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Abstract: This paper provides an overview of the new features of the finite element library
deal.II version 9.0.

1 Overview

deal.II version 9.0.0 was released May 11, 2018. This paper provides an overview of the new
features of this major release and serves as a citable reference for the deal.II software library
version 9.0. deal.II is an object-oriented finite element library used around the world in the
development of finite element solvers. It is available for free under the GNU Lesser General
Public License (LGPL) from the deal.II homepage at http://www.dealii.org/.

∗This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with
the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the
article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow
others to do so, for United States Government purposes. The Department of Energy will provide public
access to these results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).
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The major changes of this release are:

– Improved support for curved geometries;

– Support for particle-in-cell methods;

– Dedicated support for automatic differentiation;

– Interfaces to more external libraries and programs;

– C++11 is now both required and used;

– Support for GPU computations;

– Support for face integrals and significant improvements of the matrix-free framework;

– Two new tutorial programs step-59 and step-60.

These will all be discussed in more detail in the following section. In addition, this release contains
the following changes:

– deal.II has made extensive use of both the Clang-Tidy [47] and Coverity Scan [21] static
analysis tools for detecting bugs and other issues in the code. For example, around 260
issues were detected and fixed using the latter tool.

– LinearOperator, a flexible template class that implements the action of a linear operator (see
[49]), now supports computations with Trilinos, Schur complements, and linear constraints.
This class is, as of this release, the official replacement for about half a dozen similar (but
less general) classes, such as FilteredMatrix, IterativeInverse, and PointerMatrix.

– New non-standard quadrature rules: A number of non-standard, special-purpose quadra-
ture rules have been implemented. Among these are ones for (i) truncating standard
formulas to simplical domains (QSimplex); (ii) singular transformations of the unit cell to
the unit simplex (QDuffy); (iii) composition of simplical quadrature rules to a combined rule
on the unit cell (QSplit); and (iv) transformation of the unit square to polar coordinates
(QTrianglePolar). These quadrature rules greatly help when integrating singular functions
or on singular domains. They are mainly used in Boundary Element Methods.

– Support for complex-valued vectors at the same level as real-valued vectors.

– A new python tutorial program tutorial-1; as well as updates to step-37. In addition, the
separate code gallery of deal.II has gained a number of new entries.

– Improved support for user-defined run-time parameters: A new class ParameterAcceptor
has been added to the library. Users should write classes inheriting from that class to
manage parameters stored by a ParameterHandler. If the managing class is derived
from ParameterAcceptor and all parameters are declared by either parse_parameters and
declare_parameters or ParameterAcceptor::add_parameter, then both the declaration
and parsing of parameter files will be (instead of using ad-hoc calls to ParameterHandler
methods) automatically managed by the ParameterAcceptor::initializemethod, which
greatly simplifies parameter management in user codes.

– A new caching mechanism for expensive grid computations: this version introduces a
new class GridTools::Cache that caches computationally intensive information about a
Triangulation.

This class allows the user to query some of the data structures constructed using functions
in the GridTools namespace. This data is then computed only once, and cached inside this
class for faster access whenever the triangulation has not changed. The cache is marked for
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update by the Triangulation itself using signals so that data is properly invalidated upon
mesh refinement and coarsening.

Some of the methods in GridTools and FEFieldFunction already use this cache to avoid
repeated calls to the same expensive methods. This results in important speed-ups for
computationally heavy methods like GridTools::compute_point_locations.

– A new MeshWorker::mesh_loop function has been added that performs the same tasks of
the MeshWorker::loop function without forcing the users to adhere to a specific interface.

– A new method GridTools::distributed_compute_point_locations to perform the same
tasks ofGridTools::compute_point_locationswith arbitrary points on a distributed mesh
has been added. The current implementation uses vectors of BoundingBoxes to manage the
communication to other processes of points which cannot be computed locally.

Beyond these changes, the changelog lists more than 330 other features and bugfixes.

2 Significant changes to the library

This release of deal.II contains a number of large and significant changes that will be discussed
in the following sections. It of course also contains a vast number of smaller changes and added
functionality; the details of these can be found in the file that lists all changes for this release,
see [46]. (The file is also linked to from the web site of each release as well as the release
announcement.)

2.1 Improved support for curved geometries

deal.II has had the ability to attach manifold descriptions to all parts of a geometry since the 8.2
release. These descriptions are used to place new vertices during mesh refinement, to determine
the mapping between the reference and real cells, and in a number of other contexts. These classes,
inheriting from Manifold, describe coordinate transformations in a general way and completely
supersede the older classes inheriting from Boundary. However, for historical reasons, manifold
descriptors have used some of the same code paths as boundary indicators, which were only
intended for marking what parts of the boundary correspond to what boundary conditions.
Put another way: under certain circumstances a boundary indicator was also interpreted as a
manifold indicator.

The current release severs this connection: Boundary indicators and manifold descriptions are
now entirely separated. This means that boundary_ids are only used to set boundary conditions
and manifold_ids are only used to set geometry descriptions. The old compatibility code for
using boundary indicators as manifold indicators has been removed and all usages of the old-style
Boundary objects (even with manifold ids) are now deprecated.

There are also numerous improvements to the available manifold descriptions. First, the mani-
fold smoothing algorithms applied in the Triangulation class and MappingQGeneric have been
changed from the old Laplace-style smoothing to a transfinite interpolation that linearly blends
between the descriptions on the faces around a cell. The old transformation introduced boundary
layers inside cells that prevented convergence rates from exceeding 3.5 in the global L2 errors for
typical settings. This change also considerably improves mesh quality in situations where curved
descriptions are only applied to the boundary rather than the whole volume. This concept was
also introduced as a new manifold class TransfiniteInterpolationManifold, which allows to
apply this type of smoothing not only in the cells close to the boundary but over a full coarse
(level 0) cell.

Finally, every function in the GridGenerator namespace now attaches a default manifold to the
curved parts of the domain described by the generated mesh, and sets reasonable defaults for
manifold indicators both in the domain and on the boundary.
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2.2 Support for particle-in-cell methods

While deal.II is a package intended to solve problems with the finite element method – i.e.,
using continuous or discontinuous fields –, it is often convenient in fluid dynamics problems to
couple the continuum description of phenomena with particles. These particles, advected along
with the numerical approximation of the flow field, are then either used to visualize properties
of the flow, or to advect material properties such as the viscosity of inhomogeneous mixtures of
fluids. If each particle is associated with the cells of a mesh, these methods are often referred to
as particle-in-cell (PIC).

deal.II now has a dedicated particles module. The module provides a base class Particle that
represents a particle with position, an ID number and a variable number of properties. They
are jointly represented by a ParticleHandler class that manages the storage and handling of
all particles. In parallel simulations, this class also distributes the particles among the subdo-
mains of the parallel process and supports efficient data transfer during mesh refinement and
checkpoint/restart phases.

A much more detailed view of the underlying algorithms can be found in [29]. A longer report is
at [28]. The implementation here originated in the Aspect code, see [42, 33].

2.3 Dedicated support for automatic differentiation

Automatic differentiation (AD) is often used to automatically derive residuals and their lin-
earization from a stored energy functional, and to derive Jacobian matrices from residual vectors
for simulations that use complicated material models. Examples of its application can be found
widely within nonlinear solid mechanics, coupled multiphysics problems, as well as for nonlinear
viscosity models in fluid flow.

deal.II has had a tutorial program (step-33) since 2007 that demonstrates this technique based on
the Trilinos Sacado [17] package, but the functionality was not available pervasively throughout
deal.II. This has changed with release 9.0 where support for differentiation is now available using
a selection of “white-listed” libraries (namely ADOL-C [32] and Sacado) and a subset of their
supported number types. Currently, we offer support for the following cases:

– ADOL-C taped (n-differentiable),

– ADOL-C tapeless (once differentiable),

– Sacado dynamic forward (once differentiable),

– Sacado reverse (once differentiable),

– Sacado nested dynamic forward (twice differentiable), and

– Sacado nested reverse and dynamic forward (twice differentiable).

In practice, this support means that these ADOL-C and Sacado data types can be used as the
underlying “scalar” in the FEValues, FEValuesViews, Tensor, SymmetricTensor, and related
classes that are generally used to assemble linear systems and right hand sides. Given the updated
capabilities of the library, there is now a dedicated module that presents the AD compatibility and
capabilities of the deal.II libraries. Furthermore, the use of Sacado is demonstrated in a much
more simplified and transparent manner in a modernized version of an existing “code gallery”
example [53].

To date it remains necessary for the user to manage the initialization of AD independent variables
and the resultant calls to the AD dependent variables in order to initiate the computation of
derivatives. In the next release we expect to provide a unified interface to these AD libraries, which
will hide these library-dependent implementational details and facilitate switching between the
supported libraries and AD number types based on the user’s requirements.
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2.4 New interfaces to external libraries and programs

deal.II has always tried to leverage high-quality implementations of algorithms available
through other open source software, rather than re-implementing their functionality. (A list
of interfaces to other packages is given in Section 3.) As part of the current release, we have
written several new interfaces as discussed in the following.

Assimp, the Open Asset Import Library. Assimp [57] can be used to read about 40 different 3D
graphics formats. A subset of these formats can be now be read from within deal.II to generate
two-dimensional meshes, possibly embedded in a three-dimensional space.

nanoflann, a library for building and querying k-d trees of datasets. Operations such as
finding the vertex or cell closest to a given evaluation point occur frequently in many applications
that use unstructured meshes. While the naive algorithm is linear in the number of vertices or
cells, many such operations can be made significantly faster by building a k-d tree data structure
that recursively subdivides a k dimensional space. The nanoflann library [19] provides such a
data structure and allows querying it, either for closest points (e.g., when finding the closest
vertex) or for searching the points that fall within a radius of a target point. This functionality is
now available via deal.II interfaces.

ROL, a Rapid Optimization Library. ROL [56] is a package for large-scale optimization. deal.II
can now use the state-of-the-art algorithms in ROL to solve unconstrained and constrained
optimization problems as well as optimization problems under uncertainty. deal.II provides
an interface to ROL’s (abstract) vector class using the adapter software pattern. Through such
an interface any vector class in deal.II following certain interface requirements can be used to
define a ROL objective function.

ScaLAPACK, a parallel dense linear algebra library for distributed memory machines.
ScaLAPACK [18] provides block-cyclic matrix distribution over 2D process grids. The function-
ality and interface of our wrappers is similar to the LAPACK [4] wrappers for serial dense linear
algebra, namely matrix-matrix multiplication, Cholesky and LU factorizations, eigensolvers, SVD,
least squares, pseudoinverses and save/load operations using either serial or parallel HDF5 [58].
All of this functionality is available even in cases where the number of MPI processes does not
match the numbers of processes in the 2D process grid used to distribute a matrix.

As part of this effort, we have also improved LAPACK support: there are now methods to perform
rank-1 updates/downdates, Cholesky factorizations, to compute the trace and determinant, as
well as estimate the reciprocal condition number. We also now support configuration with 64-bit
BLAS.

SUNDIALS, a SUite of Nonlinear and DIfferential/ALgebraic Equation Solvers. Solving non-
linear algebraic and differential equations is both a common task and one that often requires
sophisticated globalization algorithms for efficiency and reliability. SUNDIALS [38] provides
these in a widely used format, both sequentially and in parallel.

deal.II now has interfaces to SUNDIALS’s ARKode, IDA, and KINSOL sub-packages. ARKode
is a solver library that provides adaptive-step time integration. IDA is a package for the solution
of differential-algebraic equations systems in the form F(t, y, y′) = 0. KINSOL is a solver for
nonlinear algebraic systems.

2.5 Use of C++11

deal.II first offered support for a subset of C++11 features in version 6.2, released in 2009. The
current release is the first to require a C++11 compiler.

Many parts of the code base have been rewritten to both support and use the new features of
C++11. In particular, deal.II now makes extensive use of move semantics as well as range-
based for loops with auto type deduction of iterator variables. We have also largely replaced
push_back() by emplace_back()when adding elements to collections more efficiently.
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Finally, we have changed the entire code base to avoid using raw pointers and instead use
std::unique_ptr and std::shared_ptr where possible to make memory management more
reliable. These changes include some minor incompatibilities: all clone() functions (such as
FiniteElement::clone() and Mapping::clone()) now return std::unique_ptrs instead of C-
style raw pointers. Indeed, nearly all interfaces throughout the library that return a pointer now
return either a std::shared_ptr or a std::unique_ptr, thereby clarifying object ownership and
avoiding memory leaks.

2.6 Support for GPU computations

Heterogeneous computing is becoming more prevalent in supercomputing and this is a trend that
is expected to continue in the future. In particular, the use of GPUs has been increasing during
the last few years.

This release of deal.II adds support for GPUs both for matrix-based and matrix-free applications.
For matrix-based applications, we rely on cuSPARSE [23] and cuSOLVER [22] for operations on
sparse matrices such as matrix-vector multiplication and for direct solvers. We have introduced
a new type of sparse matrix, CUDAWrappers::SparseMatrix, which moves onto the device a
deal.II SparseMatrix and changes the format of the underlying data to the appropriate CSR
format used by cuSPARSE. We also have added wrappers for Cholesky and LU factorizations
provided by cuSOLVER. In practice, a user would assemble the system matrix and right hand
side vector on the host and then move them to the device. At this point, the linear system would
be solved on the device and the solution would be moved back to the host.

We also have some support for matrix-free computation on a GPU. For now, the evaluation of the
operator is limited to meshes without hanging nodes.

2.7 Extended matrix-free capabilities

The matrix-free infrastructure in deal.IIwas significantly overhauled for this release. The major
new contribution is the support of face integrals through a new class FEFaceEvaluation. The
new class has a similar interface as the existing FEEvaluation class, and applies SIMD vectoriza-
tion over several faces in analogy to the intra-cell vectorization in FEEvaluation. Discontinuous
Galerkin operators are implemented defining two face functions, one for interior and one for
boundary faces, in addition to the cell function. These kernels for the matrix-free operator
evaluation are now invoked by the new function MatrixFree::loop. The data structures have
been particularly tuned for typical discontinuous Galerkin setups involving operators with first
and second spatial derivatives. Both data access and computations have been thoroughly opti-
mized and compared to the performance boundaries of the hardware. Furthermore, the support
for AVX-512 instructions in the matrix-free framework was extended, adding new gather and
scatter intrinsics for the indirect access to vector entries where appropriate.

To give an example of the algorithmic improvements, the computation of the values and gradients
on all quadrature points for cell integrals has been significantly improved, yielding 10–20% better
performance for cases where the kernels are compute bound. For the example of the reference
cell gradient of a solution field u in three space dimensions, the new release applies the following
change:

previous:

D1 ⊗ S2 ⊗ S3
S1 ⊗D2 ⊗ S3
S1 ⊗ S2 ⊗D3

u { new:

D
co
1 ⊗ I2 ⊗ I3

I1 ⊗Dco
2 ⊗ I3

I1 ⊗ I2 ⊗Dco
3

 [S1 ⊗ S2 ⊗ S3

]
u.

The matrices Si contain the values of the one-dimensional shape functions in one-dimensional
quadrature points and Di their derivatives. When applied with the usual sum factorization
implementation described, for example, in [43], the old kernels amounted to 9 partial summations
– or rather 8 in the previous implementation of deal.II because the application of S1 for the y
and z components of the gradient can be merged. The new code performs a basis transformation
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to a related basis with derivative matrix Di = Dco
i Si, which is the basis of Lagrange polynomials

in the points of the quadrature. This change reduces the number of partial sums to only 6 for the
gradient, as the action of the unit matrices Ii needs not be implemented. In isolation, this spectral
element-like evaluation was previously available in deal.II for collocation between nodal points
and quadrature, but not used for general bases. A more detailed description of the matrix-free
components and their performance characteristics is given in the preprint [44].

2.8 Tutorial and code gallery programs

Two new tutorial programs were added to this release of deal.II. The tutorial program step-59
presents a matrix-free solver for the Poisson equation discretized with the interior penalty dis-
continuous Galerkin method. The implementation is based on the new matrix-free functions
described in Subsection 2.7. The new class TensorProductMatrixSymmetricSum is used to con-
struct a block-Jacobi smoother in a geometric multigrid preconditioner, based on the definition of
the inverse of a tensor product matrix through tensor products. As compared to a matrix-based
block-Jacobi method, this approach considerably reduces the memory access and also the com-
plexity at high polynomial degrees, going from O(k2d) arithmetic operations per cell for degree k
in d dimensions to only O(kd+1). The new tutorial demonstrates the outstanding performance of
deal.II’s matrix-free module, solving the Poisson equation with 191 million degrees of freedom
at degree k = 8 on a workstation with 12 cores in about a minute.

The tutorial program step-60 shows how to perform computations on non-matching grids, and it
presents advanced manipulation of ParameterHandler objects using the new ParameterAccessor
and ParameterAccessorProxy classes. step-60 solves a Poisson problem on a domain Ω, sub-
ject to equality constraints defined on an embedded domain Γ. The embedded domain can be
of co-dimension one or co-dimension zero, and its definition is independent with respect to Ω.
In order to enforce correctly the constraints, a non-matching coupling matrix needs to be con-
structed. This is achieved using the new NonMatching::create_coupling_sparsity_pattern
and NonMatching::create_coupling_mass_matrix functions that exploit new functionality in
the GridTools namespace.

deal.II has a separate “code gallery” that consists of programs shared by users as examples of
what can be done with deal.II. While not part of the release process, it is nonetheless worth
mentioning that the set of new programs since the last release covers the following topics:

– The multipoint flux mixed finite element method (MFMFE) applied to the Darcy problem
of porous media flow;

– A linearized active skeletal muscle model with application to the simulation concentric
contraction of the human biceps brachii;

– A parallel implementation of the Local Discontinuous Galerkin (LDG) method applied to
the Poisson equation.

With these additions, the code gallery now contains 10 different applications.

2.9 Incompatible changes

The 9.0 release includes around 75 incompatible changes; see [46]. The majority of these changes
should not be visible to typical user codes; some remove previously deprecated classes and func-
tions, and the majority change internal interfaces that are not usually used in external applications.
However, some are, such as changes to the interplay between meshes and manifolds, as well as
the requirement to use a C++11 compiler (see Sections 2.1 and 2.5). In addition, the following
incompatible changes are worth mentioning:
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– TheBlockDiagonalMatrix, InverseMatrixRichardson, IterativeInverse, ProductMatrix,
ProductSparseMatrix, TransposeMatrix, ScaledMatrix, SchurMatrix, ShiftedMatrix,
and ShiftedMatrixGeneralized classes have been removed. They are now generalized
through the LinearOperator concept. Several other, similar classes have been deprecated.

– The default partitioner for the parallel::shared::Triangulation is now the Trilinos pack-
age Zoltan. This functionality was previously provided by the METIS partitioner, but the
METIS package has not been actively maintained for a long time, and moreover yields sub-
divisions that depend on system details such as the random number generator and sorting
facilities provided by the operating system; consequently, the partition is not consistent
across platforms.

– The class FE_DGQHermite now uses a more stable, “Hermite-like” polynomial basis. The
change is highly beneficial because it significantly improves the accuracy (in terms of round-
off) for this basis and also reduces iteration counts for some iterative solvers with simple
preconditioners.

– Many functions that previously returned a raw, C-style pointer now return astd::unique_ptr
and std::shared_ptrwhere possible to make memory management more reliable.

3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
it.

There are various ways to reference deal.II. To acknowledge the use of the current version of the
library, please reference the present document. For up to date information and bibtex snippets
for this document see:

https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [10]. If you rely on
specific features of the library, please consider citing any of the following:

– For geometric multigrid: [40, 39];

– For distributed parallel computing: [8];

– For hp adaptivity: [16];

– For partition-of-unity (PUM) and enrichment methods of the finite element space: [25];

– For matrix-free and fast assembly techniques: [43];

– For computations on lower-dimensional manifolds: [26];

– For integration with CAD files and tools: [34];

– For Boundary Elements Computations: [31];

– For LinearOperator and PackagedOperation facilities: [48, 49].

– For uses of the WorkStream interface: [59].

deal.II can interface with many other libraries:
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– ADOL-C [32, 60]

– ARPACK [45]

– Assimp [57]

– BLAS and LAPACK [4]

– cuSOLVER [22]

– cuSPARSE [23]

– Gmsh [30]

– GSL [27]

– HDF5 [58]

– METIS [41]

– MUMPS [1, 2, 3, 50]

– muparser [51]

– nanoflann [19]

– NetCDF [55]

– OpenCASCADE [52]

– p4est [20]

– PETSc [6, 7]

– ROL [56]

– ScaLAPACK [18]

– SLEPc [35]

– SUNDIALS [38]

– TBB [54]

– Trilinos [36, 37]

– UMFPACK [24]

Please consider citing the appropriate references if you use interfaces to these libraries.

Older releases of deal.II can be cited as [12, 13, 14, 11, 9, 5].
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