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Abstract

Doctor of Philosophy

Probing the spacetime fabric:
from fundamental discreteness to quantum geometries

by Marco LETIZIA

This thesis is devoted to the study of quantum aspects of spacetime.
Specifically, it targets two frameworks: theories that predict, or have a built
in, fundamental spacetime discreteness and effective models where the de-
parture from a classical spacetime emerges at intermediate scales.

The first part of this work considers the effects of the coexistence of
Lorentz invariance, spacetime discreteness and nonlocality in Causal Set
Theory, from the point of view of entanglement entropy. We show that,
in a causal set, the entanglement entropy follows a spacetime volume law
and we investigate how to recover the area law. Furthermore, we discuss
how our results are a direct consequence of the intrinsic nonlocality of the
theory.

Whether Lorentz invariance is preserved in Loop Quantum Gravity is,
on the other hand, still a subject of debate. We address this theme by de-
riving the equations of motion of a scalar field coupled to the quantum
geometry. We show what is the outcome of the different way fundamental
discreteness is achieved in this theory.

On the other end of the spectrum, models in which modifications to
the classical description of spacetime can be considered in the continuum
regime at a mesoscopic scale are examined. In particular, we analyze a
certain class of models in which quantum gravitational degrees of freedom
are integrated out and the effective dynamics for matter is given in terms
of a momentum-dependent spacetime metric. We show that some of these
cases can be embedded in a consistent geometrical framework provided by
Finsler geometry.

Finally we review and compare our main results and discuss future per-
spectives.
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Chapter 1

Introduction

1.1 Quantum gravity phenomenology

Our current description of physical phenomena is based on two fundamen-
tal blocks: Quantum Field Theory (QFT) and General Relativity (GR). These
theories have seen an extraordinary experimental success in their respective
range of applicability. The former has revolutionized our understanding of
matter and forces at the microscopic level. The latter is by far the most
successful theory providing a classical description of gravity, and its inter-
action with matter, at sufficiently large scales. On the other hand, a full
characterization of gravity at the quantum level is still missing.

One could actually be satisfied with this picture. Indeed, there is no
unambiguous proof that gravity should be described as a quantum interac-
tion at some energy (or length) scale. Still, there are a number of arguments
suggesting that we should at least change our understanding of gravity at a
microscopic level. Some of them come from the QFT side such as, for exam-
ple, the presence of unpleasant ultraviolet divergences (typically removed
through a renormalization procedure) and the singular behavior of correla-
tion functions in the coincidence limit. Others coming from the gravity side,
like the presence of singularities in spacetimes which are solutions of Ein-
stein’s equations (see the Penrose-–Hawking singularity theorems [71, 73]).
Some other arguments are more conceptual and aesthetic, like the “quest”
for a unified framework for gravitational and quantum physics.

However, we do know that the typical scale at which QG effects are
predicted to be relevant is given by the Planck scale `P ≈ 10−35 m (EP ≈
1019 GeV). This expectation emerges from various arguments dealing with
situations in which one cannot ignore either quantum or gravitational ef-
fects. For example, if one combines the speed of light c, the Newton con-
stant G and the reduced Planck constant ~ one gets the following length
and mass scales

`P =

√
G~
c3
, mP =

√
c~
G
. (1.1)

These are the natural scales emerging when relativistic, gravitational and
quantum effects are non-negligible1. Another, more operational, possibil-
ity is to study the way localization of a particle is achieved in QFT and in
GR. Starting from some very simple arguments [45], though heuristics, it is
possible to obtain the well established relation δ x & c~/E, where c is the
speed of light and ~ is the reduced Planck constant, which tells us that in
order to localize a point particle of mass m in its rest frame the procedure

1There are other set of scales that one can consider, e.g. the Planck energyEP =
√

~c5/G
and the Planck time tP =

√
~G/c5
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should involve an exchange of energy between the probe (a point massless
or ultra-relativistic particle) and the target greater than 1/m. According to
Special Relativity this is sufficient to create extra copies of the particle of
which we want to measure the position. In order to have a meaningful pro-
cedure we get to the limit δ xrest & ~/(mc). This fact seems to suggest that
is not possible at all to define a sharp position in QFT.

We can however recover the infinitely sharp position measurement in
the (ideal) limit m→∞where the pair production becomes ineffective. Let
us turn to analyze the problem of localization in QFT when gravitational
effects are not negligible. In this case the infinite mass limit is not an option,
even ideally. In the framework of GR we know that when a certain amount
of energy E is confined in a region δ x ≤ RSchw ∝ GE/c4, where G is the
Newton constant, there is a black hole formation. Therefore if we try to
localize a particle with a precision better than δ x = RSchw one ends up with
a black hole. Putting all the relationships together one gets

E2 =
c5~
G
⇒ δ x ∝

√
G~
c3

= `P . (1.2)

Since the Schwarzschild radius increases with the particle mass while the
Compton wavelength decreases with it, one cannot do any better than the
Planck length.

Due to the nature of the above arguments the phenomenology asso-
ciated with QG models has been relegated to the realm of theoretical (or
philosophical) speculation for a long time. As a matter of fact, research
on the QG problem started almost right after the introduction of GR and
the Quantum theory (1930s, see [126]), while a substantial effort in the di-
rection of an associated phenomenology programme did not start until the
second half of the 1990s. Nowadays, there are several theories, or models,
approaching the QG problem, e.g. Loop Quantum Gravity (LQG) [125],
String Theory (ST) [122], Causal Set Theory (CST) [49], Causal Dynami-
cal Triangulation (CDT) [11], Group Field Theory (GFT) [115], Asymptoti-
cally safe quantum gravity [117], Hořava—Lifshitz (HL) gravity [76] just to
name a few. Each of these approaches is at a different stage of development
and, for the most part, they are unable to provide a direct prediction that
could be testable experimentally or observationally and that could be used
to disprove any of these proposals. However they gave rise to a number
of effective (or toy) models, incorporating one or more features of the full
theories. These models have played in the past twenty years a major role in
the phenomenological investigations of QG effects [12, 77]. Some instances
of typical QG effects that can be incorporated into effective models include:

• Lorentz violation and modified dispersion relations

• Spacetime discreteness

• Nonlocality

• Deformations of relativistic symmetries

• Non-standard quantization techniques

• Generalized uncertainty principles
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• Higher derivative models

• Extra dimensions

Some possibilities have been extensively explored, e.g. Lorentz violat-
ing effects in matter [95], while others, such as nonlocal effects, represent
largely uncharted territories.

In the rest of this chapter, we will dedicate some space to some (ex-
pected) QG features which are of phenomenological interest and we will
introduce the reader to some theories incorporating these elements. It is
also worth pointing out that, to different degrees, all that we are going to
discuss is intimately related to the faith of Lorentz symmetry at the funda-
mental quantum level. For instance, spacetime discreteness (to be discussed
in the next section) has dramatically different consequences in a model that
preserve Lorentz invariance (LI) (and/or the relativity principle) with re-
spect to a framework that does not.

Typically symmetries simplify our lives by restricting the possible al-
lowed processes in a given theory. If we break a symmetry, what usu-
ally happens (depending on the way a given symmetry is broken) is that
a given phenomenon that was not permitted becomes permitted, e.g. if we
break Lorentz symmetry in the matter sector we have vacuum Cherenkov
radiation and photon decay. Most of the time this is good news for QG
phenomenology as it allows us to say something about a given theory if a
certain process is not observed (even better if it is observed).

If we instead change a bit our “low-energy” theories in such a way that
symmetries are untouched (or deformed), then the new effects are more
subtle and the phenomenological investigation is more challenging. That
is why in QG phenomenology is not enough to just “crank up” the energy
in ground based experiments but one has to resort to multiple lines of ex-
perimental/observational investigations such as high energy accelerators
[46], cosmological and astrophysical tests [80, 139] and, more recently, low-
energy, macroscopic quantum systems [42].

Also, we should stress that the Planck scale does not need to be the only
scale associated with QG effects. For instance, in HL gravity, the mass scales
related to Lorentz violating effects are typically (and sometimes required
to be) different and below the Planck scale. A similar situation emerges
in nonlocal theories. The nonlocality scale does not need to coincide with
the Planck scale. This poses an opportunity for QG phenomenology as its
effects could potentially be observed at much lower energies than expected.

1.1.1 Space(time?) discreteness in quantum gravity

A rather straightforward step in the direction of trying to solve the problem
of singularities in gravity and QFT is to assign some degree of discreteness
to the background spacetime structure. This is indeed a crucial feature of
many QG proposals and there are ways to argue that this would be a nat-
ural outcome when trying to merge gravity with the quantum paradigm
(see, for example, the the issue of localization discussed in Sec.1.1 and [10,
67, 78] for a discussion about the existence of a minimal length in QG). On
the other hand there is not a unique way of introducing a minimal scale in a
quantum theory of gravity. In particular we will be interested in two cases:
theories in which discreteness is a built in feature and theories in which
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one starts with a continuum structure and discreteness emerges as a “side
effect” of the quantization.

CST falls into the first category. In CST, spacetime is given by a dis-
crete set of points with some partial ordering relation (a causal set). We can
find an example of the second kind of discreteness in LQG. In general, it
is not known how to connect states in the Hilbert space of LQG to contin-
uum classical geometries, making their interpretation rather difficult. On
the other hand, one finds that the spectra of geometrical operators such as
length, area and volume operators, are discrete (much like the case of the
angular momentum operator in Quantum Mechanics). This is an indication
that Planck scale geometry in LQG is discontinuous rather than smooth, al-
though one does not start with a discrete structure. Note that, another key
difference between the discrete structure of CST and the one of LQG lies
in the fact that the first one is covariant in nature, meaning that it is a dis-
cretization of space AND time together. Any point in a causal set represents
a “spacetime event”. On the other hand, in LQG, the geometrical operators
whose spectra are quantized, are operators referring to purely spatial con-
cepts. The issue of whether, in LQG, spatial discretization implies a discrete
temporal evolution is still an open question.

In this kind of approaches, discreteness is considered as a fundamental
feature of nature. In other theories, such as CDT, discreteness is a compu-
tational tool (a regulator) and at the end one is interested in the continuum
limit.

Aside on entanglement entropy

Another consequence of the fact that classical backgrounds in GR are given
by continuum manifolds is the singular behavior of entanglement entropy
in QFT. It is known that to get a finite results one has to impose a cutoff in
momenta (or, equivalently, a minimum length). By doing so, one gets an
entanglement entropy (in D spacetime dimensions) which is proportional
to a hypersurface of codimension two [52]. Now, if the two subregions are
the exterior and the interior of a black hole, and the minimum length is
taken to be the Planck length `P , the magnitude of the resulting entangle-
ment entropy is the same of the Bekenstein–Hawking entropy. Whether all
of the Bekenstein–Hawking entropy can be interpreted as entanglement en-
tropy of quantum fields living on the black hole spacetime is debatable, but
certainly it represents a contribution to the total balance. A natural cutoff in-
troduced by the fundamental spacetime discreteness should instead ensure
the finiteness of the entanglement entropy. Moreover, it is worth noticing
that the short distance regularity of correlation functions (achieved, for in-
stance, by modifying the equations of motion with higher derivative terms),
is not guaranteed to allow for a finite entanglement entropy [111].

1.1.2 Classical limit vs continuum limit

Now that we have argued that fundamental discreteness may be an im-
portant feature of QG, it is natural to wonder whether the continuum limit
must coincide with the classical limit. We already know that, in some sense,
performing both limits one should get something that looks like GR, at least
approximately. Having said that, what happens if one considers the two
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limits separately? Is that even a possibility? The answer to this question
heavily relies on the QG proposal at hand, but one can try to draw some
conclusions on general grounds. Suppose that the discretization scale is

proportional to the Planck length, `discr ∝
√

G~
c3

. The classical limit would
be given by the ~ → 0 limit. This limit also implies `discr → 0. Therefore,
it would seem that the classical limit implies the continuum limit and that
spacetime discreteness is essentially a quantum feature. This is indeed a
logical possibility. On the other hand we know that already in Quantum
Mechanics, the classical limit is still partially an open question as the limit
~→ 0 is not enough to have a well defined classical limit. In order to know
what is the correct procedure one would have to know more about the the-
ory (and its dynamics). Let us now consider the continuum limit first.

If such a limit is possible and it does not imply a classical limit as well,
one would expect to recover something like GR plus quantum corrections
(something like higher curvature models [138, 140]). Also, one can explore
the possibility that although the fundamental theory is still discrete, its dy-
namics at “low energies” can be well approximated by a continuum de-
scription (see for example [23, 30] and [3, 8]). Strictly speaking, the latter
case is not a continuum limit but, from the phenomenological point of view,
it is one of the most relevant cases.

As an illustrative example, let us consider a theory in which spacetime
is fundamentally described by some quantum degrees of freedom, say sim-
plices or spin network vertices in GFT. In that context, the “continuum ap-
proximation” is a regime in which, using some collective effective variables,
the behavior of a large number of fundamental constituents is considered.
In the “classical approximation” one, instead, neglects the quantum nature
of those degrees of freedom. In this case, the two limits are not coincident
nor they commute in general (see [114] for more details). There are also
other possibilities that are both classical and continuum but non-trivial at
the same time. One example is the so-called relative locality limit in which
one neglects both ~ and G while keeping their ratio fixed EP =

√
~c5/G.

In this limit, quantum and gravitational effects are switched off, but there
may be new phenomena at scales comparable with EP . Notice that, in this
approximation, `P → 0.

As a result of these arguments, it is reasonable to not assume that the
classical and continuum limits are chained one to the other or commute,
and one should explore all the phenomenology associated with the fact the
they might be independent limits. In particular, in Chapter 5, we will show
an example of continuum but non-classical limit using a toy model devel-
oped in [30] which is based on general assumptions about the underlying
QG theory.
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1.2 Causal Set Theory

CST is an approach to quantum gravity where spacetime discreteness and
causal order represent the fundamental building blocks. It was introduced
the late 80s [49] and it is based on results which show the fundamental
nature of causal order in Lorentzian geometry.

Given a spacetime, i.e., a couple (M, g) composed of a differentiable
manifoldM and a metric g, the causal order is defined by the set of space-
time pointsM— now seen as merely a set of events, without its standard
manifold-like topological character — and a partial order relation (in spa-
tiotemporal terms, given two points x, y ∈ M, x ≺ y means that x is in
the causal past of y). It is known that, starting from (M,≺), it is possible
to recover all the mathematical structures of spacetime geometry [72, 104,
116, 132]: its topology, differential structure and its metric up to a conformal
factor.

This missing piece of information requires to define a measure on space-
time in order to recover the volume information and fix the conformal fac-
tor. This is one of the main motivations for the assumption of discreteness
which is at the basis of CST. In fact, there is a natural notion of volume
in a discrete framework which is counting elements [132]. Therefore, in a
discrete structure, one might be able to gather all the information needed
to reconstruct the full geometry. As already discussed, there are also var-
ious physical reasons to assume the small-scale structure of spacetime to
be discrete and they come from quantum mechanical arguments. In this
setup, the natural discretization scale emerging from these arguments —
the Planck scale — is such that `P → 0 if ~→ 0, i.e., spacetime discreteness
is inherently quantum [132] (see the discussion in Section 1.1.2).

Causal Set theory combines discreteness and causal order to produce a
discrete structure on which a quantum theory of spacetime can be formu-
lated. A causal set as a locally finite partial order. More precisely, it is a pair
(C,�) given by a set C, and a partial order relation � that is

• Reflexive: ∀x ∈ C, x � x,

• Antisymmetric: ∀x, y ∈ C, x � y � x⇒ x = y,

• Transitive: ∀x, y, z ∈ C, x � y � z ⇒ x � z,

• Locally finite: ∀x, y ∈ C, card{z ∈ C : x � z � y} <∞.

The first three axioms are valid for any spacetime without closed timelike
curves, while the locally finiteness axiom implies discreteness.

The basic hypothesis of the causal set programme is that, at small scales
spacetime is discrete and the continuum description is recovered only as a
macroscopic approximation. Thus, in CST, spacetime discreteness is funda-
mental and the continuum is an emergent concept.

1.2.1 Kinematics

Specifying a dynamics is not an easy task in CST. On the other hand a large
number of results has been produced in the past years which are based on
its kinematical properties. How do we generate causal sets without spec-
ifying a dynamics? For phenomenological purposes we will be interested
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in causal sets which are well approximated by a given spacetime (for ex-
ample Minkowski spacetime or de Sitter). For this reason, one needs to
chose a procedure that respect the Volume-Number correspondence, i.e., the
possibility of recovering volume information by counting elements, which
is at the basis of the CST programme. It is important to note that, a naïve
regular discretization is never compatible with this correspondence, as it
can be shown by boosting a regular lattice [141]. In order to implement
the volume-number correspondence a discretization given by some kind of
random lattice is needed.

A causal set C can be generated from a Lorentzian spacetime (M, g)
via the sprinkling process. This consists of a random Poisson process of
selecting points in M, with density ρ, so to respect the volume-number
correspondence on average, i.e., the expected number of points in a space-
time region of volume V is 〈N〉V = ρV . The sampled points are then
endowed with the casual order of (M, g) restricted to the points, see Fig-
ure 1.1. A causal set C is said to be well-approximated by a spacetime (M, g)
—M≈ C — if it can arise with high probability by sprinkling intoM.

FIGURE 1.1: Sprinkling of 500 points in a 2D diamond of Minkowski spacetime.
Blue line in the right panel represent links, i.e., the irreducible relations not implied

by the others via transitivity.

The sprinkling process is not a process that dynamically generates causal
sets, i.e., at this point we have not introduced any law for the dynam-
ics. It is a kinematical tool. Nonetheless, this process allows one to de-
scribe, for instance, the dynamics of fields propagating on causal sets which
are well-approximated by spacetimes of interest. In particular, for the rest
of this work we will be mainly concerned with causal sets that are well-
approximated by D-dimensional Minkowski spacetimes.

1.2.2 Discreteness, Lorentz invariance and nonlocality

A distinctive feature of CST is the preservation of LI at a fundamental level.
But what does LI mean in a discrete framework? LI is refereed to the con-
tinuum approximation to the discrete structure rather than to the causal set
itself. Whenever a continuum is a good approximation, discreteness must
not, in and of itself, serve to distinguish a local Lorentz frame at any point
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[61, 74]. The fate of LI has been study extensively, and in rigurous math-
ematical terms, in [48]. The conclusion is a theorem demonstrating that,
not only the sprinkling process is LI, but every single realization does not
define a preferred frame. The proof of the first part is based on the fact
that causal information is Lorentz invariant and so is the Poisson distribu-
tion since probabilities depend only on the covariantly defined spacetime
volume. The proof of the second part works by showing that there does
not exist, in Minkowski spacetime, a measurable equivariant map, i.e. that
commutes with Lorentz transformations, which can associate a preferred
direction to sprinklings, and it is based on the non-compact nature of the
Lorentz group. In spacetime other than Minkowski, the existence of lo-
cal LI can be claimed on similar grounds. Also, LI has been shown to be
preserved in models of QFT in causal set theory, in the continuum limit.
Having said that, it is worth noticing that, even if one is not interested in
CST, the sprinkling process provides a way to study QFT in a LI discrete
background.

The outcome of preserving LI in a discrete framework is nonlocality. As
an illustrative example, let us consider a causal set which is well approxi-
mated by Minkowski spacetime. Given a point x, we want to consider all
its nearest neighbors. They will be approximately given by those points
located along the hyperboloid lying one Planck unit of proper time away
from the point x (see Figure 1.2). There is an infinite number of those
points! Another way to look at this feature is to consider two points (x, y)
which are causally related by an irreducible relation (a link). In a refer-
ence frame they might appear to be very close to one another. By perform-
ing a boost transformation they can actually be at an arbitrary coordinate
distance, still remaining nearest neighbors. This is a radical nonlocal ef-
fect that is inherent to the causal set. This nonlocality also appears quite

FIGURE 1.2: Considering the causal past of a given point, its nearest neighbours,
i.e., the points connected with it by links, lie roughly on the hyperboloid at one

Planck unit of proper time away from that point.

clearly when considering the definition of a nonlocal wave operator on the
causal set. Once an average over several sprinklings of Minowski space-
time is performed, the continuum representation of this operator is given
by a nonlocal d’Alembert operator �nl, whose deviation from the standard
d’Alembertian is parametrized by a characteristic nonlocality scale `nl. For
`nl → 0 one has �nl → �. Typically the condition `nl � `P is required
to tame the fluctuations when the averaging procedure is performed, mak-
ing this scale an importance source of phenomenological investigation. We
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will see in Chapter 2 how the fundamental discreteness and the nonlocality
affect the behavior of the entanglement entropy of a quantum field in CST.

1.2.3 Dynamics

Although we will not be interested in this aspect, it is worth briefly review-
ing what are the current lines of investigation in the direction of having a
dynamics in CST.

Since causal sets do not admit a natural space and time splitting, it is
clear that a Hamiltonian framework is not viable for describing causal set
dynamics. On the other hand, a path-integral formulation should be in
principle more promising. The (discrete) partition function is of the follow-
ing form

Z =
∑
C
eiSBDG , (1.3)

where SBDG is known as the Benincasa–Dowker–Glaser action and it rep-
resents an action for causal sets which correspond to the Einstein–Hilbert
action in the continuum (see [43, 44, 50, 60, 69]). Another possibility is given
by the so-called Rideout–Sorkin classical sequential growth models. In this
approach, starting from the empty set, a causal set is grown element by
element in a Markovian way [123].
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1.3 Loop Quantum Gravity

Loop Quantum Gravity is a theory formulated to quantize gravity at the
non-perturbative level in a fully background independent fashion. The
development of the theory has been pursued in mainly two directions:
the canonical and the covariant approach. The first one is based on the
Arnowitt–Deser–Misner (ADM) decomposition and a pair of nonstandard
canonical variables defined on a fixed time hypersurface [146]. The latter is
a path integral approach (the spin foam programme [118]).

Research in LQG is, for the most part, carried out using standard QFT
techniques with minimal additional structure. In particular, in the canonical
formalism, the starting point is the Hamiltonian of GR written in Ashtekar
variables and the quantization techniques are inspired by methods used in
lattice gauge theories.

The most relevant results obtained in the context of LQG include: the
discreteness of the spectra of geometrical operators (such as the area oper-
ator) [25, 26, 127, 131]; the computation of black hole entropy [19, 20, 124];
the avoidance of the cosmological initial singularity in LQC (see [2, 3, 21,
28, 32] for reviews on the subject).

In this thesis we are interested in gaining some insights on the fate of
Lorentz symmetry in LQG. We do this in a very pragmatic way, i.e. by
studying the behavior of scalar fields in a quantum background described
by LQG. In particular, we will quantize the scalar field using a quantization
procedure, inspired by techniques used in the gravitational sector, known
as polymer quantization, which has been shown to be background indepen-
dent [27, 59, 86, 87], in the spirit of the LQG programme. We will also im-
pose some conditions on the background geometry, inspired by the prop-
erties of homogeneity and isotropy of Minkowski spacetime, and we will
derive an effective equation of motion.

In what follows we will introduce the reader to some basic elements
of canonical LQG, the computation of the spectrum of the area operator
and a simplified version of the theory based on symmetry reduction at the
quantum level [5, 7], that will be used in Chapter 3 as a framework for our
computations.

1.3.1 Basics of canonical Loop Quantum Gravity

The canonical approach to LQG is based on the ADM formalism and on
an appropriate choice of phase space variables. In what follows we will
briefly review its construction without dwelling on technicalities. We will
also not discuss dynamics and we will limit ourselves to the introduction
of the kinematical Hilbert space which is enough to discuss spectra of ge-
metrical operators. We refer the reader to [24, 125, 146] for more details.

ADM formalism and Ashtekar variables

First of all, we foliate the four dimensional manifold M into spacelike hy-
persurface Σt. This means that we are considering globally hyperbolic
spacetimes. The induced splitting of the metric tensor reads as

gµν =

(
−N2 +NaN

a Na

Na qab

)
. (1.4)
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The physically relevant information to determine the classical solutions
is contained into the pairs of conjugate variables given by the spatial three-
metric qab and the extrinsic curvature Kab = 1

2Ln hab, where Latin indices
from the beginning of the alphabet denote spatial indices, n is the unit nor-
mal to Σt, and L is the Lie derivative.

From Kab, we can construct

P ab =

√
q

2

(
Kab − qabK

)
, (1.5)

which contains the same information of Kab. The non-vanishing Poisson
brackets are

{qab(x), P cd(y)} = 2κδc(aδ
d
b)δ

(3)(x− y), (1.6)

where κ = 8πG/c3.
The Hamiltonian in the ADM formalism is given as

H = H[N ] +Ha[Na], (1.7)

with

H[N ] =

∫
Σt

d3xN

[
κ
√
q

(
P abPab −

1

2
P 2

)
−
√
q

2κ

(3)

R

]
, (1.8)

Ha[Na] = −2

∫
Σt

d3xNa∇bP ba. (1.9)

H and Ha are known as the Hamiltonian constraint and spatial diffeomor-
phism constraint. Consistency of the dynamics forces both of them to van-
ish, we write

H ≈ 0, Ha ≈ 0, (1.10)

where ≈ means weak equality, i.e. an equality that can be used only after
Poisson brackets have been computed. This means that the Hamiltonian H
is weakly zero, however Poisson brackets involving it are generically non-
zero.
H and Ha should be regarded as generators of gauge symmetries. In

particular, only those phase space functions whose Poisson brackets are
vanishing with both H and Ha are physically relevant, being independent
of the choice of coordinates.
Ha[Na] generates infinitesimal spatial diffeomorphisms along the vec-

tor field ~N while H encodes the dynamics of the theory. If the Einstein
equations are satisfied, then H generates diffeomorphisms orthogonal to
Σt. The lapse function and shift vector appear in the as Lagrange multipli-
ers in the Hamiltonian. They correspond to a choice of gauge and determine
the relative positions of neighbouring Cauchy surfaces.

We now introduce an additional local SU(2) gauge symmetry by choos-
ing our phase space to be described by the new variables Eai and Ki

a, which
are related to the ADM variables by the following relations

q qab = EaiEbi ,
√
q K b

a = KaiE
bi, (1.11)

where i = 1, 2, 3 are internal indeces. We can look at Eai as a densitised
tetrad

√
qeai , with qab = eai e

bi, and write the extrinsic curvature as Kab =
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Ki
aeib, using the co-tetrad eib. Internal indices i, j are trivially raised and

lowered by the Kronecker δij . The non-vanishing Poisson brackets are now
written as

{Ki
a(x), Ebj (x)} = κδ(3)(x, y)δbaδ

i
j . (1.12)

Since we now have new degrees of freedom, we need to introduce an
additional constraint known as the Gauss law

Gij [Λ
ij ] =

∫
Σt

d3xΛijKa[iE
a
j] ≈ 0, (1.13)

and it generates internal SU(2) transformations under which observables
have to be invariant.

Given this new symmetry, it is natural to introduce the spin connection
Γia, defined as

∇aeib = ∂ae
i
b − Γcabe

i
c + εijkΓjae

k
b = 0. (1.14)

We can then define new variables as

Aia = Γia + βKi
a, Ẽai = β−1Eai , (1.15)

where β is known as the Barbero–Immirzi parameter and it represents an
ambiguity in the construction of the connection variables. It can be shown
that Aia indeed transforms as a connection. We can then compute the new
Poisson brackets. They are given by

{Aia(x), Ẽbj (x)} = κδ(3)(x, y)δbaδ
i
j . (1.16)

The ADM constraints become (up to a term proportional to Gij)

H[N ] =

∫
Σt

d3xN

(
β2 Ẽ

aiẼbj

2
√
q
εijkF kab −

1 + β2

√
q

Ki
[aK

j
b]Ẽ

aiẼbj

)
,

Ha[Na] =

∫
Σt

d3xẼaiL ~NAai,
(1.17)

where F iab = 2∂[aA
i
b] + εijkAjaAkb is the curvature of the connection.

Holonomies and fluxes

In order to construct gauge invariant quantities we choose, as subset of
phase space function to quantize, holonomies, i.e. parallel transports of our
connection along curves, and fluxes, i.e. smearings of the conjugate variable
Eai over surfaces.

Holonomies hjc(A) along a curve c : [0, 1] → Σt in a certain represen-
tation j of SU(2) can be defined as the solution to the following equation

d

dt
hjc(A, t) = hjc(A, t)A(c(t)), (1.18)

evaluated at t = 1, where A(c(t)) = Aia(c(t))ċ
a(t)τ

(j)
i and τ

(i)
i are the three

generators of SU(2) in the representation j. The solution can be written as

hc(A) = P exp

(∫
c
A

)
, (1.19)



Chapter 1. Introduction 13

where P denotes a path-ordered integral.
Fluxes are constructed by integrating Eai (we omit the tilde from now

on), contracted with a smearing function ni, over a surface S as

En(S) :=

∫
S
Eai n

idSa =

∫
S
Eai n

iεabcdx
b ∧ dxc. (1.20)

To construct the quantum theory we need the Poisson brackets. For the
sake of simplicity, we choose our surface S such that it intersects the curve
c once in the point c(s) and from below w.r.t. the orientation of S. In this
case, we obtain

{hjc(A), En(S)} = κhjc1(A)
(
τ

(j)
i ni

)
hjc2(A), (1.21)

where c1 = c|t∈[0,s] and c2 = c|t∈[s,1].

Kinematics

The quantum kinematics can be constructed by promoting the above intro-
duced variables to quantum operators obeying appropriate commutation
relations.

The essential feature of LQG is to promote to operators the holonomies
hjc rather than the connectionsAia themselves. The Poisson algebra of holonomies
and fluxes is well defined and the resulting Hilbert space is unique. More
precisely, requiring the three-diffeomorphism invariance (there must be a
unitary action of such diffeomorphism group on the representation by mov-
ing edges and surfaces in space), there is a unique representation of the
holonomy-flux algebra that defines the kinematic Hilbert space Hkin. This
result is known as the LOST theorem [93]. The kinematical Hilbert space is
also known as the spin networks Hilbert space.

A spin network state can be expressed as

|s〉 = |Γ, jc, in〉, (1.22)

and it contains three pieces of information: the graph Γ ⊂ Σt, which is given
by a finite number of edges c and nodes n; a collection of spin quantum
numbers jc, one for each edge; the intertwiners in at the nodes n.

The wave functional on the spin network is given by

ΨΓ,ψ = ψ
(
h
jc1
c1 (A), ..., hjcncn (A

)
, (1.23)

where the wave function ψ is SU(2) invariant and satisfies the Gauss con-
straint. Specifically, this is realized by considering functions that joint the
collection of holonomies (in the arbitrary spin representation) into an SU(2)
invariant complex number by contracting all the gauge indices with the in-
tertwiners, the latter being invariant tensors localized at each node. The
states (1.22) are called cylindrical functions. The space of these functions is
called Cyl.
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We now promote our choice of classical phase space variables to quan-
tum operators. Their action on the state (1.22) is given by

ĥjcΨΓ,ψ(A) = hjcΨΓ,ψ(A), (1.24)

Ên(S)ΨΓ,ψ(A) = i{En(S),ΨΓ,ψ(A)}, (1.25)

where the last expression is realized by considering (1.21).
A key result in LQG is the construction of the kinematic scalar product

between two cylindrical functions. Indeed, the discreteness of area and
volume operators spectra, mainly based on the compactness of the SU(2)
group, can be obtained from it. The kinematic scalar product is defined as

〈ΨΓ|ΨΓ′〉 =

{
0 if Γ 6= Γ′,∫ ∏

c∈Γ dh
j
cψ
†
Γ(hj1c1 , ...)ψΓ′(h

j1
c1 , ...) if Γ = Γ′,

(1.26)

where the integrals
∫
dhjc are performed with the SU(2) Haar measure. The

inner product vanishes if the graphs Γ and Γ′ do not coincide and it is in-
variant under spatial diffeomorphisms, even if the individual states are not.
This happens because the coincidence between two graphs is a diffeomor-
phism invariant notion. Therefore, there is no information about the posi-
tion of the graph in (1.26).

Area operator

In this part we will briefly show how to construct the area operator in LQG.
The volume operator is obtained with a similar construction and it will not
be discussed here.

First of all we need to write the area A(S) of a surface S in terms of our
basic variables. Classically, we have

A(S) =

∫
U
d2u

√
det(X∗q)(u), (1.27)

where X : U → S is an embedding of the coordinate chart U into S, and
X∗q is the induced metric on S. We can partition U into disjoint subsets
U = ∪iUi, so that

A(S) =
∑
i

∫
Ui

d2u
√

det(X∗q)(u). (1.28)

In the limit of small Ui one has∫
Ui

d2u
√

det(X∗q)(u) =

∫
X(Ui)

√
qqabdsadsb ≈ β

√
Ek(Ui)Ek(Ui), (1.29)

where Ek(Ui) =
∫
Ui
EakdUa. Therefore

A(S) = lim
Ui→0

β
∑
i

√
Ek(Ui)Ek(Ui). (1.30)

We can now promote A(S) to an operator in the Hilbert space by using the
action of the flux operator on a state.
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For simplicity, we consider a Wilson loop as our state, Ψ = Tr(hjc(A)), in
the case where the curve c intersect the surface S only once. We obtain

Êk(Ui)Êk(Ui)|Ψ〉 = (i)2|Tr(hjc1(τ
(j)
k τ (j)k)hjc2) = κ2j(j + 1)|Ψ〉. (1.31)

Since the operator above acts diagonally, we can use the spectral theorem
to deal with the square root, hence obtaining

Â(S)|Ψ〉 = βκ
√
j(j + 1)|Ψ〉. (1.32)

This result can be easily generalized to more complex structures [146]. No-
tice that the spectrum depends on the Barbero–Immirzi parameter β.

1.3.2 A symmetry-reduced model

Quantum Reduced Loop Gravity (QRLG) is a framework for the quantiza-
tion of symmetry-reduced sectors of GR. In particular, it was initially ap-
plied to cosmological models (an inhomogeneous extension of Bianchi I)
[4, 6] and then it was realized that it corresponds to a gauge fixing in which
the components of the triads are diagonal at the level of the quantum theory
[7].

More specifically, QRLG implements the restriction to the diagonal spa-
tial metric tensor and triads along some fiducial directions, along which
one can define coordinates x, y, z. The spatial line element reads

dl2 = a2
1dx

2 + a2
2dy

2 + a2
3dz

2, (1.33)

where ai = ai(t, x, y, z).
The graph now contains only three kinds of links, each of them being

the set of links li along a fiducial direction.
Inverse densitized triads are taken to be diagonal (indeces are not summed)

Eia = piδia, |pi| = a1a2a3

ai
, (1.34)

and this implies a SU(2) gauge fixing condition in the internal space. It
is realized by projection of SU(2) group elements, which live in the links
li, onto the U(1) representations obtained by stabilizing the SU(2) group
along the internal direction ~Ul = ~ui, with ~ui unit vectors along the three
directions. Connections are generically given by

Aia = ciu
i
a + ..., ci =

β

N
ȧi, (1.35)

dots indicate non-diagonal terms that can be disregarded in certain situa-
tions [4, 6]. With these choices, Γ becomes a cuboidal graph.

The kinematical Hilbert space now reads

RHkin = ⊕
Γ

RHΓ, (1.36)

where RHΓ is the reduced Hilbert space for a fixed reduced graph.
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Spin network sates in LQG can be written as

ΨΓ,jl,in = 〈h|{Γ, jl, in} =
∏
n∈Γ

in ·
∏
l

Djl(hl), (1.37)

where jl are labels for irreducible representations of SU(2) on each link,
Djl(hl) are Wigner matrices in the representation j and in are intertwiners.
The dot denotes contractions of the SU(2) indeces and the products extend
over all the links and nodes of Γ.

The basis of states in the reduced model is obtained by projecting the
Wigner matrices on the state of the maximum or minimum magnetic num-
ber ml = ±jl, for the angular momentum component Jl = ~J · ~ul along the
link l:

lDjl
mlml(hl) = 〈ml, ~ul|Djl(hl)|ml, ~ul〉, hl ∈ SU(2). (1.38)

Then the reduced states are called reduced spin networks and are given by

RΨΓ,ml,in(h) =
∏
n∈Γ

〈jl, in|ml, ~ul〉 ·
l∏
l

Djl
mlml, ml = ±jl, (1.39)

where 〈jl, in|ml, ~ul〉 are reduced intertwiners.
Finally, the reduction of canonical variables to Rhli and RE(s) is ob-

tained by smearing along links of the reduced graph Γ and across surfaces
S perpendicular to these links, respectively.

The scalar constraint operator neglecting the scalar curvature term is
given by that of LQG considering only the Euclidean part and replacing
LQG operators with the reduced ones.
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1.4 Geometry and Lorentz symmetry

Metric theories of gravity are based on the metric postulate [153]. It es-
sentially says that spacetime is locally Minkowskian, or, equivalently, that
spacetime is a pseudo-Riemannian manifold, whose geodesics represent
the possible trajectories of test particles. One could see special relativity
and local LI as consequences of this fact. This is of course an assumption,
and one may be tempted to relax this requirement. In particular, it is con-
ceivable that close to the Planck scale Minkowski spacetime might not be
a trustworthy description of the spacetime fabric. This consideration leads
us to wonder if LI is a fundamental symmetry of nature. While in CST,
this is essentially the case, in other approaches LI can be considered as a
symmetry emerging below some energy scale.

From the phenomenological point of view, violations of LI are encoded
into the dispersion relation2, which is given by

E2 = m2 + p2 +
∞∑
n=1

an(µ,M)pn, (1.40)

where p =
√
|~p|2, an are dimensional coefficients, µ is some particle physics

mass scale and M is the mass scale characterizing the physics responsible
for the departure from standard LI (usually, but not necessarily, identified
with the Planck mass). When an = 0, ∀n, then the dispersion relation is the
Casimir of the Poincaré algebra and LI is recovered.

Following our line of reasoning, explicit Lorentz invariance violations
(LIVs) are known to be incompatible with pseudo-Riemannian geometry
(see also [88]). One way to deal with this issue is to add vector or ten-
sor fields to the gravitational Lagrangian that spontaneously break Lorentz
symmetries. An example of effective theory based on this prescription is
known as Einstein-æther theory [81] and the action of the theory includes
the Einstein–Hilbert term plus the most general Lagrangian for a unit, time-
like vector field (representing the æther) with all of the covariant contribu-
tions having at most two derivatives. Another example is provided by the
work of Kostelecky and Samuel [89]. In this thesis we will be interested in
yet another possibility, that is abandoning the realm of pseudo-Riemannian
geometry.

Before moving to the main points of this section, some considerations
are in order. First of all, contrary to the group of rotations, which is com-
pact, SO(3, 1) is a non-compact group. Among other things, this means
that although we have tested LI for small values of the boost parameters
we cannot extend our conclusions for arbitrarily large boosts. In particular
Lorentz contraction causes the transformation of large spatial distances in a
reference frame into ultra short spatial distances in another reference frame.

Of course this classical picture does not take into consideration the fact
that the nature of spacetime as such scales may be completely different. In-
stead, according to pseudo-Riemnnian geometry, flat spacetime is a better
and better approximation as we consider smaller patches3. Consequently,

2This is strictly speaking true in the case of rotationally invariant free field modifications.
The study of generic LI violating effects require an effective field theory approach.

3This also implies that (classically) at those scales gravity becomes unimportant, while
on the other hand QG arguments suggest that spacetime will be highly fluctuating.
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this distinction between short and long scales is not compatible with the
linearity of Lorentz transformations in Special Relativity, that does not al-
low for a privileged length scale discriminating between those two regimes.
Whatever structure is going to replace pseudo-Riemannian geometry at the
fundamental level, will have to deal with this issue.

On the other hand, deformations of the relativistic transformations are
possible so to integrate a second invariant energy (or length) scale [13], leav-
ing the number of generators untouched. Under these symmetry groups,
dispersion relationns of the kind (1.40) (with some an 6= 0) can poten-
tially be invariant. Therefore, in an attempt to provide a spacetime descrip-
tion of this kind of symmetries, it would be interesting to understand if
these can be related to some new local structure of spacetime, possibly de-
scribed by some maximally symmetric background generalizing a pseudo-
Riemannian structure and Minkowski spacetime.

It has been shown in a series of papers [15, 68] that Finsler geometry
[33, 144] allows to reconstruct a spacetime structure starting from modified
dispersion relations (MDRs) of the kind in eq.(1.40)4. Finsler structures are
the most studied generalizations of Riemannian geometry and are defined
starting from norms on the tangent bundle instead than from inner prod-
ucts. When a Finsler manifold is reconstructed from a MDR (we will review
the precise prescription in Chapter 4), the physical picture will be that test
particles with different energies will “experience different geometries” in
the sense that the metric and, in general, also the affine structure of space-
time, will become velocity-dependent (or, equivalently, momentum-dependent).
That is, we can describe the motion of test particles with MDRs using an
effective metric of the following kind

gFµν(x, p(ẋ)) = gµν(x) + hµν(x, p(ẋ)), (1.41)

giving rise to deformed equations of motion

ẍµ + Γµρσ(x, p(ẋ))ẋρẋσ = 0, (1.42)

where Γµρσ(x, p(ẋ)) are the Christoffel symbols associated with the Finsler
metric gFµν(x, p(ẋ)). Indeed, Finsler geometry can be seen as a consistent
mathematical framework to characterize what are known as rainbow geome-
tries [92, 101].

Let us stress that such models of Finslerian spacetimes do not have to be
considered as definitive proposals for the description of quantum gravita-
tional phenomena at a fundamental level. We take here the point of view for
which, between the full quantum gravity regime and the classical one, there
is an intermediate phase where a continuous spacetime can be described in
a semi-classical fashion. In particular, if the underlying QG theory predicts
that spacetime is in some way discrete, then we assume that a meaningful
continuum limit can be performed and that this limit is not equivalent to
a classical limit (see Section 1.1.2). The outcome of this hypothetical pro-
cedure would be a spacetime that can be described as continuum but still
retaining some quantum features of the fundamental theory (causing the

4A similar situation appears in analogue models. In fact there it can be shown that de-
partures from exact LI at low energies can be naturally described using Finsler geometries
[36, 152].
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deviation from a pseudo-Riemannian structure). Then the departure from
the purely classical theory will be weighed by a non-classicality parameter
(potentially involving the scale of Lorentz breaking/deformation) and in
the limit in which this parameter goes to zero, the completely classical de-
scription of spacetime is recovered (see e.g. [30, 149] for a concrete example
of such a construction).

1.4.1 Doubly Special Relativity

The most severe constraints have been so far obtained considering the MDR
as a by-product of an effective field theory with Planck suppressed Lorentz
violating operators [95]. However there is an alternative approach that tries
to reconcile the relativity principle with the presence of a fundamental high-
energy scale. This proposal goes under the name of Doubly or Deformed
Special Relativity (DSR) [13].

The essence of this idea is to change (or deform) the transformations
between inertial observers in such a way that there are two invariant quan-
tities, the speed of light c and a fundamental energy scale EP (or mass scale
mP ). This resonates very well with was we discussed in the previous sec-
tion. If the fundamental scale emerging from QG is promoted to be an ob-
server independent quantity, it would soften the tension in the distinction
between high energy and low energy regimes in a relativistic framework.
Indeed, in DSR models, relativistic transformations becomes nonlinear, po-
tentially overcoming this issue.

There are a least two ways of realizing DSR models. One way is to intro-
duce nonlinear representations of the standard Poincaré Lie group. This is
a case where the new observer independent scale of DSR characterizes rep-
resentations of a still classical/undeformed Poincaré Lie group. Another
way is to adopt the formalism of Hopf algebras. In essence, the difference
between the two approaches is that, in the first case one substitutes the
standard Poincaré generators with new generators, adapted to the nonlin-
ear representation. In the second case, not only the commutators, but also
the coproduct rules are changed and the action of symmetry transforma-
tions on products of functions is not deducible from the action on a single
function using the Leibniz rule.

Hopf algebras were proposed a few decades ago to describe symmetries
of noncommutative spacetimes [102]. In the QG context, a particular case
of Hopf algebras has attracted some attention in the past years, the case of
κ-Poincaré [99, 100, 103]. Gravity in 2 + 1 dimensions can be quantized as a
topological field theory and can be coupled to point particles, represented
by topological defects. In [66] it was shown that, after integrating away the
gravitational degrees of freedom, particles are described by representations
of the κ-Poincaré group (where κ is an energy scale). At this stage, this
results cannot be extended to 3 + 1 dimensions, but the κ-Poincaré group
can be easily extended to higher dimensions.

In this thesis we will be interested in studying the κ-Poincaré group in
the relative locality limit, briefly introduced in Section 1.1.2, in which one
neglects both ~ and G while keeping their ration fixed EP =

√
~c5/G. In

this case, one can effectively ignore any noncommutativity in the coordi-
nates (driven by ~) while keeping the deformed relativistic properties. In
this framework, the non-standard symmetries of spacetime, can be related
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to a non-trivial curvature in momentum space. In particular, κ-Poincaré is
associated with a de Sitter momentum space [70]. We will be interested in
the 1 + 1 dimensional case and we will discuss the dynamics of free parti-
cles, therefore the structure of the coproducts will not play any role. In 1+1
dimension, the κ-Poincaré algebra is then given by the following commu-
tators among generators

[P,E] = 0, [N,P ] =
κ

2

(
1− e−2E/κ

)
− 1

2κ
P 2, [N,E] = P. (1.43)

We give here the coproducts for the sake of completeness

∆E = E ⊗ I + I⊗ E, ∆P = P ⊗ I + e−E/κ ⊗ P, (1.44)

∆N = N ⊗ I + e−E/κ ⊗N,

and the antipods and counits

S(E) = −E, S(P ) = −e−E/κP, S(N) = −e−E/κN (1.45)
ε(E) = ε(P ) = ε(N) = 0.

Finally, the Casimir is given by

Cκ =

(
2κ sinh

E

2κ

)2

− eE/κP 2. (1.46)

All these relationships are written in the so-called bycrossproduct basis. In
can be shown that a change of basis in the generators amounts to a diffeo-
morphism in momentum space [70]. For κ→∞, one recovers the Poincaré
algebra.

While there is a rather clear understanding of DSR models in momen-
tum space, the picture in spacetime is less clear and it represents a subject
of debate. On the other hand, such a picture would allow these models to
be more competitive in comparison to LIV scenarios. Here is where Finsler
comes to the rescue as a framework that could accommodate this kind of
physics, as we anticipated in the previous Section. In particular in [15], a
Finsler spacetime realizing the symmetries of κ-Poincaré in 1 + 1 dimen-
sions was found and it was shown to reproduce the results of the usual
computations in momentum space.

Among all the possible Finsler structures, a particular case is given by
Berwald spaces. These are the Finsler spaces that are the closest to be Riem-
manian (we will provide a more precise definition in Chapter 4). If a Finsler
space is of the Berwald type then any observer in free fall looking at neigh-
bouring test particles would observe them move uniformly over straight
lines accordingly to the Weak Equivalence Principle [107]. Interestingly
enough the Finsler metric correspondent to κ-Poincaré symmetries found
in [15] appears to be a member of this class. However, we shall see that this
come about in a somewhat trivial way as a straightforward consequence of
the flatness of the metric in coordinate space. With this in mind, it would be
interesting to consider examples of curved metrics associated to more gen-
eral deformed algebras so to check if for these the local structure of space-
time does not reduce to the Minkowski spacetime but rather to the Finsler
geometry with κ-Poincaré symmetries and furthermore for checking if also
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these geometries are of the Berwald type. This will be the main subject of
Chapter 4.

Aside on the Einstein and Weak Equivalence Principles

With a momentum-dependent metric tensor, one generically expects viola-
tions of the Equivalence Principles. Metric theories of gravity, identified by
the metric postulate, can also be characterized as those theories satisfying
the Einstein Equivalence Principle (EEP)[153]. The latter can be expressed
as follows

Einstein Equivalence Principle. The Einstein Equivalence Principle states that:

• The Weak Equivalence Principle is valid.

• The outcome of any local non-gravitational experiment is independent of the
velocity of the freely-falling reference frame in which it is performed (local
Lorentz invariance).

• The outcome of any local non-gravitational experiment is independent of
where and when in the universe it is performed (local position invariance).

The content of the WEP can be stated as follows

Weak Equivalence Principle. Any observer in free fall looking at neighbouring
test particles would observe them moving uniformly over straight lines, indepen-
dently of their composition.

It appears that any theory of gravity that is, in some sense, based on DSR
would violate the EEP (by construction the theory would not be LI). On the
other hand, the EEP could be deformed by asking that local LI is substituted
with local DSR invariance. Regarding the WEP, the notion of “moving uni-
formly” is related to acceleration and hence to the affine structure of space-
time. Therefore, given a momentum-dependent metric tensor, the study of
the geodesic equations and the spray coefficients will determine whether a
reference frame, physically realizing the WEP, can be constructed. We will
see in Chapter 4 that, in the context of Finsler geometry, this amounts to ver-
ify whether the Finsler structure is of the Berwald type. This kind of inves-
tigation, carefully considering its limitations, could potentially shed some
light on the possibility of constructing a metric theory of gravity based on
DSR symmetries.
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Chapter 2

Spacetime entanglement
entropy in Causal Set Theory

2.1 Introduction

The concept of entanglement entropy plays a crucial role in several areas
of modern quantum physics, from the study of condensed matter systems
to black holes. It is essentially a measure of the correlation between sub-
parts of a quantum system. It is traditionally defined as S = Trρ log ρ−1,
where ρ is the reduced density matrix of the subsystem. Consider a bi-
partite system, whose parts are labeled by A and B, that is described by a
density matrix ρAB ∈ Lin(HA ⊗HB). The entropy of subsystem A is given
by SA = −TrρA log ρA, where ρA ≡ TrBρAB is the reduced density matrix of
system A and is obtained by tracing over the degrees of freedom of system
B. Some of the properties of S are:

• S(ρ) ≥ 0

• S(ρ) = 0 ⇔ ρ is pure

• S(ρ) = S(UρU †) with U a unitary transformation

• concavity: S(
∑

i λiρi) ≥
∑

i λiS(ρi) with λi > 0 :
∑

i λi = 1

• SAB = SA + SB if ρAB = ρA ⊗ ρB

• strong subadditivity: SABC + SB ≤ SAB + SBC

• dimHA = d ⇒ SA ≤ log(d) and SA = log(d) ⇒ ρA = d−1
1

When the two systems are uncorrelated, ρAB = ρA⊗ ρB , knowing the parts
allows one to reconstruct the entire system. On the contrary, if the systems
are maximally entangled knowing the parts gives no information on the
whole.

In the context of QFT, entanglement entropy is also known as geometric
entropy [53]. The system in this case is partitioned geometrically, starting
from a state ρΣ defined on a fixed time hypersurface Σ and then tracing
out the degrees of freedom living “outside” a given subregion R. As we
mentioned in the Introduction, this entropy is typically a divergent quantity
due to the vacuum fluctuations with infinitely high frequencies near the
boundary of R.

This notion is now widely believed to be of great importance in the con-
text of QG research for several reasons. For instance: its divergences are
thought to be strongly connected with the local structure of spacetime (see
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Sec.1.1.1); it is a relevant concept whenever a spacetime possesses an event
horizon (black holes, Rindler observers and others); gravity and its dynam-
ics can emerge from quantum entanglement (see Jacobson’s derivation [82,
83] and Van Raamsdonk’s work [150]). Because it’s formulated as a purely
spatial notion, the traditional ways of thinking about entanglement entropy
might not be suitable for QG investigations.

Motivated by these considerations, a global definition of entropy that
can be applied to any globally hyperbolic region of spacetime and is par-
ticularly useful in the context of CST, was recently proposed by R. Sorkin
[134]. We will refer to this quantity as spacetime entanglement entropy
(SEE).

This gives on one hand a theory (CST) that provides us with a way of
introducing a fundamental cutoff in a Lorentz invariant fashion and, on
the other, a covariant definition of entanglement entropy. Equipped with
these tools, we will investigate in this chapter the behavior of the SEE in a
causal set that is well approximated by a causal diamond in two, three and
four dimensions for two families of scalar Green functions. In particular,
we focus on trying to motivate how the familiar area law in the continuum
emerges from the fundamental discrete structure.1

The chapter is organized as follow: in Section 2.2 we briefly review the
novel notion of entanglement entropy introduced in [134]; in Section 2.3,
we introduce the reader to the basics of QFT in a causal set, the Sorkin–
Johnston vacuum and the kind of scalar Green functions that we will use
in our study; in Section 2.4, we introduce and present the main results of
our work and, finally, in Section 2.5, we conclude with a discussion of our
results and an outlook for further developments.

2.2 Spacetime entropy

In [134] a covariant definition for the entropy of a Gaussian field expressed
entirely in terms of spacetime correlation functions was introduced. Con-
sider the ground state |0〉 of a free real scalar field φ whose Wightman (W)
function is given by the following expression

W (x, y) = 〈0|φ(x)φ(y)|0〉, (2.1)

which, by Wick’s theorem, determines all the other n-point correlation func-
tions. The imaginary part of W is the Pauli-Jordan (PJ) function

i∆(x, y) = [φ(x), φ(y)], (2.2)

which can be alternatively written in terms of the retarded (Gret) and ad-
vanced (Gadv = GTret) Green functions as

∆(x, y) = Gret(x, y)−Gadv(x, y). (2.3)

Given a spacetime region R the SEE is defined as

S(R) =
∑

λ ln |λ|, (2.4)

1An analogous investigation was carried out in [137] for two spacetime dimensions.
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where λ are the solutions of the generalized eigenvalue problem{
WR v = iλ∆R v

v /∈ Ker[∆R],
(2.5)

and the subscript R indicates the restriction of the correlation function to
pairs of points (x, y) ∈ R. For any vector in the kernel of i∆, the associated
λ is not defined, hence we just exclude them (it can be shown that they
would not contribute to the entropy anyway, see [134]).

It can be proven that [134] the SEE of a globally hyperbolic region of
spacetime coincides with the standard entanglement entropy of any Cauchy
surface Σ of such region, i.e.

S(D(Σ)) = Sent(Σ), (2.6)

where D(Σ) is the causal domain of development of Σ and Sent(Σ) is the
standard entanglement entropy of surface Σ.

2.3 Scalar fields in causal set theory and the Sorkin–
Johnston vacuum

Being a covariant definition of entropy that does not require the notion of
a state on a spatial hypersurface, the notion of entropy given in Section
2.2 can be successfully applied to quantum fields living on causal sets. As
mentioned the Section 1.2, we will be dealing with causal sets (generated
by a sprinkling process) that are well approximated by a flat continuum
(Minkowski) spacetime.

It can be shown that, in general, a causal set does not admit the notion of
a Cauchy hypersurface. This represents an obstacle when trying to imple-
ment traditional quantization techniques. For this reason in [1, 84, 136] (see
also [135] for a recent pedagogical introduction) a different starting point
was assumed to define a free scalar field theory: rather than starting from
the equations of motion and the canonical commutation relations (CCR),
one can start with the (retarded) Green function GR only. Given Gret one
can write the the PJ function as in (2.3) and use it to rewrite the CCR in an
explicitly covariant way(see Eq.(2.2)). The PJ function gives the imaginary
part of the W function

∆ = 2 i=(W )⇒W =
i∆

2
+R. (2.7)

Is it possible unambiguously choose the vacuum if there are no equa-
tions of motion available? The answer is yes. In particular one can choose
the W function to be of the positive part of i∆, i.e.

WSJ :=
i∆ +

√
−∆2

2
= Pos(i∆). (2.8)

Since for a Gaussian scalar field the two-point function fully determines
the theory, this prescription allows us to formulate a consistent scalar field
theory with the retarded Green function as the only input. In particular,
eq.(2.8) specifically selects a vacuum state known as the Sorkin–Johnston
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(SJ) vacuum. It can be shown that definition (2.8) is equivalent to requiring
the following three conditions for W :

• Positivity W ≥ 0

• Commutator ∆ = 2=(W )

• Othogonal support W W ∗ = 0

The first two are common to the two-point function of any state, while
the third specifically selects the SJ vacuum [135]. This prescription yields
distinguished ground states for a quantum scalar field in any globally hy-
perbolic region of spacetime or causal set, without making explicit reference
to any notion of positive frequency.

Now that we have established that one can define a quantum scalar
field on a causal set starting from Green functions alone, we will see what
the possible choices of retarded Green functions are.

2.3.1 Discretizing continuum Green functions

The first possibility is to directly discretize the continuum Green functions
on a causal set. This has been done in [85] and the strategy is to replace
the continuum retarded Green functions with discrete analogs written in
terms of objects that are well-defined on a causal set. The expressions for
the retarded Green function in two, three and four spacetime dimensions
are given by

G
(2)
ret (x, y) =

1

2
Cxy (2.9)

G
(3)
ret (x, y) =

1

2π

(πρ
12

)1/3 (
(C + I)2

)−1/3

xy
(2.10)

G
(4)
ret (x, y) =

√
ρ

2π
√

6
Lxy, (2.11)

for x ≺ y and zero otherwise. The matrix Cxy is known as the causal matrix
and given any two elements a, b ∈ C, Ca,b = 1 if a causally precedes b and
zero otherwise, for all a, b ∈ C. Ca,b can be used as a full specification of
the causal set itself. The matrix Lxy is the link matrix and given any two
elements a, b ∈ C, La,b = 1 if there are no elements c ∈ C s.t. a ≺ c ≺ b and
zero otherwise, for all a, b ∈ C. Finally, ρ = N/V is the density of sprinkled
spacetime points.

Note that the discrete Green functions given above are defined only in
terms of causal properties of the causal set.

2.3.2 Nonlocal wave operators on causal sets

The second possibility is to invert a wave operator properly constructed
on the causal set itself. It was shown in [133] that discrete wave operators
can be defined on the causal set in terms of nearest neighbors2. Such opera-
tors, once averaged over sprinklings of Minkowski spacetime, give rise to
nonlocal operators which reduce to the standard d’Alembertian operator in

2The notion of nearness is given by the cardinality of the set of points between the causal
past and the causal future of a couple of elements x 4 y, i.e. |z ∈ C : x 4 z 4 y|.
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the continuum limit. We report here the general expression for the discrete
operators in any spacetime dimension D (see [69] for further details)

(B(D)
ρ φ)(x) = ρ2/D

aφ(x) +

Lmax∑
n=0

bn
∑

y∈In(x)

φ(y)

 , (2.12)

where a, bn are dimension dependent coefficients, ρ = `−D, ` is the discrete-
ness scale and In(x) represents the set of past n-th neighbors of x. In the
literature the first sum in eq. (2.12) is referred to as sum over layers, where
each In is a layer.

a b0 b1 b2 b3
D = 2 -2 4 -8 4

D = 3 − 1
Γ[5/3]

(
π

3
√

2

)2/3
1

Γ[5/3]

(
π

3
√

2

)2/3
− 27

8Γ[5/3]

(
π

3
√

2

)2/3
9

4Γ[5/3]

(
π

3
√

2

)2/3

D = 4 −4/
√

6 4/
√

6 −36/
√

6 64/
√

6 −32/
√

6

TABLE 2.1: Table of coefficients in Eq.(2.12) for D = 2, 3, 4. The number of coeffi-
cients for every dimension corresponds to the “minimal” nonlocal operators, i.e.,

the operators constructed with the minimum number of layers.

These operators are derived in such a way to reproduce, in the con-
tinuum limit, the standard d’Alembertian once averaged over sprinklings.
However, whereas this average is well behaved in the local limit the vari-
ance is not. In order to solve this problem, a new length scale, which we
call the nonlocality scale, can be introduced [133]. This scale serves to smear
the action of the previous operators on the whole past of a given point x
and leads to discrete operators given by

(B̃(D)
ρ φ)(x) = (ερ)2/D

aφ(x) +
∞∑
m=0

b̃m
∑

y∈Im(x)

φ(y)

 , (2.13)

where ε = (`/`k)
D with `k the nonlocality scale and

b̃m = ε(1− ε)m
Lmax∑
n=0

(
m

n

)
bnε

n

(1− ε)n
. (2.14)

Finally, by inverting the expressions in (2.13) the retarded nonlocal Green
function can be obtained.

2.4 Spacetime entropy in Causal Set Theory

In this section we report the results of our work, i.e., the computation of
the SEE, introduced in Section 2.2, for a scalar field in a causal set that is
well approximated by Minkowski spacetime. First we will discuss how the
system is organized, including the geometrical setup and the choice of state
for the scalar field. Then we will present the results of the computations for
two, three and four spacetime dimensions. Note that our analysis partially
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overlaps with the one presented in [137], where a similar computation was
carried out in a two dimensional causal set for the massless local Green
function. Also we will not discuss here the fine details of our analysis, as
we will confine ourselves to the main ideas and the most relevant outcomes.
We invite the reader to look at [40] for the full investigation.

2.4.1 The setup

Our geometrical configuration is a fixed causal set C that is well approxi-
mated by a causal diamond in Minkowski spacetime. A causal diamond,
or Alexandrov open set, is defined as the intersection of the future light
cone of a point p with the past light cone of a point q, i.e., I+(p) ∩ I−(q) .
We then consider a smaller causal diamond inside the first one, centered at
the same point and with sides parallels to the ones of the large diamond.
In any number of dimensions, the ratio between the volume V of the outer
diamond and the volume Vd of the inner diamond is fixed to be V/Vd = 4.

The scalar field is prepared in the SJ vacuum of the large diamond. Once
we have theWSJ(x, y) and ∆(x, y) matrices ((x, y) vary over the elements of
C) we numerically solve the generalized eigenvalue problem (2.5) restricted
to the inner diamond. By applying formula (2.4), we compute the SEE of
the scalar field in the inner diamond with respect to the complementary re-
gion. The resulting entropy can be interpreted, in the continuum limit, as
the EE of the horizontal diagonal of the small diamond (green line in Figure
2.1) with respect to its complement given by the segments that extend the
diagonal to the larger diamond (black segments in Figure 2.1). Note that
the diagonal of the big diamond is a Cauchy surface. We consider this con-
figuration in two, three and four spacetime dimensions, for the local and
nonlocal massless Green functions introduced in the previous section.

At this point we want to remind the reader that, in D spacetime dimen-
sions, the area law corresponds to a entropy that grows like that “area” of a
hypersurface of codimension two. We will generically refer to this behavior
as an area law.

FIGURE 2.1: Inner and outer diamonds for a sprinkling in 2D Minkowski, with
N = 2048 and V/Vd = 4.
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2.4.2 Premise on the spectrum of the Pauli–Jordan

In Section 2.2 we mentioned that one has to exclude the vectors in the kernel
of i∆ in the computation of the SEE in order to have a well defined eigen-
value problem. As a preliminary analysis we look at the spectrum of this
operator (we will sometimes refer to it as σi∆) in the continuum and in the
causal set case. The eigevalues of i∆ in the continuum have dimensions of
a length squared L2, while in the causal set they have dimensions L2−D, in
D dimensions. To compare the two spectra, we match their dimensions by
using a factor of ρ.

The two dimensional continuum case was studied in [129] where the
authors found that the eigenvalues of i∆ are of the form αcont = `d/(2k),
where `d is the side of the diamond and k = πn

`d
, with n = ±1,±2, ..., is

the wavenumber of the eigenfunctions [129], and can be rewritten in terms
of the volume of the diamond as αcont =

√
V /(2k). The usual cutoff is

then implement by retaining all the eigenvalues of i∆ up to a minimum
value αcontmin associated with a maximum wavenumber kmax that, in turn,
can be related to a minimum wavelength `min = 2π k−1

max. If we want to
translate this cutoff in the discrete causal set, we can identify `min with the
fundamental discreteness scale ` = ρ−1/D and multiply by a factor of ρ, to
obtain3

αcsmin = ρ

√
V

2kmax
= ρ

√
V

4π
` =

V

4π
√
N
, (2.15)

where we used ρ = N/V .
In Figure 2.2a, we have the log-log plot of the positive part of σi∆ in

the continuum (red dots), in the causal set (blue dots) and the cutoff λcsmin
(black dashed line) for the local Green function in 2D. The spectrum in
the continuum follows a power law behavior as a function of n, while the
spectrum in the causal set matches the one in the continuum approximately
up to the value of the cutoff, after which it changes drastically. On the basis
of this fact, we expect a different behavior for the entropy in the two cases.

At the moment, we do not have the exact spectrum of this operator in
the continuum in higher dimensions for the local and nonlocal Green func-
tions. Nevertheless, we can look at the spectra in the causal set and we can
see the it has the same shape of the two dimensional case (for instance, see
Figures 2.2 for the localand nonlocal models in two dimensions).

2.4.3 Spacetime entropy

Let us consider first the entropy associated with the large diamond (i.e., of
the outer diamond in Fig. 2.1) in any number of dimensions. It is easy to
show explicitely how how the SEE computation gives a zero entropy for
the SJ state which is a pure state. Indeed, the fact that WSJ = Pos(i∆)
implies that the eigenvalues of the problem in Eq. (2.5) are all either zero or
one. Since i∆ is a skew-symmetric and Hermitian matrix, its rank is even
and its non-zero eigenvalues come in positive and negative pairs. Partially
following the notation in [85], we write its normalized eigenvectors and
eigenvalues as follows

i∆ua = αaua, i∆va = −αava, i∆wc = 0, (2.16)
3This result agrees with the one presented in [137].
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FIGURE 2.2: Spectrum of i∆ for the local and nonlocal models in D = 2.

where αa > 0, 2s is the rank of i∆, a = 1, ..., s and c = 1, ..., p − 2s (p is the
number of elements in C).4 The eigenvectors form an orthonormal basis for
Cp and they can be chosen such that

ua = v∗a, wc = w∗c , u
†
aub = v†avb = δab, u

†
avb = w†cua = w†cva = 0. (2.17)

We can therefore decompose the matrix as follows

i∆ =
s∑

a=1

αauau
†
a −

s∑
a=1

αavav
†
a. (2.18)

Since WSJ = Pos(i∆) it can be written as

WSJ =
s∑

a=1

αauau
†
a. (2.19)

Let us consider now the eigenvectors ua with positive eigenvalues. The
generalized eigenvalue problem (2.5), applied to the large diamond, gives

WSJ ua = αua = λαua ⇒ λ = 1. (2.20)

Given the orthogonality relations (2.17), for the va one gets

WSJ va = 0 = λα va ⇒ λ = 0. (2.21)

Therefore S =
∑
λ lnλ = 0.

We now consider the entropy of the small causal diamond obtained by
tracing over the d.o.f. in its complement. To do this we numerically solve
Eq. (2.5) restricted to the points inside the small diamond. We do this for
different values of sprinkling density ρ and, since the fundamental scale is
related to the density as ` = ρ−1/D, we are effectively computing the SEE as
a function of the fundamental discreteness scale.

Before presenting the results, a couple of comments are in order. First,
for a given number of elements N in the causal set, the range of scales that
we investigate in different spacetime dimensions varies. For instance, to

4Note that in Section 2.4.2, the index i referred to the length of each vector while here
a, b, c are labels.
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have ` = 0.01 with a unit fiducial volume V = 1, we need N = 108, 106, 104

forD = 4, 3, 2 respectively. While in two dimensions it is relatively easily to
reach these densities, for higher dimensions this is not the case and this will
be a source of uncertainty in the interpretation of our results. The second
point is that we need to keep in mond that the nonlocal models contain
a new scale `k, the nonlocality scale introduced in Section 2.3.2, therefore
it is natural to expect some departure from the local models as we probe
different values of the cutoff.

For D = 2, 3, 4 and for local and nonlocal Green functions, we find that
the entropy scales linearly with the number of points of the inner diamonds
Nd (see Figures 2.3a).5 Since Nd ∝ ρ, the SEE follows a spacetime volume law.
Contrary to the ordinary case where the entropy is infinite unless a UV
cutoff is introduced, in this case (for any finite value of Nd) the entropy is
finite.

This result was already known to the community and it was presented
in [137] for a local massless Green function in D = 2.

This behavior can be traced back to the part of the spectrum of eigenval-
ues of i∆ which does not follow a power law (see Section 2.4.2 and Figures
2.2a and 2.2b) and smoothly interpolates between the continuum behavior
and zero. This fact can be verified by applying the cutoff of the continuum
to the spectrum in the causal set, so that we only retain those eigenvalues
that follow the continuum behavior.
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FIGURE 2.3: Spacetime volume law.

Since we do not have the exact spectrum for i∆ in dimensions higher
than two and for the nonlocal Green functions, we generalize the cutoff
(2.15) using general arguments. In particular we assume that in the con-
tinuum the eigenvalues are still of the form λcont ∝ V 1/D/k where V 1/D is
the scale that characterize the geometrical setup (the typical scale of the
diamond in D dimensions), and we use the prescription used to derive
Eq. (2.15). We relate the maximum wavenumber with the discretization
scale by kmax = 2π/`, we rewrite ` in term of the causal set density ρ and
finally we multiply by ρ to have an expression that is dimensionally con-
sistent. We introduce a real parameter a ≥ 0 to take into account possible
overall numerical factors coming from the exact spectrum and we write the
cutoff in D dimensions as

αcs,Dmin = a ρ `V
1
D = a ρ1− 1

DV
1
D = a V

2
D
−1N1− 1

D . (2.22)
5The choice of studying the entropy as a function of the number of points in the small

diamonds is customary. One can also consider the total number of pointsN , the two are, on
average, related as Nd = (Vd/V )N .
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The magnitude of the eigenvalues of i∆ grows withN as it can be seen from
Figure 2.4. Eq. (2.22) allows the cutoff to track this growth so that it is at the
same location relative to the spectrum for every N . Changing the value of
a translates the cutoff vertically in the (n, α) plane in Figure 2.2 (for a given
value of N ). Note that a = 0 corresponds to not having a cutoff. We then
look at the behavior of the SEE as a function of this parameter.
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0.001
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α

FIGURE 2.4: σi∆ for the local model in D = 3 in the outer diamond. The red dots
are for N=2048 and the blue dots are for N=3072.

Our procedure is to truncate the spectrum of i∆ and WSJ = Pos(i∆)
in the big diamond, by retaining only the eigenvectors compatible with the
cutoff (2.22). We then restrict both matrices by evaluating them at the points
of C that are in the inner diamond, we call the restricted matrices ∆d and
Wd. At this point, we apply the cutoff again (now as a function of Vd and
Nd) to the spectrum of i∆d, we truncate Wd accordingly and we solve the
generalized eigenvalue problem (2.5).

Local Green functions

As a first check, we reproduced the results of [137] for the local Green func-
tion in two dimensions, see Figure 2.5. The SEE after imposing the cutoff
follows a logarithmic law which corresponds to an area law in two space-
time dimensions (the surface of codimension two is a point). Moreover the
coefficient of the logarithm is approximately 1/3 as in [129, 137] and in the
traditional computation [52], if we exclude data for small values of the den-
sity.

In Figure 2.6 the entropy is plotted for the local model in D = 3 for
various choices of the cutoff. We find that, if we include part of the small
eigenvalues of i∆ that do not follow the power law behavior, the growth
of the entropy is faster than an area law, almost with ρ(∝ Nd). Increasing
the coefficient a in front of the cutoff, the entropy starts growing at a slower
rate, up to the point in which it becomes linear with ρ1/3(∝ `), essentially
following an area law.

Similar considerations apply forD = 4. We find, for a = 1/4, an approx-
imate scaling with ρ1/2 = `−2, as it is shown in Figure 2.7. After imposing
the cutoff, for the typical values of the density that we can explore in D = 4
(roughly in the interval ρ ∈ [103, 105]), we are left with a small number (∼ 5,
for ρ ≈ 104) of eigenvalues of i∆ in the small diamond. This is probably the
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(A) SEE for the local theory with cutoff
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Sfit = 1.90 + 0.332 logαmin.

FIGURE 2.5: Area law for the local theory in D = 2.
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(B) Sfit = −0.385 + 0.053ρ1/3,
N=103-104.

1 5 10 50 100
n

10-5

10-4

0.001

0.010

αd

(C) N=3072 and a = 10−1.
20 25 30 35

ρ1/3

2

4

6

S3 d-loc

(D) Sfit = −2.05 + 0.22ρ1/3 + 0.000021ρ,
N=103-1.4 · 104.
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(F) Sfit = 11.5402 + 0.0045ρ,
N=103-1.4 · 104.

FIGURE 2.6: Local theory in D = 3. Plots of the cutoff on σi∆ and the associated
SEE.

source of the fluctuations of the entropy around the scaling with the area in
Figure 2.7.
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FIGURE 2.7: Local theory in D = 4. Plots of the cutoff on σi∆ and the associated
SEE.

Nonlocal Green functions

For the nonlocal Green functions, we performed an analogous analysis to
that of the local ones, at fixed values of the nonlocality scale `k. A crucial
difference with respect to the local models is that in the numerical simu-
lations we have to take into account the constraint `k > ` = ρ−1/D. This
translates into a lower limit on the sprinkling density ρ > `−Dk .

For the nonlocal model in two dimensions, we fix `k = 0.2 and we find
that the cutoff in the spectrum of i∆ that allows us to recover a logarithmic
behavior for the entropy is close to the one of the local theory. In Figure 2.8
we can see that the magnitude of the entropy is also very close to the local
case.

1 5 10 50 100
n

10-6

10-5

10-4

0.001

0.010

0.100

αd

(A) N=2048 and αmin =
√
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(B) Sfit = 1.968 + 0.332 logαmin.

FIGURE 2.8: Nonlocal theory inD = 2. Plots of the cutoff on σi∆ and the associated
SEE.

In higher dimensions we again compare the location of the cutoff with
the corresponding entropy. For D = 3 the resulting area law is shown in
Figure 2.9 (`k = 0.2). We can see that there is some intermediate phase
(around a = 10−1) in which the entropy follows a linear scaling with the
area only for large Nd, while for small densities the growth is slower. This
effect does not seem to be present in the local models and therefore could
be due to the presence of the nonlocality scale. We will return to this point
at the end of this section. For a = 1/(2π) this effect goes away and we find
an approximate area law S ∝ ρ1/3. Again, by including part of the small
eigenvalues, the entropy appears to grow faster than ρ1/3.
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(B) Sfit = 3.25 + 0.50ρ1/3,
N=2 · 103-8 · 103.
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(D) Sfit = −29.76+0.23ρ1/3 +17.84 log ρ1/3,
N=103-104.
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FIGURE 2.9: Nonlocal theory inD = 3. Plots of the cutoff on σi∆ and the associated
SEE.

Even for the nonlocal theory in four dimensions we find a phase in
which the area law is approximately valid for large densities while the en-
tropy grows slower for small densities, see Figure 2.10. Again, due to the
very small number of residual eigenvalues in the small diamond for larger
values of a and for the range of densities that we can explore, we do not,
yet, have complete data to confirm the presence of a pure area law phase.
Nevertheless, preliminary results suggest that the situation is analogous to
the case inD = 3. In this case the nonlocality scale was fixed to be `k = 0.15.

Dependence on the nonlocality scale

We dedicate this section to briefly comment on the possible dependence
of our entropy results for the non local Green functions on the nonlocality
scale `k, leaving a more detailed investigation for future works.
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(B) Sfit = −87.733 − 0.092ρ1/2 +
32.398 log ρ1/2,
N=103-1.6 · 104.
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FIGURE 2.10: Nonlocal theory in D = 4. Plots of the cutoff on σi∆ and the associ-
ated SEE.

In Figure 2.12 the spectrum of i∆ for D = 2, 3 for various values of
`k is plotted. One can see that the dependence on the nonlocality scale is
barely noticeable in two dimensions while it is more pronounced in three
dimensions. For instance, it could be logarithmic inD = 2 and a power law
in higher dimensions. In both cases higher values of `k seem to suppress the
spectrum. As a consequence of this dependence, the cutoff and hence the
SEE, must depend on the nonlocality scale. Given that the the eigevalues
of i∆ have dimensions of L2 (in the continuum, for both local and nonlocal
Green functions), and the entropy is dimensionless, `k should enter in a
dimensionless combination with another dimensionful scale.

We pointed out at the beginning of this section that the spectrum of
i∆ is very similar in both the local and nonlocal cases. Although this is
qualitatively true, in the nonlocal case it is typically more concave as can
be seen in a direct comparison in three dimensions in Figure 2.11. This
difference, most likely due to the presence of the nonlocality scale, may be
the reason for the non-standard behavior of the entropy at the intermediate
scales described previously. If the area law is due to the part of the spectrum
in the local theory with constant slope, then it is a logical possibility that in
the nonlocal case the variation of the slope would imply a more complex
structure of the entropy for different cutoffs.

We postpone additional considerations on this subject to the summary
of this chapter.
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FIGURE 2.11: Comparison of the spectrum of i∆ between the local and nonlocal
model in D = 3 (N = 2048).
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FIGURE 2.12: Dependence of the spectrum of i∆ on the nonlocality scale.

2.4.4 The cutoff and the kernel of the Pauli–Jordan

As we mentioned in the previous section the spectrum of i∆ on the causal
set, compared to the continuum theory with the cutoff, contains a large
number of non-zero eigenvalues that interpolate between the power law
behavior (common to the continuum) and zero. These values are typically
very small as can be seen from the plots in the previous section. Using the
cutoff in the discrete framework we are effectively putting all these values
inside the kernel of i∆.

It can be shown that vectors w ∈ Ker(i∆) define vanishing linear com-
binations of the field evaluated on the causal set elements, i.e.,

∑
wiφ

i = 0,
where i runs over the elements of C. In the continuum these relations are
just the equations of motion for the scalar field. In the causal set, the num-
ber of these vectors (the dimension of the kernel) is rather small compared
to the number of elements in C where the field takes its values [135]. This
amounts to saying that the equations of motion for the scalar field in the
causal set are a highly underdetermined system, because we have more
variables (φi) than equations dim(ker(i∆)).

For instance, in two dimensions the number of variables φi grows like
N , while it can be shown that dim(ker(i∆)) is of order lnN . By applying
a cutoff to the eigenvalues of i∆ we are effectively enlarging its kernel. In
particular, using (2.15), dim(ker(i∆)) = aN , where a . 1, see Figure 2.13.
We argue that this could be the reason why the entropy has a different scal-
ing with the number of elements once the cutoff is implemented. In the
continuum, the entanglement entropy of the small diamond is due to its
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correlations with regions (1) and (2) in Figure 2.14. In fact, the lateral di-
amond are not in causal contact with the central one. The regions (3) and
(4) do not contribute because the field there is related to the field in (1),
(2) and the central diamond by the equations of motion. In the causal set,
the number of relationships between the values of the fields in the regions
(1),(2) and (3),(4) does not correspond to the number of links. This might
be the source of the larger entropy associated with the inner region when
the cutoff is not implemented.
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FIGURE 2.13: Dimension of the kernel in D = 2.

FIGURE 2.14: Regions which are causally connected and disconnected to the inner
diamond in 2D Minkowski.

Let us now consider another situation: take a causal diamond and di-
vide it in two equal disjoint triangles using its diagonal as in Figure 2.15,
we call this configuration a spacelike partition. In the continuum, given some
initial data on the diameter (which in this case is a Cauchy hypersurface),
one can predict all the values of the field in the upper triangle, by using
the equations of motion. Indeed, if the field is prepared in the SJ vacuum,
one can argue on general grounds that the SEE of the upper triangle with
respect to the lower one is zero because they contain the same information,
given the causal structure of the diamond.

Therefore the expectation would be that, at least after the cutoff on the
spectrum of i∆ has been implemented, the entropy should be vanishing
also in the causal set case.
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FIGURE 2.15: Upper and lower triangles for a sprinkling of a causal diamond in
2D Minkowski, with N = 2048.

As it can be seen from Figure 2.16, the behavior of the entropy is in-
stead similar to the entanglement entropy in the case of the inner diamond
vs its complement. This means that the additional conditions provided by
the enlarged kernel are not enough to take into account all the possible re-
lationships between the field in the upper triangle and in the lower one.
What replaces a spatial hypersurface in a causal set is the notion of maximal
anti-chain. An anti-chain is a setA of elements in C such that, for all x, y ∈ A
neither x ≺ y nor y ≺ x (a set of unrelated elements). An anti-chain is
then said to be maximal when by adding any near elements to it it ceases to
be an anti-chain. Nevertheless, a maximal anti-chain Amax cannot play the
role of a Cauchy hypersurface because there are going to be links between
some points in the future and in the past of A that do not go through ele-
ments of Amax.6 Hence, we conclude that the fundamental discretenss and
nonlocality of a causal set are the source of this entropy.

Before concluding it is worth pointing out a crucial difference between
the spacelike partition and the entanglement entropy. If we do not impose
any cutoff in the computation of the entanglement entropy in the contin-
uum and the SEE in the causal set the two cannot be meaningfully com-
pared. This is because while the latter is finite, the former is divergent. On
the other hand, in the case just discussed, a comparison between the con-
tinuum and the causal set is possible even without a cutoff, because the
entropy is finite in both cases.

2.5 Summary and outlook

In this chapter we studied the behavior of the entanglement entropy of a
scalar field on a causal set using the covariant approach introduced in [134].

6We remind the reader that a link is given by a pair of elements x, y, such that @ z : x ≺
z ≺ y.
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FIGURE 2.16: SEE of a spacelike partition for the nonlocal theory in D = 3.

We found that the entanglement entropy follows a spacetime volume
law in two, three and four spacetime dimensions for both the local and
nonlocal Green functions. By generalizing the two dimensional case, we
defined a cutoff on the spectrum of i∆ that has the right scaling with the
density of the causal set, thus allowing us to recover an area law in all cases
considered. In particular, by studying the behavior of the entropy while
varying the cutoff in such a way to consistently include or exclude parts of
the spectrum of i∆ (this is done by changing the parameter a, introduced
in Eq. (2.22)), we conclude that the small eigenvalues that do not follow
the (expected) behavior of the spectrum in the continuum are responsible
for the scaling with the spacetime volume. As a consequence, by retaining
only the part of the spectrum that follows a power law with constant slope
we find an area law.

We also made a connection between the equations of motion of the
scalar field, defined by the vectors in the kernel of i∆, with the scaling
of the entropy with ρ. While this interpretation seems to be a reasonable
explanation of this effect, it fails when tested against the case that we call
spacelike partition of the causal set (see Figure 2.16). This is a case in which
in the continuum, using the fact that the field is in a pure state and that the
diagonal of the diamond is a Cauchy hypersurface, one can show that the
spacetime entropy for the upper and lower triangles should be vanishing.
Without imposing any cutoff in the causal set case this entropy scales again
with the spacetime volume. Therefore, the natural expectation might have
been that the entropy should have been zero also in the causal set after the
truncation of the spectrum of i∆. Instead the resulting entropy follows the
same scaling with the area that we found in the case of the entanglement
entropy of a small diamond vs its complement. This led us to conclude that
although the cutoff tames the growth of the entropy as a function of the fun-
damental cutoff, it is not enough to compensate for the intrinsic nonlocality
of the causal set.

If one were to interpret this entropy as an entanglement entropy, the fact
the the entropy of the upper triangle equals the entropy of the lower one
implies that the SJ vacuum is a pure state. On the other hand, since they are
not vanishing, the sum of the two entropies do not equal the entropy of the
full diamond, the latter being zero. This means that the two subsystems are
correlated and indeed the two regions are causally connected. Given that
the diameter of the diamond is not a Cauchy hypersurface in the causal set
case (the best that one can do is to introduce a maximal anti-chain, which is



Chapter 2. Spacetime entanglement entropy in Causal Set Theory 40

the analogue of a spacelike surface, see Sec. 2.4.4), some of this correlation
will not be “recorded” at the boundary of the two regions (the diameter)
leading to a non zero entropy even with an enlarged kernel of i∆.

We then raise the following question: is this kind of entropy also con-
tributing to the entanglement entropy of the small diamond vs its comple-
ment? The quick answer is yes, after all it is easy to convince ourselves
that these kind of causal correlations should also be present in this case. On
the other hand, from the computation of the SEE in two dimensions for the
local Green function with the cutoff, the resulting entropy matches almost
exactly the traditional computation in the continuum, with a small depar-
ture for small densities (see Figure 2.5). Hence, one would be tempted to
say that these causal correlations should affect the SEE only for small values
of the density, far from the continuum limit. However, the entropy of the
spacelike partition (that should be dominated by these kind of correlations)
appears to be a monotonically growing function of the density and this fact
seems to disfavor this interpretation. If one accepts the fact that causal cor-
relations are an important part in the total budget of the SEE, then one can
ask the further question: how is it possible that the computation in the con-
tinuum matches the one in the causal set?

We do not yet have a clear argument to explain these results. It is possi-
ble that there is a simple way to interpret the outcomes of our computations
and we just missed it or, it could be a signal that something in the way QFT
is constructed in CST or in the definition of SEE, have to be modified. Be-
fore concluding this part of the discussion we would like to point out one
particular aspect of this investigation: the strictly exact result for the entan-
glement entropy in the continuum with the traditional computation based
on the knowledge of the state on a spatial Cauchy hypersurface is a di-
vergent. So one can gain very little information by comparing it with the
SEE in the causal set unless a cutoff is introduced. Per contra, the spacelike
partition, and possibly other configurations, allows us to directly compare
results in the causal set with results in the continuum without the need of
a cutoff, since both are finite, and they seem to provide important tools for
understanding various aspects of CST.

A distinctive feature of the nonlocal models is that the spectrum of i∆
seems to be more concave than in the local models (for a given value of the
density), and this effect appears to be more pronounced as we increase the
number of spacetime dimensions. Hence, the behavior of the SEE is richer
as we select which eigenvalues to include in our analysis. In particular, we
found that for some values the parameter a the SEE follows an area law
only for large densities (see Figures 2.9d and 2.10b). This suggests that,
at least for these models, the complete SEE may be composed of various
phases, dictated by the shape of the spectrum of i∆. It is possible that the
choice of a that corresponds to the continuum result is not the one that gives
a pure area law scaling. Indeed, there are some computations (see [110]
and the Appendix A) showing that the entanglement entropy of a theory
with modified wave operators (Lorentz violating and Lorentz invariant),
characterized by the presence of a new UV scale, do follow an area law at
high energies but the fundamental area is not given by the square of the
cutoff but by a combination of the cutoff and the new UV scale, e.g. it could
be a geometric mean of the two. This is a possibility in our theory since
the Green functions that we consider in this work give rise to this kind of
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modified wave operators in the continuum.
Of course, having the exact computation for the SEE and of the tradi-

tional entanglement entropy in the continuum for the Green functions that
we considered would also allow one to identify precisely what the cutoff
needed for a comparison with the continuum is.
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Chapter 3

Polymer scalar fields in Loop
Quantum Gravity

3.1 Introduction

In the Introduction to this thesis, we briefly discussed how different ap-
proaches to QG realize the paradigm of the fundamental discreteness of
spacetime in different ways, focusing in particular on the difference be-
tween CST and LQG. In the first case, fundamental discreteness is a built in
feature and it is imposed in a explicitly covariant fashion, i.e. by discretiz-
ing spacetime as a whole. In LQG instead, fundamental discreteness is a
byproduct of the quantization, i.e., operators associated with geometrical
properties of space have discrete spectra.

We dedicated Chapter 2 to the study of the effect of the covariant (and
Lorentz invariant) discrete structure of CST on the entanglement entropy
of scalar fields. In this chapter, we will introduce the first steps of our in-
vestigation in the direction of formulating a dynamics for a scalar field in
LQG. We will see that there are two major factors causing a departure from
the standard description: the discreteness of space provided by the graph
Γ, defined by the node of a spin network state of the quantum geometry,
where the field takes values and a non standard quantization, known as
polymer quantization, which is suitable for a background independent quan-
tization of matter fields (a real free scalar field in our case). The final goal is
to understand how these ingredients affect the dynamics of the scalar field
with particular attention to the fate of Lorentz symmetry.

The computation that we are going to present here is not complete and
there is a certain number of assumptions made to simplify the problem that
we will highlight along the way. Nevertheless, we will be able to draw
some general conclusions on the basis of our results.

In the first part we will review polymer quantization and the relevant
techniques used to regularize and quantize the matter contribution to the
scalar constraint. In the second part we will define an effective Hamilto-
nian, based on the assumption that there is no backreaction on the geom-
etry, and use it the derive the equations of motion for the scalar field. In
the final part we will discuss our results and comment on possible future
developments.

3.2 Polymer quantization of a scalar field

In this section, we will review the basics of polymer quantization applied
to a real scalar field, loosely following [47].
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The action for a minimally couple scalar field reads

S(φ) =
1

2λ

∫
M
dDx
√
−g (gµν∂µφ∂νφ− V (φ)) , (3.1)

where λ is coupling constant of dimensions ~−1, and g is the determinant
of the spacetime metric. Note that with this convention the scalar field has
dimensions L1−D/2.

The Legendre transform gives the following Hamiltonian in the ADM
formalism:

H(φ) =

∫
Σ
dD−1x

[
Naπ∂aφ+N

(
λ

2
√
q
π2 +

√
q

2λ
qab∂aφ∂bφ

+

√
q

2λ
V (φ)

)]
=

∫
Σt

dD−1x
(
NaV(φ)

a +NH(φ)
sc

)
,

(3.2)

where Σ is a constant time spatial slice. N and Na are the lapse function
and the shift vector respectively, while V(φ)

a and H
(φ)
sc are the contributions

of the scalar field to the vector and scalar constraints. q is the determinant
of the spatial metric and π is the conjugate momentum to the scalar field
which in our convention has dimension of L−D/2.

The total vector constraint is the sum of V(φ)
a with the gravitational part

and it generates (spatial) diffeomorphisms. H(φ)
sc is the matter field part of

the smeared scalar constraint and it contains the dynamics of the field in
the diffeo-invariant phase space. It can be written as:

H(φ)
sc [N ] := H

(φ)
kin[N ] +H

(φ)
der[N ] +H

(φ)
pot [N ], (3.3)

where

H
(φ)
kin[N ] :=

∫
Σt

dD−1xN

(
λ

2
√
q
π2

)
, (3.4)

H
(φ)
der[N ] :=

∫
Σt

dD−1xN

(√
q

2λ
qab∂aφ∂bφ

)
, (3.5)

H
(φ)
pot [N ] :=

∫
Σt

dD−1xN

(√
q

2λ
V (φ)

)
. (3.6)

We quantize the system of gravity and matter by using the techniques
described in [145, 147] for LQG adapted to QRLG. The total Hilbert space
is given by1

H(tot)
kin =R H(gr)

kin ⊗H
(φ)
kin, (3.7)

the latter being the following Hilbert space:

H(φ)
kin := {a1 Uπ1 + ...an Uπn : ai ∈ C, n ∈ N}. (3.8)

To define this Hilbert space, the polymer variable 〈φ|Uπ〉 = Uπ(φ) repre-
senting the scalar field φ is assigned to every function π : Σ → R of finite
support {v1, ..., vn} and it can be considered as an element of the Hilbert

1R refers to the symmetry-reduced model, see Section 1.3.2.
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space above, whose states are defined as

Uπ(φ) = ei
∑
v∈Σ πvφv := 〈φ|π〉, (3.9)

where v ∈ Σ labels a countable set of points {v1, ..., vn} in the manifold Σ,
and φv = {φ(v1), ..., φ(vn)} is the value of the field at those points. The
normalization is provided given two states Uπ(φ) and Uπ′(φ) with support
on the same set of points by the following scalar product

〈π|π′〉 = δπ,π′ . (3.10)

Therefore the two states are orthogonal unless they are defined on the same
set of points and the have the same values for the functions π and π′ at those
points.

The basic variables act as follows

Ûπ|π′〉 = |π + π′〉, (3.11)

Π̂(V )|π〉 = ~
∑
v∈V

πv|π〉, (3.12)

with Π(V ) being the scalar field momentum smeared over a volume V ∈ Σ.
It can be written as

Π̂(V ) =

∫
V
dDx π̂(x). (3.13)

Note that Π(V ) has dimensions of LD−1 and it is a density of weight zero,
given that π transforms as a measure.

In the case of a single point x, one denotes the states as

〈φ|x;π〉 = eiπxφx , (3.14)

for which the scalar product reads

〈x;π|y;π′〉 = δx,yδπ,π′ . (3.15)

The action of the basic operators is analogous to Eq.s (3.11). The smeared
momentum operator around a point x as

Π(x) :=

∫
dD−1y χε(x, y)π(y), (3.16)

where we introduced the characteristic function χε(x, y) of the box Bε(x)
centered in x with coordinate volume εD−1. Precisely,

V(Bε(x)) := V(x, ε) = εD−1√q +O(εD), (3.17)

which allows us to smear a function at the point x around an infinitesimal
neighborhood, such that

f(x) =

∫
dD−1δ(D−1)(x− y) f(y) = lim

ε→0

1

εD−1

∫
d3y χε(x, y)f(y). (3.18)

The full Hilbert spaceH(φ)
kin := L2(RΣ

Bohr) can be obtained from the single
point one L2(RBohr), where RBohr denotes the Bohr compactification of a
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line, and the Bohr measure is defined as∫
RBohr

dµBohr(φ)eiπxφx = δ0,x. (3.19)

This method for treating scalar fields realizes a polymer representation in
the momentum polarization (also known as the point-holonomy represen-
tation) [22, 27, 59, 86, 87].

This prescription closely follows the one that leads to the spin network
states. Indeed, one can think: i) to the set of points v as the graph Γ, ii) to the
variables πv as the analogous of the spin coloring jl for the links l of a spin
network with links l ∈ Γ, iii) to (3.11) as the counterpart of the holonomy-
flux algebra. Indeed, in both cases, the field φ and the connection A are
not well defined operators on their respective Hilbert spaces, but only their
holonomized versions. The latter act by multiplication creating new point
holonomies in the case of the scalar field and new links in the gravitational
case. The conjugate variables (π andE) are well defined operators that read
as eigenvalues the coloring of the holonomized field, i.e., the value of the
field πv of the point holonomies base on the “graph” v and the value of the
spins of the holonomies based on the graph Γ respectively. As in full LQG,
the π fields have support on the set of nodes of the lattice Γ (a cuboidal
graph in our case).

3.2.1 Regularization and quantization of the scalar Hamiltonian
constraint

In this part we will briefly mention some relevant techniques used to quan-
tize the classical Hamiltonian (3.3) and we refer the reader to [22, 27, 47]
for more details. For the sake of simplicity we restrict our analysis to 3 + 1
dimensions.

Before quantizing the scalar part of the Hamitonian constraint we need
to regularize it. This procedure is carried on by rewriting (3.3) in terms of
holonomies and fluxes for the gravitational part and point-holonomies and
smeared momenta for the parts involving the scalar field.

The gravitational part is regularized using methods developed for the
full theory, restricted to a cuboidal graph [47]. In this description, matter
coupled to a dynamical spacetime is regularized by a reduction to fields
coupled to a dynamical lattice.

We will now consider a free massless scalar field, so that the potential
term in (3.3) is zero. We therefore need to regularize the kinetic and deriva-
tive parts, H(φ)

kin and H
(φ)
der . First of all we need to replace the spatial metric

with the triads eia. To do so we can use the following identities

e2

q
= 1,

√
qqab =

1

4
√
q
εijkε

acdejce
k
dε
i
lmε

befelee
m
f , (3.20)

and we introduce the volume V(R) of a region R using its definition

V(R) =

∫
R
d3x
√
q. (3.21)
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The resulting expression reads as

H(φ)
sc = lim

ε→0

[
λ

2

∫
d3xN(x)π(x)

∫
d3yπ(y)

∫
d3t

e

(V(t, ε))3/2

×
∫
d3u

e

(V(u, ε))3/2
χε(x, y)χε(t, x)χε(u, y)

+
1

8λ

∫
d3xN(x)εijkε

acd∂aφ(x)
ejc

(V(x, ε))1/4

ekd
(V(x, ε))1/4

×
∫
d3yεilmε

bef∂bφ(y)
ele

(V(y, ε))1/4

emf

(V(y, ε))1/4
χε(x, y)

]
.

(3.22)

To remove the denominators one uses the Thiemann’s trick [146], given by
the following expression

eia(x) =2
δV(R)

δEai
=

2

n(V(R))n−1

δ(V(R))n

δEai

=
4

nγκ(V(R))n−1
{Aia(x), (V(R))n}.

(3.23)

Now, we need to rewrite the Hamiltonian so that it can live on a dis-
crete quantum geometry. A method of discretization of the scalar constraint
via a triangularization of the spatial manifold has been developed for pure
gravity [148] and for gravity coupled to a scalar field [147]. The idea is to
replace the summation

∫
Σ with the sum over all ordered tetrahedra. The

sum over tetrahedra becomes the sum over all the nodes v of the triangula-
tion and over all the tetrahedra ∆l,l′,l′′ created by triple of links emanating
from the nodes v. Given a cubolation (see Section 1.3.2 for an introduction
to the QRLG framework), each node v is always surrounded by three pairs
of links oriented along fixed perpendicular directions. They always create
eight tetrahedra around the node. Finally the integration over each tetra-
hedron

∫
∆l,l′,l′′

turns into the sum over the eight possibilities of choosing a
triple of perpendicular links among each tetrahedron of the triangulation
∆(v) at each node v. Once this procedure has been performed, one uses the
following expansion

Tr(τ ih−1
la
{Vn(R), hla}) = −Tr(τ iε{Aa,Vn(R)}+O(ε2)) ≈ 1

2
ε{Aia,Vn(R)},

(3.24)
to rewrite the parts with the connections in terms of SU(2) holonomies.
Here Tr denotes the trace over SU(2) algebra and τ i = − i

2σ
i, where σi are

Pauli matrices.
As a last step before the quantization we need to rewrite also the spa-

tial derivatives of the scalar field as operators acting on the matter Hilbert
space, using point-holonomies U(x) = eiαφ(x), where α has dimensions of
L. In particular, following [147], one has that dφ(x) = U−1(x)dU(x)/ıα and
the derivative of the scalar field at the vertex v can be approximated by the
following expression

∂pφ(v) ≈ − ı

2εα

U(v + ~ep)− U(v − ~ep)
U(v)

=
eıα(φv+~ep−φv) − eıα(φv−~ep−φv)

2ıεα
,

(3.25)
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where φv+~ep is the field at the point v + ~ep, which is the nearest node of v
along the link ep of length ε. The two relevant limits are now given by the
following expressions

lim
ε→0

1

2iεα

U(v + ~ep)− U(v − ~ep)
U(v)

= ∂pφ(x) +O(ε), (3.26)

lim
α→0

1

2iεα

U(v + ~ep)− U(v − ~ep)
U(v)

=
φ(v + ~ep)− φ(v − ~ep)

2ε
+O(α). (3.27)

The scalar field contribution to the scalar constraint is quantized by the
canonical method: the cubolation of the spatial manifold is given by the
graph Γ at which the state is based (links and nodes of the cubolation are
links and nodes of Γ), while holonomies, volumes, and matter variables
are changed into quantum operators acting on states belonging to the total
Hilbert space:

Ĥ|Γ;ml, iv;π〉R = (Ĥ
(φ)
kin + Ĥ

(φ)
der)|Γ;ml, iv;π〉R. (3.28)

Once the Poisson brackets have been substituted by quantum commutators
and the limit ε → 0 has been performed (removing the dependence on the
regulator), the action of the total scalar constraint operator reads as

Ĥ(φ)|Γ;ml, iv;π〉R =
∑
v

Nv

(
211λ

(8πγl2p)
3
2

Σ(x)
v Σ(y)

v Σ(z)
v

(
∆

(x), 1
4

v ∆
(y), 1

4
v ∆

(z), 1
4

v

)2

Π̂2
v

+
211(8πγl2p)

1
2

34λ

(
Σ(x)
v Σ(y)

v Σ(z)
v

) 3
4

×

(Σ(x)
v

) 3
4

(
∆

(y), 3
8

v

)2(
∆

(z), 3
8

v

)2
(
eıα(φ̂v−~ex−φ̂v) − eıα(φ̂v+~ex−φ̂v)

2ı

)2

+
(

Σ(y)
v

) 3
4

(
∆

(x), 3
8

v

)2(
∆

(z), 3
8

v

)2
(
eı(φ̂v−~ey−φ̂v) − eı(φ̂v+~ey−φ̂v)

2ı

)2

+
(

Σ(z)
v

) 3
4

(
∆

(x), 3
8

v

)2(
∆

(y), 3
8

v

)2
(
eı(φ̂v−~ez−φ̂v) − eı(φ̂v+~ez−φ̂v)

2ı

)2


+
(8πγl2p)

3
4

2λ

(
Σ(x)
v Σ(y)

v Σ(z)
v

) 1
2
V̂ (φv)

)
|Γ;ml, iv;Uπ〉R

(3.29)

3.3 Effective dynamics

We are interested in finding some kind of effective dynamics for the scalar
field φ(x), or some expression of the field in terms of the point-holonomies
Ux(φ), in this framework. As stated in the introduction to this chapter, there
are a lot of issues that we need to consider and we look at this procedure as
a first step in the construction of a consistent model.

First of all, we neglect the backreaction of matter on the geometry. This
means that the gravitational part of the state |Γ;ml, iv〉R ⊗ |Γ;π〉R evolves
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according to the following equation

ı
∂

∂t
|Γ;ml, iv〉R = Ĥ(gr)|Γ;ml, iv〉R, (3.30)

where Ĥ(gr) is the gravitational contribution to the scalar constraint. Now,
we consider an effective Hamiltonian for the matter sector given as
Ĥeff =R 〈Γ;ml, iv|Ĥ(φ)|Γ;ml, iv〉R, effectively tracing out the gravitational
degrees of freedom. Given that we are constructing a toy model, we will
only consider one spatial direction and suppress the other two.

The effective Hamiltonian for the scalar field is then give by the follow-
ing explicit expression

Ĥeff =
∑
v

Nv

[
211λ

(8πγl2p)
3
2

Σ(x)
v Σ(y)

v Σ(z)
v

(
∆

(x), 1
4

v ∆
(y), 1

4
v ∆

(z), 1
4

v

)2

Π̂2
v

+
211(8πγl2p)

1
2

34λ

(
Σ(x)
v Σ(y)

v Σ(z)
v

) 3
4
(

Σ(x)
v

) 3
4

(
∆

(y), 3
8

v

)2(
∆

(z), 3
8

v

)2

×

(
eıα(φ̂v−~ex−φ̂v) − eıα(φ̂v+~ex−φ̂v)

2ıα

)2
 .

(3.31)

We mimic the standard procedure by writing Hamilton’s equations of
motion for the point-holonomy and the smeared momentum using the ef-
fective Hamiltonian (3.31). We then compute the expectation values of the
evolved operators (in the Heisenberg picture) in a gaussian state for matter.
The gaussian state is defined as 2

|φ〉G =
∏
vi

Ai

∫
dπie

− (πi−π
0
i )2

2σ2 +ıφ0
i πi |π(vi)〉. (3.32)

The state is peaked around some configuration (φ0, π0), where vi =

{v1, ..., vn} is the set of vertices and Ai = (π)−1/4σ
−1/2
i is the normalization

of the state.
We therefore compute the following operators

ˆ̇Uv = ı
[
Ĥeff, Ûv

]
, (3.33)

ˆ̇Πv = ı
[
Ĥeff, Π̂v

]
, (3.34)

using the commutation relations between the polymer variables given by[
Π̂(V ), Ûx(φ)

]
= αfV (x)Ûx(φ). (3.35)

2Strictly speaking we should consider a summation over πi. We choose to integrate for
simplicity.
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The results are

ˆ̇Uv =ıαNv
Av
2

(
Π̂vÛv + ÛvΠ̂v

)
= ıαNv

Av
2

(
2ÛvΠ̂v + αÛv

)
, (3.36)

ˆ̇Πv =
1

4ıα
NvBvXv

(
Uv+~ex − Uv−~ex

Uv

)2

(3.37)

+
1

4ıα
Nv+~exBv+~exXv+~ex

Uv+2~ex − Uv
U2
v+~ex

Uv

− 1

4ıα
Nv−~exBv−~exXv−~ex

Uv − Uv−2~ex

U2
v−~ex

Uv,

where

Av =
212λ

(8πγl2p)
3
2

Σ(x)
v Σ(y)

v Σ(z)
v

(
∆

(x), 1
4

v ∆
(y), 1

4
v ∆

(z), 1
4

v

)2

, (3.38)

Bv =
212(8πγl2p)

1
2

34λ

(
Σ(x)
v Σ(y)

v Σ(z)
v

) 3
4
, (3.39)

Xv =
(

Σ(x)
v

) 3
4

(
∆

(y), 3
8

v

)2(
∆

(z), 3
8

v

)2

. (3.40)

Now, for simplicity, we can take the coefficients of the geometry N,A,B,X
to be the same for every vi (Nv+~ex = Nv for example), since our purpose is
to find an effective dynamics in a homogeneous and isotropic background.

We now compute the expectation values of the Hamilton’s equations
(3.33) in the gaussian state (3.32). The general expression for the evolution
of the expectation value in the Heisenberg picture is the following

〈 ˆ̇A〉 =
d

dt
〈Â〉 = ı〈

[
Ĥ, Â

]
〉. (3.41)

Using (3.36), the right-hand sides read as

〈 ˆ̇Uv〉G =ıNvAv απ0 e
−α

2

4σ
−ıαφ0

v , (3.42)

〈 ˆ̇Πv〉G =
1

4ıα
NvBvXv

[
e−2ıα(φ0

v+~ex
−φ0

v)−2α
2

σ2 + e−2ıα(φ0
v−~ex−φ

0
v)−2α

2

σ2 (3.43)

− 2e−ıα(φ0
v+~ex

+φ0
v−~ex−2φ0

v)− 3
2
α2

σ2 − e−2ıα(φ0
v−φ0

v−~ex )−2α
2

σ2

+ e−ıα(φ0
v−2~ex

+φ0
v−2φ0

v−~ex )− 3
2
α2

σ2 + e−ıα(φ0
v+2~ex

+φ0
v−2φ0

v+~ex
)− 3

2
α2

σ2

−e−2ıα(φ0
v−φ0

v+~ex
)−2α

2

σ2

]
.

Note that, for the sake of simplicity, the integrals in the gaussian state
(3.32) over the variable πi are taken from −∞ to +∞. The second equation
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can also be written as

〈 ˆ̇Πv〉G =
1

4ıα
NvBvXv

[
e−

2α2

σ2

(
e−2ıα∆+

1 + e2ıα∆−1 − e−2ıα∆−1 − e2ıα∆+
1

)
+e

−3α2

2σ2

(
e−ıα∆+

2 + e−ıα∆−2 − 2e−ıα∆2

)]

=NvBvXv

e−2α2

σ2

2α

(
sin(2α∆−1 )− sin(2α∆+

1 )
)

+
e
−3α2

2σ2

4ıα

(
e−ıα∆+

2 + e−ıα∆−2 − 2e−ıα∆2

) , (3.44)

where

∆+
1 = φ(v + e)− φ(v),

∆−1 = φ(v)− φ(v − e),
∆+

2 = φ(v + 2e) + φ(v)− 2φ(v + e),

∆−2 = φ(v − 2e) + φ(v)− 2φ(v − e),
∆2 = φ(v + e) + φ(v − e)− 2φ(v) = ∆+

1 −∆−1 .

are finite differences that reduce to first and second derivatives for e → 0
times the appropriate power of ε = |e|.

The expectation values of the left-hand sides of (3.33) are given by the
following expressions

d

dt
〈Ûv〉G = −ıαφ̇0

v e
−ıαφ0

v−α
2

σ2 = −ıαφ̇0
v 〈Û〉G , (3.45)

d

dt
〈Π̂v〉G = π̇0

v , (3.46)

where we assumed that σ and α are time independent.
Finally, the expectation values of the two Hamilton equations (3.33) are

φ̇0
v =−NvAv π0, (3.47)

π̇0
v =NvBvXv

e−2α2

σ2

2α

(
sin(2α∆−1 )− sin(2α∆+

1 )
)

+
e
−3α2

2σ2

4ıα

(
e−ıα∆+

2 + e−ıα∆−2 − 2e−ıα∆2

) . (3.48)

There is another way to obtain the two equations (3.47) and (3.48). One
can compute the expectation value of the effective Hamiltonian (3.31) on
the gaussian state (3.32) and obtain a semiclassical expression 〈Ĥeff〉G . Then
equations (3.47) and (3.48) emerge from the classical field equations

φ̇0
v =

δ〈Ĥeff〉G
δπ0

v

, (3.49)

π̇0
v = −δ〈Ĥeff〉G

δφ0
v

. (3.50)
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We verified explicitly that the two procedures lead to the same set of equa-
tions.

Combining together Hamilton’s equations, the second order equation
of motion read as

φ̈0
v

Nv Av
=−NvBvXv

e−2α2

σ2

2α

(
sin(2α∆−1 )− sin(2α∆+

1 )
)

(3.51)

+
e
−3α2

2σ2

4ıα

(
e−ıα∆+

2 + e−ıα∆−2 − 2e−ıα∆2

) .
In the limit α → 0 and ε → 0, we recover at the first nonzero order, the
familiar Klein Gordon equation with the geometrical coefficients coming
from the underlying quantum geometry

φ̈0
v

Nv Av
= ε2NvBvXv∂

2
xφ, (3.52)

where the residual factor of ε2 are expected to be eaten up by the corre-
sponding expansion of the coefficients of the geometry. If we send α → 0,
keeping ε fixed we get

φ̈0
v

Nv Av
=
NvBvXv

4
(φ(v + 2e) + φ(v − 2e)− 2φ(v)) , (3.53)

where the right-hand side is the difference corresponding to the discrete
second derivative.

3.4 Comments

Eq. (3.51) is the main result of our computation. On the left-hand side we
have a single second order time derivative, while on the right-hand side we
have finite differences of the field taken at nearby vertices of the graph Γ.

Finite differences are used to approximate ordinary derivatives when
dealing with numerical solutions of differential equations or, in quantum
field theory, when a spatial regulator is introduced, e.g. a regular lattice. In
these cases, the regulator ε is considered small and, typically, one is inter-
ested in the ε → 0 limit. In our case instead, the underlying discreteness,
and hence the parameter ε, is physical. We should imagine the limit ε → 0,
not as a process in which the points of the spatial graph get closer and closer
but rather as a procedure in which we are raising the density of points (with
respect to a fiducial background metric). In this picture the finite differences
approximating spatial derivatives are always local terms (being expressed
in terms of nearest neighbors). When the “density of vertices” goes to infin-
ity, then we recover ordinary spatial derivatives. Of course, to have a well
defined continuum limit one should probably consider not only graph with
a large number of elements but also a superposition of a large number of
spin-network states.3

3We do not consider this possibility for the moment as it lies beyond the scopes of this
chapter, see however [9]
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The scale α is instead coming from polymer quantization. Although
one is not usually allowed to expand the quantum operators in powers
of α, due to the structure of the Hilbert space, it is reasonable to consider
this limit after taking expectation values over semiclassical coherent states.
From Eq.(3.53), we recover a sort of discretized version of the Klein–Gordon
equation. This is expected since, if we ignore the polymer structure, we
quantum field behaves as if it is living on a regular lattice.

Of course the natural question that needs to be address is whether there
is hope for such a model to be Lorentz invariant. It is probably premature
to try to give a precise answer to this question as there are assumptions and
simplifications in our computation that need to be properly understood.4 In
particular, a crucial point is the understanding of the role of the geometrical
coefficients Eq. (3.51). To be consistent in performing an expansion in ε one
should also take into account the expansion of the geometrical terms, after
considering semiclassical states for the quantum geometry (as it is usually
done in LQC for instance), since they depend on ε. However we can try to
discuss the various aspects of this model on general grounds.

First of all, the presence of a fundamental discreteness scale might affect
the time evolution as well. Indeed, the meaning of the time derivatives on
the left-hand side of Eq. (3.51) depends on the properties of the underlying
geometry through the lapse function. For instance, a deparametrization of
the model in terms of a physical clock field T would generate a dependence
of the lapse on the conjugate momentum PT which in turns will carry in-
formation about the discreteness scale ε. This might generate an effective
discrete time evolution possibly generating finite differences in the tempo-
ral part of Eq. (3.51). Similar considerations are valid for a choice of time
that involves only internal geometrical variables, allowing to link the time
evolution to the fact that the volume of the universe changes in discrete
steps proportional to the Planck volume `4Planck.

Another important point is that there are actually three scales in this
framework: the Planck length, which is a quantum scale that is related to
the smallest values of the spectra of geometrical operators, the discreteness
scale ε, characterizing semiclassical states, and the polymer scale α. Follow-
ing the discussion in [146], the discreteness scale, which for a general spin-
network can be considered as the average length of the edges, is bounded
from below by the Planck length. This means that the continuum limit can-
not be considered without taking the classical limit first. Also, in order
to have well-behaved semiclassical states one needs to keep ε � `Planck.
The polymer scale α has the dimensions of a length as well, hence to fully
capture its phenomenological consequences one needs to understand its re-
lationship with the other two. In particular, if α ∝ ε, then the continuum
limit gets synchronized with the non-polymer limit. In this case, polymer
quantization results to be strongly linked with spatial discreteness.

In concluding this part, we can say that a careful analysis of the relation-
ships among the scales characterizing this models is crucial for the under-
standing of its low-energy behavior and for potential phenomenological ap-
plications, especially in relation to Lorentz invariance (both at low-energy
and in the fundamental theory). We also want to underline the fact that the
model just described can be easily improved in the treatment of both the

4For a discussion on how to improve our computation see Chapter 6.
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scalar field (a discussion about the proper treatment of coherent states in
the framework of geometrical quantization can be found in [75, 142, 154])
and the state of the quantum geometry. The latter can also be chosen to
be a semiclassical state similar to the gaussian state for the scalar field in
Eq.3.32. A more complete analysis, based on the computations presented
in this chapter, can be found in [9].
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Chapter 4

Finsler geometry from Doubly
Special Relativity

4.1 Introduction

Departure from standard LI have been nowadays considered in essentially
all Quantum Gravity (QG) scenarios as it represents a major source of phe-
nomenological investigations (see [95]). On the other hand, DSR models
have mostly been studied on their own within momentum space in the
Hamiltonian formalism, and only recently potential connections with other
QG approaches have been established (see for instance [17, 18, 55, 65]). In
particular, a spacetime picture capable of accommodating the features of
DSR models would make them competitive with respect to LIV scenarios.
One possibility is certainly provided by noncommutative geometry. In this
scenario, quantum groups act covariantly on noncommutive spacetimes
(the case of κ-Poincaré is considered in [103]). On the other hand, Finsler
geometry produce a consistent mathematical framework to deal with this
situation in the classical case, when spacetime coordinates are commutative
but still endowed with deformed symmetries (the so-called relative locality
limit, see Section 1.1.2).

We are interested in an example of (quantum) deformation of the ordi-
nary Poincaré group given by the κ-Poincaré (κP) Hopf algebra [99, 100,
103]. As we already mentioned in Section 1.4.1, κP symmetries have been
shown to characterize the kinematics of particles living on a flat spacetime
and non-trivial momentum space with a de Sitter geometry [16, 70, 90, 91]
and they have been shown to naturally emerge in the context of 2 + 1 di-
mensional QG coupled to point particles (see e.g. [64]).

In this chapter, we will introduce the reader to the procedure presented
in [68] to derive a Finsler structure starting from the MDR of a point par-
ticle. We will then review the results of [15], where the specific case of κP
was investigated. We will see that, indeed, the Finsler geometry associated
with κP represents an instance of the kind of spacetimes we are interested
in (see Section 1.4), i.e., a flat maximally symmetric spacetime that is not
Minkowski, respecting DSR symmetries.

Among all the possible Finsler structures, a particular case is given by
Berwald spaces. Interestingly enough the Finsler metric correspondent to
κP symmetries found in [15] appears to be a member of this class. How-
ever, this come about in a somewhat trivial way as a straightforward conse-
quence of the flatness of the metric in coordinate space. With this in mind,
it would be interesting to consider examples of curved metrics associated to
more general deformed algebras so to check if for these the local structure
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of spacetime does not reduce to the Minkowski spacetime but rather to the
Finsler geometry with κP symmetries and furthermore for checking if also
these geometries are of the Berwald type.

Missing a definitive derivation of such hypothetical curved and de-
formed geometries based on some quantum gravity model, one has to re-
sort also in this case to study a case for which a deformed group of sym-
metry is available and a Finslerian metric can be derived. In this sense a
case of particular interest is the q-de Sitter (qdS) Hopf algebra [31, 98], a
quantum deformation of the algebra of isometries of the de Sitter space-
time. It represents a case in which curvature of momentum space is present
together with curvature in spacetime in the context of a well defined rela-
tivistic framework.1 As such, this represents the perfect arena for our anal-
ysis.

The purpose of this chapter is then twofold. After reviewing some ba-
sics of Fiensler geometry and presenting the analysis of [15], we will show
that there exists a Finsler spacetime associated to the mass Casimir of qdS
and explicitly compute the associate Finsler metric and Christoffel sym-
bols. We will then discuss how, in the limit in which the curvature goes
to zero, one recovers the Finsler structure of κP thus providing an example
of a curved Finsler spacetime whose local limit is not trivially given by the
Minkowski spacetime. In the second part we will discuss how, in a particu-
lar limit, the Finsler structure associated with qdS becomes of the Berwald
type. Finally, we will discuss what are the consequences of these results
and speculate about possible phenomenological studies.

4.1.1 Basics of Finsler geometry

In this part we are going to review some elements of Finsler geometry. In
Finsler geometry one starts by equipping a smooth manifoldM with a gen-
eral length measure, instead of a metric, defined by a Finsler function F .
The length of a curve γ : τ → γ(τ) is given by

`(γ) =

∫
dτF (γ, γ̇). (4.1)

Asking for reparametrization invariant implies that F has to be homo-
geneous of degree one with respect to its second argument. Based on this
length integral one can describe the geometry of a manifold purely by ten-
sors derived from the Finsler function.

Definition 4.1.1. Let M be a D-dimensional manifold and TM its tangent bun-
dle. A continuous real function F : TM → R is a Finsler function if it satisfies:

• F is smooth on the tangent bundle without the zero section (the slit tangent
bundle) TM \ {0};

• F is homogeneous of degree one with respect to the fibre coordinates of TM

F (x, λv) = λF (x, v), ∀λ > 0;

1See [35] for a description of particles with modified dispersion relation in the context of
Hamilton geometry.
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• The Hessian gFab of F 2 with respect to the tangent space coordinates has con-
stant rank and is non-degenerate on the slit tangent bundle

gFab =
1

2

∂2 F 2

∂va∂vb
.

Given the definition of a Finsler function one can define a Finsler space
as

Definition 4.1.2. A D-dimensional manifold M equipped with a Finsler function
F is called a Finsler space (M,F ).

The homogeneity properties of the norm, and of other derived objects,
will play a fundamental role through Euler’s theorem. It is then useful to
state its content

Theorem 4.1.1. Let f : V → R be a homogeneous differentiable function of degree
s, i.e., f(λx) = λsf(x), from a vector space V into the real numbers. The function
f satisfies the following partial differential equation

xa
∂f

∂xa
= sf.

Let us see some consequences of this theorem. First of all, we introduce
the Finsler metric tensor as

Definition 4.1.3. The Hessian of F 2 with respect to the tangent space coordinates
y is called the Finsler tensor (or first fundamental tensor)

gFab(x, v) =
1

2

∂2 F 2(x, v)

∂va∂vb
.

We will often refer to this tensor as Finsler metric. One can then easily
check that the Finsler metric is homogeneous of degree zero

gFab(x, λv) = gFab(x, v). (4.2)

Using Euler’s theorem one can check the following relationship

gFab(x, v)vavb =
1

2

∂2 F 2(x, v)

∂va∂vb
vavb =

1

2

∂ F 2(x, v)

∂va
va = F 2. (4.3)

Therefore the norm can be written as

F (x, v) =
√
gFab(x, v)vavb. (4.4)

Moreover, since F 2 is a homogeneous function of degree two in the veloci-
ties, the metric satisfies the following relations

vα
∂gµν
∂vα

= vµ
∂gµν
∂vα

= vν
∂gµν
∂vα

= 0. (4.5)

Given that, by definition, gµν is non degenerate, the inverse exists and it
satisfies gµν(x, v)gνρ(x, v) = δρµ.

Definition 4.1.4. Let (M,F ) be a Finsler space. The third derivative of F 2 with
respect to the tangent space coordinates v defines the componentsCabc of the Cartan
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tensor

Cabc(x, v) =
1

4

∂3F 2(x, v)

∂va∂vb∂vc
.

It is a completely symmetric tensor (if the norm is at least C3) homoge-
neous of degree one in the second argument. Consequently, it satisfies the
following property:

Cabc(x, v)va = Cabc(x, v)vb = Cabc(x, v)vc = 0, (4.6)

which can be proved using Euler’s theorem. The Cartan tensor can be used
to measure the deviation from Riemannian geometry. Indeed, if the norm is
induced by a scalar product, the Cartan tensor is zero (see Deicke’s theorem
[58]).

Definition 4.1.5. Let (M,F ) be a Finsler space. The first derivative of F 2 with
respect to the tangent space coordinates v defines the components ωa of the Finsler
one-form

ωa =
1

2

∂F 2

∂va
.

Due to Euler’s theorem, vaωa = F 2. Later in this Chapter, we will also
see how the Finsler one-form is related to the canonical momentum.

Given the above definitions, a few comments are in order. Rieman-
nian geometry is a special case of Finsler geometry in which the norm is
given by an inner product, i.e. the metric gFab(x, v) does not depend on
v ∈ TxM . The construction discussed in this section is, strictly speaking,
valid in the Euclidean signature. The extension to Lorentzian signature, al-
though not obvious, it is possible and it has been extensively studied in the
literature [38, 120, 121]. For our purposes, we will assume that all the con-
struction goes through in the indefinite case without major issues. This is a
rather safe assumption for us because we will consistently treat the Finsler
structure as a small deformation, therefore the signature will be essentially
inherited from the underlying pseudo-Riemannian structure. Finally, the
Finsler metric, being homogeneous of degree zero in its second argument,
cannot be defined on the zero section of the tangent bundle. This is why
Finsler geometry is usually defined on the slit tangent bundle TM \ {0}.
This mathematical detail is not usually of much relevance as in most of the
physical situations one is interested in systems with non-zero velocities. On
the other hand there are ways to overcome this issue and we will dedicate
some space to this point later in this chapter.

4.1.2 The Legendre transform

For physical applications it is useful to describe all the structure introduced
so far in terms of positions and momenta rather than position and veloci-
ties. Since velocities are tangent vectors while momenta are tangent forms,
we need to move our analysis to the cotangent bundle. The Legendre trans-
form permits this passage.

The form dual to a given vector is defined as

ωµ = gµν(x, v)vν . (4.7)
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It can be rewritten as

ωµ =
1

2

∂F 2(x, v)

∂vµ
. (4.8)

If g is non degenerate then the transformation is invertible. Therefore we
can define the a norm on forms as

1

2
G2(x, ω) = vν(ω)ων −

1

2
F 2(x, v(ω)), (4.9)

or
G(x, ω) = F (x, v(ω)). (4.10)

The tensor obtained from this new norm is given by

hµν =
1

2

∂2G2

∂ωµ∂ων
, (4.11)

and it plays the same role of the inverse metric in pseudo-Riemannian ge-
ometry. If the vector v is rescaled to λv, the associated form ω goes to λω.
Therefore the normG is homogeneous of degree one in ω. This construction
shows that Finsler geometry can be formulated in the tangent space as well
as in the cotangent space.

4.1.3 Geodesics, Berwald spaces and normal coordinates

Berwald spaces are Finsler spaces that are just a bit more general than Riemannian
and locally Minkowskian spaces. They provide examples that are more properly
Finslerian, but only slightly so [33].

The statement above is a good intuitive description of what Berwald
spaces are. One of the (equivalent) technical characterizations of Berwald
spaces is the following [33]:

• The quantities ∂2
ẋ(Gµ), with Gµ := Γµρσ(x, ẋ)ẋρẋσ, do not depend on

ẋµ.

The objects Γµρσ are the usual Christoffel symbols defined as

Γµρσ(x, ẋ) =
1

2
gµν (∂ρgσν + ∂σgρν − ∂νgρσ) , (4.12)

that for a general Finsler metric depend on ẋµ. The coefficientsGµ are called
spray coefficients and they appear in the geodesic equations, obtained by
minimizing the action (4.1), as

ẍσ + 2Gσ =
Ḟ

F
ẋσ, (4.13)

where the right-hand side is vanishing for a constant speed parametrization
(e.g., F = 1). In other words a Finsler space is of the Berwald type when
the Gµ are purely quadratic in the velocities2.

In pseudo-Riemannian geometry, normal coordinates can be defined in
a neighbourhood of a point p (Fermi coordinates along a curve γ), such
that the Christoffel symbols of the connection vanish at p (along γ) [105].

2For an introduction to the various kind of connections that one can define in Finsler
geometry see [33].
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This procedure fails in pseudo-Finsler geometry if the space is not Berwald
(see [51], [33] and references therein). Therefore in Finsler geometry the
existence of free falling observers looking at nearby free falling particles
moving in straight lines is not guaranteed3. In this respect, Berwald spaces
play an important role in determining whether a given Finsler structure
violates the Weak Equivalence Principle (WEP).

4.1.4 Derivation of Finsler geometries from modified dispersion
relations

In this section we review the procedure introduced in [68] for deriving the
Finsler geometry associated with a particle with a modified dispersion re-
lation.

Let us start by considering the action of a particle with a constraint im-
posing the on-shell relationM(p) = m2

I =

∫ [
ẋµpµ − λ

(
M(p)−m2

)]
dτ, (4.14)

where λ is a Lagrange multiplier that transforms appropriately under an
arbitrary change of time parameter to ensure reparametrization invariance
of the action i.e., λ(τ)dτ = λ(τ ′)dτ ′. In order to find the explicit expression
of the Lagrangian we use Hamilton’s equations that read as

pµ = λ
∂M
ẋµ

. (4.15)

If the relation above is invertible, one is able to rewrite the action in terms
of velocities and the multiplier hence obtaining4

I =

∫
L(x, ẋ, λ)dτ. (4.16)

We can also eliminate the multiplier using the equation of motion obtained
varying the action with respect to it so to get the expression of the La-
grangian in terms of velocities only L(x, ẋ, λ(x, ẋ)).

Finally we can identify the Finsler norm through the following relation

L(x, ẋ, λ(x, ẋ)) = mF (x, ẋ), (4.17)

and the Finsler metric is then given by the Hessian matrix of F 2 as in (4.1.3).
Since the action (4.14) is reparametrization invariant by construction, the
norm (4.17) is homogeneous of degree one in the velocities.

At this point, using (4.4), the action can be written as

I = m

∫
Fdτ = m

∫ √
gµν(x, ẋ)ẋµẋνdτ, (4.18)

3See however [107] and [119] for a generalization of normal coordinates which is adapted
to the framework of Finsler geometry that shares most of the properties of the standard
definition.

4The symbols x and ẋ, when taken as arguments of functions, generically refer to both
the time and spatial component of the coordinates and the velocities.
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which correspond to the action of a free relativistic particle propagating on
a spacetime described by a velocity dependent metric.

Using the definition of generalized momentum, one can now simply
relate the four-momentum to the Finsler norm as

pµ = m
∂F

∂ẋµ
= m

gµν ẋ
ν

F
. (4.19)

Note that this relation is related to the form introduced in(4.1.5) by a factor
of F−1. This makes the momentum pµ invariant under the rescaling ẋ→ λẋ
and reparametrization invariant. It is essentially the form associated with
the normalized vector F−1ẋµ. If these variables are used to perform the
Legendre transform (introduced in the Section 4.1.2) from the Lagrangian
to the Hamiltonian the result is

H = pµẋ
µ − L = m

gµν ẋ
ν ẋµ

F
−mF = 0. (4.20)

This is essentially a consequence of reparametrization invariance and ho-
mogeneity and it implies that any trajectory will automatically satisfy the
mass-shell conditionM(p) = m2, without the need of imposing the equa-
tions of motion. Indeed, using the inverse metric gµν one recovers the dis-
persion relation in a simple way as

m2 = gµν(ẋ(p))pµpν . (4.21)

4.1.5 Results for κ-Poincaré

In this subsection we will briefly review the results obtained in [15], regard-
ing the Finsler structure associated with the κP group. The mass Casimir of
the κP algebra, at first order in the deformation parameter `, is given by5

C` = p2
0 − p2

1 (1 + `p0) . (4.22)

It can be derived from (1.46), upon introducing a representation of the
phase space coordinates xµ = {t, x} and pµ = {p0, p1}, with the ordinary
symplectic structure given by

{xµ, xν} = 0,

{xµ, pν} = −δµν ,
{xµ, xν} = 0.

(4.23)

Following the procedure outlined in the previous subsection, the associated
Finsler norm reads as

F` =
√
ṫ2 − ẋ2 +

`m

2

ṫẋ2

ṫ2 − ẋ2
, (4.24)

5The κP algebra can be derived from the qdS algebra in an appropriate limit (see
Sec. 4.2.1). See also [70].
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and, using (4.1.3), the Finsler metric is

gF`µν(x, ẋ) =

 1 + 3m`ṫẋ4

2(ṫ2−ẋ2)
5/2

m`ẋ3(ẋ2−4ṫ2)
2(ṫ2−ẋ2)

5/2

m`ẋ3(ẋ2−4ṫ2)
2(ṫ2−ẋ2)

5/2 −1 +
m`ṫ3(2ṫ2+ẋ2)
2(ṫ2−ẋ2)

5/2

 . (4.25)

It can be easily checked that the metric above satisfies the relations (4.5) and
that it can be rewritten in momentum space as follows

gF`µν(x, p) =

 1 + 3
2
`p0p4

1
m4 − `

2

p3
1(p2

1−4p2
0)

m4

− `
2

p3
1(p2

1−4p2
0)

m4 −1 + `
2

p3
0(2p2

0+p2
1)

m4

 . (4.26)

Using this expression, the dispersion relation can be simply given as

g µνF` pµpν = p2
0 − p2

1 (1 + `p0) . (4.27)

In [15], it was also shown that the Killing vectors associated with the
metric (4.25) are compatible with the κP symmetries.

Interestingly enought, it can be easily proven that the Finsler metric as-
sociated with κP has vanishing Christoffel symbols and that the relation
Γµρσ = 0 trivially satisfies the conditions for a Berwald space. This was
expected since, in [15], a deformation of a special-relativistic particle was
considered and in that case the metric had no dependence on coordinates,
meaning that the spacetime geometry was flat.

The subsequent question is whether that was a coincidence or not. In
other words, since all locally Minkowskian spacetimes are Finsler space-
times of the Berwald type [33], do Berwald spaces play an important role
regarding the local structure of spacetime with DSR-like symmetries or it is
just a trivial consequence of local flatness? To answer this question we shall
then examine the Finsler geometry of a spacetime related to the qdS mass
Casimir that reduces to the κP Finsler geometry when the curvature goes
to zero.

Before moving to the next section it is worth mentioning that, when
dealing with Finsler spacetimes, geometrical objects, like the norm or the
curvature, might not be well defined along certain directions. For instance,
Eq.(4.24) is singular for ṫ2 = ẋ2. This seems to be a consequence of dealing
with a non-homogeneous mass Casimir while working in a reparametriza-
tion invariant framework. Non-homogeneous terms in the Casimir gener-
ates additional terms in the norm but, the requirements of homogeneity in
the velocities coming from the theory of Finsler spaces (see Sec.4.1.1) only
allows for normalized tangent vectors to appear, causing the presence of
the singular denominators. These kind of issues will also be present in
our analysis in the following sections. One way to avoid this problem is
to use an Hamiltonian formulation of the system, as done in [35]. In the
Hamiltonian framework one typically loses full reparametrization invari-
ance in exchange for a non-zero Hamiltonian (directly identified with the
mass Casimir). This procedure is equivalent to considering the cotangent
vectors ωµ instead of the reparametrization invariant variables pµ (see Sec-
tion 4.1.1 and Section 4.1.4). It can be shown that this analysis can be recast
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in terms of a Lagrangian functional without singular denominators. Unfor-
tunately by following this path one also loses the homogeneity properties
required to correctly identify a Finsler norm. It is also possible that such
singular behaviors might solved by performing a non-perturbative study.
A full discussion on these themes is beyond the purposes of our investiga-
tion.

4.2 q-de Sitter inspired Finsler spacetime

In what follows we shall explicitly investigate the Finsler metric associated
to a q-de Sitter Hopf algebra and consider its local limit to prove that it
reproduces the κ-Poincaré Finsler geometry. We shall then also investigate
if q-de Sitter Finsler geometry is per-se of the Berwald type.

4.2.1 q-de Sitter

Let us start by denoting the key features of the 1+1D qdS Hopf algebra
[34]. Using the notation of [34], the commutators among the symmetry
generators are

[P0, P ] = HP, [P0, N ] = P −HN,

[P,N ] = cosh(w/2)
1− e

−2wP0
H

2w/H
− 1

H
sinh(w/2)e

−wP0
H Θ,

(4.28)

where
Θ =

[
e
wP0
H (P −HN)2 −H2e

wP0
H N2

]
, (4.29)

and P0, P,N refer to the generators of time translation, space translation
and boost respectively, H is the Hubble rate and w is the deformation pa-
rameter.

For the coproducts, which are used to express the conservation of mo-
mentum when dealing with multiple particles, one has

∆(P0) = 1⊗ P0 + P0 ⊗ 1, ∆(P ) = e
−wP0
H ⊗ P + P ⊗ 1,

∆(N) = e
−wP0
H ⊗N +N ⊗ 1,

(4.30)

while the antipodes are

S(P0) = −P0, S(P ) = e
wP0
H P1, S(N) = e

wP0
H N. (4.31)

Finally the mass Casimir is

CqdS = H2 cosh(w/2)

w2/4
sinh2

(
wP0

2H

)
− sinh(w/2)

w/2
Θ. (4.32)

The parameter w is usually assumed to be a dimensionless combination
of a fundamental length scale ` and the dS radius H−1. There are various
possible choices (see for example [106]) and we will focus on the one that
gives back the classical dS algebra for `→ 0 and the κP algebra for H → 0,
i.e., w = H`.
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Upon introducing a representation of the phase space coordinates xµ =
{t, x} and pµ = {p0, p1}, with the ordinary symplectic structure given by

{xµ, xν} = 0,

{xµ, pν} = −δµν ,
{xµ, xν} = 0.

(4.33)

the generators are represented, at first order in `,H and H`, by

P0 =p0 −Hxp,
P1 =p1,

N =p1t+ p0x−H
(
p1t

2 p1x
2

2

)
− `x

(
p2

0 +
p2

1

2

)
+H`p1x

(
p1t+

3

2
p0x

)
,

(4.34)

and the Casimir reads as

CqdS = p2
0 − p2

1 (1 + ` p0) (1− 2H t) . (4.35)

From the expression above, as previously anticipated, taking the limit H →
0 one recovers the Casimir of the κP algebra, while in the limit ` → 0 the
Casimir of the classical de Sitter algebra is obtained.

4.2.2 Finsler spacetime from the q-de Sitter mass Casimir

We start by considering the action of a free particle with a constraint impos-
ing the mass shell condition in terms of the Casimir (4.35) and it is given by

I =

∫ [
ẋµpµ − λ(τ)

(
CqdS −m2

)]
dτ, (4.36)

where λ(τ) is a lagrange multiplier enforcing the on-shell condition that we
rewrite as

CqdS = m2 → p2
0 = m2 + a−2(t)p2

1 (1 + ` p0) , (4.37)

where a(t) = eHt = 1 +Ht+O(H2) is the classical dS scale factor.
The associated equations of motion are given by

ṫ = λ
[
2p0 − ` a−2p2

1

]
, (4.38a)

ẋ = −2λ a−2 p1 (1 + `p0) , (4.38b)

and they can be inverted to give6

p0 =
ṫ

2λ
+ ` a2 ẋ

2

8λ2
, (4.39a)

p1 = −a
2 ẋ

2λ

(
1− ` ṫ

2λ

)
. (4.39b)

6Assuming λ ∼ O(1).
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Therefore the Lagrangian in (4.36) written in terms of velocities and the
Lagrange multiplier reads as

L =
ṫ2 − a2 ẋ2

4λ
+ `

a2 ṫẋ2

8λ2
+ λm2. (4.40)

In the limit a(t) → 1 we recover the Lagrangian in [15], as expected. The
Lagrangian above can be minimized with respect to λ to give

λ =
1

2

√
ṫ2 − a2 ẋ2

m
+
`

2

a2 ṫẋ2

ṫ2 − a2 ẋ2
. (4.41)

The Lagrangian (4.40) can now be written in terms of velocities only and it
reads as

L = m

(√
ṫ2 − a2 ẋ2 +

`m

2

a2 ṫẋ2

ṫ2 − a2 ẋ2

)
. (4.42)

The expression above is of degree one in the velocities and therefore it de-
fines the following Finsler norm7

F =
√
ṫ2 − a2 ẋ2 +

`m

2

a2 ṫẋ2

ṫ2 − a2 ẋ2
. (4.43)

According to the relation (4.1.3), a Finsler metric can be derived from
(4.43) and it reads as

gFµν(x, ẋ) =

 1 + 3a4m`ṫẋ4

2(ṫ2−a2ẋ2)
5/2

m`a4ẋ3(a2ẋ2−4ṫ2)
2(ṫ2−a2ẋ2)

5/2

m`a4ẋ3(a2ẋ2−4ṫ2)
2(ṫ2−a2ẋ2)

5/2 −a2 +
m`a2 ṫ3(2ṫ2+a2ẋ2)

2(ṫ2−a2ẋ2)
5/2

 . (4.44)

When `→ 0 the metric above reduces to the one of a classical de Sitter space
in coordinate time and for a(t)→ 1 the Finsler metric assocaited with κP is
recovered. The norm (4.43) and the metric (4.44) satisfy all the identities of
a proper Finsler spacetime introduced in Sec.4.1.1.

Using (4.41) one can rewrite (4.38) to get

p0 =
mṫ√

ṫ2 − a2ẋ2
−
`m2a2ẋ2

(
a2ẋ2 + ṫ2

)
2
(
ṫ2 − a2ẋ2

)2 , (4.45a)

p1 = − ma2ẋ√
ṫ2 − a2ẋ2

+
`m2a2ṫ3ẋ(
ṫ2 − a2ẋ2

)2 , (4.45b)

and the following relations can be found as well

mṫ√
ṫ2 − a2ẋ2

= p0 +
`a−2p2

1

2m2

(
a−2p2

1 + p2
0

)
, (4.46a)

maẋ√
ṫ2 − a2ẋ2

= −a−1p1

(
1 +

`

m2
p3

0

)
. (4.46b)

7It is worth noticing that, while finishing this work, the paper [96] appeared. The authors
arrive to a similar result working in conformal time instead of comoving time.
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Using the relations above one recovers the mass shell condition as

m2 =

(
m ṫ√

ṫ2 − a2ẋ2

)2

−

(
ma ẋ√
ṫ2 − a2ẋ2

)2

= p2
0 − a−2 p2

1(1 + `p0). (4.47)

and the Finsler metric (4.44) can be rewritten in terms of momenta as

gFµν(x, p) =

 1 + 3
2
`p0p4

1
m4 −a

2

`p3
1(p2

1−4p2
0)

m4

−a
2

`p3
1(p2

1−4p2
0)

m4 −a2 + a2

2

`p3
0(2p2

0+p2
1)

m4

 . (4.48)

By comparing (4.43) with the Finsler norm associated with the κP symme-
tries in [15], it can be noted that the two are conformally related as in the
classical case.

Using (4.45) and (4.46) it can be shown that the inverse metric satisfies
the following relations

gµνF (x, ẋ)pµ(ẋ)pν(ẋ) = m2, (4.49a)

gµνF (x, p)pµpµ = p2
0 − a−2p2

1(1 + `p0). (4.49b)

We have shown so far that a particle with the qdS mass Casimir can be
described in terms of a Finsler geometry through the norm (4.43) and the
metric (4.44, 4.48) and we noticed that this structure is conformally related
to the one of κP introduced in [15].8

In the tangent space, the corrections to the ordinary Minkowski norm
(or metric) are given by terms which are of the form `mf(ẋ) or `mg(p/m) in
momentum space, with f and g some functions of velocities and momenta
respectively. These kinds of corrections are typical of rainbow gravity scenar-
ios [101] (see also [97]). Similar results where also found in [30, 149] where
the propagation of particle in a quantum geometry was analyzed and the
deviations from the classical results were given in terms of a dimensionless
non-classicality parameter β, involving expectation values of the geometri-
cal operators over a state of the quantum geometry, and functions of p/m,
without an explicit dependence on any fundamental scale. In the frame-
work presented here, the analogous parameter would be represented by
the dimensionless combination `m, which makes manifest the presence of
a fundamental scale.

In the following subsection, we will explicitly derive the worldline of a
particle propagating on this Finsler geometry associated to the dispersion
relation CqdS = m2 and we will study the associated Christoffel symbols.

4.2.3 Christoffel symbols and geodesic equations

Worldlines in Finsler geometry can be derived using Euler–Lagrange equa-
tions which is equivalent to computing the geodesic equations given by

ẍµ + Γµρσ(x, ẋ)ẋρẋσ = 0, (4.50)

8The analsysis of the Killing equation, needed to prove the full equivalence between the
symmetries of the Finsler geometry compatible with the qdS mass Casimir and the the qdS
Hopf algebra, is not among the objectives of this work. See however [96].
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once the parameter τ has be chosen to be affine. The Christoffel symbols
are defined as in Riemannian geometry

Γµρσ(x, ẋ) =
1

2
gFµν(x, ẋ)

(
∂ρg

F
σν + ∂σg

F
ρν − ∂νgFρσ

)
, (4.51)

but now they depend on the velocities through the metric tensor.
From (4.44), they are explicitly given by

Γ0
00 =

3Hm`ṫa4ẋ4
(
4ṫ2 + a2ẋ2

)
4
(
ṫ2 − a2ẋ2

)7/2 , (4.52a)

Γ0
01 =

Hm`a4ẋ3
(
4ṫ2 − a2ẋ2

)
2
(
ṫ2 − a2ẋ2

)5/2 , (4.52b)

Γ1
00 =−

Hm`a2ẋ3
(
16ṫ4 − 2a2ṫ2ẋ2 + a4ẋ4

)
2
(
ṫ2 − a2ẋ2

)7/2 , (4.52c)

Γ0
11 =Ha2 − 1

4

Hm`a2ṫ
(
4ṫ6 + 10ṫ4a2ẋ2 + 7ṫ2a4ẋ4 − 6a6ẋ6

)(
ṫ2 − a2ẋ2

)7/2 , (4.52d)

Γ1
01 =H −

3Hm`a2ṫ3ẋ2
(
4ṫ2 + a2ẋ2

)
4
(
ṫ2 − a2ẋ2

)7/2 , (4.52e)

Γ1
11 =−

Hm`a4ẋ3
(
a2ẋ2 − 4ṫ2

)
2
(
ṫ2 − a2ẋ2

)5/2 . (4.52f)

In the limit ` → 0 they reduce to the Christoffel symbols of a classical de
Sitter space while for H → 0 they vanish in agreement with the fact that
in this limit the Finsler metric of κP is recovered. We also notice that the
correction terms to the classical results are proportional to the combination
H`.

With the parametrization F = 1 applied to the norm (4.43), the geodesic
equations are specifically given by

ẗ+H a2ẋ2
(
1− 2`mṫ

)
= 0, (4.53a)

ẍ+Hẋ
(
2ṫ+ `ma2ẋ2

)
= 0, (4.53b)

and their dependence on the mass m signals a violation of the WEP.
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In order to explore the consequences of these corrections one can ex-
pand (4.52) up to second order in H obtaining

Γ0
00 ' 3H`mṫ

(
4ṫ2ẋ4 + ẋ6

4
(
ṫ2 − ẋ2

)7/2 +
Ht
(
16ṫ4ẋ4 + 18ṫ2ẋ6 + ẋ8

)
4
(
ṫ2 − ẋ2

)9/2
)
, (4.54a)

Γ0
11 'H + 2H2t−H`mṫ

(
4ṫ6 + 10ṫ4ẋ2 + 7ṫ2ẋ4 − 6ẋ6

4
(
ṫ2 − ẋ2

)7/2 + (4.54b)

+
Ht
(
8ṫ8 + 60ṫ6ẋ2 + 72ṫ4ẋ4 − 41ṫ2ẋ6 + 6ẋ8

)
4
(
ṫ2 − ẋ2

)9/2
)
,

Γ1
01 'H − 3H`mṫ3ẋ2

(
4ṫ2 + ẋ2

4
(
ṫ2 − ẋ2

)7/2 +
Ht
(
8ṫ4 + 24ṫ2ẋ2 + 3ẋ4

)
4
(
ṫ2 − ẋ2

)9/2
)
,

(4.54c)

and similarly for the other components. One finds terms that are purely
of order H` and others that are of order H`Ht. If t is at most O(H−1),
the second kind of corrections is never bigger than the first one and this
is true also for the higher order corrections since they are all multiplier by
coefficients of the type H`(Ht)n−1.

Therefore, if one neglects correction terms which are proportional to
H`, the Christoffel symbols become independent of ẋµ and this condition
is preserved as long as t is not larger than H−1. In this limit the Finsler
structure associated to qdS is approximately of the Berwald type and the
Christoffel symbols are the same of a classical dS spacetime.

What happens at the metric tensor in this limit? Expanding (4.44) up to
first order in H one gets

gF00 = 1 +
3`mṫẋ4

2
(
ṫ2 − ẋ2

)5/2 +
3Ht`mṫẋ4

(
4ṫ2 + ẋ2

)
2
(
ṫ2 − ẋ2

)7/2 , (4.55a)

gF11 = −1 + 2Ht+
`mṫ3

2

( (
2ṫ2 + ẋ2

)(
ṫ2 − ẋ2

)5/2 +
Ht
(
4ṫ4 + 10ẋ2ṫ2 + ẋ4

)(
ṫ2 − ẋ2

)7/2
)
,

(4.55b)

gF01 = gF10 = −
`mẋ3

(
4(4Ht+ 1)ṫ4 − (2Ht+ 5)ẋ2ṫ2 + (Ht+ 1)ẋ4

)
2
(
ṫ2 − ẋ2

)7/2 . (4.55c)

In the metric above the constant H always comes together with the
coordinate time t and this is also true for higher order terms that would
come with coefficients of the type (Ht)n. Therefore, while at the level of the
Christoffel symbols these terms can be neglected as long as t . H−1, this
is not true for the metric tensor as one would get terms which are of the
same order as the terms of O(`) i.e., `(Ht)n ∼ ` for t ∼ H−1. The metric is,
therefore, still of Finslerian type form.

Having said that, at first order in H and ` and ignoring terms propor-
tional to H` not enhanced by a factor of t, the geodesic equations (4.50) are
now the same that one would obtain from a classical dS spacetime9. They

9Note that analogous conclusions can be obtained in the framework presented in [35]
under similar hypothesis.
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are given by

ẗ+Hẋ2 = 0, (4.56a)
ẍ+ 2Hṫẋ = 0, (4.56b)

where any dependence on the mass has disappeared. Comparing (4.56)
with (4.53), it is clear that in the former case the additional mass depen-
dent term behaves like a force carrying the particle away from the classical
geodesic motion.

On the other hand, the chronometric structure will still be velocity de-
pendent and it will contain information on both the fundamental scale `
and the curvature scale H . For example, in the equations above, the deriva-
tives are performed with respect to an affine parameter. In this respect, with
the usual definition of proper time, from the metric (4.48) one obtains

∆τ =

∫ t2

t1

√
gF00 dt =

∫ t2

t1

(
1 +

3

2

`p0 p
4
1

m4

)
dt = ∆t

(
1 +

3

2

`p0 p
4
1

m4

)
(4.57)

where we chose dx = 0, so that no other components of the metric need to
be considered and p0 = const (in this frame there are no effects associated
with H). Therefore the proper time turns out to be momentum (or veloc-
ity) dependent and particles with different energy will experience different
elapsed proper time intervals ∆τ , given the same coordinate time interval
∆t.

Let us now compute the trajectory of a particle as a function of coordi-
nate time to show that indeed the non trivial structure of momentum space
is not lost. Since the Lagrangian (4.42) does not depend on the spatial coor-
dinate x, Euler–Lagrange equations tell us that the generalized momentum
(4.45b) is conserved, i.e., ṗ1 = 0. Therefore eq. (4.45b) can be integrated, in
the gauge τ(t) = t with the condition x(0) = 0, and the result is given by

x(t) =
p1t√
p2

1 +m2

[
1− Ht

2

(
1 +

m2

p2
1 +m2

)]
− `p1t (1−Ht) , (4.58)

for an incoming particle. The derivative of (4.58) gives the speed of propa-
gation that reads as10

v(t) =
p1√

p2
1 +m2

[
1−Ht

(
1 +

m2

p2
1 +m2

)]
− `p1(1− 2Ht)

m2→0−−−−→ v(t) = 1−Ht− `p1(1− 2Ht).

(4.59)

Before going to the conclusion, let us briefly recap the results of this
section. Eq.s (4.54) show that, in general, the qdS Finsler geometry is not
of the Berwald type, since the spray coefficients (defined in Sec. 4.1.3) are
not quadratic in the velocities. However, it turns out that, in the specific
regime t . H−1, the Christoffel symbols become velocity-independent, and
identical to the ones of a classical dS spacetime, and the Finsler geometry is
approximately of the Berwald type.11. Yet, the chronometric structure of the

10This result is in agreement with what has been found in [34, 96].
11Taking this limit is equivalent to ignore correction terms proportional to (H`)n which

are not enhanced by a factor of tn.
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model does not become classical and the non trivial structure of the Finsler
metric is maintained.

4.3 Conclusions and outlook

In this chapter, we extended the relationship between theories with de-
formed relativistic symmetries and Finsler geometry by including the pres-
ence of spacetime curvature. In the first part, we have shown that the prop-
agation of particles with deformed de Sitter symmetries, given by the qdS
Hopf algebra, can be described in terms of a velocity and coordinate depen-
dent Finsler norm and we noted that the latter is conformally related to the
kP Finsler norm introduced in [15]. Then, we studied the affine structure of
the model by computing the generalized Christoffel symbols and pointing
out that in general they remain velocity dependent. This allowed us to con-
clude that the qdS Finsler spacetime is not in general of the Berwald type
and therefore the WEP is violated.

Nevertheless, we have shown that when the correction terms propor-
tional to H` (the product of the inverse of the curvature scale and the fun-
damental length scale) can be disregarded, the affine structure become clas-
sical, at least for a time scale which is at most comparable with the Hubble
time H−1. In this limit the Finsler structure becomes of the Berwald type
and the WEP is recovered. On the other hand, in the same regime, the
chronometric structure does not become completely classical. Indeed, the
typical DSR effects, such as momentum dependent speeds of propagation
for massive and massless particles, are still present and they come with both
Planck scale and curvature corrections.

Deformations of the standard Poincaré algebra have been largely con-
sidered in the literature in the last twenty years but they are mostly used
to described kinematical properties of particles with modified dispersion
relations in a well defined relativistic framework. Whether these symmetry
groups can be used to construct families of momentum dependent (metric)
theories of gravity, which would modify GR incorporating some QG fea-
tures, is currently an open question. In the absence of concrete and realis-
tic proposals for such kinds of theories, the study of deformed symmetry
groups of non-flat spacetimes is a first step in understanding if such theo-
ries can be constructed.

As we anticipated in the introduction, two fundamental ingredients of
any metric theory of gravity are LI and the WEP. The former can somehow
be extended to include deformed symmetry groups and we have shown
that indeed the qdS Finsler spacetime locally reduces to the flat κP Finsler
spacetime introduced in [15]. Therefore one may think of building a the-
ory of gravity whose solutions locally look like a flat spacetime with κP
symmetries e.g., the κP Finsler spacetime. However, the WEP is broken in
qdS. Indeed, we found that the corrections to the ordinary geodesic equa-
tions come with a mass dependence. This additional component is negligi-
ble in the limit of small curvature and for typical time scales smaller than
the Hubble time. In this limit the Finsler structure associated with qdS be-
comes of the Berwald type, which represents a subclass of Finsler spaces for
which free falling (Fermi) normal coordinates can be defined and any free
falling observer looking at neighboring free falling particles observes them
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moving uniformly over straight lines (formally implementing the idea of
the Einstein’s elevator, see also [107] and [119]). Therefore, comparing the
geodesic equations in this limit to the ones obtained without any approxi-
mation, we realized that the correction terms can be interpreted as force-like
contributions.

The most stringent bounds on violations of the WEP come from high
precision Eötvös-type experiments, but they are mostly performed in the
gravitational field produced by the Earth and for macroscopic, composite
bodies (see [153] and references therein). The relevant parameter used to
constrain violations of the WEP is the so called Eötvös ratio η that measures
the fractional difference in acceleration between two bodies and it is cur-
rently bounded to be less or equal than about 10−13. Obviously, this bound
cannot be directly applied to the present framework and tests of the WEP
on cosmological scales would be more appropriate.

On the other hand, assuming that today’s total energy density can be
completely associated with the cosmological constant and that the universe
is described by the qdS Finsler geometry, one can try to estimate how good
is the Berwald approximation. Today’s value of the Hubble parameter is
approximately given by H0 ' 68 (km/s)/Mpc which corresponds, in sec-
onds, to H0 ' 2.2× 10−18 s−1. Assuming that ` is of the order of the Planck
length `P ' 1.6 × 10−35 m, the dimensionless combination `H , in natural
units, is given by `H ' 3.7× 10−62 � 1. Since this is the combination driv-
ing the correction terms in the geodesic equations, we expect the violation
of the WEP to be very much suppressed in this context.

At this point, one may wonder whether the effective gravitational dy-
namics for this theory can be described in terms of a sort of metric-affine
theory of gravity12 (at least for a time scale t . tH ), where the connections
are the ones associated with a classical dS spacetime while the chronomet-
ric properties are given by the velocity dependent Finsler metric of qdS. In
this case the Ricci tensor would be constructed solely on the basis of the
classical connections and the Ricci scalar would be the contraction of the
Finsler metric with the Ricci tensor. Still, it would be interesting to have a
definite model providing such a dynamics.

Finally, one can also speculate that similar effects would be present in
some kind of κP-like deformation of the spherically symmetric gravita-
tional field generated by a mass M . This would actually provide a frame-
work to realistically test DSR models through tests of the WEP, as a bound
on η could imply a bound on the fundamental scale `. 13 We hope to further
develop these themes in future works.

12See e.g. [151] for background material.
13In the limit in which the Finsler structure is of the Berwald type, we do not consider

energy dependent velocities as sources of WEP violations because particles with the same
masses and same initial velocities will (approximately) experience the same acceleration.
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Chapter 5

Effective geometries from
quantum gravity

5.1 Introduction

As we briefly discussed in the Introduction, in phenomenological investiga-
tions of QG theories, there are tipically two limits playing a major role, the
continuum and the classical limit. Noticeably these two limits do not need
to coincide and their order does matter in extracting phenomenological con-
sequences. A very illustrative and general example in this sense was pre-
sented in a recent paper [30], where a mechanism for emergence of cosmo-
logical spacetime geometry from a quantum gravity setting was discussed.
Such a mechanism was based on very general assumption about the exis-
tence of quantum gravitational degrees of freedom to be described in terms
of a state Ψ0 in a Hilbert space HG, which can be considered “heavy" com-
pared to the matter degrees of freedom (in the Born-Oppenheimer sense).
Assuming negligible back reaction of the matter degrees of freedom on the
gravitational ones, one can suitably trace away the latter so to obtain an
effective continuous spacetime characterised by a dimensionless parame-
ter measuring its degree of classicality and in principle energy dependent
(from here the name of rainbow geometry [92, 101]). In [30] a low mo-
mentum approximation was used to derive a modified dispersion relation
showing a different limit speed of propagation for elementary particles plus
higher order terms in momentum.

In this chapter we shall revise the analysis of [30] and discuss its phe-
nomenological implications. In particular, we avoid any low momentum
approximation and perform an exact computation. By doing this we shall
show that while a rainbow (energy dependent) geometry indeed emerges
from the framework devised in [30], the related modified dispersion rela-
tion is momentum independent and does not rely on the explicit form of
the scale factor which determines the geometry. So we show that the re-
sult obtained in the low momentum limit by [30] is an exact result, i.e. no
momentum dependent departures from Lorentz invariance appear. Finally,
we shall discuss in detail what kind of phenomenological constraints can
be derived for such modified dispersion relation and which perspectives
for improvements are offered by this general treatment.
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5.2 Cosmological spacetimes from quantum gravity

Following [30] we shall start by considering a massive scalar field φ mini-
mally coupled to gravity in cosmological setting. When performing a sepa-
ration of the homogeneous and the inhomogeneous degrees of freedom, as
in the analysis presented in [23], one can describe the classical dynamics for
a mode ~k of the field (up to second order) via an Hamiltonian of the form

H~k = H0 −
1

2
H−1

0

[
π2
~k

+ (~k2 a4 +m2a6)φ2
~k

]
, (5.1)

withH0 the Hamiltonian of the homogeneous gravitational degrees of free-
dom (a, πa) and where (φ~k, π~k) are the variables in the phase space of the
~k-mode of the scalar field [23]. After formal quantization of matter and
gravity, (5.1) can be used to define a Schrödinger-like equation [30]. The
formal procedure followed in [23, 30] for quantizing of the Hamiltonian
(5.1) is to consider the product space H = HG ⊗ Hm, with HG the Hilbert
space for the gravitational degrees of freedom andHm the Hilbert space for
matter, represented here by a scalar field. Assuming negligible back reac-
tion by matter one can write a generic state Ψ ∈ H as Ψ = ψ0 ⊗ ϕ, where
ϕ ∈ Hm is the state associated to matter, and ψ0 ∈ HG is a generic gravita-
tional state for the homogenous degrees of freedom (which will be evolved
only thought H0). We can then trace away the gravitational degrees of free-
dom described by ψ0, and so formally obtain an effective Hamiltonian for
the matter sector

Ĥtraced
~k

=
1

2

[
〈ψ0|Ĥ−1

0 |ψ0〉 π̂2
~k

+ 〈ψ0|Ω̂(~k,m)|ψ0〉 φ̂2
~k

]
, (5.2)

with
Ω̂(~k,m) = ~k2Ĥ−1

0 a4 + m2Ĥ−1
0 a6 . (5.3)

It is worth stressing that this result does not rely on the specific form ofHG.
The Hamiltonian (5.2) is similar to the one of a quantum scalar field in

a classical FRLW spacetime given by the following line element

ḡµνdx
µdxν = −N̄2dt2 + ā2

(
dx2 + dy2 + dz2

)
. (5.4)

The quantum Hamiltonian of a ~k-mode is then given by [109]

Ĥeff
~k,m

=
1

2

N̄

ā3

[
π̂2
~k

+ (~k2ā4 + m2ā6)φ̂2
~k

]
. (5.5)

Following [30] one can then use the formal analogy between the traced,
QG-derived, Hamiltonian (5.2) and the quantum Hamiltonian (5.5). The
matching of the two operators requires that the relations [30]

ā6 +
~k2

m2
ā4 − δ = 0, and

N̄

ā3
= 〈ψ0|Ĥ−1

0 |ψ0〉 , (5.6)

are simultaneously satisfied, where parameter δ is defined by

δ :=
〈Ω̂(~k,m)〉
m2〈Ĥ−1

0 〉
. (5.7)
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As pointed out in [30], in contrast with the standard FLRW metric, in
this case the metric (5.4) allows for a non-trivial dependence of N̄ and ā on
~k, due to the conditions (5.6). Thus, modes with different momenta will
in general see different spacetimes properties, hence the name of rainbow
geometry.

5.3 Exact derivation of the quantum geometry

Let us first of all introduce, for the sake of convenience, the parameters η
and ξ by

δ =
~k2

m2

〈Ĥ−1
0 a4〉
〈Ĥ−1

0 〉
+
〈Ĥ−1

0 a6〉
〈Ĥ−1

0 〉
:=

~k2

m2
ξ + η. (5.8)

The three solutions of the first equation in (5.6) can be written in the follow-
ing form

ā2
n =− 1

3

 ~k2

m2
+ un

(
~k6

m6
− 27

2

(
~k2

m2
ξ + η

)
+

1

2

√
−27∆

)1/3

+

+
~k4/m4

un

(
~k6

m6
− 27

2

(
~k2

m2
ξ + η

)
+

1

2

√
−27∆

)1/3

 ,
(5.9)

with n = {1, 2, 3} and un = {1, (1/2)(−1 + ı
√

3), (1/2)(−1− ı
√

3)}.
It is possible to distinguish all the cases studying the discriminant given by

∆ =

(
~k2

m2
ξ + η

)[
4
~k6

m6
− 27

(
~k2

m2
ξ + η

)]
. (5.10)

It is easy to see that the study of the sign of (5.10) boils down to the study
of the following equation

4

27

~k6

m6
−

(
~k2

m2
ξ + η

)
= 0. (5.11)

This equation is exactly the equation
4

27

~k6

m6
= δ that differentiates the two

branches in [30].
It can be shown that for ∆ = 0 (one multiple root and all the roots

are real) the solutions ā2
2 and ā2

3 collapse to a double root that is real but
negative. For ∆ > 0 (three real distinct roots) all the solutions are real but
only ā2

1 is positive. On the other hand, for ∆ < 0 (one real root and two
complex conjugate roots), ā2

1 is real and positive while ā2
2 and ā2

3 are two
complex conjugate solutions. Hence it turns out that only the first solution
ā2

1 is positive over the possible values of k, ξ and η. From now on, the real,
positive solution ā2

1 will be denoted by ā2.
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Classical limit

It is natural to require for classical spacetimes, that is, spacetimes where quan-
tum effects are disregarded, to be independent of the momentum label ~k.
This condition can be implemented at the level of equation (5.6) that can be
rewritten, using (5.8), as

(ā6 − η) +
~k2

m2
(ā4 − ξ) = 0. (5.12)

It can be checked that the solution of the above equation that is independent
of ~k is ā6 = η together with the condition η2 = ξ3. The latter requirement
is exactly the classicality condition given in [30]. This solution can also be
found by solving the equation ∂ā2/∂|~k|2 = 0 using the explicit form of the
scale factor given in (5.9).

Parameter of non-classicality

While it is clear that there are two independent parameters associated to
the non-classicality of the fundamental Hamiltonian, η and ξ, we can also
define, following [30], a parameter β which is more convenient for measur-
ing the departure of our geometry from its classical limit. This is defined
by the expression

β ≡ 〈Ĥ−1
0 a4〉

〈Ĥ−1
0 a6〉2/3〈Ĥ−1

0 〉1/3
− 1 =

ξ

η2/3
− 1. (5.13)

It is trivial to see that β = 0 when the above derived classicality condition
ξ = η2/3 is met. Furthermore the expansion of ā2 around ~k = ~0 (equal to the
non-relativistic expansion given in [30]) is

ā2(~k2/m2) ≈ η1/3

1 +
β

3

(
~k/η1/6

m

)2
 . (5.14)

Thus we see in the low momentum limit ~k/m � 1, the parameter β again
measures the deviation from classicality.

5.4 Dispersion relation on a quantum, cosmological
spacetime

The dispersion relation for a~k-mode of a scalar field with massm in a FRLW
spacetime is determined by the equations of motion of the Hamiltonian
(5.5) in the classical limit,

φ̇~k =
N̄

a3
π~k, π̇~k = −φ~k

N̄

ā3
(~k2 ā4 + m2 ā6). (5.15)

Therefore one has

φ̈~k =

(
− 3H +

˙̄N

N̄

)
φ̇~k − N̄

2 φ~k

(~k2

ā2
+ m2

)
, (5.16)
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where we use the definition of the Hubble rate H = ˙̄a/ā.
In the eikonal approximation the mode of the field can be written as

φ~k(t) = A~k(t)e
ıθ~k(t), (5.17)

where the following conditions hold

θ̇2 � Ä

A
, θ̈ � θ̇2. (5.18)

Using (5.17) and (5.18) in (5.16) (together with the assumption that also ge-
ometrical variables are slowly varying Ṅ , ȧ� θ̇), the dispersion relation of
a ~k-mode reads as

k2
0

N̄2
=
~k2

ā2
+m2, (5.19)

where in the eikonal approximation k0 ≡ θ̇.
We now introduce a comoving cosmological observer with four-velocity

uµ = (1/N̄obs, 0, 0, 0). 1. This observer will experience a metric defined as

ḡobsµν dx
µdxν = −N̄2

obsdt
2 + ā2

obs

(
dx2 + dy2 + dz2

)
. (5.20)

In this framework it is natural not to assume that the ~k-mode of the field
and the observer experience the same spacetime (i.e. metric tensor). As a
matter of fact ḡobsµν is still the homogeneous and isotropic rainbow metric
satisfying the constraints (5.6) but it is evaluated at |~k| = 0. Therefore the
metric experienced by a cosmological observer coincides with the metric of
macroscopic objects with m� |~k|, as it should be expected.
Then the energy and the momentum of the particle measured by the ob-
server are the following

E = uµkµ =
k0

N̄obs
, ~p 2 =

(
ḡµνobs + uµuν

)
kµkν =

~k2

ā2
obs

, (5.21)

The on-shell relation written in terms of the (E, ~p) variables reads as

−m2 = −f2E2 + g2~p2, (5.22)

where the rainbow functions are defined as f := N̄obs
N̄

and g := āobs
ā [30].

The previous relation can be rewritten as

E2 =
1

f2
m2 +

g2

f2
~p 2. (5.23)

Using the second constraint in (5.6) and recalling that the expectation value
〈ψ0|Ĥ−1

0 |ψ0〉 depends only on the gravitational degrees of freedom there-
fore it is the same for the observer and for the ~k-mode of the field, one can
write

E2 =
ā4

ā4
obs

~p2 +
ā6

ā6
obs

m2. (5.24)

1Indeed also observers on Earth can be considered as almost comoving given that the
peculiar velocity of Earth is only about 360 Km/s (β = v/c ≈ 10−3) with respect to the
CMB/cosmological frame
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By means of the equation in (5.6) and the definition of δ in terms of η and ξ,
it follows the relation

m2 ā6

ā6
obs

= m2
(
−
~k2

m2

ā4

ā6
obs

+
~k2

m2

ξ

ā6
obs

+
η

ā6
obs

)
. (5.25)

The relation (5.24) can then be written as

E2 =

[
ā2
obs c

2 ~p2(1 + β) + c4m2η1/3
]
η2/3

ā6
obs

. (5.26)

At this point we use the fact that the comoving observer has zero or neg-
ligible peculiar velocity and accordingly, making use of (5.14), one can use
the relation ā6

obs = η. This allows us to rewrite the dispersion relation (5.24)
as

E2 = m2 c4 + (1 + β) ~p 2 c2, (5.27)

where we have explicitly introduced c for the present (classical) value of the
speed of light in vacuum.

Remarkably, in our quantum gravity derived geometry the dispersion
relation (5.27) is indeed exact, since no further assumptions than the ones
defining the model as realized in [30] have been used in deriving this re-
lation. Thus, (5.27) is valid not only in the low energy limit |~k|/m � 1 as
suggested in [30] but also in the high energy limit m/|~k| → 0 and it does
not show corrections proportional to higher power of the momentum2.

5.5 Phenomenology of the rainbow dispersion relation

Having now derived an exact form of the dispersion relation induced by
the deviation from classicality of the effective spacetime geometry, it is pos-
sible to address the kind of phenomenological constraints which can be de-
rived in this context. In this sense we have to take into account two facts.
First, the above derivation was done for a scalar field in a cosmological
(homogeneous and isotropic) setting. We do not know how this treatment
generalises to different background geometries and different fields. For the
first point we shall hence avoid statements based on ground based exper-
iments or particle phenomenology in strong gravity environments where
the isotropy and homogeneity requirements for the metric will fail. Sec-
ond, the treatment as proposed in [1] clearly differentiates between quan-
tum gravitational and quantum matter degrees of freedom (the former be-
ing traced out). If the quantum nature of the fields is a necessary require-
ment for seeing quantum features of spacetime then when dealing with
low-energy classical gravitational waves one can assume that they would
propagate at the standard speed of light c.

Given these facts one can envisage three possible scenarios:

2We take the point of view that since the peculiar velocity of the observer is negligible,
we use (5.14) to justify the choice of ā2

obs. One might wonder whether the choice of a non-
comoving frame would bring additional corrections to (5.27). This is probably the case.
However, these corrections would be proportional to the velocity of the frame and not to
the particle momentum and as such would not be intrinsic to the particle physics.
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• Scenario 1: field dependent β. Let us assume for the moment that
the parameter of deviation from classicality β depends on the type of
field considered. Even sticking to cosmological constraints this would
severely constraint the parameter. Just to make an example if light
and electrons have different limit speeds the constraints on the rel-
ative difference would be (|∆c2|/c2)γ,e = O(10−16) just using the ab-
sence of gamma decay in electron-positron pair for the 80 TeV photons
reaching us from the Crab nebula and the deduced at least compara-
ble energy for the electrons responsible of such photons via inverse
Compton scattering [95] (the constraint can be reduced to O(10−15) if
one prefers to use 20 TeV gamma rays reaching us from cosmological
distances, e.g. from an active galactic nuclei as Markarian 501 [56]).

• Scenario 2: Universal β. The expression (5.13) shows that the param-
eter β only depends on the quantum gravity state ψ ∈ HG. This
provides an argument in favour of the universality of the expres-
sion (5.27). However, universality of β has strong consequences for
the phenomenology of (5.27). In this case the only observable effects
would be associated to the interaction of matter with gravity3 which,
as said before, could be unaffected by the gravitational quantum cor-
rection and hence characterized by the geometric limit speed c as set
by the classical limit of the metric. Therefore if β > 0, one would
naturally expect that particles will be able to rapidly loose energy via
vacuum Čerenkov radiation of gravitons. Constraints from the obser-
vation of ultra high energy cosmic rays where derived in [108]. The
rate of energy loss was calculated to be

dE

dt
=
Gp4

3
(cp − c)2 (5.28)

where cp = c
√

1 + β is the speed of the particle and G is Newton’s
constant. The corresponding constraint from the observation of high
energy cosmic rays is β . O(10−15). This bound assumes that the
cosmic rays are protons, uses the highest record energy 3 ·1020 eV, and
assumes that the protons have traveled over at least 10 kpc. Assuming
(as normally given) that these cosmic ray reach us from extra-galactic
distances improves the limit up to β . O(10−19) [108].

If β is taken to be negative, although bounded from below (β ≥ −1)
assuming η and ξ positive, then the speed of gravity is higher than the
limit speed of massive particles. In this case one can still put a bound
on the value of the parameter considering emission of photons from
gravitational waves through ordinary Čerenkov effect, but it is much
less stringent being based on precision tests of General Relativity. In
this context the prediction of the orbital decay of binary pulsars agrees
with cg = c at 1% [54, 79].

For the sake of completeness, we report here the bound that can be
extracted from the direct detection of gravitational waves GW150914
[113]. The deviation of the speed of gravitational waves from the

3Within the matter sector a universal β could be reabsorbed by a simple redefinition of
the speed of light and of the particle masses.



Chapter 5. Effective geometries from quantum gravity 78

speed of light is parametrized in [143] with a mass term in the grav-
itational dispersion relation, i.e. E2 = p2 c2 + m2

g c
4. The observation

gave an upper limit of mg ≤ 1.2 · 10−22 Ev/c2, or a Compton wave-
length λg ≥ 1013 km [143]. Using the lowest observed frequency of
35Hz, one obtains the upper limit 1 − cg/c . 7 · 10−19. A model
independent analysis was carried out in [57], where the time delay
between gravitational wave signals detected at widely separated de-
tectors was used. The resulting bound constrains the speed of gravity
within 20% of the speed of light. The authors point out that, with
just few detections from the LIGO-Virgo-Kagra network, one would
be able to constrain the speed of gravity to within 1% of the speed
of light. It is also worth pointing out that, a combined detection of a
gravitational wave signals with electromagnetic counterparts would
provide a bound several order of magnitude stronger [62, 63, 94, 112].

• Scenario 3: Time dependent β. Within a cosmological context it
is still conceivable that the classicalization of the universe has pro-
gressed in time starting from a relatively large value of β which has
been driven towards zero with cosmological expansion. This hypoth-
esis would require some plausible argument for the initial value of β
and his evolution in time. Determining such evolution is beyond the
scope of this work but one can easily foresee that a varying β could
be easily be responsible for interesting phenomenology. For example
if a universal (except for gravity) β(t) had a dramatic transition from
approximately one (quantum phase) to zero (classical phase) in the
early universe this would reproduce the basic setting for bi-metric
varying speed of light scenario (see e.g. [37]) which can lead to a
spectrum of primordial perturbations and a resolution of the horizon
problem. From the point of view of phenomenological constraints this
scenario could be tested via future observation of primordial gravita-
tional waves imprint in the B modes of the cosmic microwave back-
ground (as the scalar to tensor ratio would be modified if the speed
of light/inflaton and gravity do not coincide). In the most general
case that different matter field are endowed with different β with
non-negligible differences in the early universe, constraints on ∆β
could be provided by Big Bang nucleosynthesis and CMB observa-
tions (e.g. via possible modifications of the physic at recombination).

5.6 Conclusions

In conclusion one can say that the framework developed in [23, 30] and in
the present work offers a very general prediction for a regime, stemming
from a quantum treatment of the gravitational sector, where a continuous
spacetime has emerged but might retain a quantum nature which can be
probed by quantum fields. In this chapter we have shown that an exact
treatment of the emergent rainbow (~k-depedent) geometry lead, surpris-
ingly, to a dispersion relation which is of relativistic form albeit character-
ized by a shift in the limit speed of propagation. In particular, differently
from [30], in deriving our main result (5.27) we did not need to use the gen-
eral explicit solution (5.9) that we derived in Section 5.3 or any expansion
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of it for low momenta but we only used the equation that has to be satis-
fied by the rainbow scale-factor (5.12). So if (as it seems to be hinted by
the present derivation) the non-classicality parameter β is universal for any
non-gravitational field, then no Lorentz violation will be detectable in the
matter sector of the Standard Model and only gravity-matter phenomenol-
ogy might be able to show any deviation from standard physics (see [130]
for an example of a universal, but frequency-dependent, correction to the
dispersion relation in the context of deformed special relativity and its phe-
nomenological implications).

Of course, the simplicity of the present model does not allow to have
sharp predictions for what regards the phenomenology associated to this
approach. Still we have seen that present constraints on the value of β are
already very stringent both in the first two of the above discussed scenar-
ios (if β > 0). This seems to hint that if this framework is indeed realised
in nature then, after the continuous limit, a “classicalization" (β → 0) of
spacetime should be achieved before it could leave a strong imprint on cos-
mological observations well explained by the standard model of cosmology.
It would be hence important to further develop this framework by investi-
gation a possible time evolution of the β factor in the early universe. This in
turn could allow to discuss interesting phenomenology (e.g. varying speed
of light scenarios) and cast constraints.

It would be also interesting to investigate what are the consequences of
abandoning the non-backreaction hypothesis which was at the root of this
model so far. We can speculate about two possible effects. The first one is
that, since the gravitational state ψ (including also non-homogeneous de-
grees of freedom) will now depend on the state of matter, then the param-
eters ξ and η will generically depend on the momentum kµ of each matter
mode (and hence β will do so as well). Secondly, if one relaxes the test-
field approximation, the backreaction will allow the Newton constant GN
to appear in the computations as an additional scale beside the dimension-
less parameter β. These two facts could potentially lead to higher order
corrections to the dispersion relation which are not emerging in the present
analysis.

Finally, this framework has been so far developed only for cosmological
solutions. It would be interesting to extend it to more general backgrounds
such as very high precision ground based experiments with quantum ob-
jects (e.g. Bose–Einstein condensates [14]) could be more appropriate to test
this kind of tiny deviations from classical spacetime.
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Chapter 6

Conclusions

The quest for a theory of QG is as old as GR itself and it has been engaging
researchers in the field for almost a century now. For all this time the lack
of experimental guidance has been the main reason for the development of
an enormous variety of theoretical approaches to this problem, each pro-
posal being based on one or more concepts or techniques that are consid-
ered more essential than others. For instance, one could start by assum-
ing fundamental discreteness and Lorentz invariance as in CST, or mak-
ing background independence and non-perturbative techniques the central
building blocks of the theory as in LQG, while in Hořava—Lifshitz gravity
the guiding principle is renormalizability.

However, in the last twenty years the idea that the QG regime is actu-
ally experimentally accessible has started to gain support by the commu-
nity, perhaps as a consequence of decades of theoretical speculation. From
the phenomenological point of view, the plethora of QG approaches stim-
ulates the need to be able to distinguish among the various predictions of
different models in a refined way. As an example, modified dispersion rela-
tions are typically a common feature of Lorentz violating and DSR theories
but their phenomenology is actually different, to which degree depending
on the specific models. Similarly, it is important to point out what are the
unique features associated with models that realize spacetime discreteness
in a particular way.

Specifically, Chapter 2 of this thesis is dedicated to investigating the dis-
tinct way discretization is incorporated in CST. A causal set is in fact at the
same time discrete and Lorentz invariant and the outcome of this union is
an instrinsic nonlocality. We study the consequences of this structure from
the point of view of entanglement entropy. As we already pointed out in
the introductory chapter, the latter has become a standard tool of investiga-
tion in QG research due to its potential connections with the fundamental
structure of spacetime. One could indeed argue that the typical divergences
of the entanglement entropy in QFT are essentially due to the fact that the
background is a continuous manifold. Therefore in ordinary QFT on a clas-
sical spacetimes, one has to introduce a cutoff to make the entanglement
entropy finite and this choice is often implicitly justified by the expectation
that QG would somehow provide a physical motivation for the existence of
a minimal length. More specifically, we analyze the entanglement entropy
of a scalar field living on a causal set using a covariant approach introduced
in [134].

Our computation shows that while the entropy is indeed regularized
by the presence of a fundamental scale, in CST the area law is replaced by
a spacetime volume law. We show that this result is common to local and
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nonlocal Green functions for two, three and four spacetime dimensions. We
also study how, truncating the spectrum of the Pauli–Jordan matrix in the
appropriate way, it is possible to recover the area law in all the cases we
consider, hence making contact with the results in the continuum. The sec-
ond point of our analysis is that in the nonlocal models the presence of a
new scale induces a more complex structure of the entanglement entropy
with possible subleading terms for small values of the density. In the last
part of Chapter 2 we extensively discuss how all these effects are direct
consequences of the specific kind of Lorentz invariant discretization imple-
mented in CST.

Another framework that provides a fundamental discreteness scale is
LQG. In this case the classical variables are functionals defined on a contin-
uum spatial hypersurface and geometrical operators acquire discrete spec-
tra after quantization. In Chapter 3, we start posing the basis for the study
of modified wave equations for scalar fields coupled to the quantum geom-
etry described by LQG.

There are here two ingredients that cause a departure from the stan-
dard picture: the background discrete quantum geometry and the non stan-
dard quantization procedure known as polymer quantization, a technique
imported from the gravitational sector that allows one to perform a back-
ground independent quantization of matter fields in the spirit of the LQG
programme. Given that, at least at the kinematical level, the discretiza-
tion predicted by LQG is purely spatial, our analysis reveals that only the
spatial part of the wave equation acquires non-standard features while the
temporal part is untouched. Although, this might seem to suggest that the
dynamics cannot be Lorentz invariant there are other elements that have to
be taken into consideration. For instance, the time parameter used for the
evolution could be taken to be a clock field. The coupling of this field with
the quantum geometry might induce a discrete time evolution that could in
principle modify the temporal part of the wave equation so to give, loosely
speaking, an overall Lorentz invariant dynamics. It is also possible that the
modified wave equation is invariant under a deformed symmetry group
preserving the discretization scale and maintaining the relativity principle.

It is rather clear at this point that the presence of a fundamental scale is
strictly related to the fate of Lorentz symmetry. Departures from Lorentz in-
variance are usually parametrized by modifications to the special relativis-
tic dispersion relation weighted by a dimensionful parameter representing
the scale at which the modifications become important.1 Lorentz transfor-
mations, being linear, cannot preserve this new scale and therefore these
MDR are Lorentz violating. On the other hand, as we already mentioned
earlier, DSR relativistic theories admit an additional non trivial invariant
energy scale beside the speed of light. In this framework, the relativity
principle is preserved even with a non homogeneous dispersion relation.
In Chapter 4 we show that by adopting the framework of Finsler geometry
a velocity-dependent (or equivalently, momentum-dependent) spacetime
metric can be extracted from a modified dispersion relation compatible with
the symmetries of q-de Sitter, a deformation of the standard de Sitter group,

1It can be shown that in CST, the discrete d’Alembertian operator, once averaged over
several sprinklings of Minkowski spacetime, has a continuum representation in terms of
a nonlocal continuum wave operator with an associated undeformed dispersion relation,
hence preserving Lorentz symmetry.
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offering a consistent geometrical scheme for treating what are known as
rainbow geometries. We analyze the properties of this spacetime and we re-
cover the dynamics of point-like particles usually obtained with the Hamil-
tonian formalism, in a fully reparametrization invariant way. Moreover
we find that the Finsler spacetime associated with q-de Sitter is not of the
Berwald type, the subclass of Finsler spaces for which the weak equiva-
lence principle holds. However, we evaluate with an order of magnitude
estimation that the deviation from the free falling trajectory is extremely
suppressed.

In Chapter 5, we study a model in which a mechanism for the emer-
gence of a cosmological spacetime geometry from a quantum gravity set-
ting is proposed. The hypothesis on the underlying quantum geometry are
rather general and, after integrating out the quantum gravitational degrees
of freedom in a Born–Oppenheimer approximation, we show with an ex-
act computation that the effective geometry turns out to be a cosmological
rainbow geometry. We also compute the dispersion relation of point-like
particles measured by a comoving observer and show that it does not con-
tain momentum dependent modifications of the dispersion relation. The
parameter determining the departure from the ordinary classical spacetime
is a combination of expectation values of products of geometrical operator
over the gravitational quantum state. In the limit in which the products can
be factorized, the background becomes completely classical. This model
represents an example of a non trivial spacetime which is the result of a
continuum but non classical limit.

Outlook

Having reviewed the main results presented in this thesis, we now discuss
some open questions and possible future developments of our work.

• For what concerns the computation of the entanglement entropy in
causal set theory, one key result that we hope to obtain in the near
future is the precise computation of the amount of information, en-
coded in causal relations, that is not explained by the equations of
motion and that gives rise to a non vanishing entropy in the case of
the spacelike partition. It can be argued that this kind of entropy
has to contribute to the total balance also in the case of the entan-
glement entropy, posing a problem with respect to the confrontation
with the continuum limit in which causally related spacetime points
should not contribute to the entanglement entropy. Another possibil-
ity in this direction is the study of the SEE for different topologies and
spacetimes with curvature.

We presented a generalization to higher dimensions and non local
models of the two dimensional cutoff on the PJ matrix needed to
match the continuum results, based on dimensional arguments and
numerical simulations. However, a direct computation of the SEE in
the continuum would allow us to check our results, in particular for
the nonlocal models for which the behavior of the entropy is richer
than in the local models.
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• The procedure that we followed in Chapter 3 produced a modified
KG equation with non linear combinations of finite difference replac-
ing second order spatial derivatives.

In obtaining our result, we ignore possible dependence of the spread
σ on the phase space variables while generically it is implied by the
dynamical evolution and the requirement that the state remains sharply
peaked around a classical configuration. This is a point that we will
address in the near future. Moreover, if our objective is to find cor-
rections to the ordinary dynamics in Minkowski spacetime or in a
cosmological background, we should also consider coherent states of
gravity beside the matter ones.

A part from representing a framework suitable for investigating LI,
this model can be easily used to extend results obtained in the context
of LQC, where, until now, polymer quantized gravitational variables
had been coupled to field quantized with the standard prescription
while it would be natural to use polymer quantization for both.

• The study of the Finsler geometry associated with the q-de Sitter group
revealed that these kind of models are expected to violate the WEP.
This Finsler spacetime is essentially a spacetime that reduces to the
classical de Sitter spacetime when the typical length of the deforma-
tion goes to zero, while reproduces the Finsler spacetime associated
with κ-Poincaré in the limit in which the curvature goes to zero. In
this sense it represent an example of curved spacetime with local κ-
Poincaré symmetries. It would then be interesting if one could in-
troduce an analogous model in the spherically symmetric case. This
would provide a natural framework to test DSR models through vio-
lations of the WEP.

It would be interesting to explicitly explore the symmetries of the
Finsler geometry associated with the q-de Sitter using the (general-
ized) Killing equations to check if the results for κ-Poincaré are also
valid in this case.

Another development could be the study of the connections associ-
ated with a Finsler structure to see if all the properties of the momen-
tum space of q-de Sitter or κ-Poincaré can be reconstructed.

• The system investigated in Chapter 5 is probably too simplified to
provide a really viable model for phenomenology. It should be pos-
sible however to make a direct comparison between the results ob-
tained for the scalar field with similar computations for vector fields,
spinors and perturbations of the metric tensor itself, that in the low-
energy limit should be approximately described by perturbations of
the effective rainbow metric.

In conclusion, the work presented in this thesis covers some aspects
of the investigation of the quantum properties of spacetime, from theo-
ries with fundamental discreteness to effective low-energy descriptions in
terms of rainbow geometries. We think that formulating convincing proce-
dures to extract the effective dynamics of matter fields couple to quantum
spacetimes is of capital importance in the direction of building a consistent
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phenomenological framework to test QG theories that differ in the way fun-
damental discretization is implemented. On the other side of the spectrum,
Finsler geometry provides a solid geometrical structure for the description
of rainbow geometries that can emerge for models with deformed or bro-
ken relativistic symmetries seen as departures from the classical description
of spacetime at intermediate scales.

We think that all these themes will prove themselves quite relevant for
the advancement of QG phenomenology in the next coming years.
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Appendix A

Entanglement entropy of
nonlocal scalar fields via the
replica trick

In this appendix, we briefly review the computation of the entanglement
entropy of a quantum field using the replica trick [53, 110] and use it in the
case of the nonlocal scalar field theory emerging from CST in the continuum
limit in two, three and four spacetime dimensions.

A.1 The replica trick

Let us consider a quantum field φ(x) on a d-dimensional spacetime with
coordinates xµ = (τ, x, zi, i = 1, ..., d − 2), where τ is the Euclidean time,
and a hypersurface Σ defined by the condition x = 0. The coordinates zi

are therefore the coordinates on Σ.
Entanglement entropy is computed by preparing the field in the vac-

uum state and then tracing out the degrees of freedom which are inside
(outside) the surface Σ. The computation goes as follows.

First, we define the vacuum state of scalar field by a path integral over
half of the Euclidean space defined by τ ≤ 0 in such a way that the field
assumes the boundary condition φ(τ = 0, x, z) = φ0(x, z),

Φ[φ0(x, z)] =

∫
φ(xµ)|τ=0=φ0(x,z)

Dφ e−W [φ], (A.1)

where W [φ] is the action of the field. The surface Σ, given by (τ = 0, x = 0),
separates the boundary data in two parts φ−(x, z) for x < 0 and φ+(x, z) for
x > 0. Now tracing over φ−(x, z) one obtains a reduced density matrix

ρ(φ1
+, φ

2
+) =

∫
Dφ− Φ(φ1

+, φ−)Φ(φ2
+, φ−), (A.2)

where the path integral goes over fields defined on the whole Euclidean
space-time except a cut (τ = 0, x > 0). In the path integral the field φ(xµ)
takes a boundary value φ2

+ above the cut and φ1
+ below the cut.

The trace of n-th power of the density matrix (A.2) is given by the Eu-
clidean path integral over fields defined on an n-sheeted covering of the cut
space-time. Essentially one considers n copies of this space-time attaching
one copy to the next through the cut gluing analytically the fields. Passing
from Cartesian coordinates (τ, x) to polar ones (r, α), the cut corresponds
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to the values α = 2πk with k = 1, 2, ..., n. This n-fold space is geometrically
a flat cone Cn with a deficit angle 2π(n− 1). Therefore one has

Trρn = Z[Cn], (A.3)

where Z[Cn] is the Euclidean path integral over the n-fold cover of the Eu-
clidean space, i.e. over the cone Cn.

It can be shown that it is possible in (A.3) to analytically continue to
non-integer values of n → β. With that said, one observes that −Trρ̂ ln ρ̂ =
−(β∂β − 1) ln ρβ|β=1, where ρ̂ = ρ

Trρ . In polar coordinates (r, α), the conical
space Cβ is defined by making the coordinate α periodic with the period
2πβ, where (1 − β) is very small. Then introducing W (β) = lnZ[Cβ], one
has

S = (β∂β − 1)W (β)|β=1. (A.4)

At this point in order to calculate W (β) one can use the heat kernel method
in the context of manifolds with conical singularities (see [110] and refer-
ences therein).

Once the effective action W (β) is calculated, the entanglement entropy
is simply given by the following formula

S =
A(Σ)

12(4π)(d−2)/2

∫ ∞
ε2

ds

s
Pd−2(s), (A.5)

where ε is a UV cut-off that makes the integral finite (s has dimensions of a
length squared) and

Pd−2(s) =
2

Γ(d−2
2 )

∫ ∞
0

dp pd−3 e−sF (p2). (A.6)

F (p2) is the Fourier transform of kinetic operator of a non-interacting
Lorentz invariant scalar field theory.

A.2 The case of the nonlocal scalar field theories from
CST

We will now apply the procedure described above to the case of nonlocal
scalar field theories from CST. In particular we will consider the continuum
d’Alembertians obtained by averaging the operators (2.13) over all sprin-
klings of Minkowski spacetime. The result of the averaging process is given
by the following expression

�(d)
ρk
φ(x) = ρ2/d

aφ(x) + ρ

Lmax∑
n=0

bn
n!

∫
J−(x)

e−ρV (x,y) [ρV (x, y)]n φ(y) dy

 ,

(A.7)
where ρk = l−dk , lk being the nonlocality scale, J−(x) is the causal past of x
and V (x, y) is the spacetime volume between the past light cone of x and
the future light cone of y.

Following the discussion in [29], the momentum space representation
of (A.7) can be considered for p2 � ρ

−2/d
k (IR limit) and p2 � ρ

−2/d
k (UV
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limit). The former is universal and given by

Fρk(p2)→ −p2, for p2 � ρ
−2/d
k , (A.8)

while the latter depends on the spacetime dimensions and can be given as

Fρk(p2)→ a ρ
2/d
k + b ρ

2/d+1
k k−d + ..., for p2 � ρ

−2/d
k . (A.9)

From Eq.(A.9), one can see that the nonlocal d’Alembertian goes to a
constant in the UV. This term correspons to a delta function for the Green
functions in real space in the coincident limit and it is essentially a remnant
of the fundamental discreteness of the causal set (see the discussion in [29]).
This term can be subtracted and one can define a regularized d’Alembertian
operator as

Freg(p2) =
a ρ

2/d
k Fρk(p2)

a ρ
2/d
k − Fρk(p2)

. (A.10)

The operator (A.10) maintains the correct IR limit given by Eq.(A.8) and
possesses the new UV behavior displayed by the following expression

Freg → −
a2

b
ρ

2/d−1
k pd + ..., for p2 � ρ

−2/d
k . (A.11)

In order to compute the entanglement entropy via the replica trick we need
to Wick rotate the operator Freg or, equivalently, its retarded propagator.
However this cannot be done on the retarded propagator because the con-
tour, ΓR, would cross singularities. To avoid this problem one must use the
Feynman propagator whose contour can be Wick rotated without crossing
any singularities (see [39, 41, 128] for further details).

IR and UV behavior of the entanglement entropy

The behavior of (A.10) for p2 � ρ
2/d
k , for negligible nonlocal effects, is given

by eq.(A.8). Hence the entanglement entropy computed solely on the basis
of this contribution scales with the area of the surface Σ. In particular, in
d = 2, 3, 4, the entropy is given by

S
(2)
loc =

1

6
A(Σ) ln (L/ε)

S
(3)
loc =

A(Σ)

12
√
π

1

ε

S
(4)
loc =

A(Σ)

48π

1

ε2
,

(A.12)

where L is a IR cutoff and ε is a UV cutoff needed to make the entanglement
entropy finite.

In the UV the entropy is dominated by the UV behavior of the momen-
tum space d’Alembertian. For d = 2, 3, 4 the expansion of (A.10) in the limit
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p2 � ρ
2/d
k is given by the following expressions

F (2)(p2)→ −p
2

2
,

F (3)(p2)→ − p3

ρ
1/3
k

,

F (4)(p2)→ − p4

ρ
1/2
k

.

(A.13)

By using (A.13) in (A.5) and (A.6), one can estimate the leading contri-
bution to the entanglement entropy in the limit p2 � ρ

2/d
k for the nonlocal

models in the continuum. The results are

S
(2)
UV ∝ A(Σ) ln (L/ε) ,

S
(3)
UV ∝

A(Σ)

ε2/3 l
1/3
k

,

S
(4)
UV ∝

A(Σ)

ε lk
.

(A.14)

where lk = ρ
1/d
k . In d = 3, 4, the scaling of the entropy with respect to

the cutoff ε is weaker with respect to the local case due to the presence of
the nonlocality scale. In d = 2, the nonlocality scale does not enter the UV
expansion of the wave operator, hence the leading contribution to the en-
tanglement entropy in the UV is untouched with respect to the local theory.
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Appendix B

Propagation of massless
particles

Let us apply the procedure reviewed in Sec.5.2 to a massless field θ. The
constraints (5.6) read as

N̄θ

ā3
θ

= 〈Ĥ−1〉, N̄θ

ā3
θ

~k2 ā4
θ = 〈Ω̂(~k,m = 0)〉. (B.1)

In this case it is possible to solve for ā2
θ straightforwardly from (B.1),

ā2
θ =

1

|~k|

(〈Ω̂(~k,m)〉
〈Ĥ−1

0 〉

)1/2
. (B.2)

For m = 0 one has that (see (5.3))

Ω̂(~k,m = 0) = ~k2 Ĥ−1
0 a4. (B.3)

It follows that

〈Ω̂(~k,m = 0)〉 = ~k2 〈Ĥ−1
0 a4 〉 = ~k2 〈Ĥ−1

0 〉 ξ. (B.4)

Hence in the massless case the scale-factor ā2
θ and the lapse time function

N̄θ are independent of ~k,

ā2
θ =

(〈Ĥ−1
0 a4〉
〈Ĥ−1

0 〉

)1/2
=
√
ξ, N̄θ =

(
〈Ĥ−1

0 a4〉
)3/4 〈Ĥ−1

0 〉
1/4 = ξ3/4 〈Ĥ−1

0 〉.

(B.5)
Therefore, massless particles with different ~k experience the same scale-
factor and hence the same metric. Moreover, it can be seen from (B.5) that
the scale factor carries information only about the parameter ξ and does
not depend on η. It is not possible to reconstruct β probing the quantum
geometry using only massless test particles. Hence, even if spacetime has
quantum features (β 6= 0), still massless particles would see it as classical.

Note that in the classical limit β → 0, one can write

ξ =
〈Ĥ−1

0 a4〉
〈Ĥ−1

0 〉
→ a4

cl, (B.6)

η =
〈Ĥ−1

0 a6〉
〈Ĥ−1

0 〉
→ a6

cl, (B.7)
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and the metric defined by (B.5) becomes an ordinary FRW flat metric given
by the following line element

ds2 = g(cl)
µν dx

µdxν = −N2
cldt

2 + a2
cl(dx

2 + dy2 + dz2). (B.8)

If we assume that the weak equivalence principle holds and no backreac-
tion, then Eq. (B.8) has to provide the same metric given by the classical
limit of the one experienced by a massive field. This is indeed the case
given that in the limit β → 0 the general rainbow scale factor ā2, introduced
in (5.9) for a massive scalar field, reduces to ā2(~k,m, ξ, η)→ ā2

0 =
√
ξ = η1/3

giving then the classical scale factor by means of Eqs. (B.6) and (B.7).
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