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Tannakian categories, fundamental
groups and Higgs bundles

Ugo Bruzzo

Abstract. After recalling the basic notions concerning profinite and
proalgebraic group completions and Tannakian categories, we review
how the latter can be used to define generalizations of the notion of
fundamental group of a space, such as the Nori and Langer fundamental
groups, and the algebraic fundamental group introduced by Simpson.
Then we discuss how one can define a Tannakian category whose objects
are Higgs bundles on a complex projective variety that are “numerically
flat” in a suitable sense, and show how the Higgs fundamental group is
related to a conjecture about semistable Higgs bundles.
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1. Introduction

Tannakian categories are abelian tensor categories that satisfy some additional
properties and are equipped with a functor to the category of vector spaces.
They all turn out to be equivalent to categories of representations of proalge-
braic affine group schemes, so that there is natural duality between Tannakian
categories and such group schemes. This “Tannaka duality” has been used to
devise generalizations of the notion of fundamental group, with the purpose
of better capturing the geometry of such geometric structures as schemes and
algebraic varieties. A classical example is the Nori fundamental group [21, 22],
and more recently, the S-fundamental group introduced by Langer [16, 17].
The latter is the Tannaka dual of the category of numerically flat vector bun-
dles, i.e., vector bundles that are numerically effective together with their duals
(this group was introduced in the case of curves also in [5]). C. Simpson con-
sidered the category of semi-harmonic bundles on a smooth projective variety
over C, i.e., semistable Higgs vector bundles with vanishing rational Chern
classes [24, 25]. The resulting fundamental group scheme is a proalgebraic
completion of the topological fundamental group. Since flat (Higgs) bundles
are essentially finite, numerically flat, and semi-harmonic, and the topological
fundamental group represents the category of flat bundles, there is a natural
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morphism from the usual fundamental group to each of these groups.
Notions of numerical effectiveness and numerical flatness for Higgs bundles

were introduced in [6, 7] , motivated by the remark that the universal quotient
bundles over the Grassmann bundles Grk(E) of a numerically effective vector
bundle are numerically effective. Given a Higgs vector bundle E = (E, φ),
we consider closed subschemes Grk(E) ⊂ Grk(E) that parameterize locally
free Higgs quotients on E. Then E is said to be H-numerically effective if the
universal Higgs quotients on Grk(E) are H-numerically effective, according to
a definition which is recursive on the rank. Finally, a Higgs bundle is said
to be H-numerically flat if E and its dual Higgs bundle E∗ are H-numerically
effective. H-numerically flat Higgs bundles make up again a neutral Tannakian
category; the corresponding group scheme is denoted πH1 (X,x) [4].

Numerically flat vector bundles equipped with the zero Higgs field are
H-numerically flat, hence there is a faitfhfully flat morphism πH1 (X,x) →
πS1 (X,x). The relation of πH1 (X,x) with Simpson’s proalgebraic fundamen-
tal group πalg

1 (X,x) is more subtle: semi-harmonic bundles are H-numerically
flat, so that there is faitfhfully flat morphism πH1 (X,x)→ πalg

1 (X,x). The fact
that the groups may be isomorphic is related with a conjecture about the so-
called curve semistable Higgs bundles — i.e., Higgs bundles that are semistable
after pullback to any smooth projective curve [7, 11, 18] (Conjecture 4.7 in
the text). This conjecture states that if a Higgs bundle (E, φ) on a projective
variety is semistable after pullback to any projective curve, then its rational
characteristic class

∆(E) = c2(E)− r − 1
2r

c1(E)2

vanishes (here r = rkE).

2. Completions

Generalized fundamental groups are defined in terms of, or are related to,
completions of discrete groups. In this section we briefly review the definitions
of profinite and proalgebraic completion of a discrete group.

Definition 2.1. A profinite group is a topological group which is the inverse
limit of an inverse system of discrete finite groups. The profinite completion Ĝ
of a group G is the inverse limit of the system formed by the quotients groups
G/N of G, where N are normal subgroups of G of finite index, ordered by
inclusion.

For instance, the profinite completion of Z is

Ẑ =
∏
p

Z(p) ,
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where p runs over the prime numbers, and Z(p) is the ring of p-adic integers [19].
An interesting geometric example of a profinite completion is Grothendieck’s

fundamental group [14]. The idea for its introduction may be regarded as a
generalization of the usual fundamental group, recalling that forX a topological
space, π1(X) is the group of deck transformations of the universal covering of
X. To get a suitable replacement for schemes, one substitutes covering spaces
with étale covers. So, if X a connected and locally noetherian scheme over a
field k, let x be a geometric point in X, i.e., a morphism Spec k̄→ X, where k̄
is a separable closure of k. Let I be the set of pairs (p, y), where p : Y → X is a
finite étale cover, and y ∈ Y is a geometric point such that p(y) = x, partially
ordered by the relation (p, y) ≥ (p′, y′) if there is a commutative diagram

Y
f //

p
  A

AA
AA

AA
A Y ′

p′

��
X

with with y′ = f(y). Then one sets

πét
1 (X,x) = lim←−

i∈I
AutX(pi, yi).

If X is a scheme of finite type over C, the étale fundamental group πét
1 (X,x) is

a profinite completion of the topological fundamental group π1(X,x) [14].
In spite of the naturalness of its definition, the étale fundamental group, for

a field of positive characteristic, fails to enjoy some quite reasonable properties;
for instance, it is not a birational invariant, and is not necessarily zero for ratio-
nal varieties [21, 22]. Nori’s fundamental group solves some of these problems.
It is defined in terms of Tannaka duality (see next Section) and involves the
notion of proalgebraic completion of a discrete group [3].

A proalgebraic group over k is the inverse limite of a system of algebraic
groups over k.

Definition 2.2. Let Γ be a discrete group. A proalgebraic completion of Γ over
k is a proalgebraic group A(Γ) over k with a homomorphism ρ : Γ→ A(Γ) such
that every morphism Γ→ H, where H is a proalgebraic group over k, uniquely
filters through A(Γ) via ρ

Γ

��

ρ

}}zz
zz

zz
zz

A(Γ) // H

A proalgebraic completion for Γ is unique up to unique isomorphism. The
image of ρ is Zariski dense in A(Γ). A proalgebraic completion can be built via
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Tannaka duality, as the group of tensor product preserving automorphisms of
the forgetful functor from the category of finite dimensional Γ-modules to the
category of finite dimensional k-vector spaces.

3. Tannakian categories

In this section we recall the main notions and establish the basic notation about
Tannakian categories. For a detailed introduction the reader may refer to [12].

A category C is additive if

• the Hom classes are abelian groups and the composition of morphisms is
bilinear;

• C has finite direct sums and direct products;

• it has a zero object.

An additive category is abelian if

• every morphism has both a kernel and a cokernel (the notion of kernel
and cokernel are defined in terms of suitable universal properties);

• every monomorphism is a kernel of some morphism, and every epimor-
phism is a cokernel of some morphism.

An additive category is k-linear over a field k if the Hom groups are k-vector
spaces, and the composition of morphisms is k-linear. A tensor category is an
abelian category with a biproduct satisfying the usual properties of the tensor
product (including the existence of a unit object 1 for the tensor product).

A tensor category is rigid if

• Hom and ⊗ satisfy the natural distributive property over finite families;

• all objects are reflexive, i.e., the natural maps to their double duals are
isomorphisms (the dual A∨ of an object A of C is the object Hom(A, 1)).

Definition 3.1. A neutral Tannakian category over a field k is a rigid Abelian
k-linear tensor category T together with an exact faithful k-linear tensor functor
ω : T −→ Vectk, called the fiber functor.

The archetypical Tannakian category is the category Rep(G) of representa-
tions (on vector spaces over k) of an affine group scheme G over k. The fiber
functor is defined as the forgetful functor

ω(ρ, V ) = V if ρ : G→ Aut(V ).

Categories of representations of affine group schemes are much more than
just examples: it turns out that every neutral Tannakian category is equivalent
to one of them [12].
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Theorem 3.2 (Tannaka duality). For every neutral Tannakian category (T, ω)
there is a proalgebraic affine group scheme G such that T ' Rep(G).

The group G is recovered as the group of automorphisms of the fiber functor
that are compatible with the tensor product, G = Aut⊗(ω). If T ' Rep(G),
one also writes G = π1(T).
Examples 3.3: • The category Vectk of vector spaces over k with the

identity as fiber functor is a neutral Tannakian category. Its correspond-
ing affine group scheme is the trivial group G = {e}, i.e., π1(Vectk) =
{e}.

• The category of modules over a commutative ring with unit R is an
abelian tensor category. It may fail to be rigid as there are R-modules
that are not reflexive.

• If g is a semisimple Lie algebra over a field k, the category Rep(g) of
representations of g, with the fiber functor given by the forgetful functor
that only keeps the vector space structure of g, is a neutral Tannakian
category, and π1(Rep(g)) = G, where G is the unique connected simply
connected Lie group whose Lie algebra is g.

• If X is a smooth projective variety over C, the category of vector bundles
on X with a flat connection (a.k.a. local systems), with a functor which
to a bundle E associates its fiber at x ∈ X, is Tannakian, and is equiv-
alent to the category Rep(π1(X,x)) of representations of the topological
fundamental group of X. The dual group via Tannaka duality, i.e. the
group π1(Rep(π1(X,x))), is the proalgebraic completion of π1(X,x).

4. Tannakian categories and fundamental groups

The basic idea for using Tannaka duality to define fundamental groups is to
single out a class of geometric objects on a scheme X that make up a neutral
Tannakian category, and take the associated group scheme. We briefly review
two examples, Nori’s and Langer’s fundamental groups. Next we shall introduce
the Higgs fundamental group and discuss its relation with Simpson’s proalge-
braic fundamental group; this will be related to a conjecture about semistable
Higgs bundles on projective varieties.

Nori’s fundamental group

The first example of such a fundamental group was provided by Nori [21, 22].
A vector bundle E over a scheme X is essentialy finite if there exists a principal
bundle π : P → X, with a finite structure group, such that π∗E is trivial. Es-
sentially finite vector bundles make up a neutral Tannakian category, where the
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fiber functor maps E to the fiber over a fixed point x ∈ X (some assumptions
on the scheme X have to be made). The affine group scheme representing this
Tannakian category is the Nori fundamental group scheme πN1 (X,x). It turns
out that there is a faithfully flat (i.e., flat and surjective) morphism

πN1 (X,x) � πét
1 (X,x)

which is an isomorphism when char k = 0.
A related notion, that of F-fundamental group, was introduced in [2], and

some properties of it were studied in [1]. Another generalization was proposed
in [23].

Langer’s fundamental group

Let X be a smooth projective variety over an algebraically closed field. We can
define intersections between divisors D and curves C in X by letting

C ·D = deg f∗OX(D)

where f : C̃ → C is a normalization of C. In the same way, we can define
the intersection product between a line bundle and a curve. Then we have the
usual notion of numerical effectiveness.

Definition 4.1. L is numerically effective (nef) if L ·C ≥ 0 for all irreducible
curves C in X. A vector bundle E on X is numerically effective if its hyper-
plane line bundle OP(E)(1) on the projectivization P(E) is. E is numerically
flat if both E and its dual bundle E∨ are nef.

As proved by Langer [16, 17], numerically flat vector bundles make up a
neutral Tannakian category, so that one can define a “fundamental group”
πS1 (X,x) as its dual (this group was introduced in the case of curves also
in [5]). Essentially finite vector bundles are numerically flat, so that there is a
morphism

πS1 (X,x) � πN1 (X,x)

which is again faithfully flat, and is an isomorphism when char k = 0. Some
properties of this fundamental group, e.g. its birational invariance, were proved
in [15].

Higgs fundamental group

We follow this pattern to introduce a fundamental group which “feels” the
behavior of Higgs bundles on a projective variety. To do that we restrict to
varieties over the complex numbers, and start by considering ordinary bundles.
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So, let X be a smooth projective variety over C, and E a vector bundle on X
of rank r. We shall consider the characteristic class (the discriminant of E)

∆(E) = c2(E)− r − 1
2r

c1(E)2 ∈ H4(X,R) .

Moreover, after equipping X with an ample line bundle L, and denoting by H
it first Chern class (a polarization on X), we define the degree of E as

degE = c1(E) ·Hn−1

where n = dimX. If X is a smooth irreducible projective curve, it has a
canonical polarization, given by the class of a closed point of X. Whenever X
is such a curve, one implicitly assumes this choice of a polarization.

Definition 4.2. E is semistable (with respect to the chosen polarization) if for
every coherent subsheaf F ⊂ E, with 0 < rkF < r, one has

degF
rkF

≤ degE
r

.

E is curve semistable if for all morphisms f : C → X, where C is a smooth
projective irreducible curve, the pullback bundle f∗(E) is semistable.

The following theorem was proved in a slightly weaker form by Nakayama
[20] and strengthened into its present form by Hernández Ruipérez and the
author [9].

Theorem 4.3. The following conditions are equivalent:

• E is curve semistable;

• E is semistable with respect to a polarization, and ∆(E) = 0.

The following corollary is not hard to prove [9].

Corollary 4.4. E is numerically flat if and only if it is curve semistable and
c1(E) = 0.

It is quite natural to ask if a result such as Theorem 4.3 also works for Higgs
bundles. A Higgs sheaf is a pair (E, φ) where E is a coherent sheaf and

φ : E → E ⊗ Ω1
X , φ ∧ φ = 0.

A Higgs bundle is a locally free Higgs sheaf. A notion of semistability is given
as for ordinary vector bundles, but the inequality is required to hold only for φ-
invariant subsheaves. There is a notion of nefness/numerical flatness for Higgs



156 UGO BRUZZO

bundles [9, 7], which we briefly review here. If E is a vector bundle of rank r
on X, and s < r is a positive integer, we can consider the Grassmann bundle
Grs(E) on X. Denote by ps : Grs(E) −→ X the natural projection. There is
a universal short exact sequence

0 −→ Sr−s,E
ψ−→ p∗sE

η−→ Qs,E −→ 0 (1)

of vector bundles on Grs(E), with Sr−s,E the universal subbundle of rank r−s
and Qs,E the universal quotient of rank s [13]. The Grassmannian Grs(E)
parameterizes locally free rank s quotients of E, in the sense that if f : Y → X
is a morphism, and G is a quotient bundle of f∗(E), there is a morphism
g : Y → Grs(E) such that G ' g∗Qs,E , and the diagram

Grs(E)

ps

��
Y

g
;;xxxxxxxxx

f
// X

commutes [13].
Given a Higgs bundle E = (E, φ), we define closed subschemes Grs(E) ⊂

Grs(E) parameterizing rank s locally free Higgs quotients, i.e., locally free quo-
tients of E whose corresponding kernels are φ-invariant. The Grassmannian of
locally free rank s Higgs quotients of E, denoted Grs(E), is the closed subscheme
of Grs(E) defined by the vanishing of the composition of morphisms

(η ⊗ Id) ◦ p∗s(φ) ◦ ψ : Sr−s,E −→ Qs,E ⊗ p∗sΩ1
X . (2)

Let ρs := ps|Grs(E) : Grs(E) −→ X be the induced projection. The restriction
of (1) to Grs(E) yields a universal exact sequence

0 −→ Sr−s,E
ψ−→ ρ∗sE

η−→ Qs,E −→ 0, (3)

where Qs,E := Qs|Grs(E) is endowed with the quotient Higgs field induced by
the Higgs field ρ∗sφ. A morphism of k-varieties f : T → X factors through
Grs(E) if and only if the pullback f∗(E) admits a Higgs quotient of rank s.
The pullback of the above universal sequence on Grs(E) gives a quotient of
f∗(E).

Definition 4.5. A Higgs bundle E of rank one is said to be Higgs-numerically
effective (H-nef for short) if it is numerically effective in the usual sense. If
rkE ≥ 2, we inductively define H-nefness by requiring that

1. all Higgs bundles Qs,E are Higgs-nef, and
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2. the determinant line bundle det(E) is nef.

If both E and E∗ are Higgs-numerically effective, E is said to be Higgs-nume-
rically flat (H-nflat).

Definition 4.5 immediately implies that the first Chern class of an H-nume-
rically flat Higgs bundle is numerically equivalent to zero.

It was proved in [4] that numerically flat Higgs bundles make up a neutral
Tannakian category. Therefore, after fixing a point x ∈ X, we can define the
Higgs fundamental group πH1 (X,x) as the group which is Tannaka dual to that
category. A numerically flat vector bundle, equipped with the zero Higgs field,
is a numerically flat Higgs vector bundle, so that there is a morphism

πH1 (X,x) � πS1 (X,x)

which is again faithfully flat.
The nature of this fundamental group is related to the validity of Theo-

rem 4.3 for Higgs bundles. The following theorem was proved in [7].

Theorem 4.6. If E = (E, φ) is semistable, and ∆(E) = 0, then E is curve
semistable.

The question whether the opposite result holds true is an open problem.

Conjecture 4.7. If the Higgs bundle E is curve semistable, then ∆(E) = 0.

Conjecture 4.7 is known to hold for certain classes of varieties (varieties
whose tangent bundle is numerically effective [11] and K3 surfaces [10], and
varieties obtained from these two classes by some simple geometric construc-
tions [11]).

The category of semistable Higgs bundles on X having vanishing Chern
classes (semi-harmonic Higgs bundles) is Tannakian (the definition of this cat-
egory does not require the specification of a polarization since such bundles
are semistable with respect to all polarizations). Its Tannaka dual is iso-
morphic to the proalgebraic completion of the topological fundamental group
πalg

1 (X,x) [24]. Since such semi-harmonic Higgs bundles are Higgs numerically
effective, there is a morphism (again, a faithfully flat morphism)

πH1 (X,x)→ πalg
1 (X,x). (4)

Theorem 4.8. The morphism (4) is an isomorphism if and only the Conjec-
ture 4.7 holds.

Proof. If the morphism (4) is an isomorphism, the categories of numerically flat
Higgs bundles and semi-harmonic bundles are equivalent. Then a numerically
flat Higgs bundle has vanishing Chern classes, which implies the conjecture.
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Vice versa, if the conjecture holds, and E = (E, φ) is a numerically flat Higgs
bundle, then E is curve semistable, and since the Conjecture is assumed to hold,
∆(E) = 0; moreover, E is semistable and c1(E) = 0 [7], so that by Theorem 2
in [24], all Chern classes of E vanish, and E is semi-harmonic. Thus the two
above mentioned categories are isomorphic, and (4) is an isomorphism.
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