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Abstract

We explain some results of [16], discussed in our talk [13] in Pisa, February 2017. Consider an
n × n linear system of ODEs with an irregular singularity of Poincaré rank 1 at z = ∞ and
Fuchsian singularity at z = 0, holomorphically depending on parameter t within a polydisc in
Cn centred at t = 0. The eigenvalues of the leading matrix at ∞, which is diagonal, coalesce
along a coalescence locus ∆ contained in the polydisc. Under minimal vanishing conditions on
the residue matrix at z = 0, we show in [16] that isomonodromic deformations can be extended
to the whole polydisc, including ∆, in such a way that the fundamental matrix solutions and
the constant monodromy data are well defined in the whole polydisc. These data can be
computed just by considering the system at point of ∆, where it simplifies. Conversely, if the t-
dependent system is isomonodromic in a small domain contained in the polydisc not intersecting
∆, and if suitable entries of the Stokes matrices vanish, then ∆ is not a branching locus for
the fundamental matrix solutions. The results have applications to Frobenius manifolds and
Painlevé equations.

1. Introduction

In these proceedings, we summarise some results extracted from our paper [16], presented in
our talk [13] at the workshop ”Asymptotic and Computational Aspects of Complex Differential
Equations”, at CRM in Pisa, in February 2017.
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In [16], we study deformations of a class of linear differential systems1 with a resonant
irregular singularity at z = ∞, when the eigenvalues of the leading matrix at z = ∞ coalesce
along a locus in the space of deformation parameters. The above class contains, in particular,
the following n× n (n ∈ N) system playing an important role in applications

dY

dz
= A(z, t)Y, A(z, t) = Λ(t) +

A1(t)

z
. (1.1)

with singularity of Poincaré rank 1 at z = ∞. The matrices Λ(t) and A1(t) are holomorphic
functions in t = (t1, ..., tn) in an open connected domain of Cn. Moreover, Λ(t) is diagonal, as
follows

Λ(t) := diag(u1(t), ..., un(t)). (1.2)

The deformation theory is well understood when Λ(t) has distinct eigenvalues u1(t), u2(t),
..., un(t) for t in the domain. On the other hand, there are important cases for applications
when two or more eigenvalues may coalesce along a certain locus ∆ in the t-domain, called
the coalescence locus, the matrix Λ(t) remaining diagonal at ∆. This means that ua(t) = ub(t)
for some indices a 6= b ∈ {1, ..., n} whenever t belongs to ∆, while u1(t), u2(t), ..., un(t) are
pairwise distinct for t 6∈ ∆. In this case, the point z =∞ for t ∈ ∆ is called a resonant irregular
singularity, and the deformation is said to be non-admissible, because it does not satisfy some
of the assumption of the isomonodromy deformation theory of Jimbo-Miwa-Ueno [38] [25].
Indeed, when t leaves the range of admissibility and varies in a neighbourhood of the coalescence
locus, several problems arise with the analytic properties of fundamental matrix solutions (for
simplicity, we will just write fundamental solutions) and their asymptotic behaviour within
prescribed sectors. To the best of our knowledge, the analysis of fundamental matrix solutions
and their monodromy, when the diagonal matrix Λ(t) has coalescing eigenvalues at ∆, seems
to be missing from the existing literature: it is the problem which we have addressed in [16],
both in the non-isomonodromic and isomonodromic cases (inspired by [16], a reformulation in
the language of Pfaffian systems has been given in [32], and a reformulation in the language of
the geometric theory of differential equations has been given by [58]).

An isomonodromic system as above, with antisymmetric A1, is at the core of the analytic
approach to semisimple Frobenius manifolds [19] [20] [21] (see also [59] [60] [61] [49] [57]). Its
monodromy data play the role of local moduli. The system (1.1), with coalescing eigenvalues,
gives the isomonodromic description of Frobenius manifolds remaining semisimple at the locus of
coalescent canonical coordinates [17]. An important example of this coalescence is the quantum
cohomology of Grassmannians (see [15] [17] and [18]).

For n = 3, a special case of system (1.1) gives an isomonodromic description of the general
sixth Painlevé equation, according to [50] (see also [33]). This description was given also in
[19] [21] for a sixth Painlevé equation associated with Frobenius manifolds. Coalescence occurs
at critical points of the Painlevé equation, and A1(t) is holomorphic when the sixth Painlevé
transcendents are holomorphic at a fixed singularity (critical point) of the Painlevé equation
(see Section 3 below).

A motivation for our paper [16] was then to address in a rigorous way the coalescence phe-
nomena, in view of the above applications, especially the computation of monodromy data of
Frobenius manifolds. Below, we only review a simple application to Painlevé equations (see
Section 3), while the case of (coalescent) Frobenius manifolds is thoroughly studied in [17] and
[18], and summarised in [14].

1.1. Some Examples. Before stating some of the results of [16] in Section 2 below, it is worth
introducing the problem with simple examples.

1For the general theory of Stokes phenomena for differential systems not depending on parameters, see [2] [3]
[4] [5] [66]. For the local deformation theory, see [34] [35] [63] [64].
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Example 1.1. The example shows the typical singular behaviour of fundamental solutions and
formal solutions at ∆. Consider the (non-isomonodromic) system

dY

dz
=

[(
0 0
0 t

)
+

1

z

(
1 0
t 2

)]
Y.

The coalescence locus is ∆ = {0}. At fixed t = 0, the system has a fundamental solution

Y̊ (z) = I ·
[
z 0
0 z2

]
.

where I stands for the identity matrix.2 For t 6= 0, the system can be solved by reduction to a
second order ODE in a standard way, obtaining the fundamental matrix

Yhol(z, t) =

[(
1 0
0 1

)
+

(
0 0

ztezt
∫ z

1 ξ
−2e−tξdξ 0

)] (
z 0

0 z2etz

)
.

Yhol(z, t) is holomorphic at t = 0 and Yhol(z, 0) = Y̊ (z), but it does not have the canonical
asymptotic behaviour, for z →∞, of type (1.4) below. Introducing the exponential integral

Ei (z) :=

∫ ∞
z

e−ζ

ζ
dζ =

∫ ∞
1

e−zξ

ξ
dξ,

we can rewrite
Yhol(z, t) = Ycan(z, t) C(t),

where

Ycan(z, t) := G(z, t)

(
z 0

0 z2etz

)
,

G(z, t) :=

(
1 0

0 1

)
+

(
0 0

G12(z, t) 0

)
, G12(z, t) := t

[
tz etzEi(tz)− 1

]
,

C(t) :=

(
1 0

t
[
e−t − tEi(t)

]
1

)
,

Notice that C(t) is a connection matrix, not holomorphic at t = 0, due to the logarithmic
branching of Ei(t). The well-known asymptotic behaviour of the exponential integral [66] yields

G12(z, t) ∼
∞∑
n=1

(−1)kk!

tk−1

1

zk
, z →∞, −3π

2
< arg(zt) <

3π

2
. (1.3)

Thus, the fundamental solution Ycan(z, t) has the following canonical asymptotic behaviour

G(z, t) ∼ I +
∞∑
k=1

Fk(t)z
−k, (1.4)

with matrix-coefficients Fk(t) inherited from (1.3), as z →∞ in the sector −3π
2 < arg(zt) < 3π

2 .
We point out two important features:

• ∆ = {t = 0} is a branching locus for Ycan(z, t), because Ei(tz) has a logarithmic branch-
ing at t = 0.

2There is actually the following one parameter family of solutions with canonical asymptotics

Y̊a(z) =

[(
1 0
0 1

)
+

1

z

(
1 a
0 1

)](
z 0
0 z2

)
, a ∈ C.
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• F1(t) is holomorphic at t = 0, but the other Fk(t), for any k ≥ 2, have a pole of order
t−k+1. Actually, the system violates the necessary and sufficient conditions of analyticity
for formal solutions, as established in [16] (with reference to [16], the condition that
(A1)12 and (A1)21 vanish at t = 0 implies that F1(t) must be holomorphic at t = 0, but
all other conditions for the Fk’s are violated).

This special example also has some non-typical features. First, Ycan(z, t) is multi valued
around t = 0, but it has limit

Ycan(z, t) −→ Y̊ (z),

for t → 0 in any sector of finite opening angle and vertex t = 0 in the universal covering
of the punctured t-plane. Moreover, the t-dependent Stokes matrices are holomorphic also
at t = 0. Indeed, consider three successive canonical sectors S−1 := S(−3π/2, π/2), S0 :=
S(−π/2, 3π/2) and S1 := S(π/2, 5π/2). Their intersection does not contain Stokes rays <(tz) =
0 (namely, arg(tz) = π

2 + mπ, m ∈ Z). There are three fundamental solutions with the
canonical asymptotics (1.3)-(1.4) in these sectors. They are respectively Y−1(z, t) := Ycan(z, t),
Y0(z, t) := Ycan(z, t) and Y1(z, t) = Ycan(ze−2πi, t). Recalling that Ei(z) = Ei(ze−2πi)− 2πi, we
find that the Stokes matrices S−1 and S0, defined by

Y0 = Y−1 S−1, Y1 = Y0 S0,

are respectively

S−1 = I, S0(t) =

(
1 0

2πit2 1

)
.

Thus, the second non-typical feature is that, when t → 0, then S0(t) −→ I, the trivial Stokes

matrix of Y̊ (z). �

Example 1.2 (Whittaker Isomonodromic System). Consider an isomonodromic 2× 2 system

dY

dz
=

[(
u1 0
0 u2

)
+
A1(u)

z

]
Y. (1.5)

Here ∆ = {u1 = u2}. This example shows three important facts holding for an isomonodromic
system:

• the coalescence locus ∆ is a branching locus for both A1(t) and the fundamental solutions
(this is well known, see [51]);
• if the entries of the Stokes matrices, with indices corresponding to the coalescing eigen-

values, vanish a ∆, then ∆ is not a branching locus. This fact will be the content of
Propositions 1.1 and 1.2 below, which anticipate the general result of Theorem 2.2 in
Section 2;
• if A1(t) is holomorphic in a domain containing ∆, and if its entries, with indices cor-

responding to the coalescing eigenvalues, vanish at ∆, then the fundamental solutions
are holomorphic also at ∆ and the entries (as above) of the Stokes matrices vanish. See
Proposition 1.3 below, which anticipates the general result of Theorem 2.1 in Section 2.

The Jimbo-Miwa-Ueno [38] isomonodromy deformation equations can be written in a small
open domain where (u1, u2) is an admissible deformation (see Definitions 2.1 and 2.2 below).
Explicitly, they are

∂A1

∂ua
= [[F1, Ek], A1] ,
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where (Ek)ab = δkaδkb, (F1)ab = (A1)ab/(ub − ua), a 6= b, and (F1)aa = −
∑

b 6=a(A1)ab(F1)ba
(here a, b ∈ {1, 2}). More explicitly, we find

∂(A1)11

∂u1
=
∂(A1)11

∂u2
=
∂(A1)22

∂u1
=
∂(A1)22

∂u2
= 0

which implies that (A1)11 and (A1)22 are constant. Let us define constants a and b by a :=
(A1)11, a− b := (A1)22. Then, the remaining isomonodromy deformation equations are

∂(A1)12

∂u1
=
b (A1)12

u2 − u1
,
∂(A1)12

∂u2
=
b (A1)12

u1 − u2
,

∂(A1)21

∂u1
=
b (A1)12

u1 − u2
,
∂(A1)21

∂u2
=
b (A1)12

u2 − u1

which imply that

(A1)12 = c(u1 − u2)−b, (A1)21 = d(u1 − u2)b, c, d = constants.

We conclude that the system (1.5) is isomonodromic if and only if

A1(u) =

(
a c(u1 − u2)−b

d(u1 − u2)b a− b

)
, a, b, c, d ∈ C. (1.6)

Therefore, the following holds.

Fact: for generic values of the parameters, A1 is singular (for c and d 6= 0) and has a branching
locus at ∆ = {u1 = u2} (for b 6∈ Z).

We compute the fundamental solutions and the Stokes matrices of system (1.5) with residue
matrix (1.6). For u1 6= u2, there exists the unique “canonical” formal solution

YF (z, u) =

(
I +

F1

z
+
F2

z2
+ · · ·

)
zdiag(A1)

(
eu1z 0

0 eu2z

)
,

with matrix coefficients Fk = Fk(u), uniquely determined by the equation. Actual solutions

can be easily computed solving the system (1.5) for a vector solution

(
y1(z)
y2(z)

)
. This gives

dy1

dz
=
(
u1 +

a

z

)
y1 +

c

(u1 − u2)b
y2

z
,

dy2

dz
=

(
u2 +

a− b
z

)
y2 + d(u1 − u2)b

y1

z
(1.7)

By elimination of y2, we obtain a second order ODE in y1. With the substitutions

y1(z) = e
1
2

(u1+u2)zza−
b+1

2 y(z), y(z) = w(x), x = z(u1 − u2),

the equation for y1 becomes the following Whittaker equation:

d2w

dx2
+

(
−1

4
+
κ

x
+

1
4 − µ

2

x2

)
w = 0,

µ2 :=
b2 + 4cd

4
, κ := −1 + b

2
.

For later convenience, let us set

σ+ :=
1

2
+ κ+ µ, σ− :=

1

2
+ κ− µ.

The u-independent eigenvalues of A1 are a+σ±. We are ready to obtain fundamental solutions
Y (z, u) admitting YF (z, u) as asymptotic representation for z → ∞, namely satisfying the
asymptotic condition

Y (z, u) =

(
I +

F1

z
+O

(
1

z

))(
zaeu1z 0

0 za−beu2z

)
, z →∞, (1.8)
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in sector of angular opening greater than π. The result is contained in the following

Lemma 1.1. Let u1−u2 6= 0. There are three fundamental matrix solution Y−1(z, u), Y0(z, u),
Y1(z, u) with the asymptotic behaviour (1.8) respectively for z(u1 − u2) lying in the successive
overlapping sectors

S−1 := S
(
−5π

2
,−π

2

)
, S0 := S

(
−3π

2
,
π

2

)
, S1 := S

(
−π

2
,
3π

2

)
.

They are connected by Stokes matrices S−1, S0 defined by

Y0(z) = Y−1(z)S−1, Y1(z) = Y0(z)S0, S−1 =

(
1 s−1

0 1

)
, S0 =

(
1 0
s0 1

)
,

where

s0 =
2πi

c Γ
(

1
2 + κ+ µ

)
Γ
(

1
2 + κ− µ

) =
2πi

c Γ
(√

b2+4cd
2 − b

2

)
Γ
(
−
√
b2+4cd

2 − b
2

)
=

2πi

c Γ (σ+) Γ (σ−)

s−1 =
2πi c e−2πiκ

Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

) =
−2πi c eiπb

Γ
(√

b2+4cd
2 + 1 + b

2

)
Γ
(
−
√
b2+4cd

2 + 1 + b
2

)
=

2πi c e−2πiκ

Γ (1− σ+) Γ (1− σ−)
.

Proof: Taking into account that (F1)12 = (A1)12/(u2 − u1) = −c(u1 − u2)−b−1, we must have

first row of Y (z, u) =

[
zaeu1z

(
1 +O

(
1

z

))
, − c

(u1 − u2)b+1
za−b−1eu2z

(
1 +O

(
1

z

))]
.

(1.9)
Since the Whittaker functions have the asymptotic behaviour

Wκ,µ(x) = xκe−x/2
(

1 +O

(
1

x

))
, −3π

2
< arg x <

3π

2
, (1.10)

W−κ,µ(−x) = (−x)−κex/2
(

1 +O

(
1

x

))
, −3π

2
< arg(−x) <

3π

2
, (1.11)

it follows that we can choose the fundamental solutions Y−1(z, u), Y0(z, u), Y1(z, u) as follows:

first row of Y−1(z) =
[
f(z, u)e−iπ

b+1
2 W−κ,µ(eiπx), −cf(z, u)eiπ(b+1)Wκ,µ(e2πix)

]
,

first row of Y0(z) =
[
f(z, u)e−iπ

b+1
2 W−κ,µ(eiπx), −cf(z, u)Wκ,µ(x)

]
,

first row of Y1(z) =
[
f(z, u)eiπ

b+1
2 W−κ,µ(e−iπx), −cf(z, u)Wκ,µ(x)

]
,

where

f(z, u) :=
e

1
2

(u1+u2)zza−
b+1

2

(u1 − u2)
b+1

2

≡ e
1
2

(u1+u2)z za
(
z(u1 − u2)

)κ
. (1.12)

Then, Y−1(z, u), Y0(z, u), Y1(z, u) have the canonical asymptotic behaviours (1.9), for z → ∞
and u1−u2 6= 0, when z(u1−u2) is respectively in the successive sectors S−1, S0 and S1. Notice
that the intersections S−1 ∩ S0 and S0 ∩ S1 do not contain the Stokes rays <(z(u1 − u2)) = 0.
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The non-trivial entries s−1 and s0 of the Stokes matrices S−1 and S0, as defined in the
statement of the Lemma (see also Remark 2.1 below), can be computed keeping into account
the explicit form of Y1 and Y0. We find

Wκ,µ(x) =
1

cs0

(
eiπκW−κ,µ(eiπx)− e−iπκW−κ,µ(e−iπx)

)
.

Now, the Whittaker functions satisfy the cyclic relation

Wκ,µ(x) =
Γ
(

1
2 + µ+ κ

)
Γ
(

1
2 − µ+ κ

)
2πi

(
eiπκW−κ,µ(eiπx)− e−iπκW−κ,µ(e−iπx)

)
. (1.13)

This yields s0 as stated in the Lemma. Keeping into account the explicit form of Y0 and Y−1,
we find

W−κ,µ(eiπx) =
ce−2πiκ

s−1

(
e−iπκWκ,µ(e2πix)− eiπκWκ,µ(x)

)
.

The above must be compared with the analogue of (1.13), namely

W−κ,µ(eiπx) =
Γ
(

1
2 + µ− κ

)
Γ
(

1
2 − µ− κ

)
2πi

(
e−iπκWκ,µ(e2πix)− eiπκWκ,µ(x)

)
.

This yields s−1 as in the statement of the Lemma. �

Simple computations with the explicit expressions of s−1 and s0 yield the following

Lemma 1.2. Let n ≥ 1 and m ≥ 1 be integers. The Stokes matrices S0 and S1 are trivial,
namely s0 = s−1 = 0, if and only if one of the following conditions is satisfied

1) c = d = 0 and b ∈ C,
2) cd = mn, b = n−m,
3) either d = 0 and b = −m, or c = 0 and b = n.

Now, we look back at the expression (1.6) for A1 and immediately conclude from Lemma 1.2
that the the following proposition holds.

Proposition 1.1. If s−1 = s0 = 0, then A1(u) as in (1.6) is single valued for a loop (u1−u2) 7→
(u1−u2)e2πi around the coalescence locus u1 = u2. Namely, ∆ is not a branching locus for A1.

The same statement holds for the fundamental solutions as well.

Proposition 1.2. If s−1 = s0 = 0, then the fundamental solutions Yr(z, u), r = −1, 0, 1 are
single valued for a loop (u1−u2) 7→ (u1−u2)e2πi around the coalescence locus u1 = u2. Namely,
∆ is not a branching locus.

It is important to notice that the condition s0 = s−1 = 0 alone does not imply that the
fundamental matrix solutions are holomorphic at u1 − u2 = 0. For example, consider the case
cd = 2, b = 1 in Lemma 1.2. The fundamental solution, having canonical asymptotic behaviour
for every value of arg z (indeed S0 = S−1 = I) is

Y (z) =

I +

 − 2
x + 2

x2 − 2
d (u1−u2)2

1
z

d
z −

2d
(u1−u2)z2

2
x



 zaeu1z 0

0 za−1eu2z



=

 za 0

0 za−1

 ·
 1− 2

x + 2
x2 − 2

d x2

d− 2d
x 1 + 2

x

 eu1z 0

0 eu2z

 , x = (u1 − u2)z,

which has a pole at ∆ = {u1 − u2 = 0}.
Moreover, the following holds:
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Proposition 1.3. If A1(u) is holomorphic at ∆ and both (A1)12 and (A1)21 vanish as u1−u2 →
0, then the Yr(z, u)’s are single valued in u1 − u2 and holomorphic at ∆. The Stokes matrices
have entries s−1 = s0 = 0.

The remaining part of the example is devoted to the proof of the above propositions.

Proof of Proposition 1.2: In case 1) of Lemma 1.2 we find Y−1 = Y0 = Y1 = diag
(
zaeu1z, zb−aeu2z

)
,

so the proposition is proved. In case 3), the system is integrable by quadratures and variation
of parameters, so that it is easy to verify that the fundamental solution Y−1 = Y0 = Y1 with
canonical form (1.8) is holomorphic3 in the whole plane (u1, u2). So, we only need to consider
case 2). This case can be written as follows:{

σ+ = −n
σ− = m

, or

{
σ+ = m
σ− = −n . (1.14)

Thus, we have  µ = −1
2(m+ n)

κ = 1
2(m− n)− 1

2

,

 µ = 1
2(m+ n)

κ = 1
2(m− n)− 1

2

=⇒ µ 6= 0.

In order to study the multi-valuedness of the fundamental solutions, we recall that the Whit-
taker equation is transformed into the confluent hypergeometric equation

x
d2v

dx2
+ (γ − x)

dv

dx
− αv = 0, α =

1

2
+ µ− κ ≡ 1− σ−, γ = 1 + 2µ.

by the transformation

w = e−
x
2 x

γ
2 v = e−

x
2 x

1
2

+µ v.

In particular, if we introduce the Tricomi function Ψ (see page 53 of [52]), which has the
asymptotic behaviour,

Ψ(α, γ;x) = x−α
(

1 +O

(
1

x

))
= xκ−µ−

1
2

(
1 +O

(
1

x

))
, x→∞, x ∈ S(−3π/2, 3π/2),

then the hypergeometric equation has two independent solutions

Ψ(α, γ;x), exΨ(γ − α, γ;−x).

Keeping into account the asymptotic expansions, we see that

Wκ,µ(x) = e−
x
2 x

1
2

+µ Ψ(α, γ;x),

W−κ,µ(−x) = e
x
2 (−x)

1
2

+µ Ψ(γ − α, γ;−x).

In order to study the multi-valuedness in (u1 − u2), we express the Tricomi functions on a
basis of fundamental solutions at x = 0. In the non resonant case

γ 6∈ Z ⇐⇒ 2µ 6∈ Z,

which occur when Lemma 1.2 does not apply, we can express them as a linear combinations of

Φ(α, γ;x) :=
∞∑
n=0

(α)n
n!(γ)n

zn, x1−γΦ(α− γ + 1, 2− γ;x),

3Actually, the factor
(
I + F1

z
+ · · ·

)
of (1.8) is a polynomial in u1 and u2.
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where (α)n := α(α+ 1) · · · (α+ n− 1). Explicitly, we find

Wκ,µ(x) = e−
x
2 x

1
2

+µΨ(α, γ;x)

= e−
x
2 x

1
2

+µ

[
Γ(1− γ)

Γ(α− γ + 1)
Φ(α, γ;x) +

Γ(γ − 1)

Γ(α)
x1−γΦ (α− γ + 1, 2− γ;x)

]

= e−
x
2

[
x

1
2

+µ

(
Γ(−2µ)

Γ
(

1
2 − κ− µ

)Φ

(
1

2
− κ+ µ, 1 + 2µ;x

))
+

+x
1
2
−µ

(
Γ(2µ)

Γ
(

1
2 − κ+ µ

)Φ

(
1

2
− κ− µ, 1− 2µ;x

))]
.

and

W−κ,µ(−x) = e
x
2 (−x)

1
2

+µΨ(γ − α, γ;−x)

= e
x
2 (−x)

1
2

+µ

[
Γ(1− γ)

Γ(1− α)
Φ(γ − α, γ;−x) +

Γ(γ − 1)

Γ(γ − α)
(−x)1−γΦ (1− α, 2− γ;−x)

]

= e
x
2

[
(−x)

1
2

+µ

(
Γ(−2µ)

Γ
(

1
2 + κ− µ

)Φ

(
1

2
+ κ+ µ, 1 + 2µ;−x

))
+

+(−x)
1
2
−µ

(
Γ(2µ)

Γ
(

1
2 + κ+ µ

)Φ

(
1

2
+ κ− µ, 1− 2µ;x

))]
.

Keeping (1.12) into account, we see that the monodromy of Yr(z, u), r = −1, 0, 1 at z = 0
and z(u1 − u2) = 0 depends on the factors

za
(
z(u1 − u2)

) 1
2

+κ±µ
= za

(
z(u1 − u2)

)σ±
.

The case 2) of Lemma 1.2 corresponds to the resonant cases 2µ ∈ Z, namely γ ∈ Z (but
µ 6= 0, γ 6= 1). The two systems (1.14) are respectively{

γ = 1− (n+m)
α = −m+ 1

and

{
γ = 1 + (n+m)

α = n+ 1
,

or equivalently {
γ = 0,−1,−2,−3, .... ∈ Z≤0

α = γ, γ + 1, ...,−1, 0
and

{
γ = 2, 3, 4, .... ∈ Z≥2

α = 1, 2, ..., γ − 1
(1.15)

Let

ϕ(α, γ;x) :=

−α∑
s=0

(α)s x
s

s!(γ)s
.

In the first case of (1.15) above, corresponding to case 1◦ at page 49 in [52], the hypergemetric
equation has independent solutions

ϕ(α, γ;x), x1−γΦ(α− γ + 1, 2− γ;x).

In the second case, corresponding to case 2◦ at page 49 in [52], independent solutions are

Φ(α, γ;x), x1−γϕ(α− γ + 1, 2− γ;x).
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There are suitable constants C1(α, γ), C2(α, γ) (see [52]) such that, in the first case we have

Wκ,µ(x) = e−
x
2 x

1
2

+µΨ(α, γ;x)

= e−
x
2 x

1
2

+µ
[
C1 ϕ(α, γ;x) + C1 x

1−γΦ(α− γ + 1, 2− γ;x)
]

= e−
x
2

[
C1 x

1
2

+µϕ(α, γ;x) + C2 x
1
2
−µΦ(α− γ + 1, 2− γ;x)

]
.

In the second case we have

Wκ,µ(x) = e−
x
2

[
C1 x

1
2

+µΦ(α, γ;x) + C2 x
1
2
−µϕ(α− γ + 1, 2− γ;x)

]
.

Similar expressions hold for

W−κ,µ(−x) = e
x
2 (−x)

1
2

+µΨ(γ − α, γ;−x).

The monodromy of the above Whittaker functions at x = 0 depends on x
1
2
±µ. Keeping (1.12)

into account, we see again that the monodromy of Yr(z, u), r = −1, 0, 1 at z = 0 and z(u1−u2) =
0 depends on the factors

za
(
z(u1 − u2)

) 1
2

+κ±µ
= za

(
z(u1 − u2)

)σ±
.

Since σ± are integers, the fundamental matrix solutions Y−1(z, u) Y0(z, u), Y1(z, u) with canon-
ical asymptotics are single valued around u1 − u2 = 0. A similar computation holds for the
second row of Yr(z, u) (just eliminate y1(z) in system (1.7) and proceed as above for y2(z)). �

Proof of Proposition 1.3: We observe that a necessary condition for A1(u) to be holomoprhic at
u1−u2 = 0 is that b is integer. The condition that both (A1)12 and (A1)21 vanish as u1−u2 → 0
exactly corresponds to case 3) of Lemma 1.2. Thus, (σ+, σ−) is either (0,m) or (m, 0), m ≥ 1.
From the expressions used in the proof of Proposition 1.2 for the behaviour at x = 0 of the
fundamental solutions, and the the explicit formulae of s0 and s−1, we conclude the proof. �

2. Some of the Main Results of [16]

For the sake of simplicity, we will not describe all the results of [16]. Rather, we will restrict
to the system (1.1), mainly in the isomonodromic case. In this framework, it is known [38] that
we can take the eigenvalues of Λ(t) to be the deformation parameters. Hence, we can assume
that the eigenvalues u1(t), ..., un(t) are linear in t.

In order to perform a local analysis in a neighbourhood of a coalescence locus, we restrict to
a polydisk containing ∆, defined by

Uε0(0) :=
{
t ∈ Cm such that |t| ≤ ε0

}
, |t| := max

1≤i≤m
|ti|

for suitable ε0 > 0, being t = 0 a point of ∆. Therefore,

Λ(t) = Λ(0) + diag(t1, ..., tn),

where Λ(0) has distinct eigenvalues λ1, ..., λs, s < n, of multiplicities p1, ..., ps respectively, so
that p1 + · · ·+ ps = n. Explicitly,

Λ(0) = λ1Ip1 ⊕ · · · ⊕ λsIps , λi 6= λj , 1 ≤ i 6= j ≤ s < n, (2.1)

where Ipj stands for the pj × pj identity matrix. Another way to write is

ua(t) = ua(0) + ta, 1 ≤ a ≤ n. (2.2)

A1(t) is assumed to be holomorphic in Uε0(0).
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When ∆ is not empty, the dependence on t of fundamental solutions of (1.1) near z =∞ is
quite delicate. If t 6∈ ∆, then there is a unique formal solution (see [35]),

YF (z, t) :=
(
I +

∞∑
k=1

Fk(t)z
−k
)
zB1(t)eΛ(t)z, B1(t) := diag(A1(t)), (2.3)

where the matrices Fk(t) are uniquely determined by the equation and are holomorphic on
Uε0(0)\∆.

In order to find actual solutions, we need the concept of admissible deformation. Let t = 0
and consider the Stokes rays associated with the matrix Λ(0), namely rays in the universal
covering of the z-punctured plane C\{0}, denoted by R, defined by the condition that

<e[(ua(0)− ub(0))z] = 0,

with ua(0) 6= ub(0) (1 ≤ a 6= b ≤ n). Then, we consider an admissible ray, namely a ray in R,
with a certain direction τ̃ , that does not contain any of the Stokes rays above. Finally, let us
take the Stokes rays

{z ∈ R | <e[(ua(t)− ub(t))z] = 0},
associated with Λ(t), t 6∈ ∆. As t varies in the polydisc, these Stokes rays rotate, and for
some values of t, actually for t along a certain locus that we call X(τ̃), they come to cross the
admissible ray arg z = τ̃ . If we look at the polydisc, we see that as long as t does not lie on
∆ or on X(τ̃), then Stokes rays may rotate with varying t, but behave nicely, namely they
neither cross the admissible ray nor they do disappear (as it may happen for t ∈ ∆). Thus,
the good place to stay within the polydisc is Uε0(0)\ (∆ ∪X(τ̃)). With some careful study (see
[16]) we can prove that ∆∪X(τ̃) is a union of real hyperplanes which disconnect Uε0(0). Every
connected component is actually simply connected, and homeomorphic to a ball in R2n. Thus,
it is a cell in the topological precise sense, so in [16] we have called it a τ̃ -cell.

Definition 2.1. The deformation of the linear system (1.1) is called an admissible defor-
mation in B if t varies in a domain B contained in the polydisc Uε0(0), enjoying the following
property: B is a subset of a τ̃ -cell and also its closure B is properly contained in the cell.4 For
simplicity, we will just say that t is an admissible deformation.

By definition, an admissible deformation means that as long as t varies within B, then no
Stokes rays of Λ(t) cross the admissible ray of direction τ̃ .

If t belongs to a domain B as above, then we prove in [16] that there is a family of actual fun-
damental solutions Yr(z, t), labelled by r ∈ Z, uniquely determined by the canonical asymptotic
representation

Yr(z, t) ∼ YF (z, t),

for z → ∞ in suitable sectors Sr(B) of the universal covering R of C\{0}. Each Yr(z, t) is
holomorphic within R for large |z|, and in t ∈ B. The asymptotic series I +

∑∞
k=1 Fk(t)z

−k is

uniform in B. The sectors Sr(B) will be constructed in the technical Appendix. Here it suffices
to say that they have angular central opening strictly greater than π, that Sr(B) and Sr+1(B)
overlap, but their intersection does not contain any of the Stokes rays associated with Λ(t),
t ∈ B.

In [16], we extend the deformation theory to non-admissible deformations beyond B, to the
whole Uε0(0). We prove – for general deformations that are not necessarily isomonodromic –
that the t-analytic continuation of Yr(z, t) exists at least for t in the τ̃ -cell containing B. Now,
if we assume that the t-analytic continuation extends beyond the τ̃ -cell, then the delicate points
– some already pointed out in Examples 1.1 and 1.2 – emerge, as follows.

4The definition of admissible deformation of a linear system is in accordance with the definition given in [25].
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S S 3(B)

Y = Y S

Y = Y S
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3 2 2

τ

τ+π

Figure 1. Stokes phenomenon of formula (2.4). In the left figure is represented
the sheet of the universal covering τ̃−π < arg z < τ̃+π containing S1(B)∩S2(B),
and in the right figure the sheet τ̃ < arg z < τ̃ + 2π containing S2(B) ∩ S3(B).
The rays arg z = τ̃ and τ̃ + π (and then τ̃ + kπ for any k ∈ Z) are admissible

rays, namely such <e
[
(ua(0) − ub(0))z

]
6= 0 along these rays, for any ua(0) 6=

ub(0).

• While the expressions <e [(ua(t)− ub(t))z], 1 ≤ a 6= b ≤ n, have constant sign in B (by
definition, because B is in a cell!), they may vanish for values of t sufficiently far away
from B, precisely when t crosses X(τ̃) and leaves the cell of B, which means that some
Stokes ray <e [(ua(t)− ub(t))z] = 0, associated with Λ(t), cross the admissible direction
τ̃ . Hence, the asymptotic representation Yr(z, t) ∼ YF (z, t) for z → ∞ in Sr(B) does
no longer hold for t outside the τ̃ -cell containing B.
• The locus ∆ is expected to be a locus of singularities for the coefficients Fk(t) and for

the Yr(z, t)’s.
• The Stokes matrices Sr(t), defined for t ∈ B by the following relations (see Figure 1)

Yr+1(z, t) = Yr(z, t) Sr(t), (2.4)

are expected to be singular as t approaches ∆.

Remark 2.1. In order to completely describe the Stokes phenomenon, it suffices to consider
only three fundamental solutions, for example Yr(z, t) for r = 1, 2, 3, and S1(t), S2(t) (this has
been done in Examples 1.1 and 1.2, with r = −1, 0, 1 and S−1 and S0).

In [16], we give necessary and sufficient conditions for the coefficients Fk(t) of the formal
solution (2.3) to be holomorphic also at ∆.5 Then, we give sufficient conditions such that
fundamental solutions Yr(z, t), r ∈ Z, as above, defined in B, together with their Stokes matrices
Sr(t), are actually holomorphic also at ∆ and on the whole Uε0(0), where the asymptotic
representation Yr(z, t) ∼ YF (z, t) continues to hold. In this case, the limits

lim
t→t∆

Sr(t), t∆ ∈ ∆. (2.5)

exist and are finite. They give the Stokes matrices for the system (1.1) with matrix coefficient
A(z, t∆).

We now turn to isomonodromic deformations. Fist of all, we will define the mondromy data.
For given t, a matrix G(t) puts A1(t) in Jordan form

J(t) := G−1(t) A1(t) G(t).

5Notice that our result cannot be derived from [1] and [62], where holomorphic confluence for t→ 0 of formal
solutions is studied, since Λ(t)z is in general not “well-behaved” (condition (4.2) of [62] is violated).
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Close to the Fuchsian singularity z = 0, and for a given t, the system (1.1) has a fundamental
solution in Levelt form

Y (0)(z, t) = G(t)
(
I +

∞∑
l=1

Ψl(t)z
l
)
zD(t)zS(t)+R(t). (2.6)

The matrix coefficients Ψl(t) of the convergent expansion are constructed by a recursive pro-
cedure. D(t) = diag(d1(t), ..., dn(t)) is a diagonal matrix of integers, piecewise constant in t,
S(t) is a Jordan matrix whose eigenvalues have real part in [0, 1[, and the nilpotent matrix R(t)
has non-vanishing entries only if some eigenvalues of A1(t) differ by non-zero integers. Then,
J(t) = D(t) + S(t). It is important to remark that, under the assumptions of our Theorem 2.1
below, the solution (2.6) turns out to be holomorphic in t ∈ Uε0(0).

Chosen a solution Y (0)(z, t) with normal form (2.6), a central connection matrix C(0) is
defined by the relation

Y1(z, t) = Y (0)(z, t) C(0)(t), z ∈ S1(B). (2.7)

In order to completely describe the monodromy of the system (1.1), we need its essential
monodromy data (the adjective “essential” is inspired by a similar definition in [38]), defined
to be

S1(t), S2(t), B1(t) = diag(A1(t)), C(0)(t), J(t), R(t). (2.8)

Now, when t tends to a point t∆ ∈ ∆, the limits of the above data may not exist. If the limits
exist, they do not in general give the monodromy data of the system with matrix A(z, t∆). The
latter have in general different nature, as it is clear from the results of [3], and from [16].

Definition 2.2. If the deformation is admissible in a small domain B, as in Definition 2.1,
we say that it is isomonodromic in B if the essential monodromy data (2.8) do not depend
on t ∈ B.

When this definition holds, the classical theory of Jimbo-Miwa-Ueno [38] applies in B.6 We
are interested in extending the theory to the whole Uε0(0), including the coalescence locus ∆.
The existing literature (to be reviewed below) does not seem to include this extension, so we
have given such an extension in our [16]. Some of our results are summarised in Theorem 2.1
and Corollary 2.1 below.

Before stating these results, we should explain how small ε0 is. Since this is a little bit
technical point, we postpone it to the Appendix. We also postpone the construction of new

sectors Ŝr(t) and Ŝr =
⋂
t∈Uε0 (0) Ŝr(t), which appear in the following theorem and are bigger

than Sr(B), namely Sr(B) ⊂ Ŝr ⊂ Ŝr(t), with t ∈ Uε0(0).

Theorem 2.1. Consider the system (1.1), with eigenvalues of Λ(t) linear in t as in (2.2),
and with A1(t) holomorphic on a closed polydisc Uε0(0) centred at t = 0, with sufficiently small
radius ε0 (as specified in the Appendix). Let ∆ be the coalescence locus in Uε0(0), passing through
t = 0. Let the dependence on t be isomonodromic in B ⊂ Uε0(0) as in Definition 2.2.

If the matrix entries of A1(t) satisfy in Uε0(0) the vanishing conditions(
A1(t)

)
ab

= holomorphic multiple of ua(t)− ub(t)→ 0, 1 ≤ a 6= b ≤ n, (2.9)

whenever ua(t) and ub(t) coalesce as t tends to a point of ∆, then the following results hold:

6 Notice that in [38] it is also assumed that A1(t) is diagonalisable with eigenvalues not differing by integers.
We do not make this assumption in [16].
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• The formal solution YF (z, t) of (1.1) as given in (2.3) is holomorphic on the whole
Uε0(0).
• The three fundamental matrix solutions Yr(z, t), r = 1, 2, 3, initially defined on B, with

asymptotic representation YF (z, t) for z → ∞ in the sectors Sr(B) introduced above,
can be t-analytically continued as single-valued holomorphic functions on Uε0(0), with
asymptotic representation

Yr(z, t) ∼ YF (z, t) for z →∞ in the wider sectors Ŝr,
for any t ∈ Uε1(0) and any 0 < ε1 < ε0. In particular, they are defined at any t∆ ∈ ∆

with asymptotic representation YF (z, t∆). The fundamental matrix solution Y (0)(z, t) is
also t-analytically continued as a single-valued holomorphic function on Uε0(0)

• The constant Stokes matrices S1, S2, and a central connection matrix C(0), initially
defined for t ∈ B, are actually globally defined on Uε0(0). They coincide with the Stokes

and connection matrices Yr(z, 0) and Y (0)(z, 0) of the system

dY

dz
= A(z, 0)Y, A(z, 0) = Λ(0) +

A1(0)

z
. (2.10)

Also the remaining t-independent monodromy data in (2.8) coincide with those of (2.10).
• The entries (a, b) of the Stokes matrices are characterised by the following vanishing

property:

(S1)ab = (S1)ba = (S2)ab = (S2)ba = 0 whenever ua(0) = ub(0), 1 ≤ a 6= b ≤ n. (2.11)

Theorem 2.1 allows to holomorphically define the fundamental solutions and the monodromy
data on the whole Uε0(0), under the only condition (2.9). This fact is remarkable, compared
to the general fact that ∆ is expected to be a branching locus and the Yr(z, t) are expected to
lose their asymptotic representation Yr(z, t) ∼ YF (z, t) in Sr(B).

There is more to say, about the computation of the essential monodromy data. Let the
assumptions of Theorem 2.1 hold. Then, the system (2.10) has a formal solution (here we

denote objects Y , S and C referring to the system (2.10) with the symbols Y̊ , S̊ and C̊) with
behaviour7

Y̊F (z) =
(
I +

∞∑
k=1

F̊kz
−k
)
zB1(0)eΛ(0)z, B1(0) = diag(A1(0)). (2.12)

The coefficients F̊k can be recursively constructed from the differential system, but there is not
a unique choice for them.

Actually, there is a family of formal solutions with structure (2.12), depending on a finite
number of complex parameters. To each element of the family there correspond unique actual
solutions Y̊1(z), Y̊2(z), Y̊3(z) such that Y̊r(z) ∼ Y̊F (z) for z → ∞ in a sector Sr ⊃ Sr(B),
r = 1, 2, 3, with Stokes matrices defined by

Y̊r+1(z) = Y̊ (z) S̊r, r = 1, 2.

Notice that only one element of the family of formal solutions (2.12 ) satisfies the condition

F̊k = Fk(0) for any k ≥ 1. By Theorem 2.1, the relation Sr = S̊r holds only for the actual
solutions with asymptotic representation given by this element.

To complete the picture, let us also choose a solution Y̊ (0)(z) close to z = 0 in Levelt form,

and define the corresponding central connection matrix C̊(0) such that

Y̊1(z) = Y̊ (0)(z) C̊(0).

7If the vanishing assumption (2.9) fails, formal solutions are more complicated [3].
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The following holds [16]

Corollary 2.1. Let the assumptions of Theorem 2.1 hold. If the diagonal entries of A1(0)
do not differ by non-zero integers, then there is a unique formal solution (2.12) of the system
(2.10), whose coefficients necessarily satisfy the condition

F̊k ≡ Fk(0).

Hence, (2.10) only has at z = ∞ canonical fundamental solutions Y̊1(z), Y̊2(z), Y̊3(z), such
that:

Y1(z, 0) = Y̊1(z), Y2(z, 0) = Y̊2(z), Y3(z, 0) = Y̊3(z).

Moreover, for any Y̊ (0)(z) there exists Y (0)(z, t) such that Y (0)(z, 0) = Y̊ (0)(z). The following
equalities hold:

S1 = S̊1, S2 = S̊2, C(0) = C̊(0).

Corollary 2.1 has a practical computational importance: the constant monodromy data (2.8)
of the system (1.1) on the whole Uε0(0) are computable just by considering the system (2.10) at
the coalescence point t = 0. This is useful for applications. One case is when A1(t) is known in
a whole neighbourhood of a coalescence point, but the computation of monodromy data can be
explicitly done (only) at a coalescence point, where (1.1) simplifies due to (2.9). Another case
is when A1(t) is explicitly known only at a coalescence point. This may happen in the case of
Frobenius manifolds, like the quantum cohomology of Grassmannians [15], [17], [18]. Theorem
2.1 and Corollary 2.1 allow to compute the monodromy data of a semisimple Frobenius manifold
just by considering the Frobenius structure at a coalescence point, as explained in our paper
[17] (these data can then be extended to the whole manifold by an action of the braid group
[21] [17] [18]).

In [16], we also prove the somehow weaker converse of Theorem 2.1. Assume that the defor-
mation is admissible and isomonodromic as in Definitions 2.1 and 2.2 on a simply connected
domain B ⊂ Uε0(0). Note that now we are not assuming that A1(t) is holomorphic in the
whole Uε0(0), contrary to what has been done so far. As a result of [51], the fundamental
solutions Yr(z, t), r = 1, 2, 3, and A1(t) can be analytically continued as multi-valued functions
on Uε0(0)\∆, with movable poles at the Malgrange divisor [53] [46] [47] [48]. Moreover, Yr(z, t)
is no longer asymptotic to YF (z, t) in Sr(B) when t moves sufficiently far away from B. Nev-
ertheless, if the vanishing condition (2.11) on Stokes matrices holds, then we can prove that
the fundamental solutions Yr(z, t) and A1(t) have single-valued meromorphic continuation on
Uε0(0)\∆, so that ∆ is not a branching locus. Moreover, the asymptotic behaviour is preserved,
according to the following

Theorem 2.2. Consider the system (1.1), such that A1(t) is holomorphic on an open simply
connected domain B ⊂ Uε0(0), where the deformation is admissible and isomonodromic as in
Definitions 2.1 and 2.2. Let ε0 be sufficiently small (as specified in the Appendix). If the entries
of the constant Stokes matrices satisfy the vanishing condition

(S1)ab = (S1)ba = (S2)ab = (S2)ba = 0 whenever ua(0) = ub(0), 1 ≤ a 6= b ≤ n,
then, the fundamental solutions Yr(z, t) and A1(t) admit single-valued analytic continuation on
Uε0(0)\∆ as meromorphic functions of t. Moreover, for any t ∈ Uε0(0)\∆ which is not a pole
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of Yr(z, t̃) (i.e. which is not a point of the Malgrange divisor), we have

Yr(z, t) ∼ YF (z, t) for z →∞ in Ŝr(t), r = 1, 2, 3,

and
Yr+1(z, t) = Yr(z, t) Sr, r = 1, 2.

The sectors Ŝr(t)’s are described in the Appendix.

2.1. Some Comments on the Literature. To conclude this Section, we would like to review
some of the existing literature, where coalescence of eigenvalues has been discussed, in order
compare it to our results. In the literature, sometimes the irregular singular point is taken
at z = 0, which is equivalent to z = ∞ by a change z 7→ 1/z. One considers a “folded”
system A(z, 0) = z−k−1

∑∞
j=0Aj(0)zj , with an irregular singularity of Poincaré rank k at z = 0

and studies its holomorphic unfolding A(z, t) = p(z, t)−1
∑∞

j=0Aj(t)z
j , where p(z, t) = (z −

a1(t)) · · · (z − ak+1(t)) is a polynomial. The problem is than to study the limits for t → 0
of solutions and monodromy data of the “unfolded” system and their relation to solutions
and data of the “folded” one. Early studies were started by Garnier [26]. The problem was
again proposed by V.I. Arnold in 1984 and studied by many authors in the ’80’s and ’90’s of
the XX century, for example see [55], [23], [9]. Under suitable conditions, some results have
been recently established regarding the convergence for t → 0, in sectors or suitable ramified
domains, of suitable monodromy data (transition or connection matrices) of the “unfolded”
system to the Stokes matrices of the “folded” one [55], [23], [9], [1], [62], [27], [28], [36], [39],
[44], [42]. Nevertheless, to our knowledge, the case when A0(0) is diagonalisable with coalescing
eigenvalues has not yet been studied. Indeed, either the leading matrix A0(0) is assumed to
have distinct eigenvalues, as in [27] [36] [39], or A0(0) is a single Jordan block, as in [28] and
[42], so that the irregular singularity is ramified for the system at t = 0, and the fundamental
matrices Yr(z, t) diverge when t → 0, together with the corresponding Stokes matrices. In all

the above cases, we cannot find the discussion about the sectors Ŝr, the cell decomposition,
analytic continuation beyond τ̃ -cells, and sufficient conditions for the existence of the limit
(2.5).

Also in the isomonodromic case, to the best of our knowledge, the literature does not seem
to contain results analogue to our [16], as exposed in the present proceedings.

In case ∆ is empty, a generalisation of the classical theory of [38], consisting in allowing any
matrix A1(t), including the case when the eigenvalues differ by integers, can be easily done

when we require that the monodromy exponents J , R and the connection matrix C(0) in (2.8)
are constant (this is an isoprincipal deformation, in the language of [41]). For example, the
case when ∆ is empty and A1(t) is skew-symmetric and diagonalisable has been studied in [19],
[21], in the context of Frobenius manifolds.8

Isomonodromy deformations at irregular singular points with leading matrix admitting a
Jordan form J independent of t were studied in [6], with some Lidskii generic conditions. The
system in [6], with singularity is at z =∞, can be written as A(z, t) = zk−1(J+

∑∞
j=1Aj(t)z

−j),
being J a matrix in Jordan form, and the Poincaré rank is k ≥ 1. Although the eigenvalues of
J have algebraic multiplicity greater than 1, J is “rigid”, namely u1, ..., un are not deformed.

8We also recall that in case of Fuchsian singularities only, isomonodromic deformations were completely
studied in [11] and [41]. In [11] it is only assumed that the monodromy matrices are constant. This generates non-
Schlesinger deformations. On the other hand, an isopricipal deformation always leads to Schlesinger deformations
[41].
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Other investigations of isomonodromy deformations at irregular singularities can be found in
[24] and [7]. Nevertheless, these results do not apply to our coalescence problem. For example,
the third admissibility conditions of definition 10 of [7] is not satisfied in our case. In [24]
the system with A(z, t) = zr−1B(z, t), r ∈ Q, is considered, such that B(∞, t) has distinct
eigenvalues; z = ∞ satisfying this condition is called a simple irregular singular point. This
simplicity condition does not apply in our case.

The results of [42], cited above, are applied in [43] to the 3× 3 isomonodromic description of
the Painlevé VI equation and its coalescence to Painlevé V. In this case, the limiting system for
t→ 0 has leading matrix with a 2× 2 Jordan block, so that the fundamental matrices Yr(z, t)
diverge.

Isomonodromic deformations of a system such as our (1.1) are also studied in [12]. Never-
theless, the eigenvalues u1, ..., un of the matrix Z in [12], which is the analogue of our Λ, are
always inside the same coalescence ”stratum”. Namely, there are s < n deformation parameters
λ1,...,λs, (λi 6= λj for i 6= j) and the eigenvalues are always equal to these parameters, namely

u1 = · · · = up1 = λ1, (2.13)

up1+1 = · · · = up1+p2 = λ2, (2.14)

. . . (2.15)

up1+···+ps−1+1 = · · · = up1+···+ps = λs, (2.16)

with p1 + · · · + ps = n. Thus, no splitting of coalescences occurs. Moreover, the matrix
f = f(Z) in [12], which is the analogue of our A1 = A1(u), satisfies the quite restrictively
requirements that the diagonal is zero and (A1)ab = 0 whenever ua = ub, 1 ≤ a 6= b ≤ n.
With these strict requirements, an adaptation of the classical Jimbo-Miwa-Ueno isomonodromy
deformation theory can be done in a straightforward way. Thus, the deformation theory in
[12] is a very particular and simple sub-case of our [16], where we have studied the general
isomonodromic deformations of the system (1.1), not only the simple decomposition of the
spectrum as in (2.13)-(2.16).

3. A Simple Application of Theorem 2.1 and Corollary 2.1 to Painlevé
Equations

Theorem 2.1 and Corollary 2.1 have relevant applications to Frobenius manifolds, as dis-
cussed in [17]. Here we explain a simple application to Painlevé equations. They provide an
alternative to Jimbo’s approach for the computation of the monodromy data associated with
Painlevé VI transcendents holomorphic at a critical point. As an example, we consider the A3-
algebraic solution of Dubrovin-Mazzocco [22]. The following Painlevé VI equation, depending
on a parameter µ ∈ C,

d2y

dt2
=

1

2

[
1

y
+

1

y − 1
+

1

y − t

](
dy

dt

)2

−
[

1

t
+

1

t− 1
+

1

y − t

]
dy

dt
+

+
1

2

y(y − 1)(y − t)
t2(t− 1)2

[
(2µ− 1)2 +

t(t− 1)

(y − t)2

]
,

is the isomonodromicity condition for a 3 × 3 system of type (1.1) (see [21] [50]). Suppose
we want to study the coalescence u2 − u1 → 0, with u3 − u1 6= 0. With the substitutions
Y (z) 7→ eu1zY (z), and z → (u3 − u1)z, (1.1) becomes

dY

dz
=

 0 0 0
0 t 0
0 0 1

+
A1(t)

z

Y, t =
u2 − u1

u3 − u1
. (3.1)
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The Painlevé equation is associated with the system with skew-symmetric A1, namely

A1(t) =:

 0 Ω2 −Ω3

−Ω2 0 Ω1

Ω3 −Ω1 0

 .

The isomonodromy deformation equations are then

dΩ1

dt
=

1

t
Ω2Ω3, ,

dΩ2

dt
=

1

1− t
Ω1Ω3,

dΩ3

dt
=

1

t(t− 1)
Ω1Ω2. (3.2)

The eigenvalues of A1(t) are µ, 0,−µ. The system (3.2) is equivalent to the above Painlevé
equation through the following formulae (see [29] [31] for the formulae)

Ω1 = i

√
y − 1

√
y − t√

t

[
A

(y − 1)(y − t)
+ µ

]
, Ω2 = i

√
y
√
y − t

√
1− t

[
A

y(y − t)
+ µ

]
,

Ω3 = −
√
y
√
y − 1

√
t
√

1− t

[
A

y(y − 1)
+ µ

]
, A :=

1

2

[
dy

dt
t(t− 1)− y(y − 1)

]
.

The A3-algebraic solution of PV Iµ, µ = −1
4 , obtained in [22] (there is a misprint in t(s) of

[22]), have the parametric representation

y(s) =
(1− s)2 (1 + 3s) (9s2 − 5)2

(1 + s) (243s6 + 1539s4 − 207s2 + 25)
, t(s) =

(1− s)3 (1 + 3s)

(1 + s)3 (1− 3s)
, s ∈ C. (3.3)

As it is shown in [22], the Jimbo’s monodromy data [37] of the Jimbo-Miwa-Ueno [38] isomon-
odromic Fuchsian system associated with algebraic solutions of PV Iµ are tr(MiMj) = 2− S2

ij ,

1 ≤ i < j ≤ 3, where S is the Stokes matrix (in upper triangular form) of the corresponding
Frobenius manifold [19], and S+ST is the Coxeter matrix of the reflection group A3. Moreover,
Jimbo’s isomonodromic method [37], as applied in [22] (see also [40], [30] for holomorphic solu-
tions) allows to compute tr(MiMj). Here we apply Theorem 2.1 and obtain S in an alternative,
and probably simpler, way, as exposed below.

A holomorphic branch is obtained by letting s → −1
3 in (3.3), which gives the convergent

Taylor expansion

Ω1(t) = i
√

2

(
1

8
− 1

256
t− 17

16384
t2 − 257

524288
t3 +O(t4)

)
,

Ω2(t) = − 1

32
t− 1

64
t2 − 173

16384
t3 +O(t4),

Ω3(t) = i
√

2

(
1

8
+

1

256
t+

47

16384
t2 +

1217

524288
t3 +O(t4)

)
.

Since limt→0 Ω2(t) = 0, Theorem 2.1 holds. Since diag(A1) = (0, 0, 0), also Corollary 2.1 holds.
Accordingly, the Stokes matrices can be computed using (3.1) at t = 0, namely:

dY

dz
=

 0 0 0
0 0 0
0 0 1

+
A1(0)

z

Y, A1(0) =

 0 0 −i
√

2/8

0 0 i
√

2/8

i
√

2/8 −i
√

2/8 0

 . (3.4)

This system is integrable by reduction to a second order differential equation (and a quadrature),
in a standard way. The second order equation is a Bessel equation, so its Stokes matrices can
be computed using Hanckel functions. For technical details we refer to [16], and just give the
result. With the three sectors

S1 = S
(
−3π

2
,
π

2

)
, S2 = S

(
−π

2
,
3π

2

)
, S3 = S

(π
2
,
5π

2

)
.
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we obtain

S1 =

 1 0 1
0 1 −1
0 0 1

 , S2 = S−T1 =

 1 0 0
0 1 0
−1 1 1

 .

The result is in accordance with Theorem 2.1, which predicts that the entry (1, 2) of S1 and
the entry (2, 1) of S2 must be zero. It is also in accordance with the monodromy data of y(t)
obtained in [22].

Remark 3.1. If we choose A1(0) with different signs, we obtain different signs in S1. This
sign freedom corresponds to the invariance of U = diag(u1, u2, u3), namely JUJ ≡ U , where
J = diag(±1,±1 ± 1). For example, if J := diag(1,−1, 1), we take the system with JA1(0)J
and find the Stokes matrices

S =

 1 0 −1
0 1 −1
0 0 1

 = JS1J, and S−T .

The above is in accordance with the known result of [19] that the Stokes matrix S of the A3

Frobenius manifold (up to permutation, change of signs and action of the braid group) is such
that S + ST is the Coxeter matrix of the reflection group A3.

Appendix

3.1. Sectors Sr(B). The sectors Sr(B) are constructed as follows: take for example the “ half
plane” Π1 := {z ∈ R | τ̃ − π < arg z < τ̃}. We call S1(t) the open sector containing Π1 and
extending up to the closest Stokes rays of Λ(t) outside Π1. Then, we define S1(B) :=

⋂
t∈B S1(t).

Analogously, we consider the “half-planes” Πr := {z ∈ R | τ̃+(r−3)π < arg z < τ̃+(r−1)π} and
repeat the same construction for Sr(B). The sectors Sr(B) have central opening angle greater
than π and their successive intersections do not contain Stokes rays <e[(ua(t) − ub(t))z] = 0,
t ∈ B. The sectors Sr(B) for r = 1, 2, 3 are represented in Figure 1. An admissible ray arg z = τ̃
in S1(B) ∩ S2(B) is also represented.

3.2. Size of ε0 and Sectors Ŝr. We write Λ(t) = Λ1(t) ⊕ · · · ⊕ Λs(t), so that Λj(t) → λjIpj
as in (2.1), when t → 0. In Theorems 2.1 and 2.2 we need ε0 sufficiently small to ensure that
Λi(t) has no eigenvalues in common with Λj(t), for i 6= j. Moreover, the following constraint
must hold

ε0 < min
1≤j 6=k≤s

δjk, (3.5)

where

δjk :=
1

2
min
ρ∈R

{
|λk − λj + iρ exp{−iτ̃}|

}
(here i is the imaginary unit). This condition has a geometrical reason. If we represent λ1, ..., λs
in the same λ-plane, the distance between the two parallel lines through λk and λj of angular
direction 3π/2 − τ̃ is exactly 2δjk. Let us consider Stokes rays associated with couples ua(t),
ub(t), a, b ∈ {1, 2, ..., n}, as in (2.2), and such that ua(0) = λj and ub(0) = λk, with 1 ≤ j 6= k ≤
s. Then, any of these rays never cross the admissible directions τ̃ + kπ, k ∈ Z, when t varies in
Uε0(0) with ε0 as in (3.5). For a given t, let R(t) be the set of all the above rays for all j 6= k.

We construct a sector Ŝr(t) containing the “half-plane” Πr (defined above), and extending up

to the closest Stokes rays of R(t) lying outside Πr. Clearly, Ŝr(t) ⊃ Sr(t) (the sectors Sr(t) are
introduced above). Then, we define

Ŝr :=
⋂

t∈Uε0 (0)

Ŝr(t).
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By construction, if ε0 is as in (3.5), then this sector has central opening angle greater than π.

References

[1] D.G. Babbitt, V.S. Varadarajan: Deformations of nilpotent matrices over rings and reduction of analytic
families of meromorphic differential equations. Mem. Amer. Math. Soc. 55 , no. 325, (1985), iv+147 pp.

[2] W.Balser, W.B.Jurkat, D.A.Lutz: Birkhoff Invariants and Stokes’ Multipliers for Meromorphic Linear Dif-
ferential Equations, Journal Math. Analysis and Applications, 71, 48-94, (1979).

[3] W.Balser, W.B.Jurkat, D.A.Lutz: A General Theory of Invariants for Meromorphic Differential Equations;
Part I, Formal Invariants, Funkcialaj Evacioj, 22, (1979) 197-221.

[4] W.Balser, W.B.Jurkat, D.A.Lutz: A General Theory of Invariants for Meromorphic Differential Equations;
Part II, Proper Invariants, Funkcialaj Evacioj, 22, (1979) 257-283.

[5] W.Balser, W.B.Jurkat, D.A.Lutz: On the Reduction of Connection Problems for Differential Equations with
an Irregular Singular Point to ones with only Regular Singularities, I SIAM J. Math. Anal., 12, (1981).

[6] M. Bertola, M.Y. Mo: Isomonodromic deformation of resonant rational connections, IMRP Int. Math. Res.
Pap. 11, (2005), 565?635.

[7] Y.P. Bibilo: Isomonodromic Deformations of systems of linear differential equations with irregular singular-
ities, Sbornik: Mathematics 203, (2012), 826-843.

[8] P. P. Boalch: Symplectic manifolds and isomonodromic deformations. Adv. Math. 163, (2001), 137?205
[9] A.A. Bolibruch: On an analytic transformation to standard Birkhoff form. (Russian) ; translated from Dokl.

Akad. Nauk 334, no. 5, (1994), 553–555.
[10] A. A. Bolibruch: On Isomonodromic Deformations of Fuchsian Systems, Journ. of Dynamical and Control

Systems, 3, (1997), 589-604.
[11] A. A. Bolibruch: On Isomonodromic Confluence of Fuchsian Singularities, Proc, Stek. Inst. Math. 221

(1998), 117-132.
[12] T. Bridgeland, V. Toeldano Laredo: Stokes factors and Multilogarithms. J. reine und angew. Math. 682

(2013), 89-128.
[13] G. Cotti: Monodromy of semisimple Frobenius coalescent structures, talk at the international workshop

“Asymptotic and computational aspects of complex differential equations”, CRM, Pisa, February 13-17,
2017.

[14] G. Cotti, D. Guzzetti: Analytic Geometry of Semisimple Coalescent Structures. Random Matrices Theory
Appl. 6 (2017), no. 4, 1740004, 36 pp.

[15] G. Cotti: Coalescence Phenomenon of Quantum Cohomology of Grassmannians and the Distribution of
Prime Numbers, arXiv:1608.06868 (2016).

[16] G. Cotti, B.A. Dubrovin, D. Guzzetti: Isomonodromy Deformations at an Irregular Singularity with Coa-
lescing Eigenvalues, arXiv:1706.04808 (2017).

[17] G. Cotti, B.A. Dubrovin, D. Guzzetti: Local Moduli of Semisimple Frobenius Coalescent Structures.
arXiv:1712.08575 (2017)

[18] G. Cotti, B.A. Dubrovin, D. Guzzetti: Helix Structures in Quantum Cohomology of Fano Varieties,
arXiv:1811.09235 (2018)

[19] B.Dubrovin: Geometry of 2D topological field theories, Lecture Notes in Math, 1620, (1996), 120-348.
[20] B. Dubrovin: Geometry and Analytic Theory of Frobenius Manifolds, arXiv, :math/9807034, (1998)
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