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HAMILTONIAN FORMALISM OF ONE-DIMENSIONAL
SYSTEMS OF HYDRODYNAMIC TYPE, AND THE
BOGOLYUBOV–WHITMAN AVERAGING METHOD

B. A. DUBROVIN AND S. P. NOVIKOV

I. One-dimensional systems of hydrodynamic type. Poisson brackets and
Riemannian geometry. From a purely mathematical point of view many systems
such as ideal fluids including mixtures and systems with internal degrees of freedom
are given in the one-dimensional case by equations of first order

(1) uit = vij(u)u
j
x.

The field variables ui are usually the density of momentum and energy (or mass) and
possibly a number of others. The Euler equations for ideal fluids are Hamiltonian
with respect to Poisson brackets of special form (see [1] and [2]) which in the one-
dimensional case we shall generalize to general systems of the form (1) in connection
with new applications.

Definition 1. A Poisson bracket on a space of fields uk(x) is called a bracket of
hydrodynamic type if it has the form

(2) {ui(x), uj(y)} = gij(u(x))δ′(x− y) + bijk (u(x))ukxδ(x− y).

For any pair of functionals I =
∫
P (u, ux, . . . )dx, J =

∫
Q(u, ux, . . . )dx we have

(3) {I, J} =
∫
dx

δI

δui(x)
Aij

δJ

δuj(x)
, Aij = gij

∂

∂x
+ bijukx.

Definition 2. Hamiltonians of hydrodynamic type are functionals of the form

(4) H =
∫
h(u) dx,

which do not depend on the derivatives ux, uxx, . . . .

The class of hydrodynamic Hamiltonians (4) and the form of the Poisson bracket
(2) are invariant relative to local transformations of the fields u = u(w) which do
not contain derivatives. We have the following result.

Theorem 1. 1) Under local changes of the fields u = u(w) the coefficient gij(u)
in the bracket (2) transforms like a bilinear form (a tensor with upper indices); if
det gij 6= 0, then the expression bijk (u) = gisΓjsk transforms in such a way that the
Γjsk are the Christoffel tymbols of a differential-geometric connection.

2) In order that the bracket (2) be skew-symmetric it is necessary and sufficient
that the tensor gij(u) be symmetric (i.e., that it define a pseudo-Riemannian metric
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if det gij 6= 0) and the connection Γjsk be consistent with the metric, gij ;k = ∇kg
ij =

0.
3) In order that the bracket (2) satisfy the Jacobi identity it is necessary and

sufficient that the connection Γjsk have no torsion and the curvature tensor vanish.
In this case the connection is defined by the metric gij(u) which can be reduced to
constant form.

Corollary. Poisson brackets of hydwdynamic type with the condition of nonde-
generacy det gij 6= 0 are classified relative to local changes u = u(w) by a single
invariant—the signature of the metric gij(u), i.e., the number q of negative squares
and the number l of positive squares, with l + q = n.

Theorem 1 is proved by direct verification. Only part 3) contains some technical
difficulties.

For future applications it is also useful to introduce the following definition.

Definition 3. Coordinates (u1, . . . , un) in field space are called Liouville coordi-
nates if the Poisson bracket (2) has the form

(5) {ui(x), uj(y)} = [γji(u(x)) + γij(u(y))]δ′(x− y),

or, equivalently,

(6) gij = γji(u) + γij(u), gisΓjsk = ∂γij/∂uk.

Remark. There are important cases (for example, a compressible fluid with fields
p, ρ and s; see [1]) where the rank of the matrix gij(u) is less than the dimension
for all u. Investigation of such brackets will be carried out in another paper.

II. The Hamiltonian formalism and the Bogolyubov–Whitman averag-
ing method. The classical Bogolyubov–Krylov–Mitropol’skĭı averaging method
(see [3]) is constructed for finite-dimensional systems of classical mechanics and
oscillation theory. It presupposes that a family of tori is known, i.e., exact periodic
or quasiperiodic solutions (rapid oscillations) depending on several parameters, and
it studies the average drift with respect to rapid oscillations of a particle along a
given family of parameters. An analogue of the averaging method for partial differ-
ential equations having Lagrangian form was developed first by Whitman [4] and
then by a number of other authors [5]–[7]. Our aim is to develop a purely Hamil-
tonian version of the averaging method and investigate the Hamiltonian formalism
of the averaged equations. We shall consider only one-dimensional systems, i.e.,
(x, t)-systems.

Suppose there are given a collection of field ψα and a Hamiltonian system of the
form

(7) ψαt = Aαβ(δH/δψβ(x)), H =
∫
dx′ h(ψ,ψx, . . . ),

where A = (Aαβ) is a linear differential operator of order m with coefficients de-
pending on ψ,ψx, ψxx, . . . . It is assumed that formula (8) defines a correct Poisson
bracket of functionals:

(8) {I, J}ψ =
∫
dx

δI

δψα(x)
Aαβ

δJ

δψβ(x)

It is required that the following properties hold:



HAMILTONIAN FORMALISM OF ONE-DIMENSIONAL SYSTEMS 3

1) Translation on x is Hamiltonian, i.e., there exists a Hamiltonian H1 = p
defining a group of translations on x (the momentum).

2) There is a given family of tori, that is, exact quasiperiodic solutions of the
system (7) of the form

(9) ψα = Fα(U1x+ U0t, u),

where u = (uj), Uq = Usq (u), j = 1, . . . , n, s = 1, . . . , N , q = 1, 0, and Fα(η1, . . . , ηN , u)
are functions of N variables ηs and the parameters uj which are 2π-periodic in each
variable ηs.

3) There are given field integrals I1, . . . , In of the system (7) such that the con-
stants (u1, . . . , un) are determined by their values

(10) Ik = uk, {Ik,H}ψ = 0, Ik =
∫
Pk(ψ,ψx, . . . )dx.

The integrals Ik are Liouville, i.e., they commute pairwise; they include the mo-
mentum p = I1 and the energy E = H = I2,

(11) {Ik, Il}ψ = 0.

Because of (11), we consider the Poisson brackets of densities of these integrals
with them, and we write them as total derivatives

(12) {Pk(ψ(x), ψx(x), . . . ), Il}ψ = (∂/∂x)Bkl(ψ,ψx, . . . ),

where the Bkl are polynomials if the densities Pk and the bracket are polynomials
in ψ,ψx, . . . .

The averaging method considers asymptotic solutions which have the form (9)
in the first approximation, where the remainder has zero mean over rapid oscilla-
tions and (u1, . . . , un) are slowly varying functions, i.e., they depend on the “slow”
variables (X,T ). The averaging over the rapid variables, we arrive at the following
assertion.

Theorem 2. 1) If conditions 1)–3) above are satisfied, the functions uj(X,T )
satisfy the “equations of slow modulations of Whitham type” of first order in X
and T of hydrodynamic type.

2) These equations are Hamiltonian with Hamiltonian H̄ =
∫
E dX, E = I2, and

Poisson bracket of the form (2). The Poisson bracket of the averaged momentum
density has the form

(13) {p(X), p(Y )}u = 2p(X)δ′(X − Y ) + pXδ(X − Y ), p = u1.

The Poisson bracket of all remaining variables can be computed by the formula

{ui(X), uj(Y )}u = [γij(X) + γij(Y )]δ′(X − Y );(14)

γij(u) = Bij(ψ,ψx, . . . ),(14′)

i.e., the coordinates (u1, . . . , un) are Liouville coordinates. The momentum p̄ =∫
p(X) dX in this Poisson bracket is the generator of the group of translations. It

is assumed that the metric gij = γij − γji is nondegenerate.
3) The action variables Jj(u) =

∮
aj
p dq conjugate to the angles ηj on the tori in

the original Poisson bracket (8) and the variables U j1 (u) if the collection (J, U1) is
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independent have the following “averaged” Poisson brackets:

{Jj(X), Uk1 (Y )}u = δjkδ′(X − Y ),(15)

{Jj(X), Jk(Y )}u = {U j1 (X), Uk1 (Y )}u = 0.(15′)

In this case the signature of the metric gij(u) is such that q > N and l > N , where
(q, l) are the numbers of negative and positive squares.

III. The most important examples.

Example 1. The nonlinear Klein–Gordon equation �ψ = −V ′(ψ) with the natural
Hamiltonian formalism. The Hamiltonian formalism of single-phase equations of
Whitham type have been considered only in the variables J, U1 (see Theorem 2)
by Hayes [8]. Maslov [9] first discovered that the averaged equations are equivalent
to relativisitic hydrodynamics (RH). The physical Liouville variables are u1 = p,
u0 = E; the Poisson bracket, the equations, and the energy-momentum tensor have
the form

γij(u) =
(
p E − 2s
E p

)
, T ij =

(
E p
p E − 2s

)
, i, j = 0, 1;(16)

ψ = ψ(x− ct), dx
√

2(ε− V (ψ)) = dψ
√

1− c2;

pT = −(∂/∂X)(E − 2s), ET = (∂p/∂X), (∂T ij/∂Xj) = 0;
(17)

ujT = {uj , H̄}u, H̄ =
∫
E dX.(18)

The energy-momentum tensor T ij for RH can be reduced by Lorentz transforma-
tions to diagonal form with eigenvalues ε and P , where 2s = ε−P and detT = εP
are invariants. The Galilean principle is that a constraint on the tensor T ij (the
equation of state) is imposed only on the invariants, P = P (ε).1

Assertion. The bracket (16) generates a connection without torsion if and only
if the invariants of the tensor T ij of the form (16) are related by a functional
dependence.

Example 2. General systems of Korteweg–de Vries (KdV) type are of the form

(19) ψt = (δH/δψ(x))x, H =
∫

(ψ2
x/2 + V (ψ)) dx

with bracketA0 = ∂/∂x. The family of periodic solutions ψ = F (U1x+U2t, u
0, u1, u2)

depends on the parameters ψ̄ = u0, ψ̄2/2 = p = u1 and E = u2. After averaging,
the Poisson bracket has the form

(20) γij0 =

1 u0 −cu0 − d
0 u1 −cu1 + 2f
0 u2 −cu2 − cf + d2

 ,

where the averaging goes over a family of solutions of the form u = u(x − ct),
(u′)2 = 2V (u) + cu2 + 2du + 2f . The metric gij(u) has signature (2, 1). The
quantities p+ = ψ̄2/2 and p− = 1

2 (ψ − ψ̄)2 generate two independent variables
with the Poisson brackets of momentum density which have zero brackets with one
another. We thus obtain a “two-fluid system”.

1I. M. Khalatnikov has indicated a method of integrating these equations (see [10], §4).
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Example 3. Integrable systems. The multiphase case. For the usual KdV equation
(V (ψ) = ψ3) the averaged “single-phase” equation was first studied by Gurevich
and Pitaevskĭı (see [11], Chapter IV), and the multiphase equation in [6] and [7].2

The usual KdV equation is Hamiltonian also in the second bracket, where A1 =
−∂3 + 2(ψ∂ + ∂ψ), ∂ = ∂/∂x. After averaging in these same variables uj = Ij ,
where Ij is the Kruskal integral, j = 0, 1, . . . ; I0 = ψ̄, I1 = ψ̄2/2, I2 = (ψ2

x/2 + ψ3),
. . . (for any number of phases), we obtain a new bracket of hydrodynamic type,
where p1 = ψ̄ and E1 = ψ̄2/2. For a single phase we have

(21) γij1 (u) =

2u0 −cu0 − d 10u2

2u1 −cu1 + 2f 5
3 (−cu2 − cf + d2)

2u2 −cu2 − cf + d2 (c2 − 2d)u2 + 2c2f − cd2 − 2df

 .

The densities of the Kruskal integrals averaged over “finite-zone” tori become func-
tions of the branch points Ij(λ0, . . . , λ2N ), where N is the number of phases. They
all generate Hamiltonians of hydrodynamic type (see above) and are involutive in
both averaged Poisson brackets. The metric gij has signature (N,N + 1).

A theory of integrating systems of hydrodynamic type possessing infinite series
of “higher integrals” of this same type has not yet been constructed. So far we
know of no analogues of the method of the inverse problem.
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[10] S. Z. Belen’kĭı and L. D. Landau, Hydrodynamic theory of multiple formation of particles,

Uspekhi Fiz. Nauk 56 (1955), 309–348; reprinted in L. D. Landau, Collected Works. Vol. 2,
“Nauka”, Moscow, 1969, pp. 259–301. (Russian)

[11] S. P. Novikov (editor), Theory of solitons, “Nauka”, Moscow, 1980. (Russian)

[12] M. G. Forest and D. W. McLaughlin, Studies in Appl. Math. 68 (1983), 11–59.

Landau Institute of Theoretical Physics, Academy of Sciences of the USSR

2A Hamiltonian formalism for the sinh-Gordon equation for the multiphase case in the variables
J and U1 was considered in [12].


