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Abstract 

Protein misfolding diseases (PMDs) are chronic and progressively degenerative 

disorders, characterized by the accumulation of insoluble aggregates of misfolded 

proteins. Particularly, amyloid-β and tau protein in Alzheimer’s disease, prion protein 

in prion diseases, and α-synuclein in Parkinson disease are prototypical misfolded 

proteins that aggregate and accumulate in the brain, being responsible for the 

respective neurodegenerative disease. In the last decades, neurodegenerative PMDs 

have drawn public and scientific attention due to an increasing number of cases, 

becoming a critical issue in terms of healthcare and social costs. Moreover, while the 

list of neurodegenerative PMDs is long and growing, the pipeline of disease-modifying 

drugs is dry. In light of this clear unmet medical need, the present PhD thesis has been 

devoted to the development of three small-molecule libraries for neurodegenerative 

PMDs, through different and innovative strategies. First, we applied the multi-target 

directed ligand approach and we developed the first class of multi-target compounds 

able to hit the tau cascade at two different hubs. The synthesized 2,4-thiazolidinedione 

derivatives were able to concomitantly inhibit the phosphorylating tau kinase GSK-3β, 

as well as the tau aggregation process. Thus, these multi-target compounds could be 

promising tools for the validation of a completely new tau-centric approach as a 

disease-modifying strategy to treat Alzheimer’s disease. Secondly, we applied the 

theranostic approach and we designed and synthesized a library of fluorescent 

bivalent derivatives. These bivalent compounds could be able, in principle, to stain Aβ 

and tau protein aggregates and to inhibit the protein aggregation process. If we will be 

able to further demonstrate their theranostic profile in vitro and in vivo, these 

compounds could serve as innovative tools to potentially diagnose, deliver therapy, 

and monitor response to therapy in PMDs. Finally, we designed a focused library of 

compounds with the aim of optimizing the drug-like properties of a previously 

identified antiprion compound. Namely, we inserted on a position amenable to 

derivatization solubilizing groups, specifically tailored for CNS drug optimization. If our 

design strategy will be successful, we will have improved the pharmacokinetic 

properties of a promising antiprion compound, making possible its progression to 

further in vivo studies. 
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1.1 Protein misfolding diseases 

A broad range of human diseases arises from the failure of a specific peptide or protein 

to adopt, or remain in its native functional conformational state. These pathological 

conditions are generally referred to as protein misfolding diseases (PMDs).1 The 

hallmark event in PMDs is the change in the secondary and/or tertiary structure of a 

physiological protein without alteration in its primary structure. This conformational 

change will then promote the disease by gain of a toxic activity or by the lack of the 

biological function of the natively folded protein.2  

The majority of PMDs can be either inherited or sporadic. In familial cases, a mutation 

promotes the misfolding of the protein which starts to accumulate, thus triggering the 

disease process. On the other side, in sporadic cases, the balance between the normal 

and the pathological protein conformation can be altered by environmental fluctuation 

(e.g. pH, metal ions, oxidative stress, etc.), changes in the protein concentration, or by 

the effect of physiological and pathological chaperone proteins.3  

Interestingly, there is no evident sequence or structural homology among all the 

proteins involved in PMDs. However, the pathological conformer of most of them is 

rich in a particular secondary structure motif, i.e. the β-sheet conformation. β-sheets 

consist of  alternating pleated strands linked by hydrogen bonding between NH and CO 

groups of the peptidic bond.2 The β-sheet conformation is stabilized by protein 

oligomerization or aggregation. These highly organized fibrillary aggregates are 

generally described as amyloid fibrils, or plaques, when they accumulate 

extracellularly. On the other hand, intracellular inclusions are fibrils morphologically 

and structurally related to extracellular amyloid that form inside the cell.4 

The correlation and co-localization of protein aggregates with degenerating tissues and 

disease symptoms is a strong indication of the involvement of amyloid deposition in 

the pathogenesis of PMDs.5 However, it is still unclear whether these aggregates are 

the culprit of the disease or its epiphenomenon. Nevertheless, protein aggregates have 

become a typical signature of PMDs, and their presence is use for definitive diagnosis.6  

To date, 37 peptides or proteins have been found to form amyloid deposits in human 

diseases. Among them, eight proteins associated with PMDs form deposits in the 
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central nervous system (CNS), giving rise to neurodegenerative diseases such as 

Alzheimer’s disease (AD), Creutzfeldt-Jakob disease (CJD), Parkinson disease (PD), and 

many others (see Table 1.1). On the other side, several proteins form deposits in other 

tissues including heart, spleen, liver, and kidney, and the resulting diseases are non-

neuropathic.7  

 

Table 1.1. Neurodegenerative protein misfolding diseases (modified from Goedert, 

2010).8 

Misfolded protein Human disease 

Prion protein Kuru  

Creutzfeldt-Jakob disease  

Gerstmann-Strӓussler-Scheinker disease 

Fatal familial insomnia 

Amyloid-β Alzheimer’s disease 

Tau Alzheimer’s disease  

Gerstmann-Strӓussler-Scheinker disease 

British dementia  

Danish dementia  

Pick’s disease  

Progressive supranuclear palsy 

Corticobasal degeneration  

Argyrophilic grain disease  

Guam Parkinsonism-dementia complex 

Tangle-only dementia  

White matter tauopathy with globular glial inclusions 

Frontotemporal dementia and Parkinsonism linked to 

chromosome 17 

α-synuclein Parkinson’s disease  

Dementia with Lewy bodies 

Multiple system atrophy  

Pure autonomic failure  

Lewy body dysphagia 

Superoxide dismutase 1 Amyotrophic lateral sclerosis 
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TAR DNA-binding protein 

43 

Amyotrophic lateral sclerosis 

Frontotemporal dementia 

Fused in sarcoma Amyotrophic lateral sclerosis 

Frontotemporal dementia 

Huntingtin Huntington’s disease 

 

 

1.1.1 Structures and properties of the amyloid fibrils 

Amyloid fibrils are insoluble and heterogeneous. Thus, their structure determination 

with the commonly used methods is very complicated. Nevertheless, the large number 

of structural models, and the high-resolution atomic structures of amyloid fibrils that 

are becoming available in the years, makes it possible to identify and to rationalize 

their common and distinctive features.7 The signature of amyloid fibrils is the cross-β 

fiber X-ray diffraction pattern, with β-strands oriented perpendicularly to the fibril axis 

(Figure 1.1).9 

 

 

Figure 1.1. Model of the common core protofilaments structure of amyloid fibrils. In 

this illustration, four β-sheets make up the protofilaments structure. These sheets run 

parallel to the axis of the protofilaments. With twisting of the β-strands, the β-sheets 

twist around a common helical axis, corresponding with the protofilament axis, giving 

a helical repeat of 115.5 Å (modified from Sunde, 1997).10 
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Electron and atomic force microscopy (AFM) have given insight into their 

macromolecular structures, showing that fibrils are long, straight and unbranched, and 

are made up of individual subunits named “protofilaments”.11-13 Amyloid fibrils 

generally comprise 2-8 protofilaments, each approximately 2-7 nm in diameter, which 

often twist around each other or associate laterally as flat ribbons 2-7 nm high and up 

to 30 nm wide. However, mono-protofilament fibrils have also been observes.14, 15  

The presence of amyloid fibrils is characteristically monitored by the binding of dyes, 

such as Thioflavin T (ThT), Congo red (CR), or their derivatives, which are thought to 

form ordered arrays along the lengths of the fibrils that give rise to specific spectral 

responses.16 

Importantly, cross-β structures, fibrillary morphology, and peculiar tinctorial properties 

are universally accepted as the hallmarks of amyloid structures. Therefore, any protein 

aggregate needs to display all of them to be classified as such.7 

 

An intriguing aspect of the amyloids is the morphological and structural similarity of 

the fibrils formed by different polypeptide chains. This evidence, together with the 

finding that they can be formed by a range of different polypeptide sequences, led to 

the hypothesis that the amyloid configuration is a generic, widely accessible, stable 

structure of the proteins.1, 17 However, this is in contrast with the situation of the 

native states of proteins, where structure is strongly dependent on the specific amino 

acid sequence, and complex environments or careful regulation are frequently 

required for their correct self-assembly into folded structures. This consideration led 

the scientific community to investigate the nature of the interactions that stabilize the 

amyloid forms of proteins. It has been shown that the major contribution to their 

rigidity and stability stems from a generic interbackbone hydrogen-bonding network 

that is modulated by variable side-chain interactions.18 

Another evident feature of amyloid aggregates is their polymorphism. Indeed, it is 

frequent that the same protein sequence gives rise to fibrils that differ both in the 

molecular structures of their protofilaments and in the overall morphology of the 

mature fibrils.19 Polymorphism is an intrinsic consequence of the ability of polypeptide 

chains to form amyloid fibrils. Unlike native folds, selected throughout evolution and 
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encoded in their amino acid sequence, the amyloid architecture is simply a 

consequence of the physicochemical properties of a polypeptide chain. Thus, a given 

sequence can be incorporated in such structures in multiple different ways. Once a 

given type of assembly has been initiated, however, it will propagate thanks to the 

inherent stability of repetitive structures in highly organized systems, and the high 

kinetic barriers that exist in the interconversion between polymorphs.7 

 

 

1.1.2 The mechanism of amyloid formation 

Studying the mechanism of formation of amyloid fibrils is of utmost importance. 

Understanding the mechanism underlying polymerization of soluble, monomeric 

peptides into insoluble fibrils may provide researchers with possible therapeutic 

approaches to halting, reversing or avoiding fibril formation.20 

Several information on the possible mechanism of amyloid-like fibril formation derive 

from in vitro aggregation kinetics studies.21-23 It is thought that four major steps are 

involved in fibril formation (Figure 1.2a). The first step is a slow nucleation phase (the 

aggregation of the protein into a seed) that may go through several intermediates 

states until the initial segment of the amyloid spine is formed. Monomeric or 

oligomeric structures are then attached to the ends of the initial amyloid seed by 

conformational conversion, starting the elongation step. Although nucleation and 

elongation could be sufficient for describing fibrillation, secondary processes such as 

fibril fragmentation and secondary nucleation are extremely important.21 Indeed, the 

growing fibril can break spontaneously or actively through cellular processes. Thus, 

amyloid formation becomes self-propagating through the generation and spread of 

new amyloid seeds, leading to a faster elongation. This process is referred to as 

secondary nucleation. 

Fibril growth may be diagrammatically represented as a lag exponential growth curve 

where the phase is considerably shortened in the presence of seeds (Figure 1.2b).24 
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Figure 1.2. (a) Schematic representation of the amyloid formation process. (b) 

Representation of the kinetic of amyloid formation (modified from Jucker, 2013).24  

 

 

1.1.3 Protein aggregates-related pathogenicity 

The presence of highly organized and stable fibrillary deposits in the organs of patients 

suffering from PMDs, initially led to the hypothesis that this aggregates were the 

causative agents of such disorders. However, in PMDs involving the CNS, it is now 

increasingly accepted that the pathogenicity arises from the oligomeric forms 

generated in the aggregation process.25-28 Nevertheless, also fibrils show toxicity, as 

they can deplete key components of the protein homeostasis network, they can act as 

a reservoir of protein oligomers that can be released, and, most importantly, they are 

potent catalysts for the generation of new toxic oligomers through secondary 

nucleation.  

To definitively identify which is the key culprit between oligomers and/or fibrils is 

particularly challenging because of their transient nature and their variability in terms 

of size and structure. Nevertheless, intense structural research has elucidated some 

factors responsible for their toxicity. Indeed, one of the major determinants of 

oligomer-mediated toxicity is the exposure of hydrophobic groups on the oligomer 

surface, that are normally hidden in globular proteins or that are highly dispersed in 

intrinsically disordered proteins. Moreover, most of these misfolded oligomeric species 

are likely to be toxic to some degree because of their small size.7 A possible 

explanation for the importance of small size in oligomer toxicity is the high diffusion 
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coefficient exhibited by these species, which allow them to diffuse more rapidly, thus 

forming aberrant interactions more easily.29 The oligomers have also been reported to 

interact with a large number of molecular species, leading to a variety of mechanism of 

toxicity, and to a long list of possible molecular targets for such aberrant species. 

Moreover, it is important to understand that is unlikely to have a single toxic agent 

associated with a disease. The network of aberrant interactions that such species can 

generate indicates that it is improbable to have a unique molecular interaction, a 

unique mechanism of action, or a unique cascade of cellular events associated with a 

given disease. Indeed, oligomers’ toxicity is likely to be the result of their intrinsic 

misfolded nature and their structural heterogeneity.7 

 

 

1.1.4 Neurodegenerative PMDs 

In the last decades, neurodegenerative PMDs draw public and scientific attention due 

to an increasing number of cases, becoming a serious issue in terms of healthcare and 

economic costs. To date, 50 million people worldwide are affected by some form of 

neurodegeneration, and in 2030 the affected are expected to reach 75 million.30 

Furthermore, the list of PMDs is long and growing, while the pipeline of disease 

modifying drugs is almost dry. Thus, treatment of such misfolding maladies is 

considered as one of the most important therapeutic challenges of the 21st century.31  

Alzheimer’s disease (AD), prion diseases (PrDs), Parkinson’s disease (PD), and 

amyotrophic lateral sclerosis (ALS) are prominent examples of PMDs.24 The finding that 

all these diseases might share a common key pathological hallmark, i.e. the misfolding 

of a specific protein, has importantly contributed towards their understanding, but 

many aspects still remain unclear. The misfolding proteins responsible for 

neurodegenerative PMDs are: amyloid-β (Aβ) and tau protein in AD; prion protein 

(PrP) in PrDs; α-synuclein (α-syn) in PD; and Cu, Zn superoxide dismutase 1 (SOD1) and 

TAR DNA-binding protein 43 (TDP-43) in ALS.8 

Importantly, in recent years, prion diseases have received ample recognition as a 

prototype of neurodegenerative PMDs.24 Briefly, the central molecular event during 
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PrDs is the self-propagating conformational conversion of the cellular prion protein 

(PrPc) to its pathological isoform (PrPSc). This postulate is known as the “protein-only 

hypothesis”.32 Nowadays, an increasing body of evidence reveals that several other 

proteins follow a similar general molecular mechanism of self-perpetuating seeded 

aggregation, and a similar cell-to-cell spreading in vitro, in cell cultures, and in vivo in 

animal models. Indeed, Aβ and tau protein in AD, α-syn in PD, SOD1 and TDP-43 in ALS 

are now commonly referred to as prion-like proteins (Figure 1.3).24 

 

 

Figure 1.3. Amyloid-β deposits (a), tau inclusion as a neurofibrillary tangle (b), α-

synuclein inclusion (c), TDP-43 inclusions (d), and characteristic progression of the 

lesions over time (modified from Jucker, 2013).24 
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1.2 Alzheimer’s disease 

Alzheimer’s disease is the most common cause of dementia worldwide and the most 

prevalent neurodegenerative disorder. Since the first description provided by Alois 

Alzheimer in 1906, scientists have made remarkable improvements in understanding 

its molecular roots, although the two key pathological hallmarks, amyloid-β and tau 

protein, were not molecularly identified until the 1980s.33 

Today, AD is the most common dementia in late life, and it is becoming increasingly 

common as the global population ages. It is currently estimated that 50 million people 

worldwide have dementia, with an estimated global cost of dementia care at 1 trillion 

US$ in 2018. In the absence of effective therapies, the numbers are estimated to 

increase to 82 million people by 2030, and 152 by 2050.34 Global leaders have set a 

deadline of 2025 for finding an effective way to treat or prevent AD.35 In 2014, the G8 

stated that dementia should made a global priority with the aim of a cure or approve 

disease-modifying therapy available by 2025.36 Indeed, it has been estimated that the 

overall frequency of AD would be decreased by nearly 50% if the onset could be 

delayed by 5 years.37 

 

 

1.2.1 Drug development in Alzheimer’s disease 

AD drug development has proven to be extremely difficult. Despite the evaluation of 

several potential treatments in clinical trials, only four cholinesterase inhibitors 

(tacrine, donepezil, rivastigmine, galantamine) and an N-methyl-D-aspartate (NMDA) 

receptor antagonist (memantine) have shown sufficient safety and efficacy to allow 

marketing approval (Figure 1.4).38 

Acetylcholinesterase inhibitor tacrine was approved by the FDA in 1993 but was then 

discontinued in some states, due to concerns over safety. Then, donepezil was 

approved in 1996, rivastigmine in 1998, galantamine in 2001, and NMDA receptor 

blocker memantine in 2003. These five drugs, however, are only symptomatic 

treatments, temporarily ameliorating memory and thinking problems. Indeed, their 

clinical effect is modest as they do not treat the underlying causes of AD, neither slow 
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the rate of decline. Unfortunately, no new treatments have been approved since 2003. 

Analyzing the period from 2002 to 2012, a very high attrition rate was found, with an 

overall success rate of 0.4% (99.6% failure), thus making AD one of the most 

unsuccessful therapeutic areas of drug discovery.39 

 

 

Figure 1.4. Chemical structures of the AD-approved drugs. 

 

What is even more discouraging is that despite the enormous social and economic 

reward of a successful treatment, big pharma are pulling out of AD research.40  

The failures in AD drug development have occurred with both small molecules and 

immunotherapies, both failing to show a drug/placebo difference or having an 

unacceptable toxicity. The efforts to bring new AD drugs to market have been 

hindered by a number of challenges, such as the still incomplete understanding of AD 

pathogenesis, its multifactorial etiology and complex pathophysiology, its slowly 

progressive nature, and the high level of comorbidities occurring in the elderly 

people.41 Moreover, clinical symptoms are not evident until considerable changes has 

occurred within the brain, making difficult in the clinical trial environment the 

establishment of the most appropriate outcomes to measure.42 
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1.2.2 AD as a multifactorial disorder 

Two different forms of AD can be distinguish: familial AD (FAD, early-onset AD), and 

sporadic AD (SAD, late-onset AD). FAD represents less than 1% of AD cases, and it is 

caused by mutations in three different transmembrane proteins: APP, presenilin 1, and 

presenilin 2.43 While SAD is the most common one, representing the 99% of AD cases, 

usually diagnosed in people over 65 years. SAD occurs in unpredictable manner and it 

is not associated with any known mutation.44  

Although the etiology of AD is still not fully understood, the scientific community has 

recognized it as a multifactorial and complex disorder. AD is histopathologically 

characterized by brain β-amyloidosis, neurofibrillary degeneration, and loss of 

neuronal synapses and pyramidal neurons. All these changes result in the 

development of the typical AD symptomatology, namely a progressive impairments of 

cognitive function, together with behavioral disturbances such as aggression, 

depression and wandering. β-Amyloidosis encompasses plaques of extracellular 

deposits of amyloid-β protein -derived from the amyloid precursor protein (APP)- in 

the brain parenchyma and in the cerebral blood vessels. Conversely, neurofibrillary 

degeneration is observed in the cell soma as neurofibrillary tangles (NFTs) composed 

of hyperphosphorylated tau proteins in paired helical filaments (PHF).44 In both cases, 

the accumulating proteins assume a tertiary structure that is unusually rich in β-sheets, 

which in turn promote the self-assembly of protein molecules into small oligomeric 

and larger fibrillary assemblies, with neurotoxic properties.45  

 

Since the discovery of AD, several single-factor theories try to explain its etiology, but 

to date, no one can adequately account for all the aspects of this disease. The 

“multiple combinations of co-factors” theory of AD was proposed by McDonald in 

200246 and, during the years, appears as the most plausible model that could open the 

door to novel treatment strategies. However, despite significant advances in 

understanding AD pathophysiologic determinants (e.g. Aβ, tau protein, 

neuroinflammation, oxidative stress, and synaptic dysfunctions), we still lack a detailed 

understanding of the causal role of this phenomena and the interactions between 

them. 
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In the mid-1970s, reports on the increasing loss of cholinergic neurons and synapses in 

the basal forebrain, together with the emerging role of acetylcholine (ACh) in learning 

and memory, led to the cholinergic hypothesis of AD.47 It was proposed that 

degeneration of cholinergic neurons and the associated loss of cholinergic 

neurotransmission in the cerebral cortex contributed significantly to the deterioration 

in cognitive function of AD patients. The cholinergic hypothesis was the first proposed 

theory, and it led to the development of the acetylcholinesterase (AChE) inhibitors 

currently approved for the treatment of mild to moderate AD (see above).48 However, 

the failure of AChE inhibitors to effectively cure AD was seen as disproving the 

cholinergic hypothesis, and the focus of AD research shifted towards Aβ deposition 

and abnormalities in tau protein production. 

 

In 1992, the “amyloid cascade hypothesis” was proposed,49, 50 according to which the 

generation of the neurotoxic Aβ peptide derive from the consecutive post-translational 

proteolysis of APP (Figure 1.5). Then, Aβ peptides deposit and/or aggregate in 

extracellular insoluble plaques.  

In the proteolytic process of the APP, as first step, β-secretase (BACE-1) cleaves APP at 

the NH2 terminus to provide a soluble peptide (β-APP) and a 99-residue COOH-

terminal fragment (C99), which remains bound to the membrane. Alternatively, α-

secretase cuts within the Aβ region to produce α-APPs and an 83-residue COOH-

terminal fragment (C83). Secondly, γ-secretase, a second proteolytic enzyme, perform 

an unusual cut within the transmembrane domain to produce the amyloidogenic Aβ 

from C99, and a non-amyloidogenic one (p3) from C83. γ-secretase’ proteolysis is 

heterogeneous, the majority of the Aβ species produced are 40-residue peptides 

(Aβ40), while a small portion is a 42-residue (Aβ42).51 Importantly, Aβ42 is longer, more 

hydrophobic, and more prone to fibril formation compared to Aβ40. However, Aβ40 and 

Aβ42 are not the only pathological APP-deriving peptides. Indeed, cerebrospinal fluid 

(CSF) of AD patients showed high levels of another isoform of Aβ, the 38-residue 

peptide (Aβ38).  
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Figure 1.5. Schematic depiction of the amyloid cascade (modified from Bolognesi, 

2017).52  

 

Considerable research now supports the conclusion that Aβ aggregates and spreads in 

the brain by a prion-like mechanism.45 AD involves a clinically silent period of 

intracerebral protein aggregation that precedes dementia by decades.53-55 Thus, the 

seeding model of Aβ deposition substantiates a primary role for Aβ aggregation in the 

early stages of AD and reinforces the logic of therapeutically targeting Aβ seeds,56 

preferably early in the pathogenic cascade. 

 

During the years, several experimental evidence have consolidated the “amyloid 

hypothesis”, showing that fibrillogenic Aβ is increased in the majority of mutations 

causing FAD. Moreover, Aβ peptides impairs neuronal functions in a variety of 

experimental models.57 

Nevertheless, understanding the nature of the neurotoxic Aβ species is still very 

difficult. Initially, only plaques were thought to be neurotoxic, but now Aβ oligomers 

has been suggested as the most harmful species.58, 59 Moreover, it is widely recognized 

that Aβ exerts its neurotoxic effect also through several other mechanisms as, for 

example, disrupting synaptic mitochondrial function, activating microglial cells and 

enhancing the expression of pro-inflammatory genes, increasing reactive oxygen 

species (ROS) formation, triggering the conversion of tau protein into a pathologic 
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state, etc.60, 61 Thus, the aggregation of Aβ peptide might initiates a vicious cycle, only 

ultimately leading to neuronal death and to the disruption of memory and cognitive 

functions that characterize AD. 

 

Several efforts have been made to develop Aβ-based therapies, with some of them 

now being tested in ongoing clinical trials.37, 62 However, the recent failures of Aβ-

based drug candidates, have caused many scientists to question the “amyloid 

hypothesis”. Indeed, although the presence of Aβ aggregates has been clearly 

associated with AD pathology, there is still an active discussion as to whether their 

presence closely correlates with disease severity and progression. In contrast, 

mounting evidence are now suggesting that the density and neocortical spread of NFTs 

better correlate with the neuronal degeneration and cognitive impairment.63 

 

In light of this, in recent years, researchers have focused their attention towards tau 

protein, as the second pathological hallmark of AD is represented by neurofibrillary 

tangles. Tau is a neuronal microtubule-associated protein involved in microtubules 

stabilization,64 and playing an important physiological role in microtubule dynamics 

and axonal transport.65 Tau functions can be regulated by its phosphorylation state at 

more than 40 phosphorylatable sites, including serine, threonine, and tyrosine.66 

Under pathological conditions, tau proteins became hyperphosphorylated and start to 

accumulate and aggregate forming NFTs. NFTs interfere with axonal transport leading 

to atrophy of axons and dendrites, and eventually, to neuronal death.67  

Abnormally phosphorylated tau was found in the brain of AD patients, and there are 

strong evidence supporting that tau hyperphosphorylation is an early event in the 

development of neurofibrillary pathology. Importantly, dephosphorylation of tau 

isolated from NFTs restores its ability to bind neuronal microtubules, indicating that 

the mechanism regulating phosphorylation/dephosphorylation kinetics are perturbed 

in AD.66  
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Figure 1.6. Schematic depiction of the tau cascade (modified from Bolognesi, 2017).52 

 

Several kinases have been shown to be capable of phosphorylating tau in vitro, 

including proline-directed kinases such as mitogen-activated protein kinase 1 (MAPK1), 

glycogen synthase kinase-3 (GSK-3) and cyclin-dependent kinase 5 (CDK5), as well as 

non-proline-directed enzymes such as casein kinase 1, protein kinase A, and 

MAP/microtubule affinity-regulating kinase 1 (MARK1).68 Recent studies have 

demonstrated that the majority of tau protein phosphorylation sites can be modified 

by GSK-3. Furthermore, overexpression of GSK-3 results in tau hyperphosphorylation 

and disrupted microtubules in transgenic (Tg) mice, suggesting a major role for this 

kinase as a validated therapeutic target for AD. 

NFTs originate in subcortical areas of the brain, predominantly in the hippocampus, 

and spread out to cortical areas. Similarly to Aβ, tau protein was recognized few years 

ago as a prion-like protein.69 Monomers of tau are unfolded and can dimerize without 

a substantial change in secondary structure. However, when the nucleus of 

aggregation is formed, an increase of β-sheet take place and the nucleus can be 

elongated to build PHFs. Moreover, the intracerebral injection of brain extracts 

containing aggregated tau induces tauopathy in tau-transgenic host mice, and the 

lesions propagate from the injection site to axonally connected areas, consistent with 

neuronal uptake, transport, and release of tau seeds.70 

 

Although Aβ and tau exert their toxicity through separate mechanisms, several 

evidence suggest that there is a strict correlation between them. Aβ aggregation and 

deposition seems to be an early event, which can trigger tau pathology. However, it is 
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important to remind that Aβ does not correlate with the presence of NFTs, cell loss or 

dementia. To date, one hypothesis is that Aβ aggregation and deposition triggers a 

process that leads to neuronal loss through formation of PHF of tau. Nevertheless, it 

remains to be clarified how Aβ aggregates can trigger or accelerates tau pathology, 

and how tau pathology ultimately leads to neuronal loss.62  

 

Several other hypothesis have been proposed to explain the pathogenesis of AD, 

including oxidative stress, metal ion dyshomeostasis, and inflammation.71 It is 

important to highlight that all the aforementioned hypothesis of AD pathogenesis are 

not mutually exclusive. Rather, they complement each other, intersecting at a high 

level of complexity.72 

 

 

Figure 1.7. Schematic depiction of the multifactorial events leading to neuronal death 

in AD (modified from Cavalli, 2008).72 
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1.3 Prion diseases 

Prion diseases (PrDs), also known as transmissible spongiform encephalopathies (TSE), 

are a group of neurological disorders affecting both animals and humans (Figure 

1.8).32, 73 They include: bovine spongiform encephalopathy (BSE) of cattle; scrapie of 

sheep; chronic wasting disease (CWD) of deer, moose, and helk; kuru, Creutzfeldt-

Jacob (CJD), fatal familial insomnia (FFI), and Gerstmann-Strӓussler-Scheinker (GSS) 

diseases of humans.74 

PrDs are characterized by widespread neurodegeneration, with clinical symptoms of 

both cognitive and motor dysfunction. The typical microscopic features is represented 

by vacuolation of the grey matter of the CNS, prominent neuronal loss, and reactive 

astrogliosis.32, 73 

 

 

Figure 1.8. Animal and human TSEs (modified from Saá, 2016).75 

 

Since Cuillé and Chelle successfully transmitted scrapie between sheep, in 1963, and 

Gajdusek transmitted kuru and CJD to chimpanzee in 1966 and 1968 respectively, the 

nature of the agents causing these “slow virus diseases” remains unknown.76  

In 1982, S. Prusiner called them “PRIONs” (acronym of PRoteinaceous Infective ONly 

particles), to distinguish the infectious pathogen that causes PrDs from viruses and 

viroids.77 Indeed, it was surprising to discover that unlike viruses and bacteria, prions 

were composed only of protein, and were capable of replicating in the absence of any 

nucleic acid.78 

Now it is known that prion diseases are caused by the conversion of the normal prion 

protein (PrPC, the cellular form of the protein) with an α-helical structure, into an 
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abnormal amyloidogenic isoform, called the scrapie prion protein (PrPSc, in which Sc 

stands for scrapie), showing an high content of β-sheet secondary structures. 

 

 

1.3.1 Human prion diseases 

Creutzfeldt-Jacob disease is the most common disease among human PrDs, and it can 

be sporadic, genetic, or acquired. Around 85-90% of CJD cases occur sporadically and 

affect 1-1.5 people per million annually. Familial/genetic CJD (fCJD/gCJD) account for 

about 10% of CJD cases worldwide. While acquired PrDs include variant CJD (vCJD) and 

iatrogenic CJD (iCJD), and are observed in 2-5% of CJD cases. Depending on the origin 

of the causative agent, human PrDs can be divided in: caused by prions originating 

internally (fCJD, gCJD, FFI, and GSS), or infected by external prions (kuru, iCJD, and 

vCJD).79  

As there are no specific therapeutic and prophylactic interventions available for PrDs, 

active surveillance is critical for the control and prevention of these disorders, 

particularly for those caused by external prions. 

Kuru was described in cannibalistic tribes of Papua New Guinea, however, after 

decimating almost the entire population, has almost disappear. Different is the case of 

vCJD. Indeed, in the ‘90s, more than 280000 cattle suffering from BSE provoked a 

worldwide food crisis with huge economic consequences for the European Union and 

other countries. The subsequent consumption of diseased cattle by humans lead to the 

emergence of vCJD, causing around 140 deaths in the United Kingdom and few cases in 

France, Italy, and Canada.80 The suggested mechanism of infection is defined in three 

phases: (i) after ingestion, the PrPSc agent is uptaken from the intestinal lumen; (ii) 

after incubation in lymphoid tissues the PrPSc spreads to the CNS via the enteric 

nervous system; (iii) the final phase is the infection of the spinal cord and brain, 

leading to the characteristic spongiform degeneration and astroglial activation.81 

Finally, iatrogenic transmission of CJD has principally occurred through improperly 

sterilized neurosurgical instruments, transplants of dura mater, and administration of 

pituitary hormones of cadaveric origin.75 These routes of transmission no longer pose a 

major threat; however, recently, the transmission of vCJD has been reported in four 
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instances through the therapeutic use of non leukoreduced red blood cell 

concentrates.82, 83 

 

 

1.3.2 PrPC and PrPSc 

The cellular prion protein is a cell surface glycoprotein, expressed in a variety of 

different organs and tissues, with high expression levels in the central and peripheral 

nervous system. In humans, PrPC is a 253 amino acid protein encoded by the PRNP 

(human PRioN Protein) gene, and it is linked to the plasma membrane by a 

glycosylphosphatidylinositol (GPI) anchor. PrPC precursor protein contains two signal 

peptides. The 22 amino acids at the N-terminus targets the protein to the endoplasmic 

reticulum; while the 23 amino acid sequence at the C-terminus is essential for the 

addition of the GPI anchor.77 Peptide 1-22 is cleaved as signal peptide during 

trafficking, while peptide 230-253 is replaced by the GPI anchor. After the cleavage of 

the signal peptides, PrPC is exported to the cell surface as an N-glycosylated protein. 

PrPc is formed by an amino flexible, random coil sequence containing two hexarepeats 

and five octarepeats, and a C-terminal globular domain of about 100 amino acids 

(Figure 1.9). The N-terminal domain contains: a repetitive sequence of eight amino 

acids, the so-called octapeptide repeats (PHGGGWGQ) that appear five times in most 

mammalian species; a neurotoxic central region; and a hydrophobic domain. Through 

the octarepeats-containing flexible tail, PrPC can bind divalent cations such as copper 

and zinc, and it can interact with a plethora of different proteins. These interactions 

have been taken to reflect its putative role in several cellular processes, but they may 

also simply be a consequence of the unstructured, flexible conformation of the N-

terminus of PrPC. 

The physiological role of PrPC is still under debate, and defining its cellular role is 

complicated by the lack of major anatomical or developmental deficits observed in 

early studies with PrPc knock-out mice.84, 85 To date, PrPC seems to be involved in 

several processes such as: neurite outgrowth; neuronal survival; synapse formation, 

maintenance, and function; and maintenance of myelinated fibers.86 
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Figure 1.9. Cartoon of the three-dimensional structure of the intact hPrP (23-230). 

Helices are depicted in orange, β-strands in cyan, the segments with non-regular 

secondary structure in the C-terminal domain in yellow, and the octarepeats-

containing flexible tail is represented by yellow dots (modified from Zahn, 2000).87 

 

Moreover, numerous putative neuroprotective functions have been attributed to PrPC, 

including cell surface signaling, and antioxidant and anti-apoptotic effects.88 Finally, it 

seems to be implicated in autophagy regulation and metal ions trafficking.89, 90 

 

Despite their rare incidence, PrDs have captured broad consideration from the 

scientific community thanks to the unconventional mechanism by which they are 

transmitted. According to the “protein-only hypothesis”, PrPC is converted into the 

pathological PrPSc in the brain of the infected host.32 Subsequently, PrPSc acts as a 

template, for the conversion of other PrPC molecules. Such conversion is associated 

with conformational changes of its secondary structure from α-helices to β-sheets. 

Two different models have been proposed to explain the conformational conversion 

from PrPC to PrPSc: the “template-directed refolding” and the “seeded nucleation” 

hypothesis (Figure 1.10).80 

The “refolding” model postulates an interaction between exogenously introduced PrPSc 

and endogenous PrPC, which is induced to transform itself into further PrPSc. A high 

energy barrier may prevent the spontaneous conversion of PrPC into PrPSc.  

On the other side, the “seeding” model proposes that PrPC and PrPSc are in a reversible 

thermodynamic equilibrium. Such equilibrium would be heavily shifted toward PrPC, so 

that only small amounts of PrPSc would coexist with PrPC. In this case, PrPSc could not 

possibly represent the infectious agent, since it would be ubiquitous. However, if 

several monomeric PrPSc molecules are aggregated into a highly ordered seed, further 
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monomeric PrPSc can be recruited and, eventually, aggregates to amyloid. Within such 

a crystal-like seed, PrPSc becomes stabilized. Then, fragmentation of PrPSc aggregates 

increases the number of nuclei that can recruit further PrPSc, thus accelerating the 

replication process, the prion accumulation, and finally giving rise to the disease.80 

Testing these hypotheses requires precise knowledge of the structural features of both 

PrPC and PrPSc. To date, such knowledge has not progressed to a state that would allow 

for resolution of this question. The structure of PrPC has been studied extensively with 

high-resolution methods, yielded detailed insights into its arrangement at the atomic 

level. PrPSc, however, has been amenable only to low-resolution structural methods, as 

insoluble aggregates are resilient to most of the available technologies for the 

determination of protein structure. All we know about PrPSc is that it consists mainly of 

β-pleated sheet, and its aggregates expose a remarkably ordered structure. 

 

 

Figure 1.10. Proposed models for the conformational conversion from PrPC to PrPSc 

(modified from Aguzzi, 2004).80 

 

 

1.3.3 Mechanisms of prion toxicity 

PrPSc accumulation in the brain is the hallmark of PrDs, but it is still unknown whether 

PrPSc is also directly responsible for the devastating CNS pathology. Surely, the 

accumulation of amyloid in the CNS is likely to be generally unhealthy, as exemplified 
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by Alzheimer’s disease. On the other hand, chronic deposition of PrPSc does not 

damage PRNP knock-out brains,91 and depletion of PrPc from neurons of scrapie-

infected mice prevents the disease.92  

In the past decades, three different mechanisms on how PrPSc aggregates might exert 

their toxicity were proposed: the “loss-of-function”, the “gain of function”, and the 

“subversion of function” mechanisms.93 

In the first case, prion neurodegeneration is related to “loss of function” of PrPC. 

However, as highlighted before, the discovery that the inactivation of the PrPC gene in 

mice or cows does not cause neurodegeneration, indicates that prion pathogenesis 

cannot be due to loss of PrPC function. 

The most widely discussed hypothesis is the “gain of function” one, in which a toxic 

and infectious fragment is produced during the conversion of PrPC to PrPSc. In this 

view, PrPSc possesses novel toxic properties not related to the normal, physiological 

function of PrPC. Indeed, PrPSc may block axonal transport, interfere with synaptic 

functions, or trigger apoptotic pathways. 

Finally, the third possible hypothesis for prion pathogenesis involves a subversion of 

the normal neuroprotective function of PrPC. In this mechanism, interaction with 

PrPSc converts PrPC from a transducer of neuroprotective signals into a transducer of 

neurotoxic signals. Consistent with this model, there are now a number of 

experimental situations in which expression of PrPC in neurons, rather than being 

neuroprotective, appears to be essential for conferring sensitivity to PrP-related 

neurotoxic insults.91, 92, 94 For example, scrapie-inoculated mice expressing GPI-

negative version of PrP, develop a minimal brain pathology and neurological 

dysfunction, despite the high accumulation of amyloid plaques containing PrPSc.95 

We are still far away from the understanding of the mechanisms underlying prion 

toxicity. However, it is now clear that alterations in the normal function of PrPC may 

play a crucial role in causing or contributing to the disease phenotype. Indeed, 

elucidating the physiological activity of PrPC, identifying physiologically relevant PrP-

interacting partners and the cellular pathways in which they participate, has become a 

major priority in the prion field.  
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1.4 Drug discovery strategies targeting PMDs  

The challenge of PMDs needs to be met at several levels. However, the greatest unmet 

need is the availability of therapeutic interventions that are effective in slowing or 

preventing progression of the neurodegeneration. The development of drugs targeting 

protein misfolding or aggregation has been challenging due to the lack of certainty 

about which form/s of a given disease protein is primarily responsible for the disease. 

The situation is further complicated by the existence of a variety of intermediate 

species that exist during the folding and oligomerization processes, and by the 

existence of different conformational variants, or “strains”, with different levels of 

neurotoxicity.96 In general, drug discovery strategies that restore protein folding and 

function can be grouped into three different groups:97 

I. Stabilization of a specific misfolding-prone or mutant protein using 

pharmacological chaperones. Chaperones are involved in all aspects of 

proteostasis, thus they offer potential therapeutic entry points to each step in 

the processing of a pathogenic protein. One approach to therapeutically 

targeting the chaperone system has been to develop small molecule inhibitors 

or activators of specific chaperones.98 However, none of these compounds 

have yet entered clinical trials due to issues of low brain penetration and/or 

peripheral cytotoxicity, but active effort in this area is continuing. A second 

approach to developing chaperone-based therapeutics has been through 

protein engineering.99, 100 

II. Inhibition of the aggregation of a specific amyloid-prone protein that stabilizes 

the native state or the partially folded state and prevents the formation of 

oligomers or amyloids. One strategy is to look for molecules that bind to the 

soluble oligomers in order to preclude them from interacting with cell surface 

receptors or other oligomers, thus preventing the aggregation process. Another 

method is to remove the toxic oligomer via its conversion into a non-toxic 

aggregate.97 Importantly, amyloid aggregation inhibitors were able to rich 

clinical trials for AD.37  

III. Targeting degradation and extracellular clearance. Defects in both the ubiquitin 

proteasome system and autophagy pathways of protein degradation are often 
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seen in PMDs. A number of small molecules that upregulate components of the 

ubiquitin proteasome system, promote the degradation of pathological 

proteins and have neuroprotective effects on cultured cells have been 

identified, but few have shown to be effective in vivo. One of the best-explored 

examples of targeting clearance of misfolded proteins has been the use of 

antibodies to promote, for example, the clearance of Aβ. However, current 

challenges in the use of Aβ antibodies include low rates of BBB penetration, 

and uncertainty as to which antibodies engage clinically relevant forms of Aβ.96, 

101, 102 

To date, no drugs able to stop or prevent the progression of neurodegenerative PMDs 

have been approved. However, the approval of tafamidis for transthyretin amyloidosis 

give hope to medicinal chemists working in the field of PMDs.103 Transthyretin 

amyloidosis are rare and fatal PMDs characterized by the aggregation of transthyretin 

(TTR), a natively tetrameric protein involved in the transport of thyroxine and the 

vitamin A–retinol-binding protein complex. The TTR amyloidosis present with a 

spectrum of manifestations, encompassing progressive neuropathy and/or 

cardiomyopathy.104 In the mid1990s Kelly’s group began searching for TTR-aggregation 

inhibitors, and few years later they began to focus on benzoxazole as TTR-binding 

compounds. Kelly’s work resulted in the marketing approval of tafamidis meglumine 

(Figure 1.11), a rationally designed non-steroidal anti-inflammatory derivative of 

benzoxazole, able to bind to TTR and preventing it from deviating from its natural, 

functional form into the amyloid state.105 Tafamidis is able to kinetically stabilize the 

tetramer, slowing monomer formation, misfolding, and amyloidogenesis.106, 107 Thus, 

tafamidis represents the first and only clinically approved anti-amyloid drug. 

Importantly, the approval of tafamidis proved the effectiveness of small molecules-

amyloid aggregation inhibitors for the treatment of PMDs. 

 

 

Figure 1.11. Chemical structure of tafamidis meglumine.  
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Chapter II 

 

 

 

 

 

Objectives 
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Considering the undoubted medical needs discussed in Chapter I, this PhD project has 

been devoted to the development of small molecules for neurodegenerative protein 

misfolding diseases. Starting from this, the present thesis has the following specific 

objectives: 

 

1. In the first project, we applied the Multi Target Directed Ligand (MTDL) 

approach in order to develop the first class of multi-target compounds able to hit the 

tau cascade at two different hubs. Indeed, several evidence suggested the altered tau 

protein network as a promising target for Alzheimer’s disease. With the aim to develop 

multi-target compounds, we envisaged that targeting a phosphorylating tau kinase (i.e. 

GSK-3β) and the tau aggregation process could be a favorable approach for the 

treatment of AD. Looking at the literature, several GSK-3β inhibitors and several tau 

aggregation inhibitors share a common 5-membered heterocyclic structure. On this 

basis, we selected the 2,4-thiazolidinedione (TZD) scaffold, and we develop a library of 

35 5-arylidene-TZD derivatives (1-35, Figure 2.1), through a simple solvent-free 

Knoevenagel condensation, performed under microwave irradiation. 

 

 

Figure 2.1. General chemical structure of dual GSK-3β and tau aggregation inhibitors 1-

35. 

 

 

2. Building on the theranostic approach, in the second project we aimed to 

develop fluorescent bivalent ligands, with combined therapeutic and diagnostic 

properties for Alzheimer’s disease. These bivalent compounds could be able, in 

principle, to stain Aβ and tau protein aggregates and to inhibit the protein aggregation 

process. Thus, we designed and synthesized a library of dimeric compounds consisting 
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of two protein recognition motifs (PRM) joined via appropriate spacers. As PRM, we 

selected the TZD scaffold, while six different lipophilic and aromatic groups were 

selected as linkers. Moreover, in order to expand the structure-activity relationships, 

and to improve the drug-likeness of our compounds, we inserted three different 

substituents on the nitrogen of the TZD. The aim of these substitutions was to 

understand if different degrees of protonation could influence the interaction of our 

compounds with fibrillar structures and their fluorescence properties, as well their 

physicochemical properties. The combination of four TZD-derivatives with six linkers, 

allow us to develop a combinatorial library of 24 bivalent derivatives (36-59, Figure 

2.2).  

 

 

Figure 2.2. General chemical structure of the bivalent derivatives 36-59. 

 

 

3. The aim of the third project was the optimization of a previously identified 

antiprion compound, i.e. compound 1 (Figure 2.3). Compound 1 is a hybrid molecule, 

composed of a phenothiazine and a 7-chloroquinoline moieties, joined by a hydrazone 

linker. After the discovery of compound 1 as promising hit compound for prion 

diseases, we wanted to improve its drug-likeness properties, with a focus on its 

solubility. Thus, we designed and synthesized a small library of five derivatives (60-64, 

Figure 2.3), in which the nitrogen of the phenothiazine was substituted with five 

different solubilizing groups. Importantly, the solubilizing groups were carefully 

selected among those more frequently used for the optimization of CNS drugs. 
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Figure 2.3. Chemical structures of Compound 1 and its derivatives 60-64. 
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Chapter III 

 

 

 

 

 

Tau centric multi-target approach for Alzheimer’s disease:  

development of first-in-class dual GSK-3β  

and tau-aggregation inhibitors 
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3.1 The “multi-target-directed ligand” approach in Alzheimer’s disease 

Alzheimer’s disease is one of the most challenging area in the drug discovery field. The 

tremendous difficulty in developing effective drugs has been attributed to several 

factors. First, despite significant advances in understanding its etiology, we still lack a 

detailed understanding of the causal roles and the interactions between them.108 

Second, as for any drug targeting the CNS, AD drugs must cross the blood brain barrier 

(BBB) and reach their targets at a concentration sufficient to exert the desired effect. 

However, it is estimated that the 98% of systemically administered small molecules do 

not possess the physicochemical properties for an optimal brain exposure.109 

Moreover, these drugs must be non-toxic or prone to developing drug-drug 

interactions, as elderly people show multiple comorbidities and concomitant 

treatments. Finally, the lack of proper biomarkers for earlier diagnosis and follow-up of 

disease progression, lead to inadequate trials design and to the administration of the 

drug candidates too late in the course of the cognitive decline, leading to a higher risk 

of clinical failure.36  

Fundamentally, the therapeutic paradigm “one compound-one target” has failed so 

far. AD, as many other neurodegenerative diseases, have a multifactorial nature that 

can hardly be “cured” by the specific modulation of a single target. The multifactorial 

processes leading to neurodegeneration involve multiple signaling pathways, 

therefore, there is a growing consensus that such a multi-factorial disease is 

approached more successfully with a polypharmacological strategy.110 This strategy 

can be achieved by combination therapies consisting of several single-target specific 

drugs (polytherapy), or by using a single multi-target drug that addresses several 

biological targets and produces additive or synergistic effects. In the second case, 

compounds that are effective in treating complex diseases because of their ability to 

interact with multiple targets responsible for the disease pathogenesis are defined 

“multi-target-directed ligands” (MTDLs).72, 111, 112 

The development of MTDLs offers many advantages over combination therapies, 

resulting in a reduction in: treatment complexity, drug side effects, pharmacokinetic 

complexity, and drug-drug interactions; while increasing the patient compliance. 

Indeed, non-compliance with prescribed medication regimens represents a general 
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problem for effective treatments, especially for forgetful AD patients. Consequently, a 

simplified therapeutic regimen may increase treatment adherence. Furthermore, the 

therapeutic efficacy achieved through the modulation of multiple targets, and the 

resulting synergies, may allow to lower the concentration of the active compound. 

This, in turn, can reduce side effects mediated by full engagement on the individual 

targets, without losing the therapeutic efficacy, and it can broaden the therapeutic 

window. Finally, the development of MTDLs can also offer economic advantages, since 

the clinical development of a single compound requires less clinical trials than multiple 

single-target drugs. 

MTDLs can be classified in three general types, according to their molecular and 

pharmacophore architecture, as impeccably described by Morphy and Rankovic (Figure 

3.1).113  

 

 

Figure 3.1. Different strategies in the design of MTDLs (adapted from Morphy, 

2005).113 

 

The simplest way of combining multiple activities is the conjugation of 

pharmacophores with a linking group. Such linked pharmacophores usually show large 

molecular weights. Conjugation of two (or more) individual pharmacophores without a 

linking group produces fused multiple ligands that are also prone of having high 

molecular weights and high lipophilicity. Finally, the most elegant, demanding but also 

most fruitful way to design small molecules that modulate more than one target is 

merging their pharmacophore. Particularly, in such merged MTDLs, the key features 

required for the interaction with the targets are combined in one single 

pharmacophore.  
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3.2 Target selection for a MTDL drug discovery project: GSK-3β and tau 

protein 

To discover and to develop effective MTDLs, a central issue is the selection of 

combinations of targets that might produce additive effects, or even synergies. In 

principle, every combination of targets is thinkable, however, the chemical feasibility 

of the multi-target ligand must be taken into account. Clearly, the design of a MTDL is 

easier for highly related targets -sharing similarity in their binding sites-, while it is 

more challenging for unrelated targets. Generally speaking, the target selection 

process is particularly complicated in the case of multifactorial disorders, such as AD, 

in which there is a confusing plethora of putative targets, with no one with a clear 

validation. 

The following paragraphs will describe two interrelated targets, which were selected 

by us for the development of new MTDLs towards AD: GSK-3β and tau protein. 

 

 

3.2.1 GSK-3β: a crucial kinase for AD 

Glycogen synthase kinase-3 (GSK-3) is the archaic name of two genomically 

independent encoded isozymes, GSK-3α and GSK-3β, which functions as 

multifunctional serine/threonine kinase in metabolic signaling pathways, cytoskeletal 

organization, and transcriptional control. The two human GSK-3 isoenzymes are 

encoded by two different genes located on chromosome 3 (GSK-3β) and 19 (GSK-3α), 

but they share 98% sequence identity in the catalytic domain, and 84% overall. GSK-3β 

is composed of 420 aa translating into a 47-kDa protein, whereas the 483 aa of GSK-3α 

result in the larger 51-kDa protein, with the major difference being a glycine-rich N-

terminal domain.114 

GSK-3β is widely expressed in all tissues, but mainly in the developing and adult brain, 

and it is most abundant in neurons. Particularly, in adult neurons it is predominantly 

found in perikarya and proximal portion of the dendrites; while during development it 

is also localized in axons.115 During embryonic development, GSK-3β acts as inhibitory 
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component of the Wnt signaling pathway in cell proliferation. Indeed, disruption of the 

murine GSK-3β gene resulted in embryonic lethality caused by severe liver 

degeneration.116 Brain GSK-3β is proposed to be involved in response to cellular stress, 

regulation of long-term memory, apoptosis, and in maintenance of synaptic 

plasticity.117 Moreover, a direct role of GSK-3β in long-term potentiation and long-term 

depression was also proposed.118, 119 

The crystal structure of GSK-3β was determined in 2001, and provided insights into its 

catalytic mechanism.120-122 GSK-3β has the typical two-domain kinase fold, with a β-

strand domain in the N-terminal, and a α-helical domain at the C-terminal end. The 

ATP-binding site is at the interface of the α-helical and β-strand domains, and is 

bordered by the glycine-rich loop and the hinge region, while the activation loop runs 

along the surface of the substrate binding groove (Figure 3.2).  

 

 

Figure 3.2. Structure of GSK-3β. The N-terminal domain (blue) correspond to the β-

strand domain and encompasses residue 25-138. The α-helical domain (magenta) 

corresponds to residues 139-349. The key features of the kinase fold such as hinge 

region, glycine-rich loop and activation loop are indicated (adapted from ter Haar, 

2001).122 

 

Generally, to enable the enzymatic activity of a serine/threonine kinase, its β-strand 

and α-helical domains must be aligned in a catalytically active conformation.123 For this 

purpose, most kinases need to be phosphorylated on their activation loop, at one or 

two specific amino acid residues, such as Thr or Tyr. The phosphate group can be 
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accommodated into an anionic binding site, thus the electrostatic interactions 

between the phosphate ion and the positively charged pocket, drive the proper 

alignment of the two catalytic domains. 

However, GSK-3β shows some peculiarities, and it is consider an unusual kinase. In 

GSK-3β, despite the absence of any phosphorylation, the activation loop is arranged 

similarly to the correspondent one in the phosphorylated active form of 

serine/threonine kinases. Thus, it seems that GSK-3β may adopt a catalytically active 

conformation without phosphorylation of the activation loop. However, as other 

kinases, GSK-3β presents an anion binding site, pointing towards the activation loop. 

Hence, GSK-3β seems to depend on the same phospho-driven mechanism for 

optimally orientate the catalytic domains, but the phosphate group is not provided 

from its activation loop. The explanation of this came from the unusual behavior of 

GSK-3β for “primed” substrates, i.e. substrates pre-phosphorylated by a priming 

kinase.124 However, it is important to consider that prior phosphorylation of the 

substrate is not always required, and not all GSK-3β’s substrates undergo primed 

phosphorylation. Moreover, like other kinases, GSK-3β can be phosphorylated on its 

activation loop, at the level of Tyr216, but such phosphorylation is not mandatory for 

kinase activity. Another peculiarity of GSK-3β is that its activity can be modulated by 

phosphorylation at Ser9, in the N-terminal domain. Phosphorylation of Ser9 creates a 

primed pseudo-substrate, thus preventing access of any other substrate into the 

substrate binding groove.121 

 

 3.2.1.1 The role of GSK-3β in AD 

In the nineties, when the tau-based hypothesis of AD was postulated, intensive 

research programs try to understand the mechanisms of aberrant tau phosphorylation. 

These lead to the discovery of two kinases, initially called TPK-I and TPK-II, responsible 

for in vivo tau hyperphosphorylation.125 After cloning, they were identified as GSK-3β 

and cyclin dependent kinase 5 (CDK-5).126 Then, ten years ago, the GSK-3β hypothesis 

for AD came out.127 

Particularly, the GSK-3β hypothesis ascribe to this key kinase the link between amyloid 

and tau cascade. Moreover, it has been suggested that long-term aberrant Wnt or 
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insulin signaling result in increased GSK-3β activity, leading to the AD fatal events. Such 

hypothesis gained relevance after growing evidence suggested a brain insulin signaling 

deficit as the cause of AD.128  

Today there is no doubt about the GSK-3β up-regulation in the brains of AD patients, 

and it is well-recognized that increased in GSK-3β activity may induce increased β-

amyloid formation and toxicity of senile plaques. On the other hand, Aβ accumulation 

has been reported to induce GSK-3β activity. 

In accordance with the cholinergic deficit, it was also found that GSK-3β is able to 

reduces acetylcholine synthesis.129 Moreover, GSK-3β is a key mediator of apoptosis, 

thereby directly contributing to neuronal loss.130 Evidence also suggest that GSK-3β 

can phosphorylate and inhibit cAMP responsive element-binding protein, a universal 

modulator of memory;131 and that can promote actin and tubulin assembly, processes 

required for synaptic reorganization during memory formation.  

As well as being implicated in the core pathogenic events of AD (eg. increased 

formation of Aβ, tau hyperphosphorylation, and memory impairment), it has been 

hypothesized that GSK-3β might also play a role in inflammatory processes. In the 

periphery, it is known that the regulation of GSK-3β activity is critical for inflammatory 

cell differentiation, inflammatory cell migration, and the secretion of pro-inflammatory 

cytokines. However, little is known about the function of GSK-3β in the cerebral 

inflammatory response.127 

Taken together, all these observations point directly to GSK-3β as an excellent target 

to effectively treat AD. Moreover, in various cell cultures, in invertebrate, and in 

mammalian models of AD, increasing in GSK-3β activity leads to the 

hyperphosphorylation of tau, increased Aβ generation, and deficit in learning and 

memory, together with neurodegeneration. Most importantly, inhibiting GSK-3β 

activity reverse some of the pathological effets.132, 133 

In summary, GSK-3β is a validated pharmacological target for AD, and mild GSK-3β 

inhibitors may be real drug candidates in the next future. Indeed, the last decades has 

witnessed an intensive research on GSK-3β inhibitors, with some small molecule 

candidates reaching clinical trials.134 
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 3.2.1.2 GSK-3β inhibitors 

Over the past ten years, a number of chemically diverse families of GSK-3 inhibitors 

have been discovered. These compounds include inhibitors isolated from natural 

sources, cations, synthetic small molecules, and also peptides. In the AD drug discovery 

field, in particular, several small molecules GSK-3β inhibitors have been reported, 

showing different potency of in vitro inhibition, different selectivity, and different 

enzyme binding mode. Such inhibitors, with very different chemical structures, have 

also proven to ameliorate cognitive deficit and some pathological features such as 

neuronal death, β-amyloid levels, and tau phosphorylation in different specific AD 

transgenic models. Indeed, over the years, different methodologies to guide the design 

of new GSK-3β inhibitors, to enhance their potency and to optimize their drug-like 

properties have been described. However, it is now increasingly recognized that a 

moderate inhibition of GSK-3β, particularly for long-term treatments, provides more 

favorable outcome than strong, complete inhibition. Based on this, the main challenge 

in the design of GSK-3β inhibitors, to date, is the kinase selectivity, more than the 

potency.134 

Lithium was the first “natural” GSK-3β inhibitor discovered, and it is an ATP non-

competitive inhibitor.135 Lithium is a mood stabilizer long used in treatment of bipolar 

disorders. Lithium inhibit GSK-3β directly by competition with magnesium ions,136 and 

indirectly by enhancing serine phosphorylation and autoregulation.137, 138 The use of 

lithium as AD therapy has been tested in several animal models, demonstrating that 

inhibition of GSK-3β with lithium inhibits Aβ-induced neurodegeneration of cortical 

and hippocampal primary neurons.139 Lithium was also able to block the accumulation 

of Aβ peptides in the brains of mice overexpressing APP,133 and to prevent tau 

phosphorylation in several mouse models of tauopathies.132, 140 In most of these 

models, lithium was able to prevent the development of tau pathology, but only when 

administered early in disease progression. However, lithium could not inhibit only GSK-

3β, but also several other enzymes, that is why researchers focused their attention on 

the discovery of more selective GSK-3β inhibitors.141 Moreover, lithium entered several 

clinical trials for AD, but they were all discontinued because of toxic side effects in 

some elderly patients.142 
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Interestingly, other metal ions such as beryllium, zinc, mercury, and copper are potent 

GSK-3β inhibitors, and they are even more potent than lithium.143, 144 

Beside cationic inhibitors, much effort was done in the discovery and development of 

small molecules GSK-3β inhibitors in the last years. Nowadays, several chemical 

families of GSK-3β inhibitors have emerged, including great chemical variability. Some 

GSK-3β inhibitors have synthetic origins, but others have been derived directly or 

indirectly from natural molecules, obtained in particular from the marine environment. 

Most of the newly reported GSK-3β inhibitors act via an ATP-competitive mechanism 

of action. 

The first synthetic small molecule GSK-3β inhibitors reported were the purine analogs 

aminopyrimidines. The potent inhibitors CHIR98014, and CHIR99021 (Figure 3.3) 

inhibit GSK-3β within the nanomolar concentration range.145  

Highly selective GSK-3β inhibitors were developed by GlaxoSmithKline. The 

arylindolemaleimides SB-216763 and SB-415286 (Figure 3.3) show an IC50 within the 

low nanomolar range.146 Several studies demonstrated the neuroprotective effects of 

SBs against several pro-apoptotic conditions. Moreover, the therapeutic activity of SBs 

has been further tested in several in vivo models. In an AD model of mice injected with 

Aβ peptide, SB216763 reduced Aβ neurotoxic effects, including reduction in tau 

phosphorylation, caspase-3, and the activity of the stress activated kinase JNK. 

However, SB216763 also produced neurodegenerative-like effects and behavior 

deficits in healthy mice.147 This demonstrated that over-inhibition of GSK-3β may result 

in conditions that prevent neurons from operating normally. 

Another selective GSK-3β inhibitor was developed by AstraZeneca, the amino thiazole 

AR-A014418 (Figure 3.3).148 AR-A014418 reduced levels of aggregated insoluble tau in 

the brainstem of transgenic mice overexpressing mutant human tau; it also attenuated 

motor neuron death and improved cognition in an ALS-transgenic mouse model.149 

Unexpectedly, however, AR-A014418 showed no effect on tau phosphorylation in the 

cortex or hippocampus in a postnatal rat model.150 A structurally related compound, 

AZD-1080 entered into clinical trials phase I for AD in 2006, but the development has 

been discontinued. 
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The group of paullone compounds, in particular kenpaullone and alsterpaullone, are 

widely used GSK-3β inhibitors (Figure 3.3). Paullones are fused tetracyclic compounds 

that inhibit both GSK-3β and CDKs within the nanomolar concentration range.151, 152 

Kenpaullone decreased Aβ production in cells overexpressing APP,153 while 

alsterpaullone was shown to reduce tau phosphorylation in cultured neurons.150, 152 

However, reports of kenpaullone or alsterpaullone in in vivo systems are limited. One 

study demonstrated the ability of alsterpaullone to reduce tau phosphorylation in the 

rat brain.150 In 2003, also 4,6-disubstituted pyrrolopyrimidines were reported as GSK-

3β inhibitors, with TWS119 being the most active compound (Figure 3.3).154 

In 2010, a novel class of GSK-3β inhibitors was discovered using combined ligand- and 

structure-based virtual screening. The two most potent and selective validated hits 

were a 2-anilino-5-phenyl-1,3,4-oxadiazole, and a phenylmethylene hydantoin (Figure 

3.3), both showing nanomolar affinity and selectivity towards GSK-3β.155 These two 

compounds were further evaluated for their in vivo (mice) abilities to enhance hepatic 

glycogen reserves and to cross the BBB, with the oxadiazole analogue showing high in 

vivo activity and excellent BBB permeability. The oxadiazole scaffold was already been 

proposed in 2009, when the 2-{3-[4-(Alkylsulfinyl)phenyl]-1-benzofuran-5-yl}-5-methyl-

1,3,4-oxadiazole derivatives (S)-9b and (S)-9c (Figure 3.3) exhibited highly selective and 

potent inhibitory activity against GSK-3β, but also good pharmacokinetic profiles. In 

addition, both compounds, when orally administered to mice, display a significant 

inhibition of cold water stress-induced tau hyperphosphorylation in mouse brain.156 

However, hydantoin and oxadiazole derivatives are not the only GSK-3β inhibitors with 

a five-membered heterocyclic scaffold reported in the literature. Indeed, several other 

five-membered heterocyclic scaffold were identified, such as pyrrolidin-2-ones,157 and 

iminothiazolidin-4-one158. 
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Figure 3.3. Chemical structures of ATP-competitive GSK-3β inhibitors. 

 

Collectively, all these studies confirmed the importance of GSK-3β for maintenance of 

normal neuronal functions, but also demonstrated its important role in the etiology of 

AD. However, the general poor ability of GSK-3β ATP-competitive inhibitors to 

discriminate among a panel of kinases, represents a serious drawback for drug 

development. Indeed, GSK-3β non-ATP competitive inhibitors are likely to be more 

selective, since they should bind to unique regions within the kinase, providing a more 

subtle modulation of kinase activity, than simply blocking ATP entrance. 

There are two different families of reported GSK-3β non-ATP competitive inhibitors. 

The first is the thiadiazolidindione family (TDZDs), described in 2002.159 Two members 

of this family, TDZD-8 and tideglusib (Figure 3.4), have achieved particular relevance in 

the field. TDZD-8 is now commercially available from different sources, and it has been 

one of the most useful pharmacological tool in the chemical genetic approach followed 

by many scientists to explore GSK-3β functions. While tideglusib, described as an 

irreversible inhibitor of GSK-3β,160 reaches phase II of clinical development for AD.161 
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The second family of compounds known as GSK-3β non-ATP competitive inhibitors is 

the halomethylketones (HMKs) derivatives, reported as the first irreversible inhibitors 

of this enzyme.162 HMKs show IC50 values in the low micromolar range, they are able to 

decrease tau phosphorylation in cell cultures, show good kinase and neurotransmitter 

selectivity, and they are also able to cross the BBB.162, 163 The HMK-derivative Inhibitor 

VII (Figure 3.4) is commercially available, confirming the importance of this series of 

compounds as pharmacological tools for the study of GSK-3β physiology and 

pathology. 

 

 

Figure 3.4. Chemical structures of non-ATP competitive GSK-3β inhibitors. 

 

Another strategy to achieve selectivity on GSK-3β is to target the priming substrate 

site.164 Substrate competitive inhibitors can fulfill the requirement for selectivity and 

allow fine tuning of the degree of inhibition. To date, there are three families of 

compounds that binds GSK-3β through competition with the substrate: small peptides 

such as L803-mts,165 heterocyclic compounds such 5-imino-1,2,4-thiadiazoles,166 and 

the marine alkaloid manzamine167 (Figure 3.5). 

Finally, allosteric modulators of GSK-3β emerged as promising pharmacological tools 

for research. The heterocyclic compound VP0.7168 and the marine sesquiterpene 

palinurin169 bind to different allosteric sites on GSK-3β surface, with subtle modulation 

of its activity. 

Taken together, all these results offer new opportunities for the design and 

development of new, selective GSK-3β inhibitors. 
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3.2.2 Tau protein as a promising target for AD 

Tau protein was one of the first microtubule associated proteins (MAPs) to be 

characterized, named by Marc Kirschner in 1975, when his team was searching for 

factors that promote the self-assembly of tubulin into microtubules (hence tau = 

tubulin binding protein).64 This started a line of research centered on the cell biological 

role of tau as a stabilizer of microtubules in neurons and other cells, with important 

roles in cell differentiation and polarization. A second line of tau research was 

triggered by basic neurological research to identify the components of the abnormal 

protein deposits found in the brains of AD patients. One of them, Aβ, was identified as 

the core protein of extracellular amyloid plaques by molecular cloning, and the other, 

tau, as the core of intracellular fibrillary tangles by antibody reactivity. These 

discoveries led to concerted efforts by cell biologists and neuroscientists to elucidate 

the physiological and pathological properties of tau.170 

Tau protein is the major microtubule associated protein of a normal mature neuron. 

The other two neuronal MAPs are MAP1 and MAP2. Tau is found as six molecular 

isoforms in human brain, coded by a single gene (MAPT) on chromosome 17, and 

generated by alternative splicing of its pre-mRNA.171 

These six tau isoforms differ according to the contents of three (3R) or four (4R) 

tubulin binding domains (repeats, R) of 32 or 32 amino acids in the C-terminal part of 

tau protein, and one (1N), two (2N), or no inserts (0N) of 29 amino acids each in the N-

terminal portion. These isoforms, which vary in size from 352 to 441 amino acid 

residues, are related to the presence or absence of sequences encoded by exons 2, 3, 

or 10 (Figure 3.5). 

The 2N4R tau is the largest size human brain tau with a total of 441 amino acids 

(tau441) in length. The smallest size tau isoform, lacking both the two amino terminal 

inserts and the extra microtubule binding repeat (0N3R, tau352), is the only form that 

is expressed in fetal human brain. 



45 
 

 

Figure 3.5. Representation of the MAPT gene and the six tau isoforms expressed in 

human adult brain (modified from Goedert, 2017).172 

 

The overall amino acid composition of tau is unusually hydrophobic, that is why tau 

does not adopt the compact folded structure typical of most cytosolic proteins. 

Indeed, evidence from several biophysical methods (circular dichroism, NMR and small 

angle X-ray scattering), show that tau is “natively unfolded” or “intrinsically 

disordered”.173, 174 This means that the polypeptide chain is highly flexible and mobile, 

there is only a low content of secondary structures (α-helix, β-strand, poly-proline II 

helix), which are also transient.  

Tau is subject to a wide range of post-translational modifications, including 

phosphorylation, isomerization, glycation, nitration, addition of β-linked N-

acetylglucosamine, acetylation, oxidation, polyamination, sumoylation, and 

ubiquitylation.175 Phosphorylation is the most commonly described post-translational 

tau modification. Tau contains 85 putative phosphorylation sites, including 45 serine, 

35 threonine, and five tyrosine residues, which comprise 53%, 41%, and 6% of the 

phosphorylatable residues on tau, respectively. Given the large number of potential 

phosphorylation sites, it is not surprising that phosphorylation has a profound impact 

on tau physiological function.176 Moreover, tau is also a substrate for the ubiquitin-

proteasome system, and for chaperone-mediated autophagy.177 
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To date, the only established function of tau is the promotion of the assembly of 

tubulin into microtubules, and the stabilization of their structure.64 As highlight before, 

the biological activity of tau is regulated by the degree of its phosphorylation. Normal 

brain tau contains 2-3 moles of phosphate per mole of the protein,178 which appears to 

be optimal for its interaction with tubulin and the promotion of microtubule assembly. 

However, also the alternative splicing affects the biological activity of tau. Indeed, the 

extra repeat in the 4R tau and the amino terminal inserts (N1 and N2) enhance the 

binding of tau to tubulin, making 2N4R tau and 0N3R tau respectively, the most and 

the least effective in promoting microtubule assembly.179 

Tau protein is also able to interact with other cytoskeletal components, such as 

spectrin and actin filaments, which may allow tau-stabilized microtubules to 

interconnect with neurofilaments that restrict the flexibility of the microtubule 

lattices. Another protein that can interact with tau is a peptidyl-prolyl cis/trans 

isomerase Pin 1. Pin 1 regulates functions of tau and APP, and it is important for 

protection against the degeneration that occurs during the ageing process. Finally, tau 

protein may interact with intracellular membranous elements such as the 

mitochondria, through its N-terminal projection.180 

 

 3.2.2.1 Tau protein in AD 

In Alzheimer’s disease, the normal role of tau protein is ineffective to keep the 

cytoskeleton well organized in the axonal process, because tau loses its ability to bind 

microtubules. This abnormal behavior is promoted by conformational changes and 

misfolding in the normal structure of tau, leading to its aberrant aggregation into 

fibrillary structures, called neurofibrillary tangles (NFTs), inside the neurons. 

Importantly, neurofibrillary degeneration of abnormally phosphorylated tau not only 

occurs in AD brains, but is also seen in a family of related neurodegenerative disease 

called tauopathies. Examples of tauopathies are: fronto-temporal dementia with 

Parkinsonism linked to chromosome 17 (FTDP-17) caused by tau mutations, Pick 

disease, corticobasal degeneration, dementia pugilistica, and progressive supranuclear 

palsy (PSP).181 
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The mechanisms by which tau protein becomes a non-functional entity are still in 

debate. Abnormal post-translational modifications are proposed to be the main cause 

of this failure.3, 182 Particularly, abnormal tau phosphorylation has been proposed to 

cause the loss of its normal function, and the gain of pathological features. 

At cellular level, abnormal phosphorylation of tau introduces alterations in several 

processes which are directly regulated by the organization of the microtubule network. 

As already described, in a normal mature neuron, tubulin is present in over 10-fold 

excess of tau, indeed almost all tau protein is bounded to microtubules. Conversely, in 

AD neurons, abnormally phosphorylated cytosolic tau neither binds to tubulin, nor 

promotes microtubule assembly. Instead, hyperphosphorylated tau inhibits the 

assembly and disrupt the microtubule organization.183 Moreover, it was reported that 

hyperphosphorylated tau disengages normal tau from microtubules into the cytosolic 

phase, and also removes MAP1 and MAP2 from microtubule lattice.184 Importantly, 

this toxic feature of tau protein appears to be due only by its abnormal 

phosphorylation state, as dephosphorylation of hyperphosphorylated tau rescues this 

protein to perform its normal tasks.185 

Tau protein is a natively unfolded protein, however, under pathological conditions, it 

becomes hyperphosphorylated and assembles into filaments, with the amino-terminal 

half and the carboxy-terminus forming the so-called fuzzy coat of the filaments. 

Moreover, tau filaments acquire a cross-β structure, characteristic of all amyloid 

filaments.186 The tau aggregation cascade, once initiated, is self-replicating, leading to 

the accumulation of NFTs and to neuronal death.187, 188 NFTs have historically been 

considered the main hallmark in AD; however, they do not appear to be the main toxic 

species. Indeed, it is likely that intermediate tau species that form between tau 

monomers and NFTs (i.e. tau oligomers) are responsible for the onset of the disease.  

Tau oligomers levels have been shown to be elevated and correlate with the onset of 

clinical symptoms in AD brains.189-191 Additionally, when administered to wild-type 

mice, tau oligomers, but not monomers or tau fibrils, induce synaptic and 

mitochondrial dysfunction and cognitive deficits.192 Experimentally, the fibrillization 

process does not occur spontaneously, therefore the mechanism of aggregation onset 

in AD has remained unknown. Evidence suggest that tau oligomers may be the most 
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efficient seeds for tau aggregation, through a process called oligomer-nucleated 

conformational induction, in which the tau monomer is first converted into an 

oligomeric state prior to the formation of fibrils. Post-translational modifications and 

the formation of disulfide bridges increase the ability of tau to form oligomers.193, 194 

The seeding of tau with brain-derived oligomers results in highly toxic species, capable 

of propagating from affected to unaffected regions in cells and mice; however, fibrils 

are not able to propagate or induce toxic effects. All these results suggest a prion-like 

mechanism of the spread of tau pathology dependent upon oligomeric tau.69 

 

All in all, these data suggest the importance of the tau cascade in the pathogenesis of 

AD. Indeed, tau cascade is now being recognized as a promising target for the 

development of drug candidates for the treatment of such disease.195-197 Particularly, 

two major approaches are distinguishable for addressing tau aggregation. The first is 

the search for inhibitors of kinases that phosphorylate tau, as abnormally 

phosphorylated tau aggregates more readily. While the second approach is the search 

for direct inhibitors of the tau aggregation process.198 

 

 3.2.2.2 Tau aggregation inhibitors 

Several research groups have taken advantage of the ability of full length tau or 

shorter tau fragments to form fibrils under defined conditions, and have conducted 

experiments to identify compounds that inhibits this fibrillization process. Importantly, 

the inhibition of protein-protein interactions occurring during fibril assembly is 

considered quite challenging with small molecules, due to the large protein surface 

involved. Nevertheless, a number of structurally unrelated compounds have been 

identified during the years, though many with features which are not consistent with 

drug-like candidates. 

One of the first tau aggregation inhibitor reported was the phenothiazine dye 

methylene blue (MB, Figure 3.6).199 MB was shown to partially disrupt the structure of 

isolated PHFs, and subsequent studies showed that MB could affect tau 

multimerization. Interestingly, MB was progressed into clinical trials for AD.200 
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Preliminary results of a phase II clinical trial indicated a lower rate of decline of 

cognitive functions compared to placebo. MB was orally administered in a double-

blind, randomized parallel design phase II trial to 321 participants over 84 weeks. 

However, the blue urine staining properties of MB were not matched in the placebo 

group.201 Lately, a newly developed form of the MB moiety, the leuco-

methylthioninium bis(hydromethanesulphonate) (LMTM, Figure 3.6), was reported as 

tau anti-aggregating compound. LMTM has been taken forward for phase III clinical 

trial,202 as it is able to stabilize the reduce form of the MT moiety in the solid state. 

Following absorption, the dissociated MT moiety is distributed and excreted in an 

equilibrium between oxidized and reduced forms, depending on the local pH and 

redox environment. After an 18-months phase III clinical trial conducted on 800 mild 

AD patients, it was suggested that LMTM might be effective as monotherapy, and that 

4 mg twice a day may serve as well as higher doses.203 However, a further suitably 

randomized trial is required to test this hypothesis. 

Benzothiazole share with phenothiazines the characteristic positive charge and 

extensive aromatic conjugation. Indeed, benzothiazole-based inhibitors with excellent 

inhibitory potencies have been reported, such as the cyanine dye N744 (IC50 300 nm, 

Figure 3.6).204, 205 An analysis of the time-course and dose-dependency of N744 

suggested that it inhibits tau filament extension but not its nucleation. However, a loss 

of inhibitory activity with N744 has been reported at high concentrations, caused by 

the aggregation of the compound.204 

A number of other aggregation inhibitors have yielded promising preclinical results in 

decreasing tau toxicity. 

In a small screen of 42 compounds, in 2005, Taniguchi et al. identified molecules from 

several chemical classes, able to inhibit fibrillization of full length tau, as proved by 

electron microscopy and thioflavin S (ThS) fluorescence.206 These compounds included 

phenothiazines, polyphenols, and porphyrins. Particularly, myricetin (Figure 3.6) was 

reported as promising tau aggregation inhibitor (IC50 = 1.2 µM), and the in vitro data 

indicate that it interferes with the elongation phase of fibril assembly. 

Always in 2005, the Mandelkow research group conducted a large-scale screen of 

about 200,000 compounds, in an assay in which heparin promoted fibrillization of a 
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tau fragment composed only of three microtubule-binding repeats (termed K19) was 

monitored by ThS fluorescence.207 A number of anthraquinones, including emodin, 

daunorubicin, and adriamycin (Figure 3.6), were identified as inhibitors of tau fibril 

formation. Anthraquinone derivatives were able to both preventing the formation of 

filaments, and dissolving preformed filaments. The abundant ring scaffolds in these 

compounds are thought to interfere with the formation of β-sheet structures. 

Moreover, anthraquinones do not interfere with native tau microtubule binding, and 

protect against cytotoxicity in cellular models of tauopathy.207 Generally, 

anthraquinones could also induce disassembly of pre-formed tau fibrils, although in all 

cases the molecules were more effective in disaggregating the shorter tau fragments 

than the full length ones. Finally, emodin was demonstrated to reduce tau aggregates 

in N2a neuroblastoma cells over-expressing the K18 tau fragment containing an FTDL-

17 mutation.208 The same research group also demonstrated that certain N-

phenylamines could inhibit the formation of tau aggregates and reduce pre-existing 

tau inclusions in the N2a cell model.208 

 

 

Figure 3.6. Chemical structures of tau aggregation inhibitors. 

 

Mandelkow team identified other two classes of tau aggregation inhibitors: 

phenylthiazolyl-hydrazides (PTHs, Figure 3.6) and rhodanines. Using a pharmacophore 
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model, a PTH compound was predicted to be active and was subsequently shown to 

prevent tau fibrillization.209 Further medicinal chemistry efforts led to the synthesis of 

more active analogs, able to disassembly pre-existing K18 fibrils, and to prevent 

aggregation in the N2a cell model. 

An additional rhodanine series of tau fibril inhibitors was identified.210 In these 

experiments, rhodanine, thiohydantoin, thiooxooxazolidine, oxazolidinedione, and 

hydantoin were synthesized and screened for activity on tau aggregation inhibition and 

disaggregation of preformed tau aggregates. The rhodanine heterocycle appeared to 

be the most potent, highlighting the importance of the thioxo group. Moreover, the 

rhodanine derivative bb14 (Figure 3.6) prevented tau pathology development in a 

hippocampal slice model, as well as protected against Ca2+ dyshomeostasis, dendritic 

spine loss, and cell death.211 

Finally, a novel class of tau aggregation inhibitors was discovered: 

aminothienopyridazines (ATPZ).212 ATPZ compounds effectively inhibit the formation 

of tau fibrils in vitro, similarly to MB, through a cysteine oxidation and the inhibition of 

the formation of disulfide linkages, rendering tau unable to fibrillize.213-215 ATPZ 

derivative cmp16 (Figure 3.6) was also able to reverse the motor phenotype in a C. 

elegans tauopathy model.216 

 

Tau protein has been considered for long times as an intractable drug target for small 

molecule drug discovery, due to the lack of a stable 3D structure. Indeed, for several 

years tau has been neglected by most small molecule drug design programs, and has 

been mostly targeted by specific monoclonal antibodies for immunotherapy. However, 

since tau is an intracellular protein, mainly localized in neurons, it is not clear whether 

antibodies will lead to efficacious treatments. Moreover, the economic cost of a 

potential immunotherapy for millions of patients with AD and, in general, tauopathies, 

will not likely be affordable for our society.217 

Therefore, it is critical to explore alternative small molecule approaches targeting tau 

protein for the development of disease modifying drugs for AD. Altogether, the 

examples reported above, highlight that perceptible progress has been achieved after 

years of collective efforts aimed at deciphering the mode of action of tau aggregation 
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inhibitors, as well as developing compounds with improved pharmacokinetic 

properties. Importantly, all these efforts lead to the introduction of two tau 

aggregation inhibitors into clinical trials, i.e. MB and LMTM.37 
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3.3 Design of dual GSK-3β and tau aggregation inhibitors 

The aim of this project was the design and synthesis of the first class of multi-target 

compounds able to hit the altered tau protein cascade at two different validated hubs. 

Particularly, we envisaged that the simultaneous inhibition of GSK-3β and tau 

aggregation process, might pave the way for a completely novel treatment of 

Alzheimer’s disease. As highlighted before, the very close spatial correlation between 

neuronal loss and tau aggregates in AD patients’ brains, and the genetic evidence for 

the role of tau aggregation in a wide range of neurodegenerative disorders, due to 

mutations in the tau gene, provides a strong foundation for tau-targeted therapy. 

Moreover, such dual GSK-3β and tau aggregation inhibitors might show a higher 

efficacy compared to the combination of single-targeted drug candidates. Indeed, 

targeting two points of the tau network could generate a synergistic response and 

could eliminate compensatory reactions and feedback controls. Finally, dual inhibitors 

should possess a lower target-related toxicity, as even low-affinity dual inhibitors 

should be sufficient to achieve a significant anti-tau effect. On the other side, if the 

concentration of the dual inhibitor required to obtain the desired effect is lower with 

respect to single-targeted drugs, the risk for toxicity is reduced. This consideration 

greatly eases the constraints of druggability, a key issue for GSK-3β.197 

Remarkably, although in the literature there are several examples of MTDLs that 

combine anti-tau activity with a second one useful for AD treatment (e.g. anti-amyloid, 

antioxidant, anti-inflammatory activity),218-228 the development of dual GSK-3β and tau 

aggregation inhibitors has never been exploited so far. 

 

Designing a ligand able to simultaneously bind two targets sharing no similarity in the 

binding sites, as it is the case of GSK-3β and tau protein, could be very challenging.229 

Similarly, combining the molecular frameworks of two CNS-directed single-target 

ligands in one small molecule, might not be an easy task and give rise to 

pharmacokinetic concerns.230 

In light of this, 5-membered heterocyclic fragments caught our attention. As reported 

above, several known GSK-3β inhibitors carry 5-membered heterocyclic rings such as 

hydantoin, oxadiazole, pyrrolidin-2-ones, iminothiazolidin-4-one, and 

thiadiazolidinediones (Figure 3.7).155, 157-159 On the other side, several 5-membered 
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heterocyclic fragments were discovered as effective anti-tau aggregation motifs. 

Rhodanine, thiohydantoin, thiooxooxazolidine, oxazolidinedione, and hydantoin 

(Figure 3.7) were screened for their ability to inhibit the tau aggregation process and to 

disaggregate preformed tau aggregates.210 The rhodanine core appears to be the most 

active one, being able to inhibit the formation of tau aggregates in a dose-dependent 

manner, as well as destabilize preformed tau aggregates. 

 

 

Figure 3.7. General chemical structures of 5-membered heterocyclic fragments 

reported as GSK-3β and tau aggregation inhibitors. 

 

Finally, the ability of rhodanines and thiohydantoins to directly interact with tau 

aggregates has been confirmed by the tau imaging properties of derivatives RH1 and 

TH2 (Figure 3.8). The thiohydantoin derivative TH2, in particular, intensely stained 

neurofibrillary tangles in hippocampal sections obtained from AD patients.231 

 

 

Figure 3.8. Chemical structures of the tau imaging probes RH1 and TH2. 

 

Based on these evidence, we reasoned that the cross-talk between all these fragments 

could be favorably exploited for the identification of novel MTDLs directed towards the 

two selected targets: GSK-3β and the tau aggregation process. 

As first, we focused our attention on rhodanines. In principle, being prone to bind a 

large number of targets with weak or moderate affinity, rhodanines might be an 
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optimal starting point for multi-target drug discovery projects. However, the validity of 

the rhodanine scaffold is questionable because of its notorious Pan Assay Interference 

Compounds (PAINS) behavior.232 Although it is hard to draw the line between true 

multi-target activity and potential reactivity, which may or may not lead to assay 

interferences, we consider safer to disregard the rhodanine scaffold.  

Thus, in our project, we selected a rhodanine isoster, the 2,4-thiazolidinedione (TZD, 

Figure 3.9), which has never been explored as either GSK-3β or tau aggregation 

inhibitor. Moreover, as highlighted by Baell and Pouliot, the TZD scaffold itself does 

not aggressively drive assay interference in the same way as rhodanine does.233-235 

Indeed, the TZD core is not identified as PAIN by computational filters. Finally, the 

drug-likeness of the TZD scaffold in AD is supported by the fact that the TZD-based 

antidiabetic drug pioglitazone (PIO) is currently in Phase III clinical trial, as anti-

inflammatory drug in mild cognitive impaired patients.236  

 

After the selection of the scaffold of our library, we decided to decorate the TZD at 

position 5, with different aromatic and heteroaromatic substituents, affording a 35-

membered library of 5-arylidene-2,4-thiazolidinediones (1-35, Figure 3.9). The 

substitution of TZD at position 5, was based on previous studies showing that: 

o 5-arylidene substitutions improved affinity in a series of 2-iminothiazolidin-4-one 

competitive GSK-3β inhibitors;158 

o due to their volume and size, 5-arylidene substituted compounds should not fit in 

similar regions of homologous kinases, therefore showing selectivity towards GSK-

3β;158 

o 5-arylidene substitution will allow to maintain the planarity and aromatic features, 

critical for the interaction with tau fibrils.237 

 

 

Figure 3.9. General chemical structure of TZD derivatives 1-35. 
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In order to explore the chemical space, starting from the simplest derivative 1, we 

inserted different electron-withdrawing and electron-donating groups on the phenyl 

ring. Then, we also wanted to study the effect of different size substituents at position 

5 of the TZD, by selecting different size aromatic and heteroaromatic groups. 

Particularly, among the possible heteroaromatic substituents, we include indoles, 

benzofurans and benzothiophenes, as they are already reported as effective anti-

amyloid scaffolds.238  
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Table 3.1. Chemical structures and yields of the TZD-derivatives 1-35. 

 

Cmpd. R yields Cmpd. R yields 

1 
 

87 % 19 
 

92% 

2 
 

56% 20 
 

54% 

3 
 

43% 21 
 

37% 

4 
 

69% 22 
 

18% 

5 
 

75% 23 
 

36% 

6 
 

62% 24 
 

58% 

7 

 

79% 25 

 

45% 

8 

 

49% 26 

 

47% 

9 
 

60% 27 

 

44% 

10 
 

76% 28 
 

48% 

11 
 

70% 29 

 

22% 

12 
 

78% 30 

 

55% 

13 
 

88% 31 

 

61% 

14 
 

55% 32 
 

75% 

15 
 

34% 33 

 

58% 

16 
 

59% 34 
 

45% 

17 
 

65% 35 
 

32% 

18 
 

59% 
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3.4 Chemistry 

The synthesis of compounds 1-35 was easily achieved through a one-pot, optimized 

version of the Knoevenagel condensation. The conventional protocol is based on the 

condensation of equimolar amounts of TZD and different aromatic aldehydes, in the 

presence of catalytic amounts of pyridine and acetic acid, in refluxing toluene.239 

However, the reported protocol suffers from several disadvantages: (i) long reaction 

times; (ii) low to moderate yields; (iii) tedious work-up procedures; (iv) requirement of 

special apparatus; (v) use of toxic, organic solvents. Thus, taking inspiration from the 

literature, we moved to a green and solvent-free procedure using ethylenediamine 

diacetate (EDDA) as catalyst (Table 3.2).240 In recent years, EDDA emerged as an 

effective catalyst for different reactions, being an inexpensive and effective Brönsted 

acid-base combined salt. Clearly, there are several advantages in using a green and 

solvent-free reaction, such as reduced pollution, lower costs, simplicity in process and 

handling, shorter reaction times, and higher yields. EDDA was easily synthesized 

through an acid-base reaction between ethylenediamine and glacial acetic acid (1:2) in 

dry ether. This second synthetic procedure allow us to shorter reaction times from 5-

10 hours to 0.45-2 hours, but the reaction yields were not significantly improved. 

 

Table 3.2. Optimization of the Knoevenagel reaction. 

 Time (h) 
Temperature 

(°c) 
Heating Solvent Catalyst 

Yields 

(%) 

method 1 5 - 10 116 conventional toluene 

benzoic 

acid, 

piperidine 

5 - 52 

method 2 0.45 - 2 80 conventional - EDDA 9 - 59 

method 3 0.30 80 microwave - EDDA 18 - 92 
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With the aim of further improving the green chemistry aspects, we perform the same 

solvent-free reaction exploiting microwave irradiation (MWI) (Table 3.2). Importantly, 

microwave mediated synthesis using EDDA as catalyst, has never been exploited for 

the synthesis of 5-arylidene-2,4-thiazolidinediones. 

Thus, our new optimized procedure is based on a one-step, green, and solvent-free 

condensation of aromatic aldehydes with an equimolar amount of TZD, in presence of 

EDDA (0.5 eq), for 30 minutes under MW irradiation (Scheme 3.1). The developed 

procedure was then apply to the vast array of aldehydes 1a-35a, to obtain target 

compounds 1-35. The yields vary from 18 to 92%. However, the lower 18% yield was 

obtained for compound 22, which we was not able to synthesize with the first two 

synthetic procedures, thus proving the effective optimization of the synthetic protocol.  

 

Scheme 3.1. Optimized Knoevenagel reaction for the synthesis of TZD-derivatives 1-35. 

 

 

Moreover, the wide applicability of our optimized procedure was further confirm by 

the successful obtaining of 35 structurally different TZD-derivatives. Indeed, as 

highlighted above, we select a vast array of aldehydes, with electron-withdrawing and 

electron-donating groups, heteroaromatic, conjugated and planar rings. 

All the aromatic aldehydes were purchased from commercial vendors, except 11a and 

12a. These aldehydes were synthesized by slightly modifying reported procedures 

(Scheme 3.2).241, 242 

In the first case, 2-fluorobenzaldehyde was reacted with dimethylamine in the 

presence of potassium carbonate, to provide aldehyde 11a. In the second case, the 

commercially available 3-(dimethylamino)benzyl alcohol was oxidized under Swern 

conditions, affording aldehyde 12a. 
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Scheme 3.2. Synthetic procedure for the synthesis of aldehydes 11a and 12a. 

 

All compounds were characterized using analytical (HPLC) and spectroscopic data (1H- 

and 13C-NMR, ESI-MS). 
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3.5 Results and discussion 

The TZD derivatives 1-35 were designed and synthesized aiming at the development of 

MTDLs able to target the tau cascade at two different hubs. Thus, to verify the 

capability of 1-35 to simultaneously inhibit GSK-3β and the tau aggregation process, 

we exploited an appropriate screening pipeline, depicted in Figure 3.10. 

As first step, we made a preliminary screening of all synthesized molecules for GSK-3β 

activity. Then, in order to understand their mechanism of action, we performed kinetic 

experiments, aiming at determining the competition with ATP. The results suggested 

that the TZD-derivatives represent a novel class of ATP-competitive GSK-3β inhibitors. 

Then, we developed docking studies, in order to obtain the theoretical binding mode 

of our compounds in the ATP-binding pocket of GSK-3β, and to relate their binding 

mode with the IC50 values. The GSK-3β inhibitors were subsequently tested for their 

ability to cross the BBB, through a Parallel Artificial Membrane Permeability Assay 

(PAMPA). 

 

 

Figure 3.10. Screening pipeline for the TZD-derivatives 1-35. 
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With these results in our hands, we decided to filter out toxic compounds by testing 

their neuro- and hepatotoxicity in cerebellar granule neurons (CGNs) and HepG2 cells, 

respectively. Finally, the non-toxic compounds were tested for their ability to inhibit 

the aggregation of tau protein in three different assays, using three different tau 

constructs: the tau-derived hexapeptide AcPHF6, the K18 tau fragment, and the 2N4R 

full length tau. 

The anti-tau activity of the best performing compounds was then assessed in a cellular 

context, the okadaic acid (OA)-induced neurodegeneration cell model. 

 

 

3.5.1 GSK-3β inhibition assays 

These experiments were performed by Carlos Roca, Josefa Zaldivar-Diez, and 

Concepcìon Perez under the supervision of Prof. Ana Martinez, at the Centro de 

Investigaciones Biológicas, CSIC, Madrid. 

To characterize the ability of our compounds to inhibit GSK-3β, we performed a 

Kinase-Glo™ luminescent assay.40 The Kinase-Glo luminescent assay quantifies the 

amount of ATP remaining in solution following a kinase reaction. This method is based 

on measuring the intensity of the “glow type” luminescence, generated by mono-

oxygenation of beetle luciferin by luciferase, in the presence of Mg2+, ATP, and 

molecular oxygen. The luciferase-luciferin reaction consumes one ATP molecule and 

produces one photon per turnover. The luminescence signal is proportional to the 

amount of ATP present and inversely correlated to kinase activity. 

All compounds were first tested at 10 µM, and hits with percentage inhibition ≥50% 

were further tested to obtain IC50 values (determined by using the linear regression 

parameter). The TDZD derivative TDZD8159 was used as reference compound. 

Encouragingly, sixteen compounds out of the starting 35 TZD derivatives, were able to 

inhibit GSK-3β with IC50 values in the single-digit micromolar range (see Table 3.3). 

Above the sixteen GSK-3β inhibitors, compound 27 resulted as the most active one, 

with a submicromolar IC50 of 0.89 ± 0.21 µM. 
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Structure-activity relationships (SAR) are discussed in comparison with compound 1 

(IC50 > 10 µM). 

Hydroxyl substituents in ortho and meta positions of the phenyl ring did not increase 

enzyme inhibition, as evident for compounds 2 and 3. On the other side, para hydroxyl 

substituted 4 shows a significant improvement in the inhibitory potency (8.99 ± 

0.78µM). Di-substitution of the phenyl ring in compounds 5-7 do not affect the activity, 

and the same was observed for the fluorine substitution in compounds 8-10. 

 

Table 3.3. GSK-3β inhibitory activity of TZD derivatives 1-35 and TDZD8.  

Cmpd. 
GSK-3β IC50 

(µM) 
Cmpd. 

GSK-3β IC50 

(µM) 
Cmpd. 

GSK-3β IC50 

(µM) 

1 > 10 13 > 10 25 4.93 ± 0.66 

2 > 10 14 > 10 26 > 10 

3 > 10 15 8.75 ± 0.77 27 0.89 ± 0.21 

4 8.99 ± 0.78 16 1.42 ± 0.12 28 > 10 

5 7.08 ± 0.51 17 > 10 29 6.03 ± 0.44 

6 6.01 ± 0.72 18 > 10 30 > 10 

7 9.22 ± 0.90 19 7.99 ± 0.57 31 > 10 

8 > 10 20 7.47 ± 0.85 32 7.01 ± 0.61 

9 > 10 21 > 10 33 > 10 

10 > 10 22 > 10 34 6.13 ± 0.43 

11 9.22 ± 0.89 23 > 10 35 3.55 ± 0.23 

12 8.54 ± 0.81 24 > 10 TDZD8 0.69 ± 0.09 

 

Regarding the dimethylamino substituents, the favored positions are the ortho and 

meta, as shown by 11 (9.22 ± 0.89 µM) and 12 (8.54 ± 0.81 µM). Replacement of the 

phenyl ring of 1 with a 4-pyridil ring, as in 16, led to an IC50 of 1.42 ± 0.12 µM. 

Thiophene (19) and benzothiophene (20) substitutions also resulted in a good 

inhibitory activity. While substitution with bulky substituents such as naphthyl, 

anthracene, phenylpropylen or biphenyl, as in 21-24, 30, and 31, resulted in an 

inactivity of the compounds at 10 µM of concentration. Interestingly, bicyclic N-
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heterocycles, such as 25-29, showed different behaviors. Probably, the lipophilic 

nature of the ligands can explain the IC50 differences, being compounds 25 and 29 

better GSK-3β inhibitors than 26. Moreover, the insertion of a methyl group on the 

nitrogen atom of the indole, as in 27, resulted in an important improvement in the 

inhibitory profile (0.89 ± 0.21 µM). This trend in activity was not surprising us, as it has 

been already described in published indolyl-maleimide GSK-3β inhibitors, in which the 

methylation of the indole nitrogen atom improves the IC50 from 4.4μM to 0.89 μM.243 

 

After these first results, we wanted to confirm the GSK-3β inhibitory activity of our 

compounds through a secondary assay. These experiments were performed by 

Alessandra Feoli, under the supervision of Prof. Sabrina Castellano, at the 

EpigeneticMedChemLab, UNISA, Fisciano. 

 We selected compounds 25 and 27 (that resulted as the best performing compounds 

in the following experiments), for a Time-Resolved Fluorescence Energy Transfer (TR-

FRET) assay. LANCE® TR-FRET assay use a proprietary europium chelate donor dye, W-

1024, with ULight, a small molecular weight acceptor dye.The binding of an Eu-labeled 

anti-phospho-substrate antibody to the phosphorylated ULight-labeled substrate, 

brings donor and acceptor molecules into close proximity. After irradiation of the 

kinase reaction at 320 nm, the energy from the Eu donor is transferred to the ULight 

acceptor dye, which generates light at 665 nm. The intensity of the light emission is 

proportional to the level of ULight-substrate phosphorylation. Thus, the two 

compounds were tested at ten different concentrations and the obtained IC50 values 

for both 25 (21.0 ± 2.4 µM) and 27 (5.5 ± 0.8 µM) were in agreement with the ones 

obtained with the Kinase-Glo luminescent assay (Figure 3.11). 
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Figure 3.11. Dose-response curves of GSK-3β activity in the presence of 25 and 27. 

Values are the means ± SD determined for at least two independent experiments. 

 

Moreover, aware of the potential covalent reactions that could arise from the 

alkylidene moiety, we also assess the reversibility of GSK-3β inhibition by 27 through a 

Jump dilution assay.244  In details, 27 was first tested at 10× its IC50 value, showing 86 ± 

1 % inhibition, the subsequent dilution at 0.1× its IC50 lead to a 13 ± 2 % inhibition 

(Figure 3.12). Thus, we were able to demonstrate that the enzymatic activity was 

restored after dilution, pointing to a reversible inhibition by 27. 

 

 

Figure 3.12. Jump dilution experiment for compound 27. The residual enzymatic 

activity reported in graph are the mean values ± SD of two separate experiments 

compared to the reaction performed with the vehicle.  

 

To investigate the mechanism of action of the TZD-derivatives on GSK-3β, the selected 

compounds 25 and 27 were subjected to kinetic experiments. Particularly, we 

determined the competition with the ATP, varying both ATP and 25 and 27 

concentrations with a constant concentration of GS-2, the substrate used in the 
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enzymatic reaction. As shown by the double-reciprocal plot reported in Figure 3.13, 

indicates that both 25 and 27 act as competitive inhibitors of ATP binding. Thus, we 

were able to claim that TZD derivatives represent a new chemical class of ATP-

competitive GSK-3β inhibitors. 

 

 

Figure 3.13. Kinetic data for the TZD-derivatives 25 and 27. ATP concentration in the 

reaction mixture varied from 1 to 50 μM. Compounds concentrations used are 

depicted in the plot, and the concentration of GS-2 was kept constant at 25 μM. Each 

point is the mean of two different experiments, both analyzed in triplicate. 

 

 

3.5.2 Retrospective docking simulations on GSK-3β 

These experiments were performed by Dr. Nuria Campillo at the Centro de 

Investigaciones Biológicas, CSIC, Madrid. 

The ATP-competitive GSK-3β inhibitors share a binding mode in the ATP binding 

pocket, making H-bonds interactions with the backbone atoms of Asp133 and Val135. 

These ligand-protein interactions allow the ligands to have the minimum interactions 

that allow them to bind to GSK-3β and with IC50 values in the micromolar range. 

Inhibitors that interact with both the flexible glycine-rich loop formed by Ile62, Gly63, 

Phe67 and Val70 or the ATP-binding pocket residues Lys85, Glu97, Glu137, Arg141, 

Gln185, Cys199 or Asp200 improve their inhibitory activity and the selectivity towards 

GSK-3β against other protein kinases.245, 246  
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In light of this, docking studies were developed in order to obtain the theoretical 

binding mode for the TZD-based GSK-3β inhibitors in the ATP-binding pocket, and to 

relate the binding mode with the IC50 values. These studies were performed using 

AutoDock software, centring the grid into the hinge region of the ATP binding domain 

of GSK-3β (PDB ID 1Q3W).  

As first, we study the interactions of 1 with GSK-3β. Docking study for this ligand show 

a typical binding mode, similar to other ATP-competitive inhibitors,155, 158, 247 i.e. an H-

bond donor interaction between the oxygen atom of Val135 backbone and the NH 

group of 1, and an H-bond acceptor between the nitrogen atom of the backbone of 

Val135 and the carbonyl group in position 4 of the TZD. This pose orients the aromatic 

ring in the hydrophobic cavity of the ATP-binding pocket, where it establishes 

hydrophobic contacts with Val110, Leu132 and Leu188, but no direct interaction with 

catalytic residues Lys85 and Asp200 (Figure 3.14). 

The poses generated for 2-35, in which the phenyl ring is replaced by the different 

aromatic and heteroaromatic rings, may be clustered in three groups, according to 

their interaction with the hinge region. The first group includes those compounds that 

establish a double H-bond interaction with Val135 (4-10, 15-17, 19, 20, and 27). These 

compounds fit properly their aromatic nucleus into the hydrophobic binding pocket 

confirming our initial design hypothesis. 

 

Figure 3.14. Suggested binding mode of 1 in the ATP-binding pocket of GSK-3β (PDB ID 

1Q3W).  

 

Among them, those than can interact with Lys85 or Asp200 show an improved affinity 

and, consequently, lower IC50 values. This is the case of 4-7, where acceptor, such as 
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methoxyl, or donor/acceptor groups, such as hydroxyl, can interact with the side chain 

of Lys85 or Asp200 through additional H-bond interactions (Figure 3.15).  

 

 

Figure 3.15. Docking poses for compounds 4-7 (PDB ID 1Q3W).  

 

Similarly, 16 orients the nitrogen atom of the pyridine towards the Lys85 residue, 

suggesting a favorable H-bond acceptor interaction. 

On the other hand, isomers 11, 12 and 13 are substituted with a dimethylamino group, 

which is not able to interact through donor H-bond interactions. Thus, these 

compounds are not able to interact directly with Lys85. Among them, compounds 11 

and 12 fit in a better way into the cavity, due to the fact that the methyl groups are 

able to established hydrophobic interactions with the target, whereas the less active 

13 encounters steric hindrance. 

The second group encompasses compounds that interact with a donor H-bond with 

Asp133 and an acceptor H-bond with Val135. They (2, 3, 18) display generally higher 

IC50 values than the previous ones, due to the poor fitting of the hydrophobic region of 

the ligands into the target.  

Finally, the third group, i.e. compounds that interact with a donor hydrogen bridge 

with Asp133, are indole derivatives without substitution in the indole nitrogen (25, 26, 
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29). These ligands change their binding mode, interacting with the hinge region 

through the indole ring and not through the TZD fragment (Figure 3.16). 

Intriguingly, the most active N-methyl indole 27, which loses the possibility of H-

bonding through the indole nitrogen, re-orients itself, as reported for the first group of 

GSK-3β inhibitors. Indeed, 27 make contacts between the TZD ring and Val135 through 

two H-bond interactions (Figure 3.16).  

Importantly, compounds carrying bulky substituents (21-24, 30, 31) because of their 

steric hindrance, cannot fit properly into the ATP-binding pocket, and make specific H-

bond interactions. 

 

 

Figure 3.16. Best docking poses of indole-substituted TZDs: 25 (A), 26 (B), 27 (C), 29 (D) 

(PDB ID 1Q3W). 

 

 

3.5.3 Blood brain barrier permeation 

These experiments were performed by Loreto Martinez-Gonzales under the 

supervision of Prof. Ana Martinez at the Centro de Investigaciones Biológicas, CSIC, 

Madrid. 
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The BBB is a complex interface between blood and the CNS, that strictly controls the 

exchanges between the blood and brain compartments.248 This barrier is composed by 

endothelial cells with tight junctions and it protect the brain from endogenous 

materials that could damage the brain tissues.249 The majority of CNS drugs enter the 

brain by transcellular passive diffusion, due to the tight junction structure and limited 

transport pathways. Importantly, one of the main obstacles in the treatment of 

neurodegenerative diseases is the drug’s penetration into the BBB, at therapeutic 

concentrations. Thus, in early drug discovery stage, evaluation of BBB penetration is of 

crucial importance to reduce attrition in the development process.  

Indeed, we perform a Parallel Artificial Membrane Permeability Assay (PAMPA), in 

order to preliminary explore the capacity of the sixteen GSK-3β inhibitors to penetrate 

into the brain. PAMPA-BBB is a high throughput technique developed to predict BBB 

passive permeability. The in vitro permeability (Pe) of commercial drugs through lipid 

membrane extract, together with TZD-derivatives were determined and described in 

Table 3.4. 

An assay validation was made comparing the reported permeability values of 

commercial drugs with the experimental data obtained employing this methodology. A 

good correlation between experimental-described values was obtained. From this 

equation and following the pattern established in the literature for BBB permeation 

prediction250 we could classify compounds as CNS+ when they present a permeability > 

3.07 x 10-6 cm/s. Based on these results, compounds 11, 12, 20, 25, and 27 are able to 

cross the BBB by passive permeation, and thus were progressed for toxicity and tau 

anti-aggregation analysis. 
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Table 3.4. Effective permeability (Pe 10-6 cm s-1) in the PAMPA-BBB assay for the GSK-

3β TZD-derivatives with their predictive penetration in the CNS.a 

Compound Pe (10-6 cm s-1)b Prediction 

4 0.3 ± 0.6 CNS - 

5 1.5 ± 1 CNS + / CNS - 

6 0.1 ± 1 CNS - 

7 0.2 ± 0.1 CNS - 

11 5.4 ± 0.8 CNS + 

12 3.6 ± 0.4 CNS + 

15 0.1 ± 0.1 CNS - 

16 0.2 ± 0.1 CNS - 

19 2.2 ± 1 CNS + / CNS - 

20 5.7 ± 0.9 CNS + 

25 5.4 ± 1.5 CNS + 

27 5.8 ± 1 CNS + 

29 2.6 ± 0.7 CNS + / CNS - 

32 1.9 ± 0.1 CNS + / CNS - 

34 1.9 ± 0.5 CNS + / CNS - 

35 1.8 ± 0.3 CNS + / CNS - 

a PBS:EtOH (70:30) was used as solvent. b Data are the mean ± SD of two independent 

experiments. 

 

 

3.5.4 Neuro- and hepato-toxicity assessment 

These experiments were performed by Dr. Sabrina Petralla, under the supervision of 

Prof. Barbara Monti, at the Department of Pharmacy and Biotechnology, UNIBO, 

Bologna. 

The failure of several drug discovery approaches has been widely attributed not only 

to the lack of efficacy, but also to the toxicity of the drug candidates. The identification 
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of toxicity issues early in a drug discovery project, might reduce the attrition rate, 

allowing only compounds with optimal safety profiles to proceed to further studies. In 

light of this, and motivated by the promising in vitro results, we tested neurotoxicity of 

the five GSK-3β inhibitors predicted to cross the BBB (Figure 3.17), in comparison to 

PIO. 

Primary cultures of cerebellar granule neurons (CGNs) were established a few decades 

ago, and since then have become one of the most useful in vitro models to study 

neuronal death. Indeed, cerebellum is engaged in cognition and learning and it affects 

AD patients’ bodily control.251 MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) assessment of CGNs viability after 24h treatment with 

11, 12, and 20 showed a clear cytotoxic effect for all the three compounds, as well as 

PIO, even at 5 μM concentration. Notably, 25 and 27 showed a very low toxicity only at 

the highest tested concentrations (50 µM).  

Moreover, it is well-known that, for understanding the drug likeness of a chemical 

library, the assessment of hepatotoxicity is of utmost importance. In AD patients, 

aging, comorbidity, and subsequent polytherapy significantly contribute to increase 

the risk of drug-drug interactions and, indeed, hepatotoxicity. Moreover, although 

being effective therapeutic agents, some TZD derivatives have been reported to have 

hepatotoxicity.252 To this end, parallel experiments were performed on 11, 12, 20, 25, 

27 in human hepatoma cell line (HepG2), in comparison with PIO (Figure 3.17). After 

24 h incubation at 0-50 μM, a concentration-dependent decrease in cell viability was 

observed for PIO, 11, and 12. Encouragingly, compounds 20, 25, and 27 showed no 

hepatotoxicity, even at 50 μM. On the basis of the toxicity profiles, indole derivatives 

25 and 27 emerged as the most drug-like compounds, and were further progressed in 

the screening pipeline. 

 



73 
 

 

Figure 3.17. (A) Neurotoxicity on primary rat cerebellar granule neurons (CGNs) after 

24 h treatment. (B) Hepatotoxicity on human hepatoma cells (HepG2) after 24 h 

treatment. Results are expressed as percentage of controls and are the mean ± SE of at 

least 3 different experiments, each run in triplicate. 

 

 

3.5.5 AcPHF6 aggregation and inhibition studies by Thioflavin T (ThT) fluorescence, 

circular dichroism spectroscopy and atomic force microscopy 

These experiments were performed by Prof. Manuela Bartolini, Dr. Daniele Tedesco, 

Andrea Miti, and Dr. Giampaolo Zuccheri at the Department of Pharmacy and 

Biotechnology, UNIBO, Bologna. 

Two hexapeptide motifs within tau protein were demonstrated to be crucial for tau 

aggregation into oligomers and NFTs: VQIVYK and VQIINK.253, 254 Thus, to preliminary 

study the ability of our TZD-derivatives to interfere with tau aggregation, we selected 

the so-called AcPHF6 peptide (306VQIVYK311) as a model system for the in vitro 

aggregation of tau.  

AcPHF6 is a short segment found in the third repeat domain of the microtubule-

binding region of tau protein, and it is considered as a suitable model for the screening 

of small molecule tau aggregation inhibitors.255-260 

Indeed, this tau derived hexapeptide is well characterized and it is known that it easily 

undergoes fibrillation in vitro, forming cross-β-sheets structures. Moreover, cryo-

electron microscopy recently demonstrated that the cores of PHFs are composed of 

eight β-sheets, adopting a C-shaped architecture. Importantly, the N-terminal part of 
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the cross-β structure is formed by the hexapeptide AcPHF6, further demonstrating its 

essential role in the assembly of tau filaments.261 

As for other β-sheet proteins, the aggregation process of AcPHF6 can be monitored by 

fluorescence in the presence of ThT, which displays a characteristic change in the 

emission spectrum in the presence of β-rich structures.262 The anti-aggregating activity 

of 11, 12, 20, 25, and 27 was therefore monitored in phosphate buffer 50 mM at pH 

7.4, using ThT as detection dye. As already reported in the literature,255-260 AcPHF6 

incubated alone, rapidly aggregated, as confirmed by the increase in the fluorescence 

intensity over a period of 80 min (Figure 3.18). Co-incubation of AcPHF6 with the 

selected compounds led to a significant (> 50%) decrease of the fluorescence 

intensities, indicating that all compounds could significantly interfere with AcPHF6 

aggregation, even if at different extents (from 54.7% to 79.8%). In details, derivatives 

12 and 27 showed the highest inhibitory potencies, reducing the fluorescent signal at 

plateau by almost 80% (79.5 and 79.8% respectively), and resulting only slightly less 

potent than the known inhibitor myricetin.206 Figure 3.18B shows the details of the 

kinetic of aggregation of AcPHF6 incubated alone and in the presence of compounds 

25 and 27, the derivatives endowed with the best safety profile. 

 

 

Figure 3.18. (A) Inhibition of AcPHF6 peptide (50 μM) aggregation in the presence of 

selected derivatives (10 μM) after 80 min incubation. The data are the mean of at least 

three repeats. (B) Kinetics of the AcPHF6 aggregation in the absence and in the 

presence of compounds 25 and 27 monitored by ThT fluorescence. 
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Circular dichroism (CD) studies were then carried out to gain further insights into the 

mechanism of inhibition of 25 and 27, and to exclude false positive outcomes due to 

the possible displacement of bound ThT by the tested compounds. The CD spectrum of 

AcPHF6 (Figure 3.19) shows a negative band at 221 nm followed by a positive band at 

shorter wavelengths, both of which are typical features of β-sheet structures. A 

decrease in intensity was observed for the CD spectrum of AcPHF6 in the presence of 

25, suggesting that the abundance of β-sheet structures is lower. On the other hand, 

the CD profile of AcPHF6 in the presence of 27 lacks for the typical bands of β-sheet 

structures, with the peptide displaying an unordered conformation. Both behaviors are 

consistent with the inhibitory trends highlighted by the fluorescence-based assay; 

therefore, CD data confirm the inhibitory capacity of derivatives 25 and 27, and 

suggest that their anti-aggregating activity is related to their ability to stabilize the 

AcPHF6 peptide in a less fibrillogenic conformation, with derivative 27 being much 

more effective in doing so. 

 

 

Figure 3.19. CD spectra of AcPHF6 (100 µM) in the absence (solid) and in the presence 

of 25 (20 µM, dashed) or 27 (20 µM, dotted), measured after 2 h incubation.  

 

In order to better characterize the morphology of the fibrils formed by the AcPHF6 

peptide alone and in the presence of 25 and 27, we performed atomic force 

microscopy studies. Solutions of 50 µM phosphate buffer with the AcPHF6 alone and in 

the presence of 25 and 27 were prepared in the same conditions employed for the ThT 

studies (but in the absence of ThT). After incubation, aliquots of the solutions were 

subjected to ultrafiltration to separate the low molecular weight un-polymerized 

peptide fraction from the high-molecular weight fiber fraction, and such high-
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molecular weight fraction was adsorbed on the surface of mica for AFM imaging. As 

shown in Figure 3.20, long and thick amyloid fibrils were imaged after adsorbing on 

mica the solution of AcPHF6 incubated alone. Here, fibers with individual diameters of 

10 nm or more (and lengths of several hundreds of nanometers) are found in bundles 

and higher-order aggregates (Figure 3.20A). On the other hand, the absorption of 

AcPHF6 incubated in the presence of 25 and 27, displayed only much smaller 

structures (possibly oligomers or protofibrils, Figure 3.20 B and C). 

 

 

Figure 3.20. AFM micrographs of amyloid fibers obtained from the aggregation of 50 

µM AcPHF6 peptide in phosphate buffer in the absence (A), and in the presence of 10 

µM 25 (B) and 27 (C). 

 

 

3.5.6 K18 and full-length tau aggregation and inhibition studies 

These experiments were performed by me and Martina Rossi, under the supervision of 

Dr. Fabio Moda, at the Istituto Neurologico Carlo Besta, Milan.  

Encouraged by the results obtained with the AcPHF6 peptide, we decided to test the 

anti-aggregating properties of 27 in more clinically relevant models of tau aggregation. 

As described before, the formation of insoluble tau fibrils seems to derive from a 

nucleation-elongation process, by which misfolded tau monomers slowly assembled 

into nucleating cores followed by a rapid elongation from the core to yield fibrils. Tau 

fibrillization process can be replicated in vitro, however, recombinant tau shows very 

little intrinsic tendency to aggregate due to the lack of a series of post-translational 

modifications required for its aggregation. Indeed, recombinant truncated tau isoforms 
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are more frequently used for in vitro tau aggregation, where the addition of anionic 

co-factors (e.g. heparin, arachidonic acid) results in the formation of fibrils that 

resemble those observed in the brains of AD patients.263, 264 

Thus, 27 was firstly evaluated in a heparin-induced tau assembly assay, in which the 

fibrillization of the truncated K18 tau fragment (comprising four microtubules-binding 

repeats) was monitored by ThT. The aggregation of the tau fragment K18 was achieved 

through the Real-Time Quaking-Induced Conversion (RT-QuIC) technique.265 As shown 

in Figure 3.21, K18 alone was completely aggregated after 11-12 h and the 

fluorescence intensity reached the highest value. On the other side, the treatment of 

K18 with 27 at three different concentrations (1, 5, 10 μM) resulted in a delay of K18 

self-aggregation. Moreover, the analysis of the averaged fluorescence intensities at the 

plateau of the kinetic showed a 35% inhibition of the aggregation process. 

 

 

Figure 3.21. RT-QuIC analysis of 27 activity on tau K18 self-aggregation monitored by 

ThT fluorescence.  

 

Motivated by the promising results obtained with the K18 tau fragment, we also tested 

the inhibitory activity of 27 towards the heparin-induced self-aggregation of full-length 

2N4R tau (FL), through RT-QuIC technique. Treatment of 2N4R tau with 27 (10 µM) did 

not show a delay in the aggregation process, as can be seen from Figure 3.22. 

However, from the analysis of the averaged fluorescence intensities at the plateau of 

the kinetic, 27 shows a 30% inhibition of the aggregation process. Importantly, this 
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result is in agreement with that obtained with K18 fragment, confirming the potential 

of 27 as tau anti-aggregating compound. 

 

 

Figure 3.22. RT-QuIC analysis of 27 activity on full-length tau self-aggregation 

monitored by ThT fluorescence. 

 

 

3.5.7 Okadaic acid-induced tau hyperphosphorylation cell model 

These experiments were performed under the supervision of Prof. Ana Martinez, at 

the Centro de Investigaciones Biológicas, CSIC, Madrid. 

Increasing evidence has suggested that inhibition of phosphatases by okadaic acid (OA) 

represents the most robust way to induce PHF-like tau hyperphosphorylation. 

Moreover, OA was identified as a potent neurotoxin for cultured neuronal cells many 

years ago,266 as it is able to induce time- and dose-dependent apoptotic changes in 

such cells.267 Thus, different cell lines and primary neuronal cultures have been used to 

establish cellular models of OA-induced neurodegeneration.268-270 In addition, OA-

treated rodents recapitulate the morphological hallmarks of AD.269 

To confirm the anti-tau profile of 25 and 27 in a cellular context, we further explored 

their rescue potential in the OA-induced neurodegeneration cell model, in comparison 

with TDZD8 (data provided by Prof. A. Martinez). 

We studied the effect of 25, 27 and TDZD8, at two different concentrations (10 and 20 

μM), in a human neuroblastoma cell line (SH-SY5Y) treated with OA (Figure 3.23). As 
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expected, OA induced a decrease in cell viability higher than 50%. Importantly, both 25 

and 27 were able to increase the cell viability probably due to the decrease on tau 

phosphorylation by GSK-3β inhibition. Particularly, 25 was only slightly less effective 

than TDZD8. To note, other indole derivatives have been reported as effective in 

counteracting OA-induced neurotoxicity.225 

 

 

Figure 3.23. OA-induced neurodegeneration cell model. Effects of treatment with 25 

and 27. Results are mean value ± SEM, represented as relatives to control value (=100), 

of n=6 from three independent experiments. 

 

 

3.5.8 Inhibitory activity profile towards casein kinase 1 (CK1) δ and ε, and cell 

division cycle 7 (Cdc7) 

These experiments were performed under the supervision of Professor Ana Martinez, 

at the Centro de Investigaciones Biológicas, CSIC, Madrid. 

Finally, one of the main challenges to overcome when modulating a protein kinase is 

the selectivity over other protein kinases. Thus, to address this issue, we tested 25 and 

27 on a small panel of 3 selected kinases: casein kinase 1 (CK1) δ and ε, and cell 

division cycle 7 (Cdc7). Cdc7 is another representative cell cycle regulation kinase,271 

which should show low binding affinity toward new GSK-3β hits to avoid possible 

toxicities. While CK1δ and CK1ε represent GSK-3β phylogenetically diverse kinases, 

able to phosphorylate tau.272 
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Therefore, the inhibition of 25 and 27 toward CK1δ, CK1ε, Cdc7 and GSK-3β were 

assessed at 10 μM. Encouragingly, both compounds only poorly, or not inhibited at all, 

CK1δ, CK1ε, and Cdc7 (Figure 3.24), while they inhibited GSK-3β by 95% and 100%, 

respectively. This reveals a preliminary selectivity of both 25 and 27 towards GSK-3β. 

 

 

Figure 3.24. Inhibitory activity profile of 25 (blue) and 27 (purple) towards human 

CK1δ, CK1ε, Cdc7 and GSK-3β kinases, at a fixed concentration of 10 μM.  
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Fluorescent bivalent ligands  
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4.1 Diagnostics in Alzheimer’s disease 

Pre-mortem diagnosis of Alzheimer’s disease, relies on clinically documenting decline 

in memory, cognition, and function over time. However, symptoms associated with 

cognitive decline are difficult to separate from those of normal ageing processes. 

Neurodegeneration is estimated to start 20 to 30 years before the first clinical 

symptoms appear. Thus, after AD diagnosis, the pathology has already caused severe 

brain damage.52 

In addition, a definitive diagnosis can be obtained only following biopsy or autopsy, as 

it is only by looking at the affected brain that a pathologist can be able to see exactly 

what occurred in specific areas of the brain. Considering that brain biopsy is an 

invasive procedure, and that currently there is no effective treatment for AD, brain 

biopsy is rarely performed. Thus, a definitive AD diagnosis can be obtained only after 

clinical demonstration of dementia, and identification of the pathological hallmarks of 

the disease (i.e. β-amyloid plaques and neurofibrillary tangles) through autopsy.273 

Unfortunately, the lack of an early diagnosis of AD, strongly impacts the development 

of effective drugs. The failure of many drug candidates has also been attributed to 

their late administration, when the pathology is too advanced. Based on this, while AD 

drug discovery has experienced a profound productivity crisis in recent years,39 the 

field of diagnostics has been booming. 

The first step to find an easy and accurate way to diagnose AD before clinical 

symptoms are evident, is to find the appropriate biomarkers. A biomarker is a 

“characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a 

therapeutic intervention”.274 Importantly, identification of appropriate “diagnostic” 

biomarkers is essential for distinguishing individuals with prodromal signs of AD from 

healthy aging adults, or from patients suffering from other types of dementia. To date, 

there are no universally validated biomarkers for AD, but several candidates have been 

identified and began evaluating in preclinical models. Particularly, the defining and 

main pathological hallmarks of AD are extracellular Aβ deposits and intracellular NFTs. 

Thus, these pathological hallmarks should precede clinical symptoms by several 
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years.275 Based on this, in vivo imaging of Aβ and tau seems to be particularly suitable 

for diagnosing patients at risk and for detecting AD before dementia occurs. 

The tremendous advances in molecular imaging have allowed us to non-invasively 

visualize Aβ deposition directly in AD patients, thanks to the current availability of 

several amyloid tracers.276 However, although Aβ aggregates have been clearly 

associated with AD pathology, there is still an active discussion as to whether their 

presence closely correlates with disease progression and severity. Indeed, β-amyloid 

imaging has not been approved for the diagnosis of AD but rather as a diagnostic 

method for the exclusion of AD in cognitively impaired and amyloid PET-negative 

patients. Conversely, it is being evaluated as a diagnostic tool for defining the 

preclinical stages of AD.277 In contrast to Aβ, the density and neocortical spread of 

NFTs very well correlate with progressive neuronal degeneration and cognitive 

impairment. These evidence potentially make imaging of NFTs as a more desirable 

biomarker for AD, with respect to Aβ.63 

In 2010, Jack et al. proposed the first biomarkers model of the AD pathological 

cascade. In this model, the vertical axis represented the severity of biomarker 

abnormality and the horizontal axis represented the progression along the AD 

pathophysiological pathway.53 Few years later, based on the advanced published in the 

literature, the same authors revised their model (Figure 4.1).278  

 

 

Figure 4.1. Hypothetical temporal model integrating AD biomarkers (modified from 

Jack, 2013).278 
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The new model shows the temporal evolution of AD biomarkers in relation to each 

other and to the progression of clinical symptoms. The horizontal axis is expressed as 

time, not clinical disease stage. Importantly, this model shows that the manifestation 

of tau pathology can precede Aβ deposition in time, but only at a sub-threshold 

biomarker detection level. On the other side, Aβ deposition occurs independently and 

rises above the biomarker detection threshold, inducing the acceleration of tauopathy. 

 

All in all, these evidence might suggest that we should not focus on a single biomarker 

for AD, rather we should take advantage from the combined information coming from 

imaging probes directed towards both Aβ and tau. Based on this, over the last decade, 

several small molecules have been suggested as potential Aβ or tau imaging probes. 

Importantly, since Aβ plaques and NFTs share a similar β-sheet structure, it is not 

surprising that structural similarities exist between imaging agents for both species. 

 

 

4.1.1 Imaging of amyloid plaques and NFTs by fluorescent tracers 

Through the years, great progresses have been made in the field of molecular imaging 

with the aim to detect abnormal amyloid deposits in vivo.  

To date, positron emission tomography (PET) is one of the most popular clinical 

imaging techniques. PET imaging plays also a unique role in drug development because 

of its ability to quantify drug properties in vivo. By employing radiotracer principles, 

PET is capable of quantitatively measuring a variety of in vivo processes, without 

perturbing the biochemistry of the systems.279 For these reasons, PET is considered a 

key molecular imaging technique, and it has revolutionized the ability to image 

molecular processes in the brain.280, 281 To date, the United States Food and Drug 

Administration (FDA) has approved three PET probes for the estimation of Aβ neuritic 

plaque density in adult patients with suspected AD or other causes of cognitive 

decline: florbetaben,282 florbetapir,283 and flutemetamol.284 However, PET imaging 

suffers from many drawbacks. Its routine use for AD is unlikely, due to its financial and 

technical cost.285 Moreover, the short half-lives of commonly used positron-emitting 
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isotopes requires the on-site synthesis of PET tracers and access to radiochemistry 

equipment and a cyclotron. 

On the other side, optical imaging is emerging as a cheaper and non-invasive in vivo 

tool with improved sensitivity and resolution if compared with other routinely used 

methodologies, such as magnetic resonance imaging (MRI) and computed tomography 

(CT).286, 287 However, until the very recent years, fluorescent microscopy application to 

the intact animal has been limited to imaging few hundreds micrometers below the 

surface. Therefore, the current ability to perform minimally invasive deep in vivo 

fluorescence imaging in intact-animal studies, has represented a breakthrough. 

Indeed, today there is a growing interest in fluorescence spectroscopy as a non-

invasive alternative for early diagnosis, allowing the real-time visualization of 

biomolecules in living systems. 

Importantly, fluorescent probes have to possess appropriate features for a potential in 

vivo application. Among all, a fluorescent probes should be able to emit fluorescence 

in the far-red or near-infrared (NIR) region (600-900 nm). NIR light is particularly 

suitable for the in vivo imaging of molecular processes due to its acceptable depth of 

penetration, non-invasive operation, minimal interferences from auto-fluorescence of 

biological matter, and minimal photo-damage to biological samples.288 Moreover, in 

the NIR spectral range, the absorption of fluorescent signals by body tissues is minimal. 

 

 4.1.1.1 Small molecules fluorescent probes for in vivo Aβ plaques imaging 

Following the wide use of Thioflavin T (ThT, Figure 4.2)289 and Congo Red (CR, Figure 

4.2)290 in histopathology, the first evidence of the possibility of a fluorescent staining 

directly in mouse models of AD, was provided in 2001.291 In this study, a novel imaging 

approach was developed, using in vivo multiphoton microscopy and the Thioflavin S 

(ThS, Figure 4.2) dye, to image senile plaques in an AD mouse model. Although ThS was 

effectively able to visualize Aβ plaques, it must be administered topically, because it 

does not cross the BBB. 

Thus, after the development of some ThT and CR derivatives, in which the permanent 

charge or their ionizable nature hindered their BBB crossing, it was clear that the 
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design of fluorescent dyes for in vivo applications needed to incorporate several other 

criteria. Among them: (i) a suitable wavelength interval of absorption and emission 

(NIR range) and a large Stokes shift; (ii) the ability to rapidly enter the brain after 

intravenous injection; (iii) specific labeling of the Aβ deposits with concomitant rapid 

clearing of the unbound dye.52 

In 2005, the oxazine derivative AOI987 (Figure 4.2) suggested, for the first time, the 

feasibility of non-invasively imaging cerebral β-amyloid deposits in living mice.292 The 

compound readily penetrated the BBB, bound to Aβ fibrils with a Kd of 220 nm, and 

showed promising fluorescence properties, with absorption and emission maxima at 

650 and 670 nm. AOI987, after intravenous administration, was able to image Aβ 

plaques in living APP23 mice, with intact cranium and BBB. For the first time, it was 

also possible to quantify the Aβ load by spatial integration of fluorescence intensities. 

Importantly, the non-invasiveness of AOI987 imaging allowed repeated measurements 

over the life-time of the mouse, and provide an ideal tool for monitoring disease 

progression in AD animal models, and assessing the efficacy of the potential 

treatment.292 

Since then, the use of molecular fluorescence-based neuroimaging, particularly near-

infrared (NIR) imaging, has rapidly gained momentum.287 

The bisthiophene derivative NIAD-4 (Figure 4.2) represents the first rationally designed 

Aβ probe.293 Swager and co-workers merged the pharmacokinetic requirements with 

an electronic structure design to produce a compound possessing a suitable spectral 

range of the absorption and emission bands, with the explicit aim to develop a 

fluorescent probe to be used in vivo. In in vivo two-photon imaging experiments in 

transgenic mice, NIAD-4 readily crossed the BBB after intravenous injection, showed 

excellent binding affinity (Kd = 10 nM) and a dramatic enhancement of the 

fluorescence intensity when labeling Aβ aggregates. 
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Figure 4.2. Chemical structures of the first developed Aβ fluorescent probes. 

 

In 2009, the first curcumin-based NIR probe CRANAD-2 (Figure 4.2) was developed. 

The rationale behind the design of CRANAD-2 started from curcumin, and was based 

on different considerations: (i) the red shift benefit of boron incorporation could be 

used to design boron-containing curcumin derivatives; (ii) the introduction of a 

difluoro-boronate moiety into curcumin should generate an appropriate red shift; (iii) 

replacing the phenolic hydroxyl groups with the N,N’-dimethyl group should further 

enable red-shifted absorption and, consequently, an additional red-shift emission.294 

The synthesis of several derivatives lead to the discovery of CRANAD-58 (Figure 4.2), 

showing excitation and emission into the NIR region, together with significant 

fluorescence property changes upon mixing with both soluble and insoluble Aβ 

species. Importantly, in vivo NIR imaging revealed that CRANAD-58 was able of 

differentiating transgenic and wild-type mice, as young as 4-months old, the age that 

apparently lacks visible Aβ plaques.295 

Another example of Aβ fluorescent probe, is represented by the thiopental dimer THK-

265 (Figure 4.2).296 THK-265 was discovered by screening a large pool of commercial 

NIR fluorescent dyes for their binding toward Aβ. Based on promising preliminary in 

vivo studies, THK-265 was used to develop a systemic protocol for staging disease 

progression by evaluating different Aβ aggregation levels in mice of different age. The 
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intensity of the fluorescent signal correlated well with the plaque burden, indicating 

the utility of THK-265 for direct monitoring Aβ aggregation progression.297 

More recently, several others Aβ fluorescent probes were developed, such as: DANIR-

derivatives,298-300 BBTOM-3,301 benzo[g]chromene derivatives,302 the 

dicyanomethylene-4H-pyran-based dye PAD-1,303 the proflavine COB231,304 and the 

oligomer-specific BoDipy-Oligomer305 (Figure 4.3). 

 

 

Figure 4.3. Chemical structures of recently developed Aβ fluorescent probes. 

 

 4.1.1.2 Small molecules fluorescent probes for in vivo NFTs imaging 

As highlighted before, there is an urgent need for tau imaging tools to complement Aβ 

imaging tracers. To date, only few fluorescent probes for NFTs have been reported in 

the literature, likely due to the fact that tau tangles are present inside the neurons. 

Thus, tau has been less accessible and fewer fluorescent probes have been discovered, 

compared to Aβ ones. 

In 2013, the first series of fluorescent and BBB-penetrant compounds capable of 

detecting tau aggregates in AD and non-AD tauopathies was developed. The discovery 

of these compounds, named PBBs, was based on the finding that the affinity for tau 

inclusions of different compounds, could be attributed to a core structure with a 

specific extent ranging from 13 to 19 Å. Indeed, the derivative PBB3 (Figure 4.4), 

intravenously administrated in PS19 mice, was able to bind to intracellular tau 
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inclusions. Importantly, the corresponding radiolabeled derivative [11C]PBB3, was one 

of the first reported human PET tau imaging tracers.306 

Another fluorescent probe, the benzimidazole BF-188 (Figure 4.4) was developed in 

2014. Curiously, BF-188 emit a different color of fluorescence when bound to Aβ and 

tau aggregates. Particularly, using multispectral fluorescence imaging (MSFI) it is 

possible to differentiate the deposits of the two proteins with a single fluorescent 

probe. BF-188 showed sufficient brain uptake and rapid wash-out in normal mice, thus 

it was very promising for further studies.307 

 

 

Figure 4.4. Chemical structures of tau fluorescent probes. 

 

Other selective tau probes have been developed, but their potential has been 

evaluated mostly in in vitro assays. Bis(arylvinyl)pyrazines, -pyrimidines, and -

pyridazines were able to detect Aβ and tau aggregates in human brain tissues, with 

some derivatives showing higher selectivity for aggregated tau.308 Curcumin 

derivatives were able to detect tau aggregates in living SH-SY5Y cells, showing 

favorable fluorescence properties upon binding to tau fibrils, thus make them 

promising NIR fluorescent probes. A novel tau-selective NIR fluorescence probe was 

developed by combining previously identified core scaffolds: the 3,5-dimethoxy-N,N-

dimethylanilin-4-yl moiety of DANIR-derivatives, with the characteristic donor-π-

acceptor architecture of the Aβ probe MCAAD-3. These derivatives exhibited tau-

selective fluorescence properties in the NIR range, and were able to detect tau 

aggregates in live SH-SY5Y cells and in human AD brain sections.309 Finally, rhodanine 

and thiohydantoin derivatives has been studied for detecting tau pathology in AD 

patients brains.231 Particularly, the thiohydantoin derivative TH2 (Figure 3.8) showed 

high specific binding to tau aggregates compared to the rhodanine derivatives. 
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However, as the fluorescence properties of the compounds were not optimal, the 

corresponding radiolabeled derivatives were further investigate.231 Two years later, 

rhodanine-3-acetic acid derivatives were proposed as fluorescent probes for the 

imaging of NFTs in brain tissues of AD patients.310 
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4.2 The theranostic approach in Alzheimer’s disease 

In traditional approaches, imaging probes and drugs are pursued separately, which is 

time-consuming and expensive. To overcome these disadvantages, developing agents 

that have potential for both therapy and imaging is highly desirable. These agents have 

already been developed at research level with the name of “theranostics”. 

Theranostics use single chemical entities to simultaneously deliver therapy and 

diagnosis, and represent a more recent and innovative way of implementing 

translational medicine and personalized approaches.311 

The term “theranostic” was first coined by John Funkhouser, in a press release from 

the company Cardiovascular Diagnostics in 1998, to describe a material that allows the 

combined diagnosis, treatment, and follow-up of a disease.312 Since its first definition, 

the concept of theranosis has expanded, being nowadays quite broad in its meaning. 

The dedicated journal Theranostics says: “Theranostics is a concept that was originally 

raised to refer to the efforts of integrating imaging and therapy. As an emerging 

interdiscipline, it is related to, but different from traditional imaging and 

therapeutics.”313 

The field of theranostics, still in its beginning, has exploded over the last years, with 

agents reaching clinical trials, especially in the field of cancer.314 Though CNS disorders 

does not match oncology due to a poorer understanding of the disease molecular 

origins, theranostic approaches against neurodegeneration begin to be intensively 

pursued.315 

Indeed, in neurodegenerative diseases, and particularly in AD, the theranostic 

approach seems to be very promising as the pathological hallmarks of the disease 

overlap with the therapeutic targets. Aβ aggregates and NFTs, are neuropathological 

hallmarks of the disease, and they are recognized as effective biomarkers for clinical 

diagnosis. Moreover, they are both considered as potential therapeutic targets for 

drug discovery endeavors. Thus, both Aβ and tau proteins have been undoubtedly 

regarded from a double diagnostic and therapeutic perspectives. 

From the examples reported in the literature, two main rational strategies for the 

design of theranostic compounds can be envisaged: (i) linking structural elements from 
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diagnostic and therapeutic agents, to make a new conjugate molecule; or (ii) 

overlapping or highly integrating the diagnostic and therapeutic moiety in a single 

chemical entity (Figure 4.5).311 

 

 

Figure 4.5. Design strategy of theranostics (modified from Bolognesi, 2016).311 

 

In the first case, conjugates ligands contain two starting units, one carrying the 

therapeutic properties, and the other carrying the diagnostic properties. On the other 

side, the second approach can show narrower applicability, as the fundamental 

prerequisite is that an imaging probe and a drug share a common structural scaffold. 

Importantly, in the case of AD, a particular strengthen is that there can be overlap 

between the molecular properties responsible for recognizing and consequently 

inhibiting the amyloid proteins, and those responsible for their fluorescence imaging. 

Indeed, extended π-conjugated flat systems are considered important features for 

binding and interfering with amyloids.293, 316 Clearly, compounds deriving from a 

conjugating approach are more likely to have a high molecular weight and less likely to 

have favorable BBB permeation. While overlapped compounds are likely to have lower 

molecular weight and should have better drug-like properties. 
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4.2.1 Theranostic small molecules in AD 

Despite huge development is taking place in the field of AD theranostics, it was not 

until 2012 that the first examples appeared in the literature. 

The first “multifunctional fluorophore” published in the literature was SLOH (Figure 

4.6), a carbazole-based cyanine fluorophore, able to directly image the dynamics of Aβ 

fibrillogenesis and to inhibit its aggregation.317 SLOH showed an optimal intrinsic 

fluorescence, a strong progressive increase in fluorescence intensity and a blue shift in 

the emission maximum, upon binding to Aβ fibrils. In parallel, SLOH was also able to 

inhibit Aβ aggregation, interfering with both the nucleation and elongation processes. 

SLOH was also preliminary tested in vivo, and it was able to enter the brain of living 

transgenic mice and to specifically target Aβ plaques.317 

Another molecule intentionally proposed as an in vitro theranostic was the 

styrylquinoline G8 (Figure 4.6).318 The starting point in the design of this compound 

was the finding that several styryl derivatives, developed to improve the CNS 

properties of Congo Red, were employed as AD imaging agents in vivo.319 Moreover, in 

2012, styryl-1H-indole and styrylquinoline derivatives were reported as SPECT (Single-

Photon Emission Computed Tomography) imaging probes. Thus, the styryl moiety 

appears to be very promising for labeling and interfere with pathological fibrillary 

aggregates, while the quinoline moiety was selected for its “privileged scaffold” 

nature, displaying good pharmacokinetic properties and drug-likeness. Furthermore, 

an amino group was purposely introduced, in order to have an electron-releasing 

substituent conjugated with the quinoline nitrogen, as the goal was to develop a NIR 

fluorescent compound. G8 showed a strong hypsochromic shift of the emission 

maximum, together with a hyperchromic effect upon Aβ binding. Moreover, G8 was a 

moderate inhibitor of the Aβ aggregation process, as shown by ThT-based fluorometric 

assay. As the compound was also able to inhibit prion replication and to label prion 

fibrillary aggregates in living ScGT1 cells, it was proposed as promising starting point 

for the development of theranostic compounds for both AD and prion diseases.318 

Another example of rationally designed theranostic agent is represented by the 

curcumin derivative CRANAD-28 (Figure 4.6).320 The starting point for its discovery was 

a fluorescent curcumin derivative, CRANAD-2 (Figure 4.2), able to detect Aβ 
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aggregates, but showing a low quantum yield (QY).294 The substitution of the phenyl 

ring of CRANAD-2 with a pyrazole, increased the QY of the compound, as the inductive 

electron-withdrawing effect of the nitrogen of pyrazole led to a low tendency of 

electron delocalization in the system. Then, substitution of the pyrazole with an N-1 

phenyl pyrazole, led to the discovery of CRANAD-28. Thanks to the rational design, 

CRANAD-28 showed promising fluorescence properties in terms of optical range 

(emission peak at 578 nm) and QY. CRANAD-28 was able to label Aβ plaques ex vivo, in 

brain slices. Then, as it was able to cross the BBB, it was evaluated for the two-photon 

imaging of Aβ plaques in APP/PS1 mice. In parallel, CRANAD-28 was also able to inhibit 

natural and copper-induced Aβ crosslinking.320 Thus, despite its emission maximum is 

not within the NIR region, CRANAD-28 was the first theranostic providing an in vivo 

proof of principle in an AD mouse model. 

The same research group proposed another useful strategy for the development of Aβ-

directed theranostics, inhibiting Aβ aggregation through non-covalent modifications at 

its surface. Particularly, it is known that crown ethers can form stable complexes with 

protonated amines, through the formation of H-bonds. It is also known that the 

stabilization of misfolded Aβ peptides derived from inter-sheet salt bridges and intra-

peptide salt bridges.321 Thus, breaking down these interactions should attenuate the 

aggregation process. With this in mind, the authors hypothesized that crown ethers 

could break down the salt bridges, attenuating the stability and, consequently, the Aβ 

aggregation process. After confirming the effective ability of 12-crown-4-ether to form 

complexes with charged amino acids, and to efficiently inhibit Aβ aggregation through 

ThT assay, the crown ether moiety was link to PiB, the widely used Aβ PET ligand, to 

achieve a more selective effect.322 The new conjugate, PiB-C (Figure 4.6) showed an 

Aβ-aggregation inhibitory effect stronger than PiB, together with a neuroprotective 

ability in SH-SY5Y cells. Two-photon imaging analysis shown that PiB-C could clearly 

label plaques in APP/PS1 mouse brains ex vivo, but also in vivo.322  
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Figure 4.6. Chemical structures of theranostic compounds for AD. 

 

A theranostic small molecule with a peculiar profile is TBT (Figure 4.6).323  The 

inspiration for the design of TBT came from the therapeutic potential of metal 

chelators to reduce metal-induced Aβ aggregation and neurotoxicity in AD.324 Based on 

this, the authors hypothesized that proper modifications of chelators with sensing 

functions would be a promising strategy for developing a novel chelator as a dual 

functional probe and a disaggregating agent for Aβ aggregation induced by Zn2+ and 

Cu2+. Thus, they select a metal chelating 1,4,7,10-tetraazacyclododecane (cyclen) 

group, and the Aβ-targeting 2-phenylbenzothiazole group, and following a linking 

strategy they develop a new theranostic compound. TBT was able to specifically inhibit 

Zn2+- and Cu2+-induced Aβ40 aggregation, and to monitor the disaggregation of Aβ40 

aggregates in brain homogenates of APPswe/PSEN1 transgenic mice. Moreover, TBT 

showed specificity, neuroprotectivity, BBB permeability, and rapid wash out, 

highlighting its potential as theranostic tool for AD.323 Needless to say, in vivo studies 

are now essential to evaluate the effective applicability of this compound.  

Finally, the most recently proposed theranostic small molecules are phenothiazine-

rhodanine-based compounds.325, 326 Aiming to develop a theranostic agent for NIR 

fluorescence imaging, the authors selected the donor-acceptor architecture bridged by 
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a conjugated π-electron chain. After the synthesis of a series of derivatives, compound 

4a1 (Figure 4.6) was selected for further studies. Indeed, compound 4a1 displayed a 

significant fluorescence intensity increase in the emission spectra upon binding Aβ 

aggregates, with an emission maximum of 670 nm. Moreover, 4a1 was able to 

fluorescently stain Aβ plaques in brain and eye slices in vitro, demonstrating its 

excellent targeting ability. 4a1 also showed high stability in mouse serum, together 

with a low toxicity in human neuronal cells. From a medicinal chemistry perspective, 

4a1 offers advantages of a small molecule scaffold, easily amenable to further 

manipulation in order to improve its fluorescence properties and amyloid-binding 

properties.325 Indeed, 4a1 was the starting point for the development of a new library 

of theranostic compounds. The most promising derivative was compound 5a1 (Figure 

4.6), which differs from 4a1 only for the insertion of another double bond between the 

phenothiazine and the rhodanine moieties.326  With compound 5a1 the authors were 

able to further shift the emission to the NIR region, to strengthen the binding affinity 

towards Aβ aggregates, to enhance the inhibition potency, and to low cytotoxicity. 

Thus, 5a1 represents the last developed theranostic agents for NIR imaging of β-

amyloid plaques and inhibition of β-amyloid aggregation.326 

 

In the last ten years, several efforts have been made in the development and 

application of fluorescent theranostic small molecules for AD. The theranostic field in 

AD is still at its infancy, and no registered theranostics are available in the market. 

Importantly, many crucial issues need to be addressed and the translational potential 

of such compounds has been only marginally investigates. No one knows if 

theranostics will reach the clinics for AD; however, there are already promising 

evidence that these unconventional tools might increase the overall understanding of 

AD, and might be critical for finding and personalizing its treatment.311  
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4.3 Design of fluorescent bivalent ligands 

The aim of this project was the development of a small library of fluorescent bivalent 

ligands, as potential theranostic tools for Alzheimer’s disease. As highlighted above, 

combining therapy and diagnosis in a single molecular entity seems particularly 

suitable in AD, as the pathological hallmarks overlap with the therapeutic targets.  

Several evidence suggest that directly targeting the proteins involved in the 

fibrillization process could represent a valid therapeutic tool against PMDs.327 Thus, 

several drug discovery approaches have been employed for developing small 

molecules able to interfere with protein-protein interactions (PPIs), in order to avoid 

propagation or to prevent fibril formation. However, the modulation of PPIs with small 

molecules is very challenging for medicinal chemists for several reasons. Most disease-

modifying proteins lack druggable active site or pockets, and we also lack high-

resolution structural information on amyloid fibrils and aggregates. Moreover, the 

contact surfaces between proteins usually involve a multitude of polar and 

hydrophobic interactions distributed across a large interface. Thus, a small molecule 

has difficulties in achieving a tight binding, due to insufficient interactions. Finally, the 

protein-protein interfaces are usually flat and this further limits the site of contact to 

only one side of a small molecule.328, 329 Thus, anti-aggregating compounds should be 

designed, at least initially, starting from the structure of known inhibitors of the 

aggregation process. 

 

Looking at the literature, several anti-aggregating compounds share a symmetrical 

bifunctional structure, consisting of two identical protein recognition motifs (PRMs) 

joined by an appropriate spacer (Figure 4.7). These symmetrical compounds have been 

described as bivalent compounds or “palindromic compounds”, as their structure can 

be read in the same way in the forward or reverse directions.330 Considering the 

oligomeric and repetitive structure of fibrillar aggregates, it has been hypothesized 

that bivalent compounds could interact simultaneously with two binding surfaces. 

Thus, bivalent ligands should allow to achieve a higher potency and to significantly 

enhance the recognition process. The synergy between two PRMs connected by a 

spacer is mainly due to two factors: (i) an increase in the local concentration of the 
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active moiety; (ii) since a bivalent ligand must first undergo univalent binding, in this 

bound-state the binding of the second pharmacophore to a neighboring recognition 

site is favored due to entropic factors.331   

Several evidence suggest that lipophilic and aromatic residues able to provide van der 

Waals and π-π stacking interactions, connected by a central core, might modulate PPIs. 

Indeed, many anti-aggregating bivalent compounds share a common chemical 

structure, consisting of planar π-conjugated rings. Importantly, extended π-conjugated 

flat systems are considered important features not only for binding and interfering 

with amyloids, but also for achieving optimal fluorescence properties.293 

 

 

Figure 4.7. Schematic depiction of a bivalent compound, in which the two protein 

recognition motifs are joined by an appropriate linker. 

 

In light of this, we focused on a bivalent strategy to identify novel ligands to combat 

AD, by designing and synthesizing a small library of bivalent 2,4-thiazolidinedione (TZD) 

derivatives (36-59, general structure in Figure 4.8). The selection of the TZD moiety as 

PRM was motivated by several observations:  

(i) TZD and other 5-membered heterocyclic scaffolds had been shown to have 

promising anti-aggregating potential, thus being able to selectively recognized fibrillar 

structures;210, 332  

(ii) rhodanine and thiohydantoin derivatives have been shown to stained NFTs in 

hippocampal sections obtained from AD patients;231, 310 

(iii) the most recently published theranostic small molecule for AD, is a rhodanine-

based compound.325  
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After the selection of the PRM, we focused our attention on six structurally different 

lipophilic and aromatic linkers, aiming to evaluate their potential for the inhibition of 

the aggregation process. The selection was also based on their intrinsic fluorescence 

properties. First, we select a phenyl, a biphenyl, and a diphenylmethane linkers, in 

order to evaluate the importance of the conjugation both for the activity and the 

fluorescence properties of the compounds. Then, we specifically selected carbazole, 

fluorene, and bis-thiophene as recognized anti-aggregating and fluorescent moieties, 

in principle able to act both as therapeutic and diagnostic tools. Particularly: carbazole 

and fluorene derivatives have been reported as inhibitors of Aβ aggregation333-335 and 

as AD theranostic compounds,317 while bis-thiophene and pentameric thiophene 

derivatives are well-known Aβ and tau protein fluorescent probes.293, 336, 337 

Finally, in order to expand the structure-activity relationships, and to improve the 

drug-likeness of our compounds, we decided to study the impact of side chain 

functionalization on the TZD core. Particularly, our aim was to investigate if different 

degrees of protonation could influence the interaction of the compounds with fibrillar 

structures, and their intrinsic fluorescence properties. Thus, we inserted an ester, a 

carboxyl and a secondary amine groups on the nitrogen of the TZD.  

 

 

Figure 4.8. General structure of the bivalent TZD-derivatives 36-59. 

 

The combination of four different TZD-derivatives with six different aromatic linkers, 

led to the development of a small combinatorial library of 24 bivalent compounds (36-

59, Table 4.1). 

 



101 
 

Table 4.1. Combinatorial library of the bivalent derivatives 36-59. 
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4.4 Chemistry 

The synthesis of the targeted compounds 36-59, was achieved through a slightly 

modification of an optimized version of the Knoevenagel condensation (see paragraph 

3.4).332 The modified procedure is based on a green and solvent-free condensation of 

aromatic aldehydes with different TZD-derivatives, in the presence of EDDA under 

microwave irradiation at 100°C, for 45 minutes (Scheme 4.1).  

Particularly, the unsubstituted- (36-41), the ester- (42-47), and the amine-derivatives 

(54-59) were synthesized through the Knoevenagel condensation of 3 equivalents of 

the TZD derivatives (TZD, TZD-1, and TZD-3) and 1 equivalent of the six aromatic 

dialdehydes (65-70), with 0.5 equivalent of EDDA. The bivalent derivatives 36-47, and 

54-59 were obtained with yields varying from 15% to 69%. In some case, the yield was 

low because of the formation not only of the bivalent derivative, but also of the 

monosubstituted one. 

 

 

Scheme 4.1. Synthetic procedure for the synthesis of target compounds 36-59. 
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For the synthesis of the carboxyl-derivatives (48-53), the Knoevenagel reaction was 

followed by an acid catalyzed hydrolysis of the corresponding ester-derivatives 

(Scheme 4.1). 42-47 were refluxed in acetic acid and concentrated HCl overnight, 

yielding 48-53 in good yields (30-86%). 

 

The N-substituted TZD derivatives were also synthesized. TZD-1 was obtained upon N-

alkylation of TZD with ethyl-2-bromoacetate, in the presence of K2CO3 in acetone.338 In 

the reported procedure the reaction is carried out for 12 h reflux, however, in order to 

reduce the reaction times, we performed the reaction using MW irradiation. Thus, the 

reaction of TZD (1 eq.) with ethyl-2-bromoacetate (1 eq.), and K2CO3 (1.5 eq.) in 

acetone at 100°C for 50 minutes, gives TZD-1 in good yield (87%, Scheme 4.2). The 

same optimized N-alkylation was applied for the synthesis of TZD-3. In this case, we 

change K2CO3 to Cs2CO3 and we were able to obtained TZD-3 with 53% yield (Scheme 

4.2). 

 

 

Scheme 4.2. Synthetic procedure for the synthesis of N-substituted TZD derivatives 

TZD-1 and TZD-3. 

 

Dialdehydes 65 and 66 were commercially available, while dialdehydes 67-70 were 

synthesized as reported in Scheme 4.3 and 4.4. Synthesis of 67 was achieved through a 

two-step reaction (Scheme 4.3).339 In the first step, dibromomethylation of 

diphenylmethane with formaldehyde and 33% wt solution of HBr in acetic acid, gives 
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the intermediate bis(4-(bromomethy)phenyl)methane (20%). The second step was a 

Sommelet reaction in which, generally, a benzyl halide is converted to aldehyde using 

hexamethylenetetramine (HMTA).340 Thus, after this two steps reaction, we were able 

to obtained 67 in good yield (42%). 

 

 

Scheme 4.3. Synthetic procedure for the synthesis of dialdehyde 67. 

 

The synthesis of dialdehyde 68 was achieved through direct lithiation of the 

corresponding 3,6-dibromo-9H-carbazole, and subsequent formylation with 

dimethylformamide (DMF), as reported in Scheme 4.4.341 68 was obtained in a very 

good yield (58%), higher than that reported in the literature. As the reaction works 

well, we apply it also to the corresponding dibromo-fluorene and -bisthiophene 

derivatives (Scheme 4.4). To the best of our knowledge, this is the first case in which 

this reaction is exploited for the synthesis of fluorene and bisthiophene dialdehydes. 

Importantly, we were able to synthesized 69 and 70 in good yields (45-57%). 

 

 

Scheme 4.4. Synthetic procedure for the synthesis of dialdehyde 68-70. 

 

All the final compounds 36-59 were characterized using analytical (HPLC) and 

spectroscopic data (1H- and 13C-NMR, ESI-MS). 
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4.5 Native fluorescence studies 

As mentioned above, the aim of this project was to develop fluorescent bivalent 

ligands, as theranostic tools for AD. Indeed, after the synthesis of the library, we 

studied the native fluorescence of all the 24 derivatives in ethanol, whose polarity 

mimics the protein environment. From these studies, we were able to select the best 

performing compounds in terms of fluorescent properties. 

The fluorescence of all the compounds was strongly dependent on the nature of the 

linker; while, in some cases, the N-substitution seems not to affect it.  

In details, the phenyl derivatives 36, 42, 48, and 54 showed no fluorescence emission, 

probably due to the small degree of conjugation.  

The biphenyl derivatives showed a better profile, with 49 and 55 showing an intense 

fluorescence emission at 513 nm and 452 nm respectively (Figure 4.9).   

 

 

Figure 4.9. Fluorescence spectra of the biphenyl-derivatives 37, 43, 49, and 55 in 

ethanol. 

 

The lack of fluorescence emission for the diphenylmethane-derivatives confirm the 

importance of a conjugated and planar system for optimal fluorescence properties. 

Indeed, the loss of fluorescence signal in 38, 44, 50, and 56 is due to the insertion of a 

methylene between the two phenyl rings and the resulting loss of conjugation.  

The insertion of the carbazole linker, as in derivatives 39, 45, 51, and 57, displays 

different effects, based also on the N-substituent on the TZD core (Figure 4.10). 

Particularly, the N-unsubstituted 39 was not fluorescent, while ester- and amine-
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derivatives (45 and 57) show a very low fluorescence intensity with an emission 

wavelength (λem) of 470 nm. The best compound in the carbazole series was the 

carboxyl-derivative 51, with a higher intensity of fluorescence emission at 468 nm. 

 

 

Figure 4.10. Fluorescence spectra of the carbazole-derivatives 39, 45, 51, and 57 in 

ethanol. 

 

The fluorene derivatives 40, 46, 52, and 58 showed a very good fluorescence, in terms 

of both intensity and emission wavelength (Figure 4.11). 40 represent the most 

promising compound of this small series, with an intense fluorescence at 500 nm. The 

other derivatives ester- and amine-derivatives 46, 52 and 58 showed a less intense 

fluorescent signal with a good λem of about 460-480 nm. 

 

 

Figure 4.11. Fluorescence spectra of the fluorene-derivatives 40, 46, 52, and 58 in 

ethanol. 
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Finally, the bisthiophene derivatives represent the most promising compounds in 

terms of emission wavelength, as they were able to reach 520-530 nm (Figure 4.12). In 

this case, the fluorescence properties of all the four compounds seems not to be 

affected by the N-substitution of the TZD. Indeed, all the compounds displayed similar 

fluorescence intensity, as well as a similar emission wavelength. 

 

 

Figure 4.12. Fluorescence spectra of the bisthiophene-derivatives 41, 47, 53, and 59 in 

ethanol. 

 

In Table 4.2 are reported the excitation and emission wavelength of all the 24 bivalent 

derivatives. As it is clear, no compound shows an emission wavelength in the NIR 

region. However, the compounds displaying λem above 450 nm could represent 

promising candidates for in vitro studies, and good starting point for the development 

of derivatives with improved fluorescence properties. Importantly, in native 

fluorescence studies it is not possible to evaluate the importance of the protonation of 

the compounds in a protein environment. This could explain why we were not able to 

find strong differences in the emission spectra of ester-, carboxyl-, or amine-

derivatives. 

Compounds 40, 47, 49, 51-53, 55, 59, showing good fluorescence intensity and λem 

higher than 450 nm, were selected for further studies, in order to evaluate changes in 

their fluorescence properties after the interaction with Aβ and tau fibers.  
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Table 4.2. Excitation and emission maxima of compounds 36-59. 

 

 

  



109 
 

4.6 Results and discussion 

After the synthesis and the native fluorescence studies, we designed a screening 

pipeline, depicted in Figure 4.13, to evaluate the theranostic profile of our bivalent 

derivatives 36-59.  

First, we plan to study the potential of our compounds as anti-aggregating agents 

towards Aβ and tau protein in intact Escherichia coli (E. coli) cells overexpressing Aβ42 

and 2N4R full-length tau. Secondly, we wanted to assess the neuro-toxicity of 36-59 in 

primary CGNs at two different concentrations, together with their interaction with 

serum albumin. The results from these preliminary assays will allow us to select the 

best performing compounds to be progressed for further studies.  

 

 

Figure 4.13. Screening pipeline for the bivalent derivatives 36-59. 
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Then, due to their potential application as amyloid probes, we will record the 

fluorescence emission spectra of the selected compounds in the presence of Aβ42 and 

tau protein. These experiments will allow us to evaluate changes in their fluorescence 

properties after the interaction with Aβ and tau fibers. In parallel, we will confirm their 

antiaggregating potential performing Aβ42 and tau aggregation and inhibition studies 

by ThT fluorescence, and we will assess their ability to cross the BBB through a 

PAMPA-BBB assay.  

Finally, the theranostic potential of our compounds will be confirmed in vivo in 

Drosophila melanogaster models of AD.  

Drosophila melanogaster is a powerful platform for the screening of AD drug 

candidates.342-344 In the last years, several transgenic flies expressing human Aβ42 and 

tau proteins have been developed, and they are now providing new insights into 

disease mechanisms, and assisting in the identification of novel AD drug candidates.258, 

345-349 Transgenic flies expressing the human Aβ42 protein in their nervous system 

display different symptoms reminiscent of AD, including defective locomotion and 

memory, as well as markedly reduced longevity. Moreover, their brains display 

characteristic amyloid plaques and amyloid pathology.350, 351 Drosophila over-

expressing the human tau protein are also of utmost importance, as they show key 

features of AD: adult onset, progressive neurodegeneration, early death, enhanced 

toxicity of mutant tau, and accumulation of abnormal tau. Human tau overexpression 

in neuronal tissues is neurotoxic, but neurodegeneration occurred without the 

formation of NFTs. However, human tau expression on the retina yields adult flies with 

a characteristic rough eye phenotype.352 

Importantly, we will assess Drosophila longevity and locomotor activity, and we will 

analyze Aβ and tau deposits, respectively in the brains and eyes of the flies. We will 

also perform fluorescent staining of our bivalent compounds on Drosophila, to 

demonstrate the effective labeling of Aβ42 and tau proteins by our compounds, thus 

confirming their diagnostic potential. Thus, the Drosophila AD models will provide us 

the proof of concept of our bivalent compounds as theranostic tools for AD. 
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4.6.1 Inhibition of Aβ42 and tau aggregation in intact Escherichia coli cells 

These experiments were performed by Dr. Raimon Sabaté at the Department of 

Pharmacy and Pharmaceutical Technology and Physical Chemistry, UB, Barcelona. 

The aggregation of Aβ, especially the most aggregation-prone and neurotoxic 42 amino 

acid form (Aβ42), and tau protein represent an early pathogenic event in AD. Thus, 

based on this and on our interest in developing anti-aggregating compounds, all the 24 

bivalent derivatives were tested in intact E. coli cells overexpressing these proteins.  

In bacteria, protein aggregation occurs during the production of heterologous proteins, 

leading to the formation of insoluble inclusion bodies (IBs). IBs contain highly ordered 

amyloid-like structures, and their formation seems to share mechanistic features with 

amyloid self-assembly. Thus, bacteria have been proposed as a model to study amyloid 

aggregation.353, 354 Taking advantage of the fact that amyloid aggregation can be 

followed in vivo, in bacteria, Muñoz-Torrero and Sabaté, recently developed a new 

methodology that allows the fast, easy, and inexpensive screening of putative 

inhibitors of the spontaneous aggregation of potentially any amyloidogenic protein 

that can be overexpressed in E. coli cells.355, 356 The protein aggregates inside E. coli can 

be stained with ThS, and the extent of aggregation can be monitored measuring the 

variations of the fluorescence of ThS. Indeed, overexpression of recombinant amyloid 

prone proteins led to an increase in ThS fluorescence compared to bacteria that do not 

express the protein; while when bacteria are grown in the presence of amyloid 

aggregation inhibitors, the ThS fluorescence is clearly reduce. Moreover, as the ThS 

fluorescence is directly proportional to the amyloid amount, the anti-aggregating 

activity of each inhibitor can be easily determined by steady-state fluorescence. 

Importantly, this rapid in vivo screening has already been used for the screening of 

several libraries of anti-aggregating compounds.357-362 

 

The preliminary screening of the nine bivalent derivatives 36-40, 48, 49, 51, and 52 in 

E. coli cells shows promising results, as reported in Table 4.3. The N-unsubstituted 

derivatives 36-38 show high IC50 values. However, the substitution of the nitrogen of 

the TZD with a carboxyl group, as in compounds 48 and 49, led to an important 
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decrease in their IC50 values. The same behavior was observed with the carbazole 

derivatives 39 and 51, and the fluorene derivatives 40 and 52. The N-unsubstituted 39 

and 40 showed a good IC50 of about 22 µM and 26 µM, respectively for both Aβ42 and 

tau protein. While the corresponding carboxyl-derivatives 51 and 52 showed a 

significant reduction of the IC50 values, with compound 52 being the most active in this 

first nine tested derivatives. Indeed, 52 showed IC50 values of 9.35 ± 0.01 µM towards 

Aβ42, and 8.15 ± 0.01 µM towards tau protein. Importantly, all the compounds seems 

equally active on both proteins, but this was not surprising us. As highlighted above, 

several anti-aggregating compounds share a common chemical structure, thus being 

effective in inhibiting the aggregation process of different amyloid proteins. Although 

preliminary, these results confirm the potential antiaggregating activity of our bivalent 

derivatives.  

 

Table 4.3. Effect of the bivalent derivatives 36-40, 48, 49, 51, and 52 on E. coli cells 

overexpressing Aβ42 or tau protein, monitored by ThS staining. 

 

Cmpd linker R 
Aβ42 

aggregation 
IC50 (µM) 

Tau aggregation 
IC50 (µM) 

36  -H 56.9 ± 0.06 51.4 ± 0.04 

37  -H 44.3 ± 0.06 54.9 ± 0.03 

38  -H 57.5 ± 0.05 56.6 ± 0.03 

39 
 

-H 22.7 ± 0.03 21.6 ± 0.02 

40 
 

-H 26.8 ± 0.02 25.9 ± 0.02 

48  -CH2COOH 36.2 ± 0.02 24.3 ± 0.02 

49  -CH2COOH 22.8 ± 0.06 30.0 ± 0.02 

51 
 

-CH2COOH 17.5 ± 0.01 15.1 ± 0.02 

52 
 

-CH2COOH 9.35 ± 0.01 8.15 ± 0.01 
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Chapter V 

 

 

 

 

Development of  

a focused library of antiprion compounds  

built around Compound 1 
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5.1 Therapy in prion diseases 

Three decades after the discovery of prions as the cause of Creutzfeldt-Jakob disease 

and other transmissible spongiform encephalopathies, we are still far away from the 

discovery of an effective treatment for these disorders. The lack of a mechanistic 

understanding of how prions damage the brain, results in the lack of validated 

pharmacological targets. Moreover, several pharmacological interventions have 

attempted to target different stages of disease progression but none has significantly 

affected the course of the disease. Indeed, PrDs still represent an extremely 

challenging endeavor for medicinal chemists.363 

Given the central role of PrP in prion propagation and pathology, this protein 

represents the best target currently available for antiprion drug discovery. Thus, 

possible strategies for interrupting prion formation act on different stages of prion 

biogenesis and PrPSc formation and aggregation. Such strategies include: reducing PrP 

expression, preventing PrPc unfolding, blocking unfolded PrP binding to PrPSc, blocking 

PrPSc from recruiting PrP, breaking-up PrPSc, and increasing PrPSc degradation.364  

In the last decade, an increasing interest in PrDs, led to the discovery of several 

antiprion compounds, coming from both screening- and knowledge-based approaches. 

In the first case, cell-based high throughput in vitro assays have allowed the screening 

of several library of compounds. In many cases, the screenings were performed on 

libraries of approved drugs, providing repurposed candidates ready for clinical trials. 

On the other side, knowledge-based approaches originated from an ever-increasing 

understanding of the mechanisms underlying pathogenesis, and led to the discovery of 

several new preclinical compounds.363 

 

5.1.1 Clinical drug candidates 

Starting from 1971, 14 drugs have been tested in clinical trials for the treatment of 

PrDs. Clinical drug candidates have varied over the years, and have been largely 

influenced by the ever-changing state of knowledge within the field. The tested drug 

candidates were antivirals, antimalarials, anticoagulants, antifungals, antidepressant, 

anticonvulsant and antioxidants. However, none of the tested drug candidates 
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reported positive results. Importantly, the failure of all these trials has been attributed 

to several factors, among them, the lack of validated outcome measures, and the small 

number of data deriving from prospective observational studies.365 

The initial designation of prion diseases as “slow viral illnesses” led to the early 

evaluation of several antiviral treatments. Thus, amantadine,366, 367 interferon,368 

vidarabine,369 and acyclovir370, 371 were assayed between 1971 and 1984 (Figure 5.1). 

 

 

Figure 5.1. Chemical structures of amantadine, vidarabine, and acyclovir. 

 

In 1992, two CJD patients were treated with the antifungal drug amphotericin B (Figure 

5.2). However, also in this case, the treatment was unsuccessfull.372 In 2001, a vCJD 

patient was treated with clomipramine (Figure 5.2), a tricyclic antidepressant with an 

aliphatic side chain at the middle ring moiety, and venlafaxine (Figure 5.2), a serotonin 

and norepinephrine reuptake inhibitor. Again, no clinical improvement was observed, 

and the patient died 14 months after the onset of the symptoms.373 In the same year, 

other tricyclic compounds with an aliphatic side chain at the middle ring moiety were 

reported as inhibitors of the PrPc conversion in scrapie-infected neuroblastoma cells.374 

Thus, several studies focused on the antimalarial drug quinacrine (Figure 5.2), an 

acridine derivative with a basic side-chain.  

Four clinical trials have evaluated the potential of quinacrine in treating PrDs.369, 375-377 

The two most important trials were: PRION-1, conducted in the UK, and consisting of 

107 patients;376 and a trial conducted at the University of San Francisco, consisting of 

425 patients.377 In both cases, a dose of 300 mg of quinacrine daily was well tolerated, 

however, it did not significantly affect the clinical course of the disease. Moreover, in 

all the four clinical trials, lemon-yellow discoloration of skin, liver dysfunction, and 
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leucopenia were described as common side effects. However, in 2009 it was reported 

that treatment with quinacrine, both in vitro and in vivo, could at first reduce PrPSc, but 

a continuous treatment resulted in strain selection of PrP resistant to the effect of 

quinacrine.378 The failure of quinacrine in clinical trials was also ascribed to the focus 

upon single therapy approaches. Thus, quinacrine was administered in combination 

with the antipsychotic drug chlorpromazine (Figure 5.2) to four patients.379, 380 Once 

more, no clinical improvements were found. 

In 2003, anticonvulsants were also tested in patients affected by sCJD.381, 382 One 

patient was treated with phenytoin (Figure 5.2), and then quinacrine and 

chlorpromazine were co-administered. Again, no evident clinical improvements were 

observed. 

Another compound tested in clinical trials for PrDs was flupirtine (Figure 5.2). 

Flupirtine is a non-opioid analgesic, which has been shown to decrease neurotoxicity 

associated with prion diseases in vitro.383 As flupirtine was a well-tolerated and 

clinically well-established drug, it was directly investigated in a clinical trial on 28 

patients with probable CJD. The results showed less cognitive decline in patients 

treated with flupirtine, but no differences in the mean survival time.384 

 

 

Figure 5.2. Chemical structures of drug candidates for PrDs. 
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A “controversial” compound of interest in PrDs was pentosan polysulfate (PPS, Figure 

5.2). PPS was shown to inhibit scrapie infections in mice.385, 386 However, as it is not 

BBB permeable, PPS was rejected as a possible treatment for CJD, as its 

intraventricular administration is invasive and the risk of complications is high.387 

Nevertheless, several studies on PPS treatment in patients were reported.388-393 In all 

these cases reported on a clinical stabilization and a slow disease progression; 

however, surgical complications were common. Thus, PPS seems to represent a 

possible disease-modifying treatment for CJD patients, although the invasiveness of 

the treatment cannot be overlooked. 

Finally, in recent years, the research has focused on the tetracycline doxycycline 

(Figure 5.2), thanks to several preliminary encouraging in vitro and in vivo studies. The 

first two observational studies reported a significantly prolonged survival times in 

patients treated with doxycycline.394, 395 However, a subsequent trial conducted 

between 2007 and 2012, did not confirm the previous findings.396 Indeed, doxycycline 

was well-tolerated, but efficacy analysis did not show any significant difference 

between doxycycline- and placebo-treated patients in terms of survival time or rate of 

disease progression. 

The only active clinical trial, to date, is a preventive trial with doxycycline treatment in 

30 patients belonging to an Italian FFI family.397, 398 The volunteers have agreed to be 

exposed over a ten-years treatment to doxycycline. Hopefully, the study will be closed 

within 2023. 

 

 

5.1.2 Preclinical drug candidates 

As highlighted before, the search of antiprion compounds is an extremely challenging 

area for medicinal chemists. As in all the other PMDs, the lack of an early diagnosis, 

the difficulties in developing BBB-permeable compounds, as well as the lack of 

structural information regarding the interactive surfaces of two proteins involved in a 

PPI, make even more difficult the discovery of effective disease-modifying treatments. 

Nevertheless, in the last decades, several drug discovery approaches have been 
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pursued in the PrDs field. The development of cell cultures in which prion infection is 

stable has surely provided a unique and efficient way for the identification of antiprion 

compounds. Thus, neuronal cell lines chronically infected with rodent prions are 

routinely used either to screen compounds inhibiting PrPSc accumulation, as well as to 

confirm the antiprion effect of compounds discovered by biophysical methods. This 

type of screening has been very useful for identifying several antiprion drug 

candidates.399 However, only few compounds were effectively progressed to in vivo 

animal studies. Indeed, starting from 2007, only five reported compounds were able to 

disrupt prion propagation in infected mice, and to extend the animals’ life span.  

The first orally available small molecule able to delay death in prion-infected animals 

was compound B (Figure 5.3).400 Compound B was discovered as an orally available 

antiprion compound, effective in prolonging the incubation periods of mice cerebrally 

infected with Rocky Mountain Laboratory (RML) strain. However, a huge amount of 

compound B was necessary for in vivo efficacy. Indeed, its rapid washout from both 

the brain and the blood, together with some metabolic instability, might be 

responsible for its limited effectiveness and its loss of efficacy during long-term 

treatments. Thus, the optimization of its safety profile and pharmacokinetic properties 

are necessary before a clinical application.400 

In 2013, two different research groups discovered other two promising compounds, 

both coming from high-throughput screening. The first compound, named anle138b 

(Figure 5.3) showed structure-dependent binding to pathological aggregates and 

strongly inhibited formation of oligomers in vitro and in vivo both for prion protein and 

α-synuclein.401 Anle138b did not show a detectable toxicity at therapeutic doses, while 

showing an excellent bioavailability and BBB permeation. Moreover, it was able to 

double the life span of prions infected mice.401 Thus, anle138b represent a promising 

compound for PrDs treatment, but its activity as anti-aggregating compound is now 

being tested towards other prion-like proteins such as tau, SOD1, and TDP-43.  

The second compound was developed by Prusiner’ group, and it is called IND24 (Figure 

5.3).402 This compound doubled the survival times of scrapie-infected, wild-type mice. 

However, mice infected with the RML prion strain and treated with IND24, exhibited 

neurological dysfunction and died. Thus, the author demonstrated that prion strains 



120 
 

can acquire resistance upon exposure to IND24, and that this resistance can be lost 

upon strains passages in mice, in the absence of the compound. However, IND24 

showed another limitation that was already seen for both compound B and Anle138b: 

all the three compounds are not effective against all prion strains. For example, 

compound B worked against a mouse prion strain but not against a hamster one. More 

importantly, to date, no antiprion compound has demonstrated the ability to slow the 

progression of human prion strains injected into animals. Indeed, IND24 was 

ineffective in slowing propagation of Creutzfeldt-Jakob disease prions in transgenic 

mice.402 

In 2015, Aguzzi and colleagues reported the first rationally designed antiprion 

compound, able to attenuate PrPSc toxicity in infected mice.403 Particularly, the authors 

selected the mutant fungal prion HET-s as a plausible structural proxy of PrP. Indeed, 

HET-s represent the only available high resolution structure of a prion, and its stacked 

lysine residues are arranged in a single-layer repeat amyloid as expected for PrPSc.15 

Based on this structure, they extract a set of rules that predicted the activity of a series 

of luminescent conjugated polythiophenes (LCPs). First, the backbone must contain at 

least five thiophene or selenophene moieties, as it seems to represent a minimal 

generic anti-amyloid LCP pharmacophore. Second, charged side groups are required 

for therapeutic efficacy, as carboxylic acids and acetic acids conferred effectiveness. 

Third, compounds bearing five thiophene or selenophene rings are effective only when 

bearing anionic side groups linked to the terminal thiophene rings. Based on this, 

LIN5044 (Figure 5.3) was proposed as the most active and promising compound. 

Administration of LIN5044 to prion-infected mice was effective not only for 

prophylaxis but also during the symptomatic phase of the disease, without showing 

toxicity. LIN5044 delayed prion replication, and reduced the efficiency of prion self-

perpetuation. Moreover, the compound was active even after systemic administration, 

suggesting favorable pharmacodynamic and pharmacokinetic properties. Finally, the 

authors investigated whether LIN5044 was active also on mice infected with hamster 

prions, and the results were positive.403 

In 2016, another class of antiprion compounds was developed through a structure-

based drug discovery approach.404 The best performing compounds NPR-053 and NPR-
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056 (Figure 5.3) were tested in mice inoculated with the human-derived Fukuoka-1 

GSS strain. The results showed that both compounds were able to suppressed PrPSc 

and gliosis levels in the brains of mice at onset, but they had no effect on survival. 

Thus, the authors hypothesized that the level of effective drugs left in the brain after 

treatment was very low. NPR-053 and NPR-056 could represent a good starting point 

for the development of antiprion compounds, however, a deeper understanding of 

their pharmacokinetics is required.404 

 

 

Figure 5.3. Chemical structures of antiprion compounds tested in in vivo models. 

 

In the same year, Prusiner’ lab discover a novel class of antiprion compounds.405 In 

2013, an extended high throughput screening identified aryl amide as a promising 

antiprion scaffold.406 Thus, starting from the benzothiazole hit 4 (Figure 5.3) four 

different series of aryl amide, differing in their N-linked aryl groups, were developed 

and tested in prion-infected mice, demonstrating to be able to double the survival time 

of the infected mice. Particularly, aryl amides were able to alter the prion strain 
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properties, as evident by the distinct patterns of neuropathological deposition of prion 

protein, and associated astrogliosis in the brain. Unfortunately, none of these 

compounds showed efficacy against CJD prions.406 Nevertheless, aryl amide 

demonstrate for the first time that the development of drug resistance is not an 

inevitable consequence of efficacious anti-prion compounds. 

 

All in all, it is clear that all the compounds tested in in vivo models of PrDs are able to 

disrupt prion propagation, and to extend the animals’ life span. However, these 

molecules are not able to cure the disease, and none of these compounds are likely to 

make it into the clinic to treat human prion diseases. Indeed, none of these 

compounds work against human prions in humanized mice. Undoubtedly, the 

inadequacy of current cell culture models of human PrDs likely contributes to the 

translational failure of apparently promising antiprion compounds from the laboratory 

to clinical practice. Thus, developing a cell model for the replication of human CJD 

prions, remains a top priority for the development of drug candidates for PrDs.  

A breakthrough in the field was obtained for the first time in 2017, when it was 

demonstrated that astrocytes derived from human induced pluripotent stem cells 

support the replication of prions from brain samples of CJD patients.407 Importantly, 

this work represents a fundamental advance in modeling human PrDs by establishing a 

readily scalable system useful to address mechanistic aspects of human prion 

infections, and to facilitate drug discovery.407 
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5.2 Design of a small library of antiprion compounds 

The aim of this project was the development of a focused library of antiprion 

compounds deriving from Compound 1 (Figure 5.4). Compound 1 came from an in 

silico screening, and its activity was then confirmed in in vitro studies (L. Zaccagnini’ 

PhD thesis, SISSA, 2018). Chemically speaking, Compound 1 represent a hybrid 

compound, composed of a phenothiazine and a quinoline moieties, joined by a 

hydrazone linker. As it shown a very promising profile in terms of both activity and 

safety, the first step of this project was to resynthesize Compound 1, to validate the 

biological activity of the vendor-supplied sample, and to perform further studies to 

explore its potential as antiprion compound.  

 

 

Figure 5.4. Chemical structure of Compound 1. 

 

After the synthesis, we wanted to improve the drug-likeness of this compound, with a 

focus on its physico-chemical properties. Indeed, Compound 1 showed a very low 

solubility, which might negatively affect its absorption, and make difficult to perform 

further in vivo studies. In light of this, we decided to functionalize the nitrogen of the 

phenothiazine ring, through the insertion of polar groups. Derivatives 60-64 (Figure 

5.5), bearing dimethylamino, piperidino, morpholino and methylpiperazino 

substituents, were synthesized. Importantly, the selected solubilizing groups were 

carefully selected among those more frequently employed for the design and 

optimization of CNS drugs.408  

Then, in order to assess whether our design strategy was successful or not, the 

aqueous solubility of Compound 1, and derivatives 60-64 will be assessed. 
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Figure 5.5. Chemical structures of derivatives 60-64. 
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5.3 Chemistry 

As first step, Compound 1 was resynthesized. Particularly, as no synthetic protocol was 

reported, we aimed to develop a versatile synthetic procedure that would allow us 

further chemical manipulation starting from easily accessible building blocks. 

Thus, the synthesis of Compound 1 was achieved through a simple two-step reaction, 

depicted in Scheme 5.1. Hydrazine 71, was synthesized through a solvent-free, 

nucleophilic substitution of 4,7-dichloroquinoline (1 eq) by hydrazine (2 eq) using 

microwave irradiation.409 Then, 71 (1 eq) was condensed with 2-acetylphenothiazine (3 

eq) in acetic acid and ethanol, affording Compound 1 in a good yield (81%).  

Compound 1 identity was confirmed by analytical (HPLC), full scan MS (ESI+) and 

spectroscopic data (1H- and 13C-NMR), which were identical to those of the commercial 

sample. 

 

 

Scheme 5.1. Synthetic procedure for the synthesis of Compound 1. 

 

After the synthesis of Compound 1, the same condensation reaction was applied for 

the synthesis of derivatives 60-64. This part of the project was performed in 

collaboration with an undergraduate student, Luca Zambardi, who worked under my 

supervision. The different N-substituted phenothiazine derivatives 72-76 (1 eq) were 

reacted with 71 (1 eq) in acetic acid and ethanol, affording the corresponding final 

compounds 60-64 (Scheme 5.2) with yield varying from 22 to 91%. 
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Scheme 5.2. Synthetic procedure for the synthesis of derivatives 60-64. 

 

The N-substituted 2-acetylphenothiazine-derivatives 72-76 were synthesized through a 

simple N-alkylation of 2-acetylphenothiazine with the corresponding Cl-derivatives 77-

81 (Scheme 5.3). In details, 2-acetylphenothiazine (1 eq) was reacted with 77-81 (2 eq), 

in the presence of NaH in DMF, affording 72-76 with low to good yields. 

 

 

Scheme 5.3. Synthetic procedure for the synthesis of phenothiazine-derivatives 72-76. 

 

Among the Cl-derivatives, only 77-79 were commercially available. Thus, the synthesis 

of derivatives 80 and 81 was achieved through nucleophilic substitution, following two 

reported procedures (Scheme 5.4).410, 411 In the first case, 80 was obtained through the 

reaction of morpholine (1 eq) with 1-bromo-2-chloroethane (2 eq) in the presence of 
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K2CO3 in acetonitrile. The same reaction was applied to 1-methylpiperazine, but no 

product was observed. Thus, 81 was synthesized through a two-step reaction. First, the 

reaction of 1-methylpiperazine (1 eq) with 2-bromoethanol (2 eq) and K2CO3 in 

acetonitrile toluene at 75°C for 16 h give the intermediate 2-(4-methylpiperazin-1-

yl)ethan-1-ol. Then, the crude product was reacted with SOCl2 in DCM at 80°C for 16 h, 

giving compound 81 in good yield. 

 

 

Scheme 5.4. Synthetic procedure for the synthesis of 80 and 81. 

 

The final compounds 60-64 were characterized using analytical (HPLC) and 

spectroscopic data (1H- and 13C-NMR). 

 

 

  



128 
 

 

  



129 
 

 

Chapter VI 

 

 

 

 

 

Conclusions 
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Protein misfolding diseases are a very challenging area for medicinal chemists. Several 

efforts have been made during the years; however, an effective treatment for these 

devastating diseases does not exist yet. PMDs are complex diseases, we still lack a 

complete understanding of all the mechanisms underlying them and how they are 

interconnected one to each other. Moreover, the neurodegeneration is estimated to 

start several years before the first clinical symptoms appeared. Importantly, the lack of 

an early diagnosis negatively affects the development of effective drugs. 

Based on these considerations, this thesis was focused on the development of small 

molecule libraries for neurodegenerative PMDs, through different and innovative 

approaches. 

 

1. Based on our interest in developing MTDLs for the treatment of Alzheimer’s 

disease, and aiming to target the altered tau protein cascade, we have synthesized and 

tested a library of thirty-five TZD-derivatives. Among the developed compounds, two 

hit molecules (25 and 27) display features relevant in terms of MTDL drug discovery 

principles: (i) they are low molecular weight fragment hits; (ii) their activity towards 

the two selected targets is balanced; (iii) they show no significant toxicity, even 

towards mammalian primary neuronal cells.  

25 and 27 showed a low micromolar IC50 towards GSK-3β, together with the ability to 

inhibit AcPHF6 aggregation of 60% and 80%, respectively. Both compounds were 

predicted to cross the BBB through PAMPA-BBB assay, and showed a suitable cellular 

safety profile. Moreover, 27 displayed a good inhibition of the aggregation process of 

both K18 and full-length tau. Finally, both compounds were able to improve the cell 

viability in an okadaic acid-induced neurodegeneration cell model. Thus, 25 and 27 

represent the first balanced, non-toxic, dual-acting compounds hitting the tau cascade 

at two different hubs. 

Although preliminary and not yet confirmed by the in vivo proof of concept, our results 

showed that it is possible to design molecules that act specifically at two structurally 

different targets, like a kinase and a fibrillar protein. Importantly, these two hit 
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compounds could be promising tools to validate a completely new tau-centric 

approach as a potential disease-modifying strategy to treat Alzheimer’s disease. 

 

2. In the second project, we synthesized a library of 24 bivalent derivatives, with the 

aim to develop potential theranostic tools for Alzheimer’s disease. Particularly, our 

design strategy resulted successful as fifteen compounds out of twenty-four were able 

to emit fluorescence. Among them, compounds 40, 41, 47, 49, 51, 53, and 59 showed 

an emission wavelength higher than 500 nm. Moreover, the preliminary tested 

compounds were also effective in inhibiting Aβ and tau aggregation process in the E. 

coli model, showing IC50 values in the low micromolar range. Thus, if the theranostic 

profile of the synthesized compounds will be confirmed through the designed assay 

cascade, they could emerge as innovative tools to potentially diagnose, deliver 

therapy, and monitor response to therapy in PMDs.   

Although the clinical impact of theranostics is hard to predict, they currently represent 

a powerful emerging platform that could advance diagnostic and therapeutic 

treatment modalities, as well as streamline the entire drug development process. 

 

3. In the third project we focused our attention on prion diseases. Particularly, we 

successfully developed an efficient synthetic route for the synthesis of target 

Compound 1 discovered at SISSA, Trieste. We applied the same reaction for the 

synthesis of five derivatives (60-64), designed to overcome the low solubility liability of 

Compound 1. Thus, we slightly modified its structure and we develop a focused library 

of five derivatives. After the synthesis, we will perform a solubility assay confirming 

our design strategy. The next step in the project will be testing the five derivatives in 

scrapie-infected cells, to assess whether the small modification could affect the 

activity. Importantly, the optimization of the drug-likeness of Compound 1 will allow us 

to select the best performing compound among its derivatives, to be progressed for 

further in vivo studies. 
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Chapter VII 

 

 

 

 

 

Experimental section 
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7.1 Tau centric multi-target approach for Alzheimer’s disease: 

development of first-in-class dual GSK-3β and tau-aggregation inhibitors 

 

7.1.1 Chemistry 

All the commercial available reagents and solvents were purchased from Sigma-

Aldrich, Alpha Aesar, VWR, and TCI, and used without further purification. Reactions 

were followed by analytical thin layer chromatography (TLC), on pre-coated TLC plates 

(layer 0.20 mm silica gel60 with a fluorescent indicator UV254, from Sigma-Aldrich). 

Developed plates were air-dried and analyzed under a UV lamp (UV 254/365 nm). CEM 

Discover SP focused microwave reactor was used for microwave mediated reactions. 

Nuclear magnetic resonance (NMR) experiments were run on Varian VXR 400 (400 

MHz for 1H, 100 MHz for 13C). 1H and 13C NMR spectra were acquired at 300 K using 

deuterated dimethyl sulfoxide ((CD3)2SO) and chloroform (CDCl3) as solvents. Chemical 

shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane (TMS) as 

internal reference, and coupling constants (J) are reported in hertz (Hz). The spin 

multiplicities are reported as s (singlet), br s (broad singlet), d (doublet), t (triplet), q 

(quartet), and m (multiplet). Mass spectra were recorded on a VG707EH-F apparatus, 

and electrospray ionization (ESI) both in positive and negative mode was applied. 

Compounds were named following IUPAC rules as applied by ChemBioDraw Ultra 

(version 14.0). All of the final compounds showed ≥95% purity by analytical HPLC. The 

purity of compounds 1-35 was determined using a Kinetex® 5μm EVO C18 100 Å, LC 

column 150 x 4.6 mm and a HPLC Jasco Corporation (Tokyo, Japan) instrument (PU-

1585 UV equipped with a 20 μL loop valve). HPLC parameters were the following: 

water with 0.05% trifluoroacetic acid (eluent A), and acetonitrile with 0.05% 

trifluoroacetic acid (eluent B); flow rate 1.00 mL/min; elution type isocratic with 75% 

of eluent A and 25% of eluent B; detection UV-Vis Abs at 254 nm. The samples were 

dissolved in MeOH or DMF (10 μg/mL). 

As reported in literature,412 the TZD-derivatives 1-35 were obtained as single Z 

isomers. Indeed, their 1H-NMR spectra shows only one signal attributable to the 

resonance of the 5-methylidene proton in the range 7.50-8.70 ppm; while in their 13C-
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NMR spectra the 5-methylidene carbon and the C5 of the TZD ring resonated in the 

ranges 130.5-140.7 and 117.5-128.0 ppm, respectively. 

 

PAINS analysis 

Aware of the liabilities that might arise from the alkylidene-TZD scaffold, we have 

analyzed 1-35 for known classes of assay interference compounds.413 First, 1-35 were 

not recognized as PAINS according to the Free ADME-Tox Filtering Tool (FAF-Drugs4) 

program (http://fafdrugs4.mti.univ-paris-diderot.fr/), and to the “False Positive 

Remover” software (http://www.cbligand.org/PAINS/), neither as aggregators 

according to the software “Aggregator Advisor” (http://advisor.bkslab.org/). However, 

FAF-Drugs4 labeled them as covalent inhibitors due to their electrophilic nature. Thus, 

we provided evidence that the activities reported herein are highly likely not caused by 

pan assay interference.  

First, the genuine GSK-3β inhibitory activity of 25 and 27 has been confirmed in two 

assays (i.e. Kinase-Glo and TR-FRET). Possible promiscuous kinase inhibition was 

preliminary ruled out by the fact that 25 and 27 do not inhibit similar kinases (CK1δ, 

CK1ε) and Cdc7. 

As regards tau aggregation inhibition, activities of 25 and 27 has been evaluated in 

three different assays (i.e. ThT-based fluorometric assay, CD, and AFM), which show 

consistent results. 

Concerning the potential unspecific covalent reactions with proteins of alkylidene-TZD, 

we first investigated the thiol-trapping reactivity of 25 and 27 in a simple NMR-based 

assay.414 Reaction of Michael acceptor-bearing compounds with two equivalents of 2-

aminoethanethiol (cysteamine), a biologically relevant model thiol,415 in DMSO should 

lead to the instantaneous formation of the corresponding Michael adduct and the 

simultaneous disappearance of the olefin signals. In contrast to what is reported for 5-

benzylidene barbiturates,416 reaction of 25 and 27 (0.01 mmol) with cysteamine (0.02 

mmol), after 30 minutes, did not lead to the formation of the Michael adduct (Figure 

7.1). The same was observed after 24 h. Thus, we can expect that the double bond of 

25 and 27 did not react covalently with sulphur nucleophiles, with indiscriminate 

http://fafdrugs4.mti.univ-paris-diderot.fr/
http://www.cbligand.org/PAINS/
http://advisor.bkslab.org/
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reactivity. In addition, based on the results of the jump-dilution and the ATP-

competition assays, we are confident that they did not react covalently with GSK-3β 

kinase. 

 

 

Figure 7.1. Thiol trapping assay. 1H-NMR spectrum of 25 (A) and 27 (B) in DMSO-d6 and 

in DMSO-d6 with cysteamine (1:2). In the squares, the olefin signal is highlighted. No 

reaction occurs, even after 30 minutes. 

 

General procedure for the synthesis of compounds 1-35. 

The corresponding aldehydes (1 mmol) were reacted with 2,4-thiazolidinedione (1 

mmol), using EDDA (0.5 mmol) under microwave irradiation at 80°C for 30 minutes. 

The reaction mixture was diluted with water and the solid was collected by filtration. 
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After washing it with water all the final compounds were purified through 

crystallization from ethanol/water. 

(Z)-5-benzylidenethiazolidine-2,4-dione (1). The title compound 1 was obtained as a 

light yellow solid, according to general procedure using benzaldehyde (1a). Yield 87%. 

1H-NMR (401 MHz, DMSO-d6): δ 12.61 (br s, 1H); δ 7.79 (s, 1H); δ 7.61-7.46 (m, 5H). 

13C-NMR (101 MHz, DMSO-d6): δ 168.37; δ 167.89; δ 133.49; δ 132.10; δ 130.81; δ 

130.41; δ 129.74; δ 124.11. MS (ESI-) m/z: 204 [M-H]-. 

(Z)-5-(2-hydroxybenzylidene)thiazolidine-2,4-dione (2). The title compound 2 was 

obtained as a yellow solid, according to general procedure using 2-

hydroxybenzaldehyde (2a). Yield 56%. 1H-NMR (401 MHz, DMSO-d6): δ 12.48 (br s, 

exch, 1H); δ 10.48 (s, exch, 1H); δ 8.02 (s, 1H); δ 7.33-7.28 (m, 2H); δ 6.96-6.92 (m, 2H). 

13C-NMR (101 MHz, DMSO-d6): δ 168.60; δ 167.97; δ 157.69; δ 132.66; δ 128.73; δ 

127.41; δ 122.36; δ 120.37; δ 120.11; δ 116.55. MS (ESI-) m/z: 220 [M-H]-. 

(Z)-5-(3-hydroxybenzylidene)thiazolidine-2,4-dione (3). The title compound 3 was 

obtained as a white solid, according to general procedure using 3-

hydroxybenzaldehyde (3a). Yield 43%. 1H-NMR (401 MHz, DMSO-d6): δ 12.58 (br s, 

exch, 1H); δ 9.82 (s, exch, 1H); δ 7.68 (s, 1H); δ 7.32 (t, J = 7.9, 1H); δ 7.03 (d, J = 7.6, 

1H); δ 6.97(s, 1H); δ 6.87 (d, J = 8, 1H). 13C-NMR (101 MHz, DMSO-d6): δ 168.38; δ 

167.81; δ 158.29; δ 134.63; δ 132.37; δ 130.78; δ 123.78; δ 121.73; δ 118.14; δ 116.32. 

MS (ESI-) m/z: 220 [M-H]-. 

(Z)-5-(4-hydroxybenzylidene)thiazolidine-2,4-dione (4). The title compound 4 was 

obtained as a yellow solid, according to general procedure using 4-

hydroxybenzaldehyde (4a). Yield 69%. 1H-NMR (401 MHz, DMSO-d6): δ 12.42 (br s, 

exch, 1H); δ 10.28 (s, exch, 1H); δ 7.69 (s, 1H); δ 7.45 (s, 1H); δ 6.91 (s, 1H). 13C-NMR 

(101 MHz, DMSO-d6): δ 168.48; δ 167.94; δ 160.30; δ 132.79; δ 132.70; δ 124.36; δ 

119.43; δ 116.73. MS (ESI-) m/z: 220 [M-H]-. 

(Z)-5-(2-hydroxy-4-methoxybenzylidene)thiazolidine-2,4-dione (5). The title compound 

5 was obtained as a yellow solid, according to general procedure using 2-hydroxy-4-

methoxybenzaldehyde (5a). Yield 75%. 1H-NMR (401 MHz, DMSO-d6): δ 12.39 (br s, 

exch, 1H); δ 10.64 (s, exch, 1H); δ 7.98 (s, 1H); δ 7.27 (d, J = 8.8, 1H); δ 6.59 (dd, J = 8.8, 
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2.5, 1H); δ 6.51 (d, J = 2.5, 1H); δ 3.77 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): δ 168.24; 

δ 167.63; δ 162.66; δ 159.13; δ 129.72; δ 126.96; δ 118.38; δ 113.07; δ 106.56; δ 

101.13; δ 55.32. MS (ESI+) m/z: 274 [M+Na]+. 

(Z)-5-(4-hydroxy-3-methoxybenzylidene)thiazolidine-2,4-dione (6). The title compound 

6 was obtained as a light yellow solid, according to general procedure using 4-hydroxy-

3-methoxybenzaldehyde (6a). Yield 62%. 1H-NMR (401 MHz, DMSO-d6): δ 12.43 (br s, 

exch, 1H); δ 9.90 (s, exch, 1H); δ 7.71 (s, 1H); δ 7.17 (s, 1H); δ 7.08-7.05 (m, 1H); δ 6.94-

6.90 (m, 1H); δ 3.83 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): δ 168.51; δ 167.99; δ 

149.84; δ 148.40; δ 132.96; δ 124.83; δ 124.54; δ 119.73; δ 116.60; δ 114.58; δ 56.07. 

MS (ESI-) m/z: 250 [M-H]-. 

(Z)-5-(4-hydroxy-3-nitrobenzylidene)thiazolidine-2,4-dione (7). The title compound 7 

was obtained as a light yellow solid, according to general procedure using 4-hydroxy-3-

nitrobenzaldehyde (7a). Yield 79%. 1H-NMR (401 MHz, DMSO-d6): δ 8.14 (d, J = 2.3 Hz, 

1H); δ 7.76 (s, 1H); δ 7.72 (dd, J = 8.8, 2.3 Hz, 1H); δ 7.22 (d, J = 8.8 Hz, 1H). 13C-NMR 

(101 MHz, DMSO-d6): δ 168.88; δ 168.61; δ 155.86; δ 137.81; δ 135.78; δ 130.09; δ 

128.19; δ 123.16; δ 122.55; δ 121.57. MS (ESI-) m/z: 265 [M-H]- . 

(Z)-5-(2-fluorobenzylidene)thiazolidine-2,4-dione (8). The title compound 8 was 

obtained as a pale yellow solid, according to general procedure using 2-

fluorobenzaldehyde (8a). Yield 49%.  1H-NMR (401 MHz, DMSO-d6): δ 12.73 (br s, 1H); 

δ 7.79 (s, 1H); δ 7.56 (t, J = 6.9, 2H); δ 7.39 (t, J = 8.3, 2H). 13C-NMR (101 MHz, DMSO-

d6): δ 168.05; δ 167.51; δ 160.93; δ 129.24; δ 126.81; δ 125.85; δ 123.10; δ 121.36; δ 

116.66. MS (ESI+) m/z: 246 [M+Na]+. 

(Z)-5-(3-fluorobenzylidene)thiazolidine-2,4-dione (9). The title compound 9 was 

obtained as a yellow solid, according to general procedure using 3-fluorobenzaldehyde 

(9a). Yield 60%. 1H-NMR (401 MHz, DMSO-d6): δ 12.73 (br s, 1H); δ 7.83 (s, 1H); δ 7.62 

(dd, J = 14.5, 7.5, 1H); δ 7.48 (t, J = 9.9, 2H); δ 7.37 (t, J = 8.5, 1H). 13C-NMR (101 MHz, 

DMSO-d6): δ 167.67; δ 167.27; δ 162.28; δ 135.46; δ 131.41; δ 130.32; δ 125.56; δ 

125.37; δ 117.19; δ 116.74. MS (ESI-) m/z: 222 [M-H]-. 

(Z)-5-(4-fluorobenzylidene)thiazolidine-2,4-dione (10). The title compound 10 was 

obtained as a yellow solid, according to general procedure using 4-fluorobenzaldehyde 
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(10a). Yield 76%. 1H-NMR (401 MHz, DMSO-d6): δ 12.63 (br s, exch, 1H); δ 7.81 (s, 1H); 

δ 7.67 (m, 2H); δ 7.39 (t, J = 8.7, 2H). 13C-NMR (101 MHz, DMSO-d6): δ 167.79; δ 

167.32; δ 162.86; δ 132.48; δ 130.70; δ 129.74; δ 123.31; δ 116.51. MS (ESI-) m/z: 222 

[M-H]-. 

(Z)-5-(2-(dimethylamino)benzylidene)thiazolidine-2,4-dione (11). The title compound 

11 was obtained as a yellow solid, according to general procedure using 2-(N,N-

dimethylamino)benzaldehyde (11a). Yield 70%. 1H-NMR (401 MHz, DMSO-d6): δ 12.45 

(br s, exch, 1H); δ 7.86 (s, 1H); δ 7.43 (dd, J = 12.9, 7.3, 2H); δ 7.18 (d, J =8.1, 1H); δ 

7.10 (t, J = 7.5, 1H); δ 2.68 (s, 6H). 13C-NMR (101 MHz, DMSO-d6): δ 168.65; δ 167.88; δ 

153.28; δ 131.38; δ 130.53; δ 129.83; δ 125.65; δ 122.82; δ 122.08; δ 118.81; δ 44.15. 

MS (ESI-) m/z: 247 [M-H]-. 

(Z)-5-(3-(dimethylamino)benzylidene)thiazolidine-2,4-dione (12). The title compound 

12 was obtained as a yellow solid, according to general procedure using 3-(N,N-

dimethylamino)benzaldehyde (12a). Yield 78%. 1H-NMR (401 MHz, DMSO-d6): δ 12.55 

(br s, exch, 1H); δ 7.73 (s, 1H); δ 7.31 (t, J = 7.9, 1H); δ 6.87-6.81 (m, 3H); δ 2.93 (s, 6H). 

13C-NMR (101 MHz, DMSO-d6): δ 168.45; δ 167.74; δ 151.06; δ 134.00; δ 133.51; δ 

130.16; δ 123.16; δ 117.73; δ 114.79; δ 113.99; δ 40.33. MS (ESI-) m/z: 247 [M-H]-. 

(Z)-5-(4-(dimethylamino)benzylidene)thiazolidine-2,4-dione (13). The title compound 

13 was obtained as an orange solid, according to general procedure using 4-(N,N-

dimethylamino)benzaldehyde (13a). Yield 88%. 1H-NMR (401 MHz, DMSO-d6): δ 12.29 

(br s, exch, 1H); δ 7.66 (s, 1H); δ 7.42 (d, J = 8.9, 2H); δ 6.81 (d, J = 9, 2H); δ 3.01 (s, 6H). 

13C-NMR (101 MHz, DMSO-d6): δ 168.10; δ 167.52; δ 151.42; δ 132.83; δ 132.06; δ 

119.80; δ 115.71; δ 112.01; δ  30.63. MS (ESI-) m/z: 247 [M-H]-. 

(Z)-5-(pyridin-2-ylmethylene)thiazolidine-2,4-dione (14). The title compound 14 was 

obtained as a yellow solid, according to general procedure using 2-

pyridinecarbaldehyde (14a). Yield 55%. 1H-NMR (401 MHz, DMSO-d6): δ 12.43 (br s, 

1H); δ 8.75 (d, J = 4.7, 1H); δ 7.93 (t, J = 7.6, 1H); δ 7.86-7.82 (m, 2H); δ 7.42 (dd, J = 6.7, 

5.6, 1H). 13C-NMR (101 MHz, DMSO-d6): δ 172.13; δ 167.55; δ 151.33; δ 149.44; δ 

137.61; δ 128.12; δ 127.88; δ 127.83; δ 124.03. MS (ESI-) m/z: 205 [M-H]-. 
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(Z)-5-(pyridin-3-ylmethylene)thiazolidine-2,4-dione (15). The title compound 15 was 

obtained as a pale yellow solid, according to general procedure using 3-

pyridinecarbaldehyde (15a). Yield 34%. 1H-NMR (401 MHz, DMSO-d6): δ 12.68 (br s, 

1H); δ 8.80 (s, 1H); δ 8.59 (d, J = 4.7, 1H); δ 7.93 (d, J = 8.1, 1H); δ 7.80 (s, 1H); δ 7.52 (d, 

J = 5.6, 1H). 13C-NMR (101 MHz, DMSO-d6): δ 167.57; δ 167.20; δ 151.31; δ 150.53; δ 

135.98; δ 129.24; δ 128.38; δ 126.02; δ 124.23. MS (ESI-) m/z: 205 [M-H]-. 

(Z)-5-(pyridin-4-ylmethylene)thiazolidine-2,4-dione (16). The title compound 16 was 

obtained as a pale pink solid, according to general procedure using 4-

pyridinecarbaldehyde (16a). Yield 59%. 1H-NMR (401 MHz, DMSO-d6): δ 12.79 (br s, 

1H); δ 8.72 (d, J = 5.1, 2H); δ 7.75 (s, 1H); δ 7.54 (d, J = 5.2, 2H). 13C-NMR (101 MHz, 

DMSO-d6): δ 167.82; δ 167.71; δ 150.81; δ 149.72; δ 140.50; δ 128.65; δ 123.59. MS 

(ESI-) m/z: 205 [M-H]-. 

(Z)-5-(furan-2-ylmethylene)thiazolidine-2,4-dione (17). The title compound 17 was 

obtained as a brown solid, according to general procedure using 2-furaldehyde (17a). 

Yield 65%. 1H-NMR (401 MHz, DMSO-d6): δ 12.44 (br s, exch, 1H); δ 8.05 (s, 1H); δ 7.61 

(d, J = 5.3, 1H); δ 7.09 (d, J = 3.5 1H); δ 6.76-6.75 (m, not resolved, 1H). 13C-NMR (101 

MHz, DMSO-d6): δ 168.59; δ 167.05; δ 149.21; δ 147.46; δ 120.39; δ 118.55; δ 118.40; 

δ 113.48. MS (ESI-) m/z: 194 [M-H]-. 

(Z)-5-(benzofuran-2-ylmethylene)thiazolidine-2,4-dione (18). The title compound 18 

was obtained as a dark yellow solid, according to general procedure using 2-

benzofurancarboxaldehyde (18a). Yield 59%. 1H-NMR (401 MHz, DMSO-d6): δ 12.58 (br 

s, exch, 1H); δ 7.78-7.75 (m, not resolved, 2H); δ 7.70-7.67 (m, not resolved, 1H); δ 

7.51 (s, 1H); δ 7.45 (dd, J = 14.0, 7.3, 1H); δ 7.33 (dd, J = 13.7, 7.0, 1H). 13C-NMR (101 

MHz, DMSO-d6): δ 168.57; δ 166.97; δ 155.33; δ 150.89; δ 127.82; δ 127.11; δ 124.21; 

δ 123.98; δ 122.46; δ 118.54; δ 114.14; δ 111.50. MS (ESI-) m/z: 244 [M-H]-. 

(Z)-5-(thiophen-2-ylmethylene)thiazolidine-2,4-dione (19). The title compound 19 was 

obtained as a grey solid, according to general procedure using 2-

thiophenecarboxaldehyde (19a). Yield 92%. 1H-NMR (401 MHz, DMSO-d6): δ 12.56 (br 

s, exch, 1H); δ 8.06 (s, 1H); δ 8.02 (d, J = 5.0, 1H); δ 7.68 (d, J = 3.6, 1H); δ 7.30-7.28 (m, 

1H). 13C-NMR (101 MHz, DMSO-d6): δ 166.99; δ 166.94; δ 137.15; δ 134.31; δ 132.89; δ 

128.80; δ 125.00; δ 120.98. MS (ESI-) m/z: 210 [M-H]-. 
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(Z)-5-(benzothiophen-2-ylmethylene)thiazolidine-2,4-dione (20). The title compound 20 

was obtained as a dark yellow solid, according to general procedure using 

benzo[b]thiophene-2-carboxaldehyde (20a). Yield 54%. 1H-NMR (401 MHz, DMSO-d6): 

δ 12.61 (br s, exch, 1H); δ 8.14 (s, 1H); δ 8.12-8.08 (m, 1H); δ 8.00-7.96 (m, 2H); δ 7.50-

7.45 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): δ 167.37; δ 167.34; δ 141.28; δ 138.83; δ 

137.04; δ 131.29; δ 126.47; δ 125.46; δ 125.23; δ 125.02; δ 124.35; δ 122.90. MS (ESI-) 

m/z: 260 [M-H]-. 

(Z)-5-(naphthalen-2-ylmethylene)thiazolidine-2,4-dione (21). The title compound 21 

was obtained as a yellow solid, according to general procedure using 2-

naphthaldehyde (21a). Yield 37%. 1H-NMR (401 MHz, DMSO-d6): δ 12.65 (br s, exch, 

1H); δ 8.18 (s, 1H); δ 8.06-8.04 (m, 2H); δ 7.98-7.94 (m, 2H); δ 7.69 (d, J = 8.6, 1H); δ 

7.64-7.58 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): δ 168.38; δ 167.81; δ 133.68; δ 

133.16; δ 132.18; δ 131.26; δ 131.06; δ 129.37; δ 129.13; δ 128.41; δ 128.13; δ 127.57; 

δ 126.42; δ 124.30. MS (ESI+) m/z: 254 [M+Na]+. 

(Z)-5-(anthracen-9-ylmethylene)thiazolidine-2,4-dione (22). The title compound 22 was 

obtained as an orange solid, according to general procedure using anthracene-9-

carbaldehyde (22a). Yield 18%. 1H-NMR (401 MHz, CDCl3): δ 8.79 (s, 1H); δ 8.55 (s, 1H); 

δ 8.07 (d, J = 8.2, 2H); δ 7.98 (d, J = 8.8, 2H); 7.60-7.52 (m, 4H). 13C-NMR (101 MHz, 

CDCl3): δ 166.87; δ 165.04; δ 133.38; δ 131.32; δ 131.11; δ 129.82; δ 129.41; δ 128.70; 

δ 127.23; δ 126.81; δ 125.89; δ 125.04. MS (ESI-) m/z: 304 [M-H]-. 

(Z)-5-((E)-3-phenylallylidene)thiazolidine-2,4-dione (23). The title compound 23 was 

obtained as a pale yellow solid, according to general procedure using cinnamaldehyde 

(23a). Yield 36%. 1H-NMR (401 MHz, DMSO-d6): δ 12.31 (br s, 1H); δ 7.67-7.65 (m, 2H); 

δ 7.47-7.35 (m, 4H); δ 7.27 (d, J = 15.3, 1H); δ 6.91 (dd, J = 15.3, 11.4, 1H). 13C-NMR 

(101 MHz, DMSO-d6): δ 168.61; δ 143.33; δ 136.07; δ 131.94; δ 130.03; δ 129.34; δ 

128.13; δ 124.09; δ 109.95. MS (ESI-) m/z: 230 [M-H]-. 

(Z)-5-((E)-3-(4-(dimethylamino)phenyl)allylidene)thiazolidine-2,4-dione (24). The title 

compound 24 was obtained as a dark red solid, according to general procedure using 

(E)-3-(4-(dimethylamino)phenyl)acrylaldehyde (24a). Yield 58%. 1H-NMR (401 MHz, 

DMSO-d6): δ 12.23 (br s, 1H); δ 7.47 (dd, J = 19.7, 10.2, 3H); δ 7.16 (d, J = 15.0, 1H); δ 

6.72 (d, J = 8.9, 2H); δ 6.61 (dd, J = 15.0, 11.6, 1H); δ 2.99 (s, 6H). 13C-NMR (101 MHz, 
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DMSO-d6): δ 168.23; δ 167.32; δ 151.79; δ 145.30; δ 133.96; δ 129.97; δ 123.61; δ 

120.93; δ 118.50; δ 112.31; δ 40.13. MS (ESI-) m/z: 273 [M-H]-. 

(Z)-5-((1H-indol-3-yl)methylene)thiazolidine-2,4-dione (25). The title compound 25 was 

obtained as a yellow solid, according to general procedure using 1H-indole-3-

carbaldehyde (25a). Yield 45%. 1H-NMR (401 MHz, DMSO-d6): δ 12.29 (br s, 1H); δ 

12.12 (s, exch, 1H); δ 8.06 (s, 1H); δ 7.89 (d, J = 7.8, 1H); δ 7.74 (s, 1H); δ 7.50 (d, J = 

7.9, 1H); δ 7.27-7.18 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): δ 168.09; δ 167.69; δ 

136.62; δ 129.06; δ 127.19; δ 124.93; δ 123.49; δ 121.47; δ 118.75; δ 116.59; δ 112.82; 

δ 110.83. MS (ESI-) m/z: 243 [M-H]-. 

(Z)-5-((5-methoxy-1H-indol-3-yl)methylene)thiazolidine-2,4-dione (26). The title 

compound 26 was obtained as a dark yellow solid, according to general procedure 

using 5-methoxy-1H-indole-3-carbaldehyde (26a). Yield 47%. 1H-NMR (401 MHz, 

DMSO-d6): δ 12.25 (br s, 1H); δ 12.00 (s, 1H); δ 8.09 (s, 1H); δ 7.66 (d, J = 3.0, 1H), δ 

7.40 (dd, J = 18.0, 5.5, 2H); δ 6.86 (dd, J = 8.8, 2.3, 1H); δ 3.82 (s, 3H). 13C-NMR (101 

MHz, DMSO-d6): δ 168.19; δ 167.77; δ 155.36; δ 131.43; δ 129.19; δ 128.05; δ 125.43; 

δ 115.76; δ 113.80; δ 113.59; δ 110.86; δ 100.47; δ 55.88. MS (ESI-) m/z: 273 [M-H]-. 

(Z)-5-((5-methoxy-1-methyl-1H-indol-3-yl)methylene)thiazolidine-2,4-dione (27). The 

title compound 27 was obtained as an orange solid, according to general procedure 

using 5-methoxy-1-methyl-1H-indole-3-carbaldehyde (27a). Yield 44%. 1H-NMR (401 

MHz, DMSO-d6): δ 12.25 (br s, 1H); δ 8.07 (s, 1H); δ 7.73 (s, 1H); δ 7.52–7.44 (m, 2H); δ 

6.92 (dd, J = 8.9, 2.3 Hz, 1H); δ 3.89 (s, 3H); δ 3.84 (s, 3H). 13C-NMR (101 MHz, DMSO-

d6): δ 168.20; δ 167.73; δ 155.68; δ 132.72; δ 132.20; δ 128.56; δ 124.96; δ 115.48; δ 

113.73; δ 112.10; δ 109.72; δ 100.71; δ 55.95; δ 33.85. MS (ESI-) m/z: 287 [M-H]-. 

(Z)-5-((1-methyl-1H-benzo[d]imidazol-2-yl)methylene)thiazolidine-2,4-dione (28). The 

title compound 28 was obtained as an orange solid, according to general procedure 

using 1-methyl-1H-benzo[d]imidazole-2-carbaldehyde (28a). Yield 48%. 1H-NMR (401 

MHz, DMSO-d6): δ 12.57 (br s, 1H); δ 7.84 (s, 1H); δ 7.75 (d, J = 8.0, 1H); δ 7.67 (d, J = 

8.0, 1H); δ 7.34 (dt, J = 26.1, 7.1, 2H); δ 3.99 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): δ 

171.21; δ 167.41; δ 147.97; δ 143.15; δ 136.28; δ 131.34; δ 124.48; δ 123.49; δ 120.04; 

δ 115.69; δ 111.43; δ 30.25. MS (ESI+) m/z: 260 [M+Na]+. 
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(Z)-5-((2-phenyl-1H-indol-3-yl)methylene)thiazolidine-2,4-dione (29). The title 

compound 29 was obtained as an orange solid, according to general procedure using 

2-phenyl-1H-indole-3-carbaldehyde (29a). Yield 22%. 1H-NMR (401 MHz, DMSO-d6): δ 

12.31 (br s, 1H); δ 12.27 (s, exch 1H); δ 7.96 (s, 1H); δ 7.78 (d, J = 7.9, 1H); 7.63-7.49 (m, 

6H); δ 7.29-7.19 (m, 2H). 13C-NMR (101 MHz, DMSO-d6): δ 168.44; δ 142.21; δ 136.91; 

δ 131.44; δ 129.56; δ 129.44; δ 128.09; δ 126.01; δ 123.47; δ 121.18; δ 120.40; δ 

120.28; δ 112.68; δ 107.31. MS (ESI-) m/z: 319 [M-H]-. 

(Z)-5-([1,1'-biphenyl]-4-ylmethylene)thiazolidine-2,4-dione (30). The title compound 30 

was obtained as a white solid, according to general procedure using [1,1'-biphenyl]-4-

carbaldehyde (30a). Yield 55%. 1H-NMR (401 MHz, DMSO-d6): δ 12.64 (br s, 1H); δ 

7.86-7.83 (m, 3H); δ 7.72 (dd, J = 21.4, 8.0, 4H); δ 7.50 (t, J = 7.6, 2H); δ 7.41 (t, J = 7.3, 

1H). 13C-NMR (101 MHz, DMSO-d6): δ 168.28; δ 167.88; δ 142.15; δ 139.25; δ 132.52; δ 

131.66; δ 131.10; δ 129.50; δ 128.63; δ 127.81; δ 127.21; δ 123.94. MS (ESI-) m/z: 280 

[M-H]-. 

(Z)-5-(2-(benzyloxy)benzylidene)thiazolidine-2,4-dione (31). The title compound 31 was 

obtained as a pale yellow solid, according to general procedure using 2-

(benzyloxy)benzaldehyde (31a). Yield 61%. 1H-NMR (401 MHz, DMSO-d6): δ 12.58 (br s, 

1H); δ 8.03 (s, 1H); δ 7.48-7.42 (m, 6H); δ 7.36 (t, J = 6.5, 1H); δ 7.24 (d, J = 8.4, 1H); δ 

7.11 (t, J = 7.5, 1H); δ 5.25 (s, 2H). 13C-NMR (101 MHz, DMSO-d6): δ 168.43; δ 167.77; δ 

157.61; δ 136.94; δ 132.66; δ 128.98; δ 128.81; δ 128.47; δ 128.10; δ 126.64; δ 124.02; 

δ 122.35; δ 121.63; δ 113.73; δ 70.35. MS (ESI+) m/z: 334 [M+Na]+. 

(Z)-5-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methylene)thiazolidine-2,4-dione (32). The 

title compound 32 was obtained as a pale yellow solid, according to general procedure 

using 2,3-dihydrobenzo[b][1,4]dioxine-6-carbaldehyde (32a). Yield 75%. 1H-NMR (401 

MHz, DMSO-d6): δ 12.52 (br s, 1H); δ 7.69 (s, 1H); δ 7.12–7.10 (m, 2H); δ 7.02 (dd, J = 

7.6, 1.2, 1H); δ 4.30-4.25 (m, 4H). 13C-NMR (101 MHz, DMSO-d6): δ 168.40; δ 168.01; δ 

146.04; δ 144.13; δ 131.99; δ 126.78; δ 124.21; δ 121.60; δ 119.16; δ 118.42; δ 64.89; 

δ 64.41. MS (ESI-) m/z: 262 [M-H]-. 

(Z)-5-((7-methoxybenzo[d][1,3]dioxol-5-yl)methylene)thiazolidine-2,4-dione (33). The 

title compound 33 was obtained as a yellow solid, according to general procedure 

using 7-methoxybenzo[d][1,3]dioxole-5-carbaldehyde (33a). Yield 58%. 1H-NMR (401 
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MHz, DMSO-d6): δ 12.55 (br s, 1H); δ 7.72 (s, 1H); δ 6.97 (s, 1H); δ 6.82 (s, 1H); δ 6.11 

(s, 2H); δ 3.87 (s, 3H). 13C-NMR (101 MHz, DMSO-d6): δ 168.33; δ 167.98; δ 149.56; δ 

143.91; δ 137.43; δ 132.28; δ 128.02; δ 122.08; δ 111.80; δ 103.44; δ 102.68; δ 56.82. 

MS (ESI-) m/z: 278 [M-H]-. 

(Z)-5-((2-chloroquinolin-3-yl)methylene)thiazolidine-2,4-dione (34). The title compound 

34 was obtained as a pale yellow solid, according to general procedure using 2-

chloroquinoline-3-carbaldehyde (34a). Yield 45%. 1H-NMR (401 MHz, DMSO-d6): δ 

12.87 (br s, 1H); δ 8.55 (s, 1H); δ 8.24 (d, J = 8.1, 1H); δ 8.00-7.88 (m, 3H); δ 7.73 (t, J = 

7.2, 1H). 13C-NMR (101 MHz, DMSO-d6): δ 167.91; δ 167.26; δ 149.81; δ 146.90; δ 

138.45; δ 132.88; δ 129.42; δ 128.63; δ 128.11; δ 126.92; δ 126.29; δ 125.85. MS (ESI-) 

m/z: 290 [M-H]-.  

(Z)-5-((2-chloro-6-methoxyquinolin-3-yl)methylene)thiazolidine-2,4-dione (35). The title 

compound 35 was obtained as a yellow solid, according to general procedure using 2-

chloro-6-methoxyquinoline-3-carbaldehyde (35a). Yield 32%. 1H-NMR (401 MHz, 

DMSO-d6): δ 12.85 (br s, 1H); δ 8.44 (s, 1H); δ 7.94 (s, 1H); δ 7.89 (d, J = 9.2, 1H); δ 7.69 

(d, J = 2.5, 1H); δ 7.52 (dd, J = 9.1, 2.7, 1H); δ 3.92 (s, 3H). 13C-NMR (101 MHz, DMSO-

d6): δ 167.96; δ 167.33; δ 158.75; δ 147.17; δ 142.93; δ 137.08; δ 129.52; δ 129.19; δ 

128.33; δ 126.21; δ 125.88; δ 125.19; δ 107.20; δ 56.26. MS (ESI-) m/z: 320 [M-H]-. 

 

Synthesis of 2-(N,N-Dimethylamino)benzaldehyde (11a). To a solution of 2-

fluorobenzaldehyde (0.800 g, 6.44 mmol) in dry DMF (14 mL), was added a solution of 

dimethylamine (5.6M) in EtOH (1.73 mL) and K2CO3 (0.896 g). The mixture was warmed 

at reflux temperature for 14 h. The mixture was poured on to ice to give a yellow oil 

and then diluted with water and extracted with ethyl acetate. The organic solvent was 

removed and the residual oil purified through column chromathography using CH2Cl2 

(10) to obtain 11a, 0.548 g (57%), as a yellow oil. 1H-NMR (401 MHz, CDCl3): δ 10.25 (br 

s, 1H); δ 7.80-7.76 (m, 1H); δ 7.49 (t, J = 8.8, 1H); δ7.09-7.02 (m, 2H); δ 2.95 (s, 6H). 

Synthesis of 3-(N,N-Dimethylamino)benzaldehyde (12a). Dry DMSO (0.94 mL, 13.24 

mmol) was added to oxalyl chloride (0.336 mL, 3.97 mmol) in CH2Cl2 (15 mL) at -78 °C. 

After 15 min a solution of the alcohol (0.500 g, 3.31 mmol) in CH2Cl2 (10 mL) was 
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added dropwise. After 25 min triethylamine (2.31 mL, 16.55 mmol) was added 

dropwise, and the mix was allowed to warm to RT for 30 min. Then the reaction was 

diluted with CH2Cl2 and washed with water. The organic extracts were concentrated in 

vacuo and purified through column chromatography with CH2Cl2/MeOH/toluene 

(8.5:0.5:1) to give 12a (0.483 g, 98%) as a yellow solid. 1H-NMR (401 MHz, CDCl3): δ 

9.94 (br s, 1H); δ 7.37 (t, J = 7.6, 1H); δ 7.19-7.17 (m, 2H); δ 6.96 (dd, J = 9.62, 5.21, 1H); 

δ 2.99 (s, 6H). 

 

 

7.1.2 K18 aggregation and inhibition studies 

K18 (kindly provided by E. De Cecco, SISSA) aggregations were performed in a black 96-

well optical flat bottom plate (Thermoscientific) with a basic reaction mix (BRM) 

prepared as follow: 21 μM K18,  heparin 0.015 mg/mL, 0.1 mM DTT, 10 µM ThT in PBS 

1X. Five different experimental conditions were assessed: (1) BRM alone to assess the 

kinetic of tauK18 self-assembly; BRM supplemented with 27 at the final concentration 

of (2) 1 μM; (3) 5 μM; and (4) 10 μM; (5) BRM supplemented with 1% DMSO. Each 

experimental condition was prepared and analyzed in triplicate. The plate was sealed 

with a sealing film, inserted into a FLUOstar OPTIMA microplate reader (BMG Labtech) 

and subjected to cycles of shaking (1 minute at 300 rpm - double orbital) and 

incubation (14 minutes) at 37°C. Fluorescence readings (480 nm) were taken every 15 

minutes (30 flashes per well at 450 nm).  

 

 

7.1.3 Full-length 2N4R tau aggregation and inhibition studies 

TauFL 2N4R (kindly provided by E. De Cecco, SISSA) aggregation was performed in a 

black 96-well optical flat bottom plate (Thermoscientific) with a basic reaction mix 

(BRM) prepared as follow: 20 µM tauFL (2N4R), heparin 0.02 mg/mL, 0.5 mM DTT, 10 

µM ThT in PBS 1X. Three different experimental conditions were assessed: (1) BRM 

alone to assess the kinetic of TauFL 2N4R self-assembly; (2) BRM supplemented with 
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27 at the final concentration of 10 µM; (3) BRM supplemented with 1% DMSO as 

control for the reaction. The plate was then inserted into a FLUOstar OPTIMA 

microplate reader (BMG Labtech) and subjected to cycles of shaking (1 minute at 600 

rpm - single orbital) and incubation (1 minute) at 42°C. Fluorescence readings (480 nm) 

were taken every two minutes (100 flashes per well at 450 nm). 
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7.2 Fluorescent bivalent ligands with combined therapeutic and 

diagnostic activities against Alzheimer’s disease 

 

7.2.1 Chemistry 

All the commercial available reagents and solvents were purchased from Sigma-

Aldrich, Alpha Aesar, and VWR, and used without further purification. Reactions were 

followed by analytical thin layer chromatography (TLC), on pre-coated TLC plates (layer 

0.20 mm silica gel60 with a fluorescent indicator UV254, from Sigma-Aldrich). 

Developed plates were air-dried and analyzed under a UV lamp (UV 254/365 nm). CEM 

Discover SP focused microwave reactor was used for microwave mediated reactions. 

Nuclear magnetic resonance (NMR) experiments were run on Varian VXR 400 (400 

MHz for 1H, 100 MHz for 13C). 1H and 13C NMR spectra were acquired at 300 K using 

deuterated dimethyl sulfoxide ((CD3)2SO) and chloroform (CDCl3) as solvents. Chemical 

shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane (TMS) as 

internal reference, and coupling constants (J) are reported in hertz (Hz). The spin 

multiplicities are reported as s (singlet), br s (broad singlet), d (doublet), t (triplet), q 

(quartet), and m (multiplet). Mass spectra were recorded on a VG707EH-F apparatus, 

and electrospray ionization (ESI) both in positive and negative mode was applied. 

Compounds were named following IUPAC rules as applied by ChemBioDraw Ultra 

(version 14.0). All of the final compounds showed ≥95% purity by analytical HPLC. 

  

General procedure for the synthesis of compounds 36-47 and 54-59. 

The corresponding dialdehydes (1 mmol) were reacted with the corresponding TZD 

derivative (3 mmol), using EDDA (0.5 mmol) under microwave irradiation at 100°C for 

45 minutes. The reaction mixture was diluted with water and the solid was collected 

by filtration. After washing it with water all the final compounds were purified through 

crystallization or column chromatography. 
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(5Z,5'Z)-5,5'-(1,4-phenylenebis(methanylylidene))bis(thiazolidine-2,4-dione) (36). The 

title compound 36 was obtained as a yellow solid, according to general procedure 

using dialdehyde 65 and TZD. Yield 75%. 1H-NMR (401 MHz, d6 -DMSO): δ 7.79 (s, 2H); 

δ 7.72 (s, 4H). 13C-NMR (101 MHz, DMSO-d6): δ 168.53; δ 168.21; δ 134.41; δ 131.07; δ 

130.85; δ 130.51. MS (ESI-) m/z: 331 [M-H]-. 

(5Z,5'Z)-5,5'-([1,1'-biphenyl]-4,4'-diylbis(methanylylidene))bis(thiazolidine-2,4-dione) 

(37). The title compound 37 was obtained as a yellow solid, according to general 

procedure using dialdehyde 66 and TZD. Yield 57%. 1H-NMR (401 MHz, DMSO-d6): δ 

12.63 (br s, 2H); δ 7.93 (d, J = 8.1, 4H); δ 7.84 (s, 2H); δ 7.71 (d, J = 8.1, 4H). 13C-NMR 

(101 MHz, DMSO-d6): δ 168.32; δ 168.02; δ 140.70; δ 133.29; δ 131.38; δ 131.19; δ 

127.96; δ 124.46. MS (ESI-) m/z: 407 [M-H]-. 

(5Z,5'Z)-5,5'-((methylenebis(4,1-phenylene))bis(methanylylidene))bis(thiazolidine-2,4-

dione) (38). The title compound 38 was obtained as a white solid, according to general 

procedure using dialdehyde 67 and TZD. Yield 59%. 1H-NMR (401 MHz, DMSO-d6): δ 

7.71 (s, 2H); δ 7.53 (d, J = 8.1, 4H); δ 7.40 (d, J = 8.1, 4H); δ 4.06 (s, 2H). 13C-NMR (101 

MHz, DMSO-d6): δ 168.86; δ 168.82; δ 143.60; δ 131.69; δ 131.30; δ 130.69; δ 130.10; 

δ 41.05. MS (ESI-) m/z: 421 [M-H]-. 

(5Z,5'Z)-5,5'-((9H-carbazole-3,6-diyl)bis(methanylylidene))bis(thiazolidine-2,4-dione) 

(39). The title compound 39 was obtained as a dark yellow solid, according to general 

procedure using dialdehyde 68 and TZD. Yield 57%. 1H-NMR (401 MHz, DMSO-d6): δ 

12.43 (br s, 2H); δ 12.07 (s, 1H); δ 8.48 (s, 2H); δ 7.97 (s, 2H); δ 7.68 (s, 4H). 13C-NMR 

(101 MHz, DMSO-d6): δ 168.75; δ 168.24; δ 141.75; δ 133.47; δ 128.75; δ 125.09; δ 

124.16; δ 123.31; δ 120.46; δ 112.90. MS (ESI-) m/z: 420 [M-H]-. 

(5Z,5'Z)-5,5'-((9,9-dimethyl-9H-fluorene-2,7-diyl)bis(methanylylidene))bis(thiazolidine-

2,4-dione) (40). The title compound 40 was obtained as a dark yellow solid, according 

to general procedure using dialdehyde 69 and TZD. Yield 40%. 1H-NMR (401 MHz, 

DMSO-d6): δ 12.57 (br s, 2H); δ 8.06 (d, J = 8.0, 2H); δ 7.86 (s, 2H); δ 7.80 (s, 2H); δ 7.63 

(dd, J = 8.0, 1.2, 2H); δ 1.51 (s, 6H). 13C-NMR (101 MHz, DMSO-d6): δ 168.51; δ 168.20; 

δ 155.28; δ 140.00; δ 133.60; δ 132.05; δ 129.92; δ 125.03; δ 124.10; δ 122.21; δ 

55.33; δ 47.16; δ 26.91. MS (ESI-) m/z: 447 [M-H]-. 
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(5Z,5'Z)-5,5'-([2,2'-bithiophene]-5,5'-diylbis(methanylylidene))bis(thiazolidine-2,4-

dione) (41). The title compound 41 was obtained as a red solid, according to general 

procedure using dialdehyde 70 and TZD. Yield 25%. 1H-NMR (401 MHz, DMSO-d6): δ 

12.61 (br s, 2H); δ 8.03 (s, 2H); δ 7.67 (s, 4H). MS (ESI-) m/z: 419 [M-H]-. 

diethyl 2,2'-((5Z,5'Z)-(1,4-phenylenebis(methanylylidene))bis(2,4-dioxothiazolidin-3-yl-

5-ylidene))diacetate (42). The title compound 42 was obtained as a yellow solid, 

according to general procedure using dialdehyde 65 and TZD-1. Yield 69%. 1H-NMR 

(401 MHz, DMSO-d6): δ 8.05 (s, 2H); δ 7.83 (s, 4H); δ 4.52 (s, 4H); δ 4.19 (q, J = 7.1, 4H); 

δ 1.22 (t, J = 7.1, 6H). 13C-NMR (101 MHz, DMSO-d6): δ 166.75; δ 166.03; δ 165.28; δ 

134.88; δ 132.73; δ 130.80; δ 123.15; δ 62.21; δ 42.22; δ 14.05. MS (ESI+) m/z: 527 

[M+Na]+. 

diethyl 2,2'-((5Z,5'Z)-([1,1'-biphenyl]-4,4'-diylbis(methanylylidene))bis(2,4-

dioxothiazolidin-3-yl-5-ylidene))diacetate (43). The title compound 43 was obtained as 

a yellow solid, according to general procedure using dialdehyde 66 and TZD-1. Yield 

30%. 1H-NMR (401 MHz, CDCl3): δ 7.97 (s, 2H); δ 7.76 (d, J = 8.3, 4H); δ 7.63 (d, J = 8.3, 

4H); δ 4.50 (s, 4H); δ 4.26 (q, J = 7.1, 4H); δ 1.31 (t, J = 7.1, 6H). 13C-NMR (101 MHz, 

CDCl3): δ 167.17; δ 166.15; δ 165.48; δ 141.64; δ 133.72; δ 132.83; δ 130.93; δ 127.78; 

δ 121.43; δ 62.16; δ 42.16; δ 14.06. MS (ESI+) m/z: 603 [M+Na]+. 

diethyl 2,2'-((5Z,5'Z)-((methylenebis(4,1-phenylene))bis(methanylylidene))bis(2,4-

dioxothiazolidin-3-yl-5-ylidene))diacetate (44). The title compound 44 was obtained as 

a white solid, according to general procedure using dialdehyde 67 and TZD-1. Yield 

60%. 1H-NMR (401 MHz, CDCl3): δ 7.91 (s, 2H); δ 7.47 (d, J = 8.1, 4H); δ 7.31 (d, J = 8.1, 

4H); δ 4.47 (s, 4H); δ 4.24 (q, J = 7.1, 4H); δ 4.08 (s, 2H); δ 1.30 (t, J = 7.1, 6H). 13C-NMR 

(101 MHz, CDCl3): δ 167.34; δ 166.17; δ 165.55; δ 143.15; δ 134.21; δ 131.37; δ 130.65; 

δ 129.82; δ 120.59; δ 62.12; δ 42.10; δ 41.69; δ 14.04. MS (ESI+) m/z: 617 [M+Na]+. 

diethyl 2,2'-((5Z,5'Z)-((9H-carbazole-3,6-diyl)bis(methanylylidene))bis(2,4-

dioxothiazolidin-3-yl-5-ylidene))diacetate (45). The title compound 45 was obtained as 

a yellow solid, according to general procedure using dialdehyde 68 and TZD-1. Yield 

37%. 1H-NMR (401 MHz, CDCl3): δ 9.08 (br s, 1H); δ 7.98 (s, 2H); δ 7.94 (s, 2H); δ 7.62-

7.43 (m, 4H); δ 4.52 (s, 4H); δ 4.31 (q, J = 7.1, 4H); δ 1.35 (t, J = 7.1, 6H). 13C-NMR (101 

MHz, CDCl3): δ 167.52; δ 166.78; δ 165.62; δ 141.18; δ 135.37; δ 129.31; δ 125.46; δ 
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123.54; δ 123.16; δ 117.73; δ 112.00; δ 62.26; δ 42.11; δ 14.09. MS (ESI+) m/z: 616 

[M+Na]+. 

diethyl 2,2'-((5Z,5'Z)-((9,9-dimethyl-9H-fluorene-2,7-diyl)bis(methanylylidene))bis(2,4-

dioxothiazolidin-3-yl-5-ylidene))diacetate (46). The title compound 46 was obtained as 

a yellow solid, according to general procedure using dialdehyde 69 and TZD-1. Yield 

55%. 1H-NMR (401 MHz, CDCl3): δ 8.03 (s, 2H); δ 7.86 (d, J = 8.0, 2H); δ 7.60 (s, 2H); δ 

7.55 (d, J = 8.0, 2H); δ 4.50 (s, 4H); δ 4.26 (q, J = 7.1, 4H); δ 1.56 (s, 6H); δ 1.31 (t, J = 

7.1, 6H). 13C-NMR (101 MHz, CDCl3): δ 167.27; δ 166.16; δ 165.52; δ 155.21; δ 140.50; 

δ 134.64; δ 133.18; δ 129.99; δ 124.57; δ 121.46; δ 120.72; δ 62.13; δ 47.12; δ 42.15; δ 

26.89; δ 14.06. MS (ESI+) m/z: 643 [M+Na]+. 

diethyl 2,2'-((5Z,5'Z)-([2,2'-bithiophene]-5,5'-diylbis(methanylylidene))bis(2,4-

dioxothiazolidin-3-yl-5-ylidene))diacetate (47). The title compound 47 was obtained as 

a red solid, according to general procedure using dialdehyde 70 and TZD-1. Yield 24%. 

1H-NMR (401 MHz, DMSO-d6): δ 8.28 (s, 2H); δ 7.78 (dd, J = 13.8, 3.7, 4H); δ 4.50 (s, 

4H); δ 4.18 (q, J = 6.9, 4H); δ 1.23 (t, J = 7.0, 6H). MS (ESI+) m/z: 615 [M+Na]+. 

(5Z,5'Z)-5,5'-(1,4-phenylenebis(methanylylidene))bis(3-(2-(dimethylamino)ethyl) 

thiazolidine-2,4-dione) (54). The title compound 54 was obtained as a pale yellow solid, 

according to general procedure using dialdehyde 65 and TZD-3. Yield 27%. 1H-NMR 

(401 MHz, CDCl3): δ 7.87 (s, 2H); δ 7.59 (s, 4H); δ 3.88 (t, J = 6.5, 4H); δ 2.58 (t, J = 6.5, 

4H); δ 2.28 (s, 12H). 13C-NMR (101 MHz, CDCl3): δ 167.25; δ 166.10; δ 134.90; δ 131.86; 

δ 130.68; δ 123.57; δ 56.24; δ 45.47; δ 39.92. MS (ESI+) m/z: 497 [M+Na]+. 

(5Z,5'Z)-5,5'-([1,1'-biphenyl]-4,4'-diylbis(methanylylidene))bis(3-(2-(dimethylamino) 

ethyl)thiazolidine-2,4-dione) (55). The title compound 55 was obtained as a yellow 

solid, according to general procedure using dialdehyde 66 and TZD-3. Yield 21%. 1H-

NMR (401 MHz, CDCl3): δ 7.92 (s, 2H); δ 7.73 (d, J = 8.3, 4H); δ 7.60 (d, J = 8.4, 4H); δ 

3.88 (t, J = 6.5, 4H); δ 2.59 (t, J = 6.5, 4H); δ 2.29 (s, 12H). 13C-NMR (101 MHz, CDCl3): δ 

167.65; δ 166.29; δ 141.41; δ 133.02; δ 132.76; δ 130.83; δ 127.68; δ 121.98; δ 56.29; 

δ 45.51; δ 39.85. MS (ESI+) m/z: 573 [M+Na]+.  

(5Z,5'Z)-5,5'-((methylenebis(4,1-phenylene))bis(methanylylidene))bis(3-(2-

(dimethylamino)ethyl)thiazolidine-2,4-dione) (56). The title compound 56 was obtained 
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as a pale yellow solid, according to general procedure using dialdehyde 67 and TZD-3. 

Yield 20%. 1H-NMR (401 MHz, CDCl3): δ 7.86 (s, 2H); δ 7.45 (d, J = 8.0, 4H); δ 7.28 (d, J = 

8.0, 4H); δ 4.06 (s, 2H); δ 3.87 (t, J = 6.5, 4H); δ 2.59 (t, J = 6.4, 4H); δ 2.29 (s, 12H). 13C-

NMR (101 MHz, CDCl3): δ 167.82; δ 166.35; δ 142.89; δ 133.27; δ 131.58; δ 130.55; δ 

129.75; δ 121.15; δ 56.24; δ 45.43; δ 41.67; δ 39.68. MS (ESI+) m/z: 587 [M+Na]+. 

(5Z,5'Z)-5,5'-((9H-carbazole-3,6-diyl)bis(methanylylidene))bis(3-(2-(dimethylamino) 

ethyl)thiazolidine-2,4-dione) (57). The title compound 57 was obtained as a yellow 

solid, according to general procedure using dialdehyde 68 and TZD-3. Yield 18%. 1H-

NMR (401 MHz, CDCl3): δ 10.80 (s, 1H); δ 7.77 (s, 2H); δ 7.68 (s, 2H); δ 7.41 (dd, J = 

25.1, 8.0, 4H); δ 3.94 (s, 4H); δ 2.78 (s, 4H); δ 2.45 (s, 12H). 13C-NMR (101 MHz, CDCl3): 

δ 168.03; δ 166.28; δ 141.79; δ 134.43; δ 129.70; δ 124.74; δ 123.41; δ 122.12; δ 

116.93; δ 111.83; δ 56.38; δ 45.28; δ 39.23. MS (ESI+) m/z: 586 [M+Na]+. 

(5Z,5'Z)-5,5'-((9,9-dimethyl-9H-fluorene-2,7-diyl)bis(methanylylidene))bis(3-(2-

(dimethylamino) ethyl)thiazolidine-2,4-dione) (58). The title compound 58 was 

obtained as a dark yellow solid, according to general procedure using dialdehyde 69 

and TZD-3. Yield 21%. 1H-NMR (401 MHz, CDCl3): δ 7.98 (s, 2H); δ 7.84 (d, J = 8, 2H); δ 

7.58 (s, 2H); δ 7.54 (d, J = 8.2, 2H); δ 3.92 (t, J = 6.4, 4H); δ 2.67 (t, J = 6.2, 4H); δ 2.35 (s, 

12H); δ 1.54 (s, 6H). MS (ESI+) m/z: 613 [M+Na]+. 

(5Z,5'Z)-5,5'-([2,2'-bithiophene]-5,5'-diylbis(methanylylidene))bis(3-(2-(dimethylamino) 

ethyl)thiazolidine-2,4-dione) (59). The title compound 59 was obtained as a red solid, 

according to general procedure using dialdehyde 70 and TZD-3. Yield 25%. 1H-NMR 

(401 MHz, DMSO-d6): δ 8.20 (s, 2H); δ 7.73 (d, J = 4.3, 2H); δ 7.68 (d, J = 4.0, 2H); δ 4.01 

(t, J = 5.6, 4H); δ 3.40 (t, J = 5.6, 4H); δ 2.87 (s, 12H). 13C-NMR (101 MHz, DMSO-d6/TFA-

d1): δ 167.14; δ 165.83; δ 142.11; δ 137.68; δ 136.87; δ 127.60; δ 126.13; δ 119.92; δ 

54.27; δ 42.67; δ 37.25. MS (ESI+) m/z: 585 [M+Na]+. 

 

General procedure for the synthesis of compounds 48-53. 

The corresponding ester-derivatives (0.1 mmol) were refluxed overnight in acetic acid 

(4 mL) and concentrated HCl (1 mL). The reaction mixture was filtered and the solid 
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was washed three times with water, methanol, and dichloromethane (DCM) to give 

the final compounds. 

2,2'-((5Z,5'Z)-(1,4-phenylenebis(methanylylidene))bis(2,4-dioxothiazolidin-3-yl-5-

ylidene))diacetic acid (48). The title compound 48 was obtained as a pale yellow solid, 

according to the general procedure using 42. Yield 86%. 1H-NMR (401 MHz, DMSO-d6): 

δ 13.48 (br s, 2H); δ 8.04 (s, 2H); δ 7.83 (s, 4H); δ 4.40 (s, 4H). 13C-NMR (101 MHz, 

DMSO-d6): δ 168.30; δ 167.07; δ 165.36; δ 135.04; δ 132.94; δ 131.38; δ 123.01; δ 

42.88. MS (ESI-) m/z: 447 [M-H]-. 

2,2'-((5Z,5'Z)-([1,1'-biphenyl]-4,4'-diylbis(methanylylidene))bis(2,4-dioxothiazolidin-3-yl-

5-ylidene))diacetic acid (49). The title compound 49 was obtained as a yellow solid, 

according to the general procedure using 43. Yield 50%. 1H-NMR (401 MHz, DMSO-d6): 

δ 13.42 (br s, 2H); δ 8.06 (s, 2H); δ 7.98 (d, J = 8.1, 4H); δ 7.79 (d, J = 8.1, 4H); δ 4.40 (s, 

4H). 13C-NMR (101 MHz, DMSO-d6): δ 168.36; δ 167.21; δ 165.44; δ 141.11; δ 133.65; δ 

133.04; δ 131.45; δ 128.12; δ 121.37; δ 42.83. MS (ESI-) m/z: 523 [M-H]-. 

2,2'-((5Z,5'Z)-((methylenebis(4,1-phenylene))bis(methanylylidene))bis(2,4-

dioxothiazolidin-3-yl-5-ylidene))diacetic acid (50). The title compound 50 was obtained 

as a white solid, according to the general procedure using 44. Yield 33%. 1H-NMR (401 

MHz, DMSO-d6): δ 7.96 (s, 2H); δ 7.60 (d, J = 8.2, 4H); δ 7.45 (d, J = 8.2, 4H); δ 4.37 (s, 

4H); δ 4.09 (s, 2H). 13C-NMR (101 MHz, DMSO-d6): δ 168.37; δ 167.33; δ 165.46; δ 

144.26; δ 134.11; δ 131.27; δ 131.03; δ 130.26; δ 120.46; δ 42.74; δ 41.10. MS (ESI-) 

m/z: 537 [M-H]-. 

2,2'-((5Z,5'Z)-((9H-carbazole-3,6-diyl)bis(methanylylidene))bis(2,4-dioxothiazolidin-3-yl-

5-ylidene))diacetic acid (51). The title compound 51 was obtained as a yellow solid, 

according to the general procedure using 45. Yield 50%. 1H-NMR (401 MHz, DMSO-d6): 

δ 13.43 (br s, 2H); δ 12.17 (s, 1H); δ 8.55 (s, 2H); δ 8.16 (s, 2H); δ 7.75 - 7.79 (m, 4H); δ 

4.40 (s, 4H). 13C-NMR (101 MHz, DMSO-d6): δ 168.49; δ 167.64; δ 165.65; δ 142.08; δ 

135.62; δ 129.03; δ 124.86; δ 124.71; δ 123.39; δ 117.30; δ 113.07; δ 42.70. MS (ESI-) 

m/z: 536 [M-H]-. 

2,2'-((5Z,5'Z)-((9,9-dimethyl-9H-fluorene-2,7-diyl)bis(methanylylidene))bis(2,4-

dioxothiazolidin-3-yl-5-ylidene))diacetic acid (52). The title compound 52 was obtained 
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as a yellow solid, according to the general procedure using 46. Yield 58%. 1H-NMR (401 

MHz, DMSO-d6): δ 8.11 (d, J = 8.0, 2H); δ 8.08 (s, 2H); δ 7.88 (s, 2H); δ 7.69 (d, J = 8.2, 

2H); δ 4.41 (s, 4H); δ 1.53 (s, 6H). 13C-NMR (101 MHz, DMSO-d6): δ 168.39; δ 167.32; δ 

165.45; δ 155.44; δ 140.41; δ 134.43; δ 133.35; δ 130.13; δ 125.43; δ 122.45; δ 120.86; 

δ 47.27; δ 42.80; δ 26.84. MS (ESI-) m/z: 563 [M-H]-. 

2,2'-((5Z,5'Z)-([2,2'-bithiophene]-5,5'-diylbis(methanylylidene))bis(2,4-dioxothiazolidin-

3-yl-5-ylidene))diacetic acid (53). The title compound 53 was obtained as a red solid, 

according to the general procedure using 47. Yield 30%. 1H-NMR (401 MHz, DMSO-

d6/TFA-d1): δ 8.16 (s, 2H); δ 7.66 (d, J = 4.3, 2H); δ 7.61 (d, J = 4.0, 2H); δ 4.34 (s, 4H). 

MS (ESI+) m/z: 559 [M+Na]+. 

 

Ethyl 2-(2,4-dioxothiazolidin-3-yl)acetate (TZD-1). A mixture of 2,4-thiazolidinedione 

(2 mmol), ethyl bromoacetate (2 mmol), and anhydrous K2CO3 (3 mmol) in acetone (12 

mL), was react under microwave irradiation at 100°C for 50 minutes. After the 

reaction, K2CO3 was removed by filtration, and the solvent was evaporated under 

reduced pressure. The crude product was purified by column chromatography eluting 

with DCM/ethyl acetate (9.6:0.4). Yield 87%. 1H-NMR (401 MHz, CDCl3): δ 4.24 (s, 2H); 

δ 4.13 (q, J = 7.2, 2H); δ 3.97 (s, 2H); δ 1.20 (t, J = 7.1, 3H).  

 

Synthesis of 3-(2-(dimethylamino)ethyl)thiazolidine-2,4-dione (TZD-3). A mixture of 

2,4-thiazolidinedione (2 mmol), 2-chloro-N,N-dimethylethan-1-amine (2 mmol), and 

Cs2CO3 (2 mmol) in acetone (12 mL), was react under microwave irradiation at 100°C 

for 50 minutes. After the reaction, Cs2CO3 was removed by filtration, and the solvent 

was evaporated under reduced pressure. The crude product was purified by column 

chromatography eluting with DCM/ethanol/NH4
+OH- (9.5:0.5:0.05). Yield 53%. 1H-NMR 

(401 MHz, CDCl3): δ 4.87 (s, 2H); δ 3.89 (s, 2H); δ 3.65 (t, J = 6.5, 2H); δ 2.42 (t, J = 6.5, 

2H); δ 2.17 (s, 6H).  

 

4,4'-methylenedibenzaldehyde (67). Diphenylmethane (12 mmol) and 

paraformaldehyde (42 mmol) were dissolved in 8 mL of glacial acetic acid containing 
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33% wt HBr. After being refluxed for 12 hours, the reaction flask was immersed in an 

ice bath. The white greasy solid was separated by decantation, and washed three 

times with water. Recrystallization from toluene afforded bis(4-

(bromomethyl)phenyl)methane (yield 20%). 1H-NMR (401 MHz, CDCl3): δ 7.32 (d, J = 

7.9, 4H); δ 7.15 (d, J = 8.0, 4H); δ 4.48 (s, 4H); δ 3.96 (s, 2H). Hexamethylenetetramine 

(6 mmol) and bis(4-(bromomethyl)phenyl)methane (2 mmol) were dissolved into 

separate 4 mL chloroform. The two solutions were mixed and refluxed for 6 hours. The 

white precipitate was filtered and dry in vacuum overnight. Then, it was dissolved in 7 

mL 50% acetic acid and refluxed for 6 hours. 1 mL concentrated HCl was added and 

refluxed for other 2 hours. The reaction solution was extracted with ethyl ether and 

then washed with 5N NaOH. Concentration of the ether portion and recrystallization 

from ethanol give 67 as a white solid. Yield 42%. 1H-NMR (401 MHz, CDCl3): δ 9.99 (s, 

2H); δ 7.83 (d, J = 8.0, 4H); δ 7.35 (d, J = 7.9, 4H); δ 4.14 (s, 2H).  

 

General procedure for the synthesis of dialdehydes 68-70. 

The corresponding dibromo starting materials (3 mmol) were dissolved in anhydrous 

THF (20 mL) and the solution was stirred in a dry ice/acetone bath. 8.5 mL of BuLi (2.5 

mol/L in hexane) were slowly added. The cooling bath was removed for 1h and then 

replaced. After 10 min, anhydrous DMF (2.5 mL) was added dropwise. The cooling bath 

was removed, and the reaction was stirred for 90 min. After this period, 1M HCl (20 

mL) was added and the reaction was extracted twice with ethyl acetate. The combined 

extract was washed with brine, dried over Na2SO4 and concentrated. The final 

compounds were purified through column chromatography. 

9H-carbazole-3,6-dicarbaldehyde (68). The title compound 68 was obtained as a yellow 

solid, according to the general procedure using 3,6-dibromo-9H-carbazole. Column 

chromatography eluted with DCM/ethyl acetate/toluene 6:3:1 Yield 58%. 1H-NMR (401 

MHz, DMSO-d6): δ 12.35 (br s, 1H); δ 10.09 (s, 2H); δ 8.88 (d, J = 1.2, 2H); δ 8.02 (dd, J = 

8.5, 1.5, 2H); δ 7.72 (d, J = 8.5, 2H). 13C-NMR (101 MHz, DMSO-d6): δ 192.40; δ 144.68; 

δ 129.64; δ 127.61; δ 125.17; δ 123.13; δ 112.64. 
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9,9-dimethyl-9H-fluorene-2,7-dicarbaldehyde (69). The title compound 69 was 

obtained as a yellow solid, according to the general procedure using 2,7-dibromo-9,9-

dimethyl-9H-fluorene. Column chromatography eluted with DCM. Yield 45%. 1H-NMR 

(401 MHz, CDCl3): δ 10.06 (s, 2H); δ 7.99 (s, 2H); δ 7.96 - 7.82 (m, 4H); δ 1.53 (s, 6H). 

13C-NMR (101 MHz, CDCl3): δ 191.92; δ 155.46; δ 143.70; δ 136.56; δ 130.34; δ 123.32; 

δ 121.56; δ 47.12; δ 26.66. 

[2,2'-bithiophene]-5,5'-dicarbaldehyde (70). The title compound 70 was obtained as a 

dark yellow solid, according to the general procedure using 5,5’-dibromo-2,2’-

bithiophene. Column chromatography eluted with DCM/petroleum 

ether/toluene/ethyl acetate 5:3:1.5:0.5. Yield 57%. 1H-NMR (401 MHz, CDCl3): δ 9.91 

(s, 2H); δ 7.72 (d, J = 4.0, 2H); δ 7.42 (d, J = 4.0, 2H). 13C-NMR (101 MHz, CDCl3): δ 

182.50; δ 144.79; δ 143.84; δ 136.86; δ 126.44. 

 

 

7.2.2 Native fluorescent studies 

General information. All the spectra were recorded using an UV/VIS 

spectrophotometer Jasco V530 and a spectrofluorometer, equipped with the control 

and data acquisition software V-350 and FP-750, respectively. Both excitation and 

emission slits were set up at 5 nm bandwidth, and 1 cm quartz cells were employed. 

General procedure. Accurately weighed amounts of the studied compounds were 

dissolved using ethanol or DMF, to obtain 0.5 mM stock solutions. From these stocks, 

intermediate dilutions in ethanol were prepared as required.  
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7.3 Development of a focused library of antiprion compounds built 

around Compound 1 

 

7.3.1 Chemistry 

All the commercial available reagents and solvents were purchased from Sigma-

Aldrich, TCI and Acros Organics, and used without further purification. Reactions were 

followed by analytical thin layer chromatography (TLC), on pre-coated TLC plates (layer 

0.20 mm silica gel60 with a fluorescent indicator UV254, from Sigma-Aldrich). 

Developed plates were air-dried and analyzed under a UV lamp (UV 254/365 nm). CEM 

Discover SP focused microwave reactor was used for microwave mediated reactions. 

Nuclear magnetic resonance (NMR) experiments were run on Varian VXR 400 (400 

MHz for 1H, 100 MHz for 13C). 1H and 13C NMR spectra were acquired at 300 K using 

chloroform (CDCl3), methanol (CD3OD), and dimethyl sulfoxide ((CD3)2SO) as solvents. 

Chemical shifts (δ) are reported in parts per million (ppm) relative to tetramethylsilane 

(TMS) as internal reference and coupling constants (J) are reported in hertz (Hz). The 

spin multiplicities are reported as s (singlet), d (doublet), t (triplet), q (quartet), and m 

(multiplet). Compounds were named following IUPAC rules as applied by 

ChemBioDraw Ultra (version 14.0). Compounds purity was assessed by LC-MS using a 

SB-C18 RP column (100 x 2.1 mm I.D., 3.5 µm) as the stationary phase and a mixture of 

0.1% formic acid in water and 0.1% formic acid in acetonitrile (60/40, V/V), in isocratic 

mode at a flow rate of 100 µL/min. Acquisition was performed by total ion current 

(TIC) and ESI+. Compound 1 showed a purity ≥98.1%. All the final compounds 60-64 

showed a purity >95%. 

 

Synthesis of 7-chloro-4-hydrazynilquinoline (71). A suspension of 4,7-

dichloroquinoline (500 mg) and hydrazine monohydrate 65% (2 eq) was irradiated in a 

sealed tube at 150 W for 5 min (T = 150°C, P = 200 psi, Power max = on). After cooling, 

the resulting solid was diluted with water, washed, and isolated by filtration. The final 

compound was purified through crystallization from ethanol, affording a pale yellow 

solid. Yield: 69%. 1H-NMR (401 MHz, CD3OD): δ 8.41 (d, J = 5.6 Hz, 1H); δ 8.00 (d, J = 9.0 

Hz, 1H); δ 7.80 (d, J = 1.8 Hz, 1H); δ 7.40 (dd, J = 9.0, 2.0 Hz, 1H); δ 6.99 (d, J = 5.6 Hz, 
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1H). 13C-NMR (101 MHz, CD3OD): δ 158.55; δ 143.28; δ 140.69; δ 140.05; δ 128.23; δ 

125.54; δ 120.16; δ 114.92; δ 99.67. 

 

Synthesis of (Z)-2-(1-(2-(7-chloroquinolin-4-yl)hydrazono)ethyl)-10H-phenothiazine 

(Compound 1). To a solution of 71 (2.60 mmol) in ethanol (20 mL), 2-

acetylphenothiazine (7.80 mmol) and acetic acid (2.5 mL) were added in sequence at 

room temperature. The solution was refluxed for 24h, and then evaporated under 

vacuum. The crude product was purified by column chromatography on silica gel 

(DCM/MeOH/NH3 9.2:0.8:0.08), affording Compound 1 as a dark yellow solid. Yield: 

81%. 1H-NMR (401 MHz, DMSO-d6): δ 8.69 (s, 1H); δ 8.40 (d, J = 8.7 Hz, 1H); δ 7.61 (s, 

1H); δ 7.36 (t, J = 11.5 Hz, 2H); δ 7.24 (dd, J = 8.1, 1.8 Hz, 1H); δ 7.08 - 6.81 (m, 4H); δ 

6.79 - 6.55 (m, 2H); δ 2.40 (s, 3H). 

 

General procedure for the synthesis of compounds 60-64. 

To a solution of 71 (0.3 mmol) in ethanol (3 mL), the corresponding phenothiazine 

derivatives 72-76 (0.3 mmol) and acetic acid (50 µL) were added in sequence at room 

temperature. The solution was refluxed for 24h, and then evaporated under vacuum. 

All the final compounds were purified through column chromatography on silica gel 

(ethyl acetate/ethanol/toluene/NH3 6.8:0.2:3:0.02). 

(E)-2-(2-(1-(2-(7-chloroquinolin-4-yl)hydrazono)ethyl)-10H-phenothiazin-10-yl)-N,N-

dimethylethan-1-amine (60). The title compound 60 was obtained as a yellow solid, 

according to the general procedure using 72. Yield 50%. 1H-NMR (401 MHz, CDCl3): δ 

8.62 (s, 1H); δ 8.01 (s, 1H); δ 7.87 (d, J = 8.9, 1H); δ 7.55 (s, 1H); δ 7.48 (d, J = 5.4, 1H); δ 

7.44 (dd, J = 8.9, 2.0, 1H); δ 7.35 (d, J = 7.9, 1H); δ 7.21-7.15 (m, 3H); δ 6.98-6.95 (m, 

2H); δ 4.28 (s, 2H); δ 3.00 (s, 2H); δ 2.53 (s, 6H); δ 2.44 (s, 3H). 

(E)-3-(2-(1-(2-(7-chloroquinolin-4-yl)hydrazono)ethyl)-10H-phenothiazin-10-yl)-N,N-

dimethylpropan-1-amine (61). The title compound 61 was obtained as a yellow solid, 

according to the general procedure using 73. Yield 35%. 1H-NMR (401 MHz, CDCl3): δ 

8.63 (s, 1H); δ 7.99 (s, 1H); δ 7.77 (d, J = 8.8, 1H); δ 7.43 (d, J = 7.1, 3H); δ 7.29 (d, J = 

7.9, 1H); δ 7.24 (s, 1H); δ 7.15 (dd, J = 15.8, 8.0, 3H); δ 6.92 (d, J = 7.0, 2H); δ 4.03 (t, J = 
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6.3, 2H); δ 2.66-2.48 (m, 2H); δ 2.39 (s, 3H); δ 2.28 (s, 6H); δ 2.15-1.99 (m, 2H). 13C-

NMR (101 MHz, CDCl3): δ 206.87; δ 145.20; δ 144.72; δ 137.49; δ 135.13; δ 127.48; δ 

127.15; δ 125.89; δ 124.75; δ 122.74; δ 120.48; δ 115.79; δ 112.75; δ 102.53; δ 56.91; 

δ 53.38; δ 45.38; δ 45.02; δ 30.88; δ 29.66; δ 29.32; δ 24.42; δ 22.65; δ 14.08; δ 12.61. 

(E)-2-(1-(2-(7-chloroquinolin-4-yl)hydrazono)ethyl)-10-(2-(piperidin-1-yl)ethyl)-10H-

phenothiazine (62) The title compound 62 was obtained as a yellow solid, according to 

the general procedure using 74. Yield 22%. 1H-NMR (401 MHz, CDCl3): δ 8.65 (s, 1H); δ 

8.02 (s, 1H); δ 7.78 (d, J = 8.6, 1H); δ 7.53 (s, 1H); δ 7.45 (dd, J = 13.6, 6.8, 2H); δ 7.35 

(d, J = 8.1, 1H); δ 7.22-7.05 (m, 3H); δ 6.95 (dd, J = 15.8, 7.8, 3H); δ 4.23 (s, 2H); δ 2.91 

(s, 2H); δ 2.65 (s, 4H); δ 2.42 (s, 3H); δ 1.77 (d, J = 59.7, 4H); δ 1.48 (s, 2H). 13C-NMR 

(101 MHz, CDCl3): δ 144.82; δ 144.48; δ 137.57; δ 135.12; δ 127.61; δ 127.45; δ 127.14; 

δ 125.90; δ 122.83; δ 120.54; δ 115.51; δ 112.68; δ 102.58; δ 55.69; δ 54.85; δ 29.67; δ 

25.30; δ 23.74; δ 12.64. 

(E)-4-(2-(2-(1-(2-(7-chloroquinolin-4-yl)hydrazono)ethyl)-10H-phenothiazin-10-

yl)ethyl)morpholine (63) The title compound 63 was obtained as a dark yellow solid, 

according to the general procedure using 75. Yield 91%. 1H-NMR (401 MHz, CDCl3): δ 

8.53 (d, J = 5.0, 1H); δ 8.01 (d, J = 2.0, 1H); δ 7.94 (d, J = 8.9, 1H); δ 7.51 (d, J = 1.6, 1H); 

δ 7.48-7.40 (m, 2H); δ 7.37 (dd, J = 8.0, 1.7, 1H); δ 7.22-7.14 (m, 3H); δ 6.98-6.94 (m, 

2H); δ 4.15 (t, J = 6.7 Hz, 2H); δ 3.75-3.73 (m, 4H); δ 2.87 (t, 2H); δ 2.67-2.56 (m, 4H); δ 

2.50 (s, 3H). 13C-NMR (101 MHz, CDCl3): δ 150.54; δ 148.22; δ 147.68; δ 146.90; δ 

144.93; δ 144.55; δ 137.38; δ 135.32; δ 127.90; δ 127.50; δ 127.39; δ 127.05; δ 126.46; 

δ 125.87; δ 124.08; δ 122.72; δ 120.92; δ 120.45; δ 115.92; δ 115.46; δ 112.56; δ 

102.35; δ 66.89; δ 55.93; δ 54.02; δ 45.98; δ 12.69. 

(E)-2-(1-(2-(7-chloroquinolin-4-yl)hydrazono)ethyl)-10-(2-(4-methylpiperazin-1-yl)ethyl)-

10H-phenothiazine (64) The title compound 64 was obtained as a dark yellow solid, 

according to the general procedure using 76. Yield 37%. 1H-NMR (401 MHz, CDCl3): δ 

8.59 (s, 1H); δ 7.98 (s, 1H); δ 7.83 (d, J = 8.5, 1H); δ 7.49 (s, 1H); δ 7.42-7.32 (m, 2H); δ 

7.30 (d, J = 8, 1H); δ 7.18-7.11 (m, 3H); δ 6.94-6.92 (m, 2H); δ 4.12 (t, J = 6.8, 2H); δ 

2.87 (t, J = 6.8, 2H); δ 2.71-2.60 (m, 8H); δ 2.38 (s, 3H); δ 2.35 (s, 3H). 13C-NMR (101 

MHz, CDCl3): δ 142.38; δ 142.05; δ 134.88; δ 132.81; δ 125.03; δ 124.96; δ 124.87; δ 

124.55; δ 124.13; δ 124.10; δ 123.38; δ 121.69; δ 120.21; δ 118.40; δ 117.97; δ 113.15; 
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δ 112.98; δ 110.10; δ 108.23; δ 99.82; δ 97.86; δ 63.24; δ 52.55; δ 52.13; δ 50.15; δ 

43.47; δ 42.83; δ 10.25. 

 

General procedure for the synthesis of phenothiazine derivatives 72-76. 

To a solution of 2-acetylphenothiazine (1 mmol) in anhydrous DMF (12 mL) was added 

NaH (4.5 eq) in portions, and the mixture was stirred for 30 min at room temperature. 

Then, the corresponding chloro-derivatives 77-81 were added, and the mixture was 

stirred for 5 hours at 50°C. The solution was then concentrated under vacuum and the 

residue was purified through column chromatography (7.3:0.2:2.5:0.02 

DCM/ethanol/toluene/NH3). 

1-(10-(2-(dimethylamino)ethyl)-10H-phenothiazin-2-yl)ethan-1-one (72). The title 

compound 72 was obtained as a yellowish oil, according to the general procedure 

using 77. Yield 14%. 1H-NMR (401 MHz, CDCl3): δ 7.52 (s, 1H); δ 7.44 (d, J = 7.9, 1H); δ 

7.13 (dd, J = 15.5, 7.8, 2H); δ 7.06 (d, J = 7.8, 1H); δ 6.94-6.85 (m, 2H); δ 4.00 (t, J = 6.7, 

2H); δ 2.70 (t, J = 6.6, 2H); δ 2.54 (s, 3H); δ 2.31 (s, 6H). 13C-NMR (101 MHz, CDCl3): δ 

197.26; δ 145.06; δ 144.19; δ 136.31; δ 131.45; δ 127.74; δ 127.33; δ 126.91; δ 123.13; 

δ 122.91; δ 122.83; δ 115.45; δ 114.04; δ 56.43; δ 46.61; δ 45.79; δ 26.50. 

1-(10-(3-(dimethylamino)propyl)-10H-phenothiazin-2-yl)ethan-1-one (73). The title 

compound 73 was obtained as a yellow oil, according to the general procedure using 

78. Yield 22%. 1H-NMR (401 MHz, CDCl3): δ 7.43 (d, J = 7.8, 2H); δ 7.20-7.00 (m, 3H); δ 

6.89 (dd, J = 10.7, 8.1, 2H); δ 3.94 (t, J = 6.8, 2H); δ 2.54 (d, J = 9.9, 3H); δ 2.42 (t, J = 

7.0, 2H); δ 2.20 (s, 6H); δ 1.94 (dt, J = 13.6, 6.9, 2H). 13C-NMR (101 MHz, CDCl3): δ 

197.58; δ 145.47; δ 144.50; δ 136.32; δ 132.24; δ 127.75; δ 127.53; δ 127.09; δ 123.84; 

δ 123.14; δ 122.83; δ 115.96; δ 114.05; δ 56.93; δ 45.40; δ 26.61; δ 24.82; δ 22.65. 

1-(10-(2-(piperidin-1-yl)ethyl)-10H-phenothiazin-2-yl)ethan-1-one (74). The title 

compound 74 was obtained as a yellowish oil, according to the general procedure 

using 79. Yield 52%. 1H-NMR (401 MHz, CDCl3): δ 7.53 (s, 1H); δ 7.46 (dd, J = 7.9, 1.6, 

1H); δ 7.15 (d, J = 7.9, 2H); δ 7.08 (dd, J = 7.6, 1.4, 1H); δ 6.95-6.90 (m, 2H); δ 4.09-4.06 

(m, 2H); δ 2.75 (t, J = 6.5, 2H); δ 2.56 (s, 3H); δ 2.52 (s, 4H); δ 1.65-1.62 (m, 4H); δ 1.48-

1.45 (m, 2H). 13C-NMR (101 MHz, CDCl3): δ 197.66; δ 145.48; δ 144.59; δ 136.71; δ 
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131.84; δ 128.08; δ 127.67; δ 127.26; δ 123.53; δ 123.24; δ 123.18; δ 115.95; δ 114.54; 

δ 56.47; δ 55.31; δ 46.51; δ 26.93; δ 26.18; δ 24.43. 

1-(10-(2-morpholinoethyl)-10H-phenothiazin-2-yl)ethan-1-one (75). The title compound 

75 was obtained as a light brown oil, according to the general procedure using 80. 

Yield 28%. 1H-NMR (401 MHz, CDCl3): δ 7.52 (s, 1H); δ 7.47 (d, J = 7.9, 1H); δ 7.18 (t, J = 

6.8, 2H); δ 7.11 (d, J = 7.9, 1H); δ 6.94 (t, J = 7.3, 2H); δ 4.10 (s, 2H); δ 3.75 (s, 4H); δ 

2.81 (s, 2H); δ 2.59 (s, 4H); δ 2.57 (s, 3H). 13C-NMR (101 MHz, CDCl3): δ 144.87; δ 

144.54; δ 137.53; δ 135.10; δ 127.57; δ 127.41; δ 127.11; δ 125.91; δ 122.77; δ 120.49; 

δ 115.49; δ 112.66; δ 102.61; δ 54.92; δ 50.81; δ 29.66; δ 23.78; δ 12.57. 

1-(10-(2-(4-methylpiperazin-1-yl)ethyl)-10H-phenothiazin-2-yl)ethan-1-one (76). The 

title compound 76 was obtained as a pale yellow oil, according to the general 

procedure using 81. Yield 23%. 1H-NMR (401 MHz, CDCl3): δ 7.53 (d, J = 1.6, 1H); δ 7.46 

(dd, J = 7.9, 1.7, 1H); δ 7.18-7.14 (m, 2H); δ 7.08 (dd, J = 7.5, 1.5, 1H); δ 6.94-6.89 (m, 

2H); δ 4.04 (t, J = 6.8, 2H); δ 2.79 (m, J = 6.8, 2H); δ 2.63 (br s, 4H); δ 2.56 (s, 6H); δ 2.34 

(s, 4H). 13C-NMR (101 MHz, CDCl3): δ 197.28; δ 145.15; δ 144.19; δ 136.32; δ 131.70; δ 

127.71; δ 127.37; δ 126.93; δ 123.34; δ 123.05; δ 122.89; δ 115.58; δ 114.10; δ 55.30; 

δ 54.89; δ 53.07; δ 46.22; δ 45.73; δ 26.59. 

 

Synthesis of 4-(2-chloroethyl)morpholine (80). Morpholine (17 mmol) was added to a 

solution of K2CO3 (20 mmol) in acetonitrile (70 mL). Then, 1-bromo-2-chloroethane (34 

mmol) was added dropwise. The resulting mixture was stirred at room temperature 

overnight. The suspension was then filtered, and the filtrate was evaporated. The 

crude product was purified through column chromatography of silica gel 

(DCM/ethanol/NH3 9.8:0.2:0.02), affording the target compound 80 as a colorless oil. 

Yield 20%. 1H-NMR (401 MHz, CDCl3): δ 3.59 (s, 4H); δ 3.47 (t, J = 6.8, 2H); δ 2.60 (t, J = 

6.8, 2H); δ 2.39 (s, 4H). 13C-NMR (101 MHz, CDCl3): δ 66.68; δ 60.04; δ 53.50; δ 40.56. 

 

Synthesis of 1-(2-chloroethyl)-4-methylpiperazine (81). To a stirred solution of 1-

methylpiperazine (10 mmol) and 2-bromoethanol (20 mmol) in acetonitrile (10 mL), 

K2CO3 (30 mmol) was added and the reaction was stirred at 75°C for 16 h. Upon 



161 
 

completion, the reaction mixture was filtered and the filtrate was concentrated under 

reduced pressure. The crude product was then dissolved in dry dichloromethane (10 

mL), and SOCl2 (5 mL) was added and stirred at 80°C for 16 h. The reaction mixture was 

filtrated and the solid residue was triturated with diethyl ether and methanol, filtered 

and dried to afford the target compound 81 as a colorless oil. Yield 43%. 1H-NMR (401 

MHz, CD3OD): δ 4.00 (t, J = 6.1, 2H); δ 3.73 (br s, 8H); δ 3.66 (t, J = 6.1, 2H); δ 3.30-3.28 

(m, 3H). 13C-NMR (101 MHz, CD3OD): δ 57.12; δ 49.82; δ 48.63; δ 41.94; δ 36.57. 
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Appendix 1 

Supplementary Experimental Part 

 

1. Chapter III 

 

1.1 Kinases assays 

1.1.1 Inhibition of GSK-3β: Kinase-Glo luminescent assay 

Human recombinant GSK-3β was purchased from Millipore (Millipore Iberica S.A.U.). 

The prephoshorylated polypeptide substrate was purchased from Millipore (Millipore 

Iberica SAU). Kinase-Glo Luminescent Kinase Assay was obtained from Promega 

(Promega Biotech Iberica, SL). ATP and all other reagents were from Sigma-Aldrich (St. 

Louis, MO). Assay buffer contained 50 mM HEPES (pH 7.5), 1 mM EDTA, 1 mM EGTA, 

and mM magnesium acetate. The method of Baki et al.40 was followed to analyze the 

inhibition of GSK-3β. Kinase-Glo assays were performed in assay buffer using white 96-

well plates. In a typical assay, 10 μL (10 μM) of the tested compound (dissolved in 

DMSO at mM concentration and diluted in advance in assay buffer to the desired 

concentration) and 10 μL (20 ng) of enzyme were added to each well followed by 20 μL 

of assay buffer containing 25 μM substrate (GS-2 peptide) and 1 μM ATP. The final 

DMSO concentration in the reaction mixture did not exceed 1%. After a 30 min 

incubation at 30 °C, the enzymatic reaction was stopped with 40 μL of Kinase-Glo 

reagent. Glow-type luminescence was recorded after 10 min using a Fluoroskan Ascent 

multimode reader. The activity is proportional to the difference of the total and 

consumed ATP. The inhibitory activities were calculated on the basis of maximal kinase 

and luciferase activities measured in the absence of inhibitor and in the presence of a 

reference compound inhibitor (TDZD8, Sigma Aldrich, IC50 = 0.69 μM) at total inhibition 

concentration, respectively. The linear regression parameters were determined and 

the IC50 extrapolated (GraphPad Prism 4.0, GraphPad Software Inc.). 
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1.1.2 Mechanism of action on GSK3β. Kinetic studies  

To investigate the inhibitory mechanism of 25 and 27 on GSK-3β, kinetic experiments 

were performed. Lineweaver-Burk plots of enzyme kinetics varying both ATP (from 1 

to 50 mM) and inhibitor concentrations were performed. The intercept of the plot in 

the vertical axis (1/V) does not change when the inhibitors concentration increases. 

These results would suggest that inhibitors act as competitive inhibitors of ATP 

binding. 

 

1.1.3 Inhibition of GSK-3β: TR-FRET assay 

The assays were performed in white Optiplate-384 at room temperature (22 °C) in a 

final volume of 25 μL, using the following Kinase Buffer: 50 mM HEPES pH 7.5, 1 mM 

EGTA, 10 mM MgCl2, 2 mM DTT and 0.01% Tween-20. The compounds were dissolved 

in DMSO and then diluted in Kinase Buffer, keeping constant the concentration of 

DMSO (3%) in each well. In each assay, the compound SB216763 was used as positive 

control (IC50 11.4±2.1 nM), while DMSO was used as reference. GSK-3β (0.5 nM, final 

concentration) was first incubated with the two compounds for 30 minutes, then a 

mixture of ATP (10 μM, final concentration) and ULight-GS (Ser641/pSer657) Peptide 

(50 nM, final concentration) was added. The reaction was incubated for 1 h, 

afterwards the kinase reaction was stopped by adding 24 mM EDTA and 2 nM (final 

concentration) of Eu-anti-phospho-GS (Ser641) antibody, both diluted in Detection 

Buffer 1X. After an incubation of 1 h, the TR-FRET signal was read with the EnSight 

Multimode Plate Reader (excitation at 320 nm and emissions at 615 and 665 nm). The 

compounds were tested in 10-dose IC50 mode with two-fold serial dilutions. Data were 

analysed using Excel and GraphPad Prism software (version 6.0, GraphPad) for IC50 

curve fits using sigmoidal dose-response (variable slope) equation. Values obtained for 

each compound are the means ± SD determined for at least two separate experiments. 

Compounds 25 and 27 are soluble in the assay conditions as determined at the 

maximum concentration tested (nephelometry determination) and do not interfere 

with the readout of the assay (no absorption at 320 nm and no emission at 615 and 

665 nm). 
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1.1.4 Jump Dilution assay 

The overall procedure and the reagents were the same as the one used for TR-FRET 

GSK-3β Kinase Assay. Before proceeding with the enzymatic reaction, 5 μL of a 100× 

solution containing GSK-3β (50 nM) was pre-incubated with 2.5 μL of a 10× the 

biochemical IC50 of 27 (55 μM) for 30 minutes, and then this solution was diluted 100-

fold into the buffer containing substrate and cofactor, starting the reaction of 

phosphorylation. This dilution creates a 1× solution of the protein while it dilutes the 

compound from 10× to 0.1× the IC50 value. The residual enzymatic activity was 

determined and values are reported as percentage values (mean values ± SD of two 

separate experiments) compared to the reaction performed with the vehicle. 

 

1.1.5 Inhibition of casein kinase 1 (CK1) δ and ε  

Human recombinant CK1δ and CK1ε were purchased from Millipore (Millipore Iberica 

S.A.U.). Casein solution from bovine milk, 5%, was purchased from Sigma-Aldrich (St. 

Louis, MO). ATP and all other reagents were from Sigma-Aldrich (St. Louis, MO). Assay 

buffer contained 50 mM HEPES, pH 7.5, 0.01% Brij-35,10 mM Cl2Mg, 1 mM EGTA, and 

0.01% NaN3. Kinase-Glo Kit from Promega was used to test compounds 25 and 27 for 

activity against CK-1. The Kinase-Glo assays were performed in the above mentioning 

assay buffer using black 96-well plates. Typically, 10 µL of test compound (dissolved in 

DMSO at 1 mM concentration and diluted in advance in assay buffer to 10 µM) and 10 

µL (16 ng) of enzyme were added to each well followed by 20 µL of assay buffer 

containing 0.1% casein as substrate and 4 µM ATP. The final DMSO concentration in 

the reaction mixture did not exceed 1%. After 60 min incubation at 30 °C the 

enzymatic reaction was stopped with 40 µL of Kinase-Glo reagent. Glow-type 

luminescence was recorded after 10 min using a FLUOstar Optima (BMG 

Labtechnologies GmbH, Offenburg, Germany) multimode reader. The activity is 

proportional to the difference of the total and consumed ATP. The inhibitory activities 

were calculated on the basis of maximal activities measured in the absence of 

inhibitor. The IC50 was defined as the concentration of each compound that reduces to 

50% the enzymatic activity with respect to that without inhibitors. Each value is the 

mean of two independent experiments. 
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1.1.6 Inhibition of cell division cycle 7 (Cdc7) 

The ADP-GloTM Kinase Assay + CDC7 / DBF4 Kinase Enzyme System (catalogue no. 

V5089) from Promega was used to screen compounds for activity against Cdc7. ATP 

and other reagents were purchased from Sigma-Aldrich (St. Louis, MO). The assays 

were performed in a buffer solution using 96-well plates. Compounds 25 and 27 (5 μL, 

40 μM dissolved in 4% DMSO) were added to each well followed by the enzyme (5 μL, 

25 ng / well), ATP (5 μL, final concentration in the well 10 μM) and PDKtidE (5 μL, 4 μg 

/ well) as substrate. Then it was allowed to incubate for 60 min at room temperature 

and ADP-Glo™ reagent (20 μL) was added and incubate again for 40 min at room 

temperature. After the incubation, the kinase detection agent (40 μL) was added and 

allowed to incubate for 30 min at room temperature. Finally, the luminescence was 

recorded using a FLUOstar Optima (BMG Labtechnologies GmbH, Offenburg, Germany) 

multimode reader. The inhibition activities were calculated based on the maximum 

activity, measured in the absence of inhibitor. 

 

1.2 Docking studies 

(a) Ligands preparation. Ligand molecules were sketched in 2D using Maestro and 

prepared in 3D using LigPrep module. Ligands were ionized at pH=7.6±0.2 using Epik 

and OPLS3 force field. After this step, ligands were exported into Autodock v4.2, 

Gasteiger charges were added and Autodock specific atom types were assigned. (b) 

Target preparation. Target structure was extracted from the Protein Data Bank 

www.rcsb.org (PDB ID 1Q3W).417 The structure corresponds to GSK-3β complexed with 

alsterpaullone, which is an ATP competitive inhibitor. For the target structure 

preparation, the Protein Preparation Wizard tool, implemented on Maestro was used. 

All ions and ligands were removed, hydrogen atoms were added, missing residues 

(121-124, 288-291) were modelled using Prime, residues were ionized at pH=7.6 using 

PROPKA and a restrained minimization of the heavy atoms was carried out using OPLS3 

force field and RMSD converge criteria of 0.3Å. The prepared structure was exported 

into Autodock v4.2 and prepared adding Gasteiger charges and specific autodock atom 

types. (c) Docking protocol. Using Autodock v4.2, a grid of 50x50x70 (x,y,z) points with 

a spacing of 0.375Å was calculated, taking as center the centroid of the crystallized 
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ligand, alsterpaullone. In this case, the center corresponds to 38.457, 6.618, 35.326 

coordinates (x,y,z). Docking parameters were set in order to search for 200 total 

ligand-target poses, individuals in population was set as 150, 250000 as the maximum 

number of energy evaluations. The docking analysis was performed clustering the 

poses into RMS clusters of 2.0Å and the best docking solutions were selected by visual 

inspection, searching for specific ligand-target interactions with Asp133 and Val135. 

 

1.3 Blood Brain Barrier permeation  

Prediction of the brain penetration was evaluated using a PAMPA-BBB.418 Ten 

commercial drugs, phosphate buffer saline solution at pH 7.4 (PBS), ethanol and 

dodecane were purchased from Sigma Aldrich, Acros organics, Merck, and Fluka. The 

porcine polar brain lipid (PBL) (catalog no. 141101) was from Avanti Polar Lipids. The 

donor plate was a 96-well filtrate plate (Multiscreen® IP Sterile Plate PDVF membrane, 

pore size is 0.45 µM, catalog no. MAIPS4510) and the acceptor plate was an indented 

96-well plate (Multiscreen®, catalog no. MAMCS9610) both from Millipore. Filter PDVF 

membrane units (diameter 30 mm, pore size 0.45 μm) from Symta were used to filter 

the samples. A 96-well plate UV reader (Thermoscientific, Multiskan spectrum) was 

used for the UV measurements. Test compounds [(3-5 mg of Caffeine, Enoxacine, 

Hydrocortisone, Desipramine, Ofloxacine, Piroxicam, Testosterone), (12 mg of 

Promazine) and 25 mg of Verapamil and Atenolol] were dissolved in EtOH (1000 µL). 

100 µL of this compound stock solution were taken; 1400 µL of EtOH and 3500 µL of 

PBS pH = 7.4 buffer were then added to reach 30% of EtOH concentration in the 

experiment. These solutions were filtered. The acceptor 96-well microplate was filled 

with 180 μL of PBS/EtOH (70/30). The donor 96-well plate was coated with 4 µL of 

porcine brain lipid in dodecane (20 mg/mL) and after 5 minutes, 180 μL of each 

compound solution was added. 1-2 mg of each compound were dissolved in 1500 µL of 

EtOH and 3500 µL of PBS pH =7.4 buffer, filtered and then added to the donor 96-well 

plate to be determined their ability to pass the brain barrier. Then, the donor plate 

was carefully put on the acceptor plate to form a “sandwich”, which was left 

undisturbed for 2h and 30 min at 25°C. During this time the compounds diffused from 

the donor plate through the brain lipid membrane into the acceptor plate. After 

incubation, the donor plate was removed. UV plate reader determined the 
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concentration of compounds and commercial drugs in the acceptor and the donor 

wells. Every sample was analyzed at three to five wavelengths, in 3 wells and in two 

independent runs. Results are given as the mean [standard deviation (SD)] and the 

average of the two runs is reported. Ten quality control compounds (previously 

mentioned) of known BBB permeability were included in each experiment to validate 

the analysis set. 

 

1.4 Neuro- and hepato-toxicity assessment 

Primary cultures of CGNs were prepared from 7 day-old pups of the same rat strain, as 

previously described.419, 420 All animal experiments were authorized by the University 

of Bologna bioethical committee (Protocol n° 17-72-1212) and performed according to 

Italian and European Community laws on the use of animals for experimental 

purposes. For cerebellar granule cultures, cells were dissociated from cerebella and 

plated on 96 well plates, previously coated with 10 μg/mL poly-L-lysine, at a density of 

3 × 105 cells/0.2 mL medium/well in BME supplemented with 100 mL/L heat-

inactivated FBS (Life technologies), 2 mM glutamine, 100 μM gentamicin sulphate and 

25 mM KCl (all from Sigma-Aldrich). 16 h later, 10 μM cytosine arabino-furanoside 

(Sigma-Aldrich) was added to avoid glial proliferation. After 7 days in vitro, 

differentiated neurons were shifted to serum free BME medium containing 25 mM KCl 

without serum and different treatments were performed.  

HepG2 cells (human hepatocellular liver carcinoma cell line from American Type 

Culture Collection, ATCC), were grown in DMEM supplemented with 10% FBS and 50 

units/mL of penicillin/ streptomycin (Life Technologies) at 37 °C in a humidified 

atmosphere containing 5% CO2. For the experiments, cells (0.5 × 105 cells/well) were 

seeded in 96-well plate in complete medium; after 24 h, the medium was removed, 

and cells were exposed to the increasing concentrations of previously selected non-

neurotoxic compounds (0, 10, 25, and 50 μM) in DMEM with no serum for further 24 h 

and survival was measured through MTT assay. 

The viability of the different cell types (CGNs and HepG2) exposed to increasing 

concentrations of the studied compounds (0, 5, 25 and 50 μM) for 24 h was evaluated 
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through the MTT assay. Briefly, thiazolyl blue was added to the culture medium at a 

final concentration of 0.1 mg/mL. Following a 20 min incubation for CGNs and 10 min 

for HepG2 cells at 37 °C in the dark, the MTT precipitate was dissolved in 0.1 M Tris-

HCl pH 7.5 buffer containing 5% Triton X-100 (all from Sigma-Aldrich) and absorbance 

was read at 570 nm in a multiplate spectophotometric reader (Bio-Rad).  

 

1.5 AcPHF6 aggregation and inhibition studies by ThT fluorescence 

ThT fluorescence assays were performed as described previously by Lunven et al.259 

with some variations. AcPHF6 (Celtek Peptides) was initially dissolved in 1,1,1,3,3,3,-

hexafluoro-2-propanol, kept at room temperature overnight, aliquoted and dried. 

Stock solutions of AcPHF6 (0.5 mM) were then prepared in ultrapure water 

immediately prior to fluorescence assays. Stock solutions of all tested compounds (2 

mM) were prepared in DMSO, while stock solution of ThT (0.5 mM) was prepared in 50 

mM phosphate buffer pH 7.4. AcPHF6 aggregation was monitored using standard 96-

well plates and an EnSpire plate reader (PerkinElmer) setting the excitation and 

emission wavelengths at 446 and 490 nm, respectively. Samples were prepared by 

diluting stock solutions in 50 mM phosphate buffer pH 7.4 to a final AcPHF6 

concentration of 50 M with 20 M ThT and 10 M test compound (maximum final 

DMSO content: 0.5%, v/v); the final volume was 100 L. Assays were performed at 

25°C. Fluorescence data were recorded every minute over 120 min with 10 s shaking 

(400 rpm) prior to each reading. Each condition was assayed at least in triplicate and 

values were averaged. Estimation of the inhibitory potency (%) was carried out by 

comparing fluorescence values at the plateau (average fluorescence intensity value in 

the 70-80 min range). 

 

1.6 CD spectroscopy 

CD spectra were measured in the 260–200 nm spectral range on a Jasco J-810 

spectropolarimeter (Tokyo, Japan) equipped with a PTC-423S Peltier-type temperature 

control system. Measurements were carried out at 25 °C using quartz cells with 1 mm 

pathlength (Hellma, Milan, Italy), a 50 nm min-1 scanning speed, a 2 nm response, a 2 
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nm spectral bandwidth and an accumulation cycle of 3. Stock solutions of AcPHF6 (1 

mM) were prepared in water immediately prior to CD measurements, while stock 

solutions of compounds 25 and 27 (2 mM) were prepared in methanol/DMSO (95:5, 

v/v). Samples were prepared by diluting stock solutions in phosphate buffer 50 mM 

(pH 7.4) to a final AcPHF6 concentration of 100 M with 20 M test compound (final 

DMSO content: 0.05%, v/v). The spectral contribution of solvents and test compounds 

was subtracted to derive the CD spectra of AcPHF6, then data were converted to molar 

units per residue (res) and plotted using the Bezier smoothing algorithm provided by 

the Gnuplot software (version 5.2.2, http://gnuplot.sourceforge.net). 

 

1.7 Atomic force microscopy 

Atomic Force Microscopy imaging was performed in PeakForce™ tapping-mode on a 

Nanoscope Multimode 8 (Bruker, U.S.A.) with ScanAsyst Air probes (Bruker). Peptide 

specimens were prepared by quickly diluting a freshly-prepared 500 µM aliquot of 

AcPHF6 peptide in water to 50 µM concentration in 50 mM phosphate buffer (pH 7.4) 

or in the same buffer additionally containing 10 µM of either compound 25 or 27, 

briefly vortexing and then subjecting the specimens to the same incubation procedure 

detailed for ThT fluorescence measurements (briefly, incubation at 25°C for 80 min 

with 400 rpm shaking for 10 s every minute). At the end of the incubation, the peptide 

solutions were immediately filtered through Microcon centrifuge ultrafiltration devices 

(MWCO 30 kDa, Millipore) to separate the small MW fraction from the polymerized 

peptide fraction. Additional runs on the same Microcons were performed in order to 

exchange the different buffers with ultrapure water. 5 µL aliquots of the high-

molecular weight retentate fractions were layered on discs of freshly cleaved 

muscovite mica (EMS, U.S.A.) and allowed to dry while protected from ambient 

contamination. The recorded micrographs were only processed by flattening with 

Bruker’s Nanoscope Analysis software (version 1.8). 

 

 

 

http://gnuplot.sourceforge.net/
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1.8 Okadaic acid-induced tau hyperphosphorylation cell model 

Human SH-SY5Y cells were grown in DMEM supplemented with 10% FBS and 1% 

penicillin-streptocycin at 37 ºC and 5% CO2 in an incubator. SH-SY5Y cells were seeded 

onto 96-well plate at 60000 cells per well. 48 hours later, cells were pre-incubated with 

the compounds at the desired concentration for 1 hour and after that time OA 

(acquired from Sigma Aldrich, catalogue number: 09381) was added at a concentration 

of 30nM and incubated for another 24 hours. Afterwards, cells were incubated with 

0.5mg/mL MTT solution for at least 4 hours at 37 ºC and 5% CO2. Then culture media 

was removed and the formazan crystals attached to the bottom of the plate were 

dissolved with 200µL of DMSO. Finally, UV-absorbance was measured at 595nM in a 

microplate reader (Varioskan Flash Microplate reader, Thermo Scientific). 

 

 

2. Chapter IV 

 

2.1 Aβ42 and tau anti-aggregating activities in Escherichia coli cells 

Cloning and over-expression of Aβ42 peptide. Escherichia coli competent cells BL21 

(DE3) were transformed with the pET28a vector (Novagen, Inc., Madison, WI, USA) 

carrying the DNA sequence of Aβ42. Because of the addition of the initiation codon 

ATG in front of both genes, the overexpressed peptide contains an additional 

methionine residue at its N terminus. For overnight culture preparation, an amount of 

10 mL of M9 minimal medium containing 50 µg/mL of kanamycin was inoculated with 

a colony of BL21 (DE3) bearing the plasmid to be expressed at 37°C. For expression of 

the Aβ42 peptide, the required volume of overnight culture to obtain 1:500 dilution 

was added into fresh M9 minimal medium containing 50 µg/mL of kanamycin and 250 

µM ThS. The bacterial culture was grown at 37°C and 250 rpm. When the cell density 

reached OD600 = 0.6, 980 µL of culture were transferred into Eppendorf tubes of 1.5 

mL with 10 µL of each compound to be tested in DMSO and 10 µL of isopropyl 1-thio-

β-D-galactopyranoside (IPTG) at 100 mM. The final concentration of the tested 

compounds was fixed at 20 µM. The samples were grown overnight at 37°C and 1400 
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rpm using a Thermomixer (Eppendorf, Hamburg, Germany). As negative control 

(maximal amyloid presence) the same amount of DMSO without compounds was 

added in the sample. In parallel, non-induced samples (in absence of IPTG) were also 

prepared and used as positive controls (non-amyloid presence). In addition, these 

samples were used to assess the potential intrinsic toxicity of the compounds, and to 

confirm the correct bacterial growth. 

Cloning and Overexpression of Tau Protein. E. coli BL21 (DE3) competent cells were 

transformed with pTARA containing the RNA-polymerase gen of T7 phage (T7RP) 

under the control of the promoter PBAD. E. coli BL21 (DE3) with pTARA competent 

cells were transformed with pRKT42 vector encoding four repeats of tau protein in two 

inserts. For overnight culture preparation, 10 mL of M9 medium containing 0.5% of 

glucose, 50 µg/mL of ampicillin, and 12.5 µg/mL of chloramphenicol were inoculated 

with a colony of BL21 (DE3) bearing the plasmids to be expressed at 37 °C. For 

expression of tau protein, the required volume of overnight culture to obtain 1:500 

dilution was added to fresh M9 minimal medium containing 0.5% of glucose, 50 µg/mL 

of ampicillin, 12.5 µg/mL of chloramphenicol, and 250 µM ThS. The bacterial culture 

was grown at 37 °C and 250 rpm. When the cell density reached OD600 = 0.6, 980 µL 

of culture were transferred into Eppendorf tubes of 1.5 mL with 10 µL of each 

compound to be tested in DMSO and 10 µL of arabinose at 25%. The final 

concentration of the compounds was fixed at 20 µM. The samples were grown 

overnight at 37 °C and 1400 rpm using a Thermomixer (Eppendorf, Hamburg, 

Germany). As negative control (maximal presence of tau), the same amount of DMSO 

without compounds was added in the sample. In parallel, non-induced samples (in 

absence of arabinose) were also prepared and used as positive controls (absence of 

tau). In addition, these samples were used to assess the potential intrinsic toxicity of 

the compounds and to confirm the correct bacterial growth.  

Thioflavin S Steady-State Fluorescence. ThS (T1892) and other chemical reagents were 

purchased from Sigma (St. Louis, MO). ThS stock solution (2500 mM) was prepared in 

double-distilled water purified through a Milli-Q system (Millipore, USA). For the 

fluorescence assay, the ThS spectra were measured on an Aminco Bowman series 2 

luminescence spectrophotometer (Aminco-Bowman AB2, SLM Aminco, Rochester, NY, 
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USA) from 460 to 600 nm at 25 °C using an excitation wavelength of 440 nm and slit 

widths of 4 nm. The emission at 485 nm (ThS peak fluorescence in the presence of 

amyloids) was recorded. In order to normalize the ThS fluorescence as a function of 

the bacterial concentration, OD600 was obtained using a Shimadzu UV-2401 PC UV−Vis 

spectrophotometer (Shimadzu, Japan). Note that the fluorescence normalization was 

carried out considering as 100% the ThS fluorescence of the bacterial cells expressing 

the peptide or protein in the absence of tested compounds, and 0% the ThS 

fluorescence of the bacterial cells non-expressing the protein. 
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