos, will be
tested in upcoming experiments with artificial sources (SAGE, CeSOX), with reactor neu-
trinos (STEREO, NUCIFER, PROSPECT, etc.) and with accelerator neutrinos (ICARUS
at Fermilab (SBN), nuPRISM, nuSTORM, NESSiE, etc.) (see, e.g., [34]). We will know
whether active νµ, ν̄µ and/or νe, ν̄e neutrinos indeed oscillate into sterile neutrinos probably
by 2021-2022.

Data on the absolute neutrino mass scale, or equivalently, on min(mj), j = 1, 2, 3, ...,
will be provided by the upcoming KATRIN experiment [187]. Future cosmological and
astrophysical measurements will provide high precision information on the sum of the
neutrino masses [31,32].

In Chapters 2, 3, 4 and 5 we have made specific predictions which will be tested
in the ongoing and the future planned experiments described above. It is hoped that
these experiments and further theoretical developments will shed light on the fundamental
aspects of neutrino mixing: the status of the CP symmetry in the lepton sector, the
type of spectrum neutrino masses obey, the nature — Dirac or Majorana — of massive
neutrinos, the existence of sterile neutrinos with masses at the eV scale, etc. The data
that will be provided by these experiments will help us make progress in understanding
the possible origin of the observed patterns of neutrino mixing and of the neutrino mass
squared differences, on the connection, if any, between the neutrino mixing angles and
leptonic CP violation phases and, more generally, between the quark and neutrino (lepton)
mixing, in the searches for a solution of the (lepton) flavour problem, in the understanding
the role the neutrinos can play, if any, in the generation of the baryon asymmetry of the
Universe, etc. Obviously, the wealth of data from the ongoing and the future planned
neutrino experiments will require non-trivial theoretical input. We are looking very much
forward to these exciting developments.
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Group Theory

A.1 Technicalities about T ′

The group T ′ is the double covering group of A4 and it is defined through the algebraic
relations:

S2 = R R2 = T 3 = (ST )3 = E RT = TR . (A.1.1)

The number of the unitary irreducible representations of a discrete group is equal to the
number of the conjugacy classes. For T ′ they are seven, which are classified given the
elements T , S, because R ≡ S2, we summarize them as

1C1 : {E} , 1′C2 :
{
S2
}

4C3 :
{
T, S3TS, ST, TS

}
, 4′C3 :

{
T 2, S2TST, S2T 2S, S3T 2

}
4′′C6 :

{
S2T, STS, S3T, S2TS

}
, 4′′′C6 :

{
S2T 2, TST, T 2S, ST 2

}
6C4 :

{
S, S3, TST 2, T 2ST, S2TST 2, S2T 2ST

} (A.1.2)

143



APPENDIX A. GROUP THEORY

The representations of T ′ can be expressed as

1 : T = 1 , R = 1 , S = 1 ;

1′ : T = ω , R = 1 , S = 1 ;

1′′ : T = ω2 , R = 1 , S = 1 ;

2 : T =

(
ω2 0
0 ω

)
, R =

(
−1 0
0 −1

)
, S =

 − i√
3
−
√

2
3
p√

2
3
p̄ i√

3

 ;

2′ : T =

(
ω3 0
0 ω2

)
, R =

(
−1 0
0 −1

)
, S =

 − i√
3
−
√

2
3
p√

2
3
p̄ i√

3

 ;

2′′ : T =

(
ω 0
0 1

)
, R =

(
−1 0
0 −1

)
, S =

 − i√
3
−
√

2
3
p√

2
3
p̄ i√

3

 ;

3 : T =

 1 0 0
0 ω 0
0 0 ω2

 , R =

 1 0 0
0 1 0
0 0 1

 , S =

 −1
3

2ω
3

2ω2

3
2ω2

3
−1

3
2ω
3

2ω
3

2ω2

3
−1

3

 .

We use the definition of the representation of T ′ given in [97] in which ω and p are fixed
to be respectively ω = e

2 iπ
3 and p = e

iπ
12 . Finally T ′ has n = 13 subgroups excluding the

whole group:

• Trivial subgroup
E = {E};

• Z2 subgroup
ZS2

2 = {E, S2};

• Z3 subgroups
ZT

3 = {E, T, T 2}, ZS3TS
3 = {E, S3TS, S2TST}, ZST

3 = {E, ST, S2T 2S}, ZTS
3 =

{E, TS, S3T 2};

• Z4 subgroups
ZS

4 = {E, S, S2, S3}, ZTST 2

4 = {E, TST 2, S2, S2TST 2}, ZT 2ST
4 = {E, T 2ST, S2, S2T 2ST};

• Z6 subgroups
ZS2T

6 = {E, S2T, T 2, S2, T, S2T 2}, ZSTS
6 = {E, STS, S2TST, S2, S3TS, TST},

ZS3T
6 = {E, S3T, S2T 2S, S2, ST, T 2S}, ZS2TS

6 = {E, S2TS, S3T 2, S2, TS, ST 2}.

A complete table of the CGs coefficients can be found in [90].
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Parametrisations and Statistical Details

B.1 Relations Between Phases in Two Parametrisations

In this section we present the relations between the phases of the two different parametri-
sations of the PMNS matrix employed in [86] and [75]. In the parametrisation used in [86]
the PMNS matrix after setting θe13 = θν13 = 0 reads:

UPMNS = U eL†
12 U eL†

23 UνL
23 U

νL
12 , (B.1.1)

where the subscripts 12 and 23 stand for the rotation plane, e.g., the matrix U eL
12 being

defined as

U eL
12 =

 cos θe12 sin θe12 e
−iδe12 0

− sin θe12 e
iδe12 cos θe12 0

0 0 1

 , (B.1.2)

and the others analogously. We can factorise the phases in the charged lepton and the
neutrino sectors in the following way:

U eL†
12 U eL†

23 =

1 0 0
0 ei(δ

e
12+π) 0

0 0 ei(δ
e
12+δe23)

 cos θe12 sin θe12 0
− sin θe12 cos θe12 0

0 0 1


×

1 0 0
0 cos θe23 sin θe23

0 − sin θe23 cos θe23

1 0 0
0 e−i(δ

e
12+π) 0

0 0 e−i(δ
e
12+δe23)

 , (B.1.3)

UνL
23 U

νL
12 =

1 0 0
0 eiδ

ν
12 0

0 0 ei(δ
ν
23+δν12)

1 0 0
0 cos θν23 sin θν23

0 − sin θν23 cos θν23


×

 cos θν12 sin θν12 0
− sin θν12 cos θν12 0

0 0 1

1 0 0
0 e−iδ

ν
12 0

0 0 e−i(δ
ν
23+δν12)

 . (B.1.4)

145



APPENDIX B. PARAMETRISATIONS AND STATISTICAL DETAILS

Combining eqs. (B.1.3) and (B.1.4) and comparing with the parametrisation of the PMNS
matrix employed in [75] and given in eqs. (3.1.5) and (3.1.6), we find the following relations:

ψ = δe12 − δν12 + π , ω = δe23 + δe12 − δν23 − δν12 , (B.1.5)
ξ21 = −2δν12 , ξ31 = −2(δν12 + δν23) . (B.1.6)

B.2 Statistical Details

In order to perform a statistical analysis of the models considered in Chapter 3 we construct
the χ2 function in the following way:

χ2(sin2 θ12, sin
2 θ13, sin

2 θ23, δ) = χ2
1(sin2 θ12) + χ2

2(sin2 θ13) + χ2
3(sin2 θ23) + χ2

4(δ) , (B.2.1)

in which we have neglected the correlations among the oscillation parameters, since the
functions χ2

i have been extracted from the 1-dimensional projections in [8]. In order
to quantify the accuracy of our approximation we show in Fig. B.1 the confidence re-
gions at 1σ, 2σ and 3σ for 1 degree of freedom in the planes (sin2 θ23, δ), (sin2 θ13, δ) and
(sin2 θ23, sin

2 θ13) in blue (dashed lines), purple (solid lines) and light-purple (dash-dotted
lines) for NO (IO) neutrino mass spectrum, respectively, obtained using eq. (B.2.1). The
parameters not shown in the plot have been marginalised. It should be noted that what
is also used in the literature is the Gaussian approximation, in which χ2 can be simplified
using the best fit values and the 1σ uncertainties as follows:

χ2
G =

∑
i

(xi − xi)2

σ2
xi

. (B.2.2)

Here xi = {sin2 θ12, sin
2 θ13, sin

2 θ23, δ}, xi and σxi being the best fit values and the 1σ un-
certainties 1 taken from [8]. We present in Fig. B.2 the results of a similar two-dimensional
analysis for the confidence level regions in the planes shown in Fig. B.1, but using the
approximation for χ2 given in eq. (B.2.2). It follows from these figures that the Gaussian
approximation does not allow to reproduce the confidence regions of [8] with sufficiently
good accuracy. For this reason in our analysis we use the more accurate procedure defined
through eq. (B.2.1). In both the figures the best fit points are indicated with a cross and
an asterisk for NO and IO spectra, respectively.

Each symmetry scheme considered in our analysis, which we label with an index m,
depends on a set of parameters ymj , which are related to the standard oscillation parameters
through expressions of the form xi = xmi (ymj ). In order to produce the 1-dimensional figures
we minimise

χ2
(
xmi (ymj )

)
=

4∑
i=1

χ2
i

(
xmi (ymj )

)
(B.2.3)

1In the case of asymmetric errors we take the mean value of the two errors.
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Figure B.1: Confidence regions at 1σ, 2σ and 3σ for 1 degree of freedom in the planes
(sin2 θ23, δ), (sin2 θ13, δ) and (sin2 θ23, sin

2 θ13) in the blue (dashed lines), purple (solid
lines) and light-purple (dash-dotted lines) for NO (IO) neutrino mass spectrum, respec-
tively, obtained using eq. (B.2.1). The best fit points are indicated with a cross (NO) and
an asterisk (IO).
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Figure B.2: The same as in Fig. B.1, but using eq. (B.2.2).

for a fixed value of the corresponding observable α, i.e.,

χ2(α) = min
[
χ2
(
xmi (ymj )

) ∣∣
α=const

]
, (B.2.4)

with α = {δ, JCP, sin
2 θ23}. The likelihood function for cos δ has been computed by taking

L(cos δ) ∝ exp

(
−χ

2(cos δ)

2

)
, (B.2.5)

which was used to produce the likelihood function for the different symmetry forms in
Fig. 3.12. It is worth noticing that in the case of flat priors on the mixing parameters,
the posterior probability density function reduces to the likelihood function. Although we
did not use the Gaussian approximation for obtaining Figs. 3.11, 3.12, 3.15 and B.3, we
employed it to obtain Figs. 3.13 and 3.14.
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B.3 Results for the Atmospheric Angle

For completeness of the results presented in Chapter 3 in Fig. B.3 we give Nσ ≡
√
χ2 as a

function of sin2 θ23. The best fit values and the 3σ regions are summarised in Table B.1.
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Figure B.3: Nσ ≡
√
χ2 as a function of sin2 θ23. The dashed lines represent the results

of the global fit [8], while the solid ones represent the results we obtain for the TBM, BM
(LC), GRA (upper left, central, right panels), GRB and HG (lower left and right panels)
neutrino mixing symmetry forms. The blue (red) lines are for NO (IO) neutrino mass
spectrum.
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Symmetry form Best fit 3σ range

TBM sin2 θ23 (NO) 0.44 0.37÷ 0.63
sin2 θ23 (IO) 0.46 0.38÷ 0.65

BM (LC) sin2 θ23 (NO) 0.42 0.37÷ 0.52
sin2 θ23 (IO) 0.42 0.37÷ 0.56

GRA sin2 θ23 (NO) 0.44 0.37÷ 0.63
sin2 θ23 (IO) 0.46 0.38÷ 0.65

GRB sin2 θ23 (NO) 0.44 0.37÷ 0.63
sin2 θ23 (IO) 0.46 0.38÷ 0.65

HG sin2 θ23 (NO) 0.44 0.37÷ 0.63
sin2 θ23 (IO) 0.46 0.38÷ 0.64

Table B.1: Best fit values of sin2 θ23 and corresponding 3σ ranges (found fixing√
χ2 − χ2

min = 3) in our setup using the data from [8].
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APPENDIX C

Neutrino experiment simulations

C.1 Daya Bay and T2K

The Daya Bay experimental setup we take into account [154] consists of six antineutrino
detectors (ADs) and six reactors; detailed information on the antineutrino spectra emitted
by the nuclear reactors and arriving to the detectors can be found in [155, 156, 167]. For
our analysis we used the data set accumulated during 217 days reported in [138], where
the detected antineutrino candidates are collected in the far hall, EH3 (far detector), and
in the near halls EH1, EH2 (near detectors).

The antineutrino energy Eνe is reconstructed by the prompt energy deposited by the
positron Eprompt using the approximated relation [154]: Eνe ' Eprompt + 0.8 MeV. We
adopt a Gaussian energy resolution function of the form:

Rc(E,E ′) =
1

σ(E)
√

2π
e
− (E−E′)2

2σ2(E) . (C.1.1)

with σ(E)[MeV] = α · E + β ·
√

E + γ that, for Daya Bay, are (α, β, γ) = (0, 0, 0.08) MeV.
The antineutrino cross section for the inverse beta decay (IBD) process has been taken
from [157]. The statistical analysis of the data has been performed using the GLoBES
software [159,160] with the χ2 function defined as [154]:

χ2
DB(θ,∆m2, ~S, αr, εd, ηd) =

6∑
d=1

36∑
i=1

[
Md

i − T di ·
(
1 +

∑
r ω

d
rαr + εd

)
+ ηd

]2
Md

i +Bd
i

+
∑
r

α2
r

σ2
r

+
6∑
d=1

[
ε2
d

σ2
d

+
η2
d

σ2
Bd

]
+ Priors , (C.1.2)

where ~S is a vector containing the new physics parameters, Md
i are the measured IBD

events of the d-th detector ADs in the i-th bin, Bd
i the corresponding background and

T di = Ti(θ,∆m
2, ~S) are the theoretical prediction for the rates. The parameter ωdr is the
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fraction of IBD contribution of the r-th reactor to the d-th detector AD, determined by the
approximated relation ωdr ∼ L−2

rd /(
∑6

r=1 1/L2
rd), where Lrd is the distance between the d-th

detector and the r-th reactor. The parameter σd is the uncorrelated detection uncertainty
(σd = 0.2%) and σBd is the background uncertainty of the d-th detector obtained using
the information given in [138]: σB1 = σB2 = 8.21, σB3 = 5.95, σB4 = σB5 = σB6 = 1.15 and
σr = 0.8% are the uncorrelated reactor uncertainties. The corresponding pull parameters
are (εd, ηd, αr). With this choice of nuisance parameters we are able to reproduce the 1σ,
2σ and 3σ confidence level results presented in Fig. 3 of Ref. [138] with high accuracy. The
differences are at the level of few percent (see Tab. I and Tab. II of Ref. [72]).

The T2K experiment [137] consists of two separate detectors, both of which are 2.5
degrees off axis of the neutrino beam. The far detector is located at LF = 295 km from
the source, the ND280 near detector is LN = 280 metres from the target.

In our analysis we used the public data in [137, 168]. The neutrino flux has been
estimated following [169]. We fixed the fiducial mass of the near and the far detector re-
spectively as FMND280 = 1529 Kg and FMSK = 22.5 Kton [170]; a bin to bin normalization
has been fixed in order to reproduce the T2K best fit events. For the energy resolution
function we adopt the same Gaussian form of Eq. (C.1.1) with (α, β, γ) = (0, 0, 0.085) GeV.

The χ2
T2K is defined as:

χ2
T2K(θ,∆m2, ~S, ρ,Ωd, αd) =

2∑
d=1

ndbins∑
i=1

2

[
Md

i − T di · (1 + ρ+ Ωd) +Md
i log

Md
i

T di · (1 + ρ+ Ωd)

]

+
ρ2

σ2
ρ

+
2∑
d=1

Ω2
d

σ2
Ωd

+ Priors .

(C.1.3)

In the previous formula, ~S is a vector containing the new physics parameters, Md
i are

the measured events, including the backgrounds (extracted from Fig. 4 of [137]), of the
d-th detector in the i-th bin, T di = T di (θ,∆m2, ~S, αd) are the theoretical predictions for
the rates, θ and ∆m2 are respectively the mixing angles and the squared mass differences
contained in the oscillation probability, ndbins is the number of bins for the d-th detector.
The parameter σρ contains the flux, the uncorrelated ν interaction and the final-state
interactions uncertainties (σρ = 8.8% Tab. II of [137]), σΩd the fiducial mass uncertainty
for the d-th detector (σΩd has been estimated to be σΩd = 1% for the far and the near
detectors similarly to [158]), αd are free parameters which represent the energy scale for
predicted signal events with uncertainty σαd , (σαd = 1% [171]).

The corresponding pull parameters are (ρ,Ωd, αd). The measured event rates at the
near detector have been estimated rescaling the non oscillated measured event rates at
the far detector using the scale factor L2

F/L
2
N × FMND280/FMSK. Our definition of the

χ2 allows to reproduce with high accuracy the 68% and 90% confidence level regions for
sin2 2θ13 as a function of the CP violation phase δ shown in Fig. 5 of Ref. [137].

We analysed the whole Daya Bay and T2K data sample using χ2
tot = χ2

DB + χ2
T2K .

We considered two different statistical analysis: i) we fixed all the standard oscillation
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parameters, ii) we fixed all the standard oscillation parameters except θ13 on which we
imposed a gaussian prior defined through the mean value and the 1σ error sin2 2θ13 =
0.140±0.038, sin2 2θ13 = 0.170±0.045 and sin2 2θ13 = 0.090±0.009, for the different cases
we have analyzed.
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APPENDIX D

Effective Majorana Mass

D.1 The Extrema of |〈m〉| in the 3+1 Scheme with NO
or IO Neutrino Mass Spectrum

We are interested in the minima and the maxima of |〈m〉|. It turns out to be somewhat
simpler to study the extrema of |〈m〉|2 which obviously coincide with those of |〈m〉|. The
expression for |〈m〉|2 in both the cases of NO and IO spectra can be written as:

|〈m〉|2 = |a+ eiαb+ eiβc+ eiγd|2. (D.1.1)

The zeros of the first derivatives of |〈m〉|2 with respect to the phases α, β and γ are given
by the following system of three equations:

−2b[a sin(α) + c sin(α− β) + d sin(α− γ)] = 0,

−2c[a sin(β)− b sin(α− β) + d sin(β − γ)] = 0,

2d[−a sin(γ) + b sin(α− γ) + c sin(β − γ)] = 0.

(D.1.2)

In order to solve this system we use the following parametrization:

sinα =
2v

1 + v2
, cosα =

1− v2

1 + v2
,

sin β =
2t

1 + t2
, cos β =

1− t2
1 + t2

,

sin γ =
2u

1 + u2
, cos γ =

1− u2

1 + u2
.

(D.1.3)

155



APPENDIX D. EFFECTIVE MAJORANA MASS

where, respectively, v ≡ tan(α/2), t ≡ tan(β/2), u ≡ tan(γ/2) with α, β, γ 6= π + 2kπ. In
terms of the new variables the system in eq.(D.1.2) can be written as:

− 2b

1 + v2

[
2av − 2ct (1− v2)

t2 + 1
+

2c (1− t2) v

t2 + 1
− 2du (1− v2)

u2 + 1
+

2d (1− u2) v

u2 + 1

]
= 0,

− 2c

1 + t2

[
2at− 2b (1− t2) v

v2 + 1
+

2bt (1− v2)

v2 + 1
− 2d (1− t2)u

u2 + 1
+

2dt (1− u2)

u2 + 1

]
= 0,

2d

1 + u2

[
− 2au+

2b (1− u2) v

v2 + 1
− 2bu (1− v2)

v2 + 1
+

2ct (1− u2)

t2 + 1
− 2c (1− t2)u

t2 + 1

]
= 0.

(D.1.4)

The new coordinates u, v and t are singular if at least one angle α, β, γ is equal to π. We
observe that seven solutions of the system in eq. (D.1.2) are given for one of the three
phases equal to π, i.e., for u or v or t going to ∞:

α = β = π(0) and γ = 0(π),

α = γ = π(0) and β = 0(π),

γ = β = π(0) and α = 0(π),

α = β = γ = π .

(D.1.5)

We can recover this type of solutions as a limit of the system in eq. (D.1.4) when a pair of
variables u, v, t are equal. For example, in the limit in which t = v = 0, the system in eq.
(D.1.4) is reduced to 

(4bd)
u

u2 + 1
= 0,

(4cd)
u

u2 + 1
= 0,

[4d(a+ b+ c)]
u

u2 + 1
= 0 .

(D.1.6)

Evidently, we have a solution in the limit u → ∞. This is equivalent to say that the
solutions under discussion can be found as a limit of the system (D.1.4) when the variables
u, t, and v are sent to ∞.

The solutions of the system in eq. (D.1.4), assuming α, β, γ 6= π and b, c, d 6= 0, are the
zeros of the following system of equations:

2av − 2ct (1− v2)

t2 + 1
+

2c (1− t2) v

t2 + 1
− 2du (1− v2)

u2 + 1
+

2d (1− u2) v

u2 + 1
= 0,

2at− 2b (1− t2) v

v2 + 1
+

2bt (1− v2)

v2 + 1
− 2d (1− t2)u

u2 + 1
+

2dt (1− u2)

u2 + 1
= 0,

−2au+
2b (1− u2) v

v2 + 1
− 2bu (1− v2)

v2 + 1
+

2ct (1− u2)

t2 + 1
− 2c (1− t2)u

t2 + 1
= 0.

(D.1.7)
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The solutions of this system are nine: (u1, v1, t1), (u±, v±, t±), (u±i , v
±
i , t

±
i ) with i = 2, 3

and (v±4 (u), t±4 (u)). We found (u1, v1, t1) = (0, 0, 0) and

u± = ±
√

(−a+ b+ c− d)(a+ b− c+ d)

(a− b− c− d)(a+ b− c− d)
,

v± = ±(b+ c)

(b− c)
[(a+ b− c)2 − d2]√

(−a+ b+ c− d)(a+ b− c+ d)(a− d− c− b)(a− d− c+ b)
,

t± = ± a2 + b2 − c2 − d2√
(a− b− c− d)(a+ b− c− d)(−a+ b+ c− d)(a+ b− c+ d)

,



u±2 = 0,

v±2 = ±
√

(−a− b+ c− d)(a+ b+ c+ d)

(a− b− c+ d)(a− b+ c+ d)
,

t±2 = ± (a− b+ c+ d)(a+ b+ c+ d)√
(a− b− c+ d)(a− b+ c+ d)(−a− b+ c− d)(a+ b+ c+ d)

,



u±3 = ±
√

(−a+ b+ c− d)(a− b+ c+ d)

(a− b− c− d)(a− b+ c− d)
,

v±3 = ± a2 − b2 + c2 − d2√
(a− b− c− d)(a− b+ c− d)(−a+ b+ c− d)(a− b+ c+ d)

,

t±3 = ±(b+ c)(−a+ b− c+ d)

(b− c)(−a+ b+ c− d)

√
(−a+ b+ c− d)(a− b+ c+ d)

(a− b− c− d)(a− b+ c− d)
,


v±4 (u) =

4bdu± F (a, b, c, d, u)

−u2(a− b− c− d)(a− b+ c− d)− (a− b+ d)2 + c2
,

t±4 (u) =
−4cdu± F (a, b, c, d, u)

u2(a− b− c− d)(a+ b− c− d) + (a− c+ d)2 − b2
,

(D.1.8)

where

F (a, b, c, d, u) =

{[
− u2(a+ b− c− d)(a− b+ c− d)− (a+ d)2 + (b− c)2

]
×

×
[
a2
(
u2 + 1

)
− 2ad

(
u2 − 1

)
−
(
u2 + 1

)
(b+ c− d)(b+ c+ d)

]}1/2

.

We observe that in the NH case, the limit m1 → 0 corresponds to setting a → 0 in
eqs. (D.1.4), while the limit m3 → 0 in the IH case corresponds to c → 0. We define
the constants a, b, c, d in these limits respectively as b0, c0, d0 and a0, b0, d0. Moreover,
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we observe that |〈m〉|evaluated at the solutions (u±i , v
±
i , t

±
i ) with i = 2, 3, (v±4 , t

±
4 ) and

(u±, v±, t±) is exactly zero.
In the subsection 6.2 we discuss, in particular, the limiting case of m3 → 0. Therefore it

is useful to show the solutions (u±, v±, t±) in terms of sin γ+ = − sin γ−, sinα+ = − sinα−,
sin β+ = − sin β−, so we can write:

sin γ− =

√
−[(a− d− c)2 − b2][(a+ d− c)2 − b2]

2(a− c)d ,

sinα− =
(b− c)(b+ c)(a+ b− c− d)

√
(−a+ b+ c− d)(a+ b− c+ d)(−a+ b+ c+ d)

2 (ab (c(a− c) + b2)− bcd2)
√

(−a+ c+ d)2 − b2
,

sin β− =

√
(a− b− c− d)(a+ b− c− d)

√
(−a+ b+ c− d)(a+ b− c+ d) (−a2 − b2 + c2 + d2)

2(a− c) [a (c(a− c) + b2)− cd2]
.

Next, in order to study the domains of existence of the solutions given in eq. (D.1.8),
which depend on the parameters a b, c and d, we need to define the following functions:

f1 = a− b− c− d , f2 = a+ b− c− d ,
f3 = a+ b− c+ d , f4 = −a+ b+ c− d ,
f5 = a+ b+ c+ d , f6 = a− b+ c+ d ,

f7 = a− b+ c− d , f8 = a+ b+ c− d .

(D.1.9)

We notice that the conditions of existence for the solutions (u±, v±, t±), (u±2 , v
±
2 , t

±
2 ) and

(u±3 , v
±
3 , t

±
3 ) are respectively f3f4f5f6 > 0, f1f4f6f7 > 0 and f1f2f3f4 > 0. We discuss the

domains of the other solutions in Appendix D.2 using numerical methods.
Finally, we would like to comment on the solutions (v±4 , t

±
4 ) because, as can be seen

from their explicit expressions, they depend on a free variable, u. Thus, we would like to
provide some details about the study of the domain of such solutions. Defining k = u2 and
F (a, b, c, d, k) =

√
f(k) we find that the function f(k) is a parabola of the form:

f(k) = Ak2 +Bk + C , (D.1.10)

with coefficient of the term of maximum degree equal to

A = (a+ b− c− d)(a− b+ c− d)(a+ b+ c− d)(−a+ b+ c+ d) , (D.1.11)

and discriminant ∆ = B2− 4AC = 256 a2b2c2d2. The discriminant ∆ is always positive or
equal to zero. The zeros of the function f(k), namely k1 and k2, are given by:

k̃1 =
(a− b− c+ d)(a+ b+ c+ d)

(a+ b+ c− d)(−a+ b+ c+ d)
,

k̃2 = − (a+ b− c+ d)(a− b+ c+ d)

(a+ b− c− d)(a− b+ c− d)
.

(D.1.12)
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Depending on the values of the parameters a, b, c and d one can find a range of mmin for
which this solution is well defined. We will discuss this in the next section D.2.

The method described above cannot be used to determine the physical domain of the
minimization solutions found by us in the case in which at least one of the phases α, β, γ is
equal to π (eq. (D.1.5)). In order to study these cases we use the Hessian matrix of |〈m〉|2,
H(α, β, γ). The determinant of the Hessian, evaluated for the phases either 0 or π and as-
suming a, b, c, d > 0, can be positive only for (α, β, γ) = (π, 0, 0), (0, π, 0), (0, 0, π), (π, π, π).
Therefore the local minima and maxima can correspond only to these configurations. We
derive the relations among the coefficients a, b, c, d in order to have a minimum using the
Sylvester’s criterion. We assume that a, b, c, d are real and positive, a, b, c, d > 0.
We have a minima at

(α, β, γ) = (π, π, π) if f1 = a− b− c− d > 0;

(α, β, γ) = (0, 0, π) if (c < d) ∧ (b < d− c) ∧ (f8 = a+ b+ c− d < 0);

(α, β, γ) = (0, π, 0) if (c > d) ∧ (b < c− d) ∧ (−f3 = −a− b+ c− d > 0);

(α, β, γ) = (π, 0, 0) if (b > c+ d) ∧ (−f6 = −a+ b− c− d > 0).

(D.1.13)

D.2 Domains of the solutions

In this part we describe the domains of the solutions given in eq. (D.1.8). We will give the
numerical intervals of values of mmin in which the minimization solutions are well defined
for ∆m2

41(43) = 0.93 eV2 and 1.78 eV2 and using the best fit values reported in Table 1.1.
In Tables D.1 and D.2 we present the results of this numerical analysis in the cases of NO
and IO spectra, respectively.

D.3 Extrema of |〈m〉| in the 3+2 Scheme

As in the case of the 3+1 scheme, it proves somewhat easier to study the extrema of |〈m〉|2
than of |〈m〉|. The expression for |〈m〉|2 for both NO and IO spectra has the form:

|〈m〉|2 = |a+ eiαb+ eiβc+ eiγd+ eiηe|2. (D.3.1)

Equating to zero the first derivatives of |〈m〉|2 with respect to the four phases we get the
following system of four equations:

a sin(α) + c sin(α− β) + d sin(α− γ) + e sin(α− η) = 0,

a sin(β)− b sin(α− β) + d sin(β − γ) + e sin(β − η) = 0,

−a sin(γ) + b sin(α− γ) + c sin(β − γ)− e sin(γ − η) = 0,

−a sin(η) + b sin(α− η) + c sin(β − η) + d sin(γ − η) = 0.

(D.3.2)
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Solution Domain of existence in terms of mmin

(u±, v±, t±)
2.363× 10−2 eV < m1 < 6.473× 10−2 eV

(3.337× 10−2 eV < m1 < 9.061× 10−2 eV)

(u±2 , v
±
2 , t

±
2 )

None
(None)

(u±3 , v
±
3 , t

±
3 )

5.485× 10−2 eV < m1 < 6.473× 10−2 eV

(7.811× 10−2 eV < m1 < 9.061× 10−2 eV)

(v±4 , t
±
4 ) for A > 0

2.090× 10−2 eV < m1 < 2.363× 10−2 eV ∨
∨ 5.485× 10−2 eV < m1 < 6.473× 10−2 eV(
3.043× 10−2 eV < m1 < 3.337× 10−2 eV ∨
∨ 7.811× 10−2 eV < m1 < 9.061× 10−2 eV

)
(v±4 , t

±
4 ) for A < 0

2.363× 10−2 eV < m1 < 5.485× 10−2 eV

(3.337× 10−2 eV < m1 < 7.811× 10−2 eV)

Table D.1: Numerical results for the domains of existence of the solutions given in eq.
(D.1.8) in the 3+1 NO case for ∆m2

41 = 0.93 eV2 (∆m2
41 = 1.78 eV2). The expression of

A is given in eq. (D.1.11).

The analytical study of the minima of |〈m〉|2 in this case is a non-trivial task since four
phases are involved and the non-linearity of the system of the first derivatives of |〈m〉|2
with respect to the four phases makes the analysis rather complicated. Therefore finding all
possible solutions of the minimization procedure in analytical form is a complicated prob-
lem. Thus, we have performed the general analysis of the minimization of |〈m〉|numerically.
This allowed to determine the intervals of values of mmin in which the minimal value of
|〈m〉|is exactly zero. It is possible, however, to perform analytically the analysis of the
minima of |〈m〉|, corresponding to the 16 sets of CP conserving values (either 0 or π) of
the four phases α, β, γ and η. This can be done by using the Sylvester’s criterion for the
Hessian, evaluated for the indicated values of the phases 0, π, which determines the physi-
cal domain of the minimization solutions. The minima thus found, as we show, correspond
to |〈m〉| 6= 0.

Assuming a, b, c, d, e > 0 and a, b, c, d, e ∈ R and using the Sylvester’s criterion we find
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Solution Domain of existence in terms of mmin

(u±, v±, t±)
0 eV < m3 < 3.855 · 10−2 eV

(0 eV < m3 < 7.437× 10−2 eV)

(u±2 , v
±
2 , t

±
2 )

None
(None)

(u±3 , v
±
3 , t

±
3 )

3.084× 10−2 eV < m3 < 3.855× 10−2 eV

(6.344× 10−2 eV < m3 < 7.437× 10−2 eV)

(v±4 , t
±
4 ) for A > 0

3.084× 10−2 eV < m3 < 3.855× 10−2 eV

(6.344× 10−2 eV < m3 < 7.437× 10−2 eV)

(v±4 , t
±
4 ) for A < 0

0 eV < m3 < 3.084× 10−2 eV

(0 eV < m3 < 6.344× 10−2 eV)

Table D.2: The same as in Table D.1 but for the case of the 3+1 IO scheme.

that the minima of |〈m〉|take place at

(α, β, γ, η) = (π, π, π, π) if F1 = a− b− c− d− e > 0,

(α, β, γ, η) = (0, 0, 0, π) if (d < e) ∧ (c < e− d) ∧ (b < −c− d+ e)∧
∧ (F8 = a+ b+ c+ d− e < 0),

(α, β, γ, η) = (0, 0, π, 0) if (d > e) ∧ (c < d− e) ∧ (b < −c+ d− e)∧
∧ (F3 = a+ b+ c− d+ e < 0),

(α, β, γ, η) = (0, π, 0, 0) if (c > d+ e) ∧ (b < c− d− e)∧
∧ (G3 = a+ b− c+ d+ e < 0),

(α, β, γ, η) = (π, 0, 0, 0) if (b > c+ d+ e) ∧ (F6 = a− b+ c+ d+ e < 0) .

(D.3.3)

At the other CP conserving values of the phases, (α, β, γ, η) = (0, 0, 0, 0), (π, π, 0, 0),
(π, 0, π, 0), (π, 0, 0, π), (0, π, π, 0), (0, π, 0, π), (0, 0, π, π), (π, π, π, 0), (π, π, 0, π), (π, 0, π, π)
and (0, π, π, π), |〈m〉|cannot reach a minimum. In Fig. D.1 we show the dependence of
the functions F1, F8, F3, G3 and F6 on mmin ≡ m3 for the best fit values of the neutrinos
oscillation parameters given in Tables 1 and 3.
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Figure D.1: The functions F3 (dotted green line), F8 (long-dashed brown line), G3 (short-
long-dashed purple line), F6 (dot-dashed black line), F1 (solid red line), d−e (short-dashed
blue line), defined in eq. (5.5.6), versus mmin ≡ m3 for the oscillation parameter values
reported in Table 5.2. The vertical black line corresponds to mmin = m3 ' 1.25×10−1 eV.
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