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ANALYTIC GEOMETRY OF SEMISIMPLE COALESCENT FROBENIUS
STRUCTURES

GIORDANO COTTI AND DAVIDE GUZZETTI
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Davide Guzzetti’s ORCID ID: 0000-0002-6103-6563

Abstract. We present some results of a joint paper with B. Dubrovin (see references), as exposed
at the Workshop “Asymptotic and Computational Aspects of Complex Differential Equations” at the
CRM in Pisa, in February 2017. The analytical description of semisimple Frobenius manifolds is
extended at semisimple coalescence points, namely points with some coalescing canonical coordinates
although the corresponding Frobenius algebra is semisimple. After summarizing and revisiting the
theory of the monodromy local invariants of semisimple Frobenius manifolds, as introduced by B.
Dubrovin, it is shown how the definition of monodromy data can be extended also at semisimple
coalescence points. Furthermore, a local Isomonodromy Theorem at semisimple coalescence points
is presented. Some examples of computation are taken from the quantum cohomologies of complex
Grassmannians.
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1. Introduction

In these proceedings, we present some of the results from our papers [CDG17a, CDG17b], as pre-
sented in occasion of the Workshop “Asymptotic and Computational Aspects of Complex Differential
Equations” at the CRM in Pisa, in February 2017.

Frobenius manifolds, introduced by B. Dubrovin in [Dub92] in the context of topological field
theories, are complex manifolds endowed with a very rich structure, a flat pseudo-metric and a com-
patible multiplication on the holomorphic tangent bundle. They play a prominent role in many areas
of contemporary Geometry and Mathematical Physics, usually providing unexpected and sometimes
still conjectural links between theories apparently of very different nature, e.g. singularity theory,
integrable systems, symplectic geometry, derived geometry and others.

The local geometry of a Frobenius manifold at its generic points (the semisimple ones, see Section
2.2) has been shown to be equivalent to isomonodromic deformations of a certain system of differential
equations on the complex domain (see [Dub96, Dub98, Dub99b], and also Section 2). In particular,
a procedure of classification for germs of semisimple Frobenius manifolds has been developed by
introducing some monodromy local moduli (see Sections 2.4, 2.5), from whose knowledge the whole
structure can be reconstructed ([Dub96, Dub98, Dub99b], [Guz01]).

In this paper, we outline how such a local description of the Frobenius structure can be extended
also at some non-generic points, lying in a stratum of codimension one in the semisimple part of the
Frobenius manifold. The non-genericity of these points is due to the presence of some coalescences in
a system of local coordinates (ui)ni=1, called canonical (Section 2.2).

From the point of view of the theory of isomonodromic deformations, the problem which we ad-
dressed is de facto equivalent to the study of solutions and deformations of systems admitting an
irregular singularity at z =∞, of the type

dY

dz
=
(
A0 + A1

z

)
Y,

where the matrix A0 is supposed to be semisimple (i.e. diagonalizable), but not necessarily with simple
spectrum, and A1 is an antisymmetric matrix. Thus, the assumption that A0 has simple spectrum,
a fundamental one in the classical analytical theory of isomonodromic deformations, does not hold
(see [JMU81, JM81a, JM81b], [FIKN06] and references therein). A general analytical theory for such
systems has been developed in [CDG17a]. In the general case, because of the assumptions of non-
genericity on the spectrum of A0 and without requiring further conditions on A1, several divergence
issues (w.r.t. the deformation parameters) of both asymptotical and genuine solutions of the system
must be faced (see Section 2.5.2). Remarkably, the geometric case associated to Frobenius structure
completely satisfy all sharp assumptions found in [CDG17a], and in such a case an isomonodromic
theory can be extended also in cases of coalescences (see Theorems 2.6, 4.1).

We underline the fact that such an extension of the local description of Frobenius manifolds is
necessary for at least two reasons:

• as examples coming from singularity theory show ([CDG17b]), it may happen that, though
a Frobenius structure is globally and explicitely known, the computation of the local mon-
odromy moduli (defined in Sections 2.4, 2.5) is unfeasible – or extremely difficult – at a generic
semisimple point where ui 6= uj for i 6= j. The system simplifies at semisimple points of
coalescence, so that we can explicitely solve it and compute the monodromy data.
• It may happen that a Frobenius structure is explicitly known only at semisimple points of
coalescence. Hence, monodromy data can be computed only at these points. Our results
justify the extension of the data so computed to the whole manifold. This is the case of
Grassmannians (see Section 5).
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1.1. Plan of the paper. In Section 2 we summarize B. Dubrovin’s general theory of local monodromy
moduli for semisimple Frobenius manifolds as developed in [Dub96, Dub98, Dub99b]. Some minor
mistakes of B. Dubrovin’s description of monodromy data are discussed and corrected, namely for
what concerns the ambiguities and freedom up to which they are defined (Theorems 2.3, 2.4). A
decomposition of a semisimple Frobenius manifold in chambers is introduced (Section 2.5.1), on which
the classical B. Dubrovin’s Isomonodromy Theorem holds (Theorem 2.8). We extend the definition of
the monodromy data also at semimsimple points of coalescence (see Theorem 2.6). In Section 3, we
briefly summarize up to which freedom the monodromy data of a semisimple Frobenius manifold are
defined, by describing the action of several groups on them (some of which are implicitly described
in [Dub96, Dub99b] with some minor mistakes). The notions of lexicographical and more general
triangular orders of canonical coordinates are discussed in details, as well as the action of the braid
group on the monodromy data. In Section 4 the results of [CDG17a] are applied in order to deduce
the main result of Isomonodromicity at coalescence points (Theorem 4.1). In Section 5 an application
to the study of quantum cohomology of complex Grassmannians is discussed, namely for a conjectural
link between the enumerative geometry of Fano manifolds with their derived category of coherent
sheaves (Dubrovin’s conjecture, [Dub98, Dub13, CDG17b, CDG]).

2. Analytic geometry of Frobenius manifolds

2.1. Frobenius manifolds and main examples. The following main notion was introduced and
extensively developed by B. Dubrovin in [Dub92, Dub96, Dub98, Dub99b]. The original motivation
for its study was a differential geometric approach of axiomatization of the work of R. Dijkgraaf, E.
Verlinde and H. Verlinde in the context of topological strings and two dimensional quantum gravity
(see [DVV91]).

Definition 2.1. A Frobenius manifold structure on a complex manifold M of dimension n is defined
by giving

(FM1) a symmetric O(M)-bilinear metric tensor η ∈ Γ
(⊙2 T ∗M

)
, whose corresponding Levi-Civita

connection ∇ is flat;
(FM2) a (1, 2)-tensor c ∈ Γ

(
TM ⊗

⊙2 T ∗M
)
such that

• the induced multiplication of vector fields X ◦ Y := c(−, X, Y ), for X,Y ∈ Γ(TM), is
associative,
• c[ ∈ Γ

(⊙3 T ∗M
)
,

• ∇c[ ∈ Γ
(⊙4 T ∗M

)
;

(FM3) a vector field e ∈ Γ(TM), called the unity vector field, such that
• the bundle morphism c(−, e,−) : TM → TM is the identity morphism,
• ∇e = 0;

(FM4) a vector field E ∈ Γ(TM), called the Euler vector field, such that
• LEc = c,
• LEη = (2− d) · η, where d ∈ C is called the charge of the Frobenius manifold.

From these axioms it directly follows that for any point p ∈M the triple (TpM,ηp, ◦p) is a Frobenius
algebra, namely an associative commutative algebra with unity whose product is compatible with the
metric, in the sense that

ηp(a ◦p b, c) = ηp(a, b ◦p c), for all a, b, c ∈ TpM. (2.1)
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Remark 2.1. Because of flatness and the conformal Killing condition, the Euler vector field is affine,
i.e.

∇∇E = 0.
Hence, by introducing ∇-flat coordinates (tα)nα=1 on M , w.r.t. which the metric η is constant and the
connection ∇ coincides with partial derivatives, we have that

E =
n∑

α=1
((1− qα)tα + rα) ∂

∂tα
, qα, rα ∈ C.

Following [Dub96, Dub98, Dub99b], we choose flat coordinates so that ∂
∂t1 ≡ e and rα 6= 0 only if

qα = 1 (this can always be done, up to an affine change of coordinates). Let ηαβ = η(∂α, ∂β), and
cγαβ = c(dtγ , ∂α, ∂β), so that ∂α ◦ ∂β = cγαβ∂γ . Condition (FM2) means that cαβγ := ηαρc

ρ
βγ and ∂αcβγδ

are symmetric in all indices. This implies the local existence of a function F such that
cαβγ = ∂α∂β∂γF.

The associativity of the algebra is equivalent to the following conditions for F , called WDVV-equations:
∂α∂β∂γF ηγδ∂δ∂ε∂νF = ∂ν∂β∂γF ηγδ∂δ∂ε∂αF,

while axiom (FM4) is equivalent to
ηαβ = ∂1∂α∂βF, LEF = (3− d)F +Q(t),

with Q(t) a quadratic expression in tα’s. Conversely, given a solution of the WDVV equations,
satisfying the quasi-homogeneity conditions above, a structure of Frobenius manifold is naturally
defined on an open subset of the space of parameters tα’s.

2.1.1. Examples of Frobenius manifolds. There are two main classes of non-trivial Frobenius mani-
folds: the first are Frobenius structures arising from Singularity Theory, while the second ones from
the Gromov-Witten Theory of Kähler (or symplectic, more in general) manifolds. In physicists’
terminology, these structures correspond to the study of Topological Landau-Ginzburg models, and
Topological non-linear σ-models of A-type respectively (see [CK99] and references therein). The iso-
morphy of Frobenius manifolds of two different classes can be interpreted as one version of the Mirror
Symmetry (see [BK98], [Bar99], [Dub99b], [Man99], [Giv96, Giv97, Giv98, Giv01], [Voi96]).

Remarkably, Frobenius manifolds structures defined on the base space of a semiuniversal unfolding
of an isolated hypersurface singularity implicitly appeared in the work of K. Saito [Sai83b, Sai83a]
in his theory of Primitive forms, and further investigated by M. Saito [Sai89]. For an exposition of
the construction of these structures see [Sab08], [Her02], [Tak98]. For general and explicit Frobenius
structures defined on the orbit space of a (finite) Coxeter group see [Dub96, Dub99a, Dub99b].

In the present paper we will consider only an example of the second class of Frobenius manifolds,
namely the (small) Quantum Cohomology of a smooth projective variety X (see Section 5.1). In
particular, we will show how to compute the monodromy data for this coalescent Frobenius manifold
(see Sections 2.4, 2.5, 4): according to Theorem 4.1 these data provide local invariants. Furthermore,
a conjectural meaning of these local invariants is discussed in terms of objects of the derived category
of coherent sheaves of X (Dubrovin’s Conjecture, [Dub98, Dub13, CDG]).

2.2. Semisimple Frobenius manifolds.

Definition 2.2. A point p of a Frobenius manifold M is semisimple if the corresponding Frobenius
algebra (TpM,ηp, ◦p) satisfies one of the following equivalent1 conditions:

1The equivalence of (1),(2) and (4) is the content of the Wedderburn-Artin Theorem; the equivalence of (2) and (3) is a
consequence of the Nakayama Lemma.
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(1) it is semisimple,
(2) it has vanishing Jacobson radical,
(3) it is without nilpotents,
(4) it isomorphic to Cn, where n = dimCM .

If there is an open dense subsetMss ofM of semisimple points, thenM is called a semisimple Frobenius
manifold. If p is a semisimple point, there are tangent vectors π1, . . . , πn ∈ TpM such that

πi ◦p πj = δijπi, i, j = 1, . . . , n.

They are called idempotents vectors at p. The family (πi)ni=1 of idempotents vectors at p is unique up
to reordering. Notice that by (2.1) idempotents vectors are mutually orthogonal.

Lemma 2.1. Let M be a Frobenius manifold. A point p ∈M is semisimple if and only if there exists
a vector v ∈ TpM such that the operator v◦p : TpM → TpM has simple spectrum.

Definition 2.3 (Caustic and Bifurcation Set, [Her02],[CDG17b]). Let M be a semisimple Frobenius
manifold. We call caustic the set

KM := {p ∈M : TpM is not a semisimple Frobenius algebra} .

We call bifurcation set of the Frobenius manifold the set

BM := {p ∈M : spec (E◦p : TpM → TpM) is not simple} .

By Lemma 2.1, we have KM ⊆ BM . Semisimple points in BM \ KM are called coalescence semisimple
points.

The bifurcation set BM and the caustic KM are either empty or an hypersurface, invariant w.r.t. the
unit vector field e (see [Her02]). For Frobenius manifolds defined on the base space of semiuniversal
unfoldings of a singularity, these sets coincide with the bifurcation diagram and the caustic as defined
in the classical setting of singularity theory ([Arn93, Arn90]). In this context, the set BM \ KM is
called Maxwell strata. Remarkably, all these subsets typically admit a naturally induced Frobenius
submanifold structure ([Str01, Str04]). In what follows we will assume that the semisimple Frobenius
manifold M admits nonempty bifurcation set and caustic.

Definition 2.4 (D-untwisted open sets). Let M a complex manifold, and D ⊆M a complex analytic
hypersurface. A connected open subset Ω ⊆ M \ D will be said to be D-untwisted if for any z ∈ Ω
the inclusions

Ω α
↪−−−−→M \D

β
↪−−−−→M

induce morphisms in homotopy

π1(Ω, z) α∗ // π1(M \D, z) β∗
// π1(M, z)

such that im(α∗) ∩ ker(β∗) = {0}. Roughly speaking, Ω does not “encircle” the hypersurface D.

Theorem 2.1 ([Dub92, Dub96, Dub98, Dub99b, CDG17b]). Let M be a semisimple Frobenius man-
ifold.

(1) If Ω ⊆ Mss is a KM -untwisted connected open set, then the idempotents vector fields are
holomorphic on Ω. More precisely, a coherent ordering of idempotents vectors can be chosen
at any point of Ω, so that the resulting local vector fields are holomorphic.

(2) Furthermore, the idempotents vector fields (πi)ni=1 commute,

[πi, πj ] = 0, i, j = 1, . . . , n.



6 GIORDANO COTTI AND DAVIDE GUZZETTI

Hence, there exist local coordinates (ui)ni=1, holomorphic on any KM -untwisted connected open
Ω ⊆Mss, such that

∂

∂ui
= πi.

Any such a system of local coordinates will be called canonical. They are uniquely defined up
to re-ordering and shifts by constants (u′i := ui + ci, ci ∈ C).

(3) If (ui)ni=1 are canonical coordinates near a semisimple point of a Frobenius manifold M , then
(up to shifts) the following relations hold

∂

∂ui
◦ ∂

∂ui
= δij

∂

∂ui
, e =

n∑
i=1

∂

∂ui
, E =

n∑
i=1

ui
∂

∂ui
.

According to (3) of Theorem 2.1, in this paper we will fix the shifts of canonical coordinates so that
they coincide with the eigenvalues of the (1,1)-tensor E◦.

Note that the structure group of the tangent bundle TMss can be reduced to the symmetric group
Sn, and that in virtue of Theorem 2.1 it holds a local isomorphism of sheaves of OMss-algebras

TMss
∼= O⊕nMss

.

Such an isomorphism is not global: the causticKM , indeed, represents the branch locus for idempotents
vector fields, and canonical coordinates. By prolonging the semisimple Frobenius structure to an
unramified covering of Mss of degree at most n!, the isomorphism of sheaves of algebras holds globally
(see [Man99]).

2.3. Deformed extended flat connection. Let us consider
• the canonical projection π : P1

C ×M →M ,
• the pull-back π∗TM of the tangent bundle TM :

π∗TM //

��

TM

��

P1
C ×M

π // M

• two holomorphic (1,1)-tensors U , µ ∈ Γ(TM ⊗ T ∗M) on M defined by

U(X) := E ◦X, µ(X) := 2− d
2 X −∇XE, for all X ∈ Γ(TM).

Note that while the operator U is η-symmetric, the operator µ is η-skew-symmetric. Moreover,
let us assume that the nilpotent part of µ vanishes, i.e. the matrix µ is diagonalizable, and
actually (after an affine change of flat coordinates) in diagonal form

µ = diag(µ1, ..., µn).
In what follows, we will denote by
(1) TM the sheaf of sections of TM ,
(2) π∗TM the sheaf of sections of π∗TM ,
(3) π−1TM is the sheaf of sections of π∗TM constant on the fiber of π.

All the tensors η, e, c, E,U , µ can be lifted to π∗TM , and their lift will be denoted with the same
symbol. So, also the Levi-Civita connection ∇ is lifted on π∗TM , and it acts so that

∇∂zY = 0 for Y ∈ (π−1TM )(M).
Let us now twist this connection by using the multiplication of vectors and the operators U , µ.



ANALYTIC GEOMETRY OF SEMISIMPLE COALESCENT FROBENIUS STRUCTURES 7

Definition 2.5 ([Dub96, Dub98, Dub99b]). Let M̂ := C∗×M . The deformed extended connection ∇̂
on the vector bundle π∗TM |

M̂
→ M̂ is defined by

∇̂XY = ∇XY + z ·X ◦ Y,

∇̂∂zY = ∇∂zY + U(Y )− 1
z
µ(Y )

for X,Y ∈ (π∗TM )(M̂).

The crucial fact is that the deformed extended connection ∇̂ is flat.

Theorem 2.2 ([Dub96],[Dub99b]). The flatness of ∇̂ is equivalent to the following conditions on M
• ∇c[ is completely symmetric,
• the product on each tangent space of M is associative,
• ∇∇E = 0,
• LEc = c.

This integrabilty condition implies the existence of solutions of the equation

∇̂dt̃ = 0, where t̃α = t̃α(t, z), d :=
∑
α

∂

∂tα
dtα.

A set of independent solutions (t̃1, ..., t̃n) will be called a system of deformed flat coordinates: together
with the function z, they define a set of ∇̂-flat coordinates on M̂ . If ζ denotes the η-gradient of a
deformed flat coordinate, then the previous equation can be written in the frame ( ∂

∂tα )α as the system
∂αζ = zCαζ, α = 1, . . . , n (2.2)

∂zζ =
(
U + 1

z
µ

)
ζ, (2.3)

where Cα is the matrix (Cα)γβ = cγαβ. Studying the monodromy phenomenon of the system (2.2)-(2.3),
more precisely of its last equation, we will define a set of local invariants of the Frobenius manifold.

2.4. Spectrum of a Frobenius manifold and its Monodromy Data at z = 0.
Let M be a Frobenius manifold, not necessarily semisimple. Let us fix a point t of the Frobenius
manifold M , and let us focus on the equation

∂zζ =
(
U + 1

z
µ

)
ζ, U = U(t), µ = µ(t), (2.4)

for which the following relations hold
UT η = ηU , (2.5)

µ = diag(µ1, . . . , µn), µη + ηµ = 0. (2.6)
Note that for any t ∈ M the system (2.4) has a Fuchsian singularity at z = 0, and an irregular
singularity at z =∞ of Poincaré rank 1.

In order to give a geometric and instrinsic description of normal forms of solutions near z = 0, we
introduce the concept of the spectrum of a Frobenius manifold ([Dub99b, Dub04]). Let (V, η, µ) be
the datum of

• an n-dimensional complex vector space V ,
• a bilinear symmetric non-degenerate form η on V ,
• a diagonalizable endomorphism µ ∈ End(V ) which is η-antisymmetric

η(µa, b) + η(a, µb) = 0 for any a, b ∈ V.
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Let spec(µ) = (µ1, ..., µn) and let Vµα be the eigenspace of a µα.

Definition 2.6 ([Dub99b, Dub04]). Let (V, η, µ) as above. We say that an endomorphism A ∈ End(V )
is µ-nilpotent if

AVµα ⊆
⊕
m≥1

Vµα+m for any µα ∈ spec(µ).

In particular such an operator is nilpotent in the usual sense. A µ-nilpotent operator A can be uniquely
decomposed in components Ak ∈ End(V ), k ≥ 1, such that

AkVµα ⊆ Vµα+k for any µα ∈ spec(µ), A =
∑
k≥1

Ak,

so that the following identities hold:
zµAz−µ = A1z +A2z

2 +A3z
3 + . . . , [µ,Ak] = kAk for k = 1, 2, 3, . . . .

Definition 2.7 ([Dub99b, CDG17b]). Let (V, η, µ) as above. Let us define on V a new non-degenerate
bilinear form {·, ·} by the equation

{a, b} := η
(
eiπµa, b

)
, for all a, b ∈ V.

We define the (η, µ)-parabolic orthogonal group, denoted by G(η, µ), as the complex Lie group of all
{·, ·}-isometries G ∈ GL(V ) of the form

G = 1V + ∆
with ∆ a µ-nilpotent operator. Its Lie algebra g(η, µ) coincides with the set of all µ-nilpotent operators
R which are also µ-skew-symmetric in the sense that

{Rx, y}+ {x,Ry} = 0.
In particular, any such operator R commutes with the operator e2πiµ.

Lemma 2.2 ([Dub99b, CDG17b]). Let (V, η, µ) as above, and let us fix a basis (vi)ni=1 of eigenvectors
of µ.

(1) The operator A ∈ End(V ) is µ-nilpotent if and only if its associate matrix w.r.t. the basis
(vi)ni=1 satisfies the condition

(A)αβ = 0 unless µα − µβ ∈ N∗.

(2) If A ∈ End(V ) is a µ-nilpotent operator, then the matrices associated to its components (Ak)k≥1
w.r.t. the basis (vi)ni=1 satisfy the condition

(Ak)αβ = 0 unless µα − µβ = k, k ∈ N∗.

(3) A µ-nilpotent operator A ∈ End(V ) is an element of g(η, µ) if and only if the matrices of its
components (Ak)k≥1 w.r.t. (vi)ni=1 satisfy the further conditions

ATk = (−1)k+1ηAkη
−1, k ≥ 1.

The parabolic orthogonal group G(η, µ) acts canonically on its Lie algebra g(η, µ) by the adjoint
representation Ad: G(η, µ)→ Aut(g(η, µ)):

AdG(R) := G ·R ·G−1, for all G ∈ G(η, µ), R ∈ g(η, µ).
Such an action, in general is not free.

Definition 2.8 ([CDG17b]). Let R ∈ g(η, µ). We define the group C̃0(µ,R) as the isotropy group of
R for the adjoint representation Ad: G(η, µ)→ Aut(g(η, µ)).
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If M is a Frobenius manifold (not necessarily semisimple), using the Levi-Civita connection ∇ we
can identify all tangent spaces, so that we can canonically associate to M a triple (V, η, µ) as above,
called spectrum of M .

Definition 2.9 ([Dub99b, Dub04, CDG17b]). A Frobenius manifold M is called resonant if, for some
α 6= β, µα−µβ ∈ Z∗. If no eigenvalues of µ differ by a nonzero integer, M will be called non-resonant.

For resonant Frobenius manifolds the corresponding (η, µ)-parabolic orthogonal group G(η, µ) to-
gether with all its subgroups C̃0(µ,R) are trivial. Since these groups are the responsible of a certain
freedom in the choice of a normal forms for solutions of (2.4) (see Theorem 2.3), it follows that for
non-resonant Frobenius manifolds such a choice is unique.

Theorem 2.3 ([Dub96, Dub99b, CDG17b]). LetM be a Frobenius manifold (not necessarily semisim-
ple).

(1) The system (2.4) admits fundamental matrix solutions of the form

Z(t, z) = Φ(t, z) · zµzR(t),

Φ(t, z) =
∑
k∈N

Φk(t)zk, Φ0(t) ≡ 1, Φ(t,−z)T · η · Φ(t, z) = η,

where Φk ∈ O(M)⊗ gln(C), and R ∈ O(M)⊗ g(η, µ). A solution of such a form will be said
to be in Levelt normal form at z = 0. Because of the Fuchsian character of the singularity
z = 0, the power series Φ is convergent, and defines a genuine analytic solution.

(2) Solutions of (2.4) in normal form are not unique. Given two of them

Z(t, z) = Φ(t, z) · zµzR(t), Z̃(t, z) = Φ̃(t, z) · zµzR̃(t),

there exists a unique holomorphic G(η, µ)-valued function
G(t) = 1 + ∆(t)

on M such that
Z̃(t, z) = Z(t, z) ·G(t),

R̃(t) = G(t)−1 ·R(t) ·G(t), Φ̃(t, z) = Φ(t, z) · PG(t, z),
where

PG(t, z) : = zµ ·G(t) · z−µ

= 1 + z∆1(t) + z2∆2(t) + . . . ,

(∆k)k≥1 being the components of ∆. In particular, if R̃ = R, then G is C̃0(µ,R)-valued.

If instead of considering only the equation (2.4), we focus on the whole system (2.2)-(2.3), then the
previous results can be further refined.

Theorem 2.4 (Isomonodromy Theorem I, [Dub96, Dub99b, CDG17b]). Let M be a Frobenius man-
ifold (not necessarily semisimple).

(1) The system (2.2)-(2.3) admits fundamental matrix solutions of the form
Z(t, z) = Φ(t, z) · zµzR,

Φ(t, z) =
∑
k∈N

Φk(t)zk, Φ0(t) ≡ 1, Φ(t,−z)T · η · Φ(t, z) = η,

where Φk ∈ O(M)⊗gln(C), and R ∈ g(η, µ) is independent of t. In particular the monodromy
M0 = exp(2πiµ) exp(2πiR) at z = 0 does not depend on t.
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(2) Solutions of the whole system (2.2)-(2.3) in normal form are not unique. Given two of them

Z(t, z) = Φ(t, z) · zµzR, Z̃(t, z) = Φ̃(t, z) · zµzR̃,
there exists a unique matrix G ∈ G(η, µ), say G = 1 + ∆, such that

Z̃(t, z) = Z(t, z) ·G,
R̃ = G−1 ·R ·G, Φ̃(t, z) = Φ(t, z) · PG(t, z),

where
PG(t, z) : = zµ ·G · z−µ

= 1 + z∆1 + z2∆2 + . . . ,

(∆k)k≥1 being the components of ∆. In particular, if R̃ = R, then G ∈ C̃0(µ,R).

Proof. Let Z(z, t) be a solution of (2.2)-(2.3), and let M0(t) be the monodromy of Z(·, t) at z = 0:
Z(e2πiz, t) = Z(z, t) ·M0(t).

The coefficients of the equations
∂αZ(z, t) = zCα(t) · Z(z, t), α = 1, . . . , n

being holomorphic in z, we have that
∂αZ(z, t) · Z(z, t)−1 = ∂αZ(e2πiz, t) · Z(e2πiz, t)−1

= ∂α (Z(z, t) ·M0(t)) · (Z(z, t) ·M0(t))−1

= ∂αZ(z, t) · Z(z, t)−1 + Z(z, t) · ∂αM0(t) ·M0(t)−1 · Z(z, t)−1,

for any α. Hence
∂αM0(t) = 0, α = 1, . . . , n.

By Theorem 2.3, we necessarily conclude that R is t-independent. �

Definition 2.10 ([Dub96, Dub99b]). Given a Frobenius manifold M , we will call monodromy data
of M at z = 0 the data (µ, [R]), where [R] denotes the G(η, µ)-class of exponents of formal solutions
in Levelt normal form of the system (2.2)-(2.3) as in Theorem 2.4. A representative R can be chosen
independent of the point t ∈M .

Remark 2.2. A first description of the freedom and ambiguities in the definition of the monodromy
data was given in [Dub96, Dub99b]. In particular, a complex Lie group C0(µ,R) was introduced in
order to describe the freedom of normal forms of solutions of (2.2)-(2.3). Such a group is too big, and
in particular does not preserve the orthogonality conditions of point (1) of Theorems 2.3, 2.4. it must
be replaced by C̃0(µ,R) of Definition 2.8, which is the correct one.

2.5. Monodromy Data for a semisimple Frobenius manifold. Having completely described
the monodromy phenomenon near the singularity z = 0 of equation (2.4), let us now focus on the
singularity at z = ∞. At generic points of the Frobenius manifold M , the singularity z = ∞ of the
corresponding equation (2.4) is irregular of Poincaré rank 1, and hence a Stokes phenomenon for the
solutions must be studied.

Following the existing literature on general theory differential equations, in order to give complete
the description of this Stokes phenomenon, in [Dub98], [Dub96] and [Dub99b] the following main
assumptions are made:
(A1) the manifold M is semisimple, so that the operator U is diagonalizable on a non-empty dense

open subset Mss;
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(A2) the point t ∈ Mss at which we consider the system (2.4) is not in the bifurcation set BM , so
that the eigenvalues of U(t) are pairwise distinct.

In this Section, we show how it is possible to drop Assumption (A2), by enlarging the definition of
monodromy data to all semisimple points, including the semisimple coalescence points of Definition
2.3. In Section 4, we also show up to which extent the Isomonodromy Property extends to these points.

Remark 2.3. At points t ∈ M where U(t) ≡ 0, a phenomenon of Poincaré rank reduction manifests,
and z =∞ becomes a Fuchsian singularity for (2.4). These points are not semisimple, the Euler vector
being nilpotent.

First of all, let us introduce a (non-tensorial) transform matrix from a frame of ∇-flat coordinate
vector fields ( ∂

∂tα )nα=1 to the idempotent vielbein at any semisimple point of M .

Definition 2.11 (Matrix Ψ). Let M be a semisimple Frobenius manifold, let (tα)nα=1 be local flat co-
ordinates such that ∂

∂t1 = e, and let u1, . . . , un be canonical coordinates. Introducing the orthonormal
basis

fi := 1

η
(

∂
∂ui
, ∂
∂ui

) 1
2

∂

∂ui

for arbitrary choices of signs in the square roots, we define a matrix Ψ (depending on the point of the
Frobenius manifold) whose elements Ψiα (i-th row, α-th column) are defined by the relation

∂

∂tα
=

n∑
i=1

Ψiαfi α = 1, . . . , n.

Lemma 2.3 ([Dub96, Dub99b]). Let M be a semisimple Frobenius manifold.
(1) The matrix Ψ is a one-valued holomorphic function on any KM -untwisted connected open

subset Ω ⊆Mss. Moreover, it satisfies the following relations:

ΨTΨ = η, Ψi1 = η

(
∂

∂ui
,
∂

∂ui

) 1
2
, fi =

n∑
α,β=1

Ψi1Ψiβη
βα ∂

∂tα
, cαβγ =

n∑
i=1

ΨiαΨiβΨiγ

Ψi1
.

(2) The matrix Ψ diagonalizes the operator U , the operator of multiplication by the Euler vector
field:

ΨUΨ−1 = U := diag(u1, . . . , un).
(3) The matrix V := ΨµΨ−1 is antisymmetric, i.e. V T + V = 0.

The system (2.2)-(2.3) corresponding to points t ∈Mss can be rewritten in the idempotent vielbein

y = Ψζ, (2.7)

in the following way
∂iy = (zEi + Vi)y, (2.8)

∂zy =
(
U + 1

z
V

)
y, (2.9)

where
(Ei)αβ = δαi δ

β
i , Vi = ∂iΨ ·Ψ−1,

U = diag(u1, . . . , un), with not necessarily ui 6= uj , i 6= j.
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2.5.1. `-chamber decomposition of a semisimple Frobenius manifold. For the sake of clarity, before
studying solutions of (2.8)-(2.9), we introduce a decomposition of a semisimple Frobenius manifold
into pieces. Such a decomposition is subordinate to the choice of oriented rays in the universal
cover R := C̃ \ {0}, or equivalently of a line in the complex plane. In what follows, we denote with
pr : R → C\{0} the covering map.

Definition 2.12 (Stokes rays, [CDG17b]). Let t ∈Mss, and let us consider the spectrum spec (U(t)) =
{ui(t)}ni=1. For all pairs (ui(t), uj(t)), such that ui(t) 6= uj(t), we fix a determination αij(t) of the
argument arg(ui(t)− uj(t)) so that it belongs to the interval [0; 2π[, and let

τij(t) := 3π
2 − αij(t).

We call Stokes rays at t ∈Mss the rays in the universal covering R defined by
Rij,k(t) := {z ∈ R : arg z = τij(t) + 2kπ}

for any k ∈ Z. The projections onto the C-plane
Rij(t) := pr (Rij,k(t))

will also be called Stokes rays at t ∈Mss.

Note that the projected Stokes rays coincide with the ones defined in [Dub99b], namely
Rij := {z ∈ C : z = −iρ(ui − uj), ρ > 0} . (2.10)

Note that Stokes rays have a natural orientation (from 0 to ∞).

Remark 2.4. The characterisation of Rij,k is that z ∈ Rij,k if and only if
Re((ui − uj)z) = 0.

For z ∈ C we have
|ezui | = |ezuj | if z ∈ Rij ,
|ezui | > |ezuj | if z is on the left of Rij ,
|ezui | < |ezuj | if z is on the right of Rij .

Definition 2.13 (Admissible Rays and Line, [CDG17b]). Let φ ∈ R and let us define the rays
`+(φ) := {z ∈ R : arg z = φ} ,

`−(φ) := {z ∈ R : arg z = φ− π} .
We will say that these rays are admissible at t ∈ Mss if they do not coincide with any Stokes rays
Rij,k(t) for any i, j s.t. ui(t) 6= uj(t) and any k ∈ Z. Moreover, we call admissible at t ∈ Mss a line `
of the complex plane such that

Re z(ui(t)− uj(t))|z∈`\0 6= 0
for any i, j s.t. ui(t) 6= uj(t). In other words, a line is admissible if it does not contain any Stokes rays
Rij(t). Thus the projections pr (`±(φ)) are contained in an admissible line, on which we can define an
orientation by choosing as positive part pr (`+(φ)).

Definition 2.14 (`-Chambers, [CDG17b]). Given a semisimple Frobenius manifold M , and fixed a
line ` in the complex plane, consider the open dense subset of points p ∈Mss such that

• the eigenvalues of U at p are pairwise distinct,
• the line ` is admissible at p.

We call any connected component Ω` of this set an `-chamber.
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Remark 2.5. The topology of an `-chamber can be highly non-trivial and quite mysterious so far. In
particular, it should not be confused with the simple topology of an `-cell (see Definition 4.1). For
example, in [Guz05] the analytic continuation of the Frobenius structure of the Quantum Cohomology
of P2 is studied (see Section 5.1): it is shown that there exist points (u1, u2, u3) ∈ C3 with ui 6= uj
with i 6= j which do not correspond to any true geometric point of the Frobenius manifold. This is
due to singularities of the change of coordinates u 7→ t.

Note that points of the bifurcation set BM are (by definition) in the complement of the union of
`-chambers for any choice of the line `.

2.5.2. Fundamental solutions at semisimple points. Let us consider a BM -untwisted connected open
subset Ω ⊆M \BM . On such an open set, a single-valued holomorphic brach of the idempotent vector
fields, of canonical coordinates and of the matrix Ψ will be fixed (see Theorem 2.1, and Lemma 2.3),
so that the corresponding system (2.8)-(2.9) can be studied.

Theorem 2.5 ([Dub96, Dub99b, CDG17b]). Let M be a semisimple Frobenius manifold, Ω ⊆M \BM
a BM -untwisted connected open subset, and let us consider

• a real number φ ∈ [0; 2π[,
• the line ` in the complex plane containing the projections pr (`±(φ)),
• an `-chamber Ω`,
• the sectors

Πright(φ) : = {z ∈ R : φ− π < arg z < φ} ,
Πleft(φ) : = {z ∈ R : φ < arg z < φ+ π} .

Then the following results hold.
(1) For any point t ∈ Ω there exists a unique formal solution of the system (2.8)-(2.9) of the form

Yformal(z, t) = F (z, t) · exp(zU(t)), F ∈ (O(Ω)⊗ gln(C))
[[1
z

]]
,

F (z, t) =
∑
m∈N

Fm(t)
zm

, F0 ≡ 1, F (−z, t)T · F (z, t) = 1.

(2) For any point t ∈ Ω`, and any k ∈ Z, there exist two solutions Y (k)
right(z, t), and Y

(k)
left (z, t) of the

system (2.8)-(2.9) uniquely determined by the asymptotic expansion

Y
(k)

right/left(z, t) ∼ Yformal(z, t), |z| → +∞, z ∈ e2πkiΠright/left(φ),

uniformly in t ∈ Ω`.
(3) For any t ∈ Ω`, for any k ∈ Z we have that

Y
(k)

right/left(e
2πkiz, t) = Y

(0)
right/left(z, t), z ∈ R.

Remark 2.6. The precise meaning of the asymptotic relation in (2) of Theorem 2.5 is the following:
∀K b Ω`, ∀h ∈ N, ∀S ( e2πkiΠright/left(φ), ∃CK,h,S > 0: if z ∈ S \ {0} then

sup
t∈K

∥∥∥∥∥Y (k)
right/left(z, t) · exp(−zU(t))−

h−1∑
m=0

Fm(t)
zm

∥∥∥∥∥ < CK,h,S
|z|h

.

Here S denotes any unbounded closed sector of R with vertex at 0.

Let us now consider the case of a semisimple coalescence point t0 ∈ BM \ KM . A priori one should
expect the following:
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• the system (2.8)-(2.9) at t0 ∈ BM \ KM does not admit a formal solution of the form as in
(1) of Theorem 2.5. In general, at irregular singularities with coalescing eigenvalues formal
solutions have a more complicated form (see [BJL79], [CDG17a], Section 4);
• if such a formal solution exists, it is not unique;
• if t0 ∈ Ω`, then the coefficients Fm ∈ O(Ω`), and the solutions

(
Y

(k)
right/left

)
k∈Z

of Theorem 2.5
typically diverge as t→ t0.

Nevertheless, according to the analysis extensively developed in [CDG17a], the system (2.8)-(2.9)
has certain properties ensuring that the following result holds:

Theorem 2.6 ([CDG17b]). Let M be a semisimple Frobenius manifold, let t0 ∈ BM \ KM be a
semisimple coalescence point, let us fix a choice of ordering for canonical coordintes (ui(t0))ni=1 and a
determination of Ψ(t0), and let us consider the corresponding system

∂iy = (zEi + Vi(t0)) y, ∂zy =
(
U(t0) + 1

z
V (t0)

)
y. (2.11)

(1) The matrix V (t0) satisfies the vanishing condition

Vij(t0) = 0 if ui(t0) = uj(t0).

(2) This vanishing condition implies the existence of a unique formal solution of the form

Y̊formal(z) = F̊ (z) exp (zU(t0)) , F̊ ∈ gln(C)
[[1
z

]]

F̊ (z) =
∑
m∈N

F̊m
zm

, F̊0 ≡ 1, F̊ (−z)T · F̊ (z) = 1.

(3) If Ω is a BM -untwisted connected open subset of M such that t0 ∈ Ω, on which branches of ui’s
and of the matrix Ψ are fixed so that their continuous extensions on Ω ∩ (BM \ KM ) induces
the same determinations chosen at t0, i.e.

lim
t→t0

ui(t) = ui(t0), lim
t→t0

Ψ(t) = Ψ(t0),

and Fm ∈ O(Ω) are the coefficients of the formal solution as in Theorem 2.5, then

lim
t→t0

Fm(t) = F̊m.

Hence, the functions Fm’s extend to holomorphic functions on any KM -untwisted connected
open subset of M .

(4) Let us now fix an admissible oriented line ` at t0 of slope φ ∈ [0, 2π[, and let Πright/left(φ) be the
sectors defined as in Theorem 2.5. Then for any k ∈ Z, there exists two fundamental solutions
Y̊

(k)
right, Y̊

(k)
left of (2.11) uniquely determined by the asymptotic expansion

Y̊
(k)

right/left(z) ∼ Y̊formal(z), |z| → +∞, z ∈ e2πkiΠright/left(φ).

In the remaining part of this Section, we will denote by Y (k)
left/right(z, t) the solutions of (2.8)-(2.9)

of Theorem 2.5 if t ∈ M \ BM , and of Theorem 2.6 if t ∈ BM \ KM respectively. Note, in particular,
that a priori one should expect that the function so defined is discontinuous w.r.t. t: Theorem 4.1
will show that this is not the case.
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Definition 2.15 (Stokes and Central Connection matrices, [Dub99b, CDG17b]). LetM be a semisim-
ple Frobenius manifold, Ω ⊆M a KM -untwisted connected open subset, and let ` be an oriented line
of slope φ ∈ [0; 2π[ in the complex plane. For any point t ∈ Ω at which ` is admissible, we define two
matrices S(t), S−(t), C(t) ∈ GLn(C) such that for all z ∈ R one has

Y
(0)

left (z, t) = Y
(0)

right(z, t) · S(t),

Y
(0)

left (e2πiz, t) = Y
(0)

right(z, t) · S−(t),

Y
(0)

right(z, t) = Y0(z, t) · C(t),

where Y0(z, t) = Ψ(t) · Φ(z, t) · zµzR is a solution of (2.8)-(2.9) in Levelt normal form at z = 0 as in
Theorem 2.4.

Theorem 2.7 ([Dub99b, CDG17b]). The Stokes matrices S(t),S−(t) and the central connection matrix
C(t), computed w.r.t. all the choices done as in Definition 2.15, satisfy the following properties:

(1) for all k ∈ Z, t ∈ Ω and all z ∈ R one has

Y
(k)

left (z, t) = Y
(k)

right(z, t) · S(t),

Y
(k)

left (z, t) = Y
(k+1)

right (z, t) · S−(t),

Y
(k)

right(z, t) = Y0(z, t) ·M−k0 · C(t),

where M0 = exp(2πiµ) exp(2πiR);
(2) for all k ∈ Z, t ∈ Ω and z ∈ R one has

Y
(k)

right(e
2πiz, t) = Y

(k)
right(z, t) ·

(
S−(t) · S(t)−1

)
,

Y
(k)

left (e2πiz, t) = Y
(k)

right(z, t) ·
(
S(t)−1 · S−(t)

)
;

(3) for all t ∈ Ω one has that

S−(t) = S(t)T ,
S(t)ii = 1, i = 1, . . . , n,

S(t)ij 6= 0 with i 6= j only if ui 6= uj and Rij(t) ⊂ pr (Πleft(φ)) .
Furthermore, the Stokes and Central Connection matrices must satisfy the following constraints at
any point t ∈ Ω:
(4.a) C(t) · S(t)T · S(t)−1 · C(t)−1 = M0 = exp(2πiµ) exp(2πiR),
(4.b) S(t) = C(t)−1 · e−iπR · e−iπµ · η−1 · (C(t)T )−1,
(4.c) S(t)T = C(t)−1 · eiπR · eiπµ · η−1 · (C(t)T )−1.

2.5.3. Isomonodromy Property on `-chambers. The following result is of fundamental importance for
the theory of semisimple Frobenius manifold.

Theorem 2.8 (Isomonodromy Theorem II, [Dub96, Dub99b, CDG17b]). The Stokes matrix S and
the central connection matrix C, computed w.r.t. an oriented line `, are constant on any `-chamber
Ω`. The values of S, C in two different `-chambers are related by an action of the braid group of
Section 3.

The full set of data (µ,R, S, C) can be used to locally classify semisimple Frobenius manifolds. In
particular, given a point u0 = (u0

1, . . . , u
0
n) ∈ Cn with u0

i 6= u0
j for i 6= j and given data (µ,R, S, C), a

Riemann-Hilbert problem can be formulated. If a unique solution of the RH-problem exists, then it
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can be shown that the solution exists for u sufficiently close to u0, that it is an analytic function of u,
and that actually can be meromorphically extended to the whole universal cover of

Cn \
⋃
i<j

{ui = uj} ,

as shown in [Mal83a, Mal83b], [Miw81]. Using the solution of this RH-problem the Frobenius structure
can be explicitly reconstructed through the formulæ in [Dub96, Dub98, Dub99b], and also [Guz01]
where explicit examples of reconstruction are given.

3. Freedom of Monodromy Data and Braid Group action

In defining the full set of monodromy data (µ,R, S, C) several non-unique choices must be done, and
consequently some freedom of these invariants is allowed. Clearly, these admissible transformations of
these local invariants preserve the constraints (4.a),(4.b),(4.c) of Theorem 2.7.

While the operator µ is completely determined by the choice of flat coordinates as in Remark
2.1, we have seen in Theorem 2.4 that the invariant R is defined only up to conjugacy class of the
(η, µ)-parabolic orthogonal group G(η, µ).

For the remaining local invariants S and C notice that their definition is subordinate to the following
choices:

(1) an oriented line in the complex plane;
(2) an integer number k ∈ Z, which correspond to fixing a determination for the slope of `, and

corresponding solutions Y (k)
left/right;

(3) the choice of an ordering of the canonical coordinates on each `-chamber Ω`;
(4) the choice of the branch of the square roots defining the matrix Ψ on each `-chamber Ω`;
(5) the choice of different solutions Y0 in Levelt normal form with the same exponent R.

We first describe (2),(3),(4) and (5). The transformations of the data depending on the choice of the
oriented line ` will be studied in the next Section. We have the following actions on the data (S, C):

• Action of the additive group Z: according to Theorem 2.7 this action is non trivial only on the
central connection matrix C,

C(t) 7→M−k0 · C(t), k ∈ Z, M0 = e2πiµe2πiR, t ∈ Ω`.

The Stokes matrix S remains invariant.
• Action of the group of permutations Sn: corresponding to any reordering of the canonical
coordinates at a point t ∈M \ KM

(u1, . . . , un) 7→ (uτ(1), . . . , uτ(n)), ui := ui(t), τ ∈ Sn,

there is the following natural transformation of solutions of the system (2.8)-(2.9)

Y
(k)
left/right 7−→ PY

(k)
left/rightP

−1, Y0 7−→ PY0, P ∈ GLn(C), Pij := δjτ(i).

With such a choice of reordering, the monodromy data transform as follows:
S 7→ P · S · P−1, C 7→ CP−1. (3.1)

• Action of the group (Z/2Z)×n: by choosing opposite signs for the normalized idempotents
(matrix Ψ), we can change the sign of the entries of the matrices S and C. If I is a matrix with
1’s or (−1)’s on the diagonal, corresponding to the transformations Yleft/right 7→ IYleft/rightI,
Y0 7→ IY0 the monodromy data transform as

S 7→ I · S · I−1, C 7→ CI−1.
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• Action of the group C̃0(µ,R): according to Theorem 2.4, different solutions Y0 in Levelt form
at z = 0 with the same exponent R are related by multiplication to the right by elements
of the isotropy group C̃0(µ,R). Correspondingly, the central connection matrix transforms as
C 7→ G · C, where G ∈ C̃0(µ,R).

Among all possible ordering of the canonical coordinates, we will consider the following particularly
useful class.

Definition 3.1 (Triangular order, [CDG17b]). Let ` be an oriented line in the complex plane, and
let t ∈M \KM . We will say that u1(t), ..., un(t) are in triangular order at t w.r.t. the line ` whenever
S(t) is upper triangular.

An example of triangular order is given the lexicographical order w.r.t an admissible line `. If ` is
an admissible line at t ∈ M \ KM of slope φ ∈ R, let us consider the rays starting from the points
u1(t), . . . , un(t) in the complex plane

Lj :=
{
uj + ρei(

π
2−φ) : ρ ∈ R+

}
, ui ≡ ui(t), j = 1, . . . , n,

and for any complex number z0 let us define the oriented line

Lz0,φ :=
{
z0 + ρe−iφ : ρ ∈ R

}
where the orientation is induced by R. In this way we have a natural total order � on the points of
Lz0,φ. We can choose z0, with |z0| sufficiently large, so that the intersections

Lj ∩ Lz0,φ =: {pj}

are non-empty.

Definition 3.2 (Lexicographical order, [Dub96, Dub99b, CDG17b]). We will say that the canonical
coordinates uj ’s are in `-lexicographical order at t ∈M \ KM if

p1 � p2 � p3 � · · · � pn.

It is clear that the definition does not depend on the choice of z0 ∈ C, with |z0| sufficiently large.

Lemma 3.1 ([CDG17b]). Let M be a semisimple Frobenius manifold, t ∈ M \ KM , and let ` be an
oriented line in the complex plane, admissible at t.

(1) Any `-lexicographical order at t of the canonical coordinates (ui(t))ni=1 is triangular.
(2) If t ∈ M \ BM , then the `-lexicographical order at t of the canonical coordinates (ui(t))ni=1 is

unique.
(3) If t ∈ BM \ KM , then any triangular order at t of the canonical coordinates (ui(t))ni=1 is

`-lexicographical.

Note that it is not true that in any `-chamber Ω` there is a unique triangular order (for further
comments, see Remark 4.1).

3.1. Action of the braid group Bn. We consider the problem of studying
(1) either the exact relations between the data computed in two different `-chambers Ω1

` ,Ω2
` of a

semisimple Frobenius manifold M w.r.t. a fixed oriented line `,
(2) or the dependence of the monodromy data (S(t), C(t)) at a point t ∈M \ BM on the choice of

an oriented line ` admissible at t.
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Both sides of the problem can be described through an action of the braid group Bn. In the first case
the `-chambers are fixed, in the second case they change: indeed, the `-chamber decomposition of M
depends on the choice of `, so that the given point of M \BM may fall in two different `-chambers if `
is changed. Below we consider the change of ` as given by a continuous rotation. Let us always label
the canonical coordinates (u1, . . . , un) in lexicographical order w.r.t. `

• in both the fixed `-chambers Ω1
` ,Ω2

` , in case (1)
• both before and after the rotation of `, in case (2).

so that, in particular, any Stokes matrix is always in upper triangular form. Thus, if we introduce
the configuration space X := (Cn \ ∆)/Sn, where ∆ stands for the union of all diagonals in Cn,
i.e. the sets {ui = uj} with i 6= j, and if we identify a point t ∈ M \ BM with its `-lexicographical
n-tuple representative of canonical coordinates set {ui(t)}ni=1 ∈ X, we can analyze properties of the
analytic continuation of the whole Frobenius structure by varying the configuration point {u1, . . . , un}
in the universal cover X̃. The fundamental group Bn = π1(X), called braid group with n strands, is
generated by n− 1 elementary braids β12, β23, . . . , βn−1,n with the relations

βi,i+1βj,j+1 = βj,j+1βi,i+1 for i+ 1 6= j, j + 1 6= i,

βi,i+1βi+1,i+2βi,i+1 = βi+1,i+2βi,i+1βi+1,i+2.

Equivalently, the braid group Bn can be defined as the mapping class group of a disk with n punctures,
i.e. Bn ∼= M(Dn). Hence, any continuous deformation of the n-tuple (u1, . . . , un) ∈ Cn\∆, represented
as a deformation of n points in C never colliding, can be decomposed into elementary ones. In
particular, an elementary deformation βi,i+1 consists of a counter-clockwise rotation of ui w.r.t. ui+1,
so that the two exchange. All other points uj ’s are subjected to a sufficiently small perturbation, so
that the corresponding Stokes’ rays almost do not move. The braid βi,i+1 corresponds to

• a clockwise rotation of the Stokes’ ray Ri,i+1 crossing the line `,
• or, dually, a counter-clockwise rotation of the line ` crossing the Stokes’ ray Ri,i+1.

This determines the following mutations of the monodromy data, as shown in [Dub96] and [Dub99b]:

Sβi,i+1 := Aβi,i+1(S) · S ·Aβi,i+1(S)T (3.2)

where (
Aβi,i+1(S)

)
hh

= 1 h = 1, . . . , n h 6= i, i+ 1(
Aβi,i+1(S)

)
i+1,i+1

= −si,i+1(
Aβi,i+1(S)

)
i,i+1

=
(
Aβi,i+1(S)

)
i+1,i

= 1.

For a generic braid β, which is a product of N elementary braids β = βi1,i1+1 . . . βiN ,iN+1, the action
is

S 7→ Sβ := Aβ(S) · S ·Aβ(S)T (3.3)
where

Aβ(S) = AβiN ,iN+1
(
SβiN−1,iN−1+1

)
· ... ·Aβi2,i2+1

(
Sβi1,i1+1

)
·Aβi1,i1+1(S).

The action on the central connection matrix (in lexicographical order) is

C 7→ Cβ := C · (Aβ)−1. (3.4)

Since a complete 2π-rotation of ` can be described by the action of a generator of Z on the monodromy
data (as discussed in the previous Section), we have the following result.
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Lemma 3.2 ([CDG17b]). The braid corresponding to a complete counter-clockwise 2π-rotation of `
is the braid

(β12β23 . . . βn−1,n)n,
and its acts on the monodromy data as follows:

• trivially on Stokes matrices,
• the central connection matrix is transformed as C 7→M−1

0 C.

4. Isomonodromy Theorem at coalescence points

Let t0 ∈ BM \KM be a semisimple coalescence point of a Frobenius manifoldM , and let Ω be a KM -
untwisted open connected neighborhood of t0, on which we fix an ordering of canonical coordinates
u : Ω→ Cn and a holomorphic branch of the function Ψ: Ω→ GLn(C). We define

∆Ω := u(Ω ∩ BM ), so that ∅ 6= ∆Ω ⊆ ∆ ⊆ Cn.

In particular u(0) := u(t0) ∈ ∆Ω. Without loss of generality, up to a permutation of the canonical
coordinates, we can assume that u(0) is

u
(0)
1 = · · · = u(0)

p1 =: λ1 (4.1)

u
(0)
p1+1 = · · · = u

(0)
p1+p2 =: λ2 (4.2)

... (4.3)
u

(0)
p1+···+ps−1+1 = · · · = u

(0)
p1+···+ps−1+ps =: λs, (4.4)

where p1, ..., ps are the multiplicities of the eigenvalues of U(u(0)) = diag(u(0)
1 , ..., u

(0)
n ), with s ≤ n,

p1 + · · ·+ ps = n. Let

δi := 1
2 min

{∣∣∣λi − λj + ρei(
π
2−φ)

∣∣∣ , j 6= i, ρ ∈ R
}
,

and let ε0 be a small positive number such that
ε0 < min

1≤i≤s
δi. (4.5)

We will assume that ε0 is sufficiently small so that the neighborhood of u(0) defined by2

Uε0(u(0)) :=
s×
i=1

B(λi; ε0)×pi

is completely contained in the image of the chart u(Ω). Note that, for the choice of ε0, if u varies in
Uε0(u(0)), the sets
I1 := {u1, ... , up1}, I2 := {up1+1, ... , up1+p2}, ... , Is := {up1+···+ps−1+1, ..., up1+···+ps−1+ps} (4.6)

do never intersect. Thus, u(0) is a point of maximal coalescence in Uε0(u(0)). We will say that a
coordinate ua is close to a λj if it belongs to Ij . Equivalently, if ua ∈ B(λj ; ε0).

Let us fix an oriented line ` admissible for the point t0, of slope φ ∈ [0; 2π[. For u = (u1, ..., un) ∈
Uε0(u(0)), consider the subset R(u) of Stokes rays associated to couples of eigenvalues ua and ub, such
that ua is close to a λi and ub is closed to a λj , with i 6= j. The choice of ε0 as in (4.5) is motivated

2 Here B(λi; ε0) is the closed ball in C with center λi and radius ε0. Note that if the uniform norm |u| = maxi |ui| is
used, as in [CDG17a], then

Uε0 (u(0)) =
{
u ∈ Cn

∣∣∣ |u− u(0)| ≤ ε0

}
.
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by the following fact: consider the pair ua, ub, and the associated Stokes ray Rab (projection of
Rab,k ∈ R(u)). As u varies, the ray Rab continuously move, but it never crosses the line ` as long as
ua ∈ B(λi; ε0) and ub ∈ B(λj ; ε0). See Figure 1.

δi

δj

λi

λj

λi

δi

δj

ua

ub

B(λi; ε0)

B(λj ; ε0)

λj

ua

ub

B(λj ; ε0)

B(λi; ε0)

Figure 1. Points λi’s and ua’s are represented in the same complex plane. The thick
line has slope π/2 − φ. As u varies, for values of ε0 sufficiently small (left figure) the
Stokes rays Rab associated to ua in the disk B(λi; ε0) and ub in the disk of B(λj ; ε0) do
not cross the line ` in the z-plane. If the disks have radius exceeding min1≤i≤s δi as in
(4.5) (see right figure), then the Stokes rays Rab cross the line `.

The choice of the line ` induces a cell decomposition of Uε0(u(0)).

Definition 4.1. An `-cell of Uε0(u(0)) is any connected component of the open dense subset of points
u ∈ Uε0(u(0)) such that u1, ..., un are pairwise distinct and ` is admissible for the n-tuple (u1, . . . , un).

Proposition 4.1 ([CDG17a]). An `-cell is a topological cell, namely it is homeomorphic to a ball.

For each point u ∈ Uε0(u(0)), the monodromy and Stokes phenomenon at z =∞ of the system
dY

dz
=
(
U + V (u)

z

)
Y, u ∈ Uε0(u(0)), (4.7)

is completely described by Theorems 2.5, 2.6, 2.7. In particular, we have well-defined Stokes and
central connection matrices S(u), C(u) at each point, computed w.r.t.

• solutions Y (0)
right/left(z, u) as in Theorem 2.5 for u /∈ ∆Ω ∩ Uε0(u(0)),

• solutions Y̊ (0)
right/left(z, u) as in Theorem 2.6 for u ∈ ∆Ω ∩ Uε0(u(0)),

which are in both cases uniquely determined by their asymptotic expansion in sectors Πright/left(φ)
given by the unique formal solution

Yformal(z, u) =
(
1 +

∞∑
h=1

Fh(u)
zh

)
exp(zU), Fm ∈ O(Uε0(u(0))),

Yformal(z, u) ≡ Y̊formal(z, u) if u ∈ ∆Ω ∩ Uε0(u(0)).
Note that actually, if for any u ∈ Uε0(u(0)) we consider the sectors Sright(u) and Sleft(u) which contain
the sectors Πright(φ) and Πleft(φ) respectively and extend up to the nearest Stokes rays, then for
each u ∈ Uε0(u(0)) the asymptotic expansion above holds on each Sright/left(u) sector. The central
connection matrix C(u) is somputed w.r.t. a fixed solution Y0(z, u) in Levelt-normal form at z = 0
holomorphic in u ∈ Uε0(u(0)).
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Remarkably, by Theorem 2.8, on each `-cell in Uε0(u(0)) the system (4.7) is isomonodromic, so that
S(u), C(u) do not depend on u varying in a `-cell. The Main Theorem of [CDG17a], adapted and
particularised to the case of Frobenius manifolds, becomes the following:

Theorem 4.1 ([CDG17a, CDG17b]). Let u(0) be a colaescence point. Let Uε0(u(0)) be as above. Let
the manifold be semisimple in Uε0(u(0)). Then

• The solutions Y (0)
left (z, u), Y (0)

right(z, u), can be u-analytically continued as single-valued holomor-
phic functions on Uε0(u(0)). Moreover

Y
(0)

left/right(z, u
(0)) = Y̊

(0)
left/right(z).

• For any ε1 < ε0, the asymptotic relations

Y
(0)

left/right(z, u) ∼ Yformal(z, u), z →∞ in Πleft/right(φ), (4.8)

hold uniformly in u ∈ Uε1(u(0)). In particular they hold also at points of ∆Ω ∩Uε1(u(0)) and at
u(0).
• For any u ∈ Uε0(u(0)) consider the sectors Ŝright(u) and Ŝleft(u) which contain the sectors

Πright(φ) and Πleft(φ) respectively, and extend up to the nearest Stokes rays in the set R(u)
defined above. Let

Ŝleft/right =
⋂

u ∈ Uε0 (u(0))

Ŝleft/right(u).

Observe that for sufficiently small ε > 0 the sectors
Πε

right(φ) := {z ∈ R : φ− π − ε < arg z < φ+ ε} ,

Πε
left(φ) := {z ∈ R : φ− ε < arg z < φ+ π + ε} ,

are strictly contained in Ŝright and Ŝleft respectively. The asymptotic relations (4.8) actually
hold in the sectors Ŝleft/right.
• The system (4.7) is isomonodromic in Uε1(u(0)): the monodromy data (µ,R, S, C) of system
(4.7), defined and constant in any `-cell of Uε0(u(0)), are actually defined and constant at any
u ∈ Uε1(u(0)). The entries of S satisfy the vanishing condition

Sij = Sji = 0 for all i 6= j such that u
(0)
i = u

(0)
j . (4.9)

This Theorem allows us to obtain the monodromy data in a neighbourhood of a coalescence point
just by computing them at the coalescence point.

Remark 4.1. Suppose that S is upper triangular. By formula (4.9), it follows that in any `-cell of
Uε1(u(0)) the order of the canonical coordinates in triangular, according to Definition 3.1, and only in
one cell the order is lexicographical (Definition 3.2). Starting from this cell we can apply the action
of the braid group to S and C, as dictated by formulae (3.2), (3.4). In this way, the monodromy data
for any other chamber of the manifold are obtained, as explained in Section 3.1.

5. Quantum cohomologies of complex Grassmannians.

5.1. Gromov-Witten Theory and Quantum Cohomology. Let X be a smooth projective com-
plex variety with vanishing odd cohomology, i.e. H2k+1(X;C) ∼= 0 for 0 ≤ k. Let us fix a homogeneous
basis (T0, T1, . . . , TN ) of H•(X;C) =

⊕
kH

2k(X;C) such that
• T0 = 1 is the unity of the cohomology ring;
• T1, . . . , Tr span H2(X;C).
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We will denote by η : H•(X;C)×H•(X;C)→ C the Poincaré metric

η(ξ, ζ) :=
∫
X
ξ ∪ ζ, with Gram matrix η := (ηαβ)α,β, ηαβ :=

∫
X
Tα ∪ Tβ.

If β ∈ H2(X;Z)/torsion, we denote byMg,n(X,β) the Kontsevich-Manin moduli stack of n-pointed,
genus g stable maps to X of degree β, which parametrizes equivalence classes of pairs ((Cg,x); f),
where (Cg,x) is an n-pointed algebraic curve of genus g, with at most nodal singularities and with
n marked points x = (x1, . . . , xn), and f : Cg → X is a morphism such that f∗[Cg] ≡ β. Two pairs
((Cg,x); f) and ((C ′g,x′); f ′) are defined to be equivalent if there exists a bianalytic map ϕ : Cg → C ′g
such that ϕ(xi) = x′i, for all i = 1, . . . , n, and f ′ = ϕ ◦ f . The morphisms f are required to be stable:
if f is constant on any irreducible component of Cg, then that component should have only a finite
number of automorphisms as pointed curves (in other words, it must have at least 3 distinguished
points, i.e. points that are either nodes or marked ones).

We will denote by evi : Mg,n(X,β) → X : ((Cg,x); f) 7→ f(xi) the naturally defined evaluations
maps, and by ψi ∈ H2(Mg,n(X,β);Q) the Chern classes of tautological cotangent line bundles

Li →Mg,n(X,β), Li|((Cg ,x);f) = T ∗xiCg, ψi := c1(Li).

Using the construction of [BF97] of a virtual fundamental class [Mg,n(X,β)]virt in the Chow ring
A∗(Mg,n(X,β)), and of degree equal to the expected dimension

[Mg,n(X,β)]virt ∈ AD(Mg,n(X,β)), D = (1− g)(dimCX − 3) + n+
∫
β
c1(X),

a good theory of intersection is allowed on the Kontsevich-Manin moduli stack.
We can thus define the Gromov-Witten invariants (with descendants) of genus g, with n marked

points and of degree β of X as the integrals (whose values are rational numbers)

〈τd1γ1, . . . , τdnγn〉Xg,n,β :=
∫

[Mg,n(X,β)]virt

n∏
i=1

ev∗i (γi) ∪ ψ
di
i , (5.1)

γi ∈ H•(X;C), di ∈ N, i = 1, . . . , n.
Since by effectiveness (see [Man99], [KM94]) the integral is non-vanishing only for effective classes
β ∈ Eff(X) ⊆ H2(X;Z), the generating function of rational numbers (5.1), called total descendent
potential (or also gravitational Gromov-Witten potential, or even Free Energy) of genus g is defined as
the formal series

FXg (γ,Q) :=
∞∑
n=0

∑
β∈Eff(X)

Qβ

n! 〈γ. . . . , γ︸ ︷︷ ︸
n times

〉Xg,n,β,

where we have introduced (infinitely many) coordinates t := (tα,p)α,p
γ =

∑
α,p

tα,pτpTα, α = 0, . . . , N, p ∈ N,

and formal parameters

Qβ := Q

∫
β
T1

1 · · · · ·Q
∫
β
Tr

r , Qi’s elements of the Novikov ring Λ := C[[Q1, . . . , Qr]].
The free energy FXg ∈ Λ[[t]] can be seen as a function on the large phase-space, and restricting the free
energy to the small phase space (naturally identified with H•(X;C)),

FXg (t1,0, . . . , tN,0) := FXg (t)|tα,p=0, p>0,

one obtains the generating function of the Gromov-Witten invariants of genus g.



ANALYTIC GEOMETRY OF SEMISIMPLE COALESCENT FROBENIUS STRUCTURES 23

By the Divisor axiom, the genus 0 Gromov-Witten potential FX0 (t), can be seen as an element of
the ring C[[t0, Q1e

t1 , . . . , Qre
tr , tr+1, . . . , tN ]]: in what follows we will be interested in cases in which

FX0 is the analytic expansion of an analytic function, i.e.

FX0 ∈ C
{
t0, Q1e

t1 , . . . , Qre
tr , tr+1, . . . , tN

}
.

Without loss of generality, we can put Q1 = Q2 = · · · = Qr = 1, and FX0 (t) defines an analytic
function in an open neighborhood D ⊆ H•(X;C) of the point

ti = 0, i = 0, r + 1, . . . , N, (5.2)
Re ti → −∞, i = 1, 2, . . . , r. (5.3)

The function FX0 is a solution of WDVV equations (for a proof see [KM94], [Man99], [CK99]), and
thus it defines an analytic Frobenius manifold structure on D.

Definition 5.1 (Small and Big Quantum Cohomology, [Vaf91], [KM94], [Man99], [Dub96, Dub98,
Dub99b]). The Frobenius manifold structure defined on the domain of convergence D of the Gromov-
Witten potential FX0 , solution of the WDVV problem, is called Quantum Cohomology of X, and
denoted by QH•(X). Note that

• the flat metric is given by the Poincaré metric η;
• the unity vector field is T0 = 1, using the canonical identifications of tangent spaces

TpD ∼= H•(X;C) : ∂tα 7→ Tα;

• the Euler vector field is

E := c1(X) +
N∑
α=0

(
1− 1

2 deg Tα
)
tαTα.

By small quantum cohomology (or small quantum locus) we mean the Frobenius structure attached
to points in D ∩ H2(X;C). In case of convergence, the domain D is non-empty and the potential
(and hence the whole Frobenius structure) can be maximally analytically continued to an unramified
covering of D. We refer to this global Frobenius structure as the Big Quantum Cohomology.

There is an intriguing conjecture ([Dub98, Dub13]) which relates the enumerative geometry of a
projective variety X with semisimple quantum cohomology to its derived category of coherent sheaves
Db(X). Conjecturally, the semisimplicity of the quantum cohomology QH•(X) should be equivalent
to the existence of a full exceptional collection in the derived category Db(X), i.e. a collection of
objects (E1, . . . , En) with the semi-orthogonal property

Hom•(Ej , Ei) :=
⊕
k

HomDb(X)(Ej , Ei[k]) = 0, for j > i.

Furthermore, the monodromy data (S, C) should be expressed in terms of characteristic classes and
Euler-Poincaré-Grothendieck products of the objects Ei’s, i.e.

χ(Ei, Ej) :=
∑
k

(−1)k dimC HomDb(X)(Ej , Ei[k]).

In particular, the Stokes matrix S computed in each `-chamber of QH•(X), and w.r.t. a triangular
order, should correspond to the Gram matrix of χ w.r.t. an exceptional collection. Further details and
a refined and precise version of this conjecture will be the content of a forthcoming paper ([CDG]).
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5.2. The case of complex Grassmannians. Although there is no general result guaranteeing the
convergence of the Gromov-Witten potential, in the case X is a Fano manifold (i.e. with ample anti-
canonical bundle −KX ≡ detTX) it is known that the sum defining FX0 at points with coordinates
t0 = tr+1 = · · · = tN = 0, i.e. of the small quantum locus, is a polynomial (for a proof see [CK99]).
Furthermore, for some homogeneous spaces such as Grassmannians G(k, n) of k-subspaces in Cn it is
known that the points of the small quantum locus are all semisimple (see [CMP10]). Depending on
the pair (k, n), the small quantum cohomology of G(k, n) may be contained (or not) in the semisimple
coalescent stratum BM \ KM , M := QH•(G(k, n)). In this case we will say that the Grassmannian
G(k, n) is coalescing. Remarkably, this coalescence phenomenon of small quantum cohomologies of
Grassmannians is strictly related to the prime factorization of n, and actually almost all Grassman-
nians are coalescing.

Theorem 5.1 ([Cot16]).
(1) The complex Grassmannian G(k, n) is coalescing if and only if P1(n) ≤ k ≤ n− P1(n), where

P1(n) is the smallest prime divisor of n.
(2) In particular, if n is prime, the Grassmannians G(k, n) are not coalescing for any 0 < k < n.
(3) Let us denote by l̃n, for n ≥ 2, the number of non-coalescing Grassmannians of proper sub-

spaces of Cn, i.e.
l̃n := card {k : 0 < k < n, G(k, n) is not coalescing} .

We have that
n∑
k=2

l̃k ∼
1
2
n2

logn, (5.4)

which means that non-coalescing Grassmannians are rare, i.e. of density zero among all Grass-
mannians.

Remark 5.1. In [Cot16], some properties of the analytic continuation of the generating Dirichlet series

L̃(s) :=
∞∑
n=2

l̃n
ns
,

are partially studied: the global picture is still mysterious. L̃(s) is absolutely convergent in the
half-plane Re(s) > 2, where it can be represented by the infinite series

L̃(s) =
∑

p prime

p− 1
ps

( 2ζ(s)
ζ(s, p− 1) − 1

)
,

involving the Riemann zeta function and the truncated Euler products defined for h ∈ R>0, s ∈ C\{0}
as the functions

ζ(s, h) :=
∏

p prime
p≤h

(
1− 1

ps

)−1
.

By analytic continuation, L̃(s) can be extended to (the universal cover of) the punctured half-plane

{s ∈ C : Re(s) > σ} \
{
s = ρ

k
+ 1:

ρ pole or zero of ζ(s),
k squarefree positive integer

}
,

σ := lim sup
n→∞

1
logn · log

 ∑
k≤n

k composite

l̃k

 , 1 ≤ σ ≤ 3
2 ,
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having logarithmic singularities at the punctures. In particular, we have the equivalence of the fol-
lowing statements:

• (RH) all non-trivial zeros of the Riemann zeta function ζ(s) satisfy Re(s) = 1
2 ;

• the derivative L̃
′(s) extends, by analytic continuation, to a meromorphic function in the half-

plane 3
2 < Re(s) with a single pole of oder one at s = 2.

At the point s = 2 the following asymptotic estimate holds

L̃(s) = log
( 1
s− 2

)
+O(1), s→ 2, Re(s) > 2,

from which it follows the asymptotic relation (5.4).

Thanks to Theorem 4.1, we know that the monodromy data for quantum cohomologies of Grass-
mannians can be computed at points of the small quantum locus, despite of coalescences of canonical
coordinates. Furthermore, these data define local invariants and are constant in the `-chambers en-
circling the small quantum cohomology. It is remarkable that the vanishing condition of Theorem 4.1
implies a constraint on the nature of the full exceptional collections that conjecturally should arise from
the monodromy data according to [Dub98, Dub13]: in particular, if the canonical coordinates along
the locus of small quantum cohomology of G(k, n) are as in equations (4.1)-(4.4) (and in triangular
order), then the collections associated to the surrounding `-chambers should have the structure

E := (E1, . . . , Ep1︸ ︷︷ ︸
B1

, Ep1+1, . . . , Ep1+p2︸ ︷︷ ︸
B2

, . . . , Ep1+···+ps−1+1, . . . , Ep1+···+ps︸ ︷︷ ︸
Bs

), Ej ∈ Obj
(
Db(X)

)
,

where for each pair (Ei, Ej) in a same block Bk the following orthogonality conditions hold
HomDb(X)(Ei, Ej [`]) = 0, for any `.

In particular, any reordering of the objects inside a single block Bj preserves the exceptionality of E .
Such a kind of exceptional collections, called full s-block exceptional collections, was firstly introduced
and studied in [KN98]. More results about the nature of exceptional collections arising in this context
and about their dispositions in the locus of small quantum cohomology for the class of complex
Grassmannians will appear in a forthcoming paper [CDG].

Example 5.1. The first and simplest case where some coalescences of canonical coordinates manifest
is the case of the complex Grassmannian X := G(2, 4). Such a manifold is a complex 4-fold with Betti
numbers

β0(X) = β2(X) = β6(X) = β8(X) = 1, β4(X) = 2.
Let us fix the Schubert basis (σ0, σ1, σ2, σ1,1, σ2,1, σ2,2) of H•(X,C) (see [GH78], [Man98]), and let
us denote by (t1, . . . t6) the corresponding flat coordinates of the six dimensional Frobenius manifold
QH•(X). The Frobenius structure is explicitly known only along the small quantum locus (see [Wit95],
[Ber96, Ber97], [Buc03], [Cot16]): if p = t2σ1 ∈ H2(X,C), the corresponding Frobenius algebra defined
on the tangent space is given by

QH•p (X) ∼=
C[x1, x2]S2 [q]
〈h3, h4 + q〉

, σλ =

∣∣∣∣∣xλ1+1
1 xλ2

1
xλ1+1

2 xλ2
2

∣∣∣∣∣∣∣∣∣x1 1
x2 1

∣∣∣∣ , q := exp(t2),

where x1, x2 are the Chern roots of the dual-tautological bundle S∗ on X, and hi is the i-th complete
symmetric polynomial in x1, x2. The differential system defining deformed flat 1-form ∇̂ξ = 0, with
ξ := ξj(z, t)dtj , and which defines the monodromy data of QH•(X), is
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∂zξ1 = 4ξ2 + 2
z
ξ1, (5.5)

∂zξ2 = 4(ξ3 + ξ4) + 1
z
ξ2, (5.6)

∂zξ3 = 4ξ5, (5.7)

∂zξ4 = 4ξ5, (5.8)

∂zξ5 = 4qξ1 + 4ξ6 −
1
z
ξ5, (5.9)

∂zξ6 = 4qξ2 −
2
z
ξ6. (5.10)

As shown in [CDG17b], the study of the whole system can be reduced to the study of the quantum
differential equation

ϑ5Φ(w)− 1024w4ϑΦ(w)− 2048w4Φ(w) = 0, ϑ := w
d

dw
.

By using the Mellin transform, two solutions of the equation above can be found

Φ1(w) := 1
2πi

∫
Λ

Γ(s)5

Γ(s+ 1
2)

4−sw−4sds, Φ2(w) = 1
2πi

∫
Λ

Γ(s)5Γ
(1

2 − s
)
eiπs4−sw−4sds,

where Λ := c + iR, with 0 < c < 1
2 , and it is possible to reconstruct both Ξleft/right for the system

(5.5)-(5.10), w.r.t. a line ` of slope 0 < φ < π
6 . See [CDG17b] for explicit formulæ of reconstruction of

the solutions, and detailed asymptotic analysis. The Stokes matrix computed w.r.t. chosen oriented
line ` at the point t2 = 0 is given by

Ξleft(z, 0) = Ξright(z, 0) · S, S :=



1 6 −20 20 −70 20
0 1 −4 4 −16 6
0 0 1 0 4 −4
0 0 0 1 −4 4
0 0 0 0 1 −6
0 0 0 0 0 1


. (5.11)

The central connection matrix computed at t2 = 0 w.r.t. the topological solution of the system
(5.5)-(5.10) (see [Dub92, Dub96, Dub99b, CDG17b])

Ξ0(z, t) := η ·Θtop(z, t) · zµzc1(X)∪,

Θtop(z, t)γλ : = δγλ +
∞∑

k,n=0

∑
β∈Eff(X)

∑
α1,...,αk

hγλ,k,n,β,α
k! · tα1 . . . tαk · zn+1,

hγλ,k,n,β,α :=
∑
ν

ηνγ
∫

[M0,k+2(X,β)]virt
c1(L1)n ∪ ev∗1σλ ∪ ev∗2σν ∪

k∏
j=1

ev∗j+2σαj ,

coincides with the matrix associated to the morphism

D−X : K0(X)⊗Z C→ H•(X,C) : E 7→ 1
(2π)2 Γ̂−X ∪ e

−c1(X)πi ∪ Ch(E),

where

Γ̂−X :=
4∏
j=1

Γ(1− δj), Γ(1− z) = exp
{
γz +

∞∑
n=2

ζ(n)
n

zn
}
, δj ’s are the Chern roots of TX.

Such a matrix is computed w.r.t. the Schubert basis and the basis in the Grothendieck group
([E1], . . . , [E6]), obtained by projection inK-theory of a full 5-block exceptional collection (E1, . . . , E6).
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Such a collection is obtained from the Kapranov exceptional 5-block collection(
S0S∗, S1S∗, S2S∗

S1,1S∗, S2,1S∗, S2,2S∗
)
,

(here Sk denotes the k-th Schur functor, and S the tautological bundle onX, see [Kap88]) by mutation3
under the inverse of the following braids in B6:

β34β12β56β23β45β34 β12β56β23β45 β12β56β23β45β34

Note that the action of the braid β34 only consists in a permutation of the central objects of the
5-block collection. The inverse of the Stokes matrix S in (5.11) coincides with the Gram matrix of
the Euler-Poincaré-Grothendieck product on K0(X) ⊗ C w.r.t. the basis ([E1], . . . , [E6]). Theorem
4.1 guarantees that the monodromy data computed along the small quantum locus of G(2, 4) coincide
with the data of the surrounding chambers in the big quantum cohomology. The data in all other
chambers of the Frobenius manifolds can be reconstructed through the action of the braid group, as
exposed in Remark 4.1.
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