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Abstract 
	

	

Despite their growing popularity as models of visual functions, it is widely 

assumed that rodents deploy perceptual strategies not nearly as advanced as those of 

primates, when processing visual objects. Such belief is fostered by the conflicting 

findings about the complexity of rodent pattern vision, which appears to range from 

mere detection of overall object luminance to view-invariant processing of 

discriminant shape features.  

Here, we sought to clarify how refined object vision is in rodents, by 

measuring how well a group of rats discriminated a reference object from eleven 

distractors, spanning a spectrum of image-level similarity with the reference. We also 

presented the animals with random variations of the reference, and we processed their 

responses to these stimuli to obtain subject-specific models of rat perceptual choices.  

These models captured very well the highly variable discrimination 

performance observed across subjects and object conditions. In particular, they 

revealed how the animals that succeeded with the more challenging distractors were 

those that integrated the wider variety of discriminant features into their perceptual 

strategy. Critically, these features remained highly subject-specific and largely 

invariant under changes in object appearance (e.g., size variation), although they were 

properly reformatted (e.g., rescaled) to deal with the specific transformations the 

objects underwent.  

Overall, these findings show that rat object vision, far from being poorly 

developed, relies on the same kind of feature-based filtering (iterated across multiple 

scales, positions, etc.) that is at work in primates and is implemented in state-of-the-

art machine vision systems, such as deep convolutional neural networks. 
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Chapter 1: Introduction 
 
 
1.1 Complexity of the invariance 
 
 

If, like humans, you belong to a species that has evolved to use vision as its 

main sensory input, your ability to effectively perform object recognition represents 

your mean of survival. Everything you do from differencing a predator from a pray to 

finding a potential mate depends on it. And this is the reason why “visually driven” 

species have developed incredibly efficient mechanisms in order to solve this task.  

When you pick up a random paper or a review about object recognition you 

will usually, right at the beginning, find a sentence like this: “Achieving invariant 

(object) recognition represents such a formidable computational challenge that is 

often assumed to be a unique hallmark of primate vision” (Zoccolan, 2015). In other 

words, the task at hand is so complex that you need to be at the apex of the brain 

evolution (in terms of the brain/body ratio and therefore the raw computational power 

that you have at your disposal) to be able to solve it. And the complexity of the task 

can hardly be overstated. Even though humans are able to effortlessly perform this 

task in their everyday lives the number of calculations that our brain has to perform in 

order to fulfill the task is enormous (state of the art computer systems currently 

developed by the top tech companies for this purpose are still far behind). Having all 

this in mind it is not hard to understand why (invariant) object recognition presents 

one of the key open questions in visual neuroscience today. 

And where, exactly, does this complexity come from?  It comes from the 

organization of our visual system and the fact that our brain needs to reconstruct the 

physical 3D world from the 2D information it gets from our eyes. 
 

Figure 1. Pixel-level image 
variation caused by 
variation in viewing 
parameters for single 
object is often larger than 
the pixel differences 
between different objects. 
Here we show 3D-rendered 
images of the faces of two 
individuals undergoing a 
rotation through 200 in 
azimuth. 
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 For example, when we compare the retinal images (pixel similarity) of 

different individuals viewed from the same angle they are more similar than the same 

individual viewed from different angles, even for relatively small angles (Figure 1, 

adopted from Cox, 2014). 

And the rotation (in depth) is only one of the possible transformations. Same 

objects (depending on your view point) can vary in size, position, lighting and the 

presence of noise/background. Calculating all the possible combinations of these 

variables leads us to the conclusion that we are dealing with an effectively infinite 

number of different retinal patterns for every single object we encounter in our 

everyday lives. So how can a brain possibly be able to deal with so many variations 

and still be able to give us the answer to the question “what is that”? The solution is 

called “invariance” and it assumes that our visual representation of the outside world 

must be very tolerant to changes in the appearance of individual objects, while (at the 

same time) it must be selective enough to the features that define object identity to 

uniquely identify individual objects. In the primate visual cortex this problem has 

been solved in the inferotemporal cortex (IT), which represents the final stage of the 

so-called “ventral stream”, the neural pathway primarily involved in the processing of 

the visual information necessary for the complex object recognition (for review see 

Logothetis and Sheinberg, 1996; Tanaka, 1996). 
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1.2 The anatomy of the ventral stream 
  
 
1.2.1 Area V1 

 

The ventral stream begins in the largest area dedicated to visual processing – 

primary visual cortex (area V1) in the occipital cortex. Our knowledge about the 

properties and functions of V1 neurons comes from the pioneering work of Hubel and 

Wiesel (for which they’ve received the Nobel Prize in Physiology or Medicine in 

1981). Their work (Hubel and Wiesel, 1959) showed that: there is a topographical 

map of the visual field “contained” inside the visual cortex where neighboring 

neurons process information from nearby visual fields and that V1 region of the brain 

is mostly organized in the “orientation columns” - a column of neurons (spanning 

multiple layers) that fires only when exposed to the stimuli of a specific orientation or 

direction of motion. Orientation columns are composed of simple cells - small 

receptive fields (RF - fields of visual space where specific stimuli can elicit a neural 

response) and complex cells - usually summing the input of a couple of simple cells 

therefore having a wider receptive fields. The complex cells need a moving stimulus 

in order to elicit the best response. The original work also defined hypercomplex cells 

(also known as end-stopped cells) as a separate type of cells but later work (Dreher, 

1972) showed that they could be categorized as subsets of either simple or complex 

cells. The primary role of the V1 region is to extract the so-called low-level 

information about the object properties (oriented edges, contrast, color) and to 

forward this pre-processed visual information to the adjacent visual areas that 

constitute the ventral stream. 

 

1.2.2 Area V2 

 

The stream continues with the V2 area. V2 is also known as prestriate cortex, 

since it is a direct continuation of the V1 region (Brodmann area 17 in humans), 

which is also known as the striate cortex (from Latin stria – line, channel) because of 

the tightly packed axons of the neurons from the lateral geniculate nucleus (LGN) 

which form stripes (Line of Gennari) easily noticeable on the microscope slices. 

Although this is a usual terminology in the visual neuroscience, it is worth mentioning 
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that most (if not all) non-primates lack this specific morphological characteristic. V2 

receives two strong feedforward inputs – from V1 and from pulvinar (Marion, 2013). 

It projects further to areas V3, V4 and V5(MT) but it also sends feedback connections 

to V1. Most of the anatomical and functional characteristics of the V2 are similar to 

V1: retinotopy is preserved, orientation columns are present and cells are tuned for 

orientation, special frequency and color. Due to the convergent input from the V1, 

cells in V2 are able to code for some more sophisticated properties such as contours 

and textures. Approximately one-third of the neurons in V2 show inhibitory 

interactions that make them selective for combination of orientations, which is 

essential for the analysis of contours and textures (Anzai, 2007). It has been shown 

that V2 neurons also play a part in the discrimination between foreground and the 

background, combining stereoscopic information (the depth of field) with the global 

configuration of the contours (Gestalt factors) to interpolate 3D information from 2D 

images (Qiu and von der Heydt, 2005). Even though the simplified modular view is 

very popular in the presentation of how the visual system (and our entire brain 

works), it should be noted that all of the “visual” areas are actually multimodal and 

that they can also preform functions that are not directly related to sensory processing. 

Experiments in rats (López-Aranda et al, 2009) have shown the crucial role of the 

layer 6 of the V2 area in the processing of object recognition memory (ORM) – the 

expression of the protein RGS-14 led to the transformation of the short-term ORM 

into a long-term ORM while the selective destruction of this layer led to the complete 

loss of ORM. 

Once we move from the (pre)striate cortex, things starts to complicate 

exponentially. The number of the extrastirate areas is very much species dependent 

and the structural mapping in humans is very limited, due to our inability to perform 

the usual histological and electrophysiological procedures we use in other spices. The 

introduction of the fMRI helped a lot but there is still substantial progress to be made 

– especially using anatomical MRI and diffusion tensor imaging (DTI). Since most of 

the research comes from the macaque monkeys as experimental models, both 

nomenclature and functional connectivity relies heavily on these finding.  

It their paper, Felleman and Van Essen (1991) make a summary of the areas 

that are (almost) exclusively dedicated or connected to vision and they report “25 

neocortical areas that are predominantly or exclusively visual in function, plus an 

additional 7 areas that we regard as visual-association areas on the basis of their 
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extensive visual inputs”. This map is much less accurate/populated when it comes to 

humans (due to aforementioned limitations). Just last year a Nature paper also 

published by Van Essen’s lab (Glasser, M. F. et al, 2016) added almost a 100 new 

areas to the map of neocortex with all likelihood that this number will increase with 

the new data that we obtain.  

 

1.2.3 Area V3 

 

 Area V3 is also referred as a third visual complex because the questions of 

structural and functional subdivision (in macaques and humans, and much less in 

other species) are still not settled. This area was first characterized by Zeki (1969) as 

a single strip adjacent to V2 that has a mirror-symmetric visuotopic organization. 

Later studies showed that V3 actually consists of two areas that are physically 

separated by area V4 (Felleman and Van Essen, 1991; Burkhalter et al, 1986) and 

functionally divided between the dorsal (V3/V3d) and ventral (VP/V3v) pathway 

(Figure 2). However the most recent study published by Lyon and Kaas (2002) seems 

to confirm that V3d and V3v are subdivisions of a single V3 area. You can also notice 

how much the position and the size of these areas vary (Fig. 2) depending on the 

author, so additional data is needed to settle this argument. VP/V3v area is part of the 

ventral pathway and most of the cells are tuned to complex features like shape. Most 

of the projections from this area go to area V4. V3/V3d is part of the dorsal pathway 

and most of the cells are encoding a global motion perception. 

 
 
 
 
 
 
 
 
 
 

Figure 2. – Maps of the visual cortical areas in the macaques. Depending on the year of publication the 
maps get more and more refined. Still, because of the big intersubject variability it is very hard to 
produce a consistent map. A) Map published by Ungerleider and Desimone (1986). B) Map published 
by Felleman and Van Essen (1991). C) Map published by Lewis and Van Essen (2000). D) Overlay 
map showing the Lewis and Van Essen summary map (same as C) in colors with areas identified in 
white and the Felleman and Van Essen scheme (same as B) as outlines, with areas identified in black.  
 

A 

B 

C 

D 
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1.2.4 Area V4 

 

Area V4 (in macaques) consists of a continuous strip adjacent to area V3 but 

is also functionally divided into several areas. The first division comes from the 

visuotopic organization where the ventral part of the area (V4v) carries a lower field 

representation while the dorsal part (V4d) carries an upper field representation. Both 

areas are also “separated” by their (left and right) hemifield representations (Fize et 

al. (2003). The area was first investigated by Zeki (1969) reporting projections from 

the central visual field representations of V2 and V3. New data has expanded this 

picture adding to the connection map of the area V4 the following regions – MT 

(medial temporal area)/V5, FSF (fundus of the superior temporal sulcus [STS]) and 

FEF (frontal eye field). Peripheral field representations of V4 are connected with 

occipitoparietal areas DP (dorsal prelunate area), VIP (ventral intraparietal area), LIP 

(lateral intraparietal area), PIP (posterior intraparietal area), parieto-occipital area, and 

MST (medial STS area), and parahippocampal area TF (Ungerleider et al, 2008). 

Major outputs of the area V4 are TEO (in posterior inferior temporal cortex) and TE 

(in anterior temporal cortex) both part of the IT cortex. Neurons in the V4 area are 

selective for the complex object features including color, texture and shape. While the 

homology between the earlier visual areas (V1, V2, V3) has been confirmed by fMRI 

(Serano, 1995) there’s a lot of controversy about the human V4 homologue (Tootell 

and Hadjikhani, 2001; Goddard et al, 2011). Area V4 in humans was first considered 

to be the brain color center since lesions in this area of the occipitotemporal cortex 

produced color vision loss – achromatopsia (Damasio, 1980; Zeki 1990). However, 

current research shows that neurons that encode color are present right from the 

beginning of visual processing in the cortex – area V1 (Shapley and Hawken, 2011). 

It is shown that inside area V1 humans have two types of color sensitive neurons - 

single-opponent and double-opponent cells. Single-opponent neurons respond to large 

areas of color, which is especially useful in the perception of large color scenes and 

atmosphere. Double-opponent cells got their name from the ability to process the 

opposite inputs from different cone cells in the retina (very useful for identification of 

the contrasting colors such as green and red). The main role of the double-opponent 

cells is in the perception of the smaller color features like patterns, textures and color 

boundaries. It is also important to mention that area V4 is the first area of the ventral 

visual stream that shows a significant attention modulation (Moran and Desimone, 
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1985). Studies have shown that selective attention can change the firing rate of the 

neurons in V4 by up to 20%. Together with selectivity for color, neurons in V4 show 

selectivity for orientation and spatial frequency as well as object features of 

intermediate complexity (like shape).  

 

1.2.5 IT cortex 

 

The end of the ventral pathway is in the IT cortex and its topography also 

depends on the author and the year of publication (Figure 2). The temporal lobe is 

exclusive to primates and the fact that we present the mechanism of visual object 

recognition in the way that we do tells a lot about the history of research of the topic 

but also about our “anthropocentrism” when it comes to the scientific questions that 

we want answered. The subdivisions mostly used in the literature are TEO/(roughly 

equivalent to) PIT (posterior inferior temporal cortex) and TE/(roughly equivalent to) 

CIT + AIT (central and anterior inferior temporal cortex).  The retinotopy of the IT 

cortex is very crude and the neurons have a very large receptive fields compared to 

the “earlier” regions which accounts for tolerance that is necessary to achieve the 

invariance (exceptions will be mentioned later). “High” visual areas are usually 

regarded as “nonretinotopic” but some authors argue that this is just a problem of 

non-adequate test stimuli. Recent papers by Levy et al (2001) and Hasson et al. 

(2003) have shown that orderly central and peripheral representation can be found all 

over the visual cortex. IT cortex has a lot of areas where neurons seem to be tuned for 

a special function like recognizing faces (fusiform face area, FFA – Sergent et al, 

1992), recognizing places (parahippocampal place area, PPA – Epstein and 

Kanwisher, 1998), recognizing body parts (extrastriate body area, EBA – Downing et 

al, 2001) and discriminating between shapes and scrambled stimuli (lateral occipital 

complex, LOC - Grill-Spector et al, 2001). Even though these areas are specific for 

humans, we can assume that the brain has developed specific regions dedicated to 

critical evolutionary demands and we can also expect to find similar kind of areas 

related to different critical visual tasks in other spices (both in non human primates 

and other visually dominant spieces). IT cortex receives inputs from areas V2, V3 

(both V3d and V3v) and V4 and it sends feedback projections back to these areas. It is 

also reciprocally connected to a number of STS areas, FTF in prefrontal cortex and 
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(most importantly) amygdala and hippocampus – connections responsible for 

establishing a “memory link” necessary for recognition and categorization of objects. 

Figure 3 shows some of the complexity of the connections between the 

“visual” areas and the situation gets even more complicated as the new data comes in. 

We only outlined the major projections of the areas that are most involved in the 

object recognition and going into details would take the space that is bigger than this 

entire thesis. The primary goal was just to illustrate the immense complexity of the 

hardware responsible for the solution of a fascinatingly difficult problem.   
 
Figure 3. Hierarchy and connections 
between visual areas. This hierarchy 
shows 32 visual cortical areas, two 
subcortical visual stages (the retinal 
ganglion cell layer and the LGN) plus 
several non visual areas ( area 7b of 
somatosensory cortex, perirhinal area 
36, the ER, and the hippocampal 
complex). These areas are connected by 
187 linkages, most of which have been 
demonstrated to be reciprocal pathways.  
M – magnocellular pathway, P – parvo-
cellular pathway. P-B – wavelength 
selective stream, P-I – wavelength and 
(much less) orientation selective stream. 
VOT (Ventral occipitotemporal area) 
and V3A are not described in the text. 
Abbreviations referring to the parietal 
cortex are left out for clarity. Adapted 
from Felleman & Van Essen, 1991. 	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ventral 
Stream 
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1.3 The functional properties of the ventral stream 
 
 
 The idea that there might be two separate streams of information inside the 

visual cortex comes from the experiments of Mishkin (Mishkin et al, 1983) which 

demonstrated a very different behavior in macaque monkeys depending on the region 

of the brain where the lesion was performed. In the first task, aimed at object 

discrimination, monkeys were first familiarized with a physical object and then 

presented with two other objects. The task was based on the principle of “non 

matching to sample”, i.e., monkeys had to choose the object (from the other two) that 

was more different then the one they have learned to recognize (in order to get the 

reward). The bilateral removal of the area TE produced a severe impairment in their 

ability to solve the task (without interfering with their ability to precisely locate the 

objects). The other task tested monkey’s spatial perception – they were rewarded if 

they chose a covered foodwell that was closer to the tall cylinder, which presented the 

“landmark”. Bilateral removal of the posterior parietal cortex led to a sever 

impairment in their ability to solve this task but it did not interfere with their 

performance in the object recognition task. The behavioral results were confirmed 

using 2-deoxyglucose (a method developed by Sokoloff, 1982), which functions as a 

“metabolic encephalography” labeling the parts of the brain with the high glucose 

consumption as the one that are mostly active (very similar to oxygen consumption 

and fMRI). 

The hypothesis of Mishkin is very much in accordance with the 

electrophysiological recordings of single neurons in different areas of the visual 

cortex. As we said in the previous part, the further away we move from area V1 the 

bigger the receptive fields of the neurons become (a necessary condition to achieve 

invariance). The same happens with the reaction times of the neurons. The latency 

(from the stimulus onset) rises from 40 ms in V1 to as much as 100 ms in IT cortex. 

And the complexity of preferred stimuli is increasing as well – the neurons in V1 are 

selective for very low level features (orientation, brightness, contrast) while the 

neurons in the IT cortex will be selective for very complex features like shape or the 

conjunction of features (Figure 4). All of this points to a hierarchically ordered system 

where every consecutive area summarizes information from the previous one until it 

reaches its end (in the IT cortex). 
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Figure 4. Through a hierarchy of cortical areas, from V1 through temporal-occipital cortex (TEO) to 
temporal cortex (TE), complex and invariant object representations are progressively built by 
integrating convergent inputs from lower levels. Examples of elements for which neurons respond 
selectively are represented inside receptive fields (RFs; represented by circles) of different sizes.	
Schematics on the right side present the progressive increase in the ‘complexity’ of the neuronal 
representations from V1 through temporal-occipital cortex (TEO) to temporal cortex (TE). The 
rightmost column displays estimates of the smallest and largest RF sizes reported in the literature. As 
RF size increases (presumably to allow translation and size invariance), neurons at higher levels 
typically receive inputs from more than one object at a time during natural scene perception. The 
central column displays an estimate of the minimum and the average response latencies reported in the 
literature. (Adapted from Rousselet et al., 2004) 
 

As a result, DiCarlo and Cox (2007) put forward a theoretical framework 

suggesting a way in which the brain might solve the invariance problem. The 

framework is mostly computational and it doesn’t address all the possible 

“complications” that can arise because of the complexity of the identification task but 

it provides a satisfying explanation of the behavioral experiments that demonstrate 

monkeys’/humans’ ability to perform a recognition task in a “blink of an eye” – less 

than 300 ms (Thorpe et al.,1996; Delorme et al., 2000; Fabre-Thorpe, 2011), which 

they defined as “core” object recognition. We are going to explain this framework in 

more details. 

 

1.3.1 Untangling the manifolds 

 

 When an image of an object is “projected” onto retina the result is the 

activation of ~100 million retinal photoreceptors which will then activate ~1 million 

of retinal ganglion cells. This type of activation can be represented in a high-

dimensional extension of the Cartesian space where every axis represents a response 
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of a single ganglion cell (giving us a 1 million dimensional space). Every time we 

perceive this object it will produce a different pattern of activity depending on its 

position, size, orientation, lighting and background, which will lead to the formation 

of a low-dimensional curved surface (inside this high dimensional space) called an 

object “manifold” (Figure 5a). Different objects will produce different manifolds 

(Figure 5b-d).  The framework proposes that disentangling of different manifolds 

happens by applying successive computational steps (moving from V1 to IT) of 

tresholding a sum of weighted synapses and then applying a decision function (linear 

classifier) to establish a separating hyperplane between two manifolds (Figure 5b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. We can’t accurately represent a high-dimensional space in a graphic form but a 3D 
approximation serves as a good illustration. a) The representation of an object (in this case a face) is 
“traveling” trough the high dimensional space acquiring different coordinates every time this object 
changes its parameters (in this case a pose). The manifold represents all of the possible variations in the 
object appearance. b) If two manifolds are disentangled enough a clear decision (hyper-) plane can be 
drawn between them. c) In case the manifolds are still entangled the decision plane can no longer 
separate the manifolds, no matter how it’s tilted or translated. d) Manifolds generated using the real 
data (14,400-dimensions, 120x120 images) of two face objects (generated from mild variation in their 
pose, position, scale and lighting). Even with just a fraction of typical real-world variation, the object 
manifolds are hopelessly tangled. Adapted from DiCarlo and Cox, 2007 
 
The goal of all the computations is to flatten the manifold as much as possible making 

the separation easier. What authors suggest is that flattening happens at every stage of 

signal propagation meaning that V1 neurons do a flattening of a manifold coming 

from the LGN, then V2 does the same to V1 input, until the signal reaches IT cortex 

where separation of the manifolds is possible. The claim is additionally supported by 
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the manifolds produced by simulated V1 cells (Gabor filters) and simulates IT cells 

(unimodal Gaussian functions). While V1 manifolds are super-entangled, IT 

manifolds tend to be quite flat and easy to separate. Even though it doesn’t represent a 

full picture of what’s happening in the brain and it is more suitable for computer 

vision than biological systems this framework is the best description of the way in 

which (we think) the brain solves the invariance problem.  
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1.4 Limitations of the ventral stream framework 
 

We are aware of the existence of feedback projections amongst all of the areas 

of the ventral stream, but the timescale acquired in the behavioral (<300 ms) and 

electrophysiological (~ 125 ms, Hung et al, 2005) experiments does not allow for any 

kind of long feedback loops to occur (like IT to V1 for example). Still, all of this is 

very much task dependent and it happens on a longer timeframe if it also includes a 

(prefrontal) top-down regulation like attention shift. There are also many other 

additional constraints to this generalized model. The “text-book” version of the 

ventral stream “postulates” the constant increase in the size of the receptive field 

when we move from area V1 to the IT cortex. But this is not always true. And one of 

the reasons is the so-called “binding problem” – if an IT neuron has a large receptive 

field and it is activated by the conjunction of elements A and B, it will be equally 

activated if AB or (for example) AC and DB are present in it’s receptive field. In 

order to preserve the spatial information IT neurons must either have large but 

overlapping RF or some of them must have a much smaller RF. Both Ito et al (1995) 

and Op De Beeck and Vogels (2000) showed big variations in the size of RF inside 

the IT cortex. Ito reports RF sizes of 24.58° ± 15.78° while Op De Beck reports a 

minimal RF size of 2.8° and a maximal RF size of 26°. This variation might be 

explained by the finding that certain IT neurons change the size of RF depending on 

the size of the stimulus (DiCarlo and Maunsell, 2003) which also doesn’t fit with the 

“canonical” description of IT neurons as invariant to changes in stimulus sizes. The 

changes are possible because of the complex interactions between the inhibitory and 

excitatory neurons inside the IT cortex (Wang, Y. et al., 2002). IT neurons are also 

usually presented as view-invariant but it might actually be a mixed population of 

view-selective and view-invariant neurons (Rolls, 2000). Things become additionally 

complicated in the real world situation where IT neurons get exposed to multiple 

stimuli and a complex background at the same time (unlike the typical lab settings – 

single stimuli, uniform background). In this case there’s a competition between the 

stimuli present in the neurons’ RF and the resulting activation can be either a 

weighted average of both stimulus presented alone (Chelazzi et al, 1998) or a MAX 

response function – the response to the two stimuli is equal to the response elicited by 

the most effective stimulus of the pair (Sato, 1989). Because complex objects tend to 
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be represented by distant columns inside the IT cortex (Tsunoda et al, 2001) there’s 

an important role of lateral GABAergic inhibition. This inhibition might explain the 

competitive interaction between the representations of spatially nearby objects as 

well. Taken together all of these evidence paint to a much more complex picture than 

just a straight feedforward mechanism the ventral stream framework suggests. If we 

can see the ventral stream (form V1 to IT) as a trunk, there are also a lot of side 

branches that are needed to complete the entire tree (which would represent the object 

recognition) leaving a lot of areas to explore and a lot of questions to be answered. 
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Chapter 2: Rat as an experimental model for vision research 

 
2.1 Introduction 
  
 
 The monkeys (aka. non-human primates, NHP) have been the predominant 

choice when it comes to vision research. The reason is our desire to know how our 

own vision (brain) works and there’s no better substitute. But the use of NHP as 

experimental models has a lot of difficulties connected to it. Depending on the species 

they usually require large storage facilities, an optimal space specially designed as 

their playground, they are difficult and cumbersome to handle, they can be aggressive 

and even dangerous for the experimenter. Application of the most recently discovered 

experimental methods, like optogenetics, is severely limited, and there are almost no 

protocols for the use of genetic manipulation (knock in/out varieties) in NHP. All of 

this also comes with an additional pressure from the society to completely exclude 

monkeys from the experimental research. As of 2006 Austria, New Zealand 

(restrictions on great apes only and not a complete ban), the Netherlands, Sweden, 

and the UK had introduced either de jure or de facto bans (Langley, 2006). Spain 

became the first country to announce that it will extend (some) human rights to the 

great apes. An all-party parliamentary group advised the government to write 

legislation giving chimpanzees, bonobos, gorillas, and orangutans the right to life, to 

liberty, and the right not to be used in experiments. An incident involving a hidden 

camera video recently forced Nikos Logothetis, one of the most prominent scientists 

in the field of vision research, to close down his lab. It is obvious that the “glory 

days” of vision research on NHP are behind us and that there’s an urgent need for an 

alternative experimental model. 

 Since rodents (rats and mice) represent the most widespread laboratory 

animals (80% in EU – Burn, 2008) the logical question would be: “Why not use 

them?”. The problem lies in our uncertainty of rodents’ ability to perform “higher 

order” visual tasks. Rodents are mostly nocturnal creatures with a very low visual 

acuity (~1 cyc/deg in pigmented rats – Lashley, 1930; Dean, 1981) compared to 

humans and monkeys which have the visual acuity of 30–60 cyc/deg (Campbell and 

Gubisch, 1966; Hirsch and Curcio, 1989; Merigan and Katz, 1990) and the other 

assumption is that they rely mostly on smell (Uchida and Mainen, 2003) and touch 
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(Diamond et al., 2008). Another big difference is the organization of the neurons in 

the rodents’ primary visual cortex – rodents don’t have structures like orientation 

columns that are typical for primates (Bonin et al, 2011). The reason behind the most 

of the research performed on rodents’ visual system was easy anatomical accessibility 

compared to the brains of monkeys or cats (either in the developmental studies or in 

the studies of learning and memory). The rediscovery of rodents’ vision can be seen 

as a coincidence of circumstances mentioned before – development of sophisticated 

technics for very precise manipulation of neural circuitry in rodents’ and an every 

growing number of obstacles in working with non-human primates. Before reviewing 

the behavioral evidence on rodent’s vision let us first explore in more details the 

visual system of a rodent which is very prominent in the current literature on vision – 

the rat. 
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2.2 Rats’ eyes  
 
 
 Unlike primates, rats have their eyes set on the side of their head which 

enables them to have a broader field of vision (from -40 to 60 degrees in horizontal 

plane and more than 100° in sagittal plane for each eye - Adams and Forrester, 1968) 

but much narrower binocular vision, necessary for depth perception (estimated to be 

around 40-60°, Figure 6).  

We already mentioned the very low visual acuity in 

pigmented rats but the situations gets even worse in 

the albino varieties. There has been no systematic 

analysis of the rat strains until Prusky (2002) 

compared six varieties (three pigmented, three 

albino) and found out that some strains (Fisher-

Norway) have a substantially higher visual acuity 

(1,5 c/d), while others (all albino strains) have 

substantially smaller visual acuity (0.5 c/d), raising 

an interesting research question – “How did the 

mutations leading to albinism reduced the visual 

acuity?”. Rats’ lens lacks the ability to focus the light 

(unlike primates) but experiments done by Hughes 

(1977) demonstrated that constriction of the pupil can 

considerably increase their depth of perception. Rats’  

eye (unlike primates) doesn’t have a fovea and the 

receptors are approximately uniformly distributed across the retina. Since rats are 

nocturnal animals they are much better adapted than primates to low light conditions. 

They are able to distinguish “total darkness” from the light source of only 0.107 lux 

(Campbell and Messing, 1969). Almost all of their photoreceptors (99%) are rods 

(discriminating light from darkness) but they do have cones (discriminating colors) as 

well (Szel & Rohlich, 1992). Jacobs et al. (2001) performed the analysis of the cones 

using electroretinograms and behavioral tests and concluded the following: Around 

93% of the cones respond maximally to blue–green light (around 510 nm), while the 

remaining 7% respond to ultraviolet (UV) (around 360 nm) light. Cone responses are 

normally distributed, so rats actually perceive hues ranging from ultraviolet (400 nm) 

Figure 6. The presumed fields of 
view of the rat's eyes in the 
horizontal plane. ML is the 
meridian which lies in the sagittal 
plane of the rat. The red angle 
represents the angle between the 
sagittal plane of the animal and 
the fixation point of the pupil of 
the right eye P. The green angle 
represent the binocular region of 
the visual field of the right eye. 
The left primary visual cortex of 
the animal is shown (green 
patch). Adapted from Adams and 
Forrester, 1968. 
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to orange-red (around 635 nm) but they are most responsive to colors near their peak 

sensitivities. And the differences don’t end there. The way in which the rats’ eyes 

move is also completely different from the way the primates’ eyes function. In the 

first experiment of its kind, a team of scientists from Max Plank Institute managed to 

attach a very light (~1 gram) but very precise camera on the rats head and observe the 

motion of its eyes while they were freely exploring (Wallace et al, 2013). Primates 

always move their eyes in the typical fashion, whether they compensate for the head 

movements or when they search around with their gaze – both eyes move together 

and always follow the same object. The rats’ eyes are almost routinely misaligned by 

as much as 60 degrees. This means double vision is normal for rats. Rats are able to 

see both above their heads and behind their backs allowing them to have the best 

possible surveillance of the environment. 
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2.3 Rats’ primary visual cortex 
 
 
 Montero et al. (1973) distinguished seven visuotopically organized areas in 

the occipital cortex of the rat. The largest of these areas – their primary visual area 

corresponds well to area 17 (V1) distinguished on the basis of cytoarchitectonic 

criteria (Krieg, 1946). The neurons in the area V1 are clustered according to their 

inputs into two populations – mononuclear neurons (integrate information from one 

eye) and binuclear neurons (integrate information from both eyes). These two 

populations form two distinct cortical areas – monocular V1 (V1M, positioned 

medially) and binocular V1 (V1B, positioned laterally). The percentage of binocular 

cells in the rat primary visual cortex is about 80% (Sefton et al, 2004, Figure 7). Area 

V1 in rats has the same characteristics as in other types of mammals used for the  

visual research – their neurons are tuned for direction, 

orientation, contrast, spatial frequency etc. (Girman et al., 

1999). Both cortical areas in V1 (V1M and V1B) have 

rethinotopic organization with the difference in the size of 

the RF depending on their position. RF size decreases at 

the border of the vertical meridian (lower than 3°) but in 

the periphery it can reach 20°. The average size of the RF 

is around 13° (Espinoza end Thomas, 1983). Girman 

experiments showed that almost 95% of the neurons in 

V1 show some sort of orientation selectivity (either to a 

flashing on-off stationary stimuli or to the moving 

gratings). Most of the neurons in V1 are very sharply 

tuned (with orientation tuning – bandwidth at half height 

– of ~ 60° or sharper). The orientation selectivity spans a 

wide range of spatial frequencies ranging from 0 to 1.2 

c/d with the peak at 0.08 c/d. 

These experiments also demonstrated the existence of both simple and complex cells. 

All these evidence support the claim that rats’ primary visual cortex can perform a 

very precise visual perception with low spatial resolution. 

 

 

Figure 7. The projection of the 
visual field on the left primary 
visual cortex. Abbreviations: 
HOR: the horizon; U20: a 
parallel 20° above the horizon; 
D20: a parallel 20° below the 
horizon; white circle: position 
of the optic disc (which is not 
itself represented). The bino-
cular area, to which the left eye 
projects as well as the right, is 
green. Adapted from Adams 
and Forrester, 1968. 
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2.4 Rats’ extrastriate cortex 
 
 
 Even though we have the first accounts of the rodents’ (mice) exstrastirate 

areas from the end of 1920’s (Rose, 1929), the loss of interest in the visual scientific 

community for rats and mice as an experimental model meant that we had to wait up 

until the 70’s for a systematic study of rats’ exstrastriate areas (Montero, 1973). In 

their experiments, using electrophysiological recordings, Montero and colleagues 

partitioned the rats’ visual cortex into seven visuotopically-organized areas (as we 

mentioned before). This was followed by the work of Espinoza and Thomas (1983) 

that established the most prevalent nomenclature used today for the labeling of the 

rats’ visual cortex so we will further elaborate this one. 

 The regions are labeled according to their position. Since the cytoarchitecture 

of the exstrastirate areas in rats can be separated in two regions (labeled 18a and 18b), 

the regions that belongs to the area 18a (also called lateral extrastriate cortex) are: 

lateromedial (LM), anterolateral (AL), laterointermediate (LI) and laterolateral (LL). 

The regions belonging to 18b (also called medial exstrastriate cortex) are: 

anteromedial (AM) and posteromedial (PM) – Figure 8. 

 

 
  
 
 
 
 
 
 
 
 
Figure 8 – On the left: R.E.V.F – right eye visual field. (u.n. – upper nasal, l.n. – lower nasal, u.t. – 
upper temporal, l.t. – lower temporal). HM – horizontal meridian (bold dashed line), VM – vertical 
meridian (circle dashed line). On the right: dorsal view of the left posterior cortex (and projections of 
the horizontal/vertical meridian and azimuth) - locations of the areas containing representations of the 
right eye visual field; primary visual area (V1), lateromedial (second) visual area (LM), anterolateral 
(third) visual area (AL), laterointermediate (LI) and laterolaterat (LL) visual areas, anteromedial (AM) 
and posteromedial (PM) visual areas. Asterisk represents the projection of the optic disk (on both 
sides). Size is in millimeters. Adopted from Espinoza and Thomas, 1983. 
 
In LM the upper VF is represented caudally and the nasal VF medially, being thus a 

mirror image of V1. In AL the upper VF is represented rostrally and the nasal VF, 

medially, being thus a mirror image of LM. In LI, the upper VF is medial and the 
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nasal VF, lateral, being thus a mirror image of LM. In the medial part in AM, the 

upper temporal VF is medial and the lower temporal VF, lateral (the extreme 

temporal field is rostral). AM is therefore organized as a counter-clockwise rotation 

by 90° of the V1 representation. In PM, the upper lower VF topography is like in AM, 

but the extreme temporal VF is caudal, being thus a mirror image of AM. The reversal 

of VF is one of the hallmark features of the organization of the rats’ visual cortex and 

it’s extensively used in electrophysiology to determine the position of the electrode. 

 As we discussed earlier, topography and partialization are never without 

issues. For example, a paper by Miller and Vogt (1984) about direct connections of 

rat visual cortex with sensory, motor, and association cortices (in which they applied 

anterograde, autoradiographic, and retrograde, horseradish peroxidase, labeling 

techniques) has no mentioning of the separate extrastriate areas (and only refers to 

cytoarchitectonic areas 18a and 18b). Malach (1989) used fluorescent tracer bis-

bisbenzimide and concluded that “extrastriate band adjoining striate cortex has a 

single, global map organization” and suggested that “the global map may constitute 

the rat homolog of area V2 in cat and monkey”. He does mention that within this 

global map “clear modular organization was evident”. And, as in the case of monkeys 

and humans, new data and new experimental technologies lead us to the better 

understanding of the problem.  

 One of the ways in which the problem of connectivity and partialization can 

be improved is to use more than one tracer at the same time. Which is exactly what 

Montero (1993) did. Using fluorogold (FG) – retrograde tracer (yellow), fast blue 

(FB) - retrograde tracer (blue), rhodamine dextran – (mostly) anterograde tracer (red) 

and rhodamine-labeled “beads” – also a retrograde tracer, he was able to track the 

mutual connections between the striatum and exstrastriate areas by performing 

simultaneous injections of all of them at once (Figure 9A). By carefully injecting the 

tracers within specific areas of V1, Montero was able to follow the projections of the 

different parts of the V1 retinotopic field confirming the previously established 

“quadratic” rethinotopy (nasal-temporal and upper-lower axes) in the exstrastriate 

zones. This experiment made an addition of a few more zones to the previous map of 

Espinoza and Thomas, namely – anterior (A) in 18b (titled by Montero as Oc2M) and 

rostrolateral (RL) and posterior (P) in 18a (titled by Montero as Oc2L) expanding the 

number of rats extrastriate areas to 10 (Figure 9B). 
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Figure 9. A) Distribution of labeled cells and fibers in the rat extrastriate cortex, after multiple 
injections of fluorescent tracers in the striate cortex (V1). The position of the injection sites (arrows) of 
fluorogold (FG, in yellow), fast blue (FB, in blue), and rhodamine dextran (RD, in red) are indicated by 
arrows (dots indicate maximum extent of injection sites). The distribution of cells and fibers labelled 
with FG, FB and RD, are indicated with dots of corresponding colors to the tracers injection sites. B) 
Extrastriate visual areas in the rat - location and quadrantic retinotopy of ten extrastriate visual areas 
defined by their distinct pattern of striate retinotopic connections. Horizontal meridian (HM) and 60° 
vertical meridian in V1 define the upper-nasal (UN), upper-temporal (UT), lower-nasal (LN), and 
lower-temporal (LT) quadrants of the visual field in the primary visual cortex. RSA – retrosplenial 
agranular cortex, A1 – auditory cortex. S1 – somatosensory cortex. Adopted from Montero, 1993. 
  

As more and more data was collected about the rats’ visual cortex, another 

rodent – the mouse, was being used in order to “fill the gaps” in our knowledge. 

Studies on mice had a big advantage on their side – the availability of the molecular 

biology protocols already developed for other type of studies as well as a huge 

number of different strains. The main downside - poor visual acuity which is around 

0.5 c/d (in line with albino rats – Prusky et al, 2000). Considering how 

phylogenetically close rats and mice are this allowed us to have complementary 

studies that are even more related than human-monkey studies. Before the 

experiments of Wang and Burkhalter (2007) the most widely used map of mouse 

visual cortex was the one published by Wagor et al. (1980) which contained only two 

lateral areas (labeled V2 and V3) and two smaller medial areas labeled Vm-r and Vm-

c. Combining tracing with electrophysiology Wang and Burkhalter substantially 

changed the parcelization of the extrastriate visual cortex. Their map included 9 

exstrastriate areas (Figure 10) and showed a very high level of similarity between the 

mice and rats (compare figures 9 and 10). On the medial side beside AM and PM 

(abbreviations are the same as in Montero, 1993) we also have MM (mediomedial) 

area, while on the lateral side beside RL, AL, LM, LI and P we also have POR 
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(postrhinal area) – a homologue of PL. Area LL has been re-assigned to area 36p 

(posterior part of temporal association cortex) while in the front part we also find area 

A thus completing the picture.   
Figure 10. Distribution of labeled cells and 
fibers in the mouse extrastriate cortex, after 
multiple injections of fluorescent tracers in 
the striate cortex (V1). The map was 
generated by making three simultaneous 
injections of fluororuby (FR; red), fluoro-
emerald (FE; green), and biotinylated 
dextran amine (BDA; yellow) into V1 and 
triple anterograde tracing of intracortical 
connections. Shown in blue are 
bisbenzimide-labeled callosal connections 
(marking the boarders between the reagions). 
Adopted from Wang and Burkhalter, 2007. 
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2.5 Functional division in rats’ extrastriate cortex 
 
 

But what about the functional roles of these areas? Is there something inside 

the extrastriate cortices of rat and mouse that would resemble the “streams” we find in 

the primate vision. There are a few questions to answer in order to make that 

conclusion. First, let’s look at the connectivity among these areas. Since early tracer 

studies, it became clear that a hierarchy could be established among rat visual cortical 

areas, based on their pattern of connectivity. At the most qualitative level, this was 

suggested by the fact that, although V1 was reciprocally connected with all the 

extrastriate areas (Olavarria and Montero, 1981), the strength of these connections 

was not uniform: for instance, V1 projections were much denser to the adjacent lateral 

areas AL and LM than to the far lateral area LL (Olavarria and Montero, 1984; 

McDonald and Mascagni, 1996). A more rigorous analysis determined that V1, LM, 

AL and the medial areas (AM and PM) occupy increasingly higher ranks in the visual 

cortical hierarchy, while the status of the more lateral areas (LI and LL) remained 

more ambiguous (Coogan and Burkhalter, 1993, 1990). On the other hand, McDonald 

and Mascagni found that the most lateral extrastriate region (presumably LL) was the 

only visual area with direct projections to the amygdala, which, in primates, receives 

strong inputs from the temporal areas of the ventral stream. The same study also 

reported projections to temporal, perirhinal and entorhinal cortex from both lateral 

and medial extrastriate areas, as well as projections to parietal areas, especially from 

the anterior medial region (presumably AM). 

When it comes to studies in mice, two anatomical studies that quantified the 

strength of the reciprocal connections among mouse visual areas confirmed (and 

additionally strengthened) these findings. The first one (Wang et al., 2011) has shown 

that LM projects more strongly than AL to lateral extrastriate areas (LI, POR and P), 

to temporal association cortex (e.g., area 36p) and to lateral entorhinal cortex (LEC), 

but is also heavily connected to AL itself and to some medial visual areas (AM and 

PM). Conversely, AL projections are stronger to medial and parietal extrastriate areas 

(AM, RL and A), as well as to medial entorhinal cortex (MEC), motor cortex and 

somatosensory areas. These findings suggests that LM and AL play the role of 

gateways to, respectively, the ventral and dorsal streams, although the strong 

connections of LM to AL, AM and PM extended these conclusions, by showing that 
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mouse visual cortical areas can be segregated into two groups of strongly reciprocally 

connected areas (Wang et al., 2012). The first group includes V1 and the lateral areas 

(LM, LI, P and POR), and is strongly linked to ventral targets, such as temporal 

cortex, hippocampus and parahippocampal cortex. The second group includes AL, as 

well as the medial and parietal areas (AM, PM, RL and A), and is strongly connected 

to somatosensory, motor and prefrontal regions. 

 These findings go very well with the assumption of the existence of ventral 

and dorsal stream in rodents but what about the other crucial requirements – tolerance 

and selectivity? As we stated earlier one of the “classical” features of the ventral 

stream as defined in the primate studies is the (general) increase of the neurons’ RF 

sizes. This has been reported both for the rats (Espinoza and Thomas, 1983; 

Vermaercke et al., 2014; Tafazoli et al 2017) and for the mice (Wang and Burkhalter, 

2007; Van den Bergh et al., 2010).	Another indicator of hierarchical processing is the 

increase of response latency, from V1 toward progressively more lateral extrastriate 

areas, which has been found (again) in both rats (Vermaercke et al., 2014; Tafazoli et 

al 2017) and mice (Polack and Contreras, 2012). The existence of the putative dorsal 

stream has been demonstrated in mice by two imaging studies (Andermann et al., 

2011; Marshel et al., 2011) showing that neurons in AL, AM and RL have preference 

for higher temporal frequencies (TFs) and lower spatial frequencies (SFs), as well as 

sharper direction tuning compared to V1. And when in comes to the ventral stream 

the most recent results in rats (Vermaercke et al., 2014, Tafazoli et al 2017) lead to a 

conclusion that there’s a very promising candidate for this role - V1→LM→LI→LL.  

 Taking all of this into consideration, it is safe to conclude that rodents do 

represent a good model for the analysis of the neural circuitry that underlies complex 

visual processing. One thing that should be stated is that the investigation of high-

order shape and spatial processing by rodent cortical areas is still in its infancy 

(primate studies have more than half a century “advantage” and even there we still 

don’t have “clear cut” answers) and that we need a lot more data in order to fortify the 

rodents status as a model of choice for visual studies. We can, however, make a claim 

that we are on the right track. 
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2.6 Behavioral experiments on rats’ vision 
 

 

 Although he was not the first to try to use the rats in visual experiments, Karl 

Lashley was the first to systematically explore the visual acuity of different strains of 

rats (albino vs pigmented, 1930a) but also the first to clearly demonstrate rats’ ability 

to recognize shape (1930b, 1938). Lashley’s experiments established that: rats can 

differentiate different shapes like triangle, circle, and cross (to name a few) either in 

direct comparison with each other or intermingled within the cluttered background. 

Experiments also showed that this ability doesn’t suffer from the increase of 

luminosity in figure or background as long as there is no inversion in luminosity of 

these two. The conclusion was that: “there must be some primitive generalization of 

form which goes beyond the recognition of identical elements” (Lashley, 1938). 

Lashley also tested rats’ tolerance to in-plane rotation (which he reported as 

“limited”) but also how the occlusion of certain portion of the images impacts rats’ 

decision making – he concluded that rats can use local features like the distance of the 

object from the frame and ratio between the frame and the stimulus. These 

experiments set the narrative for the further research of “higher” visual capabilities of 

the rats that persist up to this day. The key questions we are asking ourselves today 

are the same Lashley tried to answer: “What are the key features underlying the 

discrimination of visual patterns in rats?”, “Do rats only use low-level features of the 

images (brightness, contrast) when they perform a recognition task?” and “Do rats 

form some sort of a Gestalt-like perception in their brain”. And all of these questions 

are very complicated to answer.  

 Before being able to answer some (any) of these questions, scientists had to 

acquire a much brother knowledge about the ways in which the rats’ visual system 

works – not available to researchers like Lashley and Krechevsky (1938a, 1938b). 

They also had to construct much better experimental rigs that would allow the rats to 

perform a much bigger number of trials (unlike the jumping apparatus that Lashley 

developed). But all of this would have to wait for quite some time since (with some 

rare exceptions – Sutherland et al. in the 60’s – 1961, 1962a, 1962b and Gaffan et al. 

at the end of the 90’s – 1996, 2000) the scientist involved in the exploration of vision 

completely lost interest in the rats as potential experimental models switching to 

monkeys and small carnivores (cats) instead. The “big comeback” of the rodents 
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happened with the introduction of molecular manipulations like optogenetics 

(Deisseroth, 2011) and two-photon imaging (Okhi et al, 2005; Greenberg et al, 2008) 

which coincided with previously mentioned problems with monkeys. This “new 

wave” of behavioral research on rats’ vision was in a much better position to provide 

the answers to the questions we stated above. Our understanding of the functioning of 

rodents’ visual system came a long way since the first half of the 20th century and the 

all-pervasive digitalization enabled us to construct experimental rigs where rats can 

perform a big number of trials giving us a much needed statistical rigor for our 

conclusions. But the answers remain inconclusive and there’s still a lot of debate 

within the scientific community. The most convincing evidence that rats are able to 

perform high-level visual tasks comes from the work of Zoccolan and his group. In 

the first paper titled “A rodent model for the study of invariant visual object 

recognition” (2009), Zoccolan and colleagues systematically addresses some of the 

major shortcomings of the previous experiments:  

1) Presenting 2 stimuli at the same time in the two-alternative forced choice task. This 

has been a long known problem, which severely limited the conclusions of the 

previous studies. When rats are presented with two stimuli at the same time, this gives 

them the opportunity to directly compare these stimuli and use low-level features 

(brightness, luminosity, contrast) in order to solve the task. Presenting only one 

stimulus at the time (on the screen) mitigates this problem – whatever kind of strategy 

the rats are using in order to solve the task it’s happening on the level of memory, not 

on the level of retina. 

2) The design of the experimental rig allowed for high throughput experiments, giving 

the rats a chance to perform a substantial number of trials in every training session 

(hundreds of trials in the space of an hour, comparable with monkeys’ performance) 

while (at the same time) insuring the high consistency in every performed trial -

previous visual experiments with rats didn’t control for rats’ head position allowing 

for a possibility that transformation tolerance might occur because of the visual 

compensations that rats would achieve by changing their viewpoint. In this 

experiment rats had to assume the (almost) exact same position on the beginning of 

every trial insuring that the stimuli they were presented with were always seen from 

the same viewpoint.  

3) Because of the possibility to test the rats on a very big number of trials, this 

provided an opportunity to test a variety of different transformations necessary to 
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substantiate the claim that rats can perform ”higher-order” visual tasks. Experiment 

included size transformations, rotations in plane and in depth as well as elevation and 

lightning variations. Most importantly, the calculated differences (on the pixel level) 

were much bigger for the transformations of the same stimulus then between the 

default stimuli. 

 All of this allowed the author to conclude - “Our study provides systematic 

evidence that rats are capable of invariant visual object recognition, an advanced 

visual ability that has only been ascribed to a select few species.”   

Still, one of the “shortcomings” of the paper was that it didn’t offer any suggestions 

about the way in which the rats achieve this transformation tolerance. And this was 

the next thing to be done. In the follow-up of this paper Alemi-Neissi and Rosselli 

(2013) used the same experimental procedure as Zoccolan in order to try and establish 

the strategy the rats apply in order to solve this complicated visual task. Here’s the 

key difference – once the rats were sufficiently trained to do the recognition task 

(together with all the variations included in the previous experiment), they were 

exposed to the masked versions of the stimuli they’ve already encountered. The 

masks were “punctuated” by a number of transparent “patches” (with a Gaussian 

distribution of transparence – i.e. the further away from the center of the patch the less 

transparent the patch). The number of patches was regulated by the rats’ performance 

(making the task easier/harder by increasing/decreasing the number of patches). In the 

end, masked trials were separated according to the rats’ answers (object 1 or object 2) 

and then summed up in order to obtain a (so called) Classification Image. This way 

the authors were able to “track down” the parts of the objects (aka features) that were 

mostly present in the case of correct/incorrect recognition. The features that were the 

most “diagnostic” (present in the case of the correct answer) for a certain stimuli were 

labeled as “salient” while those features that led the rats to incorrectly identify the 

stimulus were labeled as “antisalient”. The analysis of the salient and antisalient 

features provided an insight into rats’ recognition strategies and was able to show the 

following: rats are able to develop a very sophisticated recognition strategy that can’t 

possibly be explained by the use of low-level features. Salient regions were (to a large 

extent) preserved across different transformations leading to a conclusion that rats do 

form some sort of Gestalt-like concept of the object in their memory. Also, these 

salient regions weren’t located on a specific position on the screen, thus eliminating 

the possibility that rats’ strategy could be based only on paying attention to the 
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specific bright/dark patches instead of a full stimulus. Position of the saliency features 

demonstrated that rats (equally well) use both upper and lower part of their visual 

field, which is in a direct contrast with the previous findings of Minini and Jeffery 

(2006) and Vermaercke and Op de Beeck (2012). Another important finding was the 

diversity of rats’ strategy – some rats had more and some had fewer features they 

were relaying on. This experiment effectively replicated the results of the Zoccolan’s 

2009 paper but also gave us many additional informations about the underlying 

strategy of the rats’ object recognition. 

Although very robust, these findings did receive some criticism, especially 

when it comes to the claim that rats do indeed use shape for object recognition 

(Bossens and Op de Beeck, 2016). There are two reasons for this: first – the term 

shape is “ill-defined” at best and there’s no agreed upon definition that everyone in 

the visual community adheres to (for discussion see Baldassi et al, 2016), and second 

– the Bubbles method (Gosselin and Schyns, 2001), i.e. the classification image 

approach used in this experiment, has its own limitations. In his paper from 2004 

(aptly named “Troubles with Bubbles”) Murrey discusses the limitations of the 

Bubbles Method and concludes that: “bubbles (classification) image does not 

completely recover an observer’s template, but only the parts that correspond to 

nonzero locations in the ideal template” and it also points that a “more serious 

problem with the bubbles method is that showing only small fragments of a stimulus 

will often change an observer’s behavior compared to when the stimulus is shown 

intact” while “a bubbles (classification) image, which is calculated from responses to 

small fragments of a stimulus, may not only provide an incomplete characterization of 

a system’s behavior, but a misleading one.” And we tried (to the best of our abilities) 

to address these issues in our experiment. 
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2.7 The goals of our experiment  
 

 
 The first thing that we wanted to address in our study (that was lacking in the 

previous studies) is the rats’ ability to recognize the target stimuli (in a two-

alternative forced choice task) when exposed to a big number of distractors (instead 

of just one used so far). We first wanted do see if the rats will be able to do the task at 

all and then what will be their recognition performance depending on a given 

distractor. The stimuli in the distractor group were carefully selected in order to span 

a different amount of overlap with the target stimulus (some had a very small overlap 

while the most complex stimulus had an almost complete overlap with the target 

stimulus – see Materials and methods). We also wanted to compare these new 

findings with the results of the previous paper from Zoccolan’s group (Alemi-Neissi 

et al, 2013; Rosselli et al, 2015) to see if the more complex task produces a more 

robust recognition strategy in rats. Since this paper already observed a significant 

inter-subject variability in rats’ performance and recognition strategies, we 

hypothesized that a more complex recognition task will make this distinction even 

more explicit. Next, we wanted to address the previously mentioned problems with 

the “Bubbles method” and in order to do this we developed a specifically designed 

classification image protocol that required an identification of a deformed reference 

stimulus as either a target or a distractor (see Materials and methods) which 

accomplished two things at the same time:  

1) It didn’t add any external noise to the stimuli allowing the rats to see a 

complete 3D structure in order to make a discrimination, and 

2) Instead of just analyzing the visual space limited by the borders of the original 

stimuli this protocol allowed us to test the entire visual space which proved to 

be essential for the recovery of the recognition strategy (see Results) 

To assess the robustness of the rats’ strategy we introduced three different variations 

of the transformed target stimuli (at 30° of visual angle, at 25° of visual angle and a 

contour version of the transformed target at 30° of visual angle – see Materials and 

methods).  This allowed us to produce three different classification images in order to 

compare the consistency of the rats’ strategy under various conditions (see Results).  
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Finally, we wanted to be able to quantify and predict rats’ recognition performance. In 

order to do that we modeled rats’ performance using logistic regression and compared 

these results with the actual performance (see Results). 
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Chapter 3: Materials and Methods 
 
 
3.1 Subjects 
 
 

Six adult male Long-Evans rats (Charles River Laboratories) were used for 

behavioral testing. At the arrival, animals were around 8 weeks old and weighted 

approximately 250g. During the course of the experiment, animals grew to over 500g. 

Dietary routine was the following: rats had free access to food but were water 

deprived. Within the time of the training session (approximately 1-1.5 hours) they 

would receive 4-8 ml of pear juice as a reward, as well as 1 hour of water ad libitum 

post training. All animal procedures were in agreement with international and institu- 

tional standards for the care and use of animals in research and were approved by the 

Italian Ministry of Health: project N. DGSAF 25271 (submitted on Dec. 1, 2014) was 

approved on Sep. 4, 2015 (approval N. 940/2015-PR); project N. 933-X/10 (submitted 

on Feb. 216, 2012) was approved according to the legislative decree 116/ 92, article 7. 

 

3.2 Experimental rig 
 
 

The experimental rig consisted of six operant boxes (i.e., two racks with three 

boxes each) allowing the parallel training of 6 subjects in daily sessions of about 1.5 

h. Each box was equipped with: (1) a 21.5 inch LCD monitor (Samsung 2243SN) for 

presentation of visual stimuli, with a mean luminance of 43 cd/mm2 and an 

approximately linear luminance response curve; (2) an array of three stainless steal 

needles (Cadence Science) connected to three capacitive touch sensors (Phidgets 

1110) that were used for collection of behavioral responses and delivery of reward; 

and (3) two computer-controlled syringe pumps (New Era Pump Systems NE-500), 

connected to the left and right feeding needles, for automatic liquid reward delivery 

(Figure 11). Access to the sensors was allowed trough a hole in the wall (3cm in 

diameter) facing the stimulus display that enabled the rat to extend his head out of the 

box and frontally face the monitor at approximately 30cm from its eyes. The position 

of the sensors’ array enabled us to reliably constrain the distance between the head of 

the rat and the display, insuring that the retinal size of the stimuli was almost constant 

across all of the trials. This was confirmed by a video recording of the rat performing 
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the task, as reported in a previous paper from our group using the same experimental 

rig (Alemi-Neissi et al, 2013). 	
	

	
 

	

	

	

	

	

	

	
 
Figure 11. The experimental rig – two cabinets with three operand boxes each. One cabinet is presented 
here. The side view on the left demonstrates the spatial distribution of the components while on the 
right we see a top-down view of the operand box with a viewing hole in the middle. Rat extends his 
head trough the hole and interacts with the sensors. 
 
 
3.3 Visual stimuli 
 
 

In this experiment, the rats were trained to discriminate a reference object 

from 11 distractor objects. Both the reference and the distractors were stimuli 

previously used by our group either in behavioral (Zoccolan et al. 2009; Alemi-Neissi 

et al., 2013; Tafazoli et al. 2012) or neurophysiological (Tafazoli et al, 2017) 

investigations of rat object vision (Figure 12A). The reference was an artificial shape 

made of three lobes, approximately equally sized and arranged in a tripod-like, Y-

shaped configuration. The distractors were a mix of artificial shapes and renderings 

of computer-graphics models of natural objects. Objects were rendered using a ray 

tracer program POV-Ray (http://www.povray.org). Light source position parameter in 

the rendering of all the objects was kept constant, and the objects were rendered 

box 

monitor 

box 

monitor 

viewing hole 

rat 

sensors 
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approximately equal in size (i.e., diameter of a bounding circle) along either the 

vertical (height) or horizontal (width) dimension. All the objects were rendered 

against the black background. The default size of each object (i.e., the size used for 

the initial training of the rats) was 35° of visual angle and they were all presented in 

the center of the screen. The distractors were chosen based on the (broad) range of 

image-level similarity with the reference, i.e. how much they overlapped with the 

tripod object (Figure 12B). This allowed distinguishing the rats based on their level of 

success with the various distractors. In addition to the default size, both the reference 

and distractors stimuli were also shown at different sizes (ranging from 15° to 35° in 

steps of 2.5°). As mentioned in the introduction, random variations of the reference 

(tripod) object were also shown to the animals in the later stages of the experiment. 

These stimuli (named random tripods) will be described in the section devoted to 

Phase IV of the experimental design. 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. A) Reference object (the “tripod”) and eleven distractor objects (a combination of artificial 
and natural stimuli) were used in the experiment. Since this was a two forced-choice task the rats had 
to learn to distinguish the tripod stimuli from “everything else”. B) Distractor stimuli were chosen 
based on the amount of overlap with the tripod stimuli. Some had a very small amount of overlap (like 
distractors #2 and #3) while others completely overlapped with one of the tripods lobes (like distractor 
#9) or all of them (like distractor #11). 
 
 
3.4 “Shaping” procedure 
 
 
 One of the most important aspects in the behavioral experiments with animals 

is their introduction to the experimental setup. Experimental setups represent highly 

artificial environment that can be stressful for the animals, especially at the beginning 
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of the training. Even though the “shaping” procedure is often omitted from the 

“Materials and Methods” section, it can have a crucial impact on the successful 

training of animals in a perceptual task (especially at the onset of the training), 

possibly leading to low recognition performances, as well as the small number of 

performed trials, if not done properly (see Results, Phase I). Not reporting details 

about the “shaping” procedure can also lead to the assumption that animals were 

completely naive at the beginning of data collection (which is almost never the case). 

Therefore, it is worth explaining such procedure in details in this section of the thesis.  

Rats were first given a few days to introduce themselves to the environment, 

in order to know that they can feel safe inside the operant box. The next task was to 

introduce the animals to the sensor’s array. To this aim, the central needle was 

covered with a sugary treat, so that rat could learn to associate the licking of the 

central needle with the stimulus presentation. To help them form an association 

between stimulus identity and the response needle (either left or right), a free reward 

was delivered (on that needle) as soon as the stimulus was presented (keeping the 

stimulus on screen to strengthen the association). During the initial shaping phase, to 

emphasize the existence of two categories of stimuli, the reference stimulus (the 

“tripod”) was kept on full luminance at all times, while the first two distractors the 

rats were introduced to were dimmed out starting every session at 10% luminance 

contrast and then gradually increasing during the session (by 10% every 10 trials, 

reaching full luminance by the end of the session). As the unconditional (free) reward 

was gradually removed, we introduced a reinforcing stimulus on incorrect trials 

(consisting of a failure-signaling tone, paired to the monitor flickering from black to 

middle gray at a rate of 15 Hz). This stimulus was initially aversive for the rats, 

leading some of them to stop performing. Once the rats were sufficiently “shaped up” 

and accustomed to the reinforcing stimulus, the data recording begun. Since the 

“shaping” procedure lasted a certain amount of time (10-15 sessions) during which 

the stimuli were presented, the rats already acquired some level of stimulus 

discrimination before the data recording started.   
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3.5 Experimental design 
 
 
3.5.1 Phase I 
 
 

The primary task of the Phase I was to teach the rats that there is more than 

one stimulus assigned to one port. In order to make the task easer at the beginning, 

only three stimuli were chosen (the tripod – reference object and two distractors - #1 

and #8, Figure 12A) since we knew from the previous experiments of our group 

(Zoccolan et al, 2009; Tafazoli et al, 2012; Alemi-Neissi et al, 2013), that rats could 

learn to distinguish these stimuli relatively fast. The rats were trained until they’ve 

reached a 70% of discrimination performance (stability of performance was assessed 

across several days). Each trial would begin by the licking of the central sensor 

(Figure 13), which would initiate the presentation of the stimuli on the screen. As a 

result of the training the rats learned to associate the right feeding needle with the 

Tripod stimulus and the left feeding needle with these two initial “Distractors” 

stimuli. Giving a correct response would yield a reward (pear juice) and was 

accompanied with a “success” sound, while an incorrect response would result in the 

failure-signaling stimulus mentioned in the previous section (a flickering screen from 

black to gray at 15Hz interval, for 1-3 seconds, paired to a “failure” sound). The 

standard presentation time was set at 3 seconds during which the rat had to make a 

response. In the case of a correct reply, the stimulus was kept on the screen for a total 

time of 4 seconds, while, in the case of an incorrect response, the stimulus would 

disappear and the flickering would begin. 

 

 

 
 
   
 
 
 
 
 
 
 
 

 

 

Figure 13. Schematic of the 
object discrimination task. 
Rats were trained to initiate 
the task by licking the 
central sensor. This would 
trigger the presentation of 
the stimuli on the screen. In 
order to correctly perform 
the task and earn the reward, 
rats had to learn to associate 
the right feeding tube with 
the reference (tripod) object 
and to associate the left 
feeding tube with the 
distractor objects. 
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If the rat didn’t make a reply in the 3 seconds timeframe, the trial was classified as 

ignored. To prevent the rats from making very quick, impulsive responses, a trial was 

aborted if the animal’s reaction time was lower than 300 ms. In such cases, neither 

reward or time-out was administered, the stimulus was immediately turned off, and a 

brief tone was played. Out of the three stimuli the tripod was presented 50% of the 

time while the two distractors were presented 25% of the time each (50% total) – 

Figure 14A. The rats were trained daily and performed (on average) 400-500 trials in 

a session lasting ~1.5 hours. 
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3.5.2 Phase II 
 
 

The goal of Phase II was to introduce the rest of the distractor stimuli. To 

make this easier, at the beginning of this phase (Phase IIA) we kept the proportion of 

the previously presented distractors at 25% total (12,5% each) and equally shared the 

remaining 25% among the new distractors (~2.8% each), Figure 14B. As a result, the 

overall performance in the task remained above the 70% allowing the rats to keep 

improving their performance on the “old” stimuli while learning the “new” ones at 

their own pace. Once the rats achieved >70% of performance on at least half of the 

“new” distractors, we equaled the percentage of presentation for all of the distractors 

(~4.55%; Phase IIB, Figure 14C). We continued to train the rats until they’ve reached 

a stable performance (over the course of five consecutive sessions) of 70% overall. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 14. Distribution of the stimuli presentation in the Phase I and the Phase II of the experiment. A) 
In the Phase I of the experiment the tripod stimuli was presented 50% of the time, while the two 
distractors equally shared the remaining 50% (25% each). B) At the beginning of the Phase II (Phase 
IIA) the two “old” distractors were presented 25% of the time (12,5% each) while the other 25% 
reserved for the distractors was equally shared between the 9 “new” distractors (~2.8% each). C) Once 
the rats learned to recognize at least half of the “new” distractors with >70% accuracy we equalized the 
presentation percentage for all of the distractors (~4,55% each, Phase IIB). Stimuli are “color coded” 
for clarity. 
 
 
 

A B C 
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3.5.3 Phase III 
 
 
 In phase III, the size transformations were introduced. As previously shown by 

Zoccolan et al. (2009), Alemi-Neissi et al. (2013) and Rosselli et al. (2015), rats have 

a very robust tolerance to size transformations. Since all of these previous studies 

used only two different objects for the discrimination task, the goal of this phase was 

to establish how well the rats were able perform when they encounter a high number 

of stimuli which are size transformed. All of the stimuli were presented in the range 

of sizes from 35° of visual angle to 15° degrees of visual angle in the steps of 2.5° 

(Figure 15). As already mentioned in the introduction, rats have very low spatial 

acuity. This led to some interesting results at the sizes lower than 22.5°, where rats 

vision reaches it’s limits (see Results).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Preview of the default view and the size transformations. The “half sizes” (.5) and the rest of 
the distractors are left out for clarity. 

Considering that we had eleven distractors and that 50% of the stimulus presentation 

was dedicated to the reference object, heaving additional nine size variations meant 

that we had 99 different conditions in the space of 200 – 250 distractor trials the rats 

would perform during an average session. This meant that some of the size 

transformations were presented only once or twice during a typical session, which, in 

turn, made necessary to perform a large number of sessions in order to get a 



	 43	

statistically robust assessment of the performance. To avoid overwhelming the rats by 

presenting all of these conditions at once, we implemented a staircase procedure, 

where we started from the default view size of 35° of visual angle and then allowed 

the rats to “determine” their own pace of progress down the size transformation 

ladder. The staircase procedure was implemented in the following way – the rats 

would start the task at a given size (35° at the beginning of the Phase III) and if they 

responded correctly to 7 out of 10 consecutive trials, the complete set of stimuli at a 

size that was 2.5° smaller was included in the presentation pool. To ensure that rats 

would gradually learn the task and reach the bottom of the size range, we took the size 

that rats have reached in their current session, increased it by two steps (5°), and set 

that as the beginning point for the next session. For example, if the rats reached 25° at 

the end of a session in a given day, we would set size 30° as the beginning point for 

the next session (next day). Once the rats finally reached size 15° for five consecutive 

sessions, we stopped the staircase procedure and equalized the frequency of all sizes. 

The training continued until the rats achieved >70% performance, at which point we 

continued to Phase IV. 
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3.5.4 Phase IV 
 

After successfully answering one of our main questions – will the rats be able 

to perform a discrimination task when faced with a large number of different stimuli 

that, in addition, are also size transformed (Phase III), we continued our experiment 

trying to understand the perceptual strategy deployed by the rats, when performing 

this discrimination task. As discussed in the introduction, the Bubbles method used by 

Alemi-Neissi et al. (2013), Rosselli et al. (2015) and Vermaercke et al. (2012) is a 

very powerful classification image approach to infer perceptual strategies, but has a 

few limitations that are inherent to the method itself and cannot be circumvented by 

the experimental design. In order to find alternative ways to tackle this issue, we 

looked back at the work of Ahumada (1996), which introduced the concept of 

classification image into the literature. In a typical two-forced choice experiment that 

implements the classification image approach, the stimulus in each trial is one of two 

possible images (signals) in a Gaussian noise field that varies from trial to trial 

(Figure 16a). The participant (a human or an animal) tries to correctly discriminate 

which signal is presented. The participant processing strategy can be summed up by 

the following equation (Figure 16b): 

𝑐 = (𝒏!" + 𝒏!!)− (𝒏!! +  𝒏!") 

where 𝒏!" and  𝒏!"  are the averages of the noise fields over all misidentified trials 

(where the stimulus contained signal a but was identified as signal b or it contained 

the signal b but it was identified as signal a) while 𝒏!! and 𝒏!! are the averages of 

the noise fields over all correctly identified trials (where the stimulus contained signal 

a and was identified as signal a and where the stimulus contained signal b and it was 

identified as signal b). The reason to sum up the stimuli with the different signal but 

the same response from the observer is the following: although the noise is random, 

the structure of the signal isn’t. Therefore, on some trials, the additional noise might 

contribute to the correct perception and, on other trials, to incorrect perception. Since 

there was “something” in the noise to contribute to the perception of the stimuli as 

signal one (and dissimilar from signal two), it seems likely that 𝒏!! and 𝒏!" will 

show what are the features leading to this decision (because they represent the 

averages of noise fields over trials identified as signal one). If this is the case, we can 

sum up this two in order to reduce the sampling noise. The same will apply for 𝒏!" 

and 𝒏!!, when it comes to signal two. And since these sums represent the averages of 
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Figure 16. The standard method 
of calculating a classification 
image. (a) The experiment: on 
each trial, a signal and a noise 
image are summed to produce 
the stimulus, and the observer 
generates a response. Sometimes 
the response is the correct one, 
sometimes not. 
(b) The analysis: the noise fields 
from each signal - response 
category of trials are averaged 
together, and the averages are 
combined according to the 
equation we described in order to 
produce the classification image. 
Adopted from Murray (2011). 

noise fields over trials leading to the opposite responses (therefore the photographic 

negatives of each other) we can further add the first sum (𝒏!" + 𝒏!!) to the negative 

value of the second sum (𝒏!! + 𝒏!") to reduce sampling noise even further, ending up 

with our original equation.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As discussed in the introduction about the Bubbles method, addition of the external 

noise can change the perception of the stimuli (and even systematically lead to the 

wrong identification). To avoid this problem, we decided to introduce the “noise” in a 

structural way, by changing the parameters (size, rotation and translation) of the lobes 

of our reference (tripod) object (Figure 17). This allowed sampling a region of the 

shape space, centered over the tripod, in a rather homogeneous way, always 

presenting whole objects (i.e., structurally altered tripods), rather than partially 

degraded or masked versions of the reference (i.e., random tripods). Thanks to this 

design, the resulting classification images were not constrained within the boundaries 

of the reference or distractor objects (as it would be the case with the Bubbles 

method) but extended over the whole image plane. The random tripods were 

randomly interleaved in the protocol used for Phase III with the presentation 

frequency of 20% total (leaving the remaining 80% of trials equally divided among 

size transformed reference object and distractors). To maximize the generalization 

and avoid any learning effect, the trials involving the random tripods were not 

rewarded or punished in any way (no feedback trials).  

Unlike the regular trials, the random tripods were not kept on the screen after 

the response was obtained and the rats could start the new trial immediately. 
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Figure 17. Examples of the random tripods. Depending on the parameters the resulting stimuli could be 
a slightly modified version of the reference object or the tripod stimulus can be completely “deformed” 

In the first “version” of the Phase IV protocol we’ve set the size of the random 

tripods to 30° of visual angle. The rats performed 32 sessions (~16000 – 18000 trials) 

so we could have enough trials to preform a robust statistical analysis. The original 

equation 𝑐 = (𝒏!" + 𝒏!!)  −  (𝒏!! +  𝒏!") can be simplified in our case since the 

signal is only one – the tripod, which can then be classified either as the reference 

stimulus or a distractor stimulus. Therefore our classification image was computed 

using the following equation:  

CI = <Itripod> – < Inot tripod> 

(the pixel-wise average of all the stimuli that were classified as a tripod minus the 

pixel-wise average of all the stimuli that were classified as not tripod, Figure 18).  

 

 

 

 

 
 
 
 
Figure 18. Calculation of the Classification Image. We summed up (on the pixel level) all of the 
stimuli presented in the trials classified as tripod and all the stimuli classified as not tripod and then we 
subtracted these sums. The resulting classification image is characterized by the black and white 
regions where the black regions are highly present in the stimuli identified as not tripod while the white 
regions are highly present in the stimuli identified as tripod. 

After computing the classification images, we established their statistical 

significance at the pixelwise level, by performing a permutation test in the following 
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way. We obtained 100 randomly shuffled versions of the rat responses and, for each 

one of these, we computed a ‘fake’ classification image in the same way we already 

described. We observe that, in this way, the proportion of the rat responses in the two 

categories is preserved. We then stacked the fake classification images on top of each 

other and for each pixel we computed the empirical distribution of its intensity values. 

We then computed for each pixel the mean and standard deviation of its empirical 

distribution and fitted the latter with a Gaussian with the same mean and standard 

deviation. In this way we defined a pixel-wise null distribution against which we 

could test the corresponding pixel intensity values in the original classification image 

at a significance level of 0.01. Pixels belonging to the right tail of these distributions 

where assigned to the “salient” part of the classification image and pixels belonging 

to the left tail where assigned to the “anti-salient” part of the classification image, 

following the “convention” used by previously studies of our group (Tafazoli et al, 

2012; Alemi-Neissi et al, 2013, Rosselli et al. 2015). 

 

 

 

 
 
 

Figure 19. Examples of ‘fake’ classification images obtained randomly shuffling the rat responses. As 
expected, classification images produced in this way do not show any kind of emerging “structure” 
unlike the real classification images 

After we finished the sessions with the random tripods at 30° of visual angle, 

we presented the rats with the same stimuli in their outline version (also at 30° of 

visual angle, Figure 20, left). The rats also performed additional 32 sessions with the 

random tripods at 25° of visual angle (Figure 20), completing this phase of the 

experiment. Based on the computed classification images, we were able to 

qualitatively infer for the rats’ perceptual strategy (see Results), but our ultimate goal 

was to quantify this strategy, building a predictive model of rat perceptual choices and 

then test this models’ accuracy. 
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Figure 20. Outline version of the random tripods (at 30° of visual angle) and random tripods at 25° of 

visual angle. 

 

In order to do that, we combined the classification image approach with logistic 

regression to construct a generalized linear model to predict the probability of rat 

choice, when faced with an incoming visual stimulus. We modeled the probability of 

rat i to classify an arbitrary input image x as being the tripod, as: 

𝑝! 𝑦 = 1 𝑥 = 𝜎 𝜃! + 𝜃!CI!·𝑥 , 

where y is a binary variable indicating the choice of the animal (1 = “tripod”; 0 = 

“everything else” category), CI! is the classification image obtained for rat i, CI!·𝑥 is 

its dot product with the input image (Figure 21), 𝜃!  and 𝜃!  are the regression 

parameters, and 𝜎 is the logistic regression function. The argument of the logistic 

function models the evidence that the animal has acquired about the presence of the 

tripod, based on a bias term 𝜃! and the matching between the input image and the 

perceptual template provided by the classification image (properly weighted by a gain 

factor 𝜃!) 

.  

 

 

Figure 21. Calculating the dot product between the classification image (perceptual template CIi) and 
the input image. The pixel value of the salient regions is intensity based and positive, while the anti-
salient regions have intensity based negative values. The background has the value of zero. 

The logistic function translates this evidence into the probability of a “tripod” 

choice (Figure 22). This model was fitted to the responses that the rat gave to the 

random tripods, using a two-step procedure. First, the classification image CI! was 

obtained, as described in the previous section and then the CI! was plugged into the 

above equation and the regression parameters 𝜃! and 𝜃! where found by minimizing 

the logloss (aka logarithmic loss or cross-entropy loss) using a gradient-based method 
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(implemented in Matlab (Mathworks) using the glmfit function of the Statistics and 

Machine Learning Toolbox with binomial distribution). The logloss is defined as the 

normalized negative log-likelihood of the true responses, given the probabilistic 

outcomes of the model’s prediction predictions on the same input images (Bishop, 

2006).  

 

The equation for the logloss is the following: 

𝑙 𝜃!,𝜃! =  −
1
𝑁  𝑦!

!

!!!

log𝑝 𝑦! = 1 𝑥!)+   1− 𝑦! log  1− 𝑝 𝑦! = 1|𝑥!   

where N is the number of samples used to train the model, k is a running index and the 

dependency of the probability on 𝜃!,𝜃! is not made explicit. We observe that this 

equation is composed of two terms. The first term is positive when the response of the 

rat is 1 (“tripod”) and vanishes when the response is 0 “not tripod”; vice versa for the 

second term, so that the two terms take care of the two possible responses of the rat 

independently.  

When the model predicts a very high probability of responding 1 and the real 

response was indeed 1, the first term adds a very small contribution to the loss (it 

vanishes only if the predicted probability is exactly 1, which does not happen in 

practice, since the sigmoid function reaches the extreme values only when its 

argument grows or decrease indefinitely). On the contrary, if the model predicts a 

small probability, the contribution to the loss is high, reflecting the fact that the model 

is wrong. The more the model is confident in a wrong prediction, the higher is the 

Figure 22. Predicting the probability 
of a Tripod response after all the 
parameters are known. Tripod 
evidence on the x-axis is the solution 
of the equation 𝜃! + 𝜃!CI!·𝑥  and 
presents the amount of “evidence” the 
rat has obtained in order to perform a 
classification. In case of a big 
negative value (red dot) the rat will 
almost certainly classify the presented 
stimuli as “Not Tripod”. In case of a 
big positive value (blue dot) the rat 
will reply “Tripod” with a high 
probability. Zero represents the point 
of equivalency – the rat has a 50% 
chance of replying “Tripod” or “Not 
Tripod”. 
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contribution on the total loss. Similar considerations can be done for the second term, 

when the real response of the rat was 0 (“not tripod”).  

This model was used to fulfill three different goals:  

First, we verified that each rat used a unique, subject-specific perceptual 

strategy. This analysis was carried out by applying a 10-fold cross-validation 

procedure, where only 9/10 of the responses to the random tripods (the train set) were 

used to fit the parameters of the model (i.e., CI!, 𝜃! and 𝜃!). The trained model was 

then used to predict the responses to the remaining 1/10 of the random tripods (the 

test set), and the goodness of such prediction was assessed by the logloss function. 

Critically, for each rat i, we also fitted five alternative models, using the same 

procedure described above, but with a key difference – rather than using the 

classification image CI! (corresponding to the rat under consideration), we plugged 

into the equation the classification images CI! (with 𝑗 ≠ 𝑖) of the other rats. This 

allowed testing whether the classification image obtained for a specific rat was able to 

predict its perceptual choices better than the classification images obtained for the 

other subjects (see Results, Figures 30 and 32) 

Second, we used the same regression model (fitted to the full set of random 

tripods) to predict the rats’ performances to all the distractors. Compared to the 

previous analysis, this was an even more stringent test of the ability of the 

classification images to predict rat perceptual choices, because the train and test 

image sets (i.e., the random tripods and the distractors) were not only different 

stimuli, but belonged to structurally distinct classes of visual objects (see Results, 

Figures 31, 32, 33). To be sure that the obtained predictions in the cross-rat 

comparison were not simply a result of overcompensation trough the bias parameter 

(𝜃! ) we preformed two additional analyses. We calculated how well the rats’ 

classification accuracy correlates with the model based only on the classification 

images (see Results, Figure 35) showing that we can achieve a robust prediction 

without using any bias parameter. We also checked the matching between the 

observed and predicted values for the distractor evidence between the good and the 

poorer performing rats (see Results, Figure 34) in order to demonstrate that variability 

in rats’ accuracy also can’t be attributed to the bias parameter. Both analyses 

confirmed our conclusion that rats’ perceptual strategy determines its proficiency 

level in the task. 
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Third, since using a fixed template matching still represents a low-level 

strategy, we used our model to predict rats’ performance on the outline and “small 

size” (25º of visual angle) random tripods. Since our model’s prediction drastically 

failed for the outline random tripods (see Results, Figure 36), we performed an 

additional analysis with the filled in versions of the outline random tripods under the 

assumption that these stimuli were perceived as solid bodies (see Results, Figure 38).  

The statistical tests used to assess the significance of our findings are reported 

in the Results and in the legends of the figures. Here, we only describe in more details 

the binomial test used to evaluate the overall significance of the comparisons between 

same-CI models and cross-CI models in Figures 32 and 38. This test was carried out 

according to the following logic. We computed the probability of obtaining a number 

of successes in 6 Bernoulli trials that was equal or higher than the number of times a 

given model (e.g., the same-CI model) outperformed other alternative models (e.g., 

the cross-CI models). In the case of the same-CI model vs. cross-CI models 

comparisons (i.e., large colored dots vs. small colored dots in Figure 32 and large 

black dots and small colored cots vs. small black dots in Figure 38), the chance of 

success in each Bernoulli trial was set to 1/6. In the case of the filled-in same-CIo 

model vs. same-CIo model comparison (i.e., solid green dots vs. empty green dots in 

Figure 38), the chance of success in each trial was set to 0.5. 
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Chapter 4: Results and Discussion 
 
 
4.1 Phase I 
 
 

From the very early stages of training, it was noticeable that rats show a high 

level of difference in their performance, both in the recognition strategy and in the 

number of trials they perform per session. While some rats got accustomed to the 

(very artificial) surrounding of the operand box, others still had problems performing 

a sufficient number of trials on a day-to-day basis and varied very much in their 

recognition performance as well (Figure 22). For example, while the average number 

of trials for the rat No. 1 was close to 300 (294), it ranged from 123 trials per session 

to 482 trials per session, more then 400% difference. A similar trend was observed for 

rat No. 2 – average number of trials was 356, minimum 187, maximum 550. For rat 

No. 3, the average number of trials was significantly higher – 426, and much more 

stable but the minimum and maximum were still wide apart – 202 vs. 551. Rat No. 4 

varied a little bit less – average 338, min. 205, max 447. Even though rat No. 5 had 

the best recognition performance, he still varied a lot in the number of trials on a daily 

basis (average 346, min. 169, max. 519). Rat No. 6 was the one with the biggest 

number of trials performed (average 530) and it also varied the least (min. 353, max 

635). It is important to notice that minimums and maximums don’t represent a slow 

rising trend but a zigzag line, meaning that rats would perform a big number of trials 

one day and a much lower one the next day. We can say that Phase I was as much 

about teaching the rats how to constantly perform a desired number of trials as 

training them to perform the object recognition task correctly.  

Still, on average, just like with the performance, there was a steady rising in 

the number of trials performed, and (as expected) it became more and more stable as 

the training progressed. If we look at the recognition performance, one thing is 

apparent from the beginning – all the rats (with the exception of rat No. 5 in the very 

first sessions) achieved the best performance on the distractor #1 (which persisted 

throughout the experiment, even when the size transformation were included) 

reaching > 90% performance in just a few sessions. Qualitatively, this can be 

explained by distractor #1 having visual features that were easily discriminable from 

those of the reference tripod object (compare the overlap pictures in Materials and 
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Methods, Figure 12B).  When it comes to the reference object, we can see that it was 

the hardest one to recognize, for most of the rats - only rats No. 5 and 6 were able to 

achieve a stable performance over 70% in phase I of the training. The other rats 

oscillated above 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Recognition performance for all the rats, Phase I and II. Because of the variations on a day-
to-day level, in order to smooth the curves and better represent the learning trend we plotted a two 
sessions average performance (instead of every session). For the Phase IIA distractors #1 and #8 are 
plotted separately from the other distractors and then for the Phase IIB we merged all of the distractors 
in a single line.  
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(rats No. 2 and 3) or below (rats No. 1 and 4) chance level, not reaching the desired 

recognition performance (>70%) until the end of Phase IIA. Since the task was 

designed from the beginning as “the tipod vs. everything else” and also as the result 

of the “shaping” procedure (see Materials and Methods), it makes sense that rats 

could decide to focus more on the “everything else” category (especially because they 

were so good at recognizing distractor #1), thus maximizing the amount of reward 

even if they recognized the tripod at the chance level. As we can see, the introduction 

of the additional distractors in the Phase II prevented this strategy and led to a fast 

increase in the performance with the reference tripod object. The performance for 

distractor #8 was always in between the performances for distractor #1 and the 

reference (except for the rat No. 5, who had the best performance for the reference 

from the beginning), usually varying around 70-80% for the rats. 
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4.2 Phase II 
 

The introduction of the whole set of distractors forced the rats to start paying 

much more attention to the reference object, since the diversity of the distractors now 

made the recognition task much harder. As a result, by the end of Phase II, all rats 

reached a performance that was >70% correct on the reference.  

The biggest improvement was achieved by the rat with the lowest performance 

on the tripod object (No. 4), which entered Phase II with just over 30% correct 

performance and managed to reach almost 80% correct by the end of phase II. Rat 

No. 3 raised its performance from chance level to 90% correct. Other two rats, 

oscillating around chance level (rats No. 1 and 2), raised their performance to 80% 

and 75% correct, respectively. And the rats with the best performance in Phase I (No. 

5 and 6) continued to improve – rat No. 6 reached 85% correct, while rat No. 5 

achieved an impressive 95% correct. The performance for distractor #1 was already 

almost perfect (for the most rats) in Phase I, so there was a little space for 

improvement – all the rats performed between 90-100% correct. For most rats, the 

performance for distractor #8 continued to rise, but for the rats No. 3 and 4, the 

introduction of all the distractors led to a drop in performance with this specific 

stimulus (although this drop was compensated by the rise of performance for the 

tripod object).  

Similarly to the recognition performance, the number of performed trials 

continued to rise and became more and more stable on a day-to-day basis. The 

average number of trials for the rat No.1 increased to 375, with only one session 

below 300 trials. For the rat No. 2, the average number of trials rose to 378 (with only 

3 sessions below 300 trials). Rat No. 5 performed on average 393 trials (one session 

below 300 trials). The other rats (No. 3, 4 and 6) all performed more than 400 trials 

on average (No. 3 – 426, No. 4 – 422, No. 6 – 513) with no sessions bellow 300 trials. 

Taken all together, at the end of Phase II, we were at the desired level of recognition 

performance and trial number for all the rats.  
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4.3 Phase III 
 
 

Because of the reasons already mentioned in the Materials and Methods 

(distractors being presented only 50% of the time and size transformations including 

99 different conditions for the distractors), Phase III ran for almost 100 sessions (96) 

and included tens of thousands of trials for each rat: rat No. 1 – 42613, rat No. 2 – 

34793, rat No. 3 – 47173, rat No. 4 – 46121, rat No. 5 – 44720, rat No. 6 – 52486. 

Since we will provide a detailed presentation of the performance for all the stimuli 

across all the sizes, together with the classification images, when describing the 

results of Phase IV, here we will just show the time course of the performance 

(averaged across 10 sessions) for the reference tripod object (Figure 23) and the 

distractors averaged together (Figure 24) during the Phase III (including size 

transformations).  

There are several important things to notice here: all rats continued to 

improve their performance on the reference object, with all the animals (at least at one 

point) achieving 90% performance at the default size (35º of visual angle) and most of 

them (excluding rat No. 2) almost reaching the perfect discrimination accuracy. The 

second thing is the stability of the performance. During almost 100 training sessions, 

the performance on the reference object varied (except for rat No. 2) by just a few 

percent. The third thing is the impact of the size transformations. After a very short 

period of only 10 sessions, in which the staircase was implemented (see Materials and 

Methods), rats generalized to all size transformations, but the smallest one (108 

different conditions), and maintained a very high performance that was equal or 

slightly smaller than for the default size.  

Regarding the smallest size (15º of visual angle), what can be readily observed 

from the performance plots is the substantially different performance between size 

20° and size 15°. As we mentioned in the Introduction, probably the biggest limitation 

factor for rodents as experimental animals in the vision research is their low visual 

acuity. And 20° of visual angle seems to be the limit below which the performance 

drops drastically, at least in such complex shape discriminations as those tested here. 

Most rats performed bellow chance level at size 15° (except for the rat No. 6, the best 

performer for the tripod stimulus in this phase, which, even at size 15°, managed to 

reach 60%+, once again pointing out to inter-subject variability).  
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This drop in performance for the reference object at small sizes is relatively 

easy to explain, considering that the task we taught to the animals was “tripod vs. 

everything else”.  

 
 

 
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 23. Recognition performance for the Tripod stimulus for all the rats, Phase III (sessions 74-170). 
Half sizes (.5) were omitted for clarity. Data points represent the average performance across 10 
consecutive sessions, except for the last block (sessions 164-170). 
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Figure 24. Recognition performance for the Distractors stimulus for all the rats, Phase III (sessions 74-
170). Half sizes (.5) were omitted for clarity. Data points represent the average performance across 10 
consecutive sessions, except for the last block (sessions 164-170). The performances of all the 
distractors at the same size were merger together. 

Given the large number of presented conditions (99) that were not the reference tripod 

object, every time the rats were not sure about the identity of the presented stimulus, 

their tendency was to choose the “not tripod” response, and this obviously applied to 
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the cases where the tripod object was so blurred (because of its small size) to become 

hardly discernable. This is easily observable if we look at the average performance for 

the distractor stimuli. The plots for the distractors look like the mirror image of the 

plots for the reference object, when it comes to the ranking of the discrimination 

performances as a function of size (especially for the poorer performing rats 2, 3 and 

4), which is exactly what would be expected: the more blurred was a distractor, the 

more its appearance fell in the “everything-else”, “not-tripod” category. It is 

important to notice that, as the rats (with time) got better (in recognizing both the 

reference and the distractors), the performance with the distractors at the size 15° got 

slightly lower. 
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4.4 Phase IV 
 
 

Phase IV represents the final and the most important part of our experiment. 

Although the previous phases yielded some important conclusions - the rats are able 

to achieve a high level of object recognition when exposed to multiple distractors 

instead of just one, and they are able to generalize and transfer this knowledge to the 

size transformed stimuli in a very short amount of time, the primary goal of our 

experiment was to discover the underlying recognition strategy and try to build a 

model, based on this strategy, that was able to predict rat perceptual choices.  

First, let us take a more detailed look at the rats’ performance for each 

stimulus independently. In Figures 25 and 26, we are presenting the recognition 

performance achieved during the sessions of Phase IV, when the data to obtain the 

classification images were collected (see Materials and Methods). This will enable us 

to make a direct comparison between the classification images and the performance. It 

could be a mistake to compare, for example, the classification images obtained in 

Phase IV with the recognition performance calculated for the sessions of Phase III, 

since these classification images (and therefore the underlying recognition strategy) 

could change in time (especially as a result of learning), but they would also not 

account for the effect that the presence of the random tripods in the stimulus pool 

might have had on rats’ performance with the regular stimuli (i.e., the reference and 

distractor objects).  

If we look at the performance for the reference object, we can see that the 

trend we already saw in the Phase III is completely preserved (there’s a small drop in 

performance for the lower performing rats, probably because of the introduction of 

the random tripods which led to some confusion). The best performing rat (No. 6) had 

almost perfect performance and was able to achieve above 80% correct classification, 

even until 17.5° of visual angle. The other rats had a little bit lower performance, but 

everyone, except the worst performing rat (No. 4), remained above 70% until 20° of 

visual angle. As we already commented in the results for the Phase III, at 20° of 

visual angle rats visual acuity becomes a limiting factor (and the recognition 

performance starts to drop rapidly) leading some rats (No. 3 and 4) to fall below 

chance level. If we look at the plots for the performance on the distractors #1-#4, we 

will see that classification accuracy is close to perfect for all the rats across all the 
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sizes. Intuitively, these are the results that we expected. When we presented the 

results for the Phase I, we pointed out that distractor #1 is the “easiest” stimulus 

among rats and the reason is likely the number of 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 25. Recognition performance for the reference object and the Distractor stimuli #1-#5, Phase IV 
(sessions 220-252). Color code is included in the first plot. The rest of the plots contain the overlaps of 
the Tripod stimulus with the distractor for which the performance is shown. 
 
of distinctive features the rats can use in order to discriminate it from the reference 

tripod object. But we also pointed to the low overlap with the tripod and to the two 
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horizontal features clearly sticking out for the distractor #1. If we look at the overlaps 

of distractors #2-#4 with the tripod, we can see the same pattern emerging – two 

distinctive horizontal features sticking out, overlapping minimally with the vertically-

oriented and diagonally-oriented lobes of the tripod object.  

 

 
Figure 26. Recognition performance for the Distractor stimuli #6-#11, Phase IV (sessions 220-252). 
Color code is the same as in Figure 25. The plots contain the overlaps of the Tripod stimulus with the 
distractor for which the performance is shown. 
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Consistent with this, the performance is almost the same with these distractors (for all 

the rats across all the sizes) as with distractor #1. 

 But as the overlap with the tripod starts to increases (distractors #5-#11), we 

begin to see a bigger and bigger drop in performance and the “emergence” of two 

groups of rats - one really good (rats No. 1, 5 and 6) and the other one with, on 

average, poorer performance – (rats No. 2, 3 and 4). This is especially true for the 

three hardest distractors (#9-#11) where we can draw a clear line that separates these 

two groups. As was expected, distractor #11 (which almost completely overlaps with 

the reference object, except for the middle-top part) proved to be the hardest to 

successfully identify, with only half of the rats (No. 1, 5 and 6) managing to 

accomplish the recognition task. We will now take a look at the obtained 

classification images (Figure 27) and see how good of an explanation they provide for 

the rats recognition strategy. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 27. Classification images obtained using the random tripods at size 30° of visual angle, Phase 
IV (sessions 220-252). Color code is the same as in the Figure 25. 
 

Visual inspection of the classification images reveals a variable pattern of 

salient and anti-salient features across the animals. All the rats used an elongated 

salient region, roughly oriented at 45º, matching the shape of the right lobe of the 

tripod. They also used a second salient feature, corresponding to the tripod’s bottom 

lobe. Only some animals, however, relied on a third salient feature, corresponding to 

the tripod’s left lobe (rats No. 2, 4, and 5) and, most noticeably, rat No. 1, whose 
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classification image featured three salient regions that were nearly equally prominent. 

All images also displayed two anti-salient regions, located to the left and right of the 

tripod, but their shape, extension and relative weight varied considerably among the 

animals. Finally, only some rats (rats No. 1, 2, 5 and 6) also relied upon a third, 

smaller anti-salient feature, located at the intersection of the tripod’s top lobes. If we 

now look at the rats performance for the size 30° of visual angle (at which the random 

tripods were presented, so it’s the most accurate comparison) together with the 

classification images (Figure 28), we can infer a tentative, qualitative explanation of 

how the different strategies can account for the variable proficiency of the rats with 

the distractors. 

   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Recognition performance and the classification images (both for the size of 30° of visual 
angle) for the two groups of rats – very good performers (rats No. 1, 5 and 6) and poorer performers 
(rats No. 2, 3 and 4). Color code is the same as in the Figure 25. 
 

Not surprisingly, the rat achieving the biggest discrimination performance 

across most of the distractors was rat No. 1. Its strategy was the one based on the 

bigger number of salient and anti-salient features, including the anti-salient patch, 

precisely located at the intersection of the top salient regions. Rats No. 5 and 6 

displayed perceptual templates that were nearly as rich (also including the upper anti-

salient patch) and reached similarly high performances. The remaining rats deployed 

a less refined perceptual strategies. Most noticeably, the top anti-salient feature was 

either absent from their classification images (rats No. 3 and 4) or shifted upward (rat 

No. 2). This seems to explain the inability of these rats to correctly classify the 

Distractor #11, whose lobes almost exactly matched those of the tripod object (if not 

for the different orientation of the top ones – horizontally, rather than diagonally 
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elongated in the case of Distractor #11). Perceiving such difference required assigning 

anti-tripod evidence to the region of the image located at the intersection of the 

tripod’s upper lobes – the lack (or misplacement) of the top anti-salient feature likely 

prevented rats No. 2-4 from doing so. This seems to explain also the lower 

performance of these animals with other distractors that considerably overlapped with 

the tripod, such as distractors #7 and 8.  

 Interestingly, these objects were more challenging for rats No. 3 and 4 than for 

rat No. 2, whose accuracy (with many distractors) was not dissimilar from that of the 

good performers. This is consistent with the richer perceptual strategy displayed by 

rat No. 2, as compared to rats No. 3 and 4. The animal, in fact, relied on a 

combination of features that was similar to that of the most proficient rats, if not for 

the smaller and misplaced anti-salient patch on the top, and the greater prominence of 

the salient region corresponding to the tripod’s right lobe – which likely accounts for 

the poor performance of the rat with the distractor #9. These observations, though still 

qualitative, suggest that rat accuracy in classifying a given distractor, far from being 

determined solely by the similarity with the reference object, is strongly affected by 

the complexity of the perceptual strategy adopted by each animal. In particular, rats 

building richer, more integrated perceptual templates (in terms of number and variety 

of diagnostic features) achieved higher success rates, also with very difficult 

distractors. 

 

4.4.1 Building models of rat perceptual choices 

 

While these qualitative observations provide a plausible explanation of rat 

performance, based on the recognition strategies inferred through the classification 

images, our main goal was to quantify the predictive power of such strategies. As we 

explain in the Materials and Methods, once we obtained the classification images, we 

trained our model using 9/10 of the trials the rats performed with the random tripods, 

in order to test how well the logistic regression model presented in the Materials and 

Methods is able to predict the responses of the animals to the remaining 1/10 of the 

trials. We used the logloss function (see Material and Methods) to measure the 

models’ accuracy (Figure 29). The logloss results confirmed our previous observation 

that Rat No.1 classification image has the best prediction power (i.e., minimal 
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logloss), but it also confirmed the ordering we observed in the recognition 

performance and classification images complexity among the other rats (good 

performers – Rat No. 1, 5 and 6, poorer performers – Rat No. 2, 3 and 4, see Figure 

28). This indicates that the rats relying on richer perceptual templates responded to 

the input images in a way that was more consistently based on the matching to the 

template (and, therefore, less prone to purely random choices), as compared to the 

animals using simpler perceptual strategies. But does the model confirm the 

uniqueness of the rats’ strategies? 

 
 
 

 

 

 

 

 

 
 

Figure 29. Logloss values of the model prediction for each rat (color code is the same as in the Figure 
25) on the left and examples of the probability values for different random tripods and different rats 
(each row contains the classification image of a different rat – No.1, 3, 4 and 6 in that order 
 

In order to test this we plugged into our model the classification images of the 

other rats and compared the obtained logloss values (Figure 32). For 5 out of 6 rats, 

we found that the same-CI model (large circles) did indeed yield logloss values that 

were lower than those returned by the cross-CI models (small circles), and this pattern 

was highly significant (p < 0.0006; binomial test). This implies that each rat relied on 

a distinctive perceptual strategy, whose specificity was well captured by the 

classification image, which further demonstrates the uniqueness of each rat object 

processing strategy.  

To strengthen this conclusion, we carried out a second analysis, where, for 

each rat, we first fitted our model (see Materials and Methods) to the full set of 

random tripods, and then tested its ability to predict the responses to the 11 

distractors, when presented at 30º of visual angle. Compared to the previous analysis, 

this was an even more stringent test of the ability of the classification images to 

predict rat perceptual choices, because the train and test image sets (i.e., the random 
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tripods and the distractors) were not only different stimuli, but belonged to 

structurally distinct classes of visual objects. 

 
Figure 30. Predicted probabilities of a Tripod response for the rats No. 1, 2 and 3. Distractors are color 
coded for each rat (same as in the Figure 25), while the Tripod is marked with the gray color. 
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Figure 31. Predicted probabilities of a Tripod response for the rats No. 4, 5 and 6. Distractors are color 
coded for each rat (same as in the Figure 25), while the Tripod is marked with the gray color. 
 

Figures 30 and 31 illustrate the way in which we calculated the predicted probabilities 

of the model. The distribution of values over the sigmoid for different rats can serve 

as additional visual aid demonstrating the individuality of each rats’ strategy.    
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Figure 32. Logloss values for the model predictions depending on the input classification images. 
For each rat we compared model’s logloss values obtained using its own classification image and the 
classification images of the other rats. Color code is the same as in the Figure 25. 
 
 We took the logit of the predicted and measured probabilities of correctly 

classifying the distractors, and we plotted them against each other. Figure 33 shows 

the resulting scatter plots for all the rats. The logit is the reverse of the logistic 

function (i.e., it yields the argument of σ in our model). As such, it measures the 

evidence that a rat has acquired about whether the input image is the tripod (or a 

distractor), before this evidence is translated into the probability of choosing the 

tripod (or distractor) response. Our model assumes that this evidence is linearly 

related to the similarity between input image and perceptual template. Therefore, 

comparing the logit of the observed performances to the logit of the predicted ones 

amounts to a direct test of the linearity of this relationship. 

 The two quantities were, in fact, strongly correlated (r = 0.61; p < 0.0001), 

with the objects that were more dissimilar from the tripod, such as the Distractor #2 

and Distractor #3 yielding larger distractor evidence (both observed and predicted, 

symbols × and + in the Figure 33, left) and the objects that were more tripod-looking, 

such as Distractor #11 (symbol    ), providing lower distractor evidence. At the same 

time, the model managed to capture very well the variability of rats’ responses to the 
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same distractor – e.g., rats No. 1, 5 and 6 achieved larger distractor evidence (both 

observed and predicted) than rats No. 2, 3 and 4 with the difficult Distractor #11.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 33. A scatter plot of predicted performance for all the distractors and all the rats (left). Average 
of predicted performance for individual rats (right). Color code is the same as in Figure 25. 

To further test whether the model was capable of accounting for the variable 

proficiency of the rats in the discrimination task, we averaged, separately for each rat, 

the measured distractor evidences and the predicted distractor evidences, across all 11 

distractors. The resulting scatter plot (Figure 33, right) showed a very clear linear 

relationship between the two evidences (r = 0.98, p < 0.001), with rat No. 1 achieving 

the largest values along both axes, followed by rats No. 5 and 6, then by rat No. 2, and 

finally by rats No. 3 and 4. Critically, this ranking matched very well with the one 

previously obtained for the predictability of rat choices (Figure 29) and, more 

importantly, the complexity level of rat perceptual strategies, as inferred by visual 

inspection of the classification images (Figure 27). Taken together, these trends 

indicate that each rat used a subject-specific perceptual strategy, whose complexity 

determined the animal’s performance in the discrimination task.		

This conclusion, however, required further validation, because, in our model, 

the probability of a correct choice depends not only on the perceptual template CI!, 

but also on the offset 𝜃!, which can capture the overall propensity of a rat to choose 

the tripod (or distractor) category. Although this bias term did not influence the 

outcome of the within-rat analyses (Figure 32), it could potentially play a role in the 

between-rat comparisons (Figure 33, right) – i.e., the models obtained for the different 

animals may predict their fluency in the task, mainly because they accurately fit their 
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biases. Although this seemed unlikely, since the 𝜃! obtained for the rats were very 

similar (Table 1), we carried out two control analyses.  

 Bias (𝜽𝟎) Scaling (𝜽𝟏), x10-5 
Rat 1 -4.08064 1.35654 
Rat 2 -2.35565 1.14728 
Rat 3 -2.38103 1.29263 
Rat 4 -1.88381 1.27581 
Rat 5 -2.82878 1.23493 
Rat 6 -2.51752 1.10293 
Table 1. Values of the parameters 𝜃! (offset/bias) and 𝜃! (gain/scaling) in our model for all the rats 

 The first relied on the fact that, if the variable accuracy of the rats with the 

distractors were determined by their different biases, this would affect also the 

discrimination of the reference object. That is, the best performing rats (No. 1, 5 and 

6) would gather larger distractor evidence, as compared to the poorer performers (No. 

2, 3 and 4), not only when presented with the distractors, but also when processing the 

tripod. As shown in Figure 34A, this was not the case, since the tripod yielded lower 

distractor evidence for the best performers. Crucially, model predictions followed the 

same trend (Figure 34B), thus showing that the difference among the 𝜃! obtained for 

the rats was not at the root of the variable distractor evidence yielded by the models. 

 
Figure 34. The variable fluency of the rats (and the models) in the discrimination task is not accounted 
for by differences in decision bias. A) Distractor evidence gathered by the good (rats #1, #5 and #6) 
and poorer (#2, #3 and #4) performers, when presented with either the distractors (left) or the reference 
tripod object (right). Note that the good performers achieved larger distractor evidence than the poorer 
ones, but only with the distractors objects. This indicates that the different performance of the rats with 
the distractors is not due to a difference in decision bias, but, rather, to a different ability of the animals 
to extract discriminatory shape information. B) Same as in A, but with distractor evidence yielded by 
the model. Note that the data follow the same qualitative trend shown in A. This means that the success 
of the models to account for the variable performance of the rats with the distractors (see Figure 33, 
right) is mainly rooted in the ability of the classification images to capture the differences, among the 
rats, in terms of shape processing strategies, rather than in the ability of the models to properly fit the 
animals’ decision biases. 
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This conclusion was confirmed by a second analysis, in which the tripod 

evidence gathered by rat i, when presented with distractor x, was modeled as 

CI!·𝑥 − CI!·𝑡, where t is the tripod stimulus. That is, the model measured the tripod 

evidence in terms of how close the match between distractor and template was to the 

match between tripod and template. Despite the lack of any bias term, this model 

yielded the same trends produced, in Figure 33, by the logistic regression (but with 

reversed sign, since tripod, rather than distractor evidence, was taken into account). 

Rat performance monotonically decreased as a function of tripod evidence (Figure 35, 

left) and a strong (negative) correlation was found between rat accuracy with the 

hardest distractors and tripod evidence (Figure 35, right). Overall, these analyses 

confirmed the conclusion that it was the perceptual strategy deployed by an animal to 

establish its proficiency level in the task. 

 

 
Figure 35. The perceptual choices of the rats are well predicted by models based exclusively on 
classification images. The left panel shows the relationship between the classification accuracy 
achieved by the rats with the distractors (ordinate axis) and the match between the perceptual templates 
inferred for the rats (i.e., the classification images) and the distractors (abscissa axis). The match was 
computed as described in the Results, and measured the similarity between each of the distractors and 
the perceptual template underlying the recognition of the reference tripod object. As such, it was a 
measure that modeled the tripod evidence collected by the rats. Therefore, it does have the opposite 
meaning of the quantity in the abscissa of Figure 33, which measured the distractor evidence. Because 
of this, the relationship shown here has a negative, rather than a positive slope. The gray area highlights 
the object conditions where this relationship was approximately linear. These conditions correspond to 
the distractors that were harder to recognize, yielding a performance lower than 90% correct 
discrimination. These are the conditions that were averaged, separately for each rat, to obtain the plot 
on the right, which shows a large and significant negative correlation (p < 0.05; one-tailed t-test) across 
the animals between classification performance and match to the perceptual template. As such, this plot 
confirms the ability of the classification images to explain the different proficiency of the rats in the 
discrimination task (as already shown in Figure 33, right), using models that do not include any bias 
terms. Color code is the same as in the Figure 25 
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4.4.2 Rat invariant recognition is not consistent with a low-level processing 
strategy 
 

 

The success of the logistic regression model at predicting rat perceptual 

choices (Figure 33) does not imply that the animals processed every incoming 

stimulus using a fixed perceptual template. Such a rigid template-matching 

computation would amount to a low-level strategy, no matter how many features are 

integrated into the template, because it would prevent the animals from correctly 

classifying transformed versions of the objects – for instance, those producing global 

changes of luminosity, while leaving unaltered the shape, such as size variations. This 

can be appreciated by considering the argument of our model: the smaller (or dimmer) 

the object in the input image 𝑥 becomes, the smaller its dot product with the template 

(CI!·𝑥) gets, and, as a consequence, the more likely is for the object to be classified as 

a distractor, regardless of its shape. This scenario is at odds with recent studies 

showing how rats are capable of recognizing visual objects in spite of identity-

preserving transformations, such as size changes (Zoccolan et al, 2009; Alemi-Neissi 

et al, 2012; Rosselli et al, 2015) as well as our own results (see Figures 23-26). To 

directly show that a fixed template-matching strategy is not able to account for rats’ 

invariant recognition, we measured how well our logistic regression model 

generalized to outline versions and scaled versions of the stimuli. We then compared 

the performance of the model to the actual performances of the rats with these 

transformed stimuli. As described in Materials and Methods we performed 32 

sessions with outline versions of the same random tripods that we used to obtain the 

original classification images, as well as 32 sessions with scaled version of the 

random tripods (83% of their original size, corresponding to scaling the reference 

tripod object from 30º to 25º of visual angle, see Figure 20 and 36 for examples). 

Reducing an object to its outline leaves the overall shape unchanged, while it 

substantially changes the luminance cues that define the object. As argued above, a 

template-matching strategy, developed to specifically process full-body stimuli, 

would show little cue invariance, bringing the rats to classify the outline random 

tripods as distractors, way more often than the animals did for their full-body 

counterparts. This can be appreciated by comparing, in Figure 36A, the two red bars, 

showing the probability of tripod responses to full-body and outline random tripods, 
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as predicted by the model (with CI!, 𝜃! and 𝜃! fitted to rat responses to the full-body 

stimuli). The probability of tripod responses was half as large for the outlines, as 

compared to the full-bodies, and this difference was highly significant (p < 0.001, 

one-tailed, paired t-test). By contrast, rats displayed a fully cue-invariant behavior, 

with the fraction of tripod responses being virtually identical for outline vs. full-body 

random tripods (black bars; p = 0.97). As a result, the model significantly 

underestimated the probability of tripod responses for the outline stimuli (p = 0.03). 

 
Figure 36. Inconsistency of rat invariant recognition with a simple template-matching strategy. 
A) Fraction of random tripods classified as being the tripod by the rats (black) and by models (red) that 
were based on the classification images obtained from the full-body, regular size random tripods. 
Classification rates are reported for these full-body stimuli (left), as well as for their outlines (right; 
examples shown on the top). Stars indicate significant difference according to a one-tailed, paired t-test 
(* p < 0.05; *** p < 0.001). B) Same as above, but with classification rates referring to the random 
tripods presented at the default, regular size (30º) and additional sizes – the whole size range, in the 
case of model predictions (red curve), and size 25º, in the case of rat responses (black dots). Same 
statistical analysis as in A. C) Same as in A and B, but with classification rates referring to the 
reference tripod object (left) and to the five hardest distractors (right; stimuli shown on the top) 
presented across the whole size range. In all panels, bars/dots show mean classification rates (computed 
over 6 rats or 6 models) ± SEM. 
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 A similar finding applied to size variations (Figure 36B). The logistic 

regression model, trained with the random tripods at size 30º, yielded a significant 

modulation of the probability of tripod responses as a function of the size of the 

random tripods (p < 0.001; F8,40 = 113.488, one-way ANOVA), with this probability 

steadily decreasing at smaller sizes (red curve). This trend did not match what 

observed for the rats, where the fraction of tripod responses to the smaller (25º) 

random tripods was actually slightly larger (although not significantly) than the 

fraction of tripod responses to their regular-size (30º) counterparts (black dots; p = 

0.12; one-tailed, paired t-test). As a consequence, the model significantly 

underestimated the probability of tripod responses at size 25º (p = 0.02). 

In the case of size variations, it was also possible to obtain model predictions 

for the responses to the reference object and to the distractors across the full range of 

sizes tested in our study. As already shown (Figure 25), rat recognition was very 

stable over a wide size span, with classification accuracy dropping substantially, for 

the tripod, only at the smallest sizes (< 20º of visual angle), while simultaneously 

increasing for some of the hardest distractors. These trends, although qualitatively 

consistent with a strategy based on matching the input images to a fixed template, 

were nevertheless much milder than predicted by such a strategy. This can be 

appreciated by comparing the black and red curves in Figure 36C, showing, 

respectively, rat group average accuracy (black) with the tripod and the five hardest 

distractors as a function of size, and the predictions of the logistic regression model 

(red). The curves (that were normalized to their values at 30º for a better comparison) 

all displayed some degree of modulation over the size axis, but this was much sharper 

for the model predictions than for rat performances. For the tripod (left), classification 

accuracy at size 15º dropped to just ~30% of its value at size 30º, in the case of the 

model, while, for the rats, it remained at ~60% of its value at 30º. The different trends 

obtained for rat performances and model predictions were confirmed by a two-way 

ANOVA with size and observer (i.e., either rat or model) as factors. The main effect 

of size was significant (p < 0.001, F8,40 = 175.474), as well as its interaction with 

observer (p < 0.001, F8,40 = 22.387), thus showing that the two performances dropped 

at a different pace along the size axis. With the distractors, the accuracy of the model 

increased sharply at the small sizes, being ~40% larger at size 15º than at size 30º 

(Figure 4C, right). By contrast, only a mild modulation was observed for rat 

performance, which, at size 15º, was just ~10% larger than at size 30º. Again, these 
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trends were assessed by a two-way ANOVA, yielding a significant main effect for 

size and its interaction with observer (p < 0.001, F8,40 = 46.565 and F8,40 = 14.993 

respectively). This confirmed the failure of the single template-matching model to 

account for rat size-tolerant behavior. 

 

4.4.3 Stability of rats’ perceptual strategy under changes in object appearance 
 

 

These findings are at once reassuring, with regard to the complexity of rats’ 

recognition behavior, and far from unexpected, when our modeling approach is 

considered. In fact, building invariant representations of visual objects requires the 

same combination of diagnostic features (i.e., the same perceptual template) to be 

applied, in a filter-like fashion, across multiple scales, positions, etc., with the outputs 

of these filters being later merged through some non-linear computation (such as the 

max pooling, originally proposed in early models of visual cortex, Riesenhuber et al, 

2000, and now successfully applied in deep convolutional neuronal networks, LeCun 

et al, 2015). On the other hand, computing a classification image is a strictly linear 

process, which returns a single perceptual template, and, as such, it cannot possibly 

capture the invariance of visual processing across identity-preserving changes. In this 

sense, the failure of our model to account for rats invariant recognition suggests that 

the rats’ visual system, similarly to the primates’ one and to the above-mentioned 

neural network models, processes the visual input through a bank of multiple 

perceptual templates that work in parallel. This hypothesis can be tested by iteratively 

computing classification images at different sizes, positions, orientations, etc., and 

then checking the consistency of the resulting perceptual templates, as well as their 

ability to account for rat recognition behavior. In our study, we applied this approach 

to obtain perceptual templates from the outline and the size 25° random tripods. The 

same procedure that was used to obtain the “original” (size 30°) classification images 

(see Materials and Methods) was also used to obtain the classification images for 

outline and size 25° versions.     

In the case of the outline stimuli, the resulting classification images still 

displayed prominent salient and anti-salient features (Figure 37B, top), which, 

although thinner and more scattered, largely matched those found in the classification 

images derived from the size 30° random tripods (i.e., those shown in Figure 27 and 
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displayed again in Figure 37A for easier comparison). This means that, as already 

suggested by the bar plot in Figure 36A, rats responded to the outlines of the random 

tripods in a “meaningful” way, automatically classifying them according to the 

strategy they had developed in the tripod vs. everything-else discrimination, despite 

the lack of any explicit training with the outline stimuli. For each rat, the consistency 

between the perceptual strategies derived from the size 30° random tripods and their 

outlines can be appreciated by comparing matching images in Figures 37A and 

Figures 37B, top. 

 
Figure 37. Transformation-tolerance of rat perceptual strategy. The classification images obtained, for 
the six rats, from: A) the regular-size (30º), full-body random tripods; B) their outlines (top) and the 
filled-in versions of their outlines (bottom); and C) the small-size (25º), full-body random tripods. 
 

Such consistency becomes even more apparent by looking at the perceptual 

templates that were obtained by replacing the outline random tripods with their filled-

in versions in the computation of the classification images (Figures 37B, bottom). The 

rationale of this analysis was to simulate a strategy in which a rat extracts diagnostic 

information about the identity of the outline random tripods not only from the features 

that are actually visible (the outlines), but also from the (empty) bodies of the stimuli. 

The resulting classification image allows inferring the strategy that a rat would 

deploy, if it was able to perceptually fill the constituent parts of the random tripods 

(the lobes), so as to process them as solid features. 

To quantitatively assess whether the perceptual strategy of rat i was similar, 

when extracted from full-body or outline random tripods, we plugged the 

classification image CI!! obtained from the outlines into our model, and we fitted the 



	 78	

logistic regression model to the responses of the animal to the full-body stimuli. As 

previously explained when describing Figure 29, the fit was carried out using only 

9/10 of the responses to the random tripods, so that we could measure how well the 

model predicted the responses to the remaining 1/10 of the stimuli. The performance 

of this same-CIo model (measured by the logloss function) was compared to the 

performances of the cross-CI models, resulting from plugging into our model the 

classification images CI! (with 𝑗 ≠ 𝑖) obtained, for the other animals, with the full-

body random tripods (see previous description of Figure 32). Interestingly, when the 

same-CIo model was built using the classification images derived from the actual 

outline stimuli (i.e., those shown in Figure 37B, top), it was outperformed by most of 

the cross-CI models (compare the empty green dots to the small black dots in Figure 

36). By contrast, when the same-CIo model was obtained using the classification 

images derived from the filled-in versions of the outline stimuli (i.e., those shown in 

Figure 37B, bottom), it yielded the best performance (i.e., the lowest logloss) for 3 out 

of 6 rats, and the second best performance for another rat (compare the solid green 

dots to the small black dots in Figure 38). Although the overall pattern was only 

marginally significant (the probability of obtaining at least 4 second best placements 

in 6 Bernoulli trials, with the chance of success in each trial being set to 2/6, is p = 

0.06; binomial test), this results indicates that, for many rats, the perceptual strategy 

remained highly subject-specific and, therefore, largely tolerant under variation of the 

luminance cues that defined the visual stimuli. In addition, the superiority of the 

model based on the filled-in versions of the outlines, as compared to the one based on 

the actual outlines (a highly significant pattern, having been found for 5 out of 6 rats; 

p = 0.01; binomial test) strongly suggests that rats did indeed process the outline 

stimuli by perceptually filling their inside, so as to effectively treat them as solid-body 

objects. 

A similar analysis was carried out for the classification images obtained from 

the small-sized random tripods (shown in Figure 37C). Again, these images were 

strikingly similar to those yielded by the size 30° random tripods (compare to Figure 

37A). To quantitatively assess their consistency, we rescaled the classification images 

in Figure 37C, so as to match the size of those in Figure 37A, and, for each rat i, we 

used the rescaled version of the small-sized CI!! (size 25°) to carry out our cross-
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validated model comparison. That is, the rescaled CI!! was plugged into our model and 

used to predict the responses of the animal to the size 30° random tripods. 

 
Figure 38. The comparison of the model accuracy for the classification images obtained for random 

tripods at size 30° (black dots), outline (empty dots) and filled outline (green dots, both at size 30°) as 

well as size 25° (red dots). 

The performance of this same-CIs model was then compared to the 

performances of the cross-CI models (same as described in the previous section). The 

same-CIs model outperformed the cross-CI models for 5 out of 6 rats (compare the 

red dots to the small black dots in Figure 36) and this pattern was highly significant (p 

= 0.003; binomial test). Overall, this means that the perceptual template used by a rat 

to process the visual stimuli at a given size (25º) was able to predict its perceptual 

choices also at a larger size (30º), once properly scaled, better than any of the 

perceptual templates obtained, for the other animals, at the larger size itself. In other 

words, the perceptual strategy used by the rats remained highly subject-specific across 

size variations, and, therefore, largely size-tolerant. 	

For each rat i, additional evidence of size tolerance was obtained by measuring 

the ability of the model to predict the responses of the animal to the 11 distractors 

(same approach in Figure 33). As shown in Figure 39, no matter whether the model 

was based on CI!  (left panel) or CI!!  (right panel), it predicted equally well rat 
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performances at both 25º and 30º of visual angle, in both the early sessions, when the 

regular-sized random bunnies were presented (black bars), or the late sessions, in 

which the small-sized random bunnies were shown (red bars). This indicates that the 

perceptual template obtained at a given size (e.g., 30º) was equally good at accounting 

for rat choices at that size and at a different one (e.g., 25º), once properly rescaled, 

thus confirming the tolerance of the object processing strategy to size changes. 

 

 
 

 

 

 

 

 

 

 

 

Figure 39. Correlation between measured and predicted distractor evidence, in the case of the distractor 

objects (i.e., analysis equivalent to Figure 33). The predictions were derived from models based either 

on the classification images obtained at the regular size (30º of visual angle) or on the rescaled 

versions of classification images obtained at the small size (25º of visual angle) – left and right panels, 

respectively. Correlations were obtained for the distractors shown both at size 25º and 30º, in both the 

early (red) and late (black) sessions, i.e., when the random tripods were shown, respectively, either at 

the regular or small size. No pairwise comparisons were significant according to a two-tailed, paired t-

test 
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4.5 Discussion 
 
 
 Since we already discussed most of the results in the previous parts of this 

chapter (together with the results) we will use this section to summarize our findings 

and discuss the possible shortcomings.		

Our study was conceived to overcome the limits of previous investigations of 

rat object vision (Zoccolan, 2015), including recent applications of the Bubbles 

method (Gosselin and Schyns, 2001; Gibson et al, 2005 and 2007) to uncover rat 

visual processing strategies (Alemi-Neissi et al, 2013; Rosselli et al, 2015; 

Vermaercke and Op de Beeck, 2012). To this aim, we designed a psychophysical test 

with three key, innovative features: 

1) Rats were trained in a discrimination task that more closely matched the 

complexity encountered during natural vision, given that a reference object (the 

tripod) had to be distinguished from multiple distractors, encompassing a variety of 

shapes (Figure 12A). This was important for two reasons. First, we demonstrated that 

rats can effectively perform a two-alternative forced choice, image classification, task 

when exposed to more than just two stimuli. This finding can potentially be used in 

some future experiment concerning memory in rats. Second, and more important, our 

results show how fundamental is the choice of stimuli if we are set to discover the 

underlying recognition strategy in rats. If our study (for example) included only the 

first four distractors (Figure 12A), the resulting strategy would probably be very 

different then the one that we observed (compare the performances and the overlaps 

for the first four distractors, Figure 25). It seems very likely that, if not forced to use a 

more sophisticated strategy, rats can find a low level solution that would solve the 

task they face. This comes as a plausible explanation for the inconsistencies found in 

the other papers concerning the rats’ recognition strategy (Minini and Jeffery, 2006; 

Vermaercke and Op de Beeck, 2012). 

2) Rats’ recognition strategy was inferred using a specially designed classification 

image method, where, rather than applying additive or multiplicative noise (Murray, 

2011), altered versions of the reference (the random tripods) were produced by 

randomly varying the structure of the object itself (Figure 17). This allowed sampling 

a region of the shape space, centered over the reference, in a rather homogeneous 

way, yielding a perceptual template that was not confined within the boundaries of the 
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reference object, but spanned the whole image plane (Figure 18). As such, it was 

possible to incorporate it in a generalized linear model of rats’ perceptual decisions 

(Figures 21 and 22).  

3) And the key difference from previous studies – we went beyond the qualitative 

assessment of the perceptual strategy deployed by a rat, and we explicitly tested 

whether this strategy could predict the behavioral choices of the animal.		
	

Our modeling approach yielded the following conclusions: 

1) It showed that the visual processing strategies employed by the rats were subject-

specific (Figures 32 and 38), thus confirming quantitatively what was inferred by 

inspecting the animals’ perceptual templates (Figure 27).  

2) The model’s predictions for different animals were able to account for the overall 

pattern of performances observed across subjects and distractors, capturing the 

variable proficiency of the rats in the discrimination task (Figure 33). This indicates 

that the complexity of the perceptual strategy deployed by a rat played a key role in 

determining its performance with the distractors, as confirmed by the control analyses 

ruling out any major influence of the bias (Figures 34 and 35).  

3) We found that rat successful discrimination of visual objects under variation of size 

and luminance cues could not be accounted by a low-level strategy, where input 

images are matched to a single perceptual template (Figure 36). Instead, we obtained 

evidence for a parallel processing of the visual input through multiple perceptual 

filters (Figures 38 and 39), whose shape was largely preserved across transformations 

(Figures 37A-C), but that were properly reformatted (e.g., rescaled) to deal with the 

specific transformations the objects underwent. 

 

4.5.1 Possible shortcomings of our study  
 

There are two issues that we didn’t comment on directly but could potentially 

be seen as shortcomings of our study. 

The first issue concerns the fact that all classification images for all the rats 

and all the variations (30º of visual angle, 25º of visual angle as well as filled in 

outlines) of random tripods produced the classification images with a very distinct 

salient upper right lobe which was especially prominent for the good performing rats 

(see Figure 37). Considering that our reference object is completely symmetrical, in 
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theory, there should be no reason for this type of preference. However, we believe 

that this is a result of the training process and the fact that rats had to lick the right 

sensor in order to make a reply and receive a reward for the correct identification of 

the reference object. Since the stimulus was presented at all times during the 

collection of the reward, rats spent much more time looking at the right part of the 

screen while the reference object was presented. It is also possible that rats apply 

some sort of decision tree by sequentially searching for salient and anti-salient 

features on the screen, but our study doesn’t address this possibility since the 

evidence would have to include some sort of eye tracking. 

The second issue is not so apparent but it deserves a comment nonetheless. It 

concerns the fact that both salient and anti-salient regions of the classification images 

contain within them a correlation that is a product of the way we produced our 

random tripods. Since the pixels within each single lobe are always correlated, we 

cannot be sure whether (for example) the tip of the lobe or the middle of the lobe 

carries a higher importance in the classification process. We addressed this problem 

by implementing the outline version of the random tripods, but a mathematically 

correct way to address this issue would be to apply a more stringent approach as the 

one called “decision images” developed by Macke and Wichmann (2010). 

 

4.5.2 Conclusion 
 

  
Overall, these findings account for the diversity of processing skills reported 

across and within studies of rat object vision (Zoccolan et al, 2009; Alemi-Neissi et 

al, 2012; Tafazoli et al, 2012; Rosselli et al, 2015; Vermaercke and Op de Beeck, 

2012; Vinken et al, 2014; Bossens et al, 2016, Minini and Jeffery, 2006) establishing, 

in a quantitative way, the idiosyncratic nature of rat perceptual strategies. More 

importantly, our results provide the strongest behavioral evidence, to date, of 

advanced shape processing in a rodent species. In fact, the central role played by the 

featural complexity of rat perceptual templates, along with the tolerance of such 

templates to changes in object appearance, match very closely the two key 

computations implemented in the ventral stream of primates DiCarlo et al (2012)	and 

in neural network models of the visual system (LeCun et al, 2015; Riesenhuber and 

Poggio, 2000; Kriegeskorte, 2015; Yamins and DiCarlo, 2016):		
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1) the construction of shape tuning, by combing multiple features into 

perceptual filters of increasing complexity; and  

2)  the construction of transformation tolerance, by iterating these filters 

across multiple scales, positions, etc.  

Interestingly, our group have recently found evidence of similar processing 

mechanisms along the progression of extrastriate areas that, in the rat brain, run 

laterally to primary visual cortex (Tafazoli et al, 2017). This finding, together with 

other reports of high-level processing in these areas (Vermaercke et al, 2014 and 

2015; Vinken et al. 2016 and 2017) argues for the existence of a rodent, ventral-like 

processing pathway. The data presented in our study add compelling behavioral 

evidence in support of this hypothesis, thus contributing to pave the way for the 

investigation of visual cortical processing using the powerful experimental 

approaches that rodent species afford.  
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