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1

Introduction

Heat flow is ubiquitous in nature, it governs a multitude of complex processes,
from the evolution of stars and planets to the dynamical stability of biological sys-
tems, all the way down to the maintenance of optimal operating conditions in many
(nano)technological applications. Heat flow determines the internal temperature dis-
tribution of out-of-equilibrium systems and the rate of cooling or heating of bodies.
Therefore the study of thermal transport is fundamental to modeling a multitude
of complex systems, and to engineer nanotechnologies, where thermal insulation or
dissipation properties have to be properly designed. Yet, despite being one the old-
est problems of statistical mechanics, a complete theoretical understanding of heat
transport is still lacking.

Transfer of thermal energy occurs via three different mechanisms, that may
prevail or coexist in different regimes [1]: convection, in which heat is transported
by a flow of mass; radiation, in which heat is removed from the surface of the hot
source by photons; and conduction, in which heat transfer is determined by the
microscopic dynamics of atoms, or in the case of metals, of conduction electrons.
In condensed phases and at the molecular scale, conduction is by far the most
relevant heat transfer mechanism, and we shall focus on it. The first macroscopic
theory of heat transport was formulated by Fourier [2], in 1822, who established a
proportionality law between the heat current J and the temperature gradient in the
system ∇T :

J = −κ∇T . (1.1)

The ratio between the heat flux and the temperature gradient defines the thermal
conductivity, κ, which is an intrinsic property of the material.

Glass, a quintessential nanotech man-made material

Although being known and used for more than three thousand years, the last century
experienced extraordinary advances in the definition, fabrication, characterisation,
and application of glass [3]. Methods and theory analogous to those employed in
the study of crystalline solids have been used to study the electronic, atomic, and
micro-structural properties of glass, trying to describe the basic nature of the glassy
state, that still represents one of the most difficult open problems in science [4]. An
increased understanding and control of the structure of glass, with both fundamental
and fabrication advances, has led to remarkable applications in a variety of fields
such as civil engineering, transportation, electronics, photonics, communication, and
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2 ab initio simulation of heat transport in silica glass

medicine, many of which are today accepted as the norm. Glass is more and more
demanded as a high-tech material for consumer electronic devices, and it is going to
play a critical role in solving several of the global energy and healthcare challenges
of today.

An atomic-level description of the glassy state is extremely complex due to the
lack of long-range order found in crystalline materials, and to the intrinsic non-
equilibrium nature of this material. However, thanks to the recent theoretical and
experimental advances, glass science is maturing from an empirical discipline to
one built upon rigorous scientific principles. The glass transition and the processes
involved in glass formation are still open questions. The chemistry of glasses can be
extremely complex: glass compositions are infinitely tunable in chemistry, allowing
one to design glasses with tailored mechanical, optical, electrical, magnetic, and
thermal properties for specific purposes. However this task is far from easy. For
example, it was recently discovered that two glasses of identical chemistry may
exhibit considerably different short-range structural ordering, thus leading to large
differences in the observed properties, a phenomenon called polyamorphism [5, 6].

In particular, the thermal conductivity is a fundamental property for many
industrial and technological applications of glass, ranging from electronics to the
insulation efficiency of windows for green architectures, to nuclear waste storage.
Despite its importance, “thermal conductivity of glass represents largely unexplored
territories, ripe for new research efforts” (J. Mauro, senior research manager –
Glass Research, Corning Inc.) [4]. The understanding of thermal conductivity and
its structural origin in glasses has been greatly overlooked in the literature and
presents several non trivial challenges for atomistic simulations. The problem of
generating faithful amorphous structures and the correct description of the vibra-
tional properties are the key points that one needs to solve to estimate the thermal
conductivity of glasses. Moreover, non-periodic systems still lack a theory able to
describe the contributions to the thermal conductivity in a way similar to methods
widely used for crystalline solids.

Vitreous silica

Vitreous silica (a-SiO2, aka fused silica or fused quartz) and silicate glasses in gen-
eral have been the subject of significant research efforts in the last decades, due to
their many technological applications that range from thermal insulation to laser
engineering, semiconductor fabrication, and optical communication. In particular,
thanks to its excellent UV transparency, mechanical stability, and chemical durabil-
ity, silica can be used in many optical applications, such as the diffractive elements
and the protective windows of the optics assemblies of inertial confinement fusion
facilities. In these facilities, extremely intense nanosecond laser pulses are used and
can seriously challenge the durability the optical glasses. It is indeed well established
that the small defects or impurities of the glass may cause local lattice heating and
melting, resulting in damage craters that will rapidly degrade its optical perfor-
mance [7–15]. Moreover, these local damages can be mitigated by using pulsed
laser treatments that increase the damage sites to temperatures of 2000 − 5000 K
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in 10−9 down to 10−12 s and partially restore the desired optical properties [16].
The interpretation of these types of damage processes require the study of thermal
properties and the prediction of the thermal conductivity of silica glass, especially
in these extreme conditions that experiments cannot probe.

Furthermore, amorphous silica serves as the basis of multicomponent silica
glasses, that are adopted for a wide range of special applications. To cite an exam-
ple, borosilicate glasses (BSG) are broadly used to vitrify and immobilize high-level
nuclear waste, forming a stable solid matrix that is then stored for very long time
[17]. These glasses proved to be one of the most reliable materials to accomplish
this task, indeed their intrinsic disorder reduces the effects of radiation damage and
their chemical stability and resistance to water corrosion ensures a long and safe
storage. A high thermal conductivity favours the efficiency of the fabrication and the
stability of the final product, as it entails a faster dissipation of heat generated by
radioactive decays. Predicting the thermal conductivity of silica also represents the
first step towards the prediction of the thermal conductivity of more complicated
glasses such as BSG, whose components are characterised by a complex chemistry
that is more difficult to model.

Silica glass has been the subject of many classical MD studies in the last twenty
years, that showed that classical force fields can reproduce reasonably well all the
structural properties of a-SiO2, but do not describe very well its vibrational spec-
trum, that instead requires first-principles simulations. Its thermal conductivity,
that depends on both these properties, still lacks satisfactory and reliable calcula-
tions and thus calls for a rigorous study to finally settle the issue. Besides, silica
also lacks a proper study determining dependence of κ on some simulation factors,
such as the cooling protocol used to prepare the glass sample and that influences
remarkably its structural properties, and the size of system.

Computing thermal conductivity

Notwithstanding its fundamental importance, “thermal conductivity has proven to
be one of the most difficult transport coefficients to calculate” [18] and its simulation
is still today a conceptual, no less than practical, challenge to our materials modeling
capabilities. In order to compute κ, one needs a microscopic theory that describes
the conduction of heat carriers, i.e. electrons and lattice vibrations (phonons). Here-
after we will focus only on lattice vibrations, the only carriers contributing to heat
transport in insulators (the electrons following adiabatically in their ground state),
to which we restrict our attention. The first microscopic theory of lattice thermal
transport was formulated by Peierls, in 1929, and is based on the assumption that
phonons obey the Boltzmann transport equation (BTE) [19]. About thirty years
later, Green and Kubo (GK) independently expressed the thermal conductivity, as
well as other transport coefficients, by liner response theory in terms of correlation
functions of the heat currents [20–24]:

κ ∝
∫ ∞

0
〈J(t)J(0)〉 dt, (1.2)
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where the brackets indicate ensamble averages, thus allowing its computation from
simple equilibrium molecular dynamics (MD) simulations.

In the meantime, a few decades ago, our abilities to understand and predict
the properties of materials were boosted by the advent of density functional theory
(DFT) [25–27], which allows computing interactions entirely from quantum mechan-
ics, thus freeing us from the need to leverage prior experimental knowledge, in order
to perform MD simulations.

Recent developments enabled the implementation of the BTE from first princi-
ples, thus making it the state of the art technique to compute κ of bulk crystalline
materials (e.g. Si, Ge, diamond [28, 29]) and nanostructures (e.g. graphene and 2D
materials [30]). Ab initio BTE also provides insights into the mechanisms of heat
transport, by breaking down the contributions to κ into single carrier properties.
Nonetheless, the applicability of the BTE approach is limited to periodic materials
at low temperatures, where the harmonic approximation of normal modes applies or
anharmonic effects are very limited, and it cannot be straightforwardly applied to
disordered systems, such as glasses and liquids, were phonons are not even defined,
and for which MD is a natural choice.

On the other hand, MD is set to overcome these limitations: it allows one to
study non-periodic and highly anharmonic systems in a straightforward way and
to compute their thermal conductivity accounting for full anharmonicity. The only
inputs required are the atomic structure and an appropriate interatomic potential,
which can be constructed empirically, e.g. by fitting previous experimental or ab ini-
tio results using force fields or modern neural networks (classical MD), or directly
by first-principles DFT calculations (ab initio MD, AIMD). Once one has these
ingredients, κ can be computed from equilibrium MD (EMD) or non-equilibrium
MD (NEMD) simulations. The latter directly exploits the Fourier law, Eq. (1.1),
and applies straightforwardly to finite systems and interfaces, but suffers from se-
vere practical difficulties, such as finite-size and non-linear effects, that have to be
carefully accounted for. Instead, we focus on EMD simulations, from which the
thermal conductivity can be computed directly via the GK equation, Eq. (1.2),
that only requires an expression for the heat current. For classical empirical po-
tentials, such expression can be readily obtained as a sum of atomic contributions,
containing the atomic coordinates, velocities, and forces. On the other hand, a cor-
responding definition in the framework of DFT was not considered possible until
very recently, when it was formulated successfully for the first time [31]. Indeed,
despite its rigour and simplicity, the GK theory has long been deemed incompatible
with DFT, because the total energy cannot be decomposed into individual localized
atomic contributions, thus making the heat current ill-defined.

This conceptual prejudice hindered the development of the GK theory in AIMD
simulations for many years. It was only a few years ago that the spurious nature
of this belief was recognized through the discovery of a gauge invariance principle
for transport coefficients [A, 31]. This principle ensures the value of thermal con-
ductivity ultimately estimated through the GK equation does not depend on the
microscopic details that define the energy density, from which the heat current is
derived, hence κ is well-defined, as any measurable quantity should be. However,



Introduction 5

the problem of univocally defining the atomic energies exists also in classical MD
simulations and was recognized in the past, although applications of the GK equa-
tion resorted on what was considered the most straightforward definition, without
formally justifying this choice.

On the other hand, despite these important discoveries, experience from classi-
cal MD simulations indicates that the practical implementation of the GK theory
usually requires very long trajectories to estimate κ, thus making expensive quan-
tum simulations unfeasible. Several expedients have been used in the last twenty
years to determine the convergence of the integral in Eq. (1.2) from trajectories
of finite-length, yet it is very surprising that none of these is able to estimate the
statistical error of κ in an efficient and reliable way. Most of these methods are de-
signed and tested on specific classes of systems, such as crystalline solids (for which,
besides, the BTE is the preferable method), but do not work for liquids, disordered
or strongly anharmonic systems, or they require extremely long MD simulations.
We addressed this problem using an innovative data-analysis method based on the
cepstral analysis of stationary time series [B], that provides a rigorous estimation of
κ with good statistical accuracy from optimally short MD trajectories, for different
classes of materials.

These two achievements finally demonstrate the feasibility of ab initio GK sim-
ulations of thermal transport and pave the way to their application to previously
intractable materials, such as fluids, crystals under extreme conditions, and glasses.

Purpose of this Thesis

In this thesis we aim to calculate for the first time the thermal conductivity of silica
glass at different temperatures, by applying the ab initio Green-Kubo theory of
thermal transport. We first show how it is possible to overcome the conceptual and
methodological problems mentioned above, that involve the bottom-up definition
of a heat current and the estimation of the thermal conductivity from optimally
short MD trajectories. For this scope, we present the gauge invariance principle for
thermal transport coefficients and an innovative data-analysis protocol. We then
introduce the problem of simulating an amorphous system with MD, and by means
of classical MD simulations we study the effects of sample preparation on the value
of thermal conductivity of a-SiO2. We use these results as a starting point to run a
few first-principles simulations aimed to compute the thermal conductivity of silica
at different temperatures using DFT.

This thesis is organized as follows. Chapter 2 introduces the Green-Kubo theory
of heat transport. Starting from a light review of the theory of hydrodynamic vari-
ables and linear response theory, we derive the GK equation for one-component and
multi-component systems, and we obtain an expression for the energy current for
classical force fields. In Chapter 3 we address the definition of atomic energies and
energy densities in interacting systems. We show that there is no unique way to de-
fine the heat current, nevertheless the resulting thermal conductivity is well-defined.
We prove this statement by numerical simulations and by theory, introducing the
principle of gauge invariance of thermal transport coefficients. In Chapter 4, after
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briefly reviewing some of the most recent first-principles simulation techniques of
thermal transport, we show how one can derive and compute an ab initio expression
for the energy current in the framework of density functional theory. Chapter 5 is
entirely devoted to the practical evaluation of the thermal conductivity from the
GK equation. We briefly review all the analysis methods found in the literature, and
comment upon their weak points. We thus introduce a new technique to evaluate
transport coefficients, based on the so-called cepstral analysis of time series, and
we benchmark it with classical MD simulations for different classes of materials.
In Chapter 6 we study the thermal conductivity of a-SiO2 using the ab initio GK
theory. We discuss the aspects involved in the atomistic simulation of glass and we
simulate silica with classical MD using a popular force field. In particular, we study
the dependence of κ on the size of the system and the quenching rate used in the
virtual vitrification process. We then select an optimal system size and simulate one
sample with AIMD. We compute its thermal conductivity at four different temper-
atures, and we finally compare the simulation results with experiments. Chapter 7
finally contains our conclusions.

Some parts of Chapter 2, 3, and 5 were adapted from the following papers that
I have (co-)authored:

[A] L. Ercole, A. Marcolongo, P. Umari, and S. Baroni, “Gauge invariance of thermal
transport coefficients”, J. Low Temp. Phys. 185, 79 (2016) 10.1007/s10909-

016-1617-6.

[B] L. Ercole, A. Marcolongo, and S. Baroni, “Accurate thermal conductivities from
optimally short molecular dynamics simulations”, Sci. Rep. 7, 15835 (2017)
10.1038/s41598-017-15843-2.

[C] S. Baroni, R. Bertossa, L. Ercole, F. Grasselli, and A. Marcolongo, “Heat trans-
port in insulators from ab initio green-kubo theory”, in Handbook of materi-
als modeling: applications: current and emerging materials, edited by W. An-
dreoni, and S. Yip, (Springer International Publishing, Cham, 2018), pp. 1–36,
10.1007/978-3-319-50257-1_12-1.

[D] R. Bertossa, L. Ercole, and S. Baroni, “Transport coefficients in multi-component
fluids from equilibrium molecular dynamics”, arXiv:1808.03341, 2018.

http://dx.doi.org/10.1007/s10909-016-1617-6
http://dx.doi.org/10.1007/s10909-016-1617-6
http://dx.doi.org/10.1007/s10909-016-1617-6
http://dx.doi.org/10.1038/s41598-017-15843-2
http://dx.doi.org/10.1038/s41598-017-15843-2
http://dx.doi.org/10.1007/978-3-319-50257-1_12-1
http://dx.doi.org/10.1007/978-3-319-50257-1_12-1
http://dx.doi.org/10.1007/978-3-319-50257-1_12-1
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Green-Kubo theory of heat transport
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Our microscopic understanding of heat and mass transport in extended systems is
rooted in the Green-Kubo (GK) theory of linear response [21, 22], as applied to the
Navier-Stokes equations for the densities of the conserved extensive variables [32,
33], which include energy, momentum, and the particle numbers for each molecular
species.

This work was initiated by Onsager in the thirties [34, 35] and carried on by
Green and Kubo in the fifties with the theory of linear response [20–23]. The the-
ory is built on the concept of adiabatic decoupling of the slow long-wavelength
components of the densities of conserved extensive quantities (which include en-
ergy, momentum, and particle number) [32], the so-called hydrodynamic variables,
from the other atomically fast degrees of freedom. Their work resulted in the cele-
brated Green-Kubo equations, a consequence of the fluctuation-dissipation theorem,
that establish a relation between a (non-equilibrium) transport coefficient κ and
the spontaneous fluctuations of the relevant currents J at equilibrium. Transport
coefficients are in fact proportional to their autocorrelation times:

κ ∝
∫ ∞

0
〈J(t)J(0)〉 dt, (2.1)

where the brackets indicate ensemble averages over trajectories, and are accessible
to equilibrium MD simulations.

In this chapter we briefly walk through the theory that allows the derivation of
the Green-Kubo equations for transport coefficients, starting from the definition of
the hydrodynamic variables of a system, in Section 2.1, and the use of linear re-
sponse theory to connect equilibrium properties to non-equilibrium ones, presented
in Section 2.2. In Section 2.3, we specialize to heat transport in solids and one com-
ponent fluids, and the general case of multi-component fluids, and we derive the
expression of the energy flux for systems described by classical force fields.

7
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2.1 Hydrodynamic variables

The macroscopic processes occurring in condensed matter are often described in
terms of extensive variables. By definition, the value that such a variable assumes
for a system is the sum of the values it has for each of its subsystems. This property
allows one to express an extensive variable, A, as the integral of a suitably defined
density, a(r), as:

A[Ω] =

∫

Ω
a(r)dr, (2.2)

where Ω is the system volume. Here and in the following boldfaces indicate 3D
vectors and Greek subscripts label Cartesian components: u = {uα} = {u1, u2, u3}.
When an extensive quantity is locally conserved, a current density, j(r, t), can be
associated to its density in such a way that the two of them satisfy the continuity
equation:

∂a(r, t)

∂t
= −∇ · j(r, t), (2.3)

where ∇ · j indicates partial differentiation and the middle dot a scalar product
(a divergence in this case). In the following the densities and current densities of
conserved quantities will be called conserved densities and conserved currents for
short. The space Fourier transform of Eq. (2.3) reads:

˙̃a(q, t) = −iq · ̃(q, t), (2.4)

where the overdot indicates a time derivative and the tilde a Fourier transform, so
that the longer the wavelength, the slower is the dynamics of a conserved density.
We conclude that for long enough wavelengths, conserved densities are adiabatically
decoupled from all the other (zillions of) fast atomic degrees of freedom. Note that in
this chapter we are using the concept of adiabatic decoupling in two distinct senses,
depending on the context: to indicate the decoupling of electronic from nuclear
degrees of freedom, and that of hydrodynamic variables from fast atomic ones.

The long-wavelength Fourier components of conserved densities are called hydro-
dynamic variables. In macroscopically homogeneous systems, different wavelengths
are decoupled from each other, while, as we have seen, the long wavelengths are
adiabatically decoupled from all the other degrees of freedom. Let us suppose there
are Q conserved extensive variables. In the case of a mono-atomic fluid, for instance,
Q = 5, corresponding to mass (or particle number), energy, and the three compo-
nents of the momentum. In order to simplify the notation, we set the value of the
conserved quantities equal to zero, Ai = 0, so that their densities, ai(r), directly
refer to the departure from equilibrium, and we indicate by ji(r, t) the correspond-
ing currents. At equilibrium, all the conserved densities and currents vanish. Off
equilibrium, it will be assumed that the wavelength and the time scale of the dis-
turbances are so long that thermal equilibrium still holds locally. That is to say, a
local temperature, pressure, and chemical potential can be defined, such that, when
combined with the densities of extensive variable, they satisfy a local equation of
state.
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For small enough deviations from equilibrium, the time derivatives of con-
served densities are linear combinations of the densities themselves. In the fre-
quency/wavevector domains this condition can be expressed as

− iωãi(q, ω) =
∑

j

Λ̃ij(q, ω) ãj(q, ω), (2.5)

where the tilde indicates now a space-time Fourier transform: ã(q, ω) =∫
e−i(q·r−ωt)a(r, t)drdt. By combining Eq. (2.5) with the time Fourier transform

of Eq. (2.4), we obtain the so-called constitutive equations for the (longitudinal
components of the) conserved currents:

̃i(q, ω) = i
q

q2

∑

j

Λ̃ij(q, ω)ãj(q, ω). (2.6)

In isotropic media, the Λ̃’s are spherically symmetric functions of q, whereas their
value at q = 0 vanishes, because a non-vanishing value would imply a non-physical
long-range dependence of the currents on density fluctuations, in contrast with our
assumption of local thermodynamic equilibrium. The long-wavelength low-frequency
limit of the coupling constants can thus be assumed to be Λ̃ij(q, ω) ∼ q2λij , so that
the macroscopic (q = 0) stationary (ω = 0) components of the currents, Ji =
1
Ω

∫
ji(r)dr, are related to the corresponding components of the density gradients,

Di = 1
Ω

∫
∇ai(r)dr, through the equations:

Ji =
∑

j

λijDj . (2.7)

In the following, the macroscopic component of a current will be indicated as a flux.
Let xi = ∂S

∂Ai be the intensive variable conjugate to Ai, where S is the system’s

entropy, and χij = 1
Ω
∂Ai

∂xj the corresponding susceptibility. For instance, when Ai

is the energy of the system, the corresponding conjugate variable is the inverse
temperature, xi = 1/T , while, when Ai represents the number of particles of a given
species, one has xi = −µi/T , µi being the corresponding chemical potential. The
hypothesis of local thermodynamic equilibrium allows defining local values of the
intensive variables, and we define thermodynamic forces as their average gradients:
Fi = 1

Ω

∫
∇xi(r)dr. The average density gradients are related to the thermodynamic

forces through the susceptibility defined above, as:

Di =
∑

j

χijFj . (2.8)

By inserting this relation into Eq. (2.7), one gets:

Ji =
∑

j

LijFj , (2.9)

where Lij =
∑

k λ
ikχkj . Eq. (2.9) expresses the linear relation between fluxes, the

J’s, and thermodynamic affinities, the F’s, for which Onsager derived his celebrated
reciprocity relations (Lji = Lij) from microscopic reversibility [34–36]. Note that,
according to our definition, both the J’s and the F’s in Eq. (2.9) do not depend on
the size of the system.
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2.2 Linear-response theory

In order to evaluate the Lij phenomenological coefficients appearing in Eq. (2.9),
we consider a classical system of N interacting atoms described by the Hamiltonian

H◦(Γ) =
∑

n

1

2Mn
(Pn)2 + V (R1,R2, · · ·RN ), (2.10)

where Mn, Rn, and Pn are the masses, coordinates, and momenta of the n-th
particle, Γ = {Rn,Pn} indicates the phase-space coordinates of the entire system,
and V is a generic many-body potential. Let us now suppose that the system is
subject to an external perturbation that can be described as a linear combination
of the conserved densities, {ai(r; Γ)}, as:

V ′(Γ, t) =
∑

i

∫
vi(r, t)ai(r; Γ)dr, (2.11)

where a(r; Γ) is a phase-space function whose ensemble average is the conserved
density,

a(r) = 〈a(r; Γ)〉

=

∫
a(r; Γ)P◦(Γ)dΓ,

(2.12)

P◦(Γ) ∝ e
−H

◦(Γ)

kBT is the equilibrium distribution, kB the Boltzmann constant, and
{vi(r, t)} are time-dependent fields that couple to the conserved densities and vanish
at t = −∞, when the system is assumed to be in thermal equilibrium at some
temperature T . Of course, conserved currents are also expected values of some
phase-space functions, j(r) = 〈j(r; Γ)〉. The phase-space functions whose expected
values are conserved densities/currents will be referred to as phase-space samples
of the currents/densities. In the following, when the phase-space dependence of a
conserved density/current is explicitly indicated, we will mean a phase-space sample;
when it is not a phase-space average will be implied. When a phase-space sample
is evaluated along a dynamical trajectory, Γt, the sample function will depend on
time and on the initial conditions of the trajectory. Averaging with respect to the
initial conditions will result in a time-dependent expected value for the conserved
densities (or currents):

a(r, t) = 〈a(r; Γ′t)〉0

=

∫
a(r; Γ′t)P◦(Γ0)dΓ0.

(2.13)

In Eq. (2.13) the notation Γ′t denotes somewhat pedantically that the time evolution
in phase space is driven by the perturbed Hamiltonian, H◦ + V ′. If it were driven
by H◦, evidently the value of a would be time-independent. In the following, the
notation Γt will indicate an unperturbed time evolution. As an example, the phase-
space sample of the particle density can be assumed to be n(r; Γ) =

∑
n δ(r−Rn),
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the corresponding current is j(r,Γ) =
∑

n δ(r − Rn)Pn/Mn, and a local external
potential is described by: V ′(Γ, t) =

∑
n v(Rn, t) =

∫
v′(r, t)n(r; Γ)dr. Note that

sample functions are not necessarily univocally defined. Different functions whose
phase-space averages coincide in the long-wavelength limit sample the same hydro-
dynamical variable. More on this in Chapter 3.

According to Ref. [21–23], the linear response of the i-th conserved current to
the perturbation is:

jiα(r, t) =
1

kBT

∑

j

∫ t

−∞
dt′
∫
dr′
〈
jiα(r,Γt)ȧ

j(r′,Γt′)
〉

0
vj(r′, t′) (2.14)

=
−1

kBT

∑

j,β

∫ t

−∞
dt′
∫
dr′
〈
jiα(r,Γt)∂

′
βj
j
β(r′,Γt′)

〉
0
vj(r′, t′) (2.15)

=
1

kBT

∑

j,β

∫ t

−∞
dt′
∫
dr′
〈
jiα(r,Γt)j

j
β(r′,Γt′)

〉
0
∂′βv

j(r′, t′). (2.16)

The second line follows from the first through the continuity equation, Eq. (2.3),
while the third line follows after integrating by parts with respect to r′. The notation
∂′β = ∂

∂r′β
has been used.

By integrating Eq. (2.16) all over the space, and assuming space-time homo-
geneity as well as isotropy, one recovers Eq. (2.9) with:

J iα(Γ) =
1

Ω

∫
jiα(r,Γ)dr, (2.17)

F iα(Γ) =
1

ΩT

∫
∂αv

i(r,Γ)dr, (2.18)

Lijαβ =
Ω

kB

∫ ∞

0

〈
J iα(Γt)J

j
β(Γ0)

〉
0
dt. (2.19)

This completes the derivation of the Green-Kubo formula for transport coeffi-
cients, Eq. (2.1), from classical linear-response theory. Onsager’s reciprocity rela-
tions, Lij = Lji [34, 35], follow from Eq. (2.19) leveraging time-translational invari-
ance, 〈J iα(Γt)J

j
β(Γ0)〉 = 〈J iα(Γ0)J jβ(Γ−t)〉, and micro-reversibility, 〈J iα(Γt)J

j
β(Γ0)〉 =

〈J iα(Γ−t)J
j
β(Γ0)〉.

2.2.1 Einstein-Helfand expression for transport coefficients and the
Wiener-Khintchine theorem

The celebrated Einstein’s relation between the mean-square displacement of a dif-
fusing particle and its velocity auto-correlation function is easily generalized to an
arbitrary stochastic process and has in fact been utilized by Helfand [37] to provide
an “Einstein-like” expression for transport coefficients.

Let Xt be a stationary stochastic process. One has:

1

T

〈∣∣∣∣
∫ T

0
Xtdt

∣∣∣∣
2
〉

= 2

∫ T

0
〈XtX0〉 dt−

2

T

∫ T

0
〈XtX0〉 t dt. (2.20)
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In the large-T limit, the second term on the right-hand side of Eq. (2.20) can be
neglected.

When the stochastic process is the velocity of a Brownian particle, Eq. (2.20)
allows one to establish a relation between the diffusion constant of the particle,
temperature, and the auto-correlation time of the velocity. When Xt is the heat flux
of a macroscopic body, Eq. (2.20) allows one to estimate the thermal conductivity,
as given by Eq. (2.1), from the asymptotic behavior of the “energy displacement”
D(τ) =

∫ τ
0 J(Γt)dt. From Eq. (2.19) we have that

Lijαβ = lim
T →∞

Ω

kB

∫ T

0

〈
J iα(Γt)J

j
β(Γ0)

〉
0

(
1− t

T

)
dt

= lim
T →∞

Ω

2kBT

〈∫ T

0
J iα(Γt)

∫ T

0
J jβ(Γt)dt

〉

0

. (2.21)

Power Spectrum

Eq. (2.20) can be easily generalized to the finite-frequency regime, to get:

ST (ω) =
1

T

〈∣∣∣∣
∫ T

0
Xte

iωtdt

∣∣∣∣
2
〉

= 2Re

∫ T

0
〈XtX0〉 eiωtdt+O(T −1).

(2.22)

This equation expresses the Wiener-Khintchine theorem [38, 39], which states that
the expectation of the squared modulus of the Fourier transform of a stationary
process is the Fourier transform of its time correlation function, which is usually
referred to as the process power spectral density,

S(ω) =

∫ ∞

−∞
〈XtX0〉 eiωtdt, (2.23)

aka the power spectrum. In the following the suffix T will be neglected for simplicity
and its value assumed to be sufficiently large as to be considered infinite. More
generally, when several conserved currents interact with each other, one can define
the cross-spectrum of the conserved fluxes as the Fourier transform of the cross
time-correlation functions:

Skl(ω) =

∫ ∞

−∞
〈Xk

t X
l
0〉 eiωtdt

=
1

T
Re

〈∫ T

0
Xk
t e−iωtdt×

∫ T

0
X l
te
iωtdt

〉
+O(T −1).

(2.24)

Eqs. (2.20) and (2.22) indicate that the transport coefficients we are after essentially
are the zero-frequency value of the (cross-) power spectrum of the corresponding
current(s), a fact that will be instrumental in our approach to data analysis, as
explained in Chapter 5. Therefore, Eq. (2.19) can be cast into the form:

Lkl =
Ω

2kB
Skl(ω = 0), (2.25)

where the Cartesian indices have been omitted for clarity.
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2.3 Heat transport

The above treatment allows one to compute the linear response of a system at
thermal equilibrium to a generic mechanical perturbation. Heat transport is de-
termined by temperature gradients that cannot be described by any mechanical
perturbation. The concept of temperature distribution implies that the system is
locally at thermal equilibrium over lengths and times large with respect to atomic
distances and relaxation times. Temperature affects the physical properties of a
system through the Boltzmann distribution function. When the temperature is not
constant, T (r) = T + ∆T (r) (|∆T | � T ), the effects of this inhomogeneity can be
formally described by the distribution function:

P(Γ) ∝ exp

[
−
∫

e(r; Γ)

kBT (r)
dr

]
(2.26)

= exp

[
−H

◦(Γ) + V ′(Γ)

kBT

]
, (2.27)

where e(r; Γ) is an energy (Hamiltonian) density, such that
∫
e(r; Γ)dr = H◦(Γ).

Eq. (2.11) becomes:

V ′(Γ) = − 1

T

∫
∆T (r)e(r; Γ)dr +O(∆T 2). (2.28)

Eq. (2.28) shows that the effects of temperature inhomogeneities can be mimicked by
a mechanical perturbation coupled to the temperature distribution. From Eqs. (2.9)
and (2.17-2.19) we conclude that in a system where the only non-trivial conserved
quantity is the energy, the heat (energy) flow is coupled to temperature gradients
through the constitutive equation:

JE = −κ∇T, (2.29)

where the thermal conductivity καβ = LEEαβ/T
2 (see Eq. (2.9)) can be expressed by

a Green-Kubo relation in terms of the fluctuations of the energy flux as:

καβ =
Ω

kBT 2

∫ ∞

0

〈
JEα (Γt)J

E

β (Γ0)
〉

0
dt (2.30)

and

JE(Γ) =
1

Ω

∫
jE(r; Γ)dr. (2.31)

In order to obtain an explicit expression for the energy flux from a microscopic
expression for the energy density, we multiply the continuity equation, Eq. (2.3), by
r and integrate by parts, to obtain:

JE(Γ) =
1

Ω

∫
ė(r; Γt) r dr (2.32)

=
1

Ω

∫ [∑

n

(
∂e(r; Γt)

∂Rn
·Vn +

∂e(r; Γt)

∂Pn
· Fn

)]
r dr, (2.33)
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where Fn is the force acting on the n-th atom, and Vn = Pn
Mn

its velocity.
The manipulations leading from the continuity equation, Eq. (2.3), to Eq. (2.33)

deserve some further comments, as they imply neglecting a boundary term, J∂Ω =
1
Ω

∫
∂Ω (j(r) · n̂) r dr (where ∂Ω is the boundary of the integration volume and n̂ the

normal to it), which in general does not vanish in the thermodynamic limit and is
ill-defined in periodic boundary conditions (PBC), as it depends on the definition
and choice of the unit cell. The correct way of addressing this problem is to work
with the Taylor expansion of the space Fourier transform of the continuity equation,
Eq. (2.4), and to perform the thermodynamic limit at finite wavelength. The leading
non-vanishing term in the Taylor expansion yields Eq. (2.32) without any boundary
term in the way.

2.3.1 Energy flux from classical force fields

When atoms interact through a classical force field, V (R1,R2, · · ·RN ), an energy
density can be defined in terms of local atomic energies as:

e(r,Γ) =
∑

n

δ(r−Rn)en(Γ), (2.34)

en(Γ) =
(Pn)2

2Mn
+ vn({R}), (2.35)

where the vn’s represent a partition of the total potential energy into local contri-
butions, i.e.

∑
n vn = V , with a short-range dependence on the coordinates of the

other atoms. In the presence of long-range forces, this condition is effectively guar-
anteed by local charge neutrality, which we will assume throughout. By inserting
Eq. (2.34) into Eq. (2.33), the energy flux can be cast into the form:

JE(Γ) =
1

Ω

[∑

n

Vnen +
∑

n

Rn

(
Fn ·Vn +

∑

m

Vm ·
∂vn
∂Rm

)]
(2.36)

Two-body potentials

When the interaction among atoms can be expressed in terms of two-body poten-
tials, one has: vm = 1

2

∑
n v(Rn − Rm) and Fnm = −1

2∇Rn
v(Rn − Rm), where

Fnm = − ∂vm
∂Rn

is the contribution of the m-th atom to the force acting on the n-th
atom,

∑
m Fnm = Fn, and Fnm = −Fmn. Here we implicitly assumed that the

interaction energy is equally partitioned between atoms m and n. In Chapter 3 we
shall see this is not the only possible choice, with far-reaching consequences on the
theory of heat transport. The energy flux becomes:

JE(Γ) =
1

Ω

[∑

n

Vnen +
∑

n,m

(Rn −Rm)Fnm ·Vn

]
. (2.37)

Notice that this expression is also well-defined in PBC.
The first term on the right-hand side of Eq. (2.36),

JEc =
1

Ω

∑

n

Vnen, (2.38)
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v v

c c

cv

Figure 2.1: Breakdown of the energy flux autocorrelation function 〈JE(t) ·JE(t)〉
of LJ fcc solid argon at 50 K into the three terms of Eq. (2.40). Note that the total
ACF and the virial component correspond to the left vertical axis, while the cross
and convection curves correspond to the right axis. Reproduced from Ref. [40].

is often called convective (or kinetic) and the second term,

JEv =
1

Ω

[∑

n,m

(Rn −Rm)Fnm ·Vn

]
, (2.39)

is often called virial (or potential). Fan et al. [41] and Carbogno et al. [42], for
example, adopt this nomenclature and state that the convective term JEc “gives no
contributions to the conductivity tensor in solids, as mass transport is negligible”.
We feel that the wording “convective” is somewhat misleading in this context, as the
contribution of the convective flux JEc to the heat conductivity may not vanish even
in the absence of convection, especially in softer solid materials. Using Eqs. (2.38)
and (2.39), the energy flux autocorrelation function can be split into 3 terms:

〈JE(t) · JE(0)〉 = 〈JEc (t) · JEc (0)〉+ 2〈JEc (t) · JEv (0)〉+ 〈JEv (t) · JEv (0)〉. (2.40)

Their contributions to thermal conductivity were computed by McGaughey and
Kaviany [40] for a LJ fcc argon crystal at 50 K (the breakdown of 〈JE(t) · JE(0)〉
into the three terms of Eq. (2.40) is shown in Fig. 2.1). They found that while the
convection contribution 〈JEc (t) ·JEc (0)〉 was indeed small (∼ 1%), the contribution of
the cross term 2〈JEc (t)·JEv (0)〉 is not insignificant (∼ 10%). The relative contributions
of the convective and cross terms are expected to increase as the temperature goes
up and anharmonic effects inhibit phononic conduction. While the convective term
may not be as important for materials with higher thermal conductivity, in general,
its contribution and that of the cross term should be checked before assuming they
are negligible. Some further comments on this issue are reported in Appendix A.

In the literature the nomenclature is often confusing, and the relative contri-
butions of each term not very well established. For example, Vogelsang et al. [43]
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divide the energy flux in two terms [44]: a “kinetic” part, defined as

JEk
′ =

1

Ω

(Pn)2

2Mn
Vn, (2.41)

and a “potential” part, defined as

JEp
′ =

1

Ω

[∑

n

vn({R})Vn +
∑

n,m

(Rn −Rm)Fnm ·Vn

]
. (2.42)

They find that JEk
′ is negligible in solids, where atomic diffusion does not occur.

Kinaci et al. [45], instead, use the Einstein formulation and define a “kinetic” term

JEk
′′ =

1

Ω

[
(Pn)2

2Mn
Vn +

∑

n,m

(Rn −Rm)Fnm ·Vn

]
, (2.43)

and a “potential” term

JEp
′′ =

1

Ω

∑

n

vn({R})Vn, (2.44)

and conclude that in perfect solid systems, where diffusion is highly improbable,
JEp
′′ contribution to thermal conductivity is negligible.
Finally, an alternative definition of the heat flux can be used when dealing with

solids [46]:

JE(Γ) =
1

Ω

∑

n,m

(R0
n −R0

m)Fnm ·Vn, (2.45)

where R0
n denotes the average atomic position of atom n. One should not confuse

this expression with neglecting the convection part of the heat current. For a solid,
Eq. (2.45) will give the same thermal conductivity as Eq. (2.37). In Appendix A we
present a simple demonstration of this statement, by exploiting the gauge invariance
principle that will be introduced in Ch. 3.

Many-body potentials

In the case of a many-body potential interaction, if the atomic potential energy
can be written as a function of the distance vectors Rnm = Rn − Rm, as vn =
vn(R1n,R2n, · · · ,RNn), the force acting on atom n can be written as [41, 47]:

Fn = −
∑

m

∂vm
∂Rn

=
∑

m

∑

p 6=n

∂vm
∂Rpn

=
∑

m

∑

p 6=n

(
∂vm
∂Rmn

δpm +
∂vm
∂Rpn

δmn

)

= −
∑

m 6=n

(
∂vn
∂Rnm

− ∂vm
∂Rmn

)
. (2.46)
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For example, for the Tersoff [48] and Swillinger-Weber [49] potentials, Fan et al.
[41] obtain the following definition for the virial energy flux:

JEv =
∑

n

∑

n6=m
Rnm

(
∂vm
∂Rmn

·Vn

)
, (2.47)

equivalent to the one obtained by Hardy [50], and they show that other two-body
like formulations widely reported in the literature may give wrong results, especially
in low-dimensional systems.

2.3.2 Multi-component fluids

In a multi-component fluid there is one conserved quantity (the particle number)
per atomic species, plus the total energy and the three Cartesian components of
the total momentum. The momentum densities are mass currents: the mass flux is
therefore the total momentum, which vanishes in the center of mass reference frame.
The transverse components of the momentum densities are decoupled from the other
conserved densities [51], while the longitudinal one can be assumed to coincide with
the total momentum in the long-wavelength limit. Momentum conservation thus
constrains the number of fluxes interacting with the energy flux in Eq. (2.9) to
Q − 1, Q being the number of atomic species, so that the resulting dimension of
the matrix of Onsager coefficients, L, is Q×Q. The heat flux is defined as the non-
convective component of the energy flux, i.e. the value of the latter in the absence
of mass transport, that is to say when all the particle fluxes vanish.1 By imposing
this condition in Eq. (2.9), with J1 ≡ JE, and Jq (q = 2, . . . Q) being independent
particle fluxes, the thermal conductivity, defined by the Fourier’s law as the ratio
of the heat flux over the temperature gradient, is given by:

κ =
1

T 2 (L−1)11
. (2.48)

This expression can be proved to be invariant under any non-singular linear trans-
formation of the independent particle fluxes.

Two-component fluids

For instance, in the case of a two-component liquid, energy and particle fluxes are
coupled as in:

JE = LEE∇
(

1

T

)
+ LEQ∇

(µ
T

)
,

JQ = LEQ∇
(

1

T

)
+ LQQ∇

(µ
T

)
,

(2.49)

where JQ is the particle flux of one of the two species (say, the second), and µ
the corresponding chemical potential [52]. By imposing that the particle current

1It is unfortunate, but inevitable due to common usage, that this definition of non-convective
flux clashes with the one given in Sec. 2.3.1, Eqs. (2.37-2.39).
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vanishes, the resulting thermal conductivity is:

κ =
1

T 2

(
LEE − (LEQ)2

LQQ

)
. (2.50)
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It has long been thought that the inherent indeterminacy of any quantum me-
chanical expression for the energy density would hinder the evaluation of thermal
transport coefficients from equilibrium ab initio molecular dynamics (AIMD), using
the Green-Kubo formalism. In classical molecular dynamics this goal is achieved by
decomposing the total energy of an extended system into localised atomic contri-
butions and by deriving from this decomposition an explicit, and allegedly unique,
expression for the energy flux [53].

In density-functional theory (DFT), as well as in any other quantum mechanical
approach, this decomposition is not possible, and it has therefore long been thought
that “the Green-Kubo relation does not serve our purposes [of computing the ther-
mal conductivity] because in first-principles calculations it is impossible to uniquely
decompose the total energy into individual contributions from each atom” [54].

In this chapter, we confute this prejudice thanks to the discovery of a gauge
invariance principle, that ensures that the Green-Kubo formula is well-defined,
even though the microscopic quantities whence it is derived are not [A, 31]. En-
ergy densities and fluxes are indeed ill-defined, in classical no less than in quantum
mechanics, however the transport coefficients derived from them do not depend on
their microscopic definition, as long as the last complies with energy extensivity
and conservation. In Section 3.1, we show the nature of this indeterminacy and
we demonstrate it in the case of classical MD simulations, providing a numerical
example. In Section 3.2, we introduce the concept of gauge invariance of thermal
transport coefficients and prove it both theoretically and numerically. In Section 3.3,
we treat the specific case of molecular fluids and give a perspective on how the
gauge invariance property may be exploited to define equivalent formulations for
the heat currents. These ideas may reveal to be very handy in optimising the sta-
tistical properties of the heat currents: a task especially useful in view of the ab
initio calculation of thermal conductivity, and that we will exploit later on. Finally,
Section 3.4 concludes this chapter by giving some future perspectives.

19
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E(Ω1 ∪ Ω2) = E(Ω1) + E(Ω2) +W12

?
= E(Ω1) + E(Ω2)

Figure 3.1: The energy of an isolated system is the sum of the energies of its
subsystems (as defined when they are isolated as well) plus the interaction among
them, W12, whose magnitude scales as the area of the interface, depicted in red.
When defining the energies of individual subsystems, E , W12 has to be arbitrarily
partitioned among them.

3.1 Microscopic ill-definedness

It is often implicitly assumed that the well-definedness of thermal transport coeffi-
cients would stem from the uniqueness of the decomposition of the system’s total
energy into localised, atomic, contributions. This assumption is manifestly incorrect,
as any decomposition leading to the same value for the total energy as Eq. (2.35)
should be considered as legitimate. The difficulty of partitioning a system’s energy
into subsystems’ contributions is illustrated in Fig. 3.1, which depicts a system
made of two interacting subsystems. When defining the energy of each of the two
subsystems, an arbitrary decision has to be made as to how the interaction energy
is partitioned. In the case depicted in Fig. 3.1, for instance, the energy of each of the
two subsystems can be defined as E(Ωi) = E(Ωi) + 1

2(1 ± λ)W12, where E(Ωi) are
the energies of the two isolated subsystems, W12 their interaction energy, and λ an
arbitrary constant. In the thermodynamic limit, when all the subsystems’ energies
are much larger than the interaction between any pairs of them, the value of the
λ constant is irrelevant. When it comes to defining energy densities (i.e. energies
of infinitesimal portions of a system) or atomic energies, instead, the magnitude of
the interaction between different subsystems is comparable to their energies, which
become therefore intrinsically ill-defined.

Let us consider a mono-atomic fluid interacting through pair potentials, v(|Rn−
Rm|), and define the atomic energies as [A, 55]:

eγ,n(Γ) =
1

2Mn
(Pn)2 +

1

2

∑

m 6=n
v(|Rn −Rm|)(1 + γnm), (3.1)

where γnm = −γmn is any antisymmetric matrix. As the inter-atomic potential
appearing in Eq. (3.1) is symmetric with respect to the atomic indices, it is clear
that the sum of all the atomic energies does not depend on γ, thus making any
choice of γ equally permissible. This trivial observation has deep consequences on the
theory of thermal fluctuations and transport, because the value of the macroscopic
energy flux, instead, depends explicitly on γ, thus making one fear that the resulting
transport coefficients would depend on γ as well. Using the same manipulations that
lead from Eqs. (2.34) and (2.35) to Eq. (2.36), for any choice of the γ matrix in
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Eq. (3.1), a corresponding expression for the macroscopic energy flux can be found,
reading [A, 55]:

JE
γ

= JE +
1

2Ω

∑

n,m 6=n
γnm

(
vnmVn +

(
Vn · ∇Rn

vnm
)
(Rn −Rm)

)
, (3.2)

where vnm = v(|Rn −Rm|).

3.1.1 An example from classical MD

In order to illustrate this state of affairs, we have performed classical MD simula-
tions for a Lennard-Jones monoatomic fluid described by the inter-atomic potential

v(R) = 4ε
[(

σ
R

)12 −
(
σ
R

)6]
at temperature T = 1.86 ε

kB
and density ρ = 0.925σ−3,

using cubic simulation cells containing 256 atoms in the iso-choric microcanonical
ensemble, with the LAMMPS package [56]. We computed different definitions of the
energy flux of Eq. (3.2), by choosing γ matrices constructed in two different ways,
according to the (arbitrary) prescriptions:

γIJ =





1

2
(AIJ −AJI)

where the matrix elements of A are drawn
from a uniform deviate in the [0, λ] interval.

(1)

0,+λ,−λ according to whether I = J , I > J , or I < J . (2)

(3.3)

In Fig. 3.2(a) we display the resulting macroscopic energy-flux autocorrelation func-
tions, 〈JEγ (t) · JEγ (0)〉, that dramatically depend on the definition of the γ matrix
in Eqs. (3.1) and (3.2). Notwithstanding, the integrals of all these time correlation
functions tend to the same limit at large integration times, as shown in Fig. 3.2(b).

The ill-definition of the atomic energies and of the heat current was already
noticed by some authors. Schelling et al. [57] computed the thermal conductivity
of Stillinger-Weber [49] silicon and noticed that it was fairly insensitive to the par-
ticular definition used, and concluded that the fact that there is no rigorous and
unique definition is not a serious impediment to using the GK method. Ten years
later, Howell [58] studied the same system more extensively, and found that the
energy decomposition in the three-body interaction term gives a negligible contri-
bution to the computed thermal conductivity, even though he did not recognise the
ill-definition of the two-body atomic energy term.

How is it that different definitions of the energy flux would lead to the same value
for the thermal conductivity? The fundamental origin of this conundrum involves
two intrinsic properties of the total energy: extensivity and conservation, that lead
us to the discovery of a gauge invariance principle for thermal transport coefficients.
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Figure 3.2: (a) Time correlation functions of the modified macroscopic energy
flux of a Lennard-Jones fluid, at the conditions described in the text, as defined
in Eq. (3.2), for different definitions of the γ matrix (see text). The “0” line refers
to the standard definition (γ = 0), whereas the labels “1” and “2” correspond
to the two (arbitrary) definitions of γ given in Eq. (3.3). (b) Integral of the time
correlation functions displayed in Fig. 3.2(a), multiplied by the prefactor appearing
in the GK relation, Eq. (2.30), as a function of the upper limit of integration.
The parameters used are λ1 = 10 and λ2 = 2.5. The barely visible shaded area
surrounding each line is an indication of the error bars, as estimated by standard
block analysis. Units are Lennard-Jones units (M = σ = ε = 1). Reproduced from
Ref. [A].
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3.2 Gauge invariance

In order to get insight into this remarkable invariance property, let us inspect the
difference between the generalized flux in Eq. (3.2) and the standard expression of
Eq. (2.36):

∆JE
γ

= JE
γ
− JE =

d

dt

1

4Ω

∑

n,m 6=n
γnm v(|Rn −Rm|)(Rn −Rm). (3.4)

We see that the two different expressions for the macroscopic energy flux differ by
a total time derivative of a bounded phase-space vector function. In the following,
we show that this is a consequence of energy conservation and extensivity and a
sufficient condition for the corresponding thermal conductivities to coincide.

The very possibility of defining an energy current density, from which the energy
fluxes of Eq. (2.36) and (3.2) ultimately depend, stems from energy extensivity, i.e.
the energy of a macroscopic sample of matter of volume Ω can be written as the
integral of an energy density, e(r):

E[Ω] =

∫

Ω
e(r)dr. (3.5)

Along the same considerations illustrated in Fig. 3.1, the energy density appearing
in Eq. (3.5) is not uniquely defined: any two densities e′(r, t) and e(r, t), whose
integrals over a macroscopic volume differ by a quantity that scales as the volume
boundary, should be considered as equivalent. This equivalence can be expressed by
the condition that two equivalent densities differ by the divergence of a (bounded)
vector field:

e′(r, t) = e(r, t)−∇ · p(r, t). (3.6)

In a sense, two equivalent energy densities can be thought of as different gauges of
the same scalar field.

Energy is also conserved: because of this, for any given gauge of the energy
density, e(r, t), an energy current density can be defined, j(r, t), so as to satisfy the
continuity equation, Eq. (2.3):

ė(r, t) = −∇ · je(r, t). (3.7)

By combining Eqs. (3.6) and (3.7) we see that energy current densities and macro-
scopic fluxes transform under a gauge transformation as:

j′(r, t) = j(r, t) + ṗ(r, t), (3.8)

J′(t) = J(t) + Ṗ(t), (3.9)

where P(t) = 1
Ω

∫
p(r, t)dr. We conclude that the macroscopic energy fluxes in two

different energy gauges differ by the total time derivative of a bounded phase-space
vector function.
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We now show that the energy fluxes of the same system in two different energy
gauges, e and e′, differing by a bounded total time derivative, as in Eq. (3.9), result
in the same heat conductivity, as given by the Green-Kubo formula, Eq. (2.30).
More generally, the Onsager coefficients coupling two fluxes, J1 and

(
J1
)′

, do not

depend on the gauge of either one of them. In fact, let
(
J1
)′

= J1 + Ṗ; one has:

(
L11
)′

=
Ω

2kB

∫ +∞

−∞

〈(
J1(t) + Ṗ(t)

)
·
(
J1(0) + Ṗ(0)

)〉
dt

= L11 +
Ω

2kB

[〈
P(t) · Ṗ(0)

〉∣∣∣
+∞

−∞
+ 2

〈
P(t) · J1(0)

〉∣∣∣
+∞

−∞

]
,

(3.10)

where we used the property that classical auto-correlation functions are even in
time. The expectation of the time-lagged products in Eq. (3.10) factorises into the
products of two independent expectations at large time lag. As the equilibrium
expectations of both a total time derivative and a current vanish, we conclude that(
L11
)′

= L11. Heat conductivities computed in different energy gauges coincide, as
they must on physical grounds. A slight generalisation of this argument, also using
microscopic reversibility as in Ref. [34, 35], allows us to conclude that

(
L12
)′

= L12

and that, in general, κ′ = κ.
We summarise the gauge invariance principle with a theorem.

Theorem 1 (Gauge invariance). Two energy fluxes that differ by a total time
derivative of a bounded function result in the same thermal conductivity (Onsager
coefficient).

3.2.1 Alternative proof

An alternative proof of the gauge invariance principle of the Onsager coefficients
can be obtained using the Lemma described by Marcolongo et al. [31].

Lemma 1 (Marcolongo et al.). Let JA and JB be two macroscopic fluxes defined
for the same system, and JC = JA + JB be their sum. The corresponding Onsager
coefficients1, LA, LB, and LC satisfy the relation:

∣∣LC − LA − LB
∣∣ ≤ 2

√
LALB (3.11)

Proof. The Einstein-Helfand relation (Eq. (2.21)) corresponding to a flux JX states
that

LX = lim
T →∞

〈
|DX(T )|2

〉

T
, (3.12)

where DX(T ) =
∫ T

0 JX(t)dt is the displacement associated with the flux JX . It
follows that:

LC = LA + LB + lim
T →∞

2
〈
DA(T ) ·DB(T )

〉

T
. (3.13)

1For the sake of simplicity, with LX we indicate the (1, 1) component of the Onsager matrix,
built using JX .
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Canonical averages of products of phase-space functions can be seen as scalar prod-
ucts [59, 60]:2 therefore, thanks to the Cauchy-Schwartz inequality, we have that

limT →∞
2〈DA(T )·DB(T )〉

T ≤ 2
√
LALB, that proves the theorem.

Proof (alternative). Alternatively, we can express the Onsager coefficients as the
zero-frequency value of the corresponding power spectrum (or cross spectrum), as
in Eq. (2.25), i.e. LX ∝ SXX(ω = 0). We obtain:

SCC(ω = 0) =

∫ ∞

−∞
〈JC(t)JC(0)〉dt

=

∫ ∞

−∞

(
〈JA(t)JA(0)〉+ 〈JB(t)JB(0)〉+ 2〈JA(t)JB(0)〉

)
dt

= SAA(ω = 0) + SBB(ω = 0) + 2SAB(ω = 0), (3.15)

where we used the fact the 〈JA(t)JB(0)〉 = 〈JB(t)JA(0)〉, and from Eqs. (2.24) we
have:

SAB(ω = 0) =

〈∫ T
0 JA(t)dt
√
T

∫ T
0 JB(t)dt
√
T

〉
+O(T −1). (3.16)

Thanks to the Schwartz inequality (Eq. (3.14)), we must have that

0 ≤
∣∣SAB(ω = 0)

∣∣ ≤

√√√√
〈

1

T

(∫ T

0
JA(t)dt

)2
〉√√√√

〈
1

T

(∫ T

0
JB(t)dt

)2
〉

=
√
SAA(ω = 0)SBB(ω = 0),

(3.17)

for any T > 0. By letting T → ∞, Eq. (3.11) follows from Eq. (3.15) and (3.17).

Thanks this theorem, if we define J′(t) as in Eq. (3.9), we shall have that∣∣κ′ − κ− κṖ
∣∣ ≤ 2

√
κκṖ. Since Ṗ is a bounded function and using the Einstein-

Helfand relation (Eq. 2.21), we have that κṖ = limT →∞
〈|Ṗ|〉
T = 0, hence κ = κ′.

An simple example of application of the gauge invariance theorem is presented
in Appendix A, where we show a way to prove the equivalence of two definitions of
the energy currents in solids, Eq. (2.36) and (2.45).

2A simple idea is the following. Let us consider two random variables, X and Y , and Z =
(X + aY )2, where a ∈ R is a constant. By definition Z is not negative, and 0 ≤ 〈Z〉 = 〈X2〉 +

a2〈Y 2〉+ 2a〈XY 〉. If we take a = − 〈XY 〉
〈Y 2〉 , we obtain the Schwartz inequality

|〈XY 〉| ≤
√
〈X2〉

√
〈Y 2〉. (3.14)
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3.3 Molecular fluids

In a one-component molecular fluid such as liquid water or, say, ethanol, there are
in general Q fluxes interacting with each other through Onsagers’ Eq. (2.9), where
Q is the number of atomic species in a molecule. The requirement that atoms are
bound in molecules of fixed composition, however, sets a number of constraints that
substantially simplify the treatment of heat transport, making the molecular case
similar to the one-component one.

Let us consider a molecule of chemical formula ANABNB · · · , where A,B, · · ·
indicate atomic species, and NA, NB, · · · the corresponding atomic stoichiometric
indices. For each atomic species we define the normalised number flux as:

JX =
1

NX

∑

n∈X
Vn. (3.18)

If we indicate byMX the atomic mass of speciesX, momentum conservation requires
that

∑
XMXNXJX = 0 in the center-of-mass reference frame. The flux JXY =

JX −JY is the total time derivative of a bounded vector, because its integral is the
sum over all the molecules of the difference between the average atomic positions
of either species within a same molecule, which is obviously bounded if molecules
do not dissociate. As any number flux JX can be expressed as a linear combination
of the total momentum and of several JXY fluxes, each of them is the total time
derivative of a bounded vector. Therefore, by the gauge invariance theorem, the
Onsager coefficient coupling any of these atomic fluxes with any other or with
the energy flux vanishes. We conclude that energy is the only relevant conserved
quantity relevant for heat transport in a molecular fluid, and that the energy-flux
autocorrelation function directly yields the thermal conductivity, as in Eq. (2.1).

3.4 Outlook

The discovery of the gauge invariance principle provides the theoretical foundation
for the formulation of a microscopic theory of adiabatic heat transport in the frame-
work of density functional theory (DFT). The first such formulation is presented in
Chapter 4.

Furthermore, this principle opens the way to designing the definition of the local
energy (both in terms of atomic energies or energy densities), so as to optimise the
convergence of the thermal conductivity estimator. Lemma 1, Eq. (3.11), ensures
that if a flux JB does not contribute to the conductivity (i.e. it has a vanishing GK
integral, LB = 0), it is possible to the define a new flux JC = JA + JB that will
yield the same conductivity of JA. Even though LC = LA, the statistical properties
of two such equivalent currents need not be the same, in that the fluctuations of
their correlation functions will be different, and the resulting GK integral, Eq. (2.30)
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will depend differently on the upper limit of integration, as it was the case in the
example shown in Fig. 3.2. We shall see that in the particular case of DFT thermal
transport, for some peculiar systems, the natural definition of energy density and
flux may make the estimate of the thermal conductivity very difficult, due to the
large statistical fluctuations of the correlation functions. In this cases, the gauge
invariance principle can come to the rescue.

Besides, the general concept of gauge invariance of heat conductivity will likely
apply to other transport properties as well, such as ionic conduction, viscosity, and
many others [61], and/or simulation methodologies, such as those based on a neural-
network representation of interatomic potentials, which hold the promise of a strong
and long-lasting impact on molecular simulations.
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The advent of density-functional theory (DFT) [25–27] has marked the start of
a new era for the quantum modeling of materials. DFT enables the computation
of interatomic forces entirely from first principles using the chemical composition
and the fundamental laws of nature as the sole ingredients, without any need to
leverage experimental knowledge of these interactions. Its combination with classical
molecular dynamics, both in the Born-Oppenheimer or Car-Parrinello flavours [62,
63], had a groundbreaking impact in a wide number of physical problems.

Nevertheless, for the reasons discussed in the previous chapters, DFT has long
been thought to be incompatible with the GK theory of thermal transport, and ab
initio simulations of heat transport have only been performed using the Boltzmann
transport equation, when possible, or non-equilibrium MD approaches. The gauge
invariance principle introduced in Chapter 3 finally gives us a rigorous way of deriv-
ing an expression for the energy flux directly from DFT, without introducing any
ad hoc ingredients.

In this chapter, we start by summarising the most recent ab initio methods for
the computation of thermal conductivity, in Section 4.1. In Section 4.2 we briefly
review the first-principles GK theory of thermal transport developed by Marcolongo
et al. [31], that will be applied later to the simulation of silica glass. Finally, in
Section 4.3 we conclude with some development prospects.

29
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4.1 First-principles simulation methods

In insulators heat transport is determined by the dissipative dynamics of atoms, the
electrons following adiabatically in their ground state, a regime often referred to as
atomic or adiabatic heat conduction. Different approaches are available to model
heat conduction in these systems (for a recent review see Ref. [64]): the main ones
are the Boltzmann’s transport equation (BTE) and molecular dynamics (MD), both
in its non-equilibrium and equilibrium flavors.

The Boltzmann’s transport equation (BTE) [19, 65] is the method of choice for
crystals well below melting, where long-lived phonons are clearly identified as the
heat carriers. In this case density-functional perturbation theory [66–68] enables
one to compute accurate phonon frequencies [69] and lifetimes, [70, 71] and thus
implement the BTE entirely from first principles [28]. The flexibility and accuracy
of ab initio BTE are such that this approach is being successfully used to screen
new materials for custom-designed properties, such as high thermal conductivity for
passive cooling [72, 73] or low thermal conductivity for thermoelectric energy con-
version [74, 75]. Recent self-consistent and variational approaches to solve the BTE
beyond the relaxation-time approximation [76] are also providing fresh and deep
insight into the collective character of heat transport [76–79]. Yet, the applicability
of ab initio BTE is restricted to periodic systems consisting of a small number of
atoms per unit cell, and is severely limited by its own inherent approximations: as
the temperature increases, anharmonic effects become so important as to eventually
make it break down well below melting [80], while the BTE simply does not apply
to glasses and liquids, where phonons are not even defined [81] .

Molecular dynamics (MD) [81, 82] is set to overcome these limitations. In non-
equilibrium MD (NEMD) [18, 83], temperature gradients or heat fluxes are explicitly
imposed on the virtual sample, and the thermal conductivity is estimated from the
resulting value of the conjugate variable (flux or gradient). In the so-called approach
to equilibrium (AEMD) methodology of Lampin et al. [84] the system is first pre-
pared in an out-of-equilibrium state, characterized by an inhomogeneous tempera-
ture distribution, and the thermal conductivity is evaluated from the time it takes for
the system to equilibrate. NEMD and AEMD lend themselves to a straightforward
quantum-mechanical implementation [54, 85] using ab initio molecular dynamics
(AIMD). For example, Stackhouse et al. [54] computed the thermal conductivity
of periclase MgO using a method devised by Müller-Plathe [83], i.e. by imposing a
temperature gradient to the system, and evaluating the ratio between the heat flux
and the resulting temperature gradient. Bouzid et al. [85] combined AEMD with
AIMD to simulate thermal transport in a GeTe4 glass, while Puligheddu et al. [86]
further generalized and applied it to crystalline and nano-structured MgO. How-
ever, these methods may be both affected by non-linear effects, due to the strength
of the temperature gradient to be imposed [57, 87] and by finite-size/finite-time
effects that require long simulation times and difficult extrapolations to approach
the thermodynamic limit [87–91].

The combination of equilibrium molecular dynamics (EMD), based on the
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Green-Kubo theory, with DFT, has been successfully accomplished very recently
by Marcolongo et al. [31], thanks to the gauge-invariance principle introduced in
Chapter 3, that gives a rigorous way of deriving an expression for the energy flux
directly from DFT, without introducing any ad hoc ingredients. We describe this
approach in Section 4.2 and we will use it in the last part of this work.

More recently, several authors attempted to combine the GK approach to heat
transport with first-principles techniques based on electronic-structure theory, by
adopting some ad hoc definitions for the energy flux. Kang and Wang [92], for in-
stance, derived an expression for the energy flux from a (rather arbitrary) quantum-
mechanical definition of the atomic energies and used a modified MD integration
algorithm to cope with the difficulties ensuing from the implementation of their
expression in PBC. Carbogno et al. [42] gave a different expression for the energy
flux, that neglects the convective term, Eq. (2.38), and is based on a normal-mode
decomposition of the atomic coordinates and forces, which, while reducing the ef-
fects of thermal fluctuations, can only be applied to crystalline solids. English and
Tse [93], instead, used the classical Einstein relation for the energy displacement,
D(τ) =

∑
n Rn

∫ τ
0 Fn · Vn dt, computed from a BO-AIMD trajectory, where the

forces are computed via the Hellmann-Feynman theorem. They applied this method-
ology to the computation of thermal conductivity of periclase MgO [94] and other
solids. Their approach also neglects the convective term and is only applicable to
solids.

4.2 DFT energy flux

The gauge invariance principle presented in Chapter 3 provides a rigorous way to
derive an expression for the adiabatic energy flux from DFT. In order to derive
such an expression, we start with the standard DFT expression of the total energy
in terms of the Kohn-Sham (KS) eigenvalues εv, eigenfunctions φv(r), and density
n(r) =

∑
v |φv(r)|2 [27]:1

EDFT =
1

2

∑

n

MnV
2
n +

e2

2

∑

n,m 6=n

ZnZm
|Rn −Rm|

+
∑

v

εv −
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ +

∫
(εXC[n](r)− µXC[n](r))n(r)dr, (4.1)

where {R} and {r} indicate ionic and electronic positions, respectively, e is the
electron charge, εXC[n](r) is a local exchange-correlation (XC) energy per particle
defined by the relation

∫
εXC[n](r)n(r)dr = EXC[n], the latter being the total XC

energy of the system, and µXC(r) = δEXC
δn(r) is the XC potential. The DFT total

1For simplicity, here and in the following we imply the dependence on time t of atomic positions,
velocities and KS orbitals.
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energy can be readily written as the integral of a DFT energy density (not uniquely
defined) [61]:

EDFT =

∫
eDFT (r)dr,

eDFT (r) = eel(r) + eZ(r), (4.2)

where:

eel(r) = Re
∑

v

φ∗v(r)
(
HKSφn(r)

)

− 1

2
n(r)vH(r) + (εXC(r)− µXC(r))n(r), (4.3)

eZ(r) =
∑

n

δ(r−Rn)

(
1

2
MnV

2
n + wn

)
, (4.4)

wn =
e2

2

∑

m 6=n

ZnZm
|Rn −Rm|

, (4.5)

HKS is the instantaneous self-consistent Kohn-Sham Hamiltonian, and vH =
e2
∫
dr′ n(r′)
|r−r′| is the Hartree potential.

An explicit expression for the DFT energy flux is obtained by computing the
first moment of the time derivative of the energy density, Eqs. (4.2-4.5), as indicated
in Eq. (2.32),

JE =
1

Ω

∫
ėDFT (r) r dr, (4.6)

and considering the Born-Oppenheimer (BO) equations of motion for the nuclei:

MnV̇n = −∂EDFT

∂Rn
. (4.7)

This results in a number of terms, some of which are either infinite or ill-defined
in PBC. Casting the result in a regular, boundary-insensitive, expression requires
a careful breakup and refactoring of the various harmful terms [31, 55]. The final
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result reads:

JE
DFT

= JH + JZ + J0 + JKS + JXC, (4.8)

JH =
1

4πΩe2

∫
∇vH(r)v̇H(r)dr, (4.9)

JZ =
1

Ω

∑

n


Vn

(
1

2
MnV

2
n + wn

)
+
∑

m6=n
(Rn −Rm)

(
Vm ·

∂wn
∂Rm

)
 , (4.10)

J0 =
1

Ω

∑

n

∑

v

〈
φv

∣∣∣∣(r−Rn)

(
Vn ·

∂v̂0

∂Rn

)∣∣∣∣φv
〉
, (4.11)

JKS =
1

Ω

∑

v

(
〈φv|rHKS|φ̇v〉+ εv〈φv|r|φ̇v〉

)
=

1

Ω
Re
∑

v

〈
φ̄cv

∣∣∣HKS + εv

∣∣∣φ̇cv
〉
,

(4.12)

JXCα =

{
0 (LDA)

− 1
Ω

∫
n(r)ṅ(r)∂ε

GGA(r)
∂(∂αn) dr (GGA),

(4.13)

where v̂0 is the bare, possibly non-local, (pseudo-) potential acting on the electrons
and

|φ̄cv〉 = P̂c r |φv〉, (4.14)

|φ̇cv〉 = P̂c|φ̇v〉 =
˙̂
Pv |φv〉, (4.15)

are the projections over the empty-state manifold of the action of the position oper-
ator over the v-th occupied orbital, Eq. (4.14), and of its adiabatic time deriva-
tive [95], Eq. (4.15); P̂v and P̂c = 1 − P̂v being the projector operators over
the occupied- and empty-states manifolds, respectively. Both these functions are
well defined in PBC and can be computed, explicitly or implicitly, using standard
density-functional perturbation theory [68].

4.2.1 Electronic current

The current JKS, Eq.(4.12), is not manifestly invariant with respect to the arbitrary
choice of the zero of the one-electron energy levels: a shift of this zero by a quantity
∆ε results in a shift of the energy flux by ∆Jel, where Jel is the adiabatic electronic
current [96]:

Jel =
2

Ω
Re
∑

v

〈φ̄cv|φ̇cv〉, (4.16)

that can be derived from the continuity equation for the electronic density:

∇ · jel(r, t) = −ṅel(r, t). (4.17)

The electronic current is the difference between the total charge current (defined
as the atom’s Born charge times its velocity and summed over the atoms) and its
ionic component (here defined considering the nucleus plus the valence electrons). In
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the specific case of one-component systems and molecular systems that are electric
insulators, the total charge current and the electronic flux Jel are non-diffusive, as
well as the ionic one, i.e. they do not contribute to thermal conductivity, lifting the
apparent indeterminacy of Eq. (4.12). In multi-component systems this is not the
case. Starting from Eq. (2.48), it can be proved that a shift in the zero-energy level
adds a possibly diffusive contribution to the energy current, which however does
not affect the thermal conductivity.

4.2.2 Numerical computation

The computation of the DFT energy flux, Eq. (4.8), at time t requires the atomic
positions {R} and velocities {V}, along with the Kohn-Sham eigenvalues εv, eigen-
functions φv(r), the ground-state electron density distributions n(r) =

∑
v |φv(r)|2,

and their time-derivatives.
The method is implemented within the Quantum ESPRESSO code suite [95,

97] in a specialized post-processing code maintained by us. In order to compute the
energy flux JE, the following steps are needed:

1. One should extract a sufficient number of time steps from a AIMD tra-
jectory (the sampling frequency should be high enough to avoid aliasing
problems: a deeper discussion on this is reported in Sec. 6.3).

2. For each of these time steps, two self-consistent Kohn-Sham self-consistent
field calculations are performed with the PWscf code: one at time t and
one at time t+ ∆t. The atomic coordinates at time t+ ∆t can be extrap-
olated from those at time t, simply as R(t + ∆t) = R(t) + V(t)∆t. The
value of the finite difference ∆t is very important, and is much smaller
than the time step used to evolve the dynamics with MD. A convergence
check should be performed beforehand.

3. The resulting densities are used to compute the time derivative of the
electron density at time t, ṅ(t), with finite differences: ṅ(t) = (n(t+ ∆t)−
n(t))/∆t.

The cost of one energy flux calculation is about equal to the cost of two self-
consistent PW calculations plus one linear response calculation. For example, in
the current implementation, each time step costs almost 4 times the cost of a self-
consistent calculation.

4.3 Outlook

As it was already mentioned in Sec. 3.4, the gauge invariance of transport coeffi-
cients not only provides a solid foundation to the quantum theory of adiabatic heat
transport, by also allows tuning this definition so as to achieve optimal statisti-
cal properties to reduce its computational cost. This freedom can in principle be
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exploited to design new expressions for the heat flux from first principles. One possi-
bility may be devising a formulation based on a local representation of the electronic
structure [98, 99], e.g. maximally localized Wannier functions, that would avoid the
use of density-functional perturbation theory for the computation of JKS, by remov-
ing the ill-definition problems in PBC. In the case of solids, where correlation times
are generally longer, a more efficient expression may be obtained from a normal-
mode expansion [46] and interpolation, to cope with noise and finite-size effects, in
a similar way to what proposed by Carbogno et al. [42].

Furthermore, the expression of the energy flux, that is now implemented for LDA
and GGA energy functionals, can be extended to more advanced functionals [100,
101], where dispersion forces are accounted for. This effects are important in the
structural and transport properties of many soft materials, and may give important
contributions to the thermal conductivity as well.

Finally, the ab initio computation of thermal conductivity of multi-component
fluids has never been attempted and would be particularly beneficial to study sys-
tems in extreme conditions.
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The evaluation of transport coefficients in extended systems, such as thermal con-
ductivity or shear viscosity, is known to require impractically long simulations. The
Green-Kubo equation, Eq. (2.30), expresses the thermal conductivity as the integral
of the autocorrelation function of the heat flux, i.e. an autocorrelation time.

Many methods have been formulated to estimate its value from finite-length MD
simulations: direct time-integration methods, fitting with exponential functions, and
spectral methods; however, few of them provide a rigorous criterion to estimate the
accuracy resulting from a given MD trajectory. Different classes of systems require
different approaches to error analysis, but it is widely believed that they always
require so long simulation times as to be unaffordable with accurate but expensive
AIMD techniques [42].

The recent advances in the quantum simulations of thermal transport reinvig-
orated the interest in this subject and made it urgent to devise a data-analysis
technique to make these calculations affordable, thus paving the way to the ab ini-
tio simulation of heat transport. In order to solve this problem, we considered it in

37
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the light of the statistical theory of stationary time series, and we devised a data-
analysis protocol leading to an asymptotically unbiased and consistent estimate of
transport coefficients (i.e. the bias and the statistical error can be made both arbi-
trarily small in the limit of long simulation times) and requiring shorter simulations
than used so far [B]. This protocol, based on the cepstral analysis of time series,
avoids any ad-hoc fitting procedure and naturally provides an accurate estimate of
the statistical error, thus lending itself to an easy implementation and automated
use. While motivated by heat transport applications, our approach naturally ap-
plies to any other transport properties that can be expressed, in a GK framework,
in terms of time integrals of suitable autocorrelation functions, such as, e.g., ionic
conductivities, viscosities, and tracer diffusivity, to name but a few.

In Section 5.1 of this chapter we review some of the techniques found in the litera-
ture to estimate the Green-Kubo integral and we illustrate some of their criticalities,
along with some physical interpretations that have been proposed. In Section 5.2,
we reformulate the problem in the light of the statistical theory of time series and
show how to obtain an estimator of the thermal conductivity from cepstral analysis
in solids and one-component fluids. We validate this method with extensive bench-
marks on the calculation of the thermal conductivity of different classes of materials.
In Section 5.3 we show how to extend the theory to the case of multi-component
fluids. In Section 5.4 we introduce a couple of techniques useful to optimise the
statistical properties of the heat currents by making use of the gauge invariance
principle, a procedure that we found particularly useful when dealing with ab ini-
tio heat currents. Section 5.5 closes this chapter with an outlook of possible future
prospects.

5.1 Estimation and interpretation of the Green-Kubo integral

In the following we shall focus on one-component systems, or molecular systems,
where the heat flux corresponds to the energy flux. In order to estimate the thermal
conductivity from EMD with the GK approach, one starts by computing the energy
current J from a MD trajectory in the microcanonical ensemble,1 via the classical
expression, Eq. (2.36) (Eq. (2.37) for 2-body force fields), or the quantum (DFT)
one, Eq. (4.8).

Thanks to ergodicity, an ensemble average is equivalent to a time average [82],
that is an average over different starting times of a single trajectory. The heat
current autocorrelation function (HCACF), 〈J(t)J(0)〉, can thus be estimated as a

1The issue of estimating dynamical properties in the canonical ensemble with thermostats is
still matter of debate and is not completely settled. Some preliminary tests on simple systems
showed that thermal conductivity is not affected by a well-designed global thermostat. However,
we believe that this issue should be a matter of further dedicated studies, that fall outside the
scope of this work. Therefore we decide to employ the common practice of computing dynamical
properties in the microcanonical ensemble.
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running average of time-lagged current products:

〈J i(t)J j(0)〉 ∼ 1

T − t

∫ T −t

0
J i(τ + t)J j(τ) dτ, (5.1)

where T is the length of the MD trajectory, and J i indicates any Cartesian com-
ponent of Ji. However, the calculation of dynamical properties, such as thermal
conductivity, requires a minimum trajectory to compute time-correlation functions.
On the computational point of view, it was shown that ensemble averaging, i.e.
averaging over different initial configurations, exhibits similar overall cost with re-
spect to simple time averaging, but it may significantly accelerate the calculation
by exploiting parallel machines [102]. This point can be particularly relevant when
dealing with expensive AIMD simulations.

5.1.1 Example: four paradigmatic systems

To illustrate some concepts in this Section, we provide a few examples. We have
run classical MD simulations [56] of four paradigmatic systems representative of
different classes of materials, using the LAMMPS package and the following setup:

• liquid Ar: Lennard-Jones potential as described in Ref. [103], at a temperature
T ≈ 220 K and density ρ = 1.55 g/cm3, in a cubic supercell containing 864 atoms,
with a time step ∆t = 4 fs.

• liquid H2O: Flexible model as in Ref. [104] at a temperature T ≈ 300 K and
density ρ = 1.0 g/cm3, in a cubic supercell containing 180 molecules, with a time
step ∆t = 0.5 fs.

• crystalline fcc MgO: Buckingham-plus-Coulomb potential as in Ref. [105] at a
temperature T ≈ 1000 K and density ρ = 3.61 g/cm3, in a 4× 4× 4 simple cubic
conventional supercell with 512 atoms, and a time step ∆t = 0.3 fs

• amorphous SiO2: BKS potential [106] as implemented by Mantisi et al. [107]
(see Sec. 6.2.1) at a temperature T ≈ 1000 K and density ρ = 2.29 g/cm3, in a
supercell containing 216 atoms with a time step ∆t = 1 fs. The glass model was
obtained from a quench from the melt (T ≈ 6500 K) at a constant quenching rate
of 5.5× 1012 K/s.

Each system was equilibrated in the NVT ensemble at the target temperature for
several hundred picoseconds; data were then collected in the NVE ensemble and
analysed. We will also use these systems to benchmark the cepstral analysis method
presented in Sec. 5.2.

The HCACFs computed for these materials are shown in Fig. 5.1(a). Liquid
argon’s HCACF is characterised by a simple exponential decay, characteristic of a
simple diffusing liquid. The HCACFs of the other systems, instead, are characterised
by an initial drop, followed by a much longer tail, with fast superimposed oscillations
caused by the fast intramolecular vibrations (they can thought to be linked to the
optical phonon modes of the system). MgO, being a crystalline solid, exhibits the
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(a)

(b)

Figure 5.1: (a) Time correlation function of the energy current, Eq. (5.1), and (b)
the thermal conductivity as a function of the upper limit of integration, Eqs. (5.2-
5.3), computed from MD trajectories for Ar, H2O, MgO, and a-SiO2, The blue
and green lines are computed from two different 100 ps trajectories; the red line is
computed from a 1 ns trajectory. The shaded area surrounding each line indicates
the error bars, as estimated from standard block analysis.

longest correlations, due to the long lifetimes of its propagating phonons. Water
and silica, instead, have similar HCACFs, that decay quite fast but feature high-
frequency oscillations that persist at long time-lags.

When a HCACF is computed from a trajectory of finite length T , the statis-
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tical error increases with the time-lag t, as larger time-lags have less statistics. In
Fig. 5.1(a) three examples of HCACFs are plotted: two of them are computed from
a 100 ps trajectory and present more oscillations and a larger statistical error with
respect to the the third HCACF, that is computed from a 1 ns trajectory and shows
a smoother decay.

5.1.2 Direct integration

The evaluation of the GK integral, Eq. (2.1), or more generally of an Onsager
coefficient Lij , Eq. (2.19), can simply be performed by direct integration of Eq. (5.1)
as a function of the upper limit of integration:

Lij(T) =
Ω

kB

∫ T

0
〈J i(t)J j(0)〉 dt, (5.2)

with T < T . One then recovers, via Eq. (2.48), an estimate for the thermal conduc-
tivity dependent on T:

κ(T) =
1

T 2

1

(L−1(T))11
. (5.3)

This function is usually very noisy: in fact, at times greater than the correlation
time between J i and J j , the correlation function 〈J i(t)J j(0)〉 approaches zero, hence
Lij(T) starts integrating pure noise and behaves like the distance travelled by a
random walk, whose variance grows linearly with the upper integration limit, as
can be appreciated in Fig. 5.1(b). The evaluation of transport coefficients thus
requires averaging over multiple trajectories (possibly multiple segments of a same
long trajectory) and estimating the resulting uncertainty as a function of both the
length of each trajectory and the upper limit of integration, usually with standard
block analysis [82]. This is a cumbersome task that often leads to a poor estimate
of the statistical and systematic errors on the computed conductivity. All the more
so when the signal is inherently oscillatory, due to the existence of high-frequency
features, possibly due to intramolecular oscillations that meddle with the noise and
can make the convergence of the GK not obvious.

The accuracy of the transport coefficient κ estimated by a direct integration of
Eq. (5.2) is subject to three possible sources of errors:

- averaging error : the finite simulation length T over which the HCACF is com-
puted, Eq. (5.1).

- truncation error : the upper limit of integration T used in the estimation of Lij ,
Eq. (5.2), that should be much larger than the characteristic decay time of the
correlation, but much smaller thatn the simulation length T .

- discretization/aliasing error : the finite sampling interval of the heat current, ε,
that should be large enough to avoid aliasing effects. The Nyqvist-Shannon sam-
pling theorem [108] states that the sampling period should be smaller than 1

2fmax
,

where fmax is the maximum frequency of the heat flux signal J(t).
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(a) (b)

Figure 5.2: (a) Heat current autocorrelation function, Eq. (5.1), and (b) thermal
conductivity as a function of the upper integration limit, Eqs. (5.2-5.3), for three
phases of LJ argon. Reproduced from Ref. [109].

McGaughey and Kaviany [40, 109] studied the thermal conductivity of LJ argon
in different phases: fcc crystal, liquid, and amorphous. In Fig. 5.2 we report the
comparisons of the HCACFs of these three phases and their direct GK integrals,
Eq. (5.3). At finite time the HCACFs of solid Ar show the two-stage decay [46],
and their extension decreases as the temperature increases, as one would expect
due to the decrease of phonons relaxation times. Their integral converges to the
corresponding value of thermal conductivity, however the practical determination
of κ may be quite subjective. Actually, in the majority of the GK studies reported
in the literature, the criteria used to choose an upper limit of integration is not
specified, so we guess that they are often based on simple assumption of convergence
“by sight”. A few exceptions are listed in the following. For example, the “first dip”
(FD) method, proposed by Li et al. [110], specifies the upper limit of integration by
setting the upper limit of integration to be the first time at which the calculated
HCACF goes negative. FD may give acceptable results in solid and liquid argon,
but it is not suitable to the amorphous phase and in systems with multi-atom unit
cell, where the HCACF oscillates wildly around zero before slowly fading out.

In the case of unit cells with multiple atoms, where intramolecular vibrations
manifest as fast oscillations in the HCACF, again, the EF method is not suited to
determine κ. A rather arbitrary compromise was used by McGaughey and Kaviany
[111]: the GK integral function, Eq. (5.2), is filtered with a running average [112]
and the value at which it looks to converge is chosen. If the convergence is not clear
one chooses to stop the integration at the point at which the oscillations of Lij(T)
reach a minimum (neck).

Other methods to to perform error analysis have been devised, based on either
heuristic or rigorous arguments [58, 113–116]. All require an estimate of an optimal
value for the upper limit of integration, which determines a bias in the estimate,
and which is in general difficult to obtain. Moreover most of them are specifically
conceived and tested on simple crystalline solids, such as silicon, and are not suited
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to study disordered and complex systems. For example, Jones and Mandadapu [114]
proposed a heuristic on-the-fly algorithm to detect the convergence of the block
average of κ, but that needs an empirical estimate of the maximum correlation time
first, and thus it is not optimal. A similar empirical criterion has also been proposed
by Wang et al. [115]. Oliveira and Greaney [116], instead, proposed a method that
analyses the components of the noise of the GK integral and fits them with integral
functions, in order to obtain an estimate of the uncertainty on κ of graphite.

5.1.3 Exponential fit and thermal conductivity decomposition

Another technique proposed by some authors is the exponential fit (EF) method,
in which a single or multi-exponential function is fitted to the HCACF beyond a
certain point (determined on a case-by-case basis) [110, 117, 118]. An example is
the function [117]:

〈J(t)J(0)〉 = Aac,she−t/τac,sh +Aac,lge−t/τac,lg , (5.4)

where the subscripts “ac, sh” and “lg” refer to acoustic, short-, and long range.
From here the thermal conductivity is then estimated as:

κ =
Ω

kBT 2
(Aac,shτac,sh +Aac,lgτac,lg) = κac,sh + κac,lg. (5.5)

McGaughey and Kaviany [109] interpreted the two-stage behaviour of solid argon’s
HCACF and the resulting decomposition of the thermal conductivity in the context
of the mean phonon relaxation time: κac,sh corresponds to the phonons with lowest
relaxation times,2 whereas κac,lg corresponds to phonons with longer relaxation
times, that make the longer decay time of the HCACF. This model works fairly
well e.g. for solid argon [109], diamond and carbon nanotubes [117, 121], as well as
in liquid argon, where a single-exponential decay is found, but does not work well
to fit the long tails of the HCACF of silicon [57].

The HCACF of amorphous argon, though, shows a different behaviour with re-
spect to the solid an liquid phases. It is very similar to the velocity autocorrelation
function and can be interpreted considering the different local environments the
atoms experience. In a crystal each atom is immersed in the same local environ-
ment and the same is true in a liquid, if we average over time. Conversely, in an
amorphous solid each atom has a different local environment: close to its equilibrium
position, it experiences the free trajectory of a liquid atom at short time scales; but
at slightly larger times it feels the interactions of the other atoms, that change its
trajectory, and make the correlation negative. The first timescale of the HCACF
decomposition, τac,sh, is related to the time it takes for the energy to move between
nearest-neighbour atoms, and corresponds to the higher frequencies of the acoustic
branches. The κac,sh is the only one important in the liquid and amorphous phase, it

2i.e. phonons with a mean free path equal to one half of its wavelength, the shortest possible.
This is also called the CP limit, a thermal conductivity model developed for amorphous materials
[119, 120].
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is a function of the coordination of the atoms and scarcely depends on temperature,
whereas κac,lg strongly depends on temperature.

When fast oscillations of the HCACF are present, such as in multi-atom unit
cells, McGaughey and Kaviany [111] attempted to fit the filtered HCACF with
Eq. (5.5) plus a sum of oscillating terms, that they associated to the “optical”
modes of the system. Nevertheless, this fitting procedure is very difficult and it
was found to be unsuitable for amorphous materials like silica glass, that therefore
require either a direct integration or an alternative approach.

5.1.4 Spectral methods

As was shown in Sec. 2.2.1, the Wiener-Khintchine theorem enables one to express
the heat conductivity in terms of the zero-frequency value of the power spectrum
of the energy-flux (see Eqs. (2.22-2.25)):

κ =
Ω

2kBT 2
S(ω = 0). (5.6)

Estimating this limit can be very difficult if the statistical properties of the power
spectrum are not taken properly into account, as we will argument in Sec. 5.2.

Some attempts were made by fitting the low-frequency region of the spectrum
with one Lorentzian function. This is the Fourier transform of an exponential cor-
relation function, hence, not surprisingly, this expression is in good agreement with
time integration results when the HCACF is well modeled by one exponential, but
does not work when a long tail is present in the HCACF and whenever the expo-
nential fit is inappropriate [57]. The same applies if we consider the sum of two
Lorentzians, i.e. the sum of two exponential functions in the time domain [122].

Lee et al. [123] and Volz and Chen [124] applied these fits in amorphous and
crystalline silicon, respectively, speculating that finite-size effects would affect the
low-frequency region. The finite size of the simulation cell sets a lower limit to the
phonon wavelength that is allowed: only phonons with a wavelength shorter than
the cell size are permitted to exist in the simulation domain and can contribute to
the thermal conductivity. Furthermore, the small cell size may introduce artificial
autocorrelations that do not exist in real systems, an effect that could be especially
strong for phonons with long mean-free paths.

We believe that it is not easy to determine a priori at what level the power spec-
trum is affected by finite-size effects. Besides, let us notice that the size-dependence
problem in the estimation of κ is also present in other methods, such as the direct
integration of the GK equation. In general, one should be careful to verify that the
chosen simulation cell is big enough for the thermal conductivity to converge. This
will also imply that the low-frequency region of the power spectrum is correctly
reproduced and does not exhibit unphysical features. We shall go back on this issue
in Sec. 6.1.2 and 6.2.2.
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5.1.5 Final remarks

Many methods have been formulated to estimate the thermal conductivity from the
GK equation, but none of them is fully satisfactory. Some of them are optimized to
the specific case of crystalline solids or simple liquids, and may be a good choice,
however they do not really help much when dealing with amorphous solids. Different
classes of systems require different approaches to error analysis: in some cases these
methods fail to provide rigorous criteria to estimate the accuracy resulting from a
given MD trajectory, but in general all of them always require very long simulation
times, thus making ab initio simulations unaffordable. In next section we are going
to present a novel data-analysis method that will be able to tackle both these
problems and to provide us with an efficient and accurate estimator of κ. This will
finally enable us to undertake the study of thermal conductivity of glasses with
equilibrium AIMD simulations.

In Sec. 5.1.3 we saw that one may try to interpret the decay of HCACF in
terms of different relaxation times to get insights into the different contributions to
the thermal conductivity, though this is not obvious and clear in general. The GK
equation is a very general result describing the collective dissipative response of any
system to a fluctuation, and it has no intrinsic connection to particular transport
mechanisms [58]. The frequencies of the power spectrum of the HCACF have been
interpreted to be related to the phonon-phonon interactions [109]. Conversely, in
the BTE approach the thermal conductivity is computed by integrating over the
frequencies of individual phonons. The difference between these two frequencies
is equivalent to that between the mean free path and the corresponding phonon
wavelength.

However, in the light of the gauge invariance principle presented in Ch. 3, at this
stage it is not very clear how much the HCACF or the power spectrum of the heat
current can be interpreted in physical terms. It is evident that different definitions
of the microscopic energy density (or atomic energies) will define different energy
currents with very different power spectra, the only invariant quantity being their
zero-frequency value, i.e. the thermal conductivity. Whether and how a particular
definition can be linked to physical quantities is not yet completely understood.
Therefore, extreme caution should be used when making physical interpretations
out of a HCACF.

In conclusion, although the GK method yields a direct estimate of the thermal
conductivity, it provides only very indirect information about the mechanisms of
heat transport. We believe that different approaches, such as phonon-level meth-
ods, e.g. methods based on a normal-modes analysis [125], may be able to bring
better insights into the individual contributions to thermal conductivity, especially
in complex or disordered systems.
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5.2 Cepstral analysis

In practice, MD gives access to a discrete sample of the flux process (a time series),
Jn = J(nε), 0 ≤ n ≤ N − 1, where ε is the sampling period of the flux and N the
length of the time series, that we assume to be even.

5.2.1 Periodogram

Let us define the discrete Fourier transform of the flux time series as:

J̃k =

N−1∑

n=0

e2πi kn
N Jn, (5.7)

for 0 ≤ k ≤ N − 1.3 The sample spectrum Ŝk, aka periodogram in the statistics
literature, is defined as

Ŝk =
ε

N

∣∣∣J̃k
∣∣∣
2
, (5.8)

and, for large N , it is an unbiased estimator of the power spectrum of the process,
as defined in Eq. (2.22), evaluated at ωk = 2π k

Nε , namely: 〈Ŝk〉 = S(ωk). The reality

of the Ĵ ’s implies that J̃k = J̃∗N−k and Ŝk = ŜN−k, so that periodograms are usually

reported for 0 ≤ k ≤ N
2 and their Fourier transforms evaluated as discrete cosine

transforms.
The space autocorrelations of conserved currents are usually short-ranged.

Therefore, in the thermodynamic limit the corresponding fluxes can be seen as
sums of (almost) independent identically distributed stochastic variables, so that,
according to the central-limit theorem, their equilibrium distribution is Gaussian. A
slight generalisation of this argument leads us to conclude that any conserved-flux
process, like the heat flux, is Gaussian as well. The flux time series is in fact a mul-
tivariate stochastic variable that, in the thermodynamic limit, results from the sum
of (almost) independent variables, thus tending to a multivariate normal deviate.
This implies that at equilibrium the real and imaginary parts of the J̃k’s defined in
Eqs. (5.7) are zero-mean normal deviates that, in the large-N limit, are uncorrelated
among themselves and have variances proportional to the power spectrum evaluated
at ωk. For k = 0 or k = N

2 , J̃k is real and ∼ N
(
0, Nε S(ωk)

)
; for k /∈

{
0, N2

}
, ReJ̃k

and ImJ̃k are independent and both ∼ N
(
0, N2εS(ωk)

)
, where N (µ, σ2) indicates a

normal deviate with mean µ and variance σ2. We conclude that in the large-N limit
the sample spectrum of the heat-flux time series reads:

Ŝk = S(ωk) ξk , (5.9)

where the ξ’s are independent random variables distributed as a χ2
1 variate for

3Here, the convention for the sign in the exponential of the time-to-frequency Fourier transform
is opposite to what adopted in Ref. [B] and in most of the signal analysis literature, in order to
comply with the convention for the space-time Fourier transforms usually adopted in the Physics
literature and in Eqs. (2.4) and (2.5).
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k = 0 or k = N
2 and as one half a χ2

2 variate, otherwise. Here and in the following
χ2
ν indicates the chi-square distribution with ν degrees of freedom. For the sake of

simplicity, we make as though all the ξ’s were identically distributed as ξk ∼ 1
2χ

2
2

for all values of k, thus making an error of order O(1/N), which vanishes in the
long-time limit that is being assumed throughout this section.

Multiple samples

In many cases of practical interest, multiple time series are available to estimate the
power spectrum of a same process, {pJn}, p = 1, · · · `. For instance, in equilibrium
MD a same trajectory delivers one independent time series per Cartesian component
of the heat flux, all of which are obviously equivalent in isotropic systems. In these
cases it is expedient to define a mean sample spectrum by averaging over the `
different realisations,

`Ŝk =
ε

`N

∑̀

p=1

∣∣∣pJ̃k
∣∣∣
2

= S(ωk)
`ξk ,

(5.10)

where the ξ̀’s are χ2
2` variates, divided by the number of degrees of freedom:

`ξk ∼
1

2`
χ2

2`, (5.11)

for k /∈ {0, N2 }.
Eqs. (5.9) and (5.10) show that `Ŝ0 is an unbiased estimator of the zero-frequency

value of the power spectrum, 〈`Ŝ0〉 = S(0), and through Eq. (5.6), of the transport
coefficients we are after. However, this estimator is not consistent, i.e. its variance
does not vanish in the large-N limit. This is so because a longer time series increases
the number of discrete frequencies at which the power spectrum is sampled, rather
than its accuracy at any one of them.

Fig. 5.3 displays the periodograms of the heat fluxes of the four systems pre-
sented in Sec. 5.1.1 (liquid Ar, liquid H2O, crystalline MgO, and amorphous SiO2),
obtained from a 100 ps (500 ps for MgO) classical MD trajectory in the NVE en-
semble and averaged over the three Cartesian components, showing the extremely
noisy behaviour of the periodogram as an estimator of the spectrum. A consistent
estimate of the value of the power spectrum at any frequency can be obtained by
segmenting a time series into several blocks of equal length and then averaging over
the sample spectra computed for each of them. When the length of the trajectory
grows large, so does the number of blocks, thus making the variance of the aver-
age arbitrarily small. In practice, the determination of the optimal block size is a
unwieldy process that leads to an inefficient determination of the length of the tra-
jectory needed to achieve a given overall accuracy. Equivalently, a moving average
[112] of the periodogram would consistently reduce the statistical noise, as happens
in Fig. 5.3, but its multiplicative nature in Eq. (5.9) makes it difficult to disentan-
gle the noise from the signal and may introduce a bias. Here we adopt a different
approach enabling us to obtain a consistent estimate of the zero-frequency value of



48 ab initio simulation of heat transport in silica glass

0.0 2.5 5.0 7.5
f [THz]

S

Ar

0 50 100 150
f [THz]

S

H2O

0 5 10 15 20
f [THz]

S

MgO

0 10 20 30 40
f [THz]

S

a-SiO2

0 1 2

Figure 5.3: Sample power spectra of the heat flux computed from one MD tra-
jectory for Ar, H2O, a-SiO2 (100 ps), and MgO (500 ps), obtained directly from
Eq. (5.10), with ` = 3 (gray line, see text). The x-axis is frequencies f = ω/2π.
The solid lines in color correspond to a moving average performed over a nar-
row frequency window of width 1 THz, usefult to reveal the main features of the
spectrum. The vertical arrows indicate the cutoff frequencies, f∗, used for the
subsequent cepstral analysis (see Sec. 5.2.5). The inset in the MgO panel is a mag-
nification of the low-frequency region of the spectrum. Reproduced from Ref. [B].

the power spectrum from the statistical analysis of a single trajectory sample (i.e.
no block analysis is needed) and such that the estimate of the trajectory length
necessary to achieve a given accuracy is optimal.

5.2.2 Log-periodogram

Spectral density estimation from finite empirical time series is the subject of a vast
literature in the statistical sciences, embracing both parametric and non-parametric
methods [126]. In the following we propose a semi-parametric method to estimate
the power spectrum of a stochastic process, based on a Fourier representation of
the logarithm of its power spectrum (the “log-spectrum”). The advantage of dealing
with the log-spectrum, instead of with the power spectrum itself, is twofold. First
and foremost, the noise affecting the former is additive, instead of multiplicative,
thus making it simple and expedient to apply linear filters: limiting the number of
components of the Fourier representation of the log-spectrum acts as a low-pass filter
that systematically reduces the power of the noise and yields a consistent estimator
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Figure 5.4: Expectation and variance of the `λ variables, as defined in Eqs. (5.12-
5.14), as functions of the number of samples, `, over which the periodograms are
averaged.

of the log-spectrum at any given frequency. Second, as a bonus, the logarithm is
usually smoother than its argument. Therefore, the Fourier representation of the
logarithm of the power spectrum is more parsimonious than that of the spectrum
itself.

Let `L̂k = log(`Ŝk) be the “log-periodogram” of our time series. By taking the
logarithm of Eq. (5.9), we can express `L̂k as:

`L̂k = log(`Ŝk)

= log (S(ωk)) + log(`ξk)

= log (S(ωk)) + `Λ + `λk, (5.12)

where
`Λ =

〈
log(`ξ)

〉
=

∫ ∞

0
log

(
ξ

2`

)
Pχ2

2`
(ξ) dξ = ψ(`)− log(`) (5.13)

is the expected value of the logarithm of the `ξ̂ stochastic variables defined in Eq.
(5.11), Pχ2

2`
is the probability density of a χ2

2` variate, `λk = log
(
ξ̀k
)
− `Λ are zero-

mean identically distributed independent stochastic variables, and ψ(z) and is the
digamma function [127]. The variance of the `λ variables is:

σ2
` =

∫ ∞

0
log

(
ξ

2`

)2

Pχ2
2`

(ξ) dξ − λ2
` = ψ′(`), (5.14)

where ψ′(z) is the tri-gamma function [127].

5.2.3 Cepstrum and lif tering

Eq. (5.12) explicitly shows that the sample log-spectrum of a time series is equal to
the logarithm of the power spectrum one wishes to evaluate (modulo a constant),
plus a (non-Gaussian) white noise. Whenever the number of (inverse) Fourier com-
ponents of the logarithm of the power spectrum is much smaller than the length of
the time series, applying a low-pass filter to Eq. (5.12) would result in a reduction
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Figure 5.5: Cepstral coefficients of the heat flux computed from one MD trajec-
tory for Ar, H2O, a-SiO2 (100 ps), and MgO (500 ps), analysing the low-frequency
region of the periodogram (see Fig. 5.3) and defined in Eq. (5.15). The vertical
dashed line indicates (P ∗−1), i.e. the maximum coefficient summed in Eq. (5.18),
chosen by the Akaike’s information criterion, Eq. (5.27).

of the power of the noise, without affecting the signal. In order to exploit this idea,
we define the “cepstrum” of the time series as the inverse Fourier transform of its
sample log-spectrum [128]:

`Ĉn =
1

N

N−1∑

k=0

`L̂ke
−2πi kn

N , (5.15)

and its coefficients as the cepstral coefficients (or “quefrencies”). A generalised
central-limit theorem for Fourier transforms of stationary time series ensures that,
in the large-N limit, these coefficients are a set of independent (almost) identically
distributed zero-mean normal deviates [129, 130]. It follows that:

`Ĉn = λ`δn0 + Cn + `µn, (5.16)

Cn =
1

N

N−1∑

k=0

log
(
S(ωk)

)
e−2πi kn

N , (5.17)

where `µn are independent zero-mean normal deviates with variances
〈
`µ2
n

〉
= 1

N σ
2
`

for n /∈
{

0, N2
}

and
〈
`µ2
n

〉
= 2

N σ
2
` otherwise. This result can be easily checked explic-

itly by using the definition of the discrete Fourier transform; the non-trivial extra
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information provided by the central-limit theorem is the asymptotic independence
and normality of the `µ’s. Similarly to the sample power spectrum, the cepstral
coefficients are real, periodic, and even: Ĉn = ĈN−n.

In some sense, the cepstrum can be interpreted as a sort of correlation function
in a pseudo-time domain. However, it differs from the original HCACF for the fact
its coefficients are statistically independent and normally distributed, whereas the
HCACF values at close time-lags are correlated. The word “cepstrum”, obtained by
reversing the first four letters of “spectrum”, was coined to distinguish it from the
power spectrum of a signal, and its coefficients essentially give information about
the rate of change in the different spectrum bands. This concept has found many
applications in voice recognition, pitch detection, characterisation of seismic and
radar echoes, and more.

A thermal conductivity estimator

If the log-spectrum, log(S(fk)), is smooth enough, the number of non-negligible Cn
coefficients in Eq. (5.17) is much smaller than N . For example, Fig. 5.5 displays the
cepstral coefficients of the low-frequency region of the spectrum of the four systems
(marked in Fig. 5.3), showing that only the first few coefficients are substantially
different from zero. Therefore, let us indicate by P ∗ the smallest integer such that
Cn ≈ 0 for P ∗ ≤ n ≤ N − P ∗. By limiting the Fourier transform of the sample
cepstrum, Eq. (5.15), to P ∗ coefficients, we obtain an efficient estimator of the
zero-frequency component of the log-spectrum as:

`L̂∗0 = `Ĉ0 + 2

P ∗−1∑

n=1

`Ĉn

= `Λ + log(S0) + `µ0 + 2

P ∗−1∑

n=1

`µn .

(5.18)

Inspection of Eq. (5.18) shows that `L̂∗0 is a normal estimator whose expectation
and variance are:

〈`L̂∗0〉 = log(S0) + `Λ , (5.19)

σ∗` (P
∗, N)2 =

4P ∗ − 2

N
σ2
` . (5.20)

Using Eq. (5.6), we see that the logarithm of the conductivity can be estimated
from the cepstral coefficients of the flux time series through Eqs. (5.18-5.20), and
that the resulting estimator is always normal with a variance that depends on the
specific system only through the number of these coefficients, P ∗. Notice that the
absolute error on the logarithm of the conductivity directly and nicely yields the
relative error on the conductivity itself.

The value of P ∗ is a property of the stochastic process underlying the time
series, and is therefore independent of N : for any given value of P ∗ the variance σ∗2`
tends to zero in the large-N limit, and `L̂∗0 − Λ` is thus a consistent estimator of
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Figure 5.6: Filtered low-frequency region of the power spectrum of Ar, H2O,
MgO, and a-SiO2 obtained by limiting the number of cepstral coefficients to P ∗,
as defined in Eq. (5.21). The lowest P ∗ is the cutoff value suggested by the Akaike’s
information criterion, Eq. (5.27). Grey curve: unfiltered periodogram obtained from
Eq. (5.8).

log(S0). In general, all the cepstral coefficients are different from zero and assuming
that many of them actually vanish introduces a bias. The efficacy of this approach
obviously depends on our ability to estimate the number of coefficients necessary
to keep the bias introduced by the truncation to a value smaller than the statistical
error (that increases with P ∗), while maintaining the magnitude of the latter at a
prescribed acceptable level.

The choice of P ∗ is the subject of model selection theory, another vast chapter
in the statistical sciences [131]. Among the several tests that have been devised to
perform this task, we choose the optimization of the Akaike’s information criterion
(AIC) [131, 132], as described in Sec. 5.2.4 below, but other more advanced model
selection approaches [131] may be more effective.

In Fig. 5.6 we report the low-frequency region of the spectrum of the four anal-
ysed systems obtained by limiting the number of cepstral coefficients to P ∗:

`Ŝ∗k = exp

[
2

P ∗−1∑

n=1

`Ĉne2πi kn
N + `Ĉ0 − `Λ

]
, (5.21)

thus showing the filtering effect (aka “lif tering”, playing on the anagram theme)
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Figure 5.7: Thermal conductivity estimated from Eqs. (5.18-5.20) as a function
of the cutoff P ∗ from one MD trajectory for Ar, H2O, a-SiO2 (100 ps), and MgO
(500 ps). The colored bands indicate the statistical error estimated by the theory.
The vertical dashed line indicates the value suggested by the Akaike’s information
criterion, Eq. (5.27), P ∗A.
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Figure 5.8: Ratio between the theoretical errors obtainable using method (b)
(Eq. (5.23)) and method (a) (Eq. (5.22)). π√

6
is its asymptotic value.

of this choice. Finally, Fig. 5.7 shows the value of thermal conductivities obtained
through Eqs. (5.18-5.20) as a function of P ∗.
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Single estimate or multiple estimates?

When estimating the value of L0 from ` multiple samples of a same process, one
has two options:

(a) compute the mean periodogram `Ŝk, Eq. (5.10), and then compute `L̂∗0 from
Eq. (5.18). This leads to Eq. (5.20):

var
(
`L∗0
)

= σ∗` (P ∗, N)2 ; (5.22)

(b) compute the periodogram of each sample 1Ŝk individually, then weight average
the estimator of 1L∗0. This gives

var
(

1
`

∑`
i=1

1L̂∗i0

)
= 1

`σ
∗
1

(
P ∗, N`

)2
. (5.23)

In Fig. 5.8 we plot the ratio of the corresponding standard deviations, that is
√

σ2
1

`σ2
`

=
π√

6`ψ′(`)
> 1: we conclude that it is more convenient to perform the average over

the periodograms (a) instead of on the final estimator (b).
The dependence of σ` on ` (displayed in Fig. 5.4) gives us a leverage to re-

duce the variance of the estimate of L0, essentially for free. Suppose one parti-
tions each of the ` time series of N elements into m segments of N/m elements.
When the segments are long enough, the sample average evaluated for each of
them has the same variance as the value obtained from the entire trajectory, i.e.
σ∗` (P

∗, N/m)2/m = σ∗` (P
∗, N)2, thus providing no improvement. If instead one

evaluates L0 from the mean periodogram averaged over the ` × m segments, the
corresponding variance would be σ2

`m(P ∗, N/m), which is a decreasing function of m
(see Fig. 5.4) and tends to 4P ∗−2

`N for `m� 1. In practice the asymptotic behaviour
σ2
` = ψ′(`) ≈ 1/` is reached for ` & 6 (6σ2

6 ≈ 1.09), and we propose to use m = 6
segments when only one time series is available (` = 1), thus reducing the standard

deviation by a factor
√

σ2
1

6σ2
6
≈ 1.23. When three times series are available, such as

in the simulation of thermal transport in isotropic materials (` = 3), the advantage
of segmenting the trajectory by choosing e.g. m = 2 segments would be marginal

(
√

3σ2
3

6σ2
6
≈ 1.04), and we choose therefore to keep m = 1.

5.2.4 Akaike Information Criterion

We summarise here the AIC, a simple model selection criterion that one can adopt
to choose an optimal value of P ∗, in an easily automatable way and without relying
on any subjective criterion.

Given a model depending on P parameters, θ = {θ1, θ2, · · · θP }, the AIC [131,
132] is a sample statistic defined as

AIC(P ) = −2 max
θ

logL(θ, P ) + 2P, (5.24)
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where L(θ, P ) is the likelihood of the parameters. The optimal number of parameters
is determined as the argument of the AIC minimum:

P ∗A ≡ arg min
P

AIC(P ). (5.25)

In the present case the parameters of the model are the P coefficients C =
{C0, C1, · · ·CP−1} as defined in Eq. (5.17), and the log-likelihood reads, up to ad-
ditive terms independent of P and C:

2 logL(C,P ) = − N

2σ2
`

(
C0 + Λ` − Ĉ0

)2
− N

σ2
`

P−1∑

n=1

(
Cn − Ĉn

)2
− N

σ2
`

N/2∑

n=P

Ĉ2
n. (5.26)

Evidently, the above expression is maximized, for given P , by Cn = Ĉn −
δn0Λ` for n = 0, 1, · · ·P − 1, and the corresponding value of the maximum is:

2 maxC logL(C,P ) = −N
σ2
`

∑N/2
n=P Ĉ

2
n. We conclude that the value of the AIC is:

AIC(P ) =
N

σ2
`

N/2∑

n=P

Ĉ2
n + 2P. (5.27)

The value of P that minimizes this expression is the optimal number of parameters
in the Akaike sense, P ∗A, as defined in Eq. (5.25). In Fig. 5.5 and 5.7 the value P ∗A
chosen by the AIC for the four systems is indicated by vertical dashed lines.

5.2.5 Nyqvist frequency

The maximum frequency available for spectral/cepstral analysis is the Nyqvist fre-
quency [108], determined by the sampling period ε as fNy = 1

2ε (i.e. angular fre-
quency ωNy = 2πfNy). Transport coefficients only depend on the low-frequency
behaviour of the spectrum, which is independent of ε, as long as the latter is small
enough as to avoid aliasing effects. For this reason it may prove convenient to elim-
inate the high-frequency portion of the spectrum (f > f∗) by applying a low-pass
filter to the time series (e.g. a moving average [112]) and then resample the latter
with a sampling period ε∗ = 1

2f∗ , thus resulting in a time series of N∗ = N f∗

fNy
time

steps.
The optimal number of cepstral coefficients resulting from Eqs. (5.25) and (5.27),

as well as the error in the estimate of the transport coefficients resulting from
Eq. (5.20), depends in general on the choice of the cutoff frequency, f∗. The smaller
f∗, the smaller will presumably be the number of cepstral coefficients necessary to
describe the log-spectrum to any given accuracy over such a shorter frequency range.
However, the shorter length of the filtered time series, N∗, results in an increased
variance of the estimator `L̂∗0 defined in Eq. (5.18), according to Eq. (5.20). Numeri-
cal experiments performed on the MD data reported in Sec. 5.2.7 and Fig. 5.12 show
that both the estimated value of `L̂∗0 and its variance are actually fairly insensitive
to the value chosen for the cutoff frequency, f∗, provided that the power spectrum of
the re-sampled time series faithfully features the first band of the original spectrum
(i.e. the first prominent feature) and that this band is not too peaked at the origin.
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5.2.6 Data analysis work-flow (solids and one-component fluids)

We summarise the steps leading to the estimation of thermal conductivity by the
cepstral analysis method, in order to highlight the simplicity of its practical imple-
mentation.

1. From a MD simulation compute the energy flux time series J in, i = 1, · · · `
(usually ` = 3 cartesian components).

2. Compute the discrete Fourier transform of the fluxes, J̃ ik, and the mean-

periodogram `Ŝk from Eqs. (5.8) and (5.10), and smooth it out using e.g.
a moving average [112] performed over a narrow frequency window, so as
to reduce the statistical noise to a level where the shape of the power
spectrum of the underlying process can be appreciated.4

3. Only a selected low-frequency region shall be used in the next steps (see
Sec. 5.2.5 and 5.2.7 for a detailed discussion): choose a cutoff frequency,
f∗, so as to encompass the first band of the smoothed power spectrum.

4. Compute the log-periodogram `L̂k = log(`Ŝk).

5. Compute the inverse discrete Fourier transform of the result to obtain the
cepstral coefficients `Ĉn, Eq. (5.15).

6. Apply the Akaike Information Criterion, Eqs. (5.25) and (5.27), to estimate
the number of cepstral coefficients to retain, P ∗.

7. Finally apply Eq. (5.18) to obtain `L̂∗0, and evaluate the thermal conduc-
tivity as

κ =
Ω

2kBT 2
exp

[
L̂∗0 − ψ(`) + log(`)

]
, (5.28)

and its statistical error as

∆κ

κ
=

√
ψ′(`)

4P ∗ − 2

N
. (5.29)

4Mind the difference between the moving average performed in the frequency domain to smooth
out the power spectrum and that performed in the time domain, as suggested before, and acting as
a low-pass filter. Spectral smoothing using a moving average in the frequency domain is common
practice in the analysis of time series, and it actually provides a consistent estimator of the power
spectrum. In fact, the number of frequencies falling within a window of given width increases
linearly with the length of the series, so that the variance of the average decreases as the inverse
of the product of the length of the series times the width of the window. The resulting spectral
estimate is however biased by the variation of the signal within the window, thus strongly reducing
the width of the windows that can be afforded. Moreover, both the bias and the statistical error
are difficult to estimate, due to the multiplicative nature of the noise; therefore neither the plain
periodogram nor a running average thereof are adequate for a quantitative estimate of the zero-
frequency value of the power spectrum, which is proportional to the transport coefficient we are
after.
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5.2.7 Benchmarks

The cepstral analysis method just presented has been implemented in a Python
package, ThermoCepstrum [133], and benchmarked for the calculation of the
thermal conductivity of the four representative systems presented in Sec. 5.1.1:
liquid Ar, liquid H2O, crystalline MgO and amorphous SiO2. After equilibration,
data were collected in the NVE ensemble for trajectories whose length was chosen
so as to represent realistic simulation runs that could be afforded using ab initio
MD (T = 100 ps for Ar, H2O, and a-SiO2, and T = 500 ps for MgO). In order to
compare our estimates of the transport coefficients and their statistical errors with
reliable and statistically significant reference data, in all cases we ran much longer
(≈ 50 ns) simulations. This allowed us to compare our predicted conductivities with
accurate values estimated from the direct integration of the GK equation, Eqs. (5.2)
and (5.3), as obtained from a block average [82] performed over the long trajectory
(see Sec. 5.1.2). In addition, we could collect abundant statistics of our estimator for
the transport coefficients, Eq. (5.18), and validate its normal distribution specified
by Eqs. (5.19) and (5.20).

The periodograms of one segment of each system are reported in Fig. 5.3, where
a moving average in also computed in order to reveal the main features of the
power spectrum. The values of the cutoff frequencies used for cepstral analysis,
f∗, are chosen so as to encompass the first prominent feature of the (smoothed)
power spectrum. For instance, in H2O and a-SiO2 we choose f∗ ≈ 29 THz and
f∗ ≈ 28 THz, respectively. In MgO we assume f∗ ≈ 0.6 THz, just at the upper edge
of the first narrow peak, whereas in Ar there is just one band, corresponding to
a purely diffusive behaviour of a simple fluid, and we assume f∗ ≈ 7 THz, where
the spectrum has exhausted most of the available power, but its value is not yet
too small (see Fig. 5.3). The corresponding average numbers of cepstral coefficients
given by the optimization of the AIC are: P ∗A = 5 (Ar), 7 (H2O), 4 (MgO), and 31
(a-SiO2). Later we will display the dependence of the number of optimal cepstral
coefficients and of the resulting estimate of the thermal conductivity on the choice
of f∗, and show that this choice is not critical.

In order to validate our data-analysis protocol, we first computed the heat
conductivities from a direct integration of the current autocorrelation function,
Eqs. (5.2) and (5.3), combined with standard block analysis over the 50 ns long
trajectory (see Sec. 5.1.2), that will be taken as a reference, obtaining: κref =
0.1965 ± 0.0015, 0.970 ± 0.009, 19.2 ± 0.4, and 2.115 ± 0.025 W/mK, for Ar, H2O,
MgO, and a-SiO2, respectively. Although our simulations were meant for bench-
marking purposes only, and no particular attention was paid to exactly match the
simulation conditions of previous work, these data are in fair agreement with the
foregoing theoretical results: ≈ 0.19 W/mK (Ar) [103], ≈ 0.85 W/mK (H2O) [134],
≈ 12 W/mK (MgO) [105], and ≈ 2.1 W/mK (a-SiO2) [135].

Distribution of the estimator of κ

In Fig. 5.9 we display the distributions of the values of log(κ/κref) estimated by
applying our protocol to multiple MD segments of 100 ps (for Ar, H2O, a-SiO2) and
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Figure 5.9: Distributions of the logarithm of the thermal conductivities, log(κ),
estimated over multiple MD segments (100 ps for Ar, H2O, and a-SiO2, and 500 ps
for MgO) extracted from a 50 ns long trajectory. The reported data are referred
to κref , which is the value obtained from a direct integration of the GK equation,
combined with standard block analysis over the 50 ns trajectory, and represented by
the vertical gray bands. The Gaussian curves represent the distributions predicted
by the theory, centered at the sample mean. Remember that the absolute error on
log(κ) is the relative error on κ. Reproduced from Ref. [B].

500 ps (for MgO), extracted from the 50 ns long trajectory. The optimal numbers of
cepstral coefficients, P ∗, have been redetermined for each segment independently,
while the values of the cutoff frequency, f∗, which only depends on the qualitative
features of the spectrum, have been determined once for all for one of them. The dis-
tribution of the resulting number of cepstral coefficients is reported in Fig. 5.10. The
observed distributions of log(κ) successfully pass the Shapiro-Wilk normality test
[136] (i.e. they do not fail it) and the observed sample standard deviations closely
match the theoretical values estimated from Eq. (5.20), as reported in Table 5.1.
Remember that the error on log(κ) is the relative error on κ: the corresponding
absolute errors achievable with a short trajectory of 100 (Ar, H2O, and a-SiO2) or
500 (MgO) ps, not to be confused with the long trajectory used to establish the
reference data above, are therefore: σκ ≈ 0.015 (Ar), 0.045 (H2O), 2 (MgO), and
0.2 (a-SiO2) W/mK. This indicates that a single and short sample trajectory, such
as one that is affordable with ab initio MD, is sufficient to achieve and accurately
estimate a very decent relative error on the computed transport coefficient. In an
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Figure 5.10: Distribution of the optimal numbers of cepstral coefficients, P ∗A,
as determined by optimizing the Akaike’s information criterion, Eqs. (5.25) and
(5.27), for each segment of the 50 ns long MD trajectory, as described in Sec. 5.2.4.
The vertical dashed lines indicate the average value of P ∗A. Reproduced from
Ref. [B].

sample theory

Ar (100 ps) 0.104 0.079

H2O (100 ps) 0.053 0.045

MgO (500 ps) 0.17 0.11

a-SiO2 (100 ps) 0.114 0.095

Table 5.1: Observed and theoretical standard deviations of the distributions of
log(κ), displayed in Fig. 5.9. The theoretical values are obtained from Eq. (5.20).
Remember that the absolute error on log(κ) is the relative error on κ.

attempt to evaluate the thermal conductivity from the direct computation of the
GK equation, Eqs. (5.2) and (5.3), and standard block analysis using similarly short
MD trajectories, our best estimate of the resulting statistical error was 2-3 times
larger than using our protocol (meaning 5 − 10× longer trajectories to achieve a
comparable accuracy) in all cases but liquid Ar, where only a marginal improvement
is achieved using our methodology. Much more than this, the standard analysis of
MD data depends on a number of hidden parameters, such as the upper limit of the
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Figure 5.11: Dependence of log(κ), as estimated from Eq. (5.18), on the number
of cepstral coefficients P ∗. P ∗A is the optimal number of coefficients estimated from
the AIC using Eqs. (5.25) and (5.27). The black dots represent the mean values
of log(κ) computed over multiple MD segments (100 ps for Ar, H2O, and a-SiO2,
and 500 ps for MgO) extracted from a 50 ns long trajectory; the colored bands
and dashed lines represent one standard deviation as estimated from the empirical
statistics and from Eq. (5.20), respectively. The reported data are referred to κref ,
which is the value of thermal conductivity obtained from a direct integration of
the GK equation, combined with standard block analysis over the 50 ns trajectory,
and represented by the horizontal gray bands. Remember that the absolute error
on log(κ) is the relative error on κ. Reproduced from Ref. [B].

GK integral, Eq. (5.2), or the width of the blocks for error analysis, that are hard to
determine and keep under control, as discussed in Sec. 5.1.2. Our method, instead,
only depends on a single parameter, the number of cepstral coefficients, whose opti-
mal value can be easily determined from the Akaike’s information criterion, or other
more sophisticated model-selection methods [131, 137], as appropriate.

Bias

In order to estimate the bias introduced by limiting the number of cepstral coeffi-
cients, we examined the sample mean of the estimator of κ, 〈κ〉, computed over the
distributions displayed in Fig. 5.9, obtaining the values reported in Table 5.2. Com-
paring these data with the reference data obtained from the direct evaluation of the
GK integral, we see that the bias is negligible for H2O and a-SiO2, very small for
Ar, and small but not negligible for MgO. In Fig. 5.11 we display the dependence of
log(κ/κref) on the number of cepstral coefficients, P ∗, as estimated from Eq. (5.18).
We observe that when the number of cepstral coefficients, P ∗, is larger than the
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〈κ〉 κref

Ar 0.1878± 0.0007 0.1965± 0.0015

H2O 0.969± 0.002 0.970± 0.009

MgO 16.7± 0.2 19.2± 0.4

a-SiO2 2.131± 0.009 2.115± 0.025

Table 5.2: Sample mean of the estimated κ, computed over the distributions
displayed in Fig. 5.9; and reference values of thermal conductivity, κref , obtained
from the direct integration of the GK equation over the 50 ns trajectory. Units are
W/mK.

optimal value determined from the AIC, P ∗A, the estimated value of κ seems not to
depend on P ∗ for all systems but MgO, for which a slight bias seems to persist, and
to a much lesser extent for Ar. Also, Eq. (5.20) seems to slightly underestimate the
sample variance for small P ∗ in these cases. In the case of MgO this behaviour is
likely due to the difficulty of the AIC to cope with the sharp low-frequency peak in
the power spectrum, due to the highly harmonic character and slow decay of the
vibrational heat carriers in periodic crystals [42], thus requiring longer simulation
times. In the case of Ar the very small bias observed for P ∗ = P ∗A may be due to
the difficulty of choosing a suitable cutoff frequency when only a single diffusive
band is present in the spectrum, and to the divergence of the log-spectrum at high
frequency. In all cases, use of the Aikake’s information criterion results in a bias
that is smaller than the statistical error estimated from an individual short sample
trajectory and that can be systematically removed by increasing the value of P ∗,
at the price of increasing the statistical error, if and when needed.

Cutoff frequency f∗

In Fig. 5.12 we report the dependence of the optimal number of cepstral coeffi-
cients, P ∗A, as a function of the cutoff frequency, f∗, along with the dependence
of the resulting estimate of log(κ/κref). P

∗
A increases (roughly linearly) with f∗.

Notwithstanding, the estimated value of the heat conductivity, as well as its vari-
ance, is fairly insensitive on the precise value of f∗ as long as the latter is large
enough as to encompass the lowermost prominent feature of the spectrum. Some
more comments are in order for MgO. In this case the high thermal conductivity,
due to the strong harmonic character of slowly decaying phonon modes, manifests
in the form of a narrow peak centered at f = 0, followed by a broad plateau that
carries little spectral weight. This feature determines a more pronounced increase
in the number of significant cepstral coefficients as f∗ increases and a corresponding
increase of the bias when keeping P ∗ at the value given by the AIC. In this case,
the AIC is a less reliable indicator of the number of cepstral coefficients necessary
to keep the bias low. By increasing this number by a factor of two or more, the bias
decreases, as indicated by the results reported in lighter colors in Fig. 5.12, and
eventually vanishes, as shown in Fig. 5.11.
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Figure 5.12: Triangles: average optimal number of cepstral coefficients, P ∗A, as
determined by the AIC, Eqs. (5.25) and (5.27), as a function of the cutoff frequency
used for cepstral analysis, f∗ (see discussion just after Eq. (5.27)). Squares: log(κ)
resulting from a given choice of f∗ and of the corresponding value of P ∗A. All the
values are averages performed over multiple 100 ps long segments (500 ps for MgO)
extracted from a 50 ns long MD trajectory, as discussed in the text. The colored
bands indicate the sample standard deviation and the dashed lines that resulting
from our theoretical analysis (see Eq. (5.20)). The vertical arrows indicate the
cutoff frequencies, f∗, used for the cepstral analysis in this paper (see Fig. 5.3
and text). In the case of MgO, the data indicated with lighter colors are obtained
using a number of cepstral coefficients twice as large as that provided by the AIC,
P ∗ = 2P ∗A. The data are referred to κref , which is the value of thermal conductivity
obtained from direct integration of the GK equation over the 50 ns trajectory, and
represented by the horizontal gray bands. Remember that the absolute error on
log(κ) is the relative error on κ. Reproduced from Ref. [B].

Trend with simulation length

The estimate of κ of Ar, H2O, and a-SiO2 obtained from a single trajectory seg-
ment of 100 ps is very good. As a function of the cutoff frequency f∗, log(κ) oscillates
around an average value that is compatible with the distributions of Fig. 5.9. Using
a longer trajectory segment the magnitude of these oscillations decreases, making
the estimate of κ more stable at different f∗, which is compatible with the reduced
variance of its distribution. In the case of MgO, instead, it appears that by increas-
ing the trajectory length N the bias decreases, and the value of log(κ) becomes
less and less dependent upon the f∗ choice, if we set P ∗ = P ∗A. The number of
frequencies used for the cepstral analysis is equal to N/2, and the frequency reso-
lution is ∆f = 1

Nε . In a crystalline system like MgO, the long-living phonon modes
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manifest themselves as a slowly decaying HCACF (i.e. a long autocorrelation time)
and a sharp peak at f ≈ 0 in the spectrum. In order to adequately sample the
low-frequency region, a longer trajectory is thus required. Whether it is possible
to define a minimum simulation length necessary to optimize the estimate of κ in
such critical cases is an issue that should be studied more extensively, possibly by
analysing synthetic analytic stochastic time series that can reproduce similar power
spectra. We believe that our model selection criterion can be improved to perform
better in this critical class of systems.

There are two filtering operations that can possibly introduce some spurious
effect into the estimate of κ. The first is the low-pass filter applied to the time
series before resampling, usually a moving average, that is a rectangular window.
The type of filter used in this instance will affect the highest frequencies of the
spectrum of the resampled heat current (due to aliasing effects and to an effect
called spectral leakage). The second effect happens when we cut off the cepstrum
at P ∗. Setting a hard cutoff at P ∗ will result in a low-filtered signal equal to the
original log-periodogram convolved with a sinc function (the Fourier transform of
a rectangular window). This may not be the optimal choice and the estimated log-
periodogram will be affected by this, in a certain measure. Therefore, both these
filtering operations may add some subtle effects to the estimate of κ and should be
studied more extensively, in the future.

5.3 Multi-component fluids

In Sec. 2.3.2 we have seen that in a fluid made of Q atomic species there are in
general Q macroscopic fluxes interacting with each other through Onsager’s phe-
nomenological equations, Eq. (2.9), not counting the different Cartesian components
that do not interact amongst themselves because of space isotropy. A MD simulation
thus samples Q stochastic processes, one for each interacting flux, that we suppose
to be stationary. These processes can be thought of as different components of a
same multivariate process. Therefore, we can easily generalize the cepstral analysis
method presented in Sec. 5.2 to these systems [D].

5.3.1 Cepstral analysis

As in Sec. 5.2, for the sake of generality we suppose to have ` independent samples of
such a process, described by a multivariate time series of lengthN : {pJ in}; p = 1, . . . `;
i = 1, . . . Q; n = 0, . . . N − 1. Stationarity implies that 〈J in〉 does not depend on n
and that 〈J inJ

j
m〉 only depends on n−m. We will further assume that 〈J in〉 = 0 and

that 〈J inJ
j
0〉 is an even function of n, which is the case when J i and J j have the same

signature under time-reversal. By combining Eq. (2.48) with Eq. (2.25), we see that
in order to evaluate the thermal conductivity in the multi-component case we need

an efficient estimator for
(
S−1

0

)11
, where Skl0 = Skl(ω = 0) is the zero-frequency



64 ab initio simulation of heat transport in silica glass

cross-spectrum of the relevant fluxes, ordered in such a way that the energy one is
the first.

Similarly to the one-component case, we define a mean sample cross-spectrum
(or cross-periodogram) as

(`Q)Ŝijk =
1

`

∑̀

p=1

ε

N

(
pJ̃ ik

)∗
pJ̃ jk . (5.30)

By discretizing Eq. (2.24) we see that (`Q)Ŝijk is an unbiased estimator of the cross-

spectrum,
〈

(`Q)Ŝijk

〉
= Sij

(
ωk = 2πk

Nε

)
. As it was the case for univariate processes,

in the large-N limit the real and imaginary parts of J̃ ik are normal deviates that
are uncorrelated for k 6= k′. We conclude that the cross-periodogram is a random
matrix distributed as a complex Wishart deviate [138, 139]:

(`Q)Ŝk ∼ CWQ (S(ωk), `) . (5.31)

The notation CWQ (S, `) in Eq. (5.31) indicates the distribution of the Q×Q Her-

mitian matrix (`Q)Ŝij = 1
`

∑`
p=1

pXi pXj∗, where {pXi} (p = 1, · · · `, i = 1, · · ·Q)
are ` samples of an Q-dimensional zero-mean normal variate whose covariance is
Sij = 〈XiXj∗〉.

Similarly to the real case, a Bartlett decomposition [140] holds for complex
Wishart matrices [141], reading:

(`Q)Ŝ =
1

`
SRR>S†, (5.32)

where “>” and “†” indicate the transpose and the adjoint of a real and complex
matrix, respectively; S is the Cholesky factor of the covariance matrix, S = SS†,
and R is a real lower triangular random matrix of the form

R =




c1 0 0 · · · 0

n21 c2 0 · · · 0

n31 n32 c3 · · · 0
...

...
...

. . .
...

nQ1 nQ2 nQ3 · · · cQ



, (5.33)

where c2
i ∼ χ2

2(`−i+1) and nij ∼ N (0, 1). We stress that R is independent of the
specific covariance matrix, and only depends upon ` and Q. In particular it is
independent of the ordering of the fluxes J i. By expressing the QQ matrix element
of the inverse of (`Q)Ŝ in Eq. (5.32) as the ratio between the corresponding minor
and the full determinant, and using some obvious properties of the determinants
and of triangular matrices, we find that:

`(
(`Q)Ŝ−1

k

)
QQ =

1(
S−1
k

)QQ c2
Q
, (5.34)
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Figure 5.13: Multi-component power spectrum, as defined in Eq. (5.35), for a
classical flexible model of a solution of water and ethanol 50 mol%, obtained from
a 100 ps trajectory. Grey: `Ŝ k obtained directly from Eq. (5.35), with ` = 3 and
Q = 2. Blue: `Ŝ k filtered with a moving average window of width 1 THz in order to
reveal its main features. The vertical dashed line delimits the low-frequency region
used in the subsequent cepstral analysis. Reproduced from Ref. [D].

As the ordering of the fluxes is arbitrary, a similar relation holds for all the diagonal
elements of the inverse of the cross-periodogram. We conclude that the generaliza-
tion of Eq. (5.10) for the multi-component case is:

`Ŝ k ≡
`

2(`−Q+ 1)

1(
(`Q)Ŝ−1

k

)
11 =

1(
S−1
k

)11 ξk, (5.35)

where ξk are independent random (with respect to k) random variables, distributed
as

ξk ∼





1
`−Q+1 χ

2
`−Q+1 for k ∈ {0, N2 },

1
2(`−Q+1) χ

2
2(`−Q+1) otherwise.

(5.36)

Starting from here we can apply the cepstral analysis as in the one-component case.
The only difference is the number of degrees of freedom of the χ2 distribution, that
becomes 2(`−Q+1), and a different factor in front of the result. Fig. 5.13 shows an
example of multi-component power spectrum for a solution of water and ethanol.

5.3.2 Discussion

The method discussed so far shows a fundamental advantage with respect to a
näıve implementation of direct time-integration approach. Fig. 5.14 shows the two-
component conductivity κ, obtained via Eq. (5.3) as a function of the upper time-
integration limit T ,

κ(T ) =
1

T 2

(
LEE(T )− (LEQ(T ))2

LQQ(T )

)
, (5.37)
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Figure 5.14: Convergence of the multi-component thermal conductivity estima-
tor κ using the direct time-integration approach and the cepstral method, for a
classical flexible model of a solution of water and ethanol 50 mol%, obtained from
a 100 ps trajectory. (a) Direct time-integration approach in its Green-Kubo (green,

as obtained from the matrix Lij(T ) ∝
∫ T
0

〈
J i(t)Jj(0)

〉
dt) and Einstein-Helfand

(orange – obtained from the matrix
(
Lij
)′

(T ) ∝
∫ T
0

(
1− t

T
) 〈
J i(t)Jj(0)

〉
dt) for-

mulations. The horizontal purple band indicates the value obtained by the cepstral
method. (b) Estimate of κ with the cepstral method as a function of the number
of cepstral coefficients, P ∗, see Eqs. (5.18-5.20). The dashed vertical line indicates
the value of P ∗ selected by the AIC, Eq. (5.27). Reproduced from Ref. [D].

in the case of a water-ethanol solution. Both the Green-Kubo and the Einstein-
Helfand definitions of the finite-time expression of Onsager’s coefficients (see
Eq. (2.21)) are displayed. Due to thermal fluctuations, the integral of the corre-
lation function becomes a random walk as soon as the latter vanishes, eventually
assuming any value. Therefore, there will be a set of times (see Fig. 5.14) where the
term LQQ at the denominator in Eq. (5.37) vanishes, leading to divergences in the
evaluation of κ; an issue not affecting the one-component case. Hence, in such a for-
mulation of the multi-component case, the mean value of the thermal conductivity
estimator in the time domain does not exist. On the contrary, the multi-component
frequency-domain approach presented in this section, and built on sound statistical
basis, provides a well defined expression for the estimator of κ and its statistical
error.

5.3.3 Data analysis work-flow (multi-component fluids)

We summarise the steps leading to the estimation of thermal conductivity by the
cepstral analysis method for multi-component fluids, in the same way we did in
Sec. 5.2.6 for solids and one-component fluids.

1. From a MD simulation compute the heat flux time series J1
n and the in-

dependent particle fluxes Jqn, q = 2, . . . , Q.

2. Compute the discrete Fourier transform of the fluxes, J̃ ik, and the element
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1/(Ŝ−1)11. In practice, only a selected low-frequency region shall be used
(see [B] for a detailed discussion).5

3. Calculate log
[
1/(Ŝ−1)11

]
.

4. Compute the inverse discrete Fourier transform of the result to obtain the
cepstral coefficients Ĉn.

5. Apply the Akaike Information Criterion, Eq. (5.27), to estimate the num-
ber of cepstral coefficients to retain, P ∗.

6. Finally apply Eq. (5.18) to obtain L̂∗0, and evaluate the thermal conduc-
tivity as

κ =
Ω

2kBT 2
exp

[
L̂∗0 − ψ(`−Q+ 1) + log(`−Q+ 1)

]
, (5.38)

and its statistical error as

∆κ

κ
=

√
ψ′(`−Q+ 1)

4P ∗ − 2

N
. (5.39)

5.4 Optimization of heat currents

In this section we exploit the gauge invariance principle, presented in Sec. 3.2, to
define alternative equivalent expressions for the energy current. This procedure is
particularly useful when dealing with multi-component systems where energy is
the only relevant conversed quantity, such as solids where atoms do not diffuse or
molecular liquids, as discussed in Sec. 3.3. These ideas reveal to be particularly useful
in the analysis of ab initio energy flux time series, that are typically characterised by
a much larger variance than classical energy fluxes. In order to illustrate the origin
of this phenomenon, we consider the case of liquid heavy water that was simulated
by Marcolongo et al. [31] from first-principles.

Formation energies contributions in heavy water simulations

Marcolongo et al. [31] computed the thermal conductivity of heavy water at 400 K,
a temperature that is know to predict qualitatively the self-diffusion coefficient
of water at ambient conditions [142] using the PBE exchange-correlation energy
functional [143]. A system of 64 heavy-water molecules was considered and sampled
for 90 ps in the NVE ensemble at the experimental density of 1.11 g cm−3.

As commented in Sec. 3.3, the ab initio energy fluxes of molecular fluids con-
tain non-diffusive components that, while not contributing to the conductivity, do
increase the noise of the flux time series to a level that may compromise its anal-
ysis. To see where the problem comes from, let us split the potential energy of the

5To lighten the notation, we drop the left superscripts of the variables in this subsection.
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system into the sum of non-interacting atomic energies plus an interaction energy,
as: V ({Rn}) =

∑
n ε
◦
n + Vint({Rn}), where ε◦n is the energy of the n-th atom when

it is isolated from the rest. In classical simulations the energy of isolated atoms
never enters the description of the system, and the ε◦n’s can be simply set to zero.
In quantum simulations, instead, atomic and interaction energies enter on a same
footing and the former give a large and fluctuating contribution to the total en-
ergy flux, J◦ =

∑
X ε
◦
XJX , where JX is the number flux defined in Eq. (3.18). In

a monoatomic fluid JX is constant because of momentum conservation and it is
actually equal to zero in the center-of-mass reference frame. In molecular fluids the
JX do not vanish but they are non-diffusive and hence do not contribute to the
heat conductivity, while adding considerable noise to the energy-flux time series.
In order to remove them, instead of estimating J◦ from the non-interacting atomic
energies, one can apply one of the techniques described in the following, that exploit
the gauge invariance principle

Decorrelation technique

Current decorrelation builds on the Lemma 1 presented in Sec. 3.2.1. Let us now
suppose that a set of fluxes {Yu}, u = 1, . . . U is known to exhibit a non-diffusive
behavior. Lemma 1 shows that the auxiliary flux defined as

J′ ≡ J−
∑

w

λwYw, (5.40)

will yield the same thermal conductivity as J. Optimal values of the {λu} coefficients
can then be determined by imposing that the new time series J′ is uncorrelated with
respect to the non-diffusive ones, i.e.:

〈JYu〉 −
∑

w

λw〈YwYu〉 = 0, u = 1, . . . U. (5.41)

This procedure is particularly useful when the Yu fluxes give a slowly converging
contribution to the Green-Kubo integral, which is thus difficult to evaluate numer-
ically.

The decorrelation technique has been applied to heavy water considering two
non-diffusive number fluxes: Y1 = JH + JO, i.e. the sum of hydrogen and oxy-
gen average velocities,6 and Y2 = Jel, the adiabatic electronic current defined
in Eq. (4.16), that is also non-diffusive. We denote by

(
J1
)′

and
(
J12
)′

the cur-
rents decorrelated with respect to Y1 alone, and with respect to both Y1 and Y2,
respectively. The power spectra of the two currents are plotted in Fig. 5.15 and
feature a total spectral power that is some order of magnitude smaller than that
of J (not shown). The low-frequency region of the spectra (up to ∼ 9.0 THz) was
used to estimate κ from cepstral analysis. The resulting thermal conductivities are
κ1 = 0.80± 0.12 W/mK for the

(
J1
)′

flux, and κ12 = 0.93± 0.14 W/mK for
(
J12
)′

,
compatible with each other. By comparison, experiments give a value κ ≈ 0.6 W/mK

6Note that the two time series JH and JO are trivially related, because of momentum conser-
vation. Therefore JH , JO, or JH + JO would all be equivalent choices.
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Figure 5.15: Periodogram of the
(
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)′

and
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currents, filtered with a moving
average window in order to reveal the prominent features. The vertical dashed line
delimits the low-frequency region used for cepstral analysis. Adapted from Ref. [C].

[144, 145]. Let us remark that in this case, data analysis would not have yielded
any meaningful results failing a proper decorrelation of the heat flux time series.

Velocity-Renormalization

An alternative “velocity-renormalization” (VR) can be applied before the energy
flux computation by redefining the particle velocities entering the definition of the
flux. Each velocity is renormalized by subtracting the velocity of the center of mass
of its species from it, that is

VRn (t) = Vn(t)− 1

NX

∑

m∈X
Vm(t), (5.42)

where X is the species of atom n, and the sum is performed over all atoms of that
species. The “renormalized” energy flux is thus defined by using the renormalized
velocities and keeping the positions unchanged, i.e.

JR ({Rn,Vn}; t) = J
(
{Rn,V

R
n }; t

)
. (5.43)

It is possible to prove that each species’ center of mass velocity gives a vanishing
particle current that do not contribute to the thermal conductivity in the thermo-
dynamic limit. This techniques removes this spurious signal without affecting the
thermal conductivity and possibly making the convergence faster, by decreasing the
magnitude of statistical fluctuations.

5.5 Outlook

Although a large variety of methods has been formulated in the literature, none of
them seems to provide a sufficiently rigorous and accurate estimator of the ther-
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mal conductivity that can be applied to different classes of materials and especially
to disordered systems. The cepstral analysis method introduced in this chapter
promises to be a very powerful tool to estimate the thermal conductivity from rel-
atively short MD runs, in a more rigorous way than done so far by other methods.
Its implementation is straightforward and its use robust, as the only parameter to
be determined is the optimal number of cepstral coefficients, using e.g. the Akaike’s
information criterion. The most impressive results are achieved for disordered sys-
tems, e.g. liquids and amorphous solids, where a low conductivity results from large
cancellations in the integral of a highly oscillatory HCACF, for which all the tra-
ditional methods fail or give very subjective results. In these systems, simulation
times of the order of 100 ps seem sufficient to obtain accuracies of the order of
10% in the estimated thermal conductivities. The performance is less spectacular in
periodic crystals, where slowly-decaying strongly-harmonic phonon modes require
longer simulation times and the ensuing sharp peak in the low-frequency region
of the power spectrum requires a larger number of cepstral coefficients than pre-
dicted by the optimization of the AIC. Even so, simulation times of the order of a
few hundred picoseconds seem sufficient to achieve a comparable accuracy. In the
latter case, it is possible that a combination of the methodology introduced here
with specialised techniques based on normal-mode analysis, such as that presented
in Ref. [42], will result in further improvements. Leveraging more general (possibly
non-Fourier) representations of the log-spectrum of the currents to be analysed, and
replacing the optimization of the AIC with more sophisticated and possibly more
efficient approaches, such as e.g. weighted multi-model inference techniques [131,
137], may also assist in this and other difficult cases. Finally, we expect that our
methodology will impact on the simulation of any transport phenomena to which the
Green-Kubo theory applies, such as ionic conduction, viscosity, and many others:
benchmarks on these properties should be performed.

Thanks to this achievement, we are finally able to undertake the quantum sim-
ulation of heat transport in materials like liquids, highly-anharmonic crystals, and
amorphous solids, that was considered impracticable due to the long trajectories
usually required.
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The calculation of the lattice thermal conductivity of a material using equilibrium
MD simulations requires an accurate knowledge of the interatomic interactions, a
sample of adequate size, and a sufficient simulation length. A good interatomic force
field should faithfully reproduce the structural and dynamical properties of the ma-
terial, as both will be important to correctly predict the thermal conductivity. An
adequately large size is required to account for all the vibrational contributions
to heat transport: if the system is too small, the long-wavelength modes will be
neglected or severely affected, thus altering the value of thermal conductivity esti-
mated via the GK equation. A sufficiently long simulation is needed to let the GK
estimate converge within a target statistically accuracy.

The simulation of amorphous systems such as silica glass, though, presents ad-
ditional challenges. The structure of an amorphous solid is a non-equilibrium con-
figuration, with extremely long relaxation times. In order to generate it, one can
perform a virtual quenching experiment: the system is melted at high temperature
and then cooled gradually down to a target temperature, where it is then equi-
librated and data can be collected. This procedure is in all respects a simulated
annealing experiment looking for the most stable configuration in an extremely
rough free energy landscape. The quenching protocol adopted will affect the final
structural and vibrational properties of the sample, hence we expect the thermal
conductivity to be affected by its details as well.

Very few studies have attempted to compute the thermal conductivity of a-SiO2

with classical MD simulations and no ab initio study has ever been performed. Al-
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most all of the existing simulations were carried out with non-equilibrium methods,
where strong finite-size effects are accounted for with difficulty, whereas only one of
them was performed at equilibrium via the GK equation. These facts demonstrate
the practical difficulties involved in the numerical estimation of κ and the lack of a
reliable method to do so, as we discussed in Chapter 5.

In this chapter we apply the ab initio GK theory and many of the methods
discussed in the previous chapters to the calculation of the thermal conductivity of
silica glass. In Section 6.1 we review the classical and ab initio studies of a-SiO2

available in the literature, pointing out how the force field, the sample size, and
the preparation protocol affect its structural, vibrational, and thermal properties.
We find that although the structural properties are described fairly well by classical
potentials, the vibrational properties are poorly accounted for and thus call for an ab
initio approach. In Section 6.2, we use classical simulations to study the dependence
of the computed thermal conductivity on many of the simulation details, such as
the sample size and quenching protocol, and to determine the feasibility of ab initio
simulations. In Section 6.3, we choose one sample of silica and we simulate it with
Car-Parrinello MD at four different temperatures. The trajectories thus generated
are used to compute the ab initio heat flux and the GK thermal conductivity, making
use of many of the concepts and techniques discussed so far. Finally, we compare
our classical and ab initio results with experiments.

6.1 State of the art

6.1.1 BKS force field

The structure of amorphous silica is made of SiO4 tetrahedral units, where silicon
is at the center, bonded to 4 oxygen atoms located at the vertices. Each oxygen, in
turn, bridges the tetrahedral vertices, thus bonding between two silicon centers. The
variation in orientation of adjacent tetrahedra makes the medium- and long-range
structures disordered, forming a typical glass network.

One of the most successful and broadly adopted force fields for a-SiO2 is the so-
called BKS potential [106]. The BKS potential is a two-body potential devised by
Beest et al. who fitted self-consistent-field Hartree-Fock calculations on small silica
clusters, and it is defined as the sum of a Coulomb and a Buckingham potential:

vBKS
αβ (R) = e2 qαqβ

R
+Aαβe−BαβR −

Cαβ
R6

, (6.1)

where α, β ∈ [Si,O], and R is the distance between the ions α and β.
Despite its simplicity, BKS was showed to predict remarkably well many prop-

erties of SiO2, among which its complicated phase diagram [146]. Other force fields
have been used in the literature, ranging from re-parametrizations of the BKS poten-
tial [147], to polarizable force fields (e.g. Tangney and Scandolo [148]) and reactive
ones (e.g. ReaxFF [149]). Notwithstanding, the BKS potential is still the mostly
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adopted force field in classical simulations of a-SiO2, thanks to its ability to gen-
erate very good glass structures. In the following, and partly in Sec. 6.1.3, we are
going to summarize how well the properties of amorphous silica are described by
this potential and others.

Structural properties

Si-O bonds are generally considered to have partial ionic and covalent character.
The BKS potential is spherical, therefore it does not describe the directional nature
of the covalent bond, but it can anyway achieve the tetrahedral structure through a
strictly repulsive interaction between oxygen atoms. We can expect that the bond’s
directionality could be better described by other more sophisticated potentials or
by ab initio methods, yet the BKS’ abilities in predicting the amorphous structure
of silica glass are very remarkable. For example, Tian et al. [150] compared the
structures of silica obtained from different force fields, e.g. BKS and ReaxFF. They
quenched a fully melted silica box of density ρ = 2.2 g/cm3 from 5000 K to 300 K at
5 × 1012 K/s in the NVT ensemble. The BKS and ReaxFF potentials both gener-
ate realistic silica structures [149, 151], with radial distribution functions, neutron
structure factors, and coordination numbers that reasonably reproduce the experi-
mental observations. The radial distribution functions, in very good agreement with
experiment, show a sharp peak corresponding to the Si-O bond length at ∼ 1.6 Å,
the peak corresponding to the O-O distance at ∼ 2.6 Å, and the one correspond-
ing to the Si-Si distance at ∼ 3.1 Å. The coordination numbers can be used to
detect coordination defects. By choosing a cutoff length for Si-O pairs of ∼ 2.15 Å,
BKS reproduces a realistic coordination environment for Si and O, with over 99.6%
of atoms being normally coordinated (4-fold Si and 2-fold O). ReaxFF, instead,
tends to generate more coordination defects, with ∼ 97.5% of normally coordinated
atoms. Nevertheless, the quenching process largely influences the macroscopic and
microscopic properties of the generated glass, as we will comment diffusively later,
in Sec. 6.1.3.

Vibrational properties

Besides the structure of the generated sample, the thermal conductivity of a system
is mainly determined by its vibrational properties, that come from the interaction
potential and can be analysed by the vibrational density of states (VDOS). Ex-
perimentally, the VDOS obtained from neutron scattering shows three significant
peaks at about 400, 800, and 1100 cm−1, that represent the rocking, bending, and
stretching modes respectively [154], as shown in Fig. 6.1(b).

Classical force fields struggle to correctly reproduce the features of the VDOS
of a-SiO2. In Fig. 6.1(a) we report the VDOS obtained for the BKS and ReaxFF
potentials [150], compared to ab initio calculations [152]. The low-frequency band is
dominated by O contributions and agrees well with the results of first-principles sim-
ulations and experiments, even though it wrongly elongates up to 600 cm−1 using the
BKS potential. For this model, the modes in the 400−500 cm−1 range do not agree
well with experiment, a sign suggesting that BKS struggles to reproduce correctly
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(a) (b)

Figure 6.1: (a) Total and partial VDOS of a-SiO2 computed for the BKS and
ReaxFF, and compared with the first-principles results of Bhattarai and Drabold
[152]. Adapted from Ref. [150]. (b) Effective VDOS of an a-SiO2 sample of 72 atoms
at experimental density 2.20 g/cm3, computed from AI-CPMD simulations within
the local density approximation (solid line) and compared to neutron scattering
data (circles). Reproduced from Ref. [153].

the forces over intermediate-range distances [151, 155]. The intermediate-frequency
band of ab initio simulations is dominated by Si contributions and presents an iso-
lated peak at about 800 cm−1, but this is not reproduced by the BKS potential,
while ReaxFF does not account correctly for the contributions of Si and O atoms.
The high-frequency band, that corresponds to Si-O stretching vibrations, is well
reproduced by the BKS potential, but is notably missing in ReaxFF.

On the other hand, first-principles simulations have shown to successfully ac-
count for all the main peaks of the VDOS. Sarnthein et al. [153] studied a sample of
72 atoms of a-SiO2 obtained by a quench from the melt with AIMD at experimental
density (2.20 g/cm3), within the local density approximation of DFT, and computed
the VDOS by diagonalization of the dynamical matrix. Their results, reported in
Fig. 6.1(b), are in very good agreement with the experiments. The same calcula-
tion has been reproduced more recently by Bhattarai and Drabold [152] using a
648-atom model of a-SiO2 (see Fig. 6.1(a)).

The vibrational excitations of silica include very localized modes and collective
ones (most modes with frequencies below 700 cm−1 have a collective nature, while
the ones at higher frequencies are more localized). Compared to the ab initio de-
scription, the BKS does not reproduce well the nature of modes in the intermediate
frequency range [155]. Since the BKS model was designed to optimize the elastic
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constants of a small silica cluster and a crystal, it is not very surprising that it
performs well at very high and low frequencies, but it is not reliable in the inter-
mediate range. Therefore we can expect that ReaxFF would provide more realistic
predictions of thermal conductivity at room temperature, where thermal conduc-
tion is mainly contributed by acoustic-like phonon vibrations whose frequencies are
typically below 400 cm−1 [152], whereas the BKS potential will probably be more
suitable to study high-temperatures cases, where the contribution of stretching vi-
brations to thermal conduction increases significantly [150].

Thermal conductivity

Many studies of the thermal conductivity of a-SiO2 are based on NEMD simulations,
that are strongly size dependent due to the scattering of phonons with the heat sink,
and thus require the study of its convergence at large cell sizes. For example, Tian et
al. [150] simulated a-SiO2 with the BKS potential at T = 300 K, ρ = 2.2 g/cm3, and
obtained a value of thermal conductivity of κ = (2.27±0.06) W/mK at the maximum
size simulated, whereas Coquil et al. [156] obtained κ = (2.10± 0.10) W/mK, to be
compared with an experimental value of κexp ≈ 1.3− 1.4 W/mK.

An extrapolation technique is needed to estimate the convergence of κ as a
function of the size of the simulation cell in the direction of the applied heat flux
(or temperature gradient), Lz. According to the kinetic theory: κ = 1

3cvvs l, where
cv is the lattice specific heat at constant volume, vs is the sound velocity, and l is
the mean-free path of the phonons. The thermal conductivity can be obtained by
linear fitting 1/κ vs 1/Lz and extrapolating the value at 1/Lz = 0 [57]. Despite
being broadly applied in the literature, this method has to be used with extreme
care. Indeed, if the distribution of phonon mean-free paths cannot be approximated
by its average value, the linear dependence of 1/κ on 1/Lz is no longer valid, as
higher-order terms are not negligible, as Sellan et al. [88] ascertained studying Ar
and Si crystals. If the considered system sizes are smaller than the largest bulk
mean-free paths that dominate thermal transport, then the linear relationship may
not work and the thermal conductivity can be severely underestimated. In the case
of amorphous silica, the maximum phonon mean-free path is quite short (between
∼ 20 and ∼ 6 Å, depending on temperature [157]), a fact that may explain why Tian
et al. [150] find the linear fit to work well in this case, allowing them to extrapolate
a value of κ = 2.5 W/mK for the BKS and Teter potentials, and of 1.28 W/mK
for the ReaxFF potential, at 300 K. Therefore, the ReaxFF potential seems to best
reproduce the experimental value at this temperature.

To the best of our knowledge, only one numerical study has ever been performed
using EMD, likely due to high difficulty of estimating the thermal conductivity
from the GK equation, as we discussed in Sec. 5.1. McGaughey and Kaviany [111]
estimated the thermal conductivity of a system of 576 atoms (ρ = 2.35 g/cm3 at
T = 50−400 K), obtaining a thermal conductivity of ≈ 2 W/mK at 300 K. The GK
method is much less affected by finite-size effets, and can simulate the bulk from
much smaller systems with respect to NEMD. However, tests for the convergence
of κ with the cell size should always be performed, as discussed in the following.
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6.1.2 Sample size

In contrast to crystals, glasses have a completely disordered and non-periodic struc-
ture, therefore we should understand what is the minimum sample size that one can
simulate to ensure that the distribution of structures at the various relevant length
scales is well represented. This is of particular importance in view of performing
AIMD simulations, in which the computationally affordable sizes are of the order of
a few hundreds of atoms at most. Previous studies have tried to survey this limit.

Structural properties

Few studies have been performed using ab initio techniques and all involved a small
sample of ∼ 70 atoms (∼ 25 SiO2 units). In the first ab initio simulation of a-SiO2,
Sarnthein et al. [158] performed a quench from the melt completely by CPMD,
obtaining a first model of vitreous silica. Even though good agreement with experi-
ments was found for some structural, vibrational and electronic properties [153, 158,
159], a very fast quenching rate (of the order of 1015 K/s) was used, due to the high
computational cost, that may have strongly influenced the results. In Sec. 6.1.3 we
will debate more this issue. Some years later, Benoit et al. [160] combined classi-
cal MD with CPMD: samples generated with the BKS potential (with a quenching
rate ∼ 1013 K/s) were then equilibrated in CPMD. It was shown that the struc-
tural properties thus obtained were weakly modified with respect to the classical
calculations, thus validating the structural model generated with the BKS poten-
tial. Besides, these results were even in better agreement with experiments than
previous studies performed completely in CPMD, which was probably due to the
slower quenching employed. Other five years later, Van Ginhoven et al. [161] studied
a set of small silica samples of 72 atoms generated by the BKS potential and opti-
mized by DFT, and showed that by creating multiple small samples it is possible
to achieve a good statistical sampling of structural features consistent with larger
simulated glass systems. An ensemble of small samples is necessary to capture the
statistical distribution of structures of silica glass, i.e. all the possible arrangements
of its medium-range features.

Thermal conductivity

In spite of the reliability of BKS with regard to structural properties, as mentioned
in the previous section, the vibrational properties reproduced by this classical force
field are strongly modified by using an ab initio treatment of the forces [155], there-
fore we do not expect it to be reliable in this respect. Furthermore, it is not yet
clear how much the thermal conductivity is affected by the size of the sample. Even
if we average over a set of small samples, it is possible that finite-size effects may be
relevant and influence the value of κ we compute, that thus would require larger size
cells to converge. Therefore, a preliminary study on this point should be performed
before attempting an ab initio computation of the thermal conductivity of a-SiO2.
We will present the results of this study in Sec. 6.2.2.
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(a) (b)

Figure 6.2: (a) Density vs temperature of a-SiO2, modeled with the BKS poten-
tial, for seven quenches completed with linear cooling rates γ from 8000 K to 300 K.
Silica’s density anomaly is visible at high temperatures; density becomes indepen-
dent of γ at T & 4500 K. (b) Density at 300 K as a function of the quench cooling
rate γ. The horizontal dashed line is the experimental value. The red dashed line
is a linear extrapolation fit to data above 3×1012 K/s. Reproduced from Ref. [162]

6.1.3 Sample preparation (quenching)

The properties of the simulated glass may depend considerably on the quenching
protocol adopted to generate the virtual sample. When the relaxation times of a
supercooled liquid exceed the time scale of the (virtual) experiment, the system will
be in a non-equilibrium state and undergo a glass transition, provided it does not
crystallize. The thus obtained glass is a nonequilibrium structure whose properties
will generally depend on its production history. The quenching rate at which it was
cooled will determine its macroscopic and microscopic properties [151]. For example,
the glass transition temperature computed by simulations is significantly higher
than the glass transition temperature observed in the laboratory. The time scales
reachable by computer simulations are many orders of magnitude shorter than the
typical time scales of laboratory experiments, hence the minimum quenching rates
attainable in classical MD simulations are of the order of 1011−1013 K/s, a rate that
can only be replicated experimentally by strong laser pulses or ion bombardment
[16].

Macroscopic properties

Vollmayr et al. [151] studied extensively the effects of quenching rate on the proper-
ties of BKS amorphous silica. They used a sample of ∼ 1000 atoms at zero pressure,
melted at 7000 K and then cooled down to 0 K at different temperature rates γ, rang-
ing from 1012 to 1015 K/s. More recently, Lane [162] extended their study, reaching
cooling rates down to 5 × 109 K/s with microsecond MD simulations of ∼ 13000
atoms.

The glass transition temperature, that they estimated from the enthalpy curves,
increases with γ. As one can expect, fast cooling rates make the system fall out
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of equilibrium more quickly during the quench. The density ρ of the final sample
also depends on the quenching rate: at temperatures below 2000− 3000 K, higher γ
determine higher densities, as can be observed in Fig. 6.2, that seem to approach the
experimental value of 2.202 g/cm3. Between 1014 K/s and 109 K/s density decreases
of less than 5%. This behaviour is unusual: in most glasses density increases as
cooling rates are slowed down. This can be explained by observing the trend at
higher temperatures, where the density reaches a maximum at T ∼ 4800 K that
does not depend on γ: this “density anomaly” is also observed in experiments,
at a much lower temperature of 1820 K. This discrepancy can be attributed to the
BKS potential. Furthermore, the thermal expansion coefficient at constant pressure,

αp = 1
V

∂V
∂T

∣∣
p

= −1
ρ
∂ρ
∂T

∣∣∣
p
, increases with γ.

Structural properties

The structure is even more affected by the quenching rate. By analysing the radial
distribution function (RDF) between different species it is possible to observe that
a low cooling rate makes the structural order at short and intermediate distances
increase, i.e. the RDF peaks and minima are sharpened and the structure is more
relaxed. However, the location of the RDF’s peaks is very little affected by γ (i.e.
the Si-O tetrahedra do not change much their size with γ) and compares quite
well with experiment, thus making BKS a good potential to reproduce the short-
and medium-range structure of a-SiO2. Since the size of Si-O tetrahedra does not
change much their size with γ, the variation of density with the changes in the
cooling rate is due to relative arrangement of neighboring tetrahedra. This can be
observed in variations of the distributions of angles and rings. The O-Si-O angle
distribution sharpens by decreasing γ and approaches the ideal tetrahedron angle
of 109.47◦; the Si-O-Si angle distribution, instead, does not sharpen but shifts to
larger angle values, indicating a more open arrangement of tetrahedra, which is
consistent with the observed lower density; 6-vertex rings become more frequent
with decreasing γ, indicating that the local structure of the system approaches the
one of β-crystobalite. The study of coordination numbers of each atom type shows
that local order increases fast with decreasing cooling rate: for example, the number
of Si atoms that are 4-fold coordinated with O atoms increases from 95% to 99.5% by
decreasing the cooling rate from 1015 K/s to 1013 K/s, and even further at 1010 K/s,
indicating a gradually decreasing number of coordination defects.

Vibrational properties

The two high-frequency peaks of VDOS depend on the quenching rate in that their
height increases significantly with decreasing γ, hence improving the agreement with
experiment. The low- and mid-frequency bands obtained with the BKS, are quite
featureless and do not change very much with γ, thus remaining quite in discordance
with experimental results.

To our knowledge, a study of the dependence of the thermal conductivity of
a-SiO2 on the quenching rate has never been performed, and should be completed
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Figure 6.3: Dashed lines: BKS potential with Wolf truncation, as defined in
Eq. (6.2). Solid lines: the same with a repulsive core added, defined in Eq. (6.5).

before attempting a first-principles calculation. In Sec. 6.2.2 we will present this
study.

In conclusion, even though these studies have been performed using the BKS
potential and not with DFT (for obvious computational reasons), it is very reason-
able to assume that their results will also hold for AIMD simulations of amorphous
silica. The demonstrated capabilities of the BKS potential in structure prediction
and the very large range of time scales analysed leads us to conclude that a reliable
a-SiO2 structure can only be obtained by a “slow” quenching protocol with classi-
cal MD. AIMD simulations can then be used to optimize the structure, generate a
trajectory and, finally, a heat current time series ready to be analysed.

6.2 Classical preliminaries

6.2.1 Force field

We performed classical MD simulations of amorphous silica using the LAMMPS
package [56]. We used a modified version of the BKS potential [147], in which the
long-range Coulomb interaction is truncated with the Wolf method [163–165], thus
avoiding the use of Ewald summations [81, 82]. This truncation is possible thanks
to Coulomb screening effects, and it only needs the addition of a correction term
that recovers the requirement of charge neutrality. The final form we used is the
one of Ref. [107]:

vBKS
αβ (R) = qαqβe

2VW (R)GW (R)+
[
Aαβe

− R

ραβ −
Cαβ
R6
−

(
Aαβe

−Rc,sh
ραβ −

Cαβ
R6
c,sh

)]
Gsh(R), (6.2)
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α-β Aαβ (eV) ραβ (Å) Cαβ (eVÅ
6
) Dαβ (eVÅ

12
)

O-O 1388.773 0.3623 175.0 142.209126863

Si-O 18003.7572 0.2052 133.5381 1.434274208

Si-Si 872360308.1 0.0657 23.299907 0.0

α-β Eαβ (eVÅ
−1

) Fαβ (eV) rinf (Å)

O-O −14.9704268 39.035745917 1.75

Si-O −3.2771769 −15.797166326 1.27

Si-Si 0.0 0.0 0.0

Table 6.1: Parameters of the BKS potential used in classical MD simulations,
defined in Eq. (6.2) and (6.5).

with

VW (R) =

(
1

R
− 1

Rc

)
+

1

R2
c

(R−Rc) , (6.3)

GW (R) = exp

(
−

γ2
W

(R−Rc,W )2

)
, Gsh(R) = exp

(
−

γ2
sh

(R−Rc,sh)2

)
, (6.4)

qSi = 2.4, qO = −1.2, γW = γsh = 0.5, Rc,W = 10.17 Å, and Rc,sh = 5.5 Å. This
potential, whose form is depicted in Fig. 6.3, was shown to give results comparable
to the original BKS formula [147]. Since the potential becomes attractive at very
short distances, its short-range part at R < Rinf has been substituted by a repulsive
core, in order to prevent atoms from getting too close to each other: a problem that
may arise at high temperatures during melting. The form of this repulsive part is:

V rep
αβ (R < Rinf) =

Dαβ

R12
+ EαβR+ Fαβ, (6.5)

that we designed such that the potential and its first and second derivatives are
continuous, as depicted in Fig. 6.3. The parameters of the potential are reported in
Table 6.1.

Simulation protocol

We started the simulation from a 72-atom sample of β-cristobalite, corresponding
to 24 SiO2 units, that we eventually replicated to obtain larger cubic supercells
at the experimental density of a-SiO2, ρ = 2.202 g/cm3. Each system was melted
and equilibrated at constant temperature 7000 K for more than tmelt = 500 ps in
the NVT ensemble, using the Bussi-Donadio-Parrinello stochastic velocity-rescaling
thermostat [166] with a coupling time constant τNVT = 200 fs. The equations of
motion were integrated using the velocity Verlet algorithm with a time step of
εMD = 1 fs. Subsequently, the temperature was decreased linearly in a time tquench

down to Teq = 500 K, in the NVT ensemble, thus resulting in a quenching rate of
γ = 6500 K

tquench
. The effects of different quenching rates will be studied in Sec. 6.2.2. The

system was equilibrated at Teq in the NVT ensemble for other 400 ps, and finally in
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the microcanonical (NVE) ensemble for 100 ps. At this point, we started to collect
data for at least trun = 1 ns.

The computational cost of these classical simulations is very low, so it was
possible to run different replicas of each system from different initial conditions,
thus providing us with abundant statistics. The thermal conductivity was estimated
from trun = 1 ns of trajectory for each sample, using the cepstral analysis method
presented in Sec. 5.2.

6.2.2 Sample preparation: size and quenching rate dependence of κ

In order to study the convergence of lattice thermal conductivity with the size of
the system and the quenching rate, we considered cells containing 72, 144, 288,
432, 576, 864, 1152, 2304, 5184, and 10800 atoms. For each cell size we analysed
the data obtained from 10 independent replicas with different initial conditions.
For each replica, we considered 10 different quenching times: tquench = 5, 10, 25,
50, 100, 250, 500 ps, 1, 5, and 10 ns, that correspond to quenching rates γ ranging
from 1.3× 1015 to 6.5× 1011 K/s. We computed the thermal conductivity κ of each
of these samples, from a trajectory of trun = 1 ns, using cepstral analysis. More
technical details on this procedures are reported in Sec. 5.2.

In Fig. 6.4 we plot the thermal conductivity as a function of the number of atoms
of the system Nat, for the ten quenching rates considered. The κ measured for each
replica is depicted with a circle. For each Nat and γ, we computed a weighted average
over the replicas’ results (depicted with a solid line) using the errors estimated from
cepstral analysis as weights. We can infer that κ is underestimated by the smallest
systems considered, and seems to converge to a stable value for Nat & 500 atoms.
This is likely due to two effects, both entering this analysis. The first is the fact
that small replicas cannot account for the whole ensemble of possible amorphous
structures. In particular, the variety of medium- and long-range structures needs
larger systems to be correctly accounted for. However, as we mentioned in Sec. 6.1.2,
some authors found that averaging over a little set of small structures (Nat = 72)
should be enough to reproduce fairly well the range of glass-network structures found
in larger cells [161]. Nevertheless, the smallest systems lead to an underestimate of
κ by more than 20%. We can probably attribute this behaviour to a second effect,
affecting the vibrational modes: the finite-size of the system dictates an upper limit
to the wavelength that can be accommodated into the simulation cell, and alters
the the low and medium vibrational frequencies, which are largely attributed to
the collective modes of silica. The Green-Kubo equation thus requires a sufficiently
large volume to correctly account for all the contributions. We should however point
out that this value is remarkably lower (approximately ten times lower) than the
typical cell volumes required by NEMD calculations.

In Fig. 6.5, the same data are plotted as a function of the quenching rate
γ = 6500 K

tquench
, for each of the sizes considered. Slower quenching rates (longer quench-

ing times, of the order of a few nanoseconds) definitely lead to higher thermal
conductivities. This is not very surprising: as we discussed in Sec. 6.1.3, a slower
quenching allows the system to relax more and to build glass structures with higher
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local order, less defects, and structural features that are in better agreement with
experiments. Therefore, a quenching rate γ . 1013 K/s seems to be the requirement
for almost all the simulated sizes.

In Fig. 6.4 and 6.5 the error on the weighted average is indicated as a thin
shaded area surrounding the solid line. Two other lines are reported. The dashed
lines delimit the average error that we expect to obtain from a single trajectory
sample of trun = 1 ns (it is about the error on the weighted averaged times

√
10).

We observe that in general the single calculations of κ (10 replicas for each abscissa,
represented by single circles), fall mostly inside this error bars, for the medium
and large systems. For the smaller systems, the fluctuations of the single values
become larger, probably due to larger differences in their structures, in addition to
the intrinsically larger fluctuations due to the smaller size. The trend of the relative
error estimated for a 1 ns trajectory as a function of the number of atoms is shown
in Fig. 6.6(a), for 4 selected quenching rates, and seems to decrease as ∼ 1/

√
Nnat.

The quenching rate, instead, does not appear to affect the error on κ, as shown in
Fig. 6.6(b).

From this analysis we conclude that system size and cooling rate considerably
affect the thermal conductivity of BKS silica glass. In order to perform an ab initio
study of the thermal conductivity, we need to select a sample size that can be
simulated with AIMD at a reasonable computational cost. We decided to use one of
the samples with Nat = 432 atoms that were generated using the smallest cooling
rate analysed, γ = 6.5 × 1011 K/s, corresponding to a quenching time of 10 ns. In
the following we dub this sample S1. We first made sure that S1 did not exhibit
any coordination defects, then we computed its thermal conductivity, that results
to be κS1

= (2.207 ± 0.045) W/mK, using a 1 ns-long trajectory. This value differs
from the average values obtained for the largest systems analyzed by less than
5% (≈ 0.1 W/mK). Further data analysis showed that an error of the order of
12% (≈ 0.25 W/mK) could be obtained from a trajectory of 100 ps, a simulation
length reasonably affordable with CPMD, hence making this bias in the thermal
conductivity negligible.

6.2.3 Cepstral analysis

The thermal conductivity of each classical replica of silica was computed with the
cepstral analysis technique described in Sec. 5.2. The P ∗ cutoff was chosen using the
Akaike Information Criterion (see Sec. 5.2.4) without any correction factor, because
in Sec. 5.2.7 we showed that this was not necessary for the case of classical a-SiO2.
The heat flux calculated by LAMMPS at each time step (1 fs) was filtered with a
moving average and resampled at a rate of one step every 18 fs, corresponding to
a cutoff frequency f∗ ≈ 28 THz. The resulting spectrum was analyzed using our
ThermoCesptrum code [133]. In the following we perform an additional analysis
on the dependence of the thermal conductivity of the S1 sample on some of the
parameters.

We first study the value of the thermal conductivity estimator as a function of
the cutoff frequency f∗ and the length of the trajectory. In Fig. 6.7(a-c) we report the
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trun standard-HC VR-HC 〈P ∗〉
100 ps 2.19± 0.25 (12%) 2.17± 0.27 (12%) 47− 36

1 ns 2.18± 0.15 (9.5%) 2.18± 0.20 (9.2%) 176− 154

10 ns 2.24± 0.08 (3.5%) 2.25± 0.07 (3.3%) 448− 377

Table 6.2: Estimated statistical error on the thermal conductivity of sample S1 for
a trajectory length trun. “Standard-HC“ and “VR-HC” refer to the standard defi-
nition of the heat current and the equivalent definition with renormalized atomic
velocities, respectively. The last column contains the average number of cepstral
coefficients retained using the standard and VR heat current, respectively.

average κ obtained for a 100 ps, 1 ns, and 10 ns trajectory, respectively. In general, all
the f∗ in the middle region give compatible results, with more instabilities arising
at the lowest frequency values (likely due to increasing aliasing effects that alter
the spectrum), that indeed show an increased error and and should be avoided in
this case. These fluctuations decrease in longer trajectories, as the statistical error
obviously decreases. Besides, a too high f∗ (f∗ & 60 THz, not shown) induces a
bias in κ, due to the fact the log-periodogram diverges to negative values and we
start to have problems of numerical accuracy. A 100 ps trajectory ultimately gives
compatible results with the 10 ns one, as reported in Table 6.2. Incidentally, we also
notice that the error on κ estimated by cepstral analysis decays slower than expected
with the length of the trajectory. Indeed the error should decrease as the inverse
of the trajectory length (see Eq. (5.20)), but from 100 ps to 1 ns it decreases of a
factor ≈ 1√

3
, and a factor ≈ 1√

10
from 100 ps to 10 ns. This effect can be explained

by the increased number of cepstral coefficients retained by the AIC, that tries to
reproduce the finest features of the spectrum with greater precision.

We also analyzed a “decorrelated” heat current, obtained by the velocity-
renormalization (VR) method described in Sec. 5.4. As shown in Fig. 6.7(d), this
method reduces the power of the spectrum by a large amount, removing part of
the signal at finite frequencies that does not contribute to the thermal conductivity,
without affecting the low-frequency region, hence the value at zero frequency. This
procedure is very useful to reduce the variance of the energy current signal obtained
from ab initio simulations, however here it does not change much the results, nor
the statistical error in a significant way, as reported in Table 6.2. The number of
cepstral coefficients P ∗ is reduced as the spectrum is smoother, but the error ulti-
mately increases if we use a low f∗, due to the fact that the optimal P ∗ becomes
too low.

6.2.4 Density dependence of κ

The dependence of κ of a-SiO2 on the pressure can be safely neglected for the range
of temperatures considered later (300 − 1500 K). Silica glass has a anomalously
low thermal expansion coefficient, with an experimental value of α = 1

V

(
∂V
∂T

)
T
≈

5.5 × 10−7 K−1 at 300 K, about 20 times smaller than that of crystalline forms of
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silica. The relative variation in density from 300 K to 1500 K can be estimated to be
∆ρ
ρ ≈ 7×10−4. Using the experimental bulk modulus K = −V dP

dV = ρdPdρ ≈ 36.7 GPa

and experimental density at 300 K, ρ = 2.202 g/cm3, we can expect a consequent
variation in pressure of about ∆P ≈ 30 MPa, quite negligible. Experimental mea-
sures of thermal conductivity of silica at high pressures estimate a variation of κ
with pressure of the order of 5%/GPa [167], hence we can safely neglect this effect.

In classical simulations these values may change slightly, but we do not expect
significant differences. In the preliminary phases of this work we also performed
quenching simulations at constant pressure, in the NPT ensemble. We found, in
accordance with previous studies discussed in Sec. 6.1.3, that the density of the
sample increases with the quenching rate. A slow quenching leads to lower densities,
closer to the experiment. The average equilibrium density obtained from the slowest
quench at zero pressure is equal to ρP=0 = 2.31 g/cm3, slightly larger than the
experimental one. We can attribute this discrepancy to a combined effect of the
BKS potential and of the fast quenching rate. The thermal expansion coefficient is
5 times larger than experiment, with a value of α ≈ 2.8 × 10−6 K−1. Finally, the
thermal conductivities obtained from quenches in the NPT ensemble show values
that are up to 10% larger than those obtained by quenches at fixed volume, for
the fastest quenching rates and smallest sizes, and of similar values for the slowest
rates (plots obtained from the NPT simulations are reported in Appendix B). The
slightly higher densities (up to ≈ 2.5 g/cm3) that are obtained by using very fast
quenching rates are probably the reason of this difference. We decide therefore to
set the density at the experimental value and to equilibrate our simulations in the
NVT ensemble, as previously done by many authors.
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Figure 6.4: Study of convergence of the thermal conductivity of a-SiO2 at 500 K
with the size of the system, estimated from classical simulations, as described in
Sec. 6.2.2. The abscissa indicates the number of atoms of the system, each panel
corresponds to a different quenching rate γ (the relative quenching time tquench is
indicated in brackets). Circles are the results of 10 independent replicas simulated
with the same quenching protocol. The solid line is a weighted average computed
over the replicas and weighted using the errors estimated from cepstral analysis.
Three different error limits are indicated. Dashed area: standard deviation of the
weighted mean. Dashed lines: statistical error estimated for a single 1 ns-trajectory.
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Figure 6.5: Study of convergence of the thermal conductivity of a-SiO2 at 500 K
with the cooling quenching rate γ, estimated from classical simulations, as de-
scribed in Sec. 6.2.2. Each panel corresponds to a different system size with Nat
atoms. Circles are the results of 10 independent replicas simulated with the same
quenching protocol. The solid line is a weighted average computed over the repli-
cas and weighted using the errors estimated from cepstral analysis. Three different
error limits are indicated. Dashed area: standard deviation of the weighted mean.
Dashed lines: statistical error estimated for a single trajectory of 1 ns.
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Figure 6.7: Dependence of κ on the choice of the cutoff frequency f∗, estimated
from one sample of (a) 100 ps, (b) 1 ns, and (c) 10 ps of the “original” and VR
heat flux time series; (d) periodograms of the original and the VR heat flux time
series.
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6.3 Quantum simulations: results

The S1 sample has been simulated with Car-Parrinello MD using the cp.x code
of the Quantum ESPRESSO suite [95, 97]. We used the PBE-GGA exchange-
correlation functional [143], wave functions were expanded in plane waves with a
kinetic-energy cutoff of 70 Ry and using the optimized norm-conserving Vanderbilt
pseudopotentials (ONCVP) [168, 169]. The cutoff was chosen so that energies and
forces were converged. The system contained 432 atoms (144 Si, 288 O) and 2304
electrons. A time step of εCP = 15 a.u. ≈ 0.36 fs and a fictitious electron mass of
400 a.u. were used to integrate the equations of motion. We verified that the kinetic
energy of the fictitious electronic degrees of freedom and the total energies were
not drifting during the whole length of the simulation. The system was thermalised
for about 5 ps at temperature Teq in the NVT ensemble using the Nosé-Hoover
thermostat [170, 171], then it was let evolved in the microcanonical ensemble for
about trun ≈ 52 ps. No atomic diffusion or significant structural modifications were
observed during the whole ab initio MD runs.

Four different equilibrium temperatures Teq were simulated: 300, 500, 1000, and
1500 K. For each temperature we actually ran two independent simultaneous sim-
ulations with different initial conditions, thus obtaining a total of ≈ 105 ps worth
of data at each temperature, in half the wall time. Each of the CPMD calculations
costed about 140 k CPU hours.

6.3.1 Heat current calculation

For each AIMD trajectory generated, we proceeded to the computation of the ab ini-
tio heat current, following the procedure described in Sec. 4.2.2. The first important
parameter to fix is the heat current sampling rate. For this system, we estimated
that one single-step calculation of the current costs roughly 60 CPU hours, so one
can easily estimate the potential cost of a 100 ps trajectory.

Heat current sampling rate

In fact, the time period εHC over which we compute the current determines the
Nyqvist frequency of its power spectrum, fNy, i.e. the maximum frequency repro-
ducible (see Sec. 5.2.5), therefore we have to make sure that the maximum frequency
of the power spectrum is smaller than fNy. Of course, the longer εHC, the smaller
the number of steps we will need to compute. An educated guess can be made
from classical MD simulations. By examining the power spectrum of the classical
heat current, we estimated that a sampling period εHC = 30εCP ≈ 10.88 fs would
give a reasonably low fNy ≈ 45 THz. If we resample the classical time series at
different sampling rates, without applying any preliminary filter, we observe the
effects of aliasing on the power spectrum. After some trials, we verified that sam-
pling rates leading to a decrease of spectral power ∆P (the integral of the power
spectrum) of less than 1% do not appreciably introduce aliasing effects that may
alter the low-frequencies of the spectrum, hence the value of thermal conductivity.
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Inset: zoom of the low-frequency region of the spectrum.

A value fNy ≈ 40 THz (∆P ≈ 0.9%) does not change the estimated κ; choosing
fNy ≈ 35 THz, instead, cuts a tail of the spectrum (∆P ≈ 4%) and introduces
important aliasing effects that ultimately change its value at zero-frequency, so it
should not be used.

Notwithstanding these considerations, past experience with other systems sug-
gests us that the ab initio heat current often possess a larger variance than the
classical one, (see Sec. 5.4) hence a larger spectral power, that may invalidate the
empirical tests just performed. To verify that this was not the case, we decided to
compute the ab initio heat current of a short trajectory at every 20 CP time steps
(εHC = 20εCP ≈ 7.26 fs), and compare the results obtainable from different sampling
periods: εHC = 20εCP, 30εCP, 40εCP, and 60εCP. The corresponding periodograms
are plotted in Fig. 6.8. The two largest sampling periods, 40εCP and 60εCP, clearly
display remarkable aliasing effects, that affect the low- and middle-frequency region
of the spectrum, an effect not present if we choose 30εCP. Therefore, we decided to
set εHC = 30εCP. For a trajectory of 100 ps, we need to perform about 9500 heat
current calculations, with a total estimated cost of the order of 560 k CPU hours.

Heat current power spectrum

As we just mentioned, the ab initio heat current time series has a variance much
larger than the classical one, thus making the peaks of its power spectrum much
higher, and its analysis possibly more difficult. This effect is due to the different
definition of the microscopic energy density in the classical and DFT approach, and
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from the electronic current (green).

its different ripartition between atoms. Similarly to what happens in a molecular
system like water (see Sec. 3.3), the average distance between atoms in a solid
is a bounded vector if atomic diffusion does not occur, so we can expect a flux
JSiO = JSi − JO, where JSi and JO are the number fluxes defined in Eq. (3.18),
to be a total time derivative of a bounded vector field. By the gauge invariance
theorem, we conclude that this flux does not contribute to the thermal conductivity
and can therefore be removed with one of the techniques presented in Sec. 5.4.

We decided to apply the velocity-renormalization (VR) decorrelation technique
before computing the heat current: the value of each atom’s velocity (extracted
from the CPMD trajectory) was renormalized by subtracting the velocity of the
center of mass of its species from it. For example, at each time t the velocity of a
silicon atom Vn(t) was substituted with Vn(t)− 1

NSi

∑
m∈Si Vm(t), where NSi is the

total number of silicon atoms. Furthermore, as discussed in Sec. 4.2.1, the electronic
current (EC) Jel is also non-diffusive and can therefore be removed, for example by
a simple decorrelation procedure applied after the heat current computation.

The power spectra of the classical and the ab initio heat currents are displayed
in Fig. 6.9. One can immediately notice the large difference in power of the classical
and ab initio spectra (see units), and the effects of the VR and EC-decorrelation,
that make the spectrum flatter. This effect does not change much the low-frequency
region, in the classical case, but it does in the quantum case, even though the
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Figure 6.10: Experimental measurements of the thermal conductivity of a-SiO2

as a function of the temperature. Data from Touloukian et al. [172], Cahill [173],
Sugawara [174], Kingery [175], Wray and Connolly [176], Yang et al. [177], and
data from a glass manufacturer [178].

convergence at zero-frequency is maintained. We also notice that the positions of
the peaks of the ab initio power spectrum are shifted with respect to the classical
case, a consequence of the different VDOS of these two systems.

6.3.2 Temperature dependence of κ

We now study the thermal conductivity of silica as a function of the temperature
and compare it with experimental data.

Experimental data

The first experimental measurements of the thermal conductivity of a-SiO2 as a
function of temperature were carried out between the 50’s and 70’s by Kingery
[175], Wray and Connolly [176], Sugawara [174], and Touloukian et al. [172]; a few
more recent studies are the ones of Cahill [173] and Yang et al. [177]. We display all
these experimental results in Fig. 6.10, which shows substantial agreement between
all of them at low temperatures, but two different trends at temperatures larger than
600 K. Above 600 K radiative heat transport becomes very intense (scaling roughly
as ∼ T 3÷4) and can alter the measured value of κ, that can be overestimated. This
problem is of special importance in vitreous silica because this substance is highly
transparent [173, 179, 180]. Cahill [173] and Wray and Connolly [176] accounted
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Figure 6.11: Thermal conductivity of a-SiO2 as function of temperature: com-
parison between experiments and simulations. Only the experimental studies that
accounted for radiative heat transport have been reported. Classical simulations
were carried out using the BKS potential for the S1 sample (432 atoms), and a
larger sample (10800 atoms). Ab initio results were computed using the S1 sample,
as described in Sec. 6.3, by analysing the VR-EC decorrelated energy flux.

empirically for the radiative effects, thus resulting in a κ approaching the value
κ ≈ 2 K/mK for temperatures up to 2000 K. The recent measures of Yang et al.
[177] performed with CO2 laser heating, instead, did not appear to feature significant
radiative contributions. Nevertheless, the matter is still under active debate [181],
so at this time no clear experimental values of κ are available in this regime. This
state of affairs motivates even more an accurate atomistic study to determine the
thermal conductivity of a-SiO2 at high temperatures.

Computational results

In Fig. 6.11 we display the results of our ab initio thermal conductivity simulations,
compared with the results of classical simulations for the same 432-atoms sample
S1 and a larger sample with 10800 atoms, and with experimental data.

The ab initio thermal conductivities for the eight independent simulations were
obtained by analysing the VR-EC decorrelated energy fluxes defined in Sec. 6.3.1,
with f∗ = fNy. No preliminary filtering and resampling were performed on the time
series before cepstral analysis, because the estimated thermal conductivity displayed
an unusual dependence on the details of the filtering procedure. We attribute this
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T (K) κ
(

W
m K

)

303 1.71± 0.16

485 1.47± 0.12

985 1.49± 0.11

1460 1.88± 0.12

Table 6.3: Average thermal conductivities of a-SiO2 computed from AIMD sim-
ulations of the S1 sample. Each value is a weighted average of the values obtained
from two independent ≈ 52 ps MD simulations.

difficulty to the relatively large spectral power of the ab initio energy flux, compared
to the classical one. Additional in-depth studies on this matter should be performed.

Nevertheless, the values obtained seem in fairly good agreement with the avail-
able experimental data, at all the temperatures analysed. The thermal conductivities
at ∼ 300 K are larger than the experimental value κexp ≈ 1.3− 1.4 W/mK of about
0.3 K/mK. The values between 500 and 1500 K roughly follow the experimental
trent of Cahill [173], with slightly lower values at 1000 and 1500 K, even though
the magnitude of the theoretical and experimental errors do not allow us to draw
definitive conclusions. In Table 6.3 we report the weighted averages of the ab initio
results performed at the same target temperature.

The classical results, obtained using the BKS potential, show a substantially
constant value κ ≈ 2.1 − 2.2 W/mK, that becomes compatible with experiments
only at high temperatures. We can attribute the poor agreement at low tempera-
tures to the altered vibrational properties described by the BKS potential, as we
discussed in Sec. 6.1.1. Furthermore, we notice that a system of 432 atoms seems
to underestimate the thermal conductivity of ∼ 5% with respect to a sample with
10800 atoms, as we estimated in Sec. 6.2.2. It is possible that similar finite-size
effects have affected the results of the ab initio simulations as well, even though we
cannot verify this hypothesis without simulating larger cells.

In conclusion, our ab initio results, while requiring some further analysis and
validation, are very promising and call for a systematic extension to other thermo-
dynamic conditions.





7

Conclusions

In this thesis we applied for the first time the ab initio Green-Kubo theory to
compute the lattice thermal conductivity of silica glass. To undertake this goal,
we first needed to overcome two main hurdles that have hindered a first-principles
application of the GK theory in the past.

The first was a conceptual problem due to the microscopic indeterminacy of
the energy density, that makes the heat current ill-defined at the atomic level.
We revealed the spurious nature of this problem by discovering a gauge invariance
principle for heat transport coefficients, which ensures that the thermal conductivity,
that is the actual measurable quantity, is well-defined and can be computed from
classical and ab initio MD simulations. As a plus, this principle also offers us some
freedom in the definition of the energy flux, enabling one to choose an expression
that can optimize its statistical properties without affecting the computed value
of thermal conductivity. We presented this idea and showed how it can be applied
to molecular fluids and solids, where it is possible to identify fluxes that do not
contribute to κ and can therefore be removed by a decorrelation technique.

The great potential of the gauge invariance principle is currently being further
investigated, trying to understand in what measure the heat flux time series can
be manipulated to obtain better statistical properties. If a minimum variance limit
exists and can be determined, one may wonder if a physical interpretation can be
inferred out of it. As we already mentioned, the GK method is able to estimate
the thermal conductivity of any material in a straightforward way and without ap-
proximations, but it comes at the price of a more difficult physical interpretation.
Methods based on a normal-modes decomposition [182] may reveal to be a better
approach if one wishes to identify the most relevant vibrational modes contribut-
ing to κ and to understand their atomistic nature. Of course, to be effective such
approaches should be able to describe non-periodic systems.

The second problem concerned the practical computation of the thermal con-
ductivity from the GK equation, which was known to require impractically long MD
simulations and lacked a solid technique for its estimation. We were able to devise a
new data-analysis method based on the cepstral analysis of time-series and on sound
statistical basis, that is able to provide an asymptotically consistent and unbiased
estimator of κ from a single MD trajectory of limited length. We benchmarked this
method on different classes of materials and found it especially suitable to study
disordered systems, such as liquids and glasses, where any other traditional method
fails.

Data analysis of ab initio heat currents revealed to be much tougher than one
would expect from classical simulations. The larger statistical fluctuations, due to
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the different energy density definitions, make the power spectra harder to analyse.
We believe that further development should be pursued in understanding the effects
of the basis set, filters and window functions used in the cepstral analysis technique,
especially when a low sampling rate is used to keep the computational cost as low as
possible. Multi-resolution methods, aimed to achieve a proportional accuracy from
low to high frequencies, may also bring good improvements.

Equipped with these tools, we tackled the challenge of simulating silica glass (a-
SiO2). The simulation of amorphous materials requires additional care compared to
crystalline solids. Their structure is a non-equilibrium state that sensibly depends
on the preparation history. By means of classical MD simulations, we studied the
effects that the sample preparation and its size have on the computed thermal
conductivity. We found that quenching rates as slow as 1013 K/s and a few hundred
atoms are needed to ensure a convergence of κ within 5%. The widely used two-body
BKS force field is able to predict the structural properties of a-SiO2 remarkably well,
but lacks a proper accounting for its vibrational properties, thus rendering a κ that
is too high at low and intermediate temperatures. Finally, we chose one classical
sample of a-SiO2 of 432 atoms and we simulated it with AIMD to compute its
thermal conductivity by first-principles. The results are fairly in agreement with
the available experimental data, that however are very imprecise at T & 600 K, a
regime where radiative effects become very strong and are difficult to be accounted
for.

We believe that the final outcomes of this study will be particularly important to
model the damage processes of laser pulses in optical glasses, and will also represent
a starting point to simulating more complex glasses for a variety of applications.
Although our results look encouraging, an ab initio study of heat transport of sil-
ica glass and amorphous materials in general will require some further refinement
work. In addition, it would be particularly interesting to study more deeply the
dependence of the thermal conductivity of a-SiO2 and silicate glasses on suitably
defined structural indicators, in order to identify its potential dependence on e.g.
the fraction of defects, the statistics of rings, the chemical composition, etc.

In spite of the accuracy of AIMD methods, we believe that a significant boost in
our future prediction capabilities will come from the design of advanced force fields,
possibly based on fits of first-principles data or on modern neural networks. Recent
developments in this field give us hope that it will soon be possible to design neural-
networks force fields that render accurate structural and vibrational properties, and
thus accurate thermal conductivities, hence reducing the cost of simulations and
giving us the tools to tackle more complex systems, for a wide range of fundamental
and technological applications.



A

Classical definitions of energy flux in solids

In this appendix we demonstrate the equivalence between two formulations of the
classical energy current in solids, Eqs. (2.36) and (2.45), by using the gauge invari-
ance principle presented in Sec. 3.2.

Let us consider the general formula of the energy flux for classical force fields,
Eq. (2.36), and rewrite it in the following way:

JEA(Γ) =
1

Ω

∑

n

(JEc + JEv )

=
1

Ω

∑

n

(
Ṙnεn + Rnε̇n

)
, (A.1)

where JEc and JEv are the “convective” and “virial” components of the energy flux,
as defined in Eqs. (2.38-2.39). In solids, the definition of Eq. (2.45) can be adopted,
that can be rewritten as:

JEB(Γ) =
1

Ω

∑

n,m

R0
nε̇n, (A.2)

where Rn = R0
n+un, R0

n denotes the average atomic position of atom n, and un its
instantaneous displacement. According to the gauge invariance theorem (p. 24), in
order to ensure that JEB(Γ) is equivalent to JEA(Γ), that is it yields the same thermal
conductivity, we just need to prove that their difference is non-diffusive, i.e. it is a
total time derivative of a bounded vector. After a few manipulations we have:

JEA(Γ)− JEB(Γ) =
1

Ω

∑

n

(
Ṙnεn + Rnε̇n −R0

nε̇n

)

=
1

Ω

∑

n

(u̇nεn + unε̇n)

=
1

Ω

d

dt

∑

n

u̇nεn, (A.3)

where we used the fact that Ṙn = u̇n. The sum
∑

n u̇nεn is a function of the phase-
space that is well-defined in PBC, and it is a bounded quantity, in a solid where
atomic diffusion does not occur. Therefore we can conclude that JEB(Γ) and JEA(Γ)
result in the same thermal conductivity.

The same cannot be concluded for the sole “virial” term JEv , for which we have
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that:

JEA(Γ)− JEv (Γ) =
1

Ω

∑

n

Ṙnεn

=
1

Ω

∑

n

u̇nεn

= JEA(Γ)− JEB(Γ)− 1

Ω

∑

n

unε̇n. (A.4)

The last two lines are not manifestly expressible as a total time derivative of a
bounded vector, therefore the “convective” term JEc cannot be neglected a priori
in a solid. The magnitude of its contribution (and that of the cross-correlations
〈JEc (t)·JEv (0)〉) should be verified on a case-by-case basis, as commented in Sec. 2.3.1.
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Figure B.1: Thermal conductivity of a-SiO2 at 500 K obtained by a quench in the
NPT ensemble at zero-pressure and with cooling rate γ. The abscissa indicate the
number of atoms of the system, each panel corresponds to a different quenching
rate γ (the relative quenching time tquench is indicated in brackets). The same
symbols as Fig. 6.4 are used.
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Figure B.2: Thermal conductivity of a-SiO2 at 500 K obtained by a quench in the
NPT ensemble at zero-pressure and with cooling rate γ. Each panel corresponds
to a different system size with Nat atoms. The same symbols as Fig. 6.5 are used.
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Math. Ann. 109, 604 (1934) 10.1007/BF01449156.

[40] A. McGaughey, and M. Kaviany, “Phonon transport in molecular dynamics
simulations: formulation and thermal conductivity prediction”, in Advances
in heat transfer , Vol. 39 (Elsevier, 2006), pp. 169–255, 10.1016/S0065-

2717(06)39002-8.

[41] Z. Fan, L. F. C. Pereira, H.-Q. Wang, J.-C. Zheng, D. Donadio, and A. Harju,
“Force and heat current formulas for many-body potentials in molecular dy-
namics simulations with applications to thermal conductivity calculations”,
Phys. Rev. B 92, 094301 (2015) 10.1103/PhysRevB.92.094301.

[42] C. Carbogno, R. Ramprasad, and M. Scheffler, “Ab initio Green-Kubo ap-
proach for the thermal conductivity of solids”, Phys. Rev. Lett. 118, 175901
(2017) 10.1103/PhysRevLett.118.175901.

[43] R. Vogelsang, C. Hoheisel, and G. Ciccotti, “Thermal conductivity of the
lennard-jones liquid by molecular dynamics calculations”, The Journal of
Chemical Physics 86, 6371 (1987) 10.1063/1.452424.

[44] D. A. McQuarrie, Statistical mechanics (University Science Books, Sausalito,
2000).

[45] A. Kinaci, J. B. Haskins, and T. Çağın, “On calculation of thermal conduc-
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[121] J. Che, T. Çagin, and W. A. G. III, “Thermal conductivity of carbon nan-
otubes”, Nanotechnology 11, 65 (2000).

[122] N. Hirosaki, S. Ogata, C. Kocer, H. Kitagawa, and Y. Nakamura, “Molecular
dynamics calculation of the ideal thermal conductivity of single-crystal α- and
β-si3n4”, Phys. Rev. B 65, 134110 (2002) 10.1103/PhysRevB.65.134110.

[123] Y. H. Lee, R. Biswas, C. M. Soukoulis, C. Z. Wang, C. T. Chan, and K. M.
Ho, “Molecular-dynamics simulation of thermal conductivity in amorphous
silicon”, Phys. Rev. B 43, 6573 (1991) 10.1103/PhysRevB.43.6573.

[124] S. G. Volz, and G. Chen, “Molecular-dynamics simulation of thermal conduc-
tivity of silicon crystals”, Phys. Rev. B 61, 2651 (2000) 10.1103/PhysRevB.
61.2651.

[125] K. Esfarjani, G. Chen, and H. T. Stokes, “Heat transport in silicon from first-
principles calculations”, Phys. Rev. B 84, 085204 (2011) 10.1103/PhysRevB.
84.085204.

[126] P. S. Stoica, and R. Moses, Spectral analysis of signals (Prentice Hall, Upper
Saddle River, 2005).

http://dx.doi.org/10.1016/j.physleta.2010.03.067
http://dx.doi.org/10.1016/j.physleta.2010.03.067
http://dx.doi.org/10.1016/j.physleta.2010.03.067
http://dx.doi.org/10.1063/1.3700344
http://dx.doi.org/10.1063/1.3700344
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.077
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.077
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.04.077
http://dx.doi.org/10.1103/PhysRevE.95.023308
http://dx.doi.org/10.1103/PhysRevE.95.023308
http://dx.doi.org/10.1103/PhysRevE.95.023308
http://dx.doi.org/10.1063/1.1310223
http://dx.doi.org/10.1063/1.1310223
http://dx.doi.org/10.1063/1.1310223
http://dx.doi.org/10.1021/acs.jctc.5b00351
http://dx.doi.org/10.1021/acs.jctc.5b00351
http://dx.doi.org/https://doi.org/10.1016/0038-1098(89)90630-3
http://dx.doi.org/https://doi.org/10.1016/0038-1098(89)90630-3
http://dx.doi.org/https://doi.org/10.1016/0038-1098(89)90630-3
http://dx.doi.org/https://doi.org/10.1016/0038-1098(89)90630-3
http://dx.doi.org/10.1103/PhysRevB.46.6131
http://dx.doi.org/10.1103/PhysRevB.46.6131
http://dx.doi.org/10.1103/PhysRevB.46.6131
http://stacks.iop.org/0957-4484/11/i=2/a=305
http://dx.doi.org/10.1103/PhysRevB.65.134110
http://dx.doi.org/10.1103/PhysRevB.65.134110
http://dx.doi.org/10.1103/PhysRevB.43.6573
http://dx.doi.org/10.1103/PhysRevB.43.6573
http://dx.doi.org/10.1103/PhysRevB.61.2651
http://dx.doi.org/10.1103/PhysRevB.61.2651
http://dx.doi.org/10.1103/PhysRevB.61.2651
http://dx.doi.org/10.1103/PhysRevB.84.085204
http://dx.doi.org/10.1103/PhysRevB.84.085204
http://dx.doi.org/10.1103/PhysRevB.84.085204


BIBLIOGRAPHY 113

[127] E. W. Weisstein, Polygamma functions, From MathWorld –A Wolfram Web
Resource, http://mathworld.wolfram.com/PolygammaFunction.html.

[128] D. G. Childers, D. P. Skinner, and R. C. Kemerait, “The cepstrum: a guide
to processing”, Proceedings of the IEEE 65, 1428 (1977) 10.1109/PROC.

1977.10747.

[129] T. W. Anderson, The statistical analysis of time series (Wiley-Interscience,
1994).

[130] M. Peligrad, and W. B. Wu, “Central limit theorem for fourier transforms of
stationary processes”, Ann. Prob. 38, 2009 (2010) 10.1214/10-AOP530.

[131] G. Claeskens, and N. L. Hjort, Model selection and model averaging (Cam-
bridge University Press, 2008).

[132] H. Akaike, “A new look at the statistical model identification”, IEEE Trans.
Autom. Control 19, 716 (1974) 10.1109/TAC.1974.1100705.

[133] L. Ercole, and R. Bertossa, ThermoCepstrum: a code to compute ther-
mal conductivity through the cepstral analysis of heat flux time series, (2017)
https://github.com/lorisercole/thermocepstrum.
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