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Abstract

The problem this thesis is addressing is to improve an existing classification
in 10 categories of the images captured by SEM microscopes. In particular,
the challenge faced is to classify those images according to a hierarchical tree
structure of sub-categories without requiring any further human labelling
effort. In order to uncover intrinsic structures among the images, a procedure
involving supervised and unsupervised feature learning, as well as cluster
analysis is defined. Moreover, to reduce the bias introduced in the supervised
phase, various strategies focusing on features of different nature and level of
abstraction are analyzed.
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Chapter 1

Introduction

In the framework of the NFFA-EUROPE project, the Information and Data
management Repository Platform (IDRP) is being developed to answer to
the data sharing needs of the nanoscience community. The aim of the in-
frastructure is to allow users to access, share and publish richly diverse data
produced by individual scientists. A central problem is represented by guar-
anteeing the accessibility, or better the searchability, of the data in such
heterogeneous dataset. Thus, in order to organize the repository, it is neces-
sary to automatically enrich each data with appropriate meta-data defining
its content.

Focusing on the data produced by a single instrument, a Scanning Elec-
tron Microscope (SEM), almost 150 thousands images were collected. From
this first set, headed to increase in the near future, a sample counting almost
18 thousands images was labelled by hand in 10 categories [1] forming the
SEM_Dataset. In previous works ([2], and [3]) the SEM_Dataset was used to
train various Convolutional Neural Networks. The resulting models were able
to classify images captured by a SEM in the 10 categories with astonishing
accuracy (reaching, in some cases, almost 98% of test accuracy).

Despite the effort to make the repository searchable, a division in 10 cat-
egories does not provide a sufficient fine partition of the data. The problem
this thesis is addressing is to improve the existing categories providing a hi-
erarchical tree of sub-categories. In opposition to what has been done before,
the thesis faces the challenge of avoiding the huge human effort required to
classify by hand a training set, by automatically finding hidden structures in
the data via unsupervised machine learning methods.
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Outline of the thesis
The rich diversity of the data considered required some pre-processing clean-
ing operations described in chapter 2. Moreover, the problematic related to
the huge scale variations between the images is discussed. The final part of
the chapter introduces the reader to the dataset 1u-2u used in the rest of
the thesis. As reported in table 2.5, it counts 52 682 images at the scale of
one and two microns and the 14% of this dataset inherits the classification
labels from SEM_Dataset.

In order to find structures within the data in 1u-2u, a notion of similarity
between images in required. Chapter 3 explores a possible way to solve this
problem via feature learning. The idea is that, instead of comparing directly
the images, the similarity should take into account the high level features
of the objects they represent. Unfortunately, unsupervised feature learning
methods in such high dimensional spaces are heavily affected by the so-called
curse of dimensionality. Therefore the feature learning procedure is carried
out firstly in a supervised way by using a Convolutional Neural Network,
then in an unsupervised way via autoencoders. At the end of the chapter
four distances on 1u-2u are defined and analyzed. These differ according
to the type of supervision and level of abstraction considered in the feature
learning procedure.

In chapter 4 a first cluster analysis on 1u-2u is performed. After in-
troducing the clustering algorithm used, a criterion to score their solutions
against the labels provided by SEM_Dataset is discussed. Finally, the scores
obtained by applying the various algorithms on 1u-2u are analyzed for each
one of the distances defined in the previous chapter.
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Chapter 2

The dataset

The data analyzed in the project are images captured via a scanning electron
microscope (SEM) of numerous objects at various scales and stored using
different formats and meta-data. The purpose of this chapter is to illustrate
some insights obtained exploring these data.

Figure 2.1: A fancy image in images_flat

The first step to perform statistical analysis on the images was to create a
uniform dataset containing files of the same format, named after a unique and
anonymized identifier. This procedure, described in section 2.1, produced a
dataset called images_flat containing 146 917 images each one stored in two
formats: TIFF and JPG. Some thousands of those images were classified by
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hand in 10 categories and used in previous works (see [1],[3], and [2]). Section
2.2 explains how to retrieve the information about the labelled images and
how the labels are distributed on the new dataset. Section 2.3 faces a distinct
problem: different features have different relative sizes; it makes sense to
explore images representing objects of the same size. Unfortunately, the
scale of the images is not stored as a meta-data of the TIFF files but appears
written on the very images. The implementation of a simple OCR program,
its accuracy, and its output are presented.

At the end of the chapter the dataset 1u-2u used in the rest of the thesis
is defined. It contains only the images from images_flat having scale 1 µm
and 2 µm and its details are reported in table 2.5.

2.1 Dataset preparation: from new_dati_SEM to
images_flat

The images used in the thesis were collected by a multitude of scientists. As
a result, the directory (new_dati_SEM/) where those images were collected is
a jumble of nested sub-directories with puzzling names and without a clear
hierarchy. Worst of all, it contains duplicates, corrupted files, and images
stored using different formats and, where present, meta-data.

format occurencies
TIFF 151 312
JPG 150 937
PDF 125
BMP 111
DM3 2
DJVU 1

Table 2.1: Image file formats in new_dati_SEM/

As shown in table 2.1, the most frequent image file formats appearing in
new_dati_SEM/ are JPG and TIFF. An analysis of the MD5 hashes of the
TIFF files detected 148 918 unique binary contents. Moreover, converting
the images from TIFF to JPG using various compression methods, it was
possible to replicate almost every JPG from a TIFF file. For this reason the
focus was placed on the TIFF files only.

For each unique MD5 hash one of the associated TIFF files has been
copied into the folder images_flat, renamed after the hash, and converted
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to JPG. Note that the uniqueness of the hashes entails the uniqueness on the
binary content of the TIFF files and not on their visual content, thus there
could be different TIFFs that produce the same JPG (e.g. files representing
the same image but with incongruities in the meta-data). In order to guaran-
tee also the uniqueness of the MD5 hashes of the JPG files, other 2001 pairs
of files were removed. Surely this selection discarded some data but has the
virtue of removing most duplicate images, creating two uniform set of files
in TIFF and JPG format in a one to one relation by their anonymized base-
name (MD5 hash on the TIFF file), and assuring the absence of corrupted
files.

After this cleaning operation images_flat counts 146 916 pairs of files in
TIFF and JPG format, both uniquely identified by their content-based MD5
hash1.

2.2 The labelled images
Tens of thousands of images among the ones in new_dati_SEM were classified
by hand. The different categories are based on the shape and on the structure
of the represented objects. Figure 2.2 lists the 10 categories that were mainly
used providing for each category a representative image.

Figure 2.2: Representative images of the 10 categories

From this huge work, 4 datasets were created and published (see [4]).
They differ for size (as shown in table 2.2), sampling criterion, and purpose.
The original dataset used in [1] is called SEM_Dataset [5]. The Hierarchical
[6] dataset is very small, exceeding slightly the thousand images, but it has

1It is worthy to stress again that unique hashes do not necessarily correspond to
unique images. Think about images differing in resolution or, more subtly, having some
pixels with slightly different brightness (this situation was spotted in images_flat: in
c3790570d62f15c2b0778eeb63d45426.jpg and 536b95a78bb3a5643208066d6cccc4e8.jpg the
brightness values of 33 pixels differ by 1).
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a tree structure that splits the original 10 categories in a total of 36 sub-
categories. The last two datasets (100% [7] and Majority [8]) are the results
of a validation procedure on a larger dataset.

In order to identify the images in images_flat that were classified, the
JPGs in it were compared to the files in the 4 datasets searching for matches
in the MD5 hashes. Table 2.2 summarizes the results of the pairings and pro-
vide some information about those datasets: the actual number of categories
considered, the total JPG files they contain, the amount of unique hashes on
the content of these files (i.e. the number of images up to duplicates), and
the quantity of the hashes for which was not possible to find a direct match
within images_flat.

Name
Num.

categories
Num.
JPGs

Num. unique
hashes

no matches
in images_flat

SEM_Dataset 10 18 577 18 343 85
Hierarchical 36 1038 1026 0

100% 10 25 430 20 837 183
Majority 10 25 537 20 937 237

Table 2.2: Comparison of the various SEM_Dataset

Note that in 100% and Majority, there is a big discrepancy between the
number of files and the number of unique hashes due to numerous dupli-
cates. More importantly, it is not guaranteed that duplicate files belong
to the same category; indeed, there are respectively 4109 and 4113 hashes
corresponding to duplicate files labelled in different categories (for a total
of 8370 and 8378 files). Although the problem is limited to two categories
(i.e. Patterned_surface and MEMS_devices_and_electrodes), it affects
the 25% of the unique contents of those datasets and thus it undermines the
reliability of the information they contain.

Focusing on the original dataset, it was not possible to find a direct
match for 85 images; nevertheless, 3 of them where matched using a different
compression in the conversion from TIFF to JPG. The information about
the remaining 82 images were left out: they do not correspond to any TIFF
file in images_flat because originally stored in JPG format only. Figure 2.3
shows the distribution of the 10 categories on the 18 261 labelled images in
images_flat and on the 82 missing data from SEM_Dataset.

The bar chart highlights the imbalance of the labels. The 4 major cate-
gories represent almost the 80% of the total while the three minor categories
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Figure 2.3: Distribution of the 18261 labelled images in images_flat

together do not reach the 5%. Fortunately, the missing data belong mainly
to the most frequent labels.

The imbalance of the labels was the main reason behind the creation of
the Hierarchical dataset. Despite its small size, it is a useful guideline as
it introduces a first refinement of the 10 classes splitting the largest ones in
26 subclasses according to a depth 2 tree structure. Figure 2.4 lists all the
subcategories and shows how they are distributed among the 10 classes.

2.3 The scale problem and the OCR program
Images on different scales represent different objects, thus exhibit different
high level features. That is why it makes sense to split the dataset by the
scale.

Recovering the information on the scale is not as easy as one can think.
This metadata, where present, is not always stored in the same way in the
TIFF files but in the vast majority of the cases is hard coded on the image.
Visually, they can be immediately recognized as a segment, and the ground
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Figure 2.4: Distribution of the sub-classes in Hierarchical

distance corresponding to it, appearing on the left side of a stripe containing
other data. The stripes are usually located on the lower part of the images
and can differ in size, background color, text font, text color, and metadata
displayed.

In order to read and store the scale data, the following algorithm was
implemented using the library OpenCV v3.4.1 for image segmentation and
contours detection, and the OCR engine Tesseract v3.04.01:

1. Detect the stripe.

• Find a square region in the lower part of the image where the
brightness of the pixels have almost zero covariance.

• Store the average brightness of the square (probable color of the
stripe).
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• If the color is too dark (dark background stripe with bright text)
revert the colors.

• Use the above color as threshold and perform an image segmen-
tation.

• Return all big white contours with width comparable to the total
width of the image.

2. If one, and only one, stripe is detected, spot the segment.

• Do a segmentation of the left part of the stripe.

• Return all big contours with small extent (i.e. the ratio between
the contour area and the area of bounding rectangle).

3. If one, and only one, segment is detected, read the text above it.

4. Clean the text selecting the scale elements only (digits followed bymm,
µm, or nm).

5. Store the scale and the pixel length of the segment.

Over the 146 916 images in images_flat the program did not detect the
stripe in 4105 cases (2.8%) and did not spot the segment in just 26 cases
(0.02%). To validate the program, the scales of a uniform sample of 1000
images had been written down by hand and compared to its outputs. The
validation results are reported in table 2.3).

Positive 98.9% 989

Negative 1.1% 10 1.0% stripe not detected
1 0.1% wrong scale

Total 1000

Table 2.3: Validation of the OCR program

When the stripe is not detected the program returns a specific error. It
is worth noticing that among the 35 images of the validation sample where
this happened, in 25 cases the images had no stripe. Indeed, in 10 of the 11
not validated outputs, the program was not able to read the data and in a
unique case it returned a wrong scale.

Table 2.4 details the results of the OCR program on the images_flat
dataset. The scale was succesfully read on the 98% of the labelled images
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and on the 97.2% of the whole dataset. One can see that the scale ranges
from a millimetre to a nanometre and thus on the images there is up to 106x
magnification power difference.

Scale images_flat, labelled from SEM_Dataset Total in
0 1 2 3 4 5 6 7 8 9 Tot images_flat

1mm 0 6 0 0 0 0 0 0 17 0 23 163
300µm 0 1 0 0 0 0 0 0 0 0 1 8
200µm 2 128 5 0 11 34 11 0 332 7 530 3265
100µm 57 298 31 1 32 33 92 30 187 29 790 5941
30 µm 0 5 0 0 0 0 1 0 4 2 12 60
20 µm 14 271 36 22 44 164 55 63 595 52 1316 9475
10 µm 25 698 170 24 136 211 278 224 1032 42 2840 14729
3 µm 0 0 0 0 0 0 2 0 0 2 4 69
2 µm 34 722 311 64 22 359 744 467 862 13 3598 22575
1 µm 21 681 622 83 214 354 1147 121 710 6 3959 30107

300 nm 0 0 0 1 0 0 5 0 2 0 8 187
200 nm 10 338 1396 84 148 279 910 45 216 0 3426 37052
100 nm 5 39 548 19 224 70 269 0 23 0 1197 16531
30 nm 0 0 0 0 0 0 0 0 0 0 0 20
20 nm 1 3 122 0 1 6 39 0 0 0 172 2423
10 nm 0 0 1 0 0 0 0 0 0 0 1 62
4 nm 0 4 0 0 0 0 0 0 0 0 4 6
2 nm 0 0 0 0 0 0 0 0 0 0 0 6
1 nm 0 24 0 0 0 0 0 0 1 0 25 69

Total images with scale metadata 17906 142748
98.1% 97.2%

Table 2.4: Scales in images_flat

In order to focus on images displaying similar features, in the following
work only the images in images_flat having scale 1 µm and 2 µm are con-
sidered. For sake of clarity, this subset will be referred to as 1u-2u. Table
2.5 reports the distribution of the labels in it.

1u-2u, labelled from SEM_Dataset Total in
0 1 2 3 4 5 6 7 8 9 Tot 1u-2u

55 1403 933 147 236 713 1891 588 1572 19 7557 52682
Percentage 14.3%

Table 2.5: Distribution of the labels in 1u-2u

12



Chapter 3

Distances and Feature Learning

In order to perform cluster analysis on the data in images_flat a notion of
distance between images is needed. In literature it is possible to find various
definitions, mainly in the form of image similarity indices (see for example
[9] and [10]). A particular family of metrics, derived from the so called
Structural Similarity Index (SSIM), has been widely used in the last ten years.
Although the SSIM metrics compare local patterns of pixel intensities, and
thus they are robust to small rotations and translations, they do not perform
a content analysis; therefore they are not able to evaluate the similarity
between different objects. As expected, the results obtained using these
distances were not satisfying and the idea of applying a definition of distance
directly on the images was soon abandoned.

A different way to proceed is to pre-process the data selecting high-level
features characterizing the images and, in this way, to reduce the dimen-
sionality of the dataset. Once the images are projected as data points in
a real space of a sufficiently low dimension, the Euclidean distance can be
computed.

Although, theoretically, both feature learning and dimensionality reduc-
tion can be achieved in a completely unsupervised way, the curse of dimen-
sionality (the sparsity of the data in the input space) forces to find a middle
ground between supervised and unsupervised learning methods.

In section 3.1, the Inception V3 architecture is introduced; this Convo-
lutional Neural Network reported good performance both in the ImageNet
2012 visual recognition challenge (see [11]) and, after a fine tuning on the
SEM_Dataset, in classifying the SEM images (as described in [3]). It is known
that the last layers of a Deep NN provide high-level features of the input data,
features learned using labelled data during the supervised training phase.
The first step in the feature learning process is performed considering the
outputs of the final part of this deep CNN.
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To shrink the space where the data lie even further, it is possible to choose
between various dimensional reduction tools. Models that seem particularly
suited for the task are undercomplete autoencoders. Section 3.2 is devoted
to describe this special class of Neural Networks. Moreover, a python im-
plementation using TensorFlow is presented and the results of the training
phase are discussed.

The size of the space where to project the data has to be chosen carefully,
if it is too big the important features of the dataset are not accentuated; on
the other hand, if it is too small the projection results in a loss of information.
Thus, it is fundamental to understand the Intrinsic Dimension of the dataset.
This is done in section 3.3.

The results achieved combining the above tools are collected in section 3.4.
In particular, the heatmaps of the distances of a data sample are presented
and their correlation to the classification in 10 categories is scored.

3.1 Supervised Feature Learning via CNNs
Images can be seen as two dimensional arrays of pixel brightness. Thus, as-
suming all images to have the same size, our dataset can be seen as a cloud
of points in a space of dimension 1024 x 768. Whatever p-norm distance in
this space would compare the values for each dimension, that is the bright-
ness values pixel by pixel. These intensity-based distances do not lead to
meaningful information; dark images will be closer to each other than to a
bright one, no matter what they are representing. Neither is useful, for the
nature of the problem and the data considered, to compare the brightness
local behaviour at each pixel (as the CW-SSIM [9] do). What is needed is to
compare the features characterizing the represented objects.

To detect patterns within data (i.e. common features in the images) in
such a high dimensional space is not an easy task due to the so called curse
of dimensionality ; the presence of unspecified structures in an inflated high-
dimensional space can be hard to spot because of the inherent sparsity of the
data.

For the reason above, a complete unsupervised approach for feature learn-
ing was abandoned, leaning toward a supervised solution, namely a pre-
trained Convolutional Neural Network designed for image classification.

It is commonly understood (see for example [12]) that the first layers of
deep CNNs learn to detect local low level features; minor details like edges,
dots or circles. Moving deeper in the network, the units learn meaningful
combinations of lower level features producing higher level of abstraction.
Therefore, the output of the last layers of a network quantify the presence
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in the input data of certain high level features learned in the training phase
(thus specific to the dataset used). These values are then normalized by a
softmax layer to provide a probability for each class. Hence, for the purpose
of extracting features, the layers immediately before the softmax are the most
interesting ones.

3.1.1 The Inception V3 architecture

The architecture chosen is Inception V3, a heavily engineered CNN (see fig-
ure 3.1 for a schematic representation) designed to predict the 1001 classes of
the ImageNet ILSVRC 2012 classification challenge (check [13] for more de-
tails about the dataset, the classes and the challenge results). Presented
in 2015 in [11], it is the third version of a network popularly known as
GoogLeNet. The core idea under this family of networks is the inception
module: it consists of parallel convolutional layers of different kernel sizes
that improve the ability of the network to detect efficiently features of objects
having different sizes. The benchmarks of Inception V3 on the ImageNet
2012 validation set report astonishing results: 78.0% of Top 1 accuracy and
93.9 of Top 5 accuracy [14].

Figure 3.1: Inception V3 architecture1.

Although Inception V3 is not the architecture performing the best on
the ImageNet dataset, it was chosen in accordance with the previous works
legacy. In [2] the model trained on ImageNet was modified by substituting
the last fully connected layer with a smaller one according to the classifica-
tion problem, thus passing from an output dimension of 1001 to 10. While
almost all the weights of the network were left untouched, the new layers were

1Image retrieved from https://cloud.google.com/tpu/docs/inception-v3-advanced.
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retrained on 80% of SEM_Dataset (the rest of the dataset was equally split
in test and validation sets). Using this technique, called transfer learning,
an average train accuracy on the test set of 86.2% was reached. An improve-
ment in accuracy was obtained later on in [3] via fine tuning; a technique
where the retraining part involves all layers of the network. In this case, no
layer has been modified. As the network architecture is kept unchanged the
prediction consists of 1001 values where only the first 10 have meaning for
the SEM classification problem. The reported average accuracy on the test
set during the fine tuning is 96.7%.

3.1.2 Feature Learning methods

At this point two different approaches can be considered:

• to reuse the model after fine tuning on SEM_Dataset thus expecting a
strong correlation between the features analyzed and the classification
in 10 classes;

• or to consider the model trained only on ImageNet and observe general-
purpose features learned on a sheer dataset with a great number of
classes.

Both procedures suggest interesting perspectives. In the first case the outputs
will be distributed with a strong bias towards the 10 classes of SEM_Dataset
so it is more suitable for an analysis of possible hierarchical trees of sub-
classes. On the other hand, the second method reveals the presence of hidden
structures in the dataset. Indeed, although it cannot be considered purely
unsupervised feature learning it is still dataset independent.

The TensorFlow inference graph of Inception V3 trained on ImageNet is
easily obtainable as a binary ProtoBuf file from the TF-Slim API [14]. In the
same document is explained how to update the model weights from training
checkpoints. Luckily, the checkpoints of the fine tuning on SEM_Dataset were
available, thus it was possible to perform inference on the images with the
very same model trained in [3].

An analysis of the final part of the Inception V3 architecture (immedi-
ately after the last inception module) is necessary to understand where to
search for interesting features. The input tensor has shape 8x8x2048; still too
big but it is immediately reduced by the average pooling layer to 1x1x2048.
The following layer is a dropout thus, during the inference phase, it acts
just like the identity. At this point a last fully connected layer shrinks the
tensor dimension further to 1001. This tensor quantifies the presence of the
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training classes in the input data, and it is squashed by the softmax func-
tion in order to extract a probability distribution over the different classes.
To summarize the above analysis, there are two tensors it makes sense to
analyze: the output of the last fully connected, which provides information
of the 1001 highest level features, or its input, that exhibits a slightly lower
level of abstraction considering 2048 features.

Model
Layer Dropout Fully connected

Training on ImageNet 2012 1u-2u_2048in 1u-2u_1001in

Fine tuning on SEM_Dataset 1u-2u_2048ft 1u-2u_1001ft

Table 3.1: Names of the dataset obtained from 1u-2u by the four supervised
feature learning procedures.

In the framework of the thesis, four different feature learning procedures
have been analyzed: using 2 models of the same architecture (the one trained
on ImageNet and the one fine tuned on SEM_Dataset) and considering 2 dif-
ferent tensors (Logits/Dropout_1b/Identity:0, the output of the dropout
layer, and Logits/SpatialSqueeze:0, the squeezed output of the last fully
connected). Each procedure generates different outputs thus, as reported in
table 3.1, four dataset were produced from 1u-2u.

3.2 Autoencoders
The feature learning methods explained in the previous section produce
dataset with still a high dimensionality; to be specific they count 2048 and
1001 features. There is a wide range of techniques to perform feature pro-
jection in lower dimensional spaces: from linear methods like Principal and
Independent Components Analysis to nonlinear ones like Isomap, autoen-
coders, and much more. The best technique to adopt depends strongly on
the dataset. For example, linear methods are really fast but they could be
a non optimal choice when dealing with real data, as real data are likely
to be disposed on nonlinear manifold (figure 3.2 shows how confusing can
be selecting the principal components within the 2048 features of dataset
1u_2u_2048in). On the other hand most of the nonlinear techniques are
expensive in terms of computations and memory usage (see [15] for a com-
parative review of various techniques).

One way to perform nonlinear dimensionality reduction without requiring
a lot of memory is using autoencoders. These are special neural networks
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Figure 3.2: The PCA scree plot of the 1u_2u_2048in dataset. Two faint
elbows are detected at 5 and at 12 components.

with numerous applications but mainly employed for features detection and
dimensionality reduction. The idea behind autoencoders can seem quite triv-
ial but turns out to be really powerful: to learn to reconstruct the identity
map. To be more specific an autoencoder is composed by two symmetric
modules of dense hidden layers. The first module (called encoder) trans-
forms the input data in codings while the second one (the decoder) try to
reconstruct the original inputs. Each layer of the encoder module has a cor-
responding one in the decoder with reversed number of inputs and outputs.

For the purposes of dimensionality reduction, the number of units per
layer decreases moving forward in the encoder, reaches a minimum in the
codings layer, and increases symmetrically in the encoder as shown in figure
3.3. In this case the autoencoder is said to be undercomplete. For more
information about autoencoders, their various applications, and their imple-
mentation in TensorFlow refer to chapter 15 of [16].

Depending on the complexity of the problem to solve, the depth of an
autoencoder can vary. It has been proven that if the encoder consists of
a single layer with linear or sigmoid activation function then the optimal
solution of the autoencoder is equivalent to a PCA. The more layers are
added, the more meaningful could be the optimal solution. Nevertheless
too many variables could lead to undesired over-fitting behaviours (i.e. the
network memorizes every single training input). There is no rule to get an

3Image retrieved from https://towardsdatascience.com/applied-deep-learning-part-3-
autoencoders-1c083af4d798.
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Figure 3.3: Schematic structure of an undercomplete autoencoder3 highlight-
ing the units in each layer.

optimal number of hidden layers and number of units per layer but a balance
between the number of variables and the size of the training set is needed.

3.2.1 Tying weights

A common technique adopted to reduce the memory footprint of the autoen-
coder is to tie the weights of the encoder layers to the weights of the decoder
layers. Suppose to have N hidden layers, where L1 is the first hidden layer of
the encoder, LN/2 is the code layer, and LN is the output layer. Each hidden
layer is fully connected, thus respects the following rule:

Li(xi) = σi(Wi · xi + bi) for each i = 1, . . . , N ,

where xi is the input of Li, Wi is the weights matrix, bi is the bias vector,
and σi is the activation function. The symmetry hypothesis on the layers
implies that the sizes of corresponding layer have to agree, that is size(Wi) =
size(W t

N−i+1) for each i in 1, . . . , N . To tie the weights of the i-th layer means
to impose

WN−i+1 = W t
i .

It is easy to see that this strong constraint reduces enormously the number of
parameters to optimize reaching, when applied to all the hidden layers, half of
the parameters. This technique is not used only for diminishing the memory
footprint of the autoencoder but also because it has a strong regularization
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effect, avoiding singular behaviours where the weights of the encoder and
decoder are highly unbalanced.

3.2.2 Training phases

Autoencoders are feed-forward networks where the training is usually achieved
by minimizing via back-propagation the deviation of the output from the in-
put. Typically the loss function is computed using the mean square error:

Loss(x) = MSE(x− x′),

where x is an input data and x′ is its reconstruction, i.e. the output of the
autoencoder. When dealing with deep autoencoders (having more than a
single encoding layers) the training phase can be performed in a different way:
the multiple hidden layers are consider as stacked single layer autoencoders
where each autoencoder takes the inputs from the codings of the previous
one. To be more specific, the training of a deep autoencoder with N hidden
layers can be performed training the layers pairwise from the outer layers
(L1, LN) to the inner ones (LN/2, LN/2+1). In successive training phases, two
hidden layers (Li, LN−i+1) are considered as a single autoencoder and are
trained on data xi computed in a recursive fashion:

xi := Li−1(x
i−1), where x1 := x.

At the end of each training phase the parameters of the two layers are stored
and the codings of all input data are computed and memorized in order to be
used in the next phase. Although this training technique seems more complex
than training the whole deep autoencoder in one go, it is often much faster.

3.2.3 TensorFlow implementation

For the sake of completeness, the original interface used to implement deep
autoencoders in the rest of the project is documented here.

class autoencoder_3MPL (n_inputs, n_hidden = [100, 20, 3],
tie_weights = [False, False, False], activation_f = tf.nn.elu,
learning_rate = 0.001, l2_reg = 0.001, root_logdir = ’/tmp/’,
name = None)

This class creates a TensorFlow graph implementing a deep autoencoder
with 6 hidden layers. Although the depth is fixed, all other parameters can
be easily set.
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Parameters

n_inputs : int
Number of units in the input layer.

n_hidden : array-like of int (default = [100, 20, 3])
Number of units to use in the first 3 hidden layers.

tie_weights : array-like (default = [False, False, False])
Specifies if the weights of the paired layers are tied. The pairs are
considered in the following order: innermost layers, second and fifth
layers, outermost layers.

activation_f : callable or iterable (default = tf.nn.elu)
Specifies the activation function for each layer. If a single callable is
passed then it is set on all hidden layers except for the output layer that
remains linear. If the iterable length is not 6, a warning is printed and
the default option is considered.

learning_rate : float (default = 0.001)
The learning rate for the training phase.

l2_reg : float (default = 0.001)
The L2 regularization rate to apply during the training phase.

root_logdir : string (default = ’/tmp/’)
The path where a sub directory containing the training records is created.
The sub-directory is named after the model name and the creation time.

name : string (default = None)
The name of the model. If None, the model is named after the chosen
architecture.

Methods

train (inputs, n_epochs = [5, 5, 5, 5, 10], order = (’g’),
batch_size = 150, summary_step = 0)

Trains the autoencoder to reconstruct the input data. The training phases,
their order, and the number of epochs they have to perform can be specified.
Table 3.2 shows the available phases and their labels.

inputs : array-like, shape = (n_samples, n_features)
Training data.
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Phase Hidden layer
label 1 2 3 4 5 6
1_a X X
1_b X X
1 X X X X
2 X X
g X X X X X X

Table 3.2: Hidden layers involved per training phase

n_epochs : array-like (default = [5, 5, 5, 5, 10])
Number of epochs for each training phase considered in the following
order: 1_a, 1_b, 1, 2, g.

order : array-like (default = (’g’))
Specifies the training phases to perform and their order. For
example (’g’) performs a global phase only, while (’1_a’, ’1_b’, ’2’)
performs the training in a stacked autoencoder fashion. The phases
can be repeated and performed in whatever order but they are
subject to the number of epochs specified in n_epochs.

batch_size : int (default = 150)
Size of the batches considered in the training. A big batch size
entails a faster but less accurate training.

code (inputs)

Encodes the input data.

inputs : array-like, shape = (n_samples, n_features)
Data to encode.

Returns
coded : array-like, shape = (n_samples, n_coded_features)
Encoded data.

decode (inputs)

Decodes the input data.

inputs : array-like, shape = (n_samples, n_coded_features)
Data to decode.
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Returns
decoded : array-like, shape = (n_samples, n_features)
Decoded data.

reconstruct (inputs)

Reconstructs (i.e. encodes and decodes) the input data.

inputs : array-like, shape = (n_samples, n_features)
Data to reconstruct.

Returns
outputs : array-like, shape = (n_samples, n_coded_features)
Reconstructed data.

load_weights (model_root_logdir, deepcopy = True)

Loads the parameters (weights and training records) of a previously trained
model.

model_root_logdir : string
Path where to find the training records.

deepcopy : booleand (default = True)
If True, all the training records are copied in the model directory. If
False, the model directory is changed to model_root_logdir; every
further training will modify the previous checkpoint.

info (verbose = False)

Print the model information.

verbose : boolean (default = False)
If False, prints the name of the model only. Else, prints all the
model information, including the training history.

3.2.4 Grid search

In the following section 3.3 the Intrinsic Dimension of the 4 datasets is com-
puted (or at least bounded) providing an idea of how much the representation
of the data can be reduced in the codings layer. Once the inputs and the
codings dimensions are known, there are a lot of other parameters to set
properly. There is no rule here to follow, thus a grid search on various sets
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of parameters helps to select them satisfactorily. The scoring criterion is to
minimize the reconstruction error (i.e. MSE(x,x′) where x belong to a test
set not used in the training). In the following the sets of parameters used to
build and train the grid search models are discussed.

• Number of inputs: Depending on the dataset it could be 1001 or 2048.

• Units in hidden 1: In a range between 600 and 200.

• Units in hidden 2: In a range between 200 and 50.

• Units in hidden 3 (codings dimension): Depending on the dataset it
could be 10, 13, or 18. How to compute these numbers is explained in
section 3.3.

• Tied layers: Empirically was shown that tying the inner layers does
not achieve better performance, thus the only combination considered
were without tying and tying just the outer layers.

• Training phases: Different training solutions were tested: block by
block, global and mixed. The blockwise training is faster than the
global training. But the depth of the network and the small number of
units per hidden layer makes the gain in run time irrelevant compared
to the loss in accuracy.

• Activation functions: Various combination of elu, tanh, and sigmoid
functions were tested. In every case the best performing was applying
the elu function on all layers but the output, left linear.

• Batch size: After a few tests the batch size was fixed at 300 to balance
the time required for the training and its accuracy.

• Learning rate: The learning rate was set at 0.001. With smaller rates
the convergence is slow, while higher rates entail a great risk to anni-
hilate the weights and to fall into the local minimum where all data
points are projected in their geometric center.

The models minimizing the reconstruction error in the grid search were
applied to reduce the dimensionality of the 4 datasets. Their parameters are
summarized in table 3.3.
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Input N. N. units N. units Codings Output
Dataset inputs hidden1 hidden2 Dimension Dataset

1u-2u_1001ft 1001 T500 150 10 1u-2u_1001ft_10

1u-2u_2048ft 2048 T500 200 13 1u-2u_2048ft_13

1u-2u_1001in 1001 500 200 18 1u-2u_1001in_18

1u-2u_2048in 2048 T400 150 18 1u-2u_2048in_18

Table 3.3: Parameters minimizing the reconstruction error on the test set.
The ’T’ character indicates that the corresponding pair of hidden layers are
tied.

3.3 Intrinsic Dimension
Understanding the dimension of the manifold where the data lie is fundamen-
tal to obtain a reduced representation without loosing essential information.
Ideally, the dimension of the space where to project the data should be greater
than or equal to the intrinsic dimensionality of the data.

3.3.1 The 2-NN algorithm

An efficient way to compute the Intrinsic Dimension (ID) of the data is using
the so called 2-NN (here NN stands for Nearest Neighbors) algorithm recently
presented in [17]. To outline briefly the algorithm, the main steps are listed
with a python implementation:

1 import numpy as np
2 from sk l e a rn . ne ighbors import NearestNeighbors
3 from sk l e a rn . l inear_model import L inearRegre s s i on
4

5 de f compute_ID (X) :
6 ’ ’ ’ X: array− l i k e o f shape (n\_samples , n\_features ) ’ ’ ’
7 N = X. shape [ 0 ]

1. For each data find the distances r1 and r2 of two Nearest Neighbors.
1 ngbr = NearestNeighbors ( n_neighbors=3,\
2 a lgor i thm=’ kd_tree ’ ,\
3 n_jobs=−1) . f i t (X)
4 nn_distances , nn_indices = ngbr . kne ighbors (X)

2. For each data in i = 1 . . . N compute µi = r1
r2

1 mu = nn_distances [ : , 2 ] / nn_distances [ : , 1 ]
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3. Sort in ascending order the values of µ via a permutation σ and define
F emp(µσ(i)) :=

i
N
.

1 i_sorted = np . a r g s o r t (mu)
2 F_emp = np . z e ro s (N, dtype=f l o a t )
3 F_emp[ i_sorted ] = [ i /N f o r i in range (N) ]

4. Return the slope of the homogeneous linear fit of the points having
coordinates {(log(µi),− log(1− F emp(µi)), i = 1, . . . , N}.

1 x = np . l og (mu) . reshape (−1 ,1)
2 y = −np . l og ( 1 . − F_emp) . reshape (−1 ,1)
3 l = LinearRegre s s i on ( f i t_ i n t e r c e p t=False , n_jobs=1) . f i t (x , y

)
4 re turn l . coef_ [ 0 , 0 ]

It is worthy to analyze the time complexity of the above implementation of
the algorithm. The most expensive part in terms of run time is certainly
the search of the 3 nearest neighbors (NN) in the first step. Indeed step 2,
3, and 4 have linear time complexity (the least squares Linear Regression is
applied on 2 coordinates only). On the other hand the fit method of the
NearestNeighbors class builds a k-d tree, which already has O(N logN)
complexity, and the kneighbors performs 3 NN searches for each of the
N data. The complexity of a single NN search on a k-d tree depends on
the distribution of the data but, on average, can be considered logarithmic.
Therefore, the overall time complexity of the algorithm is O(N logN).

Before applying the above ID estimator to the four datasets, it is impor-
tant to call the attention to some observations about the algorithm. First of
all, the theoretic machinery behind the 2-NN method requires the dataset to
be locally uniform in density. Although it could seem a strong hypothesis, it
involves just the first 2 neighbors of each data point and, empirically, it has
been shown that the estimator stands small density perturbations.

Another thing to take care about is that the estimation of the linear fit
parameters is heavily affected by outliers. These correspond to data where r2
is much bigger than r1. Hence, to reduce their effect in the linear regression,
it is better to discard the points of the plane having big abscissa. In [17] the
authors suggest to take into account only the first 90% of the points.

Moreover, the estimation of the dimension can be altered by the pres-
ence of noise in the data. For example figure 3.4 represents two samples of
a uniform distribution along the x axis (between 0 and 100) with a small
gaussian noise on the y axis (µ = 0 and σ = 0.001). The two samples differ
by the number of points: there are 50000 blue points and 1000 orange points.
Clearly, more points are drawn, thicker is the line. The linear fit of the two
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samples changes dramatically: in the first case (blue points) the slope is close
to two while in the second case (orange points) the slope is around one.

Figure 3.4: Intrinsic dimension of two sampling of the same distribution.
The estimated dimension of the orange line is 1 while for the thick blue line
it is close to 2.

A best practice to avoid this effect is to analyze how the estimated ID of
data samples varies with their sizes. As shown in figure 3.5, a plateau should
be found where the estimation reaches the ID of the data distribution.

Figure 3.5: Estimated ID of thick line with increasing sample sizes. The
plateau can be found around one, that is the expected dimension of a line.

3.3.2 ID of the 4 datasets

As explained in section 3.1, the data produced by the CNN fine tuned on
SEM_Dataset are expected to be more structured than the ones coming from
the CNN trained on ImageNet. That is mainly because the last layer of
the network, during the fine tuning, learned to activate only the 10 units
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corresponding to the 10 labelled classes. Thus, it is right to assume the di-
mensionality of 1u-2u_1001ft to be at most 10 and that it slightly increases
when considering a lower level of abstraction as in 1u-2u_2048ft. On the
other hand the data points produced by the network trained exclusively on
ImageNet should have less constraints as the last layers units are activated
by more general features.

Figure 3.6 shows the fitting functions in the four datasets. In each case
the fit is performed thrice: the yellow line fits the totality of the points, the
green line is computed discarding the last 10%, and the red line fits just the
first half of the points.

Figure 3.6: Linear fit for the 4 datasets. In each case three linear fit are
shown: considering the totality of the points, the first 90%, and the first
half.

One can clearly see that in all cases the blue curve has a heavy tail.
Thus, the ID computed without discarding the outliers is too low and it
is not reliable. Moreover, while in the upper left graph (corresponding to
1u-2u_1001ft) the slopes of the green and red lines are close, in all the
other three cases there is a substantial discrepancy.

The results presented in figure 3.6 consider the whole datasets. As said

28



above, to perform a more accurate analysis, it is necessary to take into ac-
count samples of different sizes.

Figure 3.7: ID of different samples of the 4 datasets varying the sample size.
Each dataset is represented by a color and the brightness corresponds to the
percentage of points used in the linear fit.

Figure 3.7 summarizes the results produced by sampling each datasets and
averaging the outputs of the 2-NN estimator on various samples of the same
size. Each color characterizes a dataset: the green and red curves correspond
to the datasets obtained via fine tuning while the blue and orange curves
correspond to the datasets produced by the CNN that has never seen the
images in images_flat. The three brightness level appearing for each color
are related to the number of points considered in the linear fit: 90%, 70%,
and 50%.

Although this exploration provides more information on the datasets,
it does not present more meaningful insights than figure 3.6. As antici-
pated, the most clear results comes from 1u-2u_1001ft. Indeed the red
curves show an evident plateau around 9. The green curves (corresponding
to 1u-2u_2048ft) are not so close to each other but a constant behaviour
around 12 can be observed when considering the 70% fit. Completely differ-
ent situation is the one depicted by the blue and orange curves: there is no
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constant behaviour at all. One can only observe that the estimation of the
ID for samples of interesting sizes can be bounded above by 18. The above
analysis led to consider the codings dimensions reported in table 3.3 of the
previous section.

3.4 Distances
Combining the tools presented in the previous sections, the representation of
the images can be drastically reduced. Indeed, by applying a truncated NN
the number of features considered is 1001 or 2048 (depending on the level
of abstraction chosen), then it is dropped further by an autoencoder to a
number greater than the ID of the dataset.

A way to evaluate if the above features extraction methods provide mean-
ingful information with respect to the previous classification in 10 categories,
is to analyze and compare the distances between certain data points. To be
more specific, between labelled images one can define a discrete distance:

ddisc(xi, xj) = δli,lj ,

where li is the label of the image xi. Therefore ddisc can be compared with
the distance obtained via one of the features extraction method.

Figure 3.8: ddisc heatmap.

Porous_Sponge 20
Patterned_surface 70

Particles 46
Films_Coated_Surface 20

Powder 20
Tips 35

Nanowires 94
Biological 29

MEMS_devices_and_electrodes 78
Fibres 19
Total 431

Table 3.4: Number of samples per
category.

In the following, a sample of the labelled images in 1u-2u is considered.
This set, containing 431 data, is obtained in a non-uniform way apt to balance
the categories distribution (see table 3.4). The images are sorted by category,
thus the heatmap of ddisc on this sample shows black squared block on the
diagonal representing the zero distance pairs within the same category.
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Figure 3.9: Heatmaps of the distances obtained via the fine tuned CNN. The
captions recall the method used and indicate the correlation index with ddisc.

In figure 3.9 the heatmaps of 4 distances computed on the same sam-
ple via the fine tuned CNN are displayed. In the left column the distances
are computed on the data before applying the autoencoder while the right
column displays the distances between the same sample after the dimen-
sionality reduction. In all the cases the block structure characterizing the
discrete distance is quite evident and seems to became more definite moving
from left to right in the same row. This observation is verified by looking at
the correlation index between those distances and ddisc; it increases after the
dimensionality reduction.

As expected the block structure almost disappears considering the out-
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Figure 3.10: Heatmaps of the distances obtained via the CNN trained on
ImageNet. The captions recall the method used and indicate the correlation
index with ddisc.

puts of the CNN trained only on ImageNet. But, surprisingly, the correlation
index between ddisc and the distances of the data points after the feature re-
ductions is higher in both cases. In particular, the result obtained in the case
considering the lower level of abstraction is impressive: the correlation index
after the dimensionality reduction increases of the 67%, reaching 0.32.
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Chapter 4

Clustering Analysis

Once a distance between the images in the 1u-2u dataset is defined, Clus-
tering Analysis can be performed. Although several different algorithms can
be found in literature, this chapter focuses just on two of them: section 4.1
discusses the agglomerative clustering (introducing four linkage criteria) and
section 4.2 is dedicated to Density Peaks. In each section these algorithms
are briefly described and their results on artificial datasets (figure 4.1) are
analyzed.

Due to the great amount of images contained in 1u-2u it is impossible
to validate a clustering analyzing one by one the label assigned to each im-
age. Thus, an automatic way to score how good an algorithm performs on
the dataset is needed. Moreover, it is important to score the similarity of a
clustering solution against the classification in 10 categories. This problem
is faced at the end of the chapter. Section 4.3 provides the reader with the
tools to understand the evaluation criterion used. It introduces the Nor-
malized Mutual Information score and provides some examples of how this
score works. Finally, for each distance defined in chapter 3, the clustering
algorithms studied in the previous sections are applied to the dataset 1u-2u.
The consequent scores are presented and commented in section 4.4.

4.1 Hierarchical Agglomerative Clustering
The idea behind hierarchical agglomerative clustering algorithms is really
intuitive: at the beginning all data points are considered to be singleton
clusters, then, at each step, the closest clusters are merge together and, the
algorithm ends when a single cluster is formed.

The above algorithm depends completely on the choice of the linkage
criterion, that is the distance between clusters considered. Although it has
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to derive from the distance between the data points, there are several ways
to define it. In the following, some of the most common criteria are defined.

Let X be a set equipped with a distance d between its elements, C and
C ′ two disjoint subsets of X (two clusters), then:

1. The single linkage is defined by

d̃(C,C ′) = min
x∈C, y∈C′

(d(x, y)).

2. The complete linkage derives from

d̃(C,C ′) = max
x∈C, y∈C′

(d(x, y)).

3. The centroid linkage can be defined if X ⊂ Rn and d(x, y) = ||x− y||2
as

d̃(C,C ′) = ||xC − xC′ ||2,
where xC is the centroid of C.

4. The Ward linkage is defined recursively. Based on the fact that the
distance between two singleton clusters is d, the distance between a
newly formed cluster Ĉ, obtained merging the clusters C and C ′, and
a cluster D is

d̃(Ĉ,D) =

√
|D|+ |C|

T
d(D,C)2 +

|D|+ |C ′|
T

d(D,C ′)2 − |D|
T
d(C,C ′)2,

where T = |D|+ |C|+ |C ′|.

To better understand the differences between these clustering algorithms,
it is useful to compare their solutions and their performances on synthetic
datasets. The first four columns of figure 4.1 show the clustering obtained
by the above linkages on 2D artificial dataset and, for each case, the running
time is provided. Observing the images in the first two rows, the single
linkage is the only linkage between the ones analyzed able to detect the non-
convex clusters. On the other hand, it does not perform well on dataset
with noisy clusters, as shown by the results in the third row; in this case the
Ward method provides the best result. All the algorithms detect successfully
separated globular clusters (fifth row), but when the distances between the
clusters are small they all perform poorly. The last row could seem a trivial
case but it highlights the "rich get richer" behaviour of the single linkage.
This is common behaviour to almost all linkages except for the Ward linkage
that has a strong bias toward globular clusters and generally provides more
balanced solutions.
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Figure 4.1: Comparison of the solutions and of the running time of the
five clustering algorithms used in the thesis on 2D artificial datasets with
different shapes. The datasets are generated by the sklearn.datasets [18]
utilities and count 3000 points each. Note that the number of clusters the
algorithms had to provide was fixed for each dataset: 2 for the first two
rows, 3 in all the other cases. The first four columns correspond to the
agglomerative clusterings produced by different linkages while the last column
reports the solutions obtained by Density Peaks. In the last case the black
points represent the cluster centers.
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4.2 Density Peaks
The second algorithm studied is a density based clustering algorithm called
Density Peaks. This section sketches the main idea behind this algorithm
while the full details can be found in [19].

The core concept in Density Peaks is that, as clusters should be formed
by objects that are close to each other, the objects density should be higher
in the center of a cluster and lower at its border. Therefore, cluster centers
can be thought to be peaks of the density function.

Following this idea the search for the cluster centers starts considering all
the local maxima of a density function. It is unlikely that two density peaks
that are close to each other form two different clusters. Thus, cluster centers
are considered to be elements that are peaks of high density and lies far from
the nearest element with an higher density.

Once the cluster centers are identified, the label assignation starts from
them and goes trough every element following the slopes of the density func-
tion.

Density Peaks reported astonishing results in detecting both convex and
non-convex clusters also in presence of background noise [19]. Indeed, by
modifying slightly the algorithm, the background noise can be recognized
and discarded. Anyway, the implementation presented below and used in
the thesis does not consider the noise detection.

Although Density Peaks is able to identify clusters of various shapes, it
performs poorly on extended distributions of points with uniform density.
Consider for example the first dataset presented in figure 4.1. The inner ring
has higher density than the outer one and the two peaks with highest density
lie on it. Although these two points are connected by a path of similar high
density, their are quite far from each other. On the other hand, the highest
peak in the outer ring has much lower density and its nearest element with
a higher density lies in the inner ring. Hence, it has low density and its
distance to the nearest denser element is comparable to the distance between
the two rings. Therefore, the assignation of the two cluster center goes to
the two highest peaks, and so Density Peaks is not able to distinguish the
two rings.

To prevent the behaviour described above, the authors are releasing a
new version of the algorithm [20]. In the assignation of the cluster center, it
discards peaks connected by a path of similar density rewarding peaks that
are separated by low density regions. In this way it avoids to split clusters
with uniform density.
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4.2.1 Implementation

The implementation of the Density Peaks algorithm used in the thesis re-
traces an idea suggested by G. Sanna (personal communication, September
2018). The core of the algorithm is to construct the array nearest_denser
containing for each element the index of its nearest element with higher den-
sity. This can be computed in two steps:

1. Find the local density peaks;

2. For each peak find the nearest element with higher density.

Both steps can be faced using a k-Nearest Neighbor algorithm. In the first
one, the density of each element is compared to the densities of its k-nearest
neighbors. For each element, the index of its nearest neighbor with higher
density is stored on nearest_denser. Thus, the indices of the local density
peaks are the ones where nearest_denser coincides with the identity.

Once the local peaks are identified, their nearest denser must be found.
For each local peak its density is compared to the density of all the elements
sorted by distance from it. Computationally, this is the most expensive part
as it requires O(PN log(N)), where N is the total number of elements and
P the number of peaks. A small trick can reduce the computational cost:
instead of considering all the elements it takes into account only the elements
having density higher than the lowest peak. The benefit of this trick depends
enormously on the dataset, the density function, and the number of neighbors
considered. Although no statistical study has been conducted, in some cases
faced in the thesis it reduced N by almost two order of magnitude.

To proceed to the labels assignation one has to select the cluster centers.
In [19] this is done by looking at a decision graph. This procedure can be
naively automatized, requiring just the number of clusters to consider. This
is done by sorting the elements in decreasing order by the product of their
density and their distance to the nearest element with higher density. The k
cluster centers will be the first k elements.

Although Density Peaks is not a hierarchical clustering, the above crite-
rion to detect the cluster centers transform it in a divisive top-down cluster-
ing: passing from k clusters to k + 1, one cluster is split in two.

In figure 4.1 a comparison of the running-time of the clustering algorithms
studied in the thesis is presented. In every datasets analyzed the above
implementation of Density Peaks is faster than all the other agglomerative
clustering.
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4.3 Scoring the results
How to score the similarity of two clustering is a widely studied problem and
numerous measurements are available in literature. Clearly, the focus of these
measures is not on the labels provided by an algorithm but on the partition
of the data it induces. Indeed a permutation of the labels in a clustering
solution does not change the structure of the clusters. That is why, in this
section, the terms clustering and partition will be used interchangeably.

A scoring coefficient that seems particularly suited for the task of this
chapter is the Normalized Mutual Information. Informally, the normalized
mutual information measures the quantity of information that two partitions
share. The formal definition follows.

4.3.1 Normalized Mutual Information

The normalized mutual information coefficient is based on the notion of en-
tropy. Let X be a set of objects and C = {C1, . . . , Ck} a partition of X, the
entropy of C is defined as

H(C) = −
k∑
i=1

P (Ci) · log2(P (Ci)), where P (Ci) =
|Ci|
|X|

.

Intuitively, the clustering entropy measures the uncertainty of the cluster
assignation of an element x ∈ X. For example, consider the case where C is
composed by k evenly balanced cluster. In this simple example the entropy
is log2(k) thus it is zero when there is just one cluster (no uncertainty) and
it increases with the number of clusters.

Consider now a second partition C ′ = {C ′1, . . . , C ′l} of X. In order to
measure the similarity of the two partitions one can ask how much of the
entropy of C ′ can be explained by the entropy of C. Formally, the mutual
information is defined as

I(C, C ′) = H(C, C ′)−H(C|C ′)−H(C ′|C), (4.1)

where H(C, C ′) is the entropy of the partition obtained considering the inter-
sections of the clusters in C and C ′, and H(C ′|C) is a weighted average of the
entropy of the partitions induced by C ′ on each cluster of C. By computing
each term, equation 4.1 can be rewritten in a more common form

I(C, C ′) =
k∑
i=1

l∑
j=1

P (Ci, C
′
j) · log2

( P (Ci, C
′
j)

P (Ci) · P (C ′j)

)
,
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where P (Ci, C ′j) is the joint probability of Ci and C ′j.
A flaw of the mutual information is that, in general, the score is higher for

partitions with a larger number of clusters independently of the information
they share. In order to standardize the score, a normalization is usually
considered. The score used in the thesis is obtained normalizing I by the
geometric average of the entropy of the two partitions. That is,

NMI(C, C ′) = I(C, C ′)√
H(C) · H(C ′)

.

To conclude, it is worth to recap some of the properties that make the nor-
malized mutual information score a good measure for comparing clustering
solutions.

• It is symmetric, i.e. NMI(C, C ′) = NMI(C ′, C).

• It is bounded 0 ≤ NMI(C, C ′) ≤ 1 and, higher is the score more infor-
mation are shared by the partitions considered:

1. NMI(C, C ′) = 0 if, and only if, for every Ci ∈ C and C ′j ∈ C ′, Ci
and C ′j are statistically independent;

2. NMI(C, C ′) = 1 if, and only if, C = C ′.

4.3.2 Examples

To understand properly how the NMI score works it is better to apply it to
a simple case. Consider an ordered set of 100 elements and define, for each
1 ≤ k ≤ 100, a partition Ck assigning progressively k labels to the elements.
Thus, each Ck evenly split the set in k clusters and, up to a permutation of
the labels, the array representing the assignation of each element is,

labels(Ck) = [0, 1, . . . , k − 1, 0, 1, . . . , k − 1, . . .].

Figure 4.2 represents the 10× 10 matrices obtained reshaping in a row-wise
fashion the above array for 4 different values of k and assigning to each label
a different color. Let the partition C10 (represented in the figure by (A)) be
the ground truth to evaluate the other clusterings against. In this sense, a
partition having a good score against the ground truth would correspond to a
matrix where the color of a cell provides information about its column. The
partitions C5 and C20, represented in figure 4.2 by (B) and (C), are obtained
respectively by merging and by splitting the ground truth clusters. Thus
their NMI score against C10 is quite high. On the other hand, each cluster of
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Figure 4.2: NMI scores of four Ck partitions of a 10× 10 square against the
column-wise clustering (A). In order to ease the visual identification of the
clusters, (B) and (C) present respectively a permutation of the columns and
a permutation of the rows.
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the partition C7 (see matrix (D) in the figure) is split on all the columns and
on each column all the colors appear. No information on the column can be
deduced by the color of a cell, therefore NMI(C10, C7) is close to zero.

The fact that the partitions considered above have different number of
clusters should not surprise. Indeed, in what follows, the classification in 10
categories will be compared to hierarchical clustering and thus the number
of clusters should be considered as a variable.

Figure 4.3: The blue points in the graph correspond to NMI(C10, Ck) varying
k. These are bounded above by the score obtained in the best refinement
with k clusters and below by the expected score of clustering derived by a
uniform distribution of the k labels.

Forcing a little bit this purely artificial example, figure 4.3 shows how
NMI(C10, Ck) varies with k. The higher NMI scores are obtained when k is a
multiple of 10; that is because these case correspond to matrices where the
columns are perfectly split in even parts (like in figure 4.2 (C)). The orange
curve connecting these points has a smooth decreasing behaviour. On the
other hand, when k is prime to 10, the score of Ck against C10 coincides
with the expected score of a uniform distribution of the k labels over the
100 objects. Thus, the green curve should be considered as a baseline; every
result above it entails the presence of some meaningful information shared
between a partition and the ground truth. Clearly, the orange curve decreases
while the green curve increases as, for k = 100, they both degenerate in the
trivial partition, i.e. when every element forms a singleton cluster.

The important fact highlighted by the above example is that, when com-
paring two partitions with different number of clusters, the the NMI score
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should not be considered bounded by 0 and 1 as these bounds are shrunk.

A similar analysis can be done on the dataset 1u-2u. In this case, the
ground truth is provided by the classification in 10 categories derived from
SEM_Dataset. As reported in table 2.5, 1u-2u counts 7557 labelled data
and only the labels assigned to these images is considered when scoring a
clustering on 1u-2u.

Figure 4.4: Reference curves for the NMI score against the classification in
10 categories on the 1u-2u dataset computed using artificial partitions.

The labels of the 10 categories entail a partition in 10 clusters of the 7557
images. In a divisive way, artificial refinements of this partition were created
for each k > 10; they are constructed recursively following the idea that a
good scenario happens when at each step the bigger cluster of a partition
is evenly split into two clusters. The orange curve in figure 4.4 reports the
NMI scored by these refinements. On the other hand, the expected score of
partitions created by uniform assignations of the labels is drawn by the green
curve. It is important to highlight that those two curves do not represent the
bounds of the NMI score but they should be considered just as references.
One can easily consider partitions whose scores are represented outside the
area within the two curves. For example, the blue curve represents the score
achieved by the worst scenario considered; that is an orthogonal 1 assignation
of the k labels with respect to the 10 categories.

1Here the term orthogonal is used referring to the previous example. Indeed the lowest
NMI score against the column-wise clustering of the matrix in figure 4.2 (A) is achieved
assigning the labels row-wise.
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4.4 Scores on 1u-2u

In this section the scores obtained by applying the five clustering algorithms
on 1u-2u are presented. This is done considering one by one the four dis-
tances defined in section 3.4.

Figure 4.5: NMI scores of the clustering obtained by the five hierarchical
algorithms considered as a function of k, the number of clusters. Each of the
four distances defined in section 3.4 is considered in a distinct frame.

Figure 4.5 displays in each frame the results obtained by considering a
particular distance. The distances analyzed in the frames in the first row are
defined via the CNN fine tuned on SEM_Dataset, while in the second row
via the network trained to distinguish more general features on ImageNet.
In accordance with the analysis of the correlation with the discrete distance
done in section 3.4, the results in the top frames present a higher NMI score
than the ones in the lower frames.

Comparing the clustering algorithms within the same frame, one can
immediately spot some patterns. The worst scores are always obtained by
the single linkage (brown curve). An analysis of the clusters cardinalities
shows that this algorithm produces a big cluster and, increasing k, small
clusters or singletons are dropped form it. On the other hand, the complete

43



and Ward linkages (represented respectively by the cyan and red curves) as
well as Density Peaks (pink curve) behave similarly and present good results.
Actually, the last two produce almost identical scores in the first row. In this
case the distances are strongly biased towards the ten categories and both
algorithms show a peak in the score around 10. On the contrary, when the
distances are dataset independent the Ward linkage is the one performing the
best. In particular, when a lower level of abstraction is considered (bottom
right frame), a peak in the score can be spotted just before 10, although
there is no bias towards the 10 categories. Without any doubt, the most
impressive results in the first row are obtained by the centroid linkage (red
curve). Even thought for a small number of cluster (k < 70) its scores are
quite poor, they rapidly increase outperforming the results obtained by the
artificial refinements used as reference of good scores.
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Chapter 5

Conclusions

In this thesis different strategies to uncover intrinsic structures among the
images captured by SEM microscopes were analyzed. In particular, the ap-
proaches considered can be distinguished according to the images features
they are focusing on:

1. the 10 features corresponding to the categories of SEM_Dataset, learned
by training on SEM images;

2. the 1001 general features learned by training on the ImageNetdataset.

Moreover, in order to reduce the bias introduced in the supervised learning
phase, each approach was conducted observing not only the highest level of
abstraction but also a slightly lower one.

Clearly, the nature of the features analyzed influences heavily the results.
In the first case the structure of the classification in 10 classes is tangible
among the data (see the distances heatmaps illustrated in figure 3.9). On
the contrary, the second approach leaves other hidden patterns to emerge,
also if they are not consistent with the previous hand made classification.

Despite the huge differences between those two approaches, the thesis de-
picted a common procedure to pass from the features observed via supervised
learning to a clustering of the 1u-2u dataset. This fact is principally moti-
vated by exposition coherency. If the focus is set on the first approach only,
to perform a good unsupervised feature learning there would be no need to
compute the intrinsic dimension of the dataset in the features space and to
train an autoencoder. Indeed, in this case, a Principal Component Analysis
would produce even better results. On the contrary, as illustrated in figure
3.2, in the second approach a linear method for dimensional reduction is not
sufficient.

The results exposed in the last chapter, in particular figure 4.5, should not
be considered as mere evaluations of how the various clustering algorithms
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perform. Indeed there are two major observations that are worth highlight-
ing. The first one is a rough remark on the classification of SEM_Dataset:
although there is no direct relation between the general features provided
by ImageNet and its 10 features, the structures they induce on 1u-2u some-
how correlate. The second observation is specific to the results obtained in
the framework of the first approach: the centroid linkage achieves impres-
sive scores when the number of clusters is around 200. This result surely
deserves to be further analyzed in the future, as it is likely to produce a first
ready-to-use refinement of the classification in 10 categories.

The last remark increases the confidence that future developments of this
project can reach the goal of classifying the SEM images in a tree structure
of sub-categories without any further labelling effort. A possible direction
to follow is to repeat the above procedure (feature learning and subsequent
clustering) restricted to images belonging to the same category. In this case,
the number of the labelled images should be increased using the predictions
realized by the CNN in [1] (even though this model achieves a worse overall
accuracy than the one used in the thesis, its confusion matrix reports a better
accuracy on the less represented categories). Another aspect that should be
further studied in order to gain more insight about the hidden structures in
the dataset, is to extend the spectrum of different clustering algorithms ana-
lyzed, for example considering hierarchical DBSCAN and spectral clustering.
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