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Abstract

Broad distributions appear frequently in empirical data obtained from natural systems
even in seemingly unrelated domains. The emergence of power law distributions is
so ubiquitous that it has puzzled scientists across disciplines. To understand its origin
is thus crucial to understand the mechanisms from which it transpires. In this thesis,
we present an information theoretic perspective on the origin of broad distributions.
Guided by the principle that learning from the data is equivalent to an optimal cod-
ing problem, we show, through various viewpoints, that broad distributions manifest
when the sample is maximally informative on the underlying data generating process.
Furthermore, by working under the Minimum Description Length (MDL) principle,
we show that the origin of broad distributions – a signature of statistical criticality –
can be understood precisely as a second order phase transition with the coding cost
as the order parameter. This formulation then allows us to find the neurons in the
brain that contain relevant representations during spatial navigation. Taken together,
this thesis suggests that statistical criticality emerges from the efficient representation
of samples of a complex system which does not rely on any specific mechanism of
self-organization to a critical point.
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1
Introduction

Our current understanding of Nature has been borne out of our ability to collect data

from observations and controlled experiments. In fact, our understanding of the phys-

ical principles that govern matter and its interactions has been deepened thanks to

highly controlled experiments where Nature is constrained to a point where outcomes

depend only on a few variables. This has allowed us to discover relations that can be

described using elegant mathematical models. However, such level of control is absent

in data coming from observations of Nature itself. From the genome of an organism,

the species composition of an ecosystems to the neural activity in the brain – such

observations are not an outcome of any controlled experiment. We see living systems

as they naturally are – noisy and complex. Yet, these uncontrollable experiments gave

rise to a striking universal phenomenon – the emergence of broad distributions.

Indeed, it is not infrequent to find empirical data which exhibits broad frequency

distributions even in the most disparate domains. Broad distributions manifest in the

fact that if outcomes are ranked in order of decreasing frequency of their occurrence,

then the rank frequency plot spans several orders of magnitude on both axes. Fig. 1.1

reports few cases (see caption for details), but many more have been reported in the

literature (see e.g. [1, 2, 3, 4, 5, 6, 7]). A straight line in the rank plot corresponds to
1



2 CHAPTER 1. INTRODUCTION

a power law frequency distribution, where the number of outcomes that are observed

k times behave as mk ∼ k−µ−1 (with 1/µ being the slope of the rank plot). Yet, as

Fig. 1.1 shows, empirical distributions are not always power laws, even though they

are broad nonetheless.
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liver cancer mutations
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FIGURE 1.1. Rank plot of the frequencies across a broad range of datasets. Log-log plots of rank
versus frequency from diverse datasets: survey of 4,962 species of trees sampled from the Amazonian
lowlands [8], survey of 1,053 species of trees sampled across a 50 hectare plot in the Barro Colorado
Island (BCI), Panama [9], the number of species across 1,247 order of mammals that have existed in
the last few tens of thousands of years as compiled in Ref. [10], counts indicating the inclusion of
each 13,001 LEGO parts on 2,613 distributed toy sets [11], the number of bytes of data received as a
result of 4,011 web requests (HTTP) from the Environmental Protection Agency WWW server from
29-30 August 1995 [12], the number of observed mutations across 25,137 genes from patients with
liver cancer taken from the Catalogue of Somatic Mutations in Cancer (COSMIC) [13] and the number
of genes that are regulated by each of the 203 transcription factors (TFs) in E. coli [14] and 188 TFs in
S. cerevisiae (yeast) [15] through binding with transcription factor binding sites (TFBS).

The emergence of power laws in empirical observations of natural systems is rem-

iniscent of an underlying critical phenomena which is well-understood in physical

systems. Perhaps, one of the great lessons from statistical physics is that the whole

can be more than the sum of its parts. Indeed, no matter the underlying details of the

physical system, criticality and scale invariance emerge through a collective behavior

of the physical system’s components which depends only on a few essential attributes

such as the dimensionality and the underlying symmetries governing the system. For

such physical systems, the critical point can be reached by tuning the control parame-

ters to the right settings. Upon reaching the critical point, the physical system is found
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at phase transition point separating two regimes: a regime where noise dominates and

another regime where order dominates.

However, in natural systems, while complex phenomena emerges from the inter-

action between many dynamical components (or variables), the situation can be rather

different as the system is inherently not an equilibrium statistical system and the con-

trol parameters may not be well-defined from the onset. Nevertheless, an emerging

hypothesis [16], inspired by statistical mechanics, has been put forward which argues

that the probability of finding a natural system in some particular configuration is

mathematically equivalent to that of an equilibrium statistical distribution which sits

at a critical point, i.e., that the natural system is fine-tuned to operate near the critical

point. Evidences supporting this hypothesis have been shown through a series of stud-

ies in many natural systems [16, 17, 18, 19, 20]. Countless mechanisms have also been

advanced explaining this behavior (see e.g. Refs. [1, 2, 21, 22, 23, 24]). However, the

fact that broad distributions are so widespread across disparate systems suggests that a

universal mechanism with which the system is able to find itself in a critical point may

not exist just as much as microscopic details giving rise to signatures of criticality in

physical systems are not unique.

Furthermore, critical points in models estimated from empirical data are surpris-

ingly “special” in the sense that they occupy a small region of the parameter space

[25]. Hence, it is rather surprising to find these systems sitting in these regions. As

such, counter-arguments have been put forward which does not require the fine-tuning

of parameters [26, 27, 28, 29]. These hypothesis trace the origin of statistical crit-

icality to relevant variables in the system that are not observed but are nonetheless

interacting with the ones that are visible.

In this thesis, the central question that we shall address is that of the ubiquity of

broad distributions found in natural systems. The main hypothesis that we will de-

fend in what shall follow is that it is possible to trace an information theoretic origin

of broad distributions that is independent of any specific mechanism. In particular,

we will argue that broad distributions arise when the data is mostly informative about
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the underlying generative process, i.e., the data is expressed in terms of the relevant

variables. This idea has been suggested by Marsili, Mastromatteo and Roudi (2013)

[30] and was later grounded by Haimovici and Marsili (2015) [31] on the basis of

Bayesian model selection. In this thesis, however, we will give an even more solid

foundation to this idea in a purely information theoretic setting. This hypothesis rests

on the assumption that the only information we have is the frequencies (or the fraction

of times) with which different outcomes are observed in the sample. Nonetheless, if

this hypothesis is correct, then we should be able to find broad distributions when the

samples are efficiently represented. Furthermore, we should be able to use this prin-

ciple to extract efficient representations, i.e., relevant variables, in high-dimensional

data. These are the lines along which the thesis shall progress.

More precisely, we shall show in Chapter 3 that broad distribution arises from an

efficient representation of the data, i.e., when the samples are maximally informa-

tive about how the data was generated. We shall see that the construction allows us

to measure the information content of a sample in a setting where the data generat-

ing process is unknown and the only information we have is the empirical frequency

distribution. Furthermore, this construction will allow us to characterize the samples

that maximize this information content. We shall clarify this finding by relating it to

other approaches such as point estimate statistics, information bottleneck method and

asymptotic equipartition principle. We shall also see that the large deviation of the

mostly informative samples are also mostly informative at a different resolution with

which we see the data.

If this construction is correct, then we should be able to find samples as maxi-

mally informative when they are represented in an efficient manner. In Chapter 4,

we consider a framework called the minimum description length which allows for ef-

ficient representation of samples. By studying different statistical models (Dirichlet

model, independent and pairwise dependent spin models, and restricted Boltzmann

machines), we shall show that the samples that achieve optimal compression have

broad distributions and are mostly informative. Also, looking at large deviation prop-
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erties of such efficiently represented samples will allow us to provide a clear under-

standing of the origin of criticality in a very precise way.

Furthermore, if our hypothesis is correct, then we should be able to use our con-

struction as guiding principles to find neurons from different brain regions of rodents

whose representations (responses with respect to some external correlate, e.g., po-

sition or head direction) are relevant to spatial navigation as done in Chapter 5. We

shall see that our construction allows to identify relevant neurons which are only those

whose responses are not only informative about the navigational correlate but allow

for efficient decoding of such relevant external correlate.

While each chapter will have its own conclusion, we shall close this thesis with a

synthesis of what we have shown and provide directions for future investigations in

the Conclusions and present all the basic notions, pertinent derivations and research

methods in the Appendix.



This page has been intentionally left blank.



2
Statistical criticality: A survey

In this chapter, we shall first introduce the general setup of the problem that we shall

address in the succeeding chapters. Doing so will allow us to discuss the concept of

statistical criticality – the emergence of power law frequency distributions in empirical

data – and different hypotheses describing its origin.

2.1 Setting up the scene

Throughout this thesis, we shall consider a sample (or data) ŝ = (s(1), . . . , s(N)) of

N observations where each data point s(`) are drawn from a countable and finite set

χ. Here, we assume that each observation s(`) in the sample are outcomes of N in-

dependent experiments which are done in the same conditions, so the order of the

observations is irrelevant1. Mathematically, this is equivalent to each s as being inde-

pendent and identically distributed draws from an unknown distribution p(s)2. This

sampling procedure then defines a generative process.

1(`) indexes the observation in the sample. We shall drop this notation whenever it is not necessary.
2An intuitive discussion about sampling is presented in Chapters 3 and 9 of Ref. [32]. In brief,

the setup is mathematically related to sampling balls labeled by S integers with replacement from an
urn with a countably large number of balls. The labels s, when we have a very large sample, have a
limiting distribution p(s). Hence, whenever we say “drawing from a distribution”, we shall have the
urn analogy in mind.

7
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In some cases, the observation s can be multivariate. In this case, each observation

can be described as n-dimensional vector, i.e., s = (s1, . . . , sn) where each element

si can either be a spin variable (si = ±1) or a binary variable (si = 0, 1) which can

interact with each other.

In any case, for a given sample, ŝ = (s(1), . . . , s(N)), we shall define ks as the

number of observations in ŝ for which s(`) = s, i.e., the frequency of s. The number of

states s that occur k times will be called as the degeneracy denoted by mk. Of course,

both ks andmk depend on the sample ŝ and follow the obvious relation
∑

k kmk = N .

Furthermore, one can obtain an empirical estimate of a function g(s) of the observation

from the sample. Such an empirical estimate shall be denoted by a hat, i.e., ĝ(s). For

example, the empirical estimate of the distribution is given by p̂(s) = ks/N which

tends to p(s) when N →∞.

2.2 Statistical mechanics of samples

It has been argued (see for instance Refs. [16, 20]) that it is possible to construct

a statistical mechanics approach of a single sample. The core idea is to construct a

distribution q(s) such that it matches the statistics of the empirical data, i.e., q(s) =

p̂(s). This construction allows us to make a connection between samples and statistical

physics models and therefore, criticality.

To make this point clearer and more pedagogical, let us consider, without loss

of generality, a system comprising n spin variables where each observation3 (or spin

configuration or spin state) s = (s1, . . . , sn) is drawn from a distribution p(s). With

this, one can choose some functions Tµ(s) of the spin variables s called observables or

statistics for which the empirical averages T̂µ(s) can be measured from the sample4.

With the assumed choice of the statistics {Tµ(s)}, one then constructs the distri-

3Here, we note that the observations s ∈ χ and the size of the state space is S = 2n.
4For example, one can consider the spin Ti(s) = si (with n of such statistics) or product of two

different spins Ti,j(s) = sisj (with n(n−1)
2 of such statistics) and thus, one realizes that the empirical

averages, T̂i(s) = 1
N

∑N
`=1 s

(`)
i and T̂i,j(s) = 1

N

∑N
`=1 s

(`)
i s

(`)
j , are the mean and correlation of the

spin variables respectively.
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bution q(s) which does not incorporate any other assumption of information that we

do not have. This is done through the principle of maximum entropy [33, 34]. In

the maximum entropy approach, one finds the distribution q(s) which maximizes the

entropy

H[s] = −
∑
s∈χ

q(s) log q(s) (2.1)

constrained to reproduce the empirical averages of the statistics

T̂µ(s) = 〈Tµ(s)〉q ≡
∑
s∈χ

Tµ(s)q(s). (2.2)

This amounts to setting the derivatives of the functional

F = −
∑
s∈χ

q(s) log q(s) + λ0

[∑
s∈χ

q(s)− 1

]
+
∑
µ

λµ

[∑
s∈χ

Tµ(s)q(s)− T̂µ(s)〉
]

(2.3)

with respect to the distribution q(s) to zero which yields the solution

q(s) =
exp (−Es)

Z
(2.4)

where Es =
∑

µ λµTµ(s) and Z =
∑

s∈χ exp(−Es) is a normalization constant5.

Now, introducing a parameter β to the distribution q(s) in Eq. (2.4), i.e.,

qβ(s) =
exp (−βEs)

Z(β)
, (2.5)

allows one to “tilt” the distribution of a configuration s. In this form, the distribution

resembles the Gibbs-Boltzmann distribution with Es as the energy, β = 1/T is the

5For example, most cases in literature (see Ref. [16] and the examples therein for examples) choose
the observables to be the first Ti(s) = si and second moments Ti,j(s) = sisj of the spin variables. In
this case, the maximum entropy distribution can be written as

q(s) =
exp

(∑
i hisi +

∑
i,j Ji,jsisj

)
Z

with hi as a bias parameter in the spin si and Ji,j as an effective interaction parameter between spins
si and sj .
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inverse temperature and

Z(β) =
∑
s∈χ

exp (−βEs) (2.6)

is the partition funtion which normalizes the distribution in Eq. (2.5). Ref. [16] took

this distribution as a statistical mechanics problem6 and compute the specific heat in

the usual way.

With the formulation in Eq. (2.5), one can calculate the energyEs of each configu-

ration s and aggregate each configuration into energy levels. In particular, the partition

function in Eq. (2.6) can be expressed as

Z(β) =
∑
s∈χ

[∫
dEδ(E − Es)

]
exp (−βE) (2.7)

=

∫
dE

[∑
s∈χ

δ(E − Es)

]
exp (−βE) (2.8)

=

∫
dEW (E) exp (−βE) (2.9)

where W (E) =
∑

s∈χ δ(E − Es) corresponds to the degeneracy at each energy level

E. Thus, one can define a Boltzmann entropy as

SB(E) = logW (E) (2.10)

whose average corresponds to the entropy in Eq. (2.1). Here, we shall assume that the

thermodynamic limit where n → ∞ exists [16, 20] where both the energy E and the

entropy SB(E) scales with n7. In this limit, the energy levels become dense and thus,

instead of calculating the degeneracy W (E) in each level, one can instead consider

6With this construction, by varying β, one can interpolate between low and high temperature phase.
At infinite temperature, β = 0, all configurations are equally probable while at zero temperature,
β → ∞, the distribution concentrates on configurations that minimizes the energy Es i.e., the ground
state configurations which, depending on the details of the system, can be hard to define. Notice that
when β = 1, one recovers the distribution estimated from the sample.

7The existence of this limit is never always guaranteed. If this limit exists, this corresponds to
making the size S of the state space χ very, very large.
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the number of configurations W(E) with energy less than E, i.e.,

W(E) =
∑
s∈χ

Θ(E − Es) (2.11)

where Θ(x) is the Heaviside step function8. Since the step function is the integral of

the delta function, one can integrate the partition function in Eq. (2.9) by parts which

results to

Z(β) = β

∫
dEW(E)e−βE (2.12)

= β

∫
dEe−βE+logW(E) (2.13)

= β

∫
dEe−βE+SB(E) (2.14)

where SB(E) = logW(E) takes the form of an entropy9. Notice that the energyE and

the entropy SB(E) are both extensive quantities and hence, we can define the energy

and entropy per spin as ε = E/n and s(ε) = SB(E)/n. With this, we can write the

partition function as

Z(β) = nβ

∫
dεe−nφ(ε) (2.15)

where

φ(ε) = βε− s(ε) (2.16)

is the free energy. Notice that in the thermodynamic limit, the partition function in

Eq. (2.15) will be dominated by the value ε∗ for which φ(ε∗) is a saddle point which

8The Heaviside step function Θ(x) is defined as

Θ(x) =

{
1 x > 0

0 x < 0

9Note that when the size n of the system is small, W (E) and W(E) are both badly behaving
functions, i.e., W (E) is singular while W(E) has visible steps. However, in the thermodynamic limit,
both functions become smooth. In this limit, it is better to work with W(E) since we avoid the problem
of properly binning the energy E.
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is given by the condition

∂φ(ε)

∂ε

∣∣∣
ε=ε∗

= 0 =⇒ ds(ε∗)

dε∗
= β ≥ 0. (2.17)

And thus, we can expand the free energy φ(ε) around ε∗ to find

φ(ε) = φ(ε∗)− 1

2

d2s(ε)

dε2
(ε− ε∗)2 + · · · (2.18)

with which the partition function can now be re-cast as

Z(β) ' nβe−nφ(ε∗)
∫
dε exp

[
n

2

d2s(ε)

dε2
(ε− ε∗)2

]
. (2.19)

With this, one can think of the energy per spin as being drawn from (approximately) a

Gaussian distribution with mean ε∗ and variance

〈
(δε)2

〉
=

1

n

[
−d

2s(ε)

dε2

]−1

(2.20)

which is related to the specific heat by the fluctuation-dissipation theorem as

c(β) =
1

β2

〈
(δε)2

〉
. (2.21)

In this construction, the parameter β = 1 is an extremely special point. First,

β = 1 corresponds to a point where we recover the distribution q(s) in Eq. (2.4), i.e.,

the point which matches the chosen statistics of the empirical data. At this point, Ref.

[20] argues that the free energy in Eq. (2.16) becomes φ(ε) = ε − s(ε) and thus, the

configurations s with energy ε∗ that dominate the integral in Eq. (2.15), i.e. where the

free energy φ(ε) is at a minimum, obey the relation

ds(ε∗)

dε∗
= 1 (2.22)

implying that with such configurations, the energy ε∗ and entropy s(ε∗) have a linear



2.2. STATISTICAL MECHANICS OF SAMPLES 13

relationship. The concept of configurations dominating the integral in Eq. (2.15) intro-

duces the concept of “typicality”. By the Asymptotic Equipartition Principle (AEP), at

large n, such dominating states are observed with the same log probability. However,

in this case, the curvature of the free energy vanishes, i.e., d2s(ε∗)
dε∗2 = 0 and thus, the

usual ideas of “typicality” breaks down resulting to large variations in the observed

log probability which is mathematically equivalent to a diverging specific heat. In-

deed, because the second derivative d2s(ε)
dε2

= 0, then following Eq. (2.21), the specific

heat c(β = 1) diverges. These are clear signatures of a second order phase transition

and β = 1 is a critical point10. Finally, β = 1 corresponds to the well-celebrated

Zipf’s law [35] which can be written as11

mk ∼ k−2 (2.23)

where mk is the degeneracy of finding a state with frequency k in the sample ŝ .

As it turned out, the critical point for diverse natural systems [17, 18, 19, 16, 20]

where power law frequency distributions have been observed sits at β ≈ 1. This

allowed Ref. [16] to suggest that such systems exhibit statistical criticality because

they operate close to a critical point. A number of dynamical mechanisms have been

put forward to explain the emergence of criticality through fine-tuning of parameters

[21, 24, 36]. The most notable one is that in Ref. [23] wherein a collection of living

systems “communicate” to each other resulting to adaptation or evolution in order to

cope in a complex and changing environment from which self-tuning to criticality is

attained. In particular, each individual constructs an “internal representation” of the

environment with a trade-off between accuracy and flexibility so as to best respond to

10The construction above can be extended to non-equilibrium systems as shown in Ref. [20] where
one does not have a notion of a partition function. Here, one starts by assigning an energy to every
configuration s as the negative logarithm of the distribution q(s). One employs similar calculations as
above and eventually, one can make the correspondence with an equilibrium thermodynamic system
with which the divergence of the specific heat is a consequence of the large fluctuations in the log-
probability of the configurations.

11To see this, consider a sample ŝ and the empirical distributions {p̂(s)}. One can define the energy
Es = − log p̂(s) as in Ref. [16] and the entropy SB(Es) = logW (Es) as in Eq. (2.10) where
W (Es) is the number of observations s(`) in ŝ having energy Es. Thus, the energy of the system is
Es = − log(k/N) while W (Es) = kmk and consequently, SB(Es) = log(kmk). Thus, the linear
energy-entropy relationship results to a Zipf’s law for the multiplicities as in Eq. (2.23).
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the external conditions.

However, finding the system at a critical point as discussed above has been argued

to be surprisingly “special”. Indeed, Mastromatteo and Marsili (2011) [25] observed

that, at the critical point, inferred models concentrate on a small region of the pa-

rameter space. This entails that such critical systems have to constantly fine-tune its

parameters to stay within the critical region.

Counter-arguments have since been presented which traces the origin of statisti-

cal criticality without the need for fine-tuning of parameters. In Ref. [26], they have

shown that a linear energy-entropy relationship from which a power law distribution

emerges can be attained when a relevant hidden variables that is interacting with the

observed variables (or spins) of the system is marginalized out of the system. In par-

ticular, they have argued that if the observed system is adapted to the variations of the

hidden variables, i.e., if the variations of the hidden variable is broad but not necessar-

ily a power law, then statistical criticality emerges in the thermodynamic limit. This

result has been generalized in Refs. [27, 28] which shows that a broad distribution

of energies (i.e., negative logarithm of the distribution) and consequently, a large spe-

cific heat can emerge under fairly general circumstances of high-dimensional hidden

variable models. This construction of statistical criticality due to hidden variables has

been shown to hold in a neuron model with common input [37] as well as in several

empirical data [27, 28]. Of noteworthy is Ref. [29] where they have shown that sig-

natures of criticality can arise solely by subsampling a correlated system. While there

are still no concrete mechanical mechanisms of attaining criticality with hidden vari-

ables, a number of mechanisms have been put forward that attain criticality without

the need of parameter fine-tuning [38, 39].

The capacity of a system to perform complex computation has been conjectured to

be enhanced when operating near a critical point separating a noise-dominated region

where information transmission and storage is corrupted and an order-dominated re-

gion where information modification (i.e., adaptations) due to changing environment

are hindered [40, 41]. As such, natural systems should be able to efficiently repre-
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sent the external environment [23] allowing for a trade-off between accuracy – how

detailed the environment should be represented – and flexibility – how complex the

resulting representation is. Hence, it is only natural to look for origins of statistical

criticality in such representations. In the next chapters, we shall contribute to this de-

bate on the origin of statistical criticality by following information theoretic arguments

which do not need any mechanism of parameter fine-tuning.
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3
Efficient representations exhibit

statistical criticality

When the sample is generated as independent draws from a parametric distribution,

f(s|θ), one can draw a sharp distinction between what is noise and what is useful in-

formation, i.e., that part of the data that can be used to estimate the generative model

through the maximum entropy principle as discussed in Chapter 2.2. Useful informa-

tion in concentrated in (minimal) sufficient statistics T̂(s) [42], which are those vari-

ables whose empirical values suffice to fully estimate the model’s parameter [33, 34].

This chapter aims at drawing the same distinction in the case where the data is discrete

and the model is not known. In this case, we show that the information on the genera-

tive model is contained in the empirical distribution of frequencies, i.e. the fraction of

times different outcomes are observed in the sample. Hence, of the total information

contained in the sample, which is quantified in the entropy of the distribution of out-

comes, the amount of useful information is quantified by the entropy of the frequency

distribution. As argued in Ref. [31], while the former entropy is a measure of reso-

lution1. – i.e. of the number of bits needed to encode a singe observation – the latter
1For example, stocks in the financial market can be classified by their SIC (Standard Industrial

Classification) code using different number of digits, gene sequences can be defined in terms of the

17
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quantifies relevance – i.e. maximal number of bits each observation carries about the

generative model.

The first aim of this chapter is to present a simple derivation of this result. We

look for a model-free characterization of a sample similar to that offered by sufficient

statistics in the case of parametric models. We do this by searching for minimally

sufficient representations in terms of hidden features, requiring that conditional to

the latter, the sample contains no more information to estimate the generative model.

This identifies the frequencies as the hidden features and the entropy of the frequency

distribution – i.e. the relevance – as the measure of information content of the sample.

As shown in Refs. [30, 31], samples that maximize the relevance at a fixed resolu-

tion – that we shall call maximally informative samples henceforth – exhibit statistical

criticality [16]. This implies that the number of outcomes that are observed k times in

the sample behaves as

mk ∼ k−µ−1. (3.1)

Here, the exponent µ encodes the trade-off between resolution and relevance: a de-

crease of one bit in resolution translates to an increase of µ bits in relevance. Hence,

the case µ = 1, which corresponds to the celebrated Zipf’s law [35], encodes the op-

timal trade-off, since further decrease in resolution delivers an increase in relevance

that is not compensated by an information loss.

It is interesting that several systems that are meant to encode efficient representa-

tions follow Zipf’s law. This is the case, for example, for the frequency of words in

language [35], the antibody binding site sequences in the immune system [43, 18] and

spike patterns of population of neurons [20]. In each of this cases, the rth most fre-

quent value of the relevant variables (words, binding site sequences or spike patterns)

occurs with frequency proportional to 1/r.

The finding that maximally informative samples exhibit statistical criticality, sug-

gests [30, 31] that broad distributions arise from an optimization principle of maximal

sequence of the bases or in terms of the sequence of amino acids they code for, organisms can be
classified based on different taxonomic levels, etc
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relevance, i.e. that the data is expressed in terms of relevant variables. For example,

the distribution of a population within a country exhibits a broad distribution when

expressed in terms of city sizes [38], but a much narrower one when expressed in

terms of ZIP codes. The same principle may explain why broad frequency distribu-

tions occur in other systems, such as natural images [44] or the distribution of firms by

SIC codes [45]. Furthermore, this also opens the way to attempt at extracting relevant

variables from high dimensional data, as e.g. in [46, 47] and in Chapter 5, or to shed

light on the principles underlying deep learning [48].2

The second aim of this chapter is to clarify the relation of the findings above with

other approaches. First, we show that maximally informative samples can be derived

from the Information Bottleneck [51] like approach, when the frequency is taken as

the output variable. We, then, use the thermodynamic analogy of samples as done

in Chapter 2.2 and proposed in Ref. [16, 17] to show that if a typical samples is

maximally informative, the large deviation in the information cost also correspond

to maximally informative samples. Furthermore, Zipf’s law arises as the most likely

maximally informative sample, under a non-informative prior. Finally, we comment

on the relation between our results and those of Refs. [26] and [28] that propose

necessary conditions for the occurrence of Zipf’s law and conclude with few general

comments.

3.1 Parametric models: Sufficiency

Throughout this chapter, we shall be interested in addressing the question of optimal

data reduction. However, before we delve into the case of a model-free setting, i.e.,

when p(s) is unknown, we first consider the instance when the distribution p(s) =

f(s|θ) were a known family of distribution parametrized by θ. In this context, data

2In Ref. [48], they have trained deep belief networks [49] (a network architechture similar in con-
struction to restricted Boltzmann machines as in Chapter 4.2.3 but with multiple hidden layers) on the
MNIST data [50]. They have found that deep learning maps the data into a hierarchy of maximally
informative samples at different resolution, depending on the depth of the hidden layer. In addition, the
layer whose distribution is closest to Zipf’s law was found to exhibit the best generation performance,
i.e., the statistics of the generated samples follow that of the training samples.
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reduction amounts to asking that any estimation on the parameter θ should depend on

the sample ŝ only through some summarization of the data.

If T̂(s) is a function (or a statistic) of the sample, then we can construct a Markov

chain θ → ŝ → T̂(s) which describes a generating process. With this, we mean that

we can generate the sample ŝ from the parametric distribution f(s|θ) and then, we gen-

erate the statistic T (ŝ) from ŝ. By the data processing inequality (see Appendix A.1.4)

which states that no clever manipulation of the sample ŝ can increase the information

content of ŝ, we have that

I(θ, T̂(s)) ≤ I(θ, ŝ). (3.2)

If this equality holds, then no information about the sample is lost and the statistic

T̂(s) provides a summary of the generating process, i.e., T̂(s) can be used to estimate

the parameter θ as well as generate the sample ŝ. Indeed, we say that the statistic T̂(s)

is sufficient for the parameter θ if it contains all the information in the sample ŝ about

the parameter θ3. Equivalently, this tells us that, conditional on T̂(s), the sample ŝ

does not contain any information on the parameter θ, i.e., the conditional distribution

f(ŝ|T̂(s) = t) is independent of θ and we can write f(ŝ|θ) = g(T̂(s)|θ)p(ŝ) for some

functions g and p. This means that since the conditional distribution no longer depends

on the parameter θ, then the particular values of the sample ŝ do not constrain the pa-

rameter θ in any way. This said, the sufficient statistic T̂(s) provides a representation

of θ in the sample ŝ and optimal statistical estimations can then be designed around

T̂(s) (as is done with the maximum entropy principle in Chapter 2.2).

While the sufficient statistic T̂(s) provides an efficient representation through a

dimensional reduction, T̂(s) may not be an optimal data representation. Indeed, any

function of the sufficient statistic is also a sufficient statistic. Hence, if a sufficient

statistic T̂∗(s) is a function of every other sufficient statistic T̂(s), then T̂∗(s) is a

minimally sufficient statistic relative to the parametric distribution f(s|θ). This implies

3Take as an example a sample ŝ where each of the N observation s(i) are independently drawn
from f(s|θ). Then, T̂(s) =

∑N
i=1 s

(i) is a sufficient statistic for the following discrete parametric
distributions: (i) a Bernoulli distribution, f(s|θ) = θs(1 − θ)1−s, s ∈ 0, 1, with parameter θ and (ii) a
Poisson distribution, f(s|θ) = θse−θ

s! , s ∈ {0, 1, . . .}, with parameter θ.
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that we can construct a Markov chain

θ → T̂∗(s)→ T̂(s)→ s (3.3)

of the data generating process. Thus, a minimal sufficient statistic provides an optimal

representation about θ in the sample ŝ.

The minimal sufficient statistic has an intuitive explanation in terms of partitioning

the observation space χ. In particular, a sufficient statistic T̂(s) can be realized as a

labeling of disjoint partitions of χ such that the observations s and s′ belong to the

same partition if and only if T̂(s) = T̂(s′). A minimal sufficient statistic is then a

sufficient statistic which provides the coarsest possible partitioning of the observation

space χ4. That is, given a partitioning of χ corresponding to a minimal sufficient

statistic T̂∗(s), the statistic resulting from taking the union of two distinct partitions

is no longer sufficient. Such a partitioning is called the minimal sufficient partition

[52] and is unique even if the minimal sufficient statistic is not. As such, any sufficient

statistic induces a partitioning which is a refinement of the minimal sufficient partition.

3.2 Minimally sufficient representations

In this section, we ask the same question of optimal data reduction in a model-free

setting. By model-free, we mean that we assume there is a data generating process

(see Fig. 3.1) but the underlying model which generated the data is unknown. The

answer to this question also allows us to quantify the amount of information that a

sample ŝ contains on the generative process. This will allow us to ask, in the next

section, which are the samples that are mostly informative, i.e. that contain a maximal

amount of information on the generative process.

Here, we shall be guided by the principle that learning from the sample ŝ is equiv-

4This can be done by defining a relation ∼ which is reflexive (s ∼ s), symmetric (s ∼ s′ ⇔ s′ ∼ s)
and transitive (if s ∼ s′ and s′ ∼ s′′, then s ∼ s′′) such that s ∼ s′ for s, s′ ∈ χ if and only if
f(s|θ)
f(s′|θ) = H(s, s′), i.e., the likelihood ratio does not depend on the parameter θ for some function H .

This relation ∼ then induces a partition in the observation space χ. Then, any statistic T̂∗ such that
T̂∗(s) is constant for all the observations s in a partition is a minimal sufficient statistic.
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p(h)
<latexit sha1_base64="ZVj933YizQbFUmfPo8Sxxso2DqA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoihXosePFYwX5AG8pmu2mW7m7C7kYooX/BiwdFvPqHvPlv3LQ5aOuDgcd7M8zMCxLOtHHdb6e0tb2zu1ferxwcHh2fVE/PejpOFaFdEvNYDQKsKWeSdg0znA4SRbEIOO0Hs7vc7z9RpVksH808ob7AU8lCRrDJpaQeXY+rNbfhLoE2iVeQGhTojKtfo0lMUkGlIRxrPfTcxPgZVoYRTheVUappgskMT+nQUokF1X62vHWBrqwyQWGsbEmDlurviQwLrecisJ0Cm0ive7n4nzdMTXjrZ0wmqaGSrBaFKUcmRvnjaMIUJYbPLcFEMXsrIhFWmBgbT8WG4K2/vEl6Nw3PbXgPzVq7WcRRhgu4hDp40II23EMHukAggmd4hTdHOC/Ou/Oxai05xcw5/IHz+QNfH429</latexit><latexit sha1_base64="ZVj933YizQbFUmfPo8Sxxso2DqA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoihXosePFYwX5AG8pmu2mW7m7C7kYooX/BiwdFvPqHvPlv3LQ5aOuDgcd7M8zMCxLOtHHdb6e0tb2zu1ferxwcHh2fVE/PejpOFaFdEvNYDQKsKWeSdg0znA4SRbEIOO0Hs7vc7z9RpVksH808ob7AU8lCRrDJpaQeXY+rNbfhLoE2iVeQGhTojKtfo0lMUkGlIRxrPfTcxPgZVoYRTheVUappgskMT+nQUokF1X62vHWBrqwyQWGsbEmDlurviQwLrecisJ0Cm0ive7n4nzdMTXjrZ0wmqaGSrBaFKUcmRvnjaMIUJYbPLcFEMXsrIhFWmBgbT8WG4K2/vEl6Nw3PbXgPzVq7WcRRhgu4hDp40II23EMHukAggmd4hTdHOC/Ou/Oxai05xcw5/IHz+QNfH429</latexit><latexit sha1_base64="ZVj933YizQbFUmfPo8Sxxso2DqA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoihXosePFYwX5AG8pmu2mW7m7C7kYooX/BiwdFvPqHvPlv3LQ5aOuDgcd7M8zMCxLOtHHdb6e0tb2zu1ferxwcHh2fVE/PejpOFaFdEvNYDQKsKWeSdg0znA4SRbEIOO0Hs7vc7z9RpVksH808ob7AU8lCRrDJpaQeXY+rNbfhLoE2iVeQGhTojKtfo0lMUkGlIRxrPfTcxPgZVoYRTheVUappgskMT+nQUokF1X62vHWBrqwyQWGsbEmDlurviQwLrecisJ0Cm0ive7n4nzdMTXjrZ0wmqaGSrBaFKUcmRvnjaMIUJYbPLcFEMXsrIhFWmBgbT8WG4K2/vEl6Nw3PbXgPzVq7WcRRhgu4hDp40II23EMHukAggmd4hTdHOC/Ou/Oxai05xcw5/IHz+QNfH429</latexit><latexit sha1_base64="ZVj933YizQbFUmfPo8Sxxso2DqA=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBahXkoihXosePFYwX5AG8pmu2mW7m7C7kYooX/BiwdFvPqHvPlv3LQ5aOuDgcd7M8zMCxLOtHHdb6e0tb2zu1ferxwcHh2fVE/PejpOFaFdEvNYDQKsKWeSdg0znA4SRbEIOO0Hs7vc7z9RpVksH808ob7AU8lCRrDJpaQeXY+rNbfhLoE2iVeQGhTojKtfo0lMUkGlIRxrPfTcxPgZVoYRTheVUappgskMT+nQUokF1X62vHWBrqwyQWGsbEmDlurviQwLrecisJ0Cm0ive7n4nzdMTXjrZ0wmqaGSrBaFKUcmRvnjaMIUJYbPLcFEMXsrIhFWmBgbT8WG4K2/vEl6Nw3PbXgPzVq7WcRRhgu4hDp40II23EMHukAggmd4hTdHOC/Ou/Oxai05xcw5/IHz+QNfH429</latexit>

ĥ
<latexit sha1_base64="yc6nWJraXdrziroy+QgAMvgk2Fo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsN83SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWNUmmGe+wRCa6H1DDpVC8gwIl76ea0ziQvBdM7xZ+74lrIxL1iLOU+zGdKBEKRtFKvWFEMY/mo2rNrbtLkE3iFaQGBdqj6tdwnLAs5gqZpMYMPDdFP6caBZN8XhlmhqeUTemEDyxVNObGz5fnzsmVVcYkTLQthWSp/p7IaWzMLA5sZ0wxMuveQvzPG2QY3vq5UGmGXLHVojCTBBOy+J2MheYM5cwSyrSwtxIWUU0Z2oQqNgRv/eVN0r2pe27de2jUWo0ijjJcwCVcgwdNaME9tKEDDKbwDK/w5qTOi/PufKxaS04xcw5/4Hz+AJO2j6s=</latexit><latexit sha1_base64="yc6nWJraXdrziroy+QgAMvgk2Fo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsN83SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWNUmmGe+wRCa6H1DDpVC8gwIl76ea0ziQvBdM7xZ+74lrIxL1iLOU+zGdKBEKRtFKvWFEMY/mo2rNrbtLkE3iFaQGBdqj6tdwnLAs5gqZpMYMPDdFP6caBZN8XhlmhqeUTemEDyxVNObGz5fnzsmVVcYkTLQthWSp/p7IaWzMLA5sZ0wxMuveQvzPG2QY3vq5UGmGXLHVojCTBBOy+J2MheYM5cwSyrSwtxIWUU0Z2oQqNgRv/eVN0r2pe27de2jUWo0ijjJcwCVcgwdNaME9tKEDDKbwDK/w5qTOi/PufKxaS04xcw5/4Hz+AJO2j6s=</latexit><latexit sha1_base64="yc6nWJraXdrziroy+QgAMvgk2Fo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsN83SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWNUmmGe+wRCa6H1DDpVC8gwIl76ea0ziQvBdM7xZ+74lrIxL1iLOU+zGdKBEKRtFKvWFEMY/mo2rNrbtLkE3iFaQGBdqj6tdwnLAs5gqZpMYMPDdFP6caBZN8XhlmhqeUTemEDyxVNObGz5fnzsmVVcYkTLQthWSp/p7IaWzMLA5sZ0wxMuveQvzPG2QY3vq5UGmGXLHVojCTBBOy+J2MheYM5cwSyrSwtxIWUU0Z2oQqNgRv/eVN0r2pe27de2jUWo0ijjJcwCVcgwdNaME9tKEDDKbwDK/w5qTOi/PufKxaS04xcw5/4Hz+AJO2j6s=</latexit><latexit sha1_base64="yc6nWJraXdrziroy+QgAMvgk2Fo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUI8FLx4r2A9oQ9lsN83SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJXCoOt+O6Wt7Z3dvfJ+5eDw6PikenrWNUmmGe+wRCa6H1DDpVC8gwIl76ea0ziQvBdM7xZ+74lrIxL1iLOU+zGdKBEKRtFKvWFEMY/mo2rNrbtLkE3iFaQGBdqj6tdwnLAs5gqZpMYMPDdFP6caBZN8XhlmhqeUTemEDyxVNObGz5fnzsmVVcYkTLQthWSp/p7IaWzMLA5sZ0wxMuveQvzPG2QY3vq5UGmGXLHVojCTBBOy+J2MheYM5cwSyrSwtxIWUU0Z2oQqNgRv/eVN0r2pe27de2jUWo0ijjJcwCVcgwdNaME9tKEDDKbwDK/w5qTOi/PufKxaS04xcw5/4Hz+AJO2j6s=</latexit>

p(s|h)
<latexit sha1_base64="y+L7T/fMNKcNTN3VldKPbjX1fdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPRY8OKxgm2FdinZNNvGZpOQZIWy9j948aCIV/+PN/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCobWSqCW0RyaW+j7ChnAnassxyeq80xUnEaScaX8/8ziPVhklxZyeKhgkeChYzgq2T2qpqnkbn/XLFr/lzoFUS5KQCOZr98ldvIEmaUGEJx8Z0A1/ZMMPaMsLptNRLDVWYjPGQdh0VOKEmzObXTtGZUwYoltqVsGiu/p7IcGLMJIlcZ4LtyCx7M/E/r5va+CrMmFCppYIsFsUpR1ai2etowDQllk8cwUQzdysiI6wxsS6gkgshWH55lbQvaoFfC27rlUY9j6MIJ3AKVQjgEhpwA01oAYEHeIZXePOk9+K9ex+L1oKXzxzDH3ifPxbQjsA=</latexit><latexit sha1_base64="y+L7T/fMNKcNTN3VldKPbjX1fdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPRY8OKxgm2FdinZNNvGZpOQZIWy9j948aCIV/+PN/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCobWSqCW0RyaW+j7ChnAnassxyeq80xUnEaScaX8/8ziPVhklxZyeKhgkeChYzgq2T2qpqnkbn/XLFr/lzoFUS5KQCOZr98ldvIEmaUGEJx8Z0A1/ZMMPaMsLptNRLDVWYjPGQdh0VOKEmzObXTtGZUwYoltqVsGiu/p7IcGLMJIlcZ4LtyCx7M/E/r5va+CrMmFCppYIsFsUpR1ai2etowDQllk8cwUQzdysiI6wxsS6gkgshWH55lbQvaoFfC27rlUY9j6MIJ3AKVQjgEhpwA01oAYEHeIZXePOk9+K9ex+L1oKXzxzDH3ifPxbQjsA=</latexit><latexit sha1_base64="y+L7T/fMNKcNTN3VldKPbjX1fdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPRY8OKxgm2FdinZNNvGZpOQZIWy9j948aCIV/+PN/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCobWSqCW0RyaW+j7ChnAnassxyeq80xUnEaScaX8/8ziPVhklxZyeKhgkeChYzgq2T2qpqnkbn/XLFr/lzoFUS5KQCOZr98ldvIEmaUGEJx8Z0A1/ZMMPaMsLptNRLDVWYjPGQdh0VOKEmzObXTtGZUwYoltqVsGiu/p7IcGLMJIlcZ4LtyCx7M/E/r5va+CrMmFCppYIsFsUpR1ai2etowDQllk8cwUQzdysiI6wxsS6gkgshWH55lbQvaoFfC27rlUY9j6MIJ3AKVQjgEhpwA01oAYEHeIZXePOk9+K9ex+L1oKXzxzDH3ifPxbQjsA=</latexit><latexit sha1_base64="y+L7T/fMNKcNTN3VldKPbjX1fdA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquFPRY8OKxgm2FdinZNNvGZpOQZIWy9j948aCIV/+PN/+NabsHbX0w8Hhvhpl5keLMWN//9gpr6xubW8Xt0s7u3v5B+fCobWSqCW0RyaW+j7ChnAnassxyeq80xUnEaScaX8/8ziPVhklxZyeKhgkeChYzgq2T2qpqnkbn/XLFr/lzoFUS5KQCOZr98ldvIEmaUGEJx8Z0A1/ZMMPaMsLptNRLDVWYjPGQdh0VOKEmzObXTtGZUwYoltqVsGiu/p7IcGLMJIlcZ4LtyCx7M/E/r5va+CrMmFCppYIsFsUpR1ai2etowDQllk8cwUQzdysiI6wxsS6gkgshWH55lbQvaoFfC27rlUY9j6MIJ3AKVQjgEhpwA01oAYEHeIZXePOk9+K9ex+L1oKXzxzDH3ifPxbQjsA=</latexit>

ŝ
<latexit sha1_base64="nxNmu0D43zulLBPfGzk49BbRyJk=">AAAB7nicbVDLSgNBEOyJrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOZpMhs7PLTK8QlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXmCpp0fO+SWljc2t7p7xb2ds/ODyqHp+0bZIZLlo8UYnphswKJbVooUQluqkRLA6V6ISTu7nfeRLGykQ/4jQVQcxGWkaSM3RSpz9mmNvZoFrz6t4CdJ34BalBgeag+tUfJjyLhUaumLU930sxyJlByZWYVfqZFSnjEzYSPUc1i4UN8sW5M3rhlCGNEuNKI12ovydyFls7jUPXGTMc21VvLv7n9TKMboNc6jRDoflyUZQpigmd/06H0giOauoI40a6WykfM8M4uoQqLgR/9eV10r6q+17df7iuNa6LOMpwBudwCT7cQAPuoQkt4DCBZ3iFN5KSF/JOPpatJVLMnMIfkM8fpG2Ptg==</latexit><latexit sha1_base64="nxNmu0D43zulLBPfGzk49BbRyJk=">AAAB7nicbVDLSgNBEOyJrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOZpMhs7PLTK8QlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXmCpp0fO+SWljc2t7p7xb2ds/ODyqHp+0bZIZLlo8UYnphswKJbVooUQluqkRLA6V6ISTu7nfeRLGykQ/4jQVQcxGWkaSM3RSpz9mmNvZoFrz6t4CdJ34BalBgeag+tUfJjyLhUaumLU930sxyJlByZWYVfqZFSnjEzYSPUc1i4UN8sW5M3rhlCGNEuNKI12ovydyFls7jUPXGTMc21VvLv7n9TKMboNc6jRDoflyUZQpigmd/06H0giOauoI40a6WykfM8M4uoQqLgR/9eV10r6q+17df7iuNa6LOMpwBudwCT7cQAPuoQkt4DCBZ3iFN5KSF/JOPpatJVLMnMIfkM8fpG2Ptg==</latexit><latexit sha1_base64="nxNmu0D43zulLBPfGzk49BbRyJk=">AAAB7nicbVDLSgNBEOyJrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOZpMhs7PLTK8QlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXmCpp0fO+SWljc2t7p7xb2ds/ODyqHp+0bZIZLlo8UYnphswKJbVooUQluqkRLA6V6ISTu7nfeRLGykQ/4jQVQcxGWkaSM3RSpz9mmNvZoFrz6t4CdJ34BalBgeag+tUfJjyLhUaumLU930sxyJlByZWYVfqZFSnjEzYSPUc1i4UN8sW5M3rhlCGNEuNKI12ovydyFls7jUPXGTMc21VvLv7n9TKMboNc6jRDoflyUZQpigmd/06H0giOauoI40a6WykfM8M4uoQqLgR/9eV10r6q+17df7iuNa6LOMpwBudwCT7cQAPuoQkt4DCBZ3iFN5KSF/JOPpatJVLMnMIfkM8fpG2Ptg==</latexit><latexit sha1_base64="nxNmu0D43zulLBPfGzk49BbRyJk=">AAAB7nicbVDLSgNBEOyJrxhfUY9eBoPgKeyKoMeAF48RzAOSJcxOZpMhs7PLTK8QlnyEFw+KePV7vPk3TpI9aGJBQ1HVTXdXmCpp0fO+SWljc2t7p7xb2ds/ODyqHp+0bZIZLlo8UYnphswKJbVooUQluqkRLA6V6ISTu7nfeRLGykQ/4jQVQcxGWkaSM3RSpz9mmNvZoFrz6t4CdJ34BalBgeag+tUfJjyLhUaumLU930sxyJlByZWYVfqZFSnjEzYSPUc1i4UN8sW5M3rhlCGNEuNKI12ovydyFls7jUPXGTMc21VvLv7n9TKMboNc6jRDoflyUZQpigmd/06H0giOauoI40a6WykfM8M4uoQqLgR/9eV10r6q+17df7iuNa6LOMpwBudwCT7cQAPuoQkt4DCBZ3iFN5KSF/JOPpatJVLMnMIfkM8fpG2Ptg==</latexit>

N observations
<latexit sha1_base64="bHixmADJFpOq1VZzh68yO/OjePM=">AAACAXicbVDLSgNBEJz1GeNr1YvgZTAI4iHsiqDHgBdPEsE8IFnC7KSTDJl9MNMbDEu8+CtePCji1b/w5t842exBEwsaiqpuurv8WAqNjvNtLS2vrK6tFzaKm1vbO7v23n5dR4niUOORjFTTZxqkCKGGAiU0YwUs8CU0/OH11G+MQGkRhfc4jsELWD8UPcEZGqljH97SNsIDqiClka9BjTJDTzp2ySk7GegicXNSIjmqHfur3Y14EkCIXDKtW64To5cyhYJLmBTbiYaY8SHrQ8vQkAWgvTT7YEJPjNKlvUiZCpFm6u+JlAVajwPfdAYMB3rem4r/ea0Ee1deKsI4QQj5bFEvkRQjOo2DdoUCjnJsCONKmFspHzDFOJrQiiYEd/7lRVI/L7tO2b27KFXO8jgK5Igck1PikktSITekSmqEk0fyTF7Jm/VkvVjv1sesdcnKZw7IH1ifP/xslyg=</latexit><latexit sha1_base64="bHixmADJFpOq1VZzh68yO/OjePM=">AAACAXicbVDLSgNBEJz1GeNr1YvgZTAI4iHsiqDHgBdPEsE8IFnC7KSTDJl9MNMbDEu8+CtePCji1b/w5t842exBEwsaiqpuurv8WAqNjvNtLS2vrK6tFzaKm1vbO7v23n5dR4niUOORjFTTZxqkCKGGAiU0YwUs8CU0/OH11G+MQGkRhfc4jsELWD8UPcEZGqljH97SNsIDqiClka9BjTJDTzp2ySk7GegicXNSIjmqHfur3Y14EkCIXDKtW64To5cyhYJLmBTbiYaY8SHrQ8vQkAWgvTT7YEJPjNKlvUiZCpFm6u+JlAVajwPfdAYMB3rem4r/ea0Ee1deKsI4QQj5bFEvkRQjOo2DdoUCjnJsCONKmFspHzDFOJrQiiYEd/7lRVI/L7tO2b27KFXO8jgK5Igck1PikktSITekSmqEk0fyTF7Jm/VkvVjv1sesdcnKZw7IH1ifP/xslyg=</latexit><latexit sha1_base64="bHixmADJFpOq1VZzh68yO/OjePM=">AAACAXicbVDLSgNBEJz1GeNr1YvgZTAI4iHsiqDHgBdPEsE8IFnC7KSTDJl9MNMbDEu8+CtePCji1b/w5t842exBEwsaiqpuurv8WAqNjvNtLS2vrK6tFzaKm1vbO7v23n5dR4niUOORjFTTZxqkCKGGAiU0YwUs8CU0/OH11G+MQGkRhfc4jsELWD8UPcEZGqljH97SNsIDqiClka9BjTJDTzp2ySk7GegicXNSIjmqHfur3Y14EkCIXDKtW64To5cyhYJLmBTbiYaY8SHrQ8vQkAWgvTT7YEJPjNKlvUiZCpFm6u+JlAVajwPfdAYMB3rem4r/ea0Ee1deKsI4QQj5bFEvkRQjOo2DdoUCjnJsCONKmFspHzDFOJrQiiYEd/7lRVI/L7tO2b27KFXO8jgK5Igck1PikktSITekSmqEk0fyTF7Jm/VkvVjv1sesdcnKZw7IH1ifP/xslyg=</latexit><latexit sha1_base64="bHixmADJFpOq1VZzh68yO/OjePM=">AAACAXicbVDLSgNBEJz1GeNr1YvgZTAI4iHsiqDHgBdPEsE8IFnC7KSTDJl9MNMbDEu8+CtePCji1b/w5t842exBEwsaiqpuurv8WAqNjvNtLS2vrK6tFzaKm1vbO7v23n5dR4niUOORjFTTZxqkCKGGAiU0YwUs8CU0/OH11G+MQGkRhfc4jsELWD8UPcEZGqljH97SNsIDqiClka9BjTJDTzp2ySk7GegicXNSIjmqHfur3Y14EkCIXDKtW64To5cyhYJLmBTbiYaY8SHrQ8vQkAWgvTT7YEJPjNKlvUiZCpFm6u+JlAVajwPfdAYMB3rem4r/ea0Ee1deKsI4QQj5bFEvkRQjOo2DdoUCjnJsCONKmFspHzDFOJrQiiYEd/7lRVI/L7tO2b27KFXO8jgK5Igck1PikktSITekSmqEk0fyTF7Jm/VkvVjv1sesdcnKZw7IH1ifP/xslyg=</latexit>

N observations
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FIGURE 3.1. An illustration of the data generating process when the model is unknown. (a) p(s)
is the generative process. The points in the lowest layer represent the samples ŝ = (s(1), . . . , s(N)) of
N observations which are independent draws from a distribution p(s) with s(i) ∈ χ and χ is a finite
and countable alphabet. (b) p(s|h)p(h) is the generative process. The sample ŝ (represented by the
points in the lowest layer) can also be obtained by first, generating a hidden feature h(i) ∈ H which is
drawn independently from a distribution p(h) with H being a discrete set. Using the generated h, the
value of s(i) can then be obtained as a draw from a distribution p(s|h). Here, we have grouped together
observations s(i) that were generated from the same hidden feature h (represented by the points in the
middle layer).

alent to an optimal coding problem. This entails that encoding the sample ŝ requires

(see Appendix A.2.3)

Ĥ[s] = −
∑
s∈χ

p̂(s) log p̂(s) (3.4)

= −
∑
s∈χ

ks
N

log
ks
N

(3.5)

= −
∑
k

kmk

N
log

k

N
. (3.6)

In order to address the first question, we search for a representation of the form

p(s) =
∑
h∈H

p(s|h)p(h) (3.7)

in terms of a set of discrete features h ∈ H. In this representation, p(s|h)p(h) is the

data generating process (see Fig. 3.1b). In other words, this amounts to thinking of the

sample as being obtained by first, generating a hidden feature h(i) for each i ∈ [1, N ]

independently from p(h) and then, the value of s(i) from p(s|h(i)). The representation

should be

(i) accurate in the sense that it should accurately describe the statistics of the sam-
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ple, i.e., the likelihood of the sample should be maximal. In addition to this, we

require that

(i) the variable h should provide a minimally sufficient description of the data. This

means that h should provide a concise representation of s in such a way that

p(s|h) should not contain any useful information on the generative process. This

requirement amounts to requiring that conditional on h, p(s|h) must satisfy the

maximum entropy principle and should not depend on s. Such a requirement is

an analog to ancillarity in statistics [42].

The question we address is, given a sample ŝ, what are the hidden features ĥ, i.e.,

what are p(s|h) and p(h) that satisfy these requirements?

The solution p∗ to this problem can already be guessed from the outset by realizing

that the likelihood is maximized when p(s) = ks/N , i.e. the empirical distribution,

where ks is the number of points in the sample with s(i) = s. This realization satisfies

requirement (i). Therefore, one can guess that the hidden feature is h = ks. Indeed,

the distribution of s conditional on h = ks

p∗(s|k) =
1

mk

δk,ks (3.8)

does not depend on s and is a maximum entropy distribution, i.e., all observations s

having the same frequency ks = k are assigned with equal probability. Here, mk is

the number of states for which ks = k and

p∗(k) =
kmk

N
. (3.9)

It is instructive to derive this result through a direct calculation. In order to fulfill

the requirement (i) above, we write

p(ŝ) =
∑

h(1),...,h(N)

exp

{
N∑
i=1

log
[
p(s(i)|h(i))p(h(i))

]}
. (3.10)
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Notice that we can introduce a partition I of the integers {1, . . . , N} into |H| sets

wherein Ih = {i : h(i) = h}. In each partition Ih, there are ns,h observations for

which s(i) = s and h(i) = h. In doing so, we can express Eq. (3.10) as

p(ŝ) =
∑
I

exp

{∑
s,h

ns,h log[p(s|h)p(h)]

}
(3.11)

=
∑
I

exp
[
−NĤI[s, h]−NDKL(p̂I‖p)

]
(3.12)

where the sum is taken on all possible partitions I of the indices {1, . . . , N}5. ĤI[s, h]

is the entropy of the empirical joint distribution6

p̂I(s, h) =
ns,h
N

(3.13)

and DKL(p̂I‖p) is the Kullback-Leibler distance between this empirical joint distribu-

tion and the generative process p(s, h) = p(s|h)p(h).

Since ĤI[s, h] = Ĥ[s]+ĤI[h|s], the partitions that dominate the sum in Eq. (3.12)

are those for which h(i) = h∗(s(i)) is a function of s(i), because then, ĤI[h|s] = 07.

Hence, we have

ĤI[s, h] = Ĥ[s] = −
∑
s

ks
N

log
ks
N

(3.14)

and

p̂I(s, h) =
ks
N
δh,h∗(s). (3.15)

Furthermore, the generative process, p(s|h)p(h), that minimizesDKL(p̂I‖p) is the

one with p∗(s|h)p∗(h) = p̂I(s, h). Therefore, once a function h∗(s) is singled out,

only the term I∗ that corresponds to this partition survives in the sum of Eq. (3.12).

Since DKL(p̂I‖p∗) = 0, one recovers that the likelihood of the data attains indeed the

maximal value p∗(ŝ) = e−NĤ[s].

5For N = 2 and h = 0, 1, the possible partitions are I = ({1, 2}, ∅), ({1}, {2}), ({2}, {1}) and
(∅, {1, 2}).

6ĤI[s, h] can be regarded as the cost of encoding an extended sample d̂ = (ŝ, ĥ).
7The fact that ĤI[h|s] = 0 implies that the hidden features do not induce an additional coding cost

of the sample ŝ.
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The function h∗(s) is determined by imposing the requirement (ii) that the repre-

sentation should be minimally sufficient. This amounts to requiring that

p∗(s|h) =
ksδh,h∗(s)∑
s′ ks′δh,h∗(s′)

(3.16)

does not contain any useful information about the generative process. For all s such

that h∗(s) = h, the amount of information gained on s by the knowledge of p∗(s|h) is

given by log nh−H[p∗(·|h)], where nh =
∑

s ns,h is the number of s with h∗(s) = h.

When p∗ is a distribution of maximal entropy H[p∗(·|h)] = log nh and the gain is

maximal. This is equivalent to requiring that p∗(s|h) does not depend on s, which

implies that ks = ks′ whenever h∗(s) = h∗(s′). This includes, in particular, the trivial

choice h∗(s) = s or any other function for which h∗(s) 6= h∗(s′) for some s and s′

with ks = ks′ . Therefore,

H[h∗] ≥ Ĥ[k]. (3.17)

The representation is minimally sufficient if this inequality is saturated89, i.e. if h∗(s) =

ks or a strictly monotonic function thereof, which leads to Eq. (3.8). The amount of

information stored in the hidden features, is then given by

Ĥ[k] = −
∑
k

kmk

N
log

kmk

N
(3.18)

as claimed in Refs. [31, 30]. Notice that Ĥ[k] = I(k, s) is precisely the mutual

information between the sample and the hidden features. In addition, Eq. (3.14)

8When the inequality in Eq. (3.17) is saturated, one obtains the coarsest partition on the data points
where we do not lose information about the generative process. Such a partition is unique. This is
analogous to the Lehmann-Scheffé partitions of the minimal sufficient statistics [52, 53]. Indeed, an
refinement to this coarsest partition is a sufficient representation.

9Furthermore, when the inequality in Eq. (3.17) is saturated, then the cost of encoding the hidden
features is minimal and thus, optimal.
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implies that

Ĥ[s] = −
∑
k

kmk

N
log

k

N
(3.19)

= Ĥ[k] + Ĥ[s|k] (3.20)

In other words, the number of bits needed to describe a point in the sample can be

divided in the number of bits Ĥ[k] needed to describe the features and the number of

bits Ĥ[s|k] =
∑

k p
∗(k) log(mk) that quantifies noise, i.e., the amount of information

in the sample ŝ that cannot be used to estimate the underlying model.

Notice that the partition that survives in the sum of Eq. (3.12) aggregates together

the data points

Ik = {i : ksi = k} (3.21)

according to the frequency k with which they occur in the sample. Therefore, the a

priori symmetry of p(ŝ) under permutations of the sample points (or over partitions)

is broken a posteriori in the optimization procedure. Loosely speaking, I∗ encodes

the structure of the hidden features that can be learned from the sample. The only

situations where this symmetry is not broken are when either ks = 0 or 1 for all states,

or when ks = N for s = s∗ and ks = 0 otherwise. In both cases the K partition

contains one set only. The non-informativeness of these samples is reflected in the

fact that Ĥ[k] = 0 in both cases.

Eqs. (3.8) and (3.9) represent an ideal limit. In practical implementations, p(s|h)

is restricted to a parametric form – as e.g. in restricted Boltzmann machines – that

generally does not allow to reach this limit. Yet, the representation that emerges from

taking such a parametric form is expected to come close to this limit. This suggest

that the emergent representation should be a sparse one, meaning that p(s|h) is a very

peaked distribution. Also, regularization is expected to bring the model further away

from the ideal limit, i.e. to favor less sharp (or more disordered) distributions.

In summary, as a result of the optimization on the partition and on the data gener-

ating process, we obtain that the representation that contains the maximal information
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on the generative process – that we call minimally sufficient – is the one in terms of fre-

quencies K and that the hidden features are the frequencies ks of the states themselves.

Accordingly, the amount of information that is extracted from the data coincides with

the entropy Ĥ[k] of the frequencies, as claimed in Refs. [31, 30]. This is evident, in

information theoretic terms because in the absence of prior information to distinguish

the states s, the frequency ks with which different outcomes s occur is the only statis-

tics where the dependence structure between different points si can be stored. In [31],

Ĥ[s] has been termed resolution since it quantifies the amount of detail that the sample

contains on the state s of the system under study, and Ĥ[k] has been termed relevance

since it quantifies the amount of information the sample contains on the distribution

p(s)10, as also observed in [30].

3.3 Maximally informative samples

As we have seen in Fig. (figure with the Amazon data), the same sample can be rep-

resented at different levels of resolution Ĥ[s] in Eq. (3.19) and consequently, contain

different amount of information on the generating process, which is quantified by Ĥ[k]

in Eq. (3.18). The relation between these quantities can be visualized in a plot of Ĥ[k]

as a function of Ĥ[s], as the latter varies between 0 and logN . In one extreme, all the

observations are different, i.e., s(i) 6= s(j), ∀ i 6= j, such that mk=1 = N and mk′ = 0,

∀k′ > 1. Hence, one finds Ĥ[s] = Ĥ[k] = 0. On the other extreme, all the data points

are equal, i.e., s(i) = s, ∀i = 1, . . . , N such that mk = 0 for k = 1, . . . , N − 1 and

mk=N = 1. With this limiting case, while H[s] = logN , one finds that H[k] = 0. In

both of these extreme cases, we do not learn anything from the sample. In between,

Ĥ[k] follows a bell-shaped curve as Ĥ[s] varies between 0 and logN . This curve is

bounded from above by the line Ĥ[k] = Ĥ[s], that is attained when mk = 0 or 1 for

all values of k. This is because ks is a function of s and the data processing inequality

imposes that it cannot contain more information that s itself.

10In Ref. [31], it has been shown that Ĥ[k] corresponds to the number of parameters of a model
p(ŝ|θ) that can be estimated using the sample ŝ without overfitting.
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Varying the resolution Ĥ[s] changes the distribution of the degeneracy mk and

consequently, the relevance Ĥ[k]. Hence, we call ŝ a maximally informative sample if

m∗k is such that the relevance Ĥ[k] is maximal at a given resolution Ĥ[s] = H0. This

implies the maximization of the functional

F = Ĥ[k] + µ(Ĥ[s]−H0) + λ

(∑
k

kmk −N
)

(3.22)

overmk, where the Lagrange multipliers µ and λ are adjusted to enforce the conditions

Ĥ[s] = H0 and
∑

k kmk = N , respectively. The solution to this optimization problem

is rather non-trivial as mk are positive integers. However, a suitable upper bound to

the maximal Ĥ[k] can be obtained by approximating mk as positive real numbers. As

shown in [30, 31], this amounts to finding m∗k such that dF
dmk
|m∗k = 0 and one finds that

the maximally informative samples have a characteristic power law frequency

m∗k ≈ ck−1−µ (3.23)

where c is a normalization constant such that
∑

k km
∗
k = N . A lower bound to the

maximal Ĥ[k] can be obtained by thinking that mk as being drawn from a Poisson

distribution with mean nk and solve the optimization problem by finding nk such that

the functional F in Eq. (3.22) is maximized. It turns out (as done in Ref. [31]) that nk

will have to satisfy the equation

nkL
′(nk) = λ− (µ+ 1) log

k

N
−L(nk) (3.24)

which can be solved numerically as in Fig. 3.2 where

L(nk) =

∫ 1

0

dz
e−nkz − 1

log(1− z)
. (3.25)

Fig. 3.2 compares the curve obtained for random samples (dashed lines) obtained

as random draws of N balls in L boxes, with most informative samples (full lines),

which are those that are obtained by maximizing Ĥ[k] over mk, at fixed Ĥ[s] and
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sample size N .

In the rightmost part, Ĥ[k] increases as Ĥ[s] decreases with a slope −µ that is the

same exponent of the frequency distribution in Eq. (3.23), and the Lagrange multi-

plier in the constrained optimization of Ĥ[k] + µĤ[s]. As mentioned in Ref. [48], µ

quantifies the trade-off between resolution Ĥ[s] and relevance Ĥ[k] in the sense that a

decrease of ∆ bits in Ĥ[s] grants an increase of µ∆ bits in Ĥ[k]. Therefore, the point

µ = 1, that corresponds to Zipf’s law, marks the limit beyond which further reduc-

tion in the resolution implies losses in accuracy. This point is the one that achieves

maximal Ĥ[s] + Ĥ[k] and the sample is optimally represented.
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Ĥ[s]/ logN
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Lower bound, N = 104

Random, N = 104

FIGURE 3.2. Plot of Ĥ[k] versus Ĥ[s] for mostly informative samples and for typical samples,
for N = 103 and 104. For maximally informative samples, we report both the upper bound and lower
bound. For random samples we compute the averages of Ĥ[s] and Ĥ[k] over 107 realizations of random
distributions of N balls in L boxes, with L varying from 2 to 107. Here, each box corresponds to one
state s = 1, . . . , L and ks is the number of balls in box s. The full black line represents the limit
Ĥ[k] = Ĥ[s] which is obtained when mk ≤ 1 for all k. Points above this line are ruled out by the data
processing inequality.

3.4 Criticality in point estimate statistics

As noted earlier, the occurrence of power law distributions in samples – sometimes

termed statistical criticality – is reminiscent of critical phenomena in statistical physics.

As discussed in Ref. [25], a similar relation between most informative samples and
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criticality also arises in the standard setting of point estimate in statistics.

Let us consider the case where the sample comes from a parametric family p(s) =

f(s|θ) and let us ask what would most informative samples look like. In this setting,

the amount of information learned on θ from the sample ŝ can be quantified in the

Kullback-Leibler divergence between the posterior distribution f(θ|ŝ) and the prior

p0(θ)

DKL (f(θ|ŝ)‖p0(θ)) =

∫
dθf(θ|ŝ) log

f(θ|ŝ)
p0(θ)

. (3.26)

When we have a reasonable amount of data, i.e., N � 1, with which we calculate

the likelihood distribution, f(ŝ|θ), a straightforward calculation yields (see Appendix

B.1)

DKL (f(θ|ŝ)‖p0(θ)) ' k

2
log

N

2πe
− log p0(θ̂) +

1

2
log det L̂(θ̂) + O(1/N) (3.27)

where k is the number of parameters (i.e. the dimension of θ), θ̂ is the likelihood

estimate of θ and L̂(θ) is the Hessian matrix of the likelihood at θ with the matrix

elements La,b = 〈∂2 log f(s|θ)
∂θa∂θb

〉θ defined by an expectation over the parametric model

f(s|θ). For exponential models of the type

f(s|θ) =
1

Z
e
∑
µ θµTµ(s) (3.28)

where T(s) are monomials of the spin variables s and L̂(θ) coincides with the Fisher

Information matrix which has the nature of a generalized susceptibility matrix:

La,b =
∂2

∂θa∂θb
logZ =

∂〈Ta〉
∂θb

. (3.29)

The first term in Eq. (3.27) encodes the fact that since the error on θ typically scales as

1/
√
N there are 1

2
logN bits learned for each component of θ. This term is indepen-

dent of the data. Disregarding the prior, the last term suggests that most informative

samples are those for which the susceptibility is maximal, that typically occur at criti-

cal points if one interprets f(s|θ) as a model in statistical physics (see also Ref. [25]).
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This result reveals the rich behaviors in the space of parameters that appear at the crit-

ical point. In particular, Ref. [25] found that a high susceptibility implies that there

is a highly dense region in the parameter space where the parameter values cannot be

distinguished on the basis of the samples. This implies that, at criticality, one finds a

parametric model that is flexible enough to account for the wide variability of the data

given the sample size.

3.5 Relation with the Information Bottleneck method

In this section, we shall consider a generic task in unsupervised learning. In this

setting, each data point v is produced from an unknown data generating process t and

we wish to extract a representation s of the data points that can shed light on t. For

example, in a data clustering task, data v̂ consists in a series of N different objects vi.

The task is that of grouping these points into classes, by attaching a label si to each

point, that may highlight features of the generating process t, such as the similarities

and differences among data points. Another example is that in deep learning where

the data point v can represent patterns that a deep neural network aims at learning and

s the state of one of the layers in the architecture [48]. Viewed as a Markov chain, the

data generating process corresponds to

t→ v → s. (3.30)

A formal approach to the task of finding an optimal representation s∗ consists in look-

ing for the association p(s∗|v) that solves the problem

s∗ = arg max
p(s|v)

[I(t, s)− βI(s, v)] , (3.31)

where the first term of the optimization function is the information that the represen-

tation s contains on the generative process and the second term penalizes redundant

representations. Eq. (3.31) is very close to the Information Bottleneck (IB) method
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[51] in spirit. The main difference is that in the IB, t and v are given, so IB deals

with the supervised learning task of determining the representation s that encodes the

relation between t and v in an optimal manner. Instead, here, t is unknown and we are

interested in the unsupervised task of learning an optimal representation of the data.

As long as t is unknown, Eq. (3.31) remains a formal restatement of the problem11.

As suggested in Chapter 3.3, the maximally informative samples can be obtained

from Eq. (3.31) if we replace t with the empirical frequency t ' p̂s = ks/N . There-

fore, the first term in Eq. (3.31) becomes

I(t, s) = I(k, s) = Ĥ[k]− Ĥ[k|s] = Ĥ[k] (3.32)

where the last equality derives from the fact that ks is a function of s and consequently,

Ĥ[k|s] =. The second term in Eq. (3.31) is minimal when s is a function of v and

p(v|s) is a maximum entropy distribution, i.e. when p(v|s) = 1/ks. Hence, I(s, v) =

Ĥ[s] − Ĥ[s|v] = Ĥ[s] is the resolution (see also Ref. [55] for IB approaches where

I(s, v) is replaced by Ĥ[s] at the outset). Taken together, this and Eq. (3.32) turn Eq.

(3.31) into the constrained maximization of Ĥ[k] subject to a constraint on Ĥ[s] as in

Eq. (3.22) in Chapter 3.3.

The substitution t→ p̂ in the Markov chain in Eq. (3.30) amounts to the statement

that conditional on s, v contains no information on t. Indeed, I(v, p̂|s) = 0 because p̂

is a function of s. This is equivalent to reversing the Markov chain in Eq. (3.30) as t→

s → v12, so that t becomes the generative model of s. This suggests that Eq. (3.31)

seeks the representations with optimal generation ability. Interestingly, Ref. [48]

have suggested that the outstanding generation performance of deep learning can be

explained by the observation that deep neural networks extract maximally informative

representations s from data presented in the visible layer v.

11For application of IB to unsupervised learning problems, such as geometric data clustering, see e.g.
Ref. [54].

12This argument parallels the definition of sufficient statistics [56]: When t = f(·|θ) then the Markov
chain in Eq. (3.30) reads θ → v → s. If s is chosen as a sufficient statistics for θ then, conditional
on s, the data v do not contain any information on θ. This implies that the chain can be reversed, i.e.
θ → s→ v.
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In summary, maximally informative samples are the solution of an optimization

problem similar to IB, with the important difference that while IB is a supervised

learning scheme, maximally informative samples are the outcome of an unsupervised

learning task. Indeed, the IB addresses the issue of maximally compressing an input

v to transmit relevant information to reconstruct a given output t [57], whereas the

definition of maximally informative samples takes the frequency k of the internal rep-

resentations s as output features. While relevance is defined with respect to the output

in the IB, the approach discussed here quantifies relevance with respect to internal cri-

teria. We remark, in this respect, that the first term I(k, s) = Ĥ[k] in the optimized

function does not depend at all on the relation between s and v, but only on the distri-

bution of the former. Note also that, in contrast to the rate-distortion curves typical of

IB where relevance I(t, s) is an increasing function of channel capacity I(s, v), here

the relation is not monotonic. The decreasing part of this relation, that corresponds to

β < 0, is due to finite sample size and it characterizes the under sampling regime.

3.6 Thermodynamics of samples and large deviations

As discussed in Chapter 2.2, it is possible to construct a statistical mechanics approach

of a sample. Recalling the arguments, the core idea is that the Gibbs-Boltzmann dis-

tribution

q(s) =
e−Es/T

Z
(3.33)

of a system, where each micro-state (i.e., the observation) s has an energy Es, coin-

cides with the empirical distribution

q(s) = p̂(s) =
ks
N

(3.34)

for T = Z = 1. Consequently, the energy Es can now be defined as

Es = − log(ks/N). (3.35)
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Each energy level Ek = − log k
N

has degeneracy mk, so one can define a Boltzmann

entropy

SB(Ek) = logW (Ek) (3.36)

in terms of the degeneracy W (Ek) = mk of the energy levels Ek.

For a system defined at the micro-scale by a discrete set of energy levels E ∈ E,

each with degeneracyW (E), we can also define a description in terms of macro-states,

corresponding to the distribution13

pβ(s) =
1

Z(β)
e−βEs , Z(β) =

∑
E∈E

W (E)e−βE, (3.37)

as in statistical mechanics. This construction corresponds to the maximum entropy

distribution on micro-states s with a given value of the average energy

〈E〉β =
∑
s

pβ(s)Es. (3.38)

We have seen in Chapter 2.2 that this construction allows one to define statistical

criticality in a sample, by relating it to anomalous fluctuations at second order phase

transitions in a precise way [16, 17, 18, 19, 20]. Specifically, the critical point in

the (fictitious) inverse temperature parameter β can be located where the “specific

heat” (i.e. the variance of the variable Es) diverges in an infinite system, or attains

its maximum in a finite system. Ref. [16] shows that Zipf’s law is peculiar in that it

corresponds to statistical criticality at β = 1, i.e. for the original data.

We’d like to relate these observations to resolution and relevance, as described in

previous sections. First, we observe that the energy Es = − log(ks/N) in Eq. (3.35)

has a natural interpretation as coding cost, i.e. the number of bits needed to represent

13The microscopic description applies, in statistical mechanics, to closed systems where the en-
ergy remains constant whereas the macro-state description applies to open systems in contact with the
environment where the energy fluctuates. In this case, the micro-canonical ensemble corresponds to
observations that are seen the same number of times in the sample while the macro-canonical ensemble
corresponds to the sample with a fixed size N .
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state s. The typical coding cost that we expect per data point is given by the resolution

Ĥ[s] = −
∑
s

e−EsEs. (3.39)

Among all distributions with a given average coding cost Ĥ[s] = −∑s p(s)Es, the

distribution p(s) = e−Es is the one of maximal entropy, i.e. the one that embodies no

other information on s except for the coding cost Es (See Appendix A.2.3). This is

a different way of stating our requirement in Chapter 3.2 that the features h = e−E

should contain all relevant information.

The construction discussed in Chapter 2.2 and in Refs. [16, 17] suggests an inter-

pretation in terms of large deviations: if we generate a new sample ˆ̃s from the distri-

bution q(s) = ks/N , we typically expect that the coding cost per sample point attains

a value close to the resolution Ĥ[s]. In this section, we shall instead be interested in

cases when the coding cost per sample point is U =
∑

s k̃sEs/N 6= Ĥ[s], i.e., when

the coding cost is atypical. We shall also be interested in characterizing the properties

of the typical samples with an atypical coding cost. To address this, we turn to large

deviations theory [56] (see also Appendix A.3) which shows that the probability to

find a sample with a coding cost per sample U 6= Ĥ[s] is given by

P

{
1

N

∑
s

k̃sEs = U

}
∼ e−NDKL(pβ‖q)) (3.40)

where pβ(s) = 1
Z(β)

e−βEs is the Gibbs-Boltzmann distribution as given in Eq.(3.37)

with Z(β) =
∑

E∈EW (E)e−βE and W (E) is the degeneracy of the energy level

E. The large deviation parameter β controls the atypicality of the coding cost of the

samples that are typically realized under Eq. (3.37) and is adjusted so that

∑
s

pβ(s)Es = DKL(pβ||q) + SG(β) = U (3.41)

where

SG(β) = −
∑
s

pβ(s) log pβ(s) = βU + logZ(β) (3.42)
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is the Gibbs-Shannon entropy of the macro-state. Finally, we expect that the state s

occurs k̃s ≈ Npβ(s) times in samples with an anomalous coding cost U .

Note that the Gibbs-Shannon entropy SG in Eq. (3.42), as a function of U , is a

different function from the Boltzmann entropy SB(E) in Eq. (3.36) and in Chapter

2.2: SG ' Ĥ[s̃] is an estimate of the resolution of the new sample, whereas SB(E), as

suggested in [48], is a measure of the noise at the energy level E, i.e. it measures the

residual uncertainty about the state s once the energy level E = Es is known. Indeed,

the average degeneracy measures the amount of useless information in the sample, i.e.,

〈SB〉β=1 =
∑
E∈E

W (E)e−E logW (E) (3.43)

= Ĥ[s|E] (3.44)

= Ĥ[s]− Ĥ[E] (3.45)

= Ĥ[s]− Ĥ[k] (3.46)

where we used that Ĥ[E] = Ĥ[k] because Es = − log(ks/N) is a function of ks14.

Therefore, samples with a minimal 〈SB〉β=1 for a given resolution are those with max-

imal relevance Ĥ[k].

While macro-states are obtained by maximizing SG = −∑s p(s) log p(s) over

p(s) for a given distribution W (E) of energy levels and at fixed U , the most informa-

tive samples are obtained by minimizing 〈SB〉β=1 over W (E), keeping p(s) = e−Es ,

at fixed resolution

〈E〉β=1 =
∑
E∈E

W (E)e−EE = Ĥ[s]. (3.47)

Let us now show that this results in a linear behavior SB(E) = logW (E) ' µE +

14For a thermodynamic system, both SB and SG = Ĥ[s] are extensive, i.e. proportional to the
system size V . For a system with a minimal energy level spacing ∆E, H[E] ≤ − log ∆E + const.
Typically ∆E vanishes as an inverse power of the system size, which means that Ĥ[E] ∼ log V is
sub-extensive. In these cases, the two descriptions (the micro-canonical and the canonical ensembles)
are equivalent.
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const. In order to do this, we introduce Eq. (3.47) and

∑
E∈E

W (E) = Ω (3.48)

∑
E∈E

W (E)e−E = 1 (3.49)

as constraints in the minimization of Eq. (3.43). Therefore, most informative samples

are those that minimize the functional

F[W ] =
∑
E∈E

W (E)
{
e−E [logW (E)− ν − µE] + λ

}
(3.50)

where the Lagrange multipliers mu, ν and λ need to be adjusted in order to enforce

the three constraints in Eqs. (3.47), (3.48) and (3.49) respectively. By finding the

degeneracy W ∗(E) such that dF[W ]
dW (E)

|W ∗(E) = 0, one finds the solution to be

W ∗(E) = eν+µE−λeE . (3.51)

Notice that λ introduces a cutoff in the distribution of energies, i.e. W ∗(E) ≈ 0 for

E � − log λ. W ∗(E) has its maximum at energy Emax = log(µ/λ). For E ≤ Emax,

the entropy S(E) = logW ∗(E) ' ν + µE is well approximated by a linear behavior,

as claimed above.

This behavior of W ∗(E) corresponds to the power law behavior Eq. (3.23) in m∗k.

In order to show this, consider the limit N → ∞ where energy levels become dense.

Then the numberW ∗(E)dE of energy levels in [E,E+dE) should match the number

m∗kdk of states s observed with frequency in the corresponding interval for k = Ne−E .

From this,

m∗k ' W ∗(E)

∣∣∣∣dEdk
∣∣∣∣∣∣∣∣
E=− log(k/N)

(3.52)

which implies that W ∗(E) ' kmk. Therefore the relation logW ∗(E) = µE + c

corresponds to Eq. (3.23).

The average degeneracy 〈SB〉β=1 is a convex monotonic increasing function of
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FIGURE 3.3. Relation between entropy 〈SB〉β=1 and energy 〈E〉 for mostly informative samples
arising from the minimization of 〈SB〉β=1 given the constraints in Eqs. (3.48 - 3.49), for Ω = 105

and 106.

Ĥ[s], as shown in Fig. 3.3. This contrasts with the relation between SG and U , which

is concave. Indeed, the Lagrange multiplier µ enforcing the constraint on energy

cannot be thought of as an inverse temperatures (e.g. high (low) µ corresponds to high

(low) “energy” Ĥ[s], contrary to what happens in statistical mechanics). Rather µ

encodes the trade-off between resolution Ĥ[s] and relevance Ĥ[k] – or noise 〈SB〉β=1

– in maximally informative samples.

As discussed above, moving away from β = 1 corresponds to probing the large

deviation regime of samples with an anomalously small or large coding cost. It is

interesting to observe that large deviations preserve the linear behavior of logW (E)

in Eq. (3.51) w.r.t. E. Indeed, this corresponds to a linear transformation of energy

levels Ẽs = − log(k̃s/N) ' βEs + const with degeneracy W̃ (Ẽ) ' µ̃Ẽ + const with

µ̃ = µ/β. Therefore, large deviations of maximally informative samples are typically

realized as maximally informative samples at a different resolution.

We finally observe that the specific heat

CV (β) =
d2

dβ2
logZ(β) =

〈
(E − 〈E〉β)2〉 (3.53)

whose divergence signals statistical criticality in Ref. [16], also coincides with the
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Fisher Information of the parametric distribution pβ as in Eq. (3.29). For maximally

informative samples (where the Kullback-Leibler divergence in Eq. (3.27) is at a

maximum), this defines the non-informative (Jeffreys) prior p0(β) = N
√
CV (β) on

β, with N a normalizing constant15. Futhermore, for maximally informative samples,

CV attains a maximum at β = µ, so when µ = 1 the maximum coincides with the point

where inference is made (β = 1), as observed in Ref. [16]. The same construction

can be carried out for the distribution of states s in maximally relevant samples, in

terms of the parameter µ. Again, the Fisher Information coincides with the variance

of energy levels, which is maximal at µ = 1. This shows that the point µ = 1, that

corresponds to Zipf’s law, is the most likely value of µ under the non-informative

(Jeffreys) prior. In this sense, Zipf’s law is the most likely behavior that we can expect

from a maximally informative sample.

3.7 Statistical criticality and hidden variables

Schwab, Nemenman and Mehta (2014) [26] argue that Zipf’s law arises from the

presence of hidden variables. They considered n� 1 independent (discrete) variables

s = (s1, . . . , sn) drawn independently from the same probability p(s|h) that depends

on a variable h. Under these conditions, this sequence s satisfies the Asymptotic

Equipartition Property (AEP) [56]. The AEP states that there is a typical set A(h)
n

such that (asymptotically as n→∞) (i) all samples in A
(h)
n have the same probability

− log p(s|h) = −
n∑
i=1

log p(si|h) ' E(h) = −n
∑
s

p(s|h) log p(s|h) (3.54)

and (ii) the probability to draw a sample in A
(h)
n is very close to one, and, because of

this, (iii) the number of typical samples is equal to |A(h)
n | ≈ eE(h). If one defines the

entropy S(h) as the logarithm of this number, then one has that S(h) = log |A(h)
n | ≈

15It is called non-informative because it is invariant under reparametrization and because, for N →
∞, this is the prior that maximizes the Kullback-Leibler divergence between the posterior and the
prior [58], i.e. the one for which the data brings in the maximal amount of information. (See also
Appendix B.1)
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E(h).

In the absence of a hidden variable h that may induce a variation of the energy

E(h), we expect that the logarithm of the frequency − log(ks/N) will not have large

variations and will concentrate on a certain value. In order to observe a broad distri-

bution of frequencies, as in Zipf’s law, a variation of E(h) is needed. Hence, hidden

variables are a necessary condition for the occurrence of Zipf’s law. Indeed, the prob-

ability (density) to observe a value E of − log p(s|h) is

p(E) =

∫
dhp(h)

∑
s

δ(E + log p(s|h))p(s|h) (3.55)

'
∫
dhp(h)eS(h)−E(h)δ(E − E(h)) (3.56)

where we used the AEP to substitute the sum over all s with the sum only on s ∈

An(h), which are those sequences for which16 − log p(s|h) = E(h). Notice that

S(h) ∼ E(h) ∼ n are extensive functions, and the integral on h would be dominated

by a single point h∗ for n large. However S(h) ≈ E(h) by the AEP, which implies

that the distribution p(E) remains broad and it does not concentrate. This argument

for sufficiency is corroborated by convincing numerical experiments for few examples

of models in the exponential family. Aitchison, Corradi and Latham (2016) [28] argue

that a broad, quasi uniform distribution p(E) is a general sufficient condition for Zipf’s

law. While they convincingly show that this condition holds in several empirical data

and models, this directly follows from the definition Es = − log ks of energy levels.

From the point of view of the present discussion, the presence of hidden variables

is clearly a necessary condition for a sample to have a minimally interesting structure,

not necessarily in the form of Zipf’s law. Our main point is that a sufficient condi-

tion for the emergence of power law frequency distributions is that the sample should

be maximally informative. These samples are those that achieve an optimal trade-off

between resolution and relevance, i.e. that store maximal information on the genera-

16Indeed, typical sequences are exactly defined as A(h)
n = {s : E(h) ≤ − log p(s|h) < E(h) + ε}

for any ε > 0, and the AEP states that 1 =
∑
s p(s|h) ' ∑

s∈A(h)
N

p(s|h) ' e−E(h)|A(h)
n |, hence

S(h) ≡ log |A(h)
n | = E(h).
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tive model, at a given resolution. In particular, Zipf’s law emerges in samples where

the resolution is reduced up to the point where the increase in relevance engendered

by a further reduction in resolution, does not compensate the loss in resolution. For

mostly informative samples where W ∗(E) ∼ eµE , as shown in the previous section,

so p∗(E) ∼ e(µ−1)E which implies that a flat distribution in energy is achieved exactly

at µ = 1. At this particular point, the energy spectrum is used as efficiently as possible

(see Ref. [48]). When µ > 1, high energy states overweight low energy ones, whereas

when µ < 1, the distribution of energy levels in the sample is skewed on low energy

states.

3.8 Conclusions

The aim of this chapter is to clarify the derivation and nature of the relevance Ĥ[k],

recently introduced in [31, 30], as a measure of the useful information that a sample

contains on the generative model. We do this by relating our approach to the standard

approach employed in parametric statistics. This allows one to characterize the prop-

erties of maximally informative samples and the trade-off they embody between reso-

lution and relevance. This offers a different explanation of the widespread occurrence

of statistical criticality [1] that is independent of any self-organization mechanisms

[59, 21]. In particular, we find that Zipf’s law characterizes the statistics of maximally

informative samples at the optimal trade-off between resolution and relevance. We

believe that this finding, besides its appeal as a simple rationale for the occurrence

of Zipf’s law in many domains [35, 43, 18, 20], also offers a guideline for extracting

efficient representations form high dimensional data.
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4
Minimum Description Length (MDL)

codes are critical

From the previous chapter, we have suggested that broad distributions, as exhibited in

a vast number of real world domains (see e.g. [1, 2]), arise from efficient represen-

tations. By efficient representations, we mean that the data has sampled the relevant

variables which are those that carry the maximal amount of information on the gener-

ative process [30, 31, 60]. Such Maximally Informative Samples (MIS) are those for

which the entropy of the frequency with which outcomes occur – called relevance in

[31, 60] – is maximal at a given resolution, which is measured by the number of bits

needed to encode the sample. MIS exhibit power law distributions with the exponent

µ governing the tradeoff between resolution and relevance [60, 48]. This argument for

the emergence of broad distributions is independent of any mechanism or model. A

direct way to confirm this claim is to check that samples generated from models that

are known to encode efficient representations are actually maximally informative. In

this line, Ref. [48] found strong evidence that MIS occur in the representations that

deep learning extracts from data. This chapter explores the same issue in efficient

coding as defined in Minimum Description Length [61].
43
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Regarding empirical data as a message sent from Nature, we expect it to be ex-

pressed in an efficient manner if relevant variables are chosen. This requirement can

be made quantitative and precise, in information theoretic terms, following Minimum

Description Length (MDL) principle [61]. MDL seeks the optimal encoding of data

generated by a parametric model with unknown parameters (see Section 4.1). MDL

derives a probability distribution over samples that embodies the requirement of opti-

mal encoding. This distribution is the Normalized Maximum Likelihood (NML).

This chapter studies the NML as a generative process of samples and studies both

its typical and atypical properties. In a series of cases, we find that samples generated

by NMLs are typically close to being maximally informative, in the sense of Ref. [60],

and that their frequency distribution is typically broad. In addition, we find that NMLs

are critical in a very precise sense, because they sit at a second order phase transition

that separates typical from atypical behavior. More precisely, we find that large devi-

ations, for which the resolution attains atypically low values, exhibit a condensation

phenomenon whereby all N points in the sample coincide. This is consistent with

the fact that NML correspond to efficient coding of random samples generated from

a model, so that codes achieving higher compression do not exist. Large deviations

enforcing higher compression force parameters to corners of the allowed space where

the model becomes deterministic.

4.1 Minimum Description Length and the Normalized

Maximum Likelihood

In this section, we shall introduce the ideas behind the minimum description length

(MDL) principle.

4.1.1 Kolmogorov complexity: The ideal MDL

As in the previous chapter, the question we wanted to address here is still of the optimal

data reduction. Given a sample, the task is to learn the regularities of this sample and
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use these regularities to compress it, i.e., to find a short description. Of course, the

description depends on the description method we wish to adapt.

The choice of the description method as general-purpose computing language (like

Fortran or C) leads to the definition of the Kolmogorov complexity [62]. The Kol-

mogorov complexity measures the length of the shortest program that reproduces the

sample and stops after that. This means that a sample that is highly regular needs a

shorter program to reproduce it and consequently, the sample has a lower Kolmogorov

complexity.

One may argue that the resulting Kolmogorov complexity will depend on the com-

puting language adapted. However, because one can always construct a program in

one language which translates another program which uses a different language with a

constant description length (a result which is called the invariance theorem), the Kol-

mogorov complexity between two different programming language differs only by a

constant provided that the sample is large enough.

However, the Kolmogorov complexity cannot be calculated1. This problem calls

for practical implementation of finding the minimum description length.

4.1.2 Normalized Maximum Likelihood: the practical MDL

The MDL principle circumvents the non-computability of the Kolmogorov complexity

by constraining the set of possible model distributions (or programs) with which one

can calculate the model complexity with [64]. In the MDL, one chooses to work with

prefix-free codes – uniquely and instantaneously decodable codes that satisfy the Kraft

inequality (see Appendix A.2). It turns out that, under prefix-free codes, the optimal

length of codeword is equal to the negative logarithm of the probability distribution.

Hence, specifying the length of the codeword allows to identify the distribution and

1The non-computability of the Kolmogorov complexity stems from the fact that one needs to con-
struct a program which iterates over all possible programs that reproduces the sample and returns all
the programs that halted. However, because of the halting problem [63], no algorithm is able to possi-
bly predict whether the program will eventually finish running or not. Hence, even if we have a short
program that reproduces the sample which may be a good candidate for the shortest of such a program,
there may always be a number of shorter programs which can reproduce the sample and which we do
not know if they will ever stop.



46 CHAPTER 4. CRITICALITY OF MDL CODES

vice versa2. This is the main insight in the MDL principle. Specifically, learning from

data is equivalent to data compression [61]. In turn, data compression is equivalent to

assigning a probability distribution over the space of samples. This section provides a

brief derivation of this distribution3.

In an information theoretic perspective, one can think of the sample, ŝ, as a mes-

sage generated by some source (e.g. Nature) that we wish to compress as much as

possible. This entails translating ŝ in a sequence of bits4. A code is a rule that achieves

this for any ŝ ∈ χN and its efficiency depends on whether frequent patterns are as-

signed short codewords or not. Conversely, any code implies a distribution P (ŝ) over

the space of samples and the cost of encoding the sample ŝ under the code P is given

by [56]

E = − logP (ŝ) (4.1)

bits (assuming logarithm base two)5. Optimal compression is achieved when the code

P coincides with the data generating process [56].

Consider the situation where the data is generated as independent draws from a

parametric model f(s|θ). If the value of θ were known, then the optimal code would

be given by P (ŝ) =
∏

i f(s(i)|θ) ≡ f(ŝ|θ). MDL seeks to derive P in the case where

θ is not known6. This applies, for example, to the situation where ŝ is a series of

experiments or observation aimed at measuring the parameters θ of a theory.

In hind sight, i.e. upon seeing the sample, the best code is f(ŝ|θ̂), where θ̂(ŝ) is

the maximum likelihood estimator for θ, and it depends on the sample ŝ. Therefore,

one can define the regret R as the additional encoding cost that one needs to spend to

2Chapter 6.5 of Ref. [56] makes an analogy between data compression and gambling.
3We refer the interested reader to Refs. [61, 65] for a more detailed discussion of MDL.
4It is natural to work in bits because, intuitively, this corresponds to the minimum number of true or

false questions needed to recover the message.
5The correspondence between the encoding cost E and the probability distribution P (ŝ) is made

clear in Appendix A.2.
6Indeed, MDL aims at deriving efficient coding under f irrespective of whether f(s|θ) is the “true”

generative model or not. This allows one to compare different models and choose the one providing the
most concise description of the data.
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encode the sample, ŝ, if one uses the code P (ŝ) to compress ŝ, i.e.,

R = − logP (ŝ)−min
θ

[− log f(ŝ|θ)] . (4.2)

Notice that minθ [− log f(ŝ|θ)] = − log f(ŝ|θ̂(ŝ)). R is called regret of P relative to

f for sample ŝ because it depends both on P and on ŝ.

MDL derives the optimal code, P̄ (ŝ), that minimizes the regret, assuming that for

any P the source produces the worst possible sample [61]. The solution [66]

P̄ (ŝ) =
f(ŝ|θ̂(ŝ))∑

x̂∈χN f(x̂|θ̂(x̂))
. (4.3)

is called the Normalized Maximum Likelihood (NML)7. The optimal regret is given

by

R̄ = log
∑
ŝ∈χN

f(ŝ|θ̂(ŝ)) (4.4)

which is known in MDL as the parametric complexity8. For models in the exponen-

tial family, Rissanen showed that the parametric complexity is asymptotically given

by [67]

R̄ ' k

2
log

N

2π
+ log

∫ √
detL(θ)dθ + O(1) (4.5)

where L(θ) is the Fisher information matrix with the matrix elements defined by an

expectation Lij(θ) = −〈∂2 log f(s|θ)
∂θi∂θj

〉θ over the parametric model f(s|θ) (see Appendix

C.1 for a simple derivation). The NML code is a universal code because it achieves

a compression per data point which is as good as the compression that would be

achieved with the optimal choice of θ. This is easy to see, because the regret R̄/N

per data point vanishes in the limit N → ∞, hence the NML code achieves the same

compression as f(ŝ|θ̂).

7Note that the NML is not the only formulation of the MDL principle. One other formulation
is the crude, two-part MDL formulation where the description length is such that the coding cost
− log f(θ|ŝ = − log f(ŝ|θ) − log p0(θ) of posterior distribution is minimized. The first term is the
description of the data while the second term is the description of the parameters of the model.

8Notice that eR̄ can be seen as a partition sum. Hence, throughout the chapter, we shall refer to the
parametric complexity as the UC partition function.
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Notice also that the optimal regret, R̄, in Eq. (4.4) is independent of the sample

ŝ. It indeed provides a measure of complexity of the model f that can be used in

model selection schemes. Note that the optimal regret, R̄, in Eq. (4.4) is not only due

to the number of parameters, k, in the model as in the first term of R̄9 but also due

to the functional form of the parametric model as encapsulated by the second term

of R̄. This implies that more complex models, i.e., models with larger parametric

complexity R̄ will require more encoding costs than less complex (or simple) ones.

Thus, in a model selection perspective, whenever a sample ŝ occurs with the same

likelihood, f(ŝ|θ̂(ŝ)) under different models, one chooses a model which is the least

complex – a principle known as the Occam’s razor.

For exponential families, MDL procedure penalizes models with a cost which

equals the one obtained in Bayesian model selection [70] under a Jeffreys prior. In-

deed, considering P̄ (ŝ) as a generative model for samples, one can show that the

induced distribution on θ is given by Jeffreys prior (see Appendix C.1).

4.2 NML codes provide efficient representations

In this section we consider P̄ as a generative model for samples and we investigate its

typical properties for some representative statistical models.

4.2.1 Dirichlet model

Let us start by considering the Dirichlet model distribution f(s|θ) = θs, ∀s ∈ χ.

The parameters θs ≥ 0 are constrained by the normalization condition
∑

s∈χ θs = 1.

Let S = |χ| denote the cardinality of χ and define, for convenience, ρ = N/S as the

average number of points per state. Because each observation is mutually independent,

9Notice that other parametric model selection approaches only penalizes the number of parame-
ters, k, e.g. AIC = −2 log f(ŝ|θ̂(ŝ)) + 2k for the Akaike information criterion [68] and BIC =

−2 log f(ŝ|θ̂(ŝ)) + k logN for the Bayesian information criterion [69].
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the likelihood of a sample ŝ given θ = (θ1, . . . , θS) can be written as

f(ŝ|θ) =
∏
s∈χ

θkss , (4.6)

where ks is the the number of times that the state s occurs in the sample ŝ. From here,

it can be seen that θ̂s = ks/N is the maximum likelihood estimator for θs. Thus, the

universal code for the Dirichlet model can now be constructed as

P̄ (ŝ) = e−R̄
∏
s∈χ

(
ks
N

)ks
(4.7)

which can be read as saying that for each s, the code needs −ks log(ks/N) + R̄/N

bits. In terms of the frequencies, {k1, . . . , kS}, the universal codes can be written as

P̄ (k1, . . . , kS) = e−R̄
N !∏
s∈χ ks!

∏
s∈χ

(
ks
N

)ks
δ

(∑
s∈χ

ks −N
)

(4.8)

wherein the multinomial coefficient, N !∏
s∈χ ks!

, counts the number of samples with a

given frequency profile k1, . . . , kS . In order to compute the optimal regret R̄, we have

to evaluate the partition function

eR̄ =
N !

NNe−N

∫ π

−π

dµ

2π
eiµN

[ ∞∑
k1=0

kk11 e
−k1e−iµk1

k1!

]
· · ·
[ ∞∑
kS=0

kkSS e
−kSe−iµkS

kS!

]
(4.9)

=
N !

NNe−N

∫ π

−π

dµ

2π
eiµN [N(iµ)]S (4.10)

'
√

2πN

∫ π

−π

dµ

2π
eSΦ(iµ) (4.11)

where

Φ(z) = ρz + logN(z) (4.12)

and

N(z) =
∞∑
k=0

kke−(1+z)k

k!
. (4.13)
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The integral in Eq. (4.11) is dominated by the value where the function Φ attains its

saddle point value z∗(ρ), which is given by the condition

dΦ

dz
= ρ− 〈k〉z = 0 (4.14)

where the average 〈. . .〉z is taken with respect to the distribution

q(k|z) =
1

N(z)

kke−(1+z)k

k!
. (4.15)

Gaussian integration around the saddle point leads then to

eR̄ ' √ρ eSΦ(z∗(ρ))√
〈k2〉z∗ − 〈k〉2z∗

(4.16)

where we used the identity Φ′′(z) = − [〈k2〉z − 〈k〉2z].

The distribution Eq. (4.8) can also be written introducing the Fourier representa-

tion of the delta function

P̄ (k1, . . . , kS) =
N !e−R̄

NNe−N

∫ π

−π

dµ

2π
eiµN

∏
s∈χ

kkss e
−(1+iµ)ks

ks!
. (4.17)

For typical sequences k1, . . . , kS , the integral is also dominated by the value µ =

−iz∗(ρ) that dominates Eq. (4.11), which means that the distribution factorizes as

P̄ (k1, . . . , kS) '
∏
s∈χ

q(ks|z∗). (4.18)

This means that the NML is, to a good approximation, equivalent to S independent

draws from the distribution q(k|z∗) or, equivalently, that the distribution q(k|z∗) is the

one that characterizes typical samples. This is fully confirmed by Fig. 4.1A, which

compares q(k|z∗) with the empirical distribution of ks drawn from P̄ . For large k, we

find q(k|z∗) ∼ e−z
∗k/
√
k, which shows that the distribution of frequencies is broad,

with a cutoff at 1/z∗. This underlying broad distribution is confirmed by Fig. 4.1B

which shows the dependence of the degeneracy mk with the frequency k.
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In the regime where ρ � 1 and k is large, the cutoff extends to large values of k

and we find z∗(ρ) ' 1
2ρ

(see Appendix C.2.1). Also, the parametric complexity can be

computed explicitly via Eq. (4.5) in this regime, with the result

R̄ ' S

2
(1 + log ρ) +

1

2
log(2ρ), ρ� 1. (4.19)
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FIGURE 4.1. Properties of the typical samples generated from the NML of the Dirichlet model.
(A) A plot showing the frequency distribution of the typical samples of the Dirichlet NML code. Given
S, the cardinality of the state space, χ, with S = 1.0 × 103 (orange dots), 5.0 × 103 (green squares),
and 1.0 × 104 (red triangles), we compute the average frequency distribution across 100 generated
samples from the Dirichlet NML of size N = 10S such that the average frequency per state, ρ, is fixed.
This is compared against the theoretical calculations (solid black line) for q(k|z∗) in Eq. (4.15). (B)
Plot showing the degeneracy, mk, of the frequencies, k, in a representative typical sample of length
N = 103 generated from the Dirichlet NML code with average frequencies per spike: ρ = 100 (yellow
triangle), ρ = 10 (orange x-mark) and ρ = 2 (red cross). The corresponding dashed lines depict the
best-fit line. (C-D) Plots of Ĥ[s] versus Ĥ[k] for the typical samples of the Dirichlet NML code. For
a fixed size of the data, N (N = 103 in B and N = 104 in C), we have drawn 100 samples from the
Dirichlet NML code varying ρ, ranging from 2 to 100. The results are compared against the Ĥ[k] and
Ĥ[s] for maximally informative samples (MIS, solid black line) and random samples (dashed black
lines). For the MIS, the theoretical lower bound is reported [31]. For the random samples, we compute
the averages of Ĥ[s] and Ĥ[k] over 107 realizations of random distributions ofN balls in L boxes, with
L ranging from 2 to 107. Here, each box corresponds to one state s = 1, . . . , L and ks is the number of
balls in box s. Note that all the calculated values for Ĥ[k] and Ĥ[s] are normalized by logN .
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The coding cost of a typical sample is given by

E = − log P̄ (ŝ) (4.20)

= −
∑
s∈χ

ks log
ks
N

+ R̄ (4.21)

= NĤ[s] + R̄. (4.22)

The number of samples with encoding cost E can be computed in the following way.

The number of samples that correspond to a given degeneracy mk of the states that

occurs ks = k times in ŝ, is given by

N !∏
k(kmk)!

. (4.23)

Therefore, the number of samples with coding cost E is

W (E) =
∑

{mk}∈M(E)

N !∏
k(kmk)!

(4.24)

=
∑

{mk}∈M(E)

elogN !−∑k log(kmk)! (4.25)

∼
∑

{mk}∈M(E)

eNĤ[k], ρ� 1 (4.26)

where M(E) is the set of all sequences {mk} that are consistent with samples in χN

and satisfy Eq. (4.22). The last expression assumes logM ! ' M logM −M , which

is reasonable for M = kmk � 1, i.e. when ρ � 1. In this regime we expect the

sum over M(E) to be dominated by samples with maximal Ĥ[k]. Indeed, Fig. 4.1C

and D show that samples drawn from P̄ achieve values of Ĥ[k] close to the theoretical

maximum, especially in the region ρ� 1.

4.2.2 A model of independent spins

In order to corroborate our results for the Dirichlet model, we study the properties of

the universal codes for a model of independent spins, i.e. a paramagnet. For a single
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spin, s = ±1, in a local field h, the probability distribution is given by

P (s|h) =
esh

2 coshh
. (4.27)

Thus for a sample ŝ of size N ,

P (ŝ|h) = e[Nmh−N log(2 coshh)] (4.28)

where m = 1
N

∑M
i=1 s

(i) is the local magnetization. The maximum likelihood estimate

for h is ĥ(m) = tanh−1m, hence the universal code for a single spin can be written

as

P̄ (ŝ) = eN [mh(m)−log(2 coshh(m))]−R̄ (4.29)

where R̄ ' 1
2

log πN
2

(see Appendix C.2.2). Note that a sample with a magnetization

m can be realized by considering the permutation of the up-spins (s = 1, where there

are ` = N+Nm
2

of such spins) and the permutation of the down-spins (s = −1, where

there are N − ` of such spins). Consequently, the magnetization for samples drawn

from P̄ has a broad distribution given by the arcsin law (see Appendix C.2.2)

P̄ (m) =

(
N

N−Nm
2

)
eN[m tanh−1m−log(2 cosh(tanh−1m))]−R̄ (4.30)

' 1

π
√

1−m2
, m ∈ [−1, 1]. (4.31)

It is straightforward to see that the model of a single spin is equivalent to a Dirichlet

model with two states χ = {−1,+1}. In terms of the number ` of up-spins, using

m = 2`−N
N

, the NML for a single spin can be written as

P̄ (`) = e−R̄
(
N

`

)(
`

N

)`(
1− `

N

)N−`
. (4.32)

The NML for a paramagnet with n independent spins reads as

P̄ (`1, . . . , `n) = e−nR̄
n∏
i=1

(
N

`i

)(
`i
N

)`i (
1− `i

N

)N−`i
. (4.33)
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Ĥ
[k

]

N = 105
C

4

6

8

10

12

14

16

18

20

nu
m

be
ro

fs
pi

ns
,n

FIGURE 4.2. Properties of typical samples for the NML codes of the paramagnet. (A) Plots
showing the degeneracy,mk, of the frequencies, k, in a representative typical sample of lengthN = 104

generated from the NML of a paramagnet with different number of independent spins: n = 4 (blue star),
n = 12 (red cross) and n = 20 (yellow diamond). The corresponding dashed lines depict the best-fit
line. (B-C) Plots of the Ĥ[k] versus Ĥ[s] of the typical samples generated from the paramagnet NML
code for varying sizes of the data, N = 104 (B) and N = 105 (C), and for varying number of spins, n,
ranging from 3 to 20. GivenN and n, we compute the Ĥ[k] and Ĥ[s] over 100 realizations of the NML
code of a paramagnet. The results are compared against the Ĥ[k] and Ĥ[s] for maximally informative
samples (solid black line) and random samples (dashed black line) as described in Fig. 4.1. Note that
all the calculated H[k] and H[s] are normalized by logN .

Fig. 4.2 reports the properties of the typical samples of the NML of a paramagnet.

We observed that the frequency distribution of typical samples is broad (Fig. 4.2A)

and that typical samples attain values of H[k] very close to the maximum for a given

value of Ĥ[s] (Fig. 4.2B,C). As the size N of data increases, the NML enters the

well-sampled regime where Ĥ[k] ' Ĥ[s], indicating that the data processing inequal-

ity [56] is saturated. In this regime, typical samples are those which maximize the

entropy Ĥ[s].

4.2.3 Graphical models

This section extends our findings to systems of interacting variables and discuss the

properties of typical samples drawn form the corresponding NML distribution. We

shall first consider models in which the observed variables are interacting either di-

rectly (Sherrington-Kirkpatrick model) and then restricted Boltzmann machines, where
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the variables interact indirectly through hidden variables.

Sherrington-Kirkpatrick model

In this section, s = (s1, . . . , sn) is a configuration of n spins si ∈ {±1}. In the

Sherrington-Kirkpatrick (SK) model, the distribution of s, considers all interactions

up to two-body

P (s|J ,h) =
1

Z(J ,h)
exp

[∑
i

hisi +
∑
i<j

Jijsisj

]
, s = (s1, . . . , sn) (4.34)

where the partition function

Z(J ,h) =
∑
s1=±1

· · ·
∑
sn=±1

exp

[∑
i

hisi +
∑
i<j

Jijsisj

]
(4.35)

is a normalization constant which depends on the pairwise couplings, J with Jij = Jji

being the coupling strength between si and sj , and external local fields, h. Thus, given

a sample, ŝ = (s(1), . . . , s(N)) of N observations, the likelihood reads as

P (ŝ|J ,h) = exp

[
N
∑
i

himi +N
∑
i<j

Jijcij −N logZ(J ,h)

]
. (4.36)

where mi = 1
N

∑N
l=1 s

(l)
i and cij = 1

N

∑N
l=1 s

(l)
i s

(l)
j are the magnetization and pairwise

correlation respectively. Note that all the needed information about the SK model

is encapsulated in the free energy, φ(J ,h) = logZ(J ,h). Indeed, the maximum

likelihood estimators for the couplings, Ĵ , and local fields, ĥ, are the solutions of the

self-consistency equations

∂φ(J ,h)

∂hi
= mi,

∂φ(J ,h)

∂Jij
= cij, i, j = 1, . . . , n. (4.37)

The universal codes for the SK model then reads as

P̄ (ŝ) = exp

[
N

(∑
i

ĥimi +
∑
i<j

Ĵijcij − φ(J ,h)

)
− R̄

]
. (4.38)
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However, unlike for the Dirichlet model and the paramagnet model, the UC partition

function, eR̄ , for the SK model is analytically intractable10.To this, we resort to a

Markov chain Monte Carlo (MCMC) approach to sample the universal codes (See

Appendix C.3.1). Figs. 4.3A and C shows the properties of the typical samples drawn

from the universal codes of the SK model in Eq. (4.38).
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FIGURE 4.3. Properties of typical samples for the NML codes of two graphical models: the
Sherrington-Kirkpatrick (SK) model and the restricted Boltzmann machine (RBM). Left panels
(A,C) show plots of the degeneracy, mk, of the frequency, k, for representative typical samples gen-
erated from the NML codes for the SK model (A) and the RBM given a number of hidden variables,
nh = 7 (B) for different number of (visible) spins, n. The corresponding dashed lines show the best-fit
lines. On the other hand, right panels (B,D) show plots of the Ĥ[k] versus Ĥ[s] of the typical samples
drawn from the NML codes for the SK model (B) and the RBM with nh = 7 (D) for N = 103 and for
varying number of spins, n ranging from 3 to 12. Given N and n of a graphical model, we compute the
Ĥ[k] and Ĥ[s] for 100 samples drawn from the respective NML codes through an Markov chain Monte
Carlo (MCMC) approach (see Appendix C.3.1). Note that for the RBM, varying nh do not qualitatively
affect the observations made in the main text. As before, the Ĥ[k] and Ĥ[s] are normalized by logN
and the typical NML samples are compared against maximally informative samples (solid black line)
and random samples (dashed black line) as described in Fig. 4.1.

Restricted Boltzmann machines

We consider a restricted Boltzmann machine (RBM) wherein one has a layer com-

posed of nv independent visible boolean units, v = (v1, . . . , vnv), which are interact-

ing with nh independent hidden boolean units, h = (h1, . . . , hnh), in another layer

10For SK models which possess some particular structures, a calculation of the UC partition function
has been done in Ref. [71].
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where vi, hi = 0, 1. The probability distribution can be written down as

P (v,h|θ = (a, b,w)) =
1

Z(θ)
exp

(
nv∑
i=1

aivi +

nh∑
j=1

bjhj +
nv∑
i=1

nh∑
j=1

viwijhj

)
(4.39)

where the partition function

Z(θ) =
∑
v1=0,1

· · ·
∑

vnv=0,1

∑
h1=0,1

· · ·
∑

hnh=0,1

exp

(
nv∑
i=1

aivi +

nh∑
j=1

(
bj +

nv∑
i=1

viwij

)
hj

)
(4.40)

is a function of the parameters, θ, with wij is the interaction strength between vi and

hj , a and b are the local fields acting on the visible v and hidden h units respectively.

Because the hidden units, h, are mutually independent, we can factorize and then

marginalize the sum over the hidden variables, h, to obtain the distribution of a single

observation, v, as

P (v|θ) =
1

Z(θ)
exp

[
nv∑
i=1

aivi +

nh∑
j=1

log 2 cosh

(
nv∑
i=1

viwij + bj

)]
. (4.41)

Then, the probability distribution for a sample, v̂ = (v(1), . . . ,v(N)), of N observa-

tions is simply

P (v̂|θ) =
N∏
k=1

p(v(k)|θ). (4.42)

The parameters, θ̂, can be estimated by maximizing the likelihood using the Con-

trastive Divergence (CD) algorithm [72, 73] (see Appendix C.3.2). Once the maxi-

mum likelihood parameters, θ̂, have been inferred, then the universal codes for the

RBM can be built as

P̄ (v̂) = e−R̄
N∏
k=1

p(v(k)|θ̂). (4.43)

Also, like in the SK model, the UC partition function, eR̄ , for the RBM cannot be

solved analytically. To this, we also resort to a MCMC approach to sample the univer-

sal codes (See Appendix C.3.1). Figs. 4.3B and D shows the properties of the typical

samples drawn from the universal codes of the RBM in Eq. (4.43). Taken together, we
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see that even for models that incorporate interactions, the typical samples of the NML

i) have broad frequency distributions and ii) they achieve values of Ĥ[k] close to the

maximum, given Ĥ[s]. Due to computational constraints, we only present the results

for N = 103 however, we expect that increasing N will only shift the NML towards

the well-sampled regime.

4.3 Large deviations of the universal codes exhibit phase

transitions

In this section, we focus on the distribution of the resolution Ĥ[s] for samples ŝ drawn

from P̄ . We note that

Ĥ[s] =
1

N

N∑
i=1

log
ks(i)

N

has the form of an empirical average, hence we expect it to attain a given value for

typical samples drawn from P̄ . This also suggests that the probability to draw samples

with resolution Ĥ[s] = E different from the typical value has the large deviation form

P{Ĥ[s] = E} ∼ e−NI(E), to leading order for N � 1. In order to establish this result

and to compute the function I(E), as in Refs. [74, 75], we observe that

P{Ĥ[s] = E} =
∑
ŝ

P̄ (ŝ)δ
(
Ĥ[s]− E

)
(4.44)

=

∫ ∞
−∞

Ndq

2π

∑
ŝ

P̄ (ŝ)eiqN(Ĥ[s]−E), (4.45)

where we used the integral representation of the δ function and P̄ (ŝ) is the NML

distribution in Eq. (4.3).

Upon defining ∑
ŝ

P̄ (ŝ)eiqNĤ[s] = eNφ(iq), (4.46)

let us assume, as in the Gärtner–Ellis theorem [74], that φ(iq) is finite for N � 1

for all q in the complex plane. Then Eq. (4.45) can be evaluated by a saddle point
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integration

P{Ĥ[s] = E} =

∫ ∞
−∞

Ndα

2π
e−N [iαE−φ(iα)] (4.47)

∼ e−N [βE−φ(β)], (4.48)

where we account only for the leading order. β is related to the saddle point value

q∗ = −iβ that dominates the integral and it is given by the solution of the saddle point

condition

E =
d

dβ
φ(β). (4.49)

Eq. (4.48) shows that the function I(E) is the Legendre transform of φ(β), i.e.

I(E) = −βE + φ(β) (4.50)

with β(E) given by the condition (4.49), as in the Gärtner–Ellis theorem [74]. Further

insight and a direct calculation from the definition in Eq. (4.46) reveals that Eq. (4.49)

can also be written as

E =
∑
ŝ

P̄β(ŝ)Ĥ[s] (4.51)

which is the average of Ĥ[s] over a “tilted” probability distribution [74]

P̄β(ŝ) = P̄ (ŝ)eN{βĤ[s]−φ(β)}, (4.52)

hence β arises as the Lagrange multiplier enforcing the condition Ĥ[s] = E. Con-

versely, when β(E) is fixed by the condition Eq. (4.51), samples drawn from P̄β have

Ĥ[s] ' E. In other words, P̄β describes how large deviations with Ĥ[s] = E are

realised. Therefore typical samples that realize such large deviations can be obtained

by sampling the distribution P̄β(ŝ) in Eq. (4.52).
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4.3.1 Illustrative example: Dirichlet model

As an illustration, we look at the large deviation properties of samples drawn from the

NML of the Dirichlet model. Without loss of generality, we shall label the states in

χ as integers {1, . . . , N} and consider the case where the state s = 1 contains a fixed

number, n1, of observations in a sample ŝ and the remaining N − n1 observations are

distributed across the remaining S − 1 states as in Fig. 4.4.

…

N � n1
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FIGURE 4.4. An illustrative example of the sample properties exhibiting large deviations in the
Dirichlet model. We consider a case where the state s = 1 contains n1 samples and the remaining
N − n1 samples are distributed in the remaining S − 1 states according to qβ(k|z).

In this situation, the large deviation distribution in Eq. (4.52) can be written down

as

P̄β(ŝ) =
eR̄

Z(β)

(n1

N

)n1
S∏
s=2

(
ks
N

)ks
eβNĤ[s]. (4.53)

In terms of the frequencies, {n1, k2, . . . , kS}, the large deviations to the universal

codes can be expressed as

P̄β(n1, k2, . . . , kS) =
e−R̄

Z(β)

N !

n1!
∏S

s=2 ks!

(n1

N

)n1
S∏
s=2

(
ks
N

)ks
× eβNĤ[s]δ

(
n1 +

S∑
s=2

ks −N
)

(4.54)

Following a similar calculation in Section 4.2.1, one finds that the partition function,
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Z(β) can be calculated as

Z(β) =
e−R̄N !

NN+βe−N
nn1

1 e
−βn1 logn1

n1!

∫ π

−π

dµ

2π
eiµ(N−n1)

[ ∞∑
k2=0

kk22 e
−βk2 log k2−(1+iµ)k2

k2!

]

× · · ·
[ ∞∑
kS=0

kkSS e
−βkS log kS−(1+iµ)kS

kS!

]
(4.55)

=
e−R̄N !

NN+βe−N
nn1

1 e
−βn1 logn1

n1!

∫ π

−π

dµ

2π
eiµ(N−n1) [Nβ(iµ)]S−1 (4.56)

' e−R̄
√

2πN

Nβ

nn1
1 e
−βn1 logn1

n1!

∫ π

−π

dµ

2π
e(S−1)Φ(iµ) (4.57)

where

Φβ(z) = ρ′z + logNβ(z) (4.58)

with ρ′ = (N − n1)/(S − 1) and

Nβ(z) =
∞∑
k=0

kk

k!
e−βk log k−(1+z)k. (4.59)

As in Section 4.2.1, the integral in Eq. (4.57) is dominated by the saddle point value

z∗β(ρ′) of Φβ(z) given by the condition

dΦβ(z)

dz
= ρ′ − 〈k〉β,z = 0 (4.60)

where the average 〈. . .〉β,z is taken with respect to the large deviation distribution (see

Fig. 4.4)

qβ(k|z) =
1

Nβ(z)

kk

k!
e−βk log k−(1+z)k. (4.61)

In the regime where ρ′ � 1 and k large (similar to the calculations in Appendix C.2.1),

one finds that the normalization Nβ(z) can be simplified further as

∞∑
k=0

kk

k!
e−βk log k−(1+z)k '

∞∑
k=0

1√
2πk

e−βk log k−(1+z)k (4.62)

=

∫ ∞
0

e−βk log k−(1+z)kdk√
2πk

. (4.63)
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When β = 0, we recover the results of the typical NML codes of the Dirichlet model as

in Appendix C.2.1. Notice, as well, that when β > 0, the normalization can be calcu-

lated, although numerically. Hence, we find that ks can be considered as independent

draws from the same distribution qβ(k|z). However, when β < 0, the integrand blows

up at infinity and thus, the distribution qβ(k|z) in Eq. (4.61) is non-normalizable.

Hence, in this regime, qβ(k|z) = 0 when k > 0. Consequently, 〈k〉β,z = 0 in Eq.

(4.60) and thus, n1 = N , i.e., the observations localize on a single state, s̄11.
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FIGURE 4.5. Typical realizations of large deviations from the NML code of the Dirichlet model.
For a fixed parameter, β ranging from β = −1 to β = 1, samples are obtained from P̄β in Eq. (4.52)
for varying length of the dataset, N (N = 104 in solid lines with circle markers andN = 105 in dashed
lines with square markers). The resolution Ĥ[s] normalized by logN (in green lines) and the maximal
frequency ks̄ normalized byN (in purple lines) are calculated as an average over 100 realizations of P̄β
given β. The point β = 0 corresponds to the typical samples that are realized from the Dirichlet NML
code in Eq. (4.8).

These results are corroborated by numerical simulation in Fig. 4.5 which shows

that, for Dirichlet models, samples obtained from P̄β exhibit a sharp transition at β =

0. The resolution (see green lines in Fig. 4.5) sharply vanishes for negative values of

β as a consequence of the fact that the distribution localizes to samples where almost

all outcomes coincide, i.e., si = s̄. This is evidenced by the fact that the maximal

11Note that this condensation phenomena is not similar to the condensation occurring in many statis-
tical mechanical systems (e.g., Bose-Einstein condensation or condensation in supersaturated solutions)
where the condensation is observed in the average. The type of condensation discussed here is, instead,
a condensation in the fluctuations, i.e., the condensation is observed as a rate event similar to that being
studied in Refs. [76, 77].
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frequency ks̄ = maxs ks approaches N very fast (see purple lines in Fig. 4.5). In other

words, β = 0 marks a localization transition where the symmetry between the states

in χ is broken, because one state s̄ is sampled an extensive number of times ks̄ ∝ N .

4.3.2 Generic model

The localization behavior discussed in the previous section is generic whenever the

underlying model f(s|θ) itself localizes for certain values θ̄ of the parameters, i.e.

when f(s|θ̄) = δs,s̄. In order to see this, notice that, in general, we can write

f(ŝ|θ̂(ŝ)) =
∏
s

f(s|θ̂(ŝ))ks . (4.64)

Thus, by inserting the identity e−NĤ[s]+NĤ[s], the NML distribution in Eq. (4.3) can be

re-cast as Thus, by inserting the identity e−NĤ[s]+NĤ[s], the NML distribution in Eq.

(4.3) can be re-cast as

P̄ (ŝ) = e−NĤ[s]−NDKL(p̂||θ̂)−R̄ (4.65)

where p̂s = ks/N is the empirical distribution and

DKL(p̂||θ̂) =
∑
s

p̂s log
p̂s

f(s|θ̂(ŝ))
(4.66)

is a Kullback-Leibler divergence.

Now, we observe that

eNφ(β) = e−R̄
∑
ŝ

e−(1−β)NĤ[s]−NDKL(p̂||θ̂) (4.67)

≥ e−R̄
∑
ŝ

e−(1−β)NĤ[s]−NDKL(p̂||θ0) (4.68)

= e−R̄ (4.69)

where the inequality in Eq. (4.68) derives from the fact that θ̂(ŝ), the maximum like-

lihood estimator for sample ŝ, is replaced by a generic value θ0 and consequently,
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DKL(p̂||θ̂) ≤ DKL(p̂||θ0). The equality in Eq. (4.69), instead, derives from the choice

θ0 = θ̄ such that f(s|θ̄) = δs,s̄. Under this choice, only the term corresponding to

“localized” samples where s(i) = s0 for all points in the sample, survive in the sum on

ŝ. For such localized samples, Ĥ[s] = DKL(p̂||θ0) = 0, hence Eq. (4.69) follows.

Because of the logarithmic dependence of the regret R̄ on N (see Eq. (4.5)), Eq.

(4.69) implies that, for all β,

φ(β) ≥ R̄/N ' 0 (4.70)

for N � 1. Given that Ĥ[s] ≥ 0 in Eq. (4.51), then E ≥ 0 and therefore, Eq.

(4.49) implies that φ(β) is a non-decreasing function of β. In addition, φ(0) = 0 by

Eq. (4.46). Taken together, these facts require that φ(β) = 0 for all values β ≤ 0.

On the other hand, for β > 0, the function φ(β) is analytic with all finite deriva-

tives, which corresponds to higher moments of Ĥ[s] under P̄β . Therefore, β = 0,

which corresponds to the typical behavior of the NML, coincides with a second order

phase transition point because the function φ(β) exhibits a discontinuity in the second

derivative. In terms of P̄β(ŝ), the phase transition separates a region (β ≥ 0) where all

samples ŝ have a finite probability from a region (β < 0) where only one sample, the

one with s(i) = s̄,∀i, has non-zero probability and Ĥ[s] = 0.

The phase transition is a natural consequence of the fact that NML provide effi-

cient coding of samples generated from f(s|θ). It states that codes P̄β that achieve a

compression different from the one achieved by the NML only exist for higher coding

costs. Codes with lower coding cost only describe non-random samples that corre-

spond to deterministic models f(s|θ̄) = δs,s̄.

4.4 Conclusion

The aim of this chapter is to elucidate the properties of efficient representations of

data corresponding to universal codes that arise in MDL. Taking NML as a generative

model, we find that typical samples are characterized by broad frequency distributions

and that they achieve values of the relevance which are close to the maximal possible
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Ĥ[k].

In addition, we find that samples generated from NML are critical in a very precise

sense. If we force NML to use less bits to encode samples then the code localizes on

deterministic samples. This is a consequence of the fact that if there were codes that

require fewer bits, then NML would not be optimal.

This contributes to the discussion on the ubiquitous finding of statistical criticality

[1, 16] by providing a clear understanding of its origin. It suggests that statistical

criticality can be related to a precise second order phase transition in terms of large

deviations of the coding cost. This phase transition separates random samples that

span a large range of possible outcomes (the set χ in the models discussed above)

from deterministic ones, where one outcome occurs most of the time. The phase

transition is accompanied by a spontaneous symmetry breaking in the permutation

between samples. The frequencies of outcomes in the symmetric phase (β ≥ 0) are

generated as independent draws from the same distribution, that is sharply peaked for

β > 0 as can be checked in the case of the Dirichlet model. Instead, for β < 0, only

one state is sampled. In the typical case, β = 0, the symmetry between outcomes

is weakly broken, as there are outcomes that occur more frequently than others. At

β = 0, the samples maintain the maximal discriminative power over outcomes. This

type of phase transitions in large deviations is very generic, and it occurs in large

deviations whenever the underlying distribution develops fat tails (see e.g. Ref. [75]).

This leads to the conjecture that broad distributions arise as a consequence of ef-

ficient coding. More precisely, broad distributions arise when the variables sampled

are relevant, i.e., when they provide an optimal representation. This is precisely the

point which has been made in Refs. [30, 31, 60]. The results in the present chapter

add to these a new perspective whereby maximally informative samples can be seen

as universal codes.
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5
Finding relevant neurons in the brain

using MultiScale Relevance (MSR)

In the previous chapters, we have discussed guiding principles towards extracting rel-

evant information from high dimensional datasets. Within this guiding principle, iden-

tifying the maximally informative samples is equivalent to looking at efficient repre-

sentations which reveals the data generating process. A natural place to look for such

efficient representations is in the brain. Neurons in the brain are subjected to energetic

constraints [78] as they communicate with each other to understand what is happening

in the external world and make behavioral decisions from the perceived stimuli. Thus,

neurons must be able to extract relevant representations of the sensory input coming

from downstream neurons and transmit these representations into decodable responses

to upstream neurons.

Here, we explore the applicability of the theoretical framework discussed in the

previous chapters by proposing a novel non-parametric, model-free method for char-

acterizing the dynamical variability of a neural spiking across different time scales

and consequently, for selecting relevant neurons – i.e. neurons whose response pat-

terns represent information about the task or stimuli – that does not require knowledge

67
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of external correlates. This featureless selection is done by identifying neurons that

have broad and non-trivial distribution of spike frequencies across a broad range of

time scales. The proposed measure – called Multiscale Relevance (MSR) – allows an

experimenter to rank the neurons according to their information content and relevance

to the behavior probed in the experiment.

We illustrate the method by applying it to data on spatial navigation of freely roam-

ing rodents in Refs. [79] and [80], that reports the neural activities of 65 neurons si-

multaneously recorded from the medial entorhinal cortex (mEC) and nearby regions,

and 746 neurons in the anterodorsal thalamic nucleus (ADn) and post-subiculum (PoS),

respectively. In all cases, we find that neurons with low MSR also coincide with those

that contain no information on covariates involved in navigation, but that the opposite

is not true. We find that some neurons with high MSR also contain significant relevant

information for spatial navigation, some relative to position, some to head direction

(HD) but often on both space and HD. These findings corroborate the recent conjecture

of multiplexed coding [81] both in the mEC [82] and in the thalamus [83]. We observe

that MSR correlates to different degrees with different measures that have been intro-

duced to characterize specific neurons. More specifically, we find strong correlation

between MSR and measures of sparse representations of external correlates. Further-

more, we show that the neurons in mEC with highest MSR have spike patterns that

allow an upstream decoder “neuron” to discern the organism’s state in the environ-

ment. Indeed, the top most relevant neurons (RNs), according to MSR, decode spatial

position (or HD) just as well as the top most spatially (or HD) informative neurons

(INs). In addition, we find that this decoding efficiency can not solely be due to local

variations [84, 85]. Emphasizing again that the MSR does not rely on any information

about space or HD and is calculated only from the timing on spikes, the correlation

with spatial or HD information suggests a role for MSR as an unsupervised method

for focusing on information-rich neurons without knowing a priori what covariate/s

those neurons represent.
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5.1 Information Extraction in Neuroscience: Lessons

from the Medial Entorhinal Cortex

Much of the progress in understanding how the brain processes information has been

made by identifying firing patterns of individual neurons that correlate significantly

with the variations in the stimuli and the behaviors. These approaches have led to the

discovery of V1 cells in the primary visual cortex [86], the A1 cells in the auditory

cortex [87], the head direction (HD) cells in the anterodorsal nucleus (ADn) of the

thalamus [88, 89], and the place cells in the hippocampus [90].

More recently, such tuning profile approaches have led to the characterization of

neurons in the medial entorhinal cortex (mEC) and have revealed single cell repre-

sentations that are essential for navigation. In particular, these approaches have found

that the mEC and its nearby brain regions houses neurons that exhibit spatially selec-

tive firing (e.g., grid cells and border cells) which provides the brain with a locational

representation of the organism and provides the hippocampus with its main cortical

inputs. For example, grid cells have spatially selective firing behaviors that form a

hexagonal pattern which spans the environment where the rat freely explores as in the

left plots of Fig. 5.1 and in Fig. 5.2a. Apart from spatial information, grid cells can

also be attuned to the HD especially in deeper layers of the mEC [91]. These cells

altogether provide the organism with an internal coordinate system which it then uses

for navigation. And hence, together with the information coming from speed cells

[92] i.e. neurons having responses that are linearly correlated with speed, these repre-

sentations allow the mEC to represent the displacement of the organism in the spatial

environment.

Because the responses of these neurons in the mEC have distinct features and are

preserved across different spatial contexts, subsequent studies have selected neurons

based on imposed structural assumptions on the tuning profile of neurons with respect

to an external correlate. In particular, different measures of information (as in Eq.

(D.3)), response selectivity (as in Eq. (D.5)) and tuning curve symmetries (e.g., the
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grid score in Eq. (D.6) which quantifies the hexagonality of the firing responses of a

neuron in the 2D spatial map and the mean vector length in Eq. (D.7) which quantifies

how attuned to a single head direction the neuron’s responses are) have been employed

and consequently, the classification of cells are based on how statistically significant

these measures are with respect to null distributions, i.e., when the neuron fires at

random but still preserving the total number of observed firing events in the duration

of the experiment.
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FIGURE 5.1. Broken symmetries and conjunctive response profiles of neurons in the medial
entorhinal cortex. Response profiles of four representative mEC neurons that respond to a combination
of different external correlates across three open field sessions are shown. In each session, the plots on
the left show color-coded spatial firing rate maps. The scale bar is shown to the right of the first
map. Notice the hexagonal patterns in the firing behavior of these neurons indicating that these are
grid cells. However, notice as well that the peak firing rates do not necessarily form a regular hexagon.
Furthermore, the peak firing rates are different in each grid field. The plots in the middle show the firing
rate as a function of the head direction (HD, x-axis, in degrees) and running speed (y-axis, in cm/s).
The maximum firing rate is indicated at the top portion for each map. The same color code were used
as the spatial firing rate maps. Notice that while most of the neurons fire at a preferred HD, one neuron
(Neuron c in Session C) seems to have a multimodal HD preference. The plots on the right show the
firing rate as a function of running speed. Notice that some of these representative neurons have firing
behaviors that are not linear with respect to the running speed (see e.g. Neuron d in Sessions A and B
and Neuron a in Session C). Reprinted from Ref. [92] with permission from Springer Nature Customer
Service Centre GmbH.

However, the organization of the brain and the responses of individual neuron are

hardly this simple and intuitive. In particular, recent developments in understanding

the spatial representation in the mEC have taught us that such approaches has its lim-

its as illustrated in Fig. 5.1. First, neurons may break the symmetries of the tuning
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curves when representing navigational information through shearing [93] (i.e., the grid

fields , field-to-field variability or simply by the constraints of the environment [94].

Second, the same neuron may respond to a combination of different behavioral co-

variates, such as position, HD and speed in spatial navigation [91, 82]. Finally, and

most importantly, neurons may encode a particular behavior in ways that are unknown

to the experimenter and that are not related to covariates typically used or to a priori

features. Indeed, these limitations have resulted to a large population of neurons in the

mEC that remain to be classified. With the advent of next-generation techniques that

have allowed us to probe an increasing number of neurons in behaving animals, these

limitations are exacerbated which calls for guiding principle towards better informa-

tion extraction and neuron selection.

Under such circumstances, one can still make progress by focusing on the tem-

poral structure of neural firing. Variations present in the spikes offer neurons with a

large capacity for information transmission [95, 96, 97]. These variations, as captured

by metrics describing the interspike intervals (see Appendix D.2), have been shown to

be different for functionally distinct neurons in the cortex [84, 85, 98] and have been

utilized to classify neurons in the subiculum [99] and in the mEC [100, 101]. How-

ever, such measures of variations are either very local or hardly take into account the

temporal dependencies and time scales of natural stimuli. Hence, in the succeeding

sections, we shall develop a method based on the discussion in Chapter 3 for identify-

ing neurons that are relevant for the efficient representation of the animal’s behavior

by taking advantage of the variations in the dynamical responses of a neuron across a

broad range of time scales.

5.2 Multiscale relevance

We consider a population composed of n neurons in an animal whose activities were

simultaneously observed up to a time, tobs. From hereon, we shall focus our attention

to a single neuron within this population. The activity of this neuron is recorded and
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stamped by the spike times {t1, . . . , tM} where t1 < t2 < . . . ≤ tM ≤ tobs and M is

the total number of observed spikes. By discretizing the time into T bins of duration

∆t, a spike count code, {k1, k2, . . . , kT}, can be constructed where ks denotes the

number of spikes recorded from the neuron in the sth time bin Bs = [(s− 1)∆t, s∆t)

(s = 1, 2, . . . , T ).

Fixing ∆t allows us to probe the neural activity at a fixed time scale. Yet, rather

than using ∆t to measure time resolution, we adopt an information theoretic measure,

given by

Ĥ[s] = −
T∑
s=1

ks
M

logM
ks
M
, (5.1)

where logM(·) = log(·)/ logM indicates logarithm base M (in units of Mats). Ĥ[s]

corresponds to the amount of information that one gains on the timing of a randomly

chosen spike by knowing the index s of the bin it belongs to1.

We argue that Ĥ[s] provides an intrinsic measure of resolution, contrary to ∆t

which refers to particular time scales that may vary across neurons. For example,

there is a value ∆t− such that for all ∆t ≤ ∆t−, all time bins either contain a single

spike or none, i.e. ks = 0, 1 for all s. All these values of ∆t correspond to the same

value of the intrinsic resolution Ĥ[s] = 1. Likewise, there may be a value ∆t+ such

that for all ∆t ≥ ∆t+, all spikes of the neuron fall in the same bin. All ∆t ≥ ∆t+

then correspond to the same value Ĥ[s] = 0 of the resolution, as defined here. In other

words, Ĥ[s] captures the resolution on a scale that is fixed by the available data.

Given a resolution Ĥ[s] (corresponding to a given ∆t), we can now turn to charac-

terize the dynamic response of the neuron. The only way in which the dynamic state

of the neuron in bin s can be distinguished from that in bin s′ is by its activity. If the

number of spikes in the two bins is the same (ks = ks′) there is no way to distinguish

1With no prior knowledge, a spike can be any of the M possible spikes, so its a priori uncertainty
is of log2M bits. The information on which bin s the spike occurs, reduces the number of choices
from M to ks and the uncertainty to log2 ks bits. Averaging the information gain logM − log ks over
the a priori distribution of spikes and dividing by logM , yields Eq. (5.1). It is also worth to stress
that Eq. (5.1) does not refer to the estimate of the entropy of a hypothetical underlying distribution
ps from which spikes are drawn. This would not make much sense, because it is well-known that the
naı̈ve estimate of the Shannon entropy in Eq. (5.1) obtained with the maximum likelihood estimator
p̂s = ks/M suffers from strong biases [102, 103].
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the dynamic state of the neuron in the two bins, at that resolution2. Therefore, one way

to quantify the richness of the dynamic response of a neuron is to count the number

of different dynamic states it undergoes in the course of the experiment. A proxy of

this quantity is given by the variability of the spike frequency ks, that again can be

measured in terms of an entropy

Ĥ[k] = −
∞∑
k=1

kmk

M
logM

kmk

M
. (5.2)

wheremk indicates the number of time bins containing k spikes3, so that kmk/M is the

fraction of spikes that fall in bins with ks = k. Ĥ[k] takes the form of an information

theoretic measure of the information each spike contains on the dynamic state of the

neuron at a given resolution4. Ref. [31] shows that Ĥ[k] measures the complexity of

the variability in the sense that Ĥ[k] correlates with the number of parameters a model

would require in order to describe properly the dataset, without overfitting. Hence,

following Chapter 3.2, we shall call Ĥ[s] as resolution and Ĥ[k] as relevance.

In the current context, the reason for this choice can be understood as follows. In

a given task or behavior, different neurons can have activities that are more or less

related to the behavioral or neuronal states that are being probed in the experiment.

Neurons that are relevant for encoding the animal’s behavior or task are expected to

display variation on a wide range of dynamical states, i.e. to have a large Ĥ[k]. On the

contrary, neurons that are not involved in the animal’s behavior are expected to visit

relatively fewer dynamical states, i.e. to have a lower Ĥ[k].

Notice that for very small binning times ∆t ≤ ∆t− (when each time bins contains

at most one spike, i.e. mk=1 = M and mk′ = 0, ∀ k′ > 1) we find Ĥ[k] = 0 (and

Ĥ[s] = 1). At the opposite extreme, when ∆t ≥ ∆t+ andH[s] = 0, we have all spikes

2One may argue that, if the activity in the previous bins s− 1 and s′ − 1 differs considerably, then
the dynamic state in bin s and s′ may also be considered different. We take the view that this distinction
is automatically taken into account when considering larger bins (i.e. ∆t→ 2∆t).

3mk satisfies the obvious relation
∑∞
k=0 kmk =

∑T
s=1 ks = M .

4Again, the knowledge of the associated dynamical state, i.e. the spike frequency k of the bin it
belongs to, provides information to identify the timing of a spike by reducing the number of possible
choices from M to kmk, which is the number of spikes in bins with the same dynamical state k. The
information gain is given by Ĥ[k].
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in the same bin, i.e. mk = 0 for all k = 1, 2, . . . ,M − 1 and mM = 1. Therefore

again we find Ĥ[k] = 0. Hence, no information on the relevance of the neuron can

be extracted at time scales smaller than ∆t− or larger than ∆t+. At intermediate

scales ∆t ∈ [∆t−,∆t+], Ĥ[k] takes non-zero values5, that we take as a measure of the

relevance of the neuron for the freely-behaving animals being studied, at time scale

∆t.
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FIGURE 5.2. Proof of concept of the MSR as a relative information content measure. The
smoothed firing rate maps of a grid cell (a) and an interneuron (b) in the mEC illustrates the spatial
modulation of neural activity. Panel c shows the curves traced by the grid cell (green) and interneuron
(red). Each point, (Ĥ[s], Ĥ[k]), in this curve corresponds to a fixed binning time, ∆t, with which we
see the corresponding temporal neural spike codes.

Yet, the relevant time scale ∆t for a neuronal response to a stimulus may not be

known a priori and/or the latter may evoke a dynamic response that spans multiple

time scales. For this reason, we vary the binning time ∆t thereby inspecting multiple

time scales with which we want to see the temporal code. As we vary ∆t, we can

trace a curve in the Ĥ[s]-Ĥ[k] space for every neuron in the sample. Neurons with

broad distributions of spike frequencies across different time scales will trace higher

curves in this space and in turn, will cover larger areas under this curve (see Fig. 5.2c).

Henceforth, we shall call the area under this curve as the multiscale relevance (MSR),
5Chapter 3.3 shows that, for a given value of the resolution Ĥ[s], Ĥ[k] takes its maximal value for

distributions mk ∼ k−µ−1 with a power law behavior, where µ varies between 1 and∞ as Ĥ[s] varies.
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Rt. The relevant neurons (RNs), those with high values of Rt, are expected to exhibit

spiking behaviors that can be well-discriminated by upstream neural information pro-

cessing units over short and long time scales and thus, are expected to be relevant to

the encoding of higher representations.

MSR is designed to capture non-trivial structures in the spike stemming from the

variations in spike rates. As such, it is expected to correlate with other measures

characterizing temporal structure, such as bursty-ness and memory [104] and the co-

efficient of local variation [84, 85]. We have observed that, in synthetic data with

given characteristics, MSR captures both the bursty-ness, memory and local varia-

tions of a time series (see Fig. D.1a,b). In addition, we find, in both synthetic and real

data, a negative relation between MSR and spike frequency (i.e. M ), which is partly

associated with bursty-ness.

As a proof of concept of the MSR for featureless neural selection, we consid-

ered two neurons recorded simultaneously from the medial entorhinal cortex (mEC)

in Ref. [79] – a grid cell (T02C01) and an interneuron (T02C02) – both of which were

measured from the same tetrode and thus, are in close proximity in the brain region.

Grid cells, as discussed in Chapter 5.1, have spatially selective firing behaviors that

form a hexagonal pattern which spans the environment where the rat freely explores

as in Fig. 5.2a. These cells altogether provide the organism with an internal map

which it then uses for navigation. On the other hand, interneurons, as in Fig. 5.2b,

are inhibitory neurons which are still important towards the formation of grid cell pat-

terns [105, 106, 107] but have much less spatially specific firing patterns. Intuitively,

as the mEC functions as a hub for memory and navigation, grid cells, which provide

the brain with a representation of space, should be more relevant for an upstream infor-

mation processing “neuron” (possibly the place cells in the hippocampus) in encoding

higher representations compared to interneurons. Indeed, the grid cell traces higher

curves in the Ĥ[s]−Ĥ[k] space as in Fig. 5.2c and thus defines a larger area compared

to the interneuron.
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5.3 Results

Following the observations in Fig. 5.2, we sought to characterize the temporal firing

behavior of the 65 neurons which were simultaneously recorded from the mEC and

its nearby regions of a freely-behaving rat as it explored a square area of length 150

cm [79]. This neural ensemble, as functionally categorized in Ref. [79], consisted

of 23 grid cells, 5 interneurons, 1 putative border cell and 36 unclassified neurons,

some of which had highly spatially attuned firing and nearly hexagonal spatial firing

patterns [79, 108, 109]. This dataset was chosen among the multiple recording ses-

sions performed in Ref. [79] as this contained the most grid cells to be simultaneously

recorded.

These results were then corroborated by characterizing the temporal firing behav-

iors of the 746 neurons which were recorded from multiple anterior thalamic nuclei

areas, mainly the anterodorsal nucleus (ADn), and subicular areas, main the post-

subiculum (PoS) of 6 different mice across 31 recording session while the mouse

explored a rectangular area of dimensions 53 cm × 46 cm [80]. This data was chosen

as these heterogeneous neural ensemble contained a number of head direction (HD)

cells which are neurons that are highly attuned to HD.

Before showing the results on these data sets, we note that the the MSR is a robust

measure. To establish this, we compared the MSRs computed using only the first half

of the data to that computed from the second half. We obtained very similar results,

confirming that the MSR is a reliable measure that can be used to score neurons (see

Fig. D.2a).

5.3.1 MSR captures information on functionally relevant external

correlates

As the mEC is crucial to spatial navigation, we sought to find whether the wide dy-

namical variations of neural firing as captured by the MSR would contribute towards

a representation of the animal’s spatial organization, in one way or another. Differ-
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ent measures relating the spatial position, x, with neural activity had been employed

in the literature to characterize spatially specific neural discharges, like the Skaggs-

McNaughton spatial information, I(s,x) defined in Eq. (D.3) and in Ref. [110], spa-

tial sparsity measure, spx defined in Eq. (D.5) and in Refs. [111, 112] and grid score,

g, defined in Eq. (D.6) and in Refs. [91, 109, 113, 114].

Apart from spatial location, HD also plays a crucial role in spatial navigation. The

mean vector length, R (Eq. (D.7) in Section D.1.4) is commonly used as a measure of

HD selectivity of the activity of neurons. However, this measure assumes that there is

only one preferred HD in which a given neuron is tuned to. Hence, we calculated two

measures – the HD information, I(s, θ), and HD sparsity, spθ – inspired by the spatial

information and spatial sparsity to quantify the information and selectivity of neural

firing to HD respectively. These measures ought to detect non-trivial and multimodal

HD tuning which may also be important in representing HD in the brain [82].

Fig. 5.3 reports the spatial information (a) and the HD information (c) as a function

of the MSR for each neuron in the mEC data. Figs. 5.3b and d report the spatial

firing rate maps and HD tuning curves for the top five RNs (left panel) and non-RNs

(right panel) by MSR score, respectively (See also Figs. D.4 and D.5). We observed

that non-RNs had very non-specific spatial and HD discharges as indicated by their

sparsity scores (Figs. 5.3b and d, See also Figs. D.4 and D.5) whereas RNs had a

broader range of spatial and HD sparsity (Figs. 5.3b and e, See also Figs. D.4 and

D.5).

While we have observed that the MSR has a negative relation with the spike fre-

quency (i.e. M ), an analysis of the residual MSR revealed that the logarithm of the

spike frequency (i.e., logM ) could not explain all of the variations in the MSR for

the neurons in the mEC. We have seen that the residual MSRs (with respect to logM )

appeared to be correlated with spatial and HD information (see Figs. D.2b-d).

Although local variations, as measured by LV , could still capture spatial and HD

information (see Figs. D.3a and b, respectively), we observed that the strength of

correlation was stronger for MSR than for LV . While there is a positive correlation
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FIGURE 5.3. The MSR identified neurons that are spatially and head directionally informative.
A scatter plot of the MSR vs. the spatial (HD) information is shown in a (c). The shapes of the scatter
points indicate the identity of the neuron according to Ref. [79]. The linearity and monotonicity of
the multiscale relevance and the information measures were assessed by the Pearson’s correlation, ρp,
and the Spearman’s correlation, ρs, respectively. Information bias was measured by a bootstrapping
method, i.e., calculating the average of the spatial or head directional information of 1000 randomized
spike trains. The spatial firing rate maps (HD tuning curves) of the 5 most relevant neurons (RNs) and
the 5 most irrelevant neurons (non-RNs) are shown together in panel b (d) together with the calculated
spatial sparsity, spx, (HD sparsity, spθ) and maximum and minimum firing.

between LV and the MSR (see Fig. D.2e), we found that local variations could not

explain what is captured by the MSR. In addition, the residual MSRs (with respect

to LV ) were observed to still be correlated with spatial or HD information (see Figs.

D.2f and g).

We found that (i) Neurons with high spatial information or high HD information

also had high MSR, but the converse was not true. While there were high RNs that

responded exquisitely to space (grid cells 7 and 40) or HD (neurons 45 and 56) alone,

the majority (e.g. neurons 35 and 47) encoded significantly both spatial and HD infor-
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mation. Secondly, we found that ii) Neurons with low MSR had both low spatial and

low HD information (Figs. 5.3c and f), but again, the converse was not true (e.g. neu-

rons 4 and 34). Finally iii) we found that some neurons, for example, neurons 3 and

6, despite having some spatial and HD sparsity as indicated in their rate maps (Figs.

5.3b and e), had relatively low spatial and HD information but were both identified

to be RNs by MSR. This high MSR suggests that perhaps these neurons responded to

different correlates involved in navigation different from spatial location or HD.
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FIGURE 5.4. The MSR identified neurons with spatially and head directionally selective dis-
charges. Bar plots depict the mean (height of the bar) along with the standard deviation (black error
bars) of the grid score (red) and Rayleigh mean vector length (yellow) in panel a, and the spatial spar-
sity (orange) and HD sparsity (purple) in panel b for each neuron in the mEC within the relevance range
as indicated. The relevance range was determined by equally dividing the range of the calculated MSR
into 5 equal parts. The number of neurons whose MSRs fall within a relevance range is indicated below
each bar. The linearity and monotonicity between the MSR and the different spatial and HD quantities
were quantified using the Pearson’s correlation, ρp, and the Spearman’s correlation, ρs, respectively.

Many of the grid cells were spotted as RNs, but not all. For example, grid cells

41, 42 and 61, that had a significant grid score, had a low MSR and a low spatial

information. This indicated that different measures correlate differently with MSR.

Fig. 5.4 reports the distribution of the other four measures analyzed in this study

conditional to different levels of MSR. Fig. 5.4a shows that grid score maintains a

large variation across all scales of the MSR, with a moderate increase in its average.

A similar behavior was observed in Fig. 5.4a for the mean vector length.

Spatial sparsity and HD sparsity, instead, showed a significant correlation with the

MSR as seen in Fig. 5.4b. The observation that RNs with highly sparse firing may
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have either low mean vector lengths or low grid scores was an indication that a non-

trivial variabilities in firing behaviors need not to obey the imposed symmetries of the

tuning curves.

Following the observations in the mEC, we turned to other regions in the brain –

the thalamus – and found out whether the non-trivial variability in the neural spiking

captured functionally relevant external correlates. To this, we analyzed the neurons in

the ADn and PoS areas of freely behaving and navigating rodents. These regions are

known to contain cells that robustly fire when the animal’s head is facing a specific

direction [88, 89] and is believed to be crucial to the formation of grid cells in the

mEC [91, 114, 115]. Thus, we sough to find whether the variability as measured

by the MSR contain signals of HD tuning. We observed that, in all of the 6 mice

that were analyzed, the neurons having HD specific firing, i.e., neurons having high

HD sparsity and high mean vector lengths, were RNs (see Fig. D.6). Focusing on a

subset of neurons of Mouse 12 (in Fig. D.6a) that were simultaneously recorded in

a single session (Session 120806), we observed, as in Figs. 5.5a,b, that HD attuned

neurons were RNs. However, the HD alone may not explain the structure of the spike

frequencies of these neurons [116]. Hence, we also sought to find whether some of

these neurons are spatially tuned. As seen in Figs. 5.5d,e, we found that some of the

RNs were also modulated by the spatial location of the mouse. These results were also

consistent for a subset of neurons of Mouse 28 (in Fig. D.6f) that were simultaneously

recorded in a single session (Session 140313) as in Fig. 5.6.

To assess whether the variations in the spike frequencies, as characterized by the

MSR, contained information about external stimuli relevant to navigation, we resam-

pled the spike count code of the neurons in the mEC such that only spatial information,

or only HD information, or both spatial and HD information were incorporated. This

resampling of the neural spiking was done by generating synthetic spikes assuming a

non-homogeneous Poisson spiking with rates taken from the computed spatial firing

rate maps and HD tuning curves (see Section D.1.5). These assumptions were able

to recover the original rate maps as seen in Figs. 5.7b and c. Here, we focused our
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FIGURE 5.5. MSR of neurons from the anterodorsal thalamic nucleus (ADn) of Mouse 12 from
a single recording session (Session 120806). A scatter plot of the multiscale relevance vs. the HD
(spatial) information is shown in a (d). This plot is supplemented by a scatter plot between the MSR
and HD (spatial) sparsity shown in b (e). The sizes of the scatter points reflect the mean vector length
of the neural activity where the larger scatter points correspond to a sharp preferential firing to a single
direction. The HD tuning curves (spatial firing rate maps) of the 5 most relevant neurons (RNs) and the
5 most irrelevant neurons (non-RNs) are shown together in panel c (f) together with the calculated HD
sparsity, spθ, (spatial sparsity, spx) and maximum and minimum firing.

attention on mEC Neuron 47 in the mEC data which had the highest MSR and also

had both high spatial and high HD information.

By resampling solely the spatial firing rate map as in Fig. 5.7d, we saw a decrease

in the MSR despite having as much spatial information as the original code. When

HD information was incorporated into the resampled spike frequencies, assuming the

factorization of the firing probabilities due to position and HD, more structure would

be added onto the spiking activity of the resampled neuron. Hence, we expected to see

an increase in the MSR as observed for Neuron 47 which increased almost up to the

MSR for the original code. These findings support the idea that the temporal structure

of the spike counts of the neuron, as measured by the MSR, come from its tuning
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FIGURE 5.6. MSR of neurons from the anterodorsal thalamic nucleus (ADn) and post-subiculum
(PoS) of Mouse 28 from a single recording session (Session 140313). A scatter plot of the MSR vs.
the HD (spatial) information is shown in a (d). This plot is supplemented by a scatter plot between
the MSR and HD (spatial) sparsity shown in b (e). The sizes of the scatter points reflect the mean
vector length of the neural activity where the larger scatter points correspond to putative head direction
cells while the shapes of the scatter points indicate the region where the neuron units were recorded
in Refs. [80, 117]. The HD tuning curves (spatial firing rate maps) of the 5 most relevant neurons
(RNs) and the 5 most irrelevant neurons (non-RNs) are shown together in panel c (f) together with the
calculated HD sparsity, spθ, (spatial sparsity, spx) and maximum and minimum firing.

profiles for both position and HD.

We also assessed which cells among the neurons in the mEC have MSRs that could

be explained well by the spatial information and thus, were highly spatially attuned.

We resampled the spatial firing rate maps of each of the neurons in the mEC data (see

Section D.1.5). The difference between the original and resampled MSR, Roriginal
t −

R
resampled
t , was then computed from the resampled spikes. When the variations in

the spike frequencies could be explained by the spatial firing fields, we expected this

difference to be close to zero. As seen in Fig. 5.7e, we found that neurons having

either high spatial information tended to have differential MSRs close to zero. We
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FIGURE 5.7. The MSR is a measure of information content of the neural activity. Resampling
the firing rate map using spatial position only or in combination with HD resulted to a firing activity
that closely resembled the actual firing pattern of mEC Neuron 47. Compared to the original firing
rate maps in a, the spatial (left panels) and HD (right panels) firing rate maps were recovered by the
resampling procedure in b and c. The result for a single realization of the resampling procedure is
shown. (d) Bar plots show the MSR calculated from the original spiking activity of the neuron and the
resampled rate maps. The mean and standard deviation of 100 realizations of the resampling procedure
is reported. Scatter plot between the difference of the MSRs of the original spikes and of the synthetic
spikes, resampled using only positional information (only HD information), for each neuron and the
spatial information is shown in e (f).

also observed that most of the neurons having low differential MSRs were grid cells.

The same observations could be drawn when resampling the HD tuning curves of each

of the neurons in the mEC data. In particular, we also found that neurons having high

HD information had differential MSRs close to zero as in Fig. 5.7f.

Taken altogether, these results suggest that the MSR can be used to identify the in-

teresting neurons in a heterogeneous ensemble. The proposed measure is able to cap-

ture the non-trivial spike frequency distribution across multiple scales whose structure

is highly influenced by external correlates that modulate the neural activity. Indeed,
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these analyses show that the MSR is able to capture information content of the neural

spike code.

5.3.2 Relevant neurons decode external correlates as efficiently as

informative neurons

We found in the previous section that neurons with low MSR had low spatial or HD

information while higher MSR could indicate low or high values of spatial or HD

information. In this section, we show that despite this, high MSR can still be used to

select neurons that decode position or HD well. In other words, although high MSR

can imply low spatial or HD information, in terms of population decoding, the highly

RNs (selected based on only spike frequencies) performs equally well compared to

the highly informative neurons (INs, selected using the knowledge of the external

covariate).

In order to understand whether MSR could identify neurons in mEC whose firing

activity allows the animal to identify its position, we compared the decoding efficiency

of the 20 neurons with the highest MSR (top RNs) with that of the 20 neurons with

the highest spatial information (top spatial INs) wherein the two sets overlap on 14

neurons (see Fig. D.7a).

To this end, we employed a Bayesian approach to positional decoding wherein the

estimated position at the j th time bin, x̂j , is determined by the position, xj , which

maximizes an a posteriori distribution, p(xj|sj), conditioned on the spike pattern, sj ,

of a neural ensemble within the j th time bin i.e.,

x̂j = arg max
xj

p(xj|sj) = arg max
xj

p(sj|xj)p(xj) (5.3)

where the last term is due to Bayes rule, p(sj|xj) is the likelihood of a spike pattern,

sj , given the position, xj , which depends on a given neuron model and p(xj) is the

positional occupation probability which can be estimated directly from the data. Fig.

5.8a shows that the top RNs decoded just as efficient as the top spatial INs. It can also
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FIGURE 5.8. Positional decoding of RNs and INs in the mEC and HD decoding of the RNs and
INs in the ADn of Mouse 12 and the ADn and PoS of Mouse 28 under a single recording session.
Panel a shows the cumulative distribution of the decoding error, ‖X̂ − Xtrue‖, for the RNs (solid
violet squares) and spatially INs (solid yellow stars) neurons as well as for the non-RNs (dashed violet
squares) and non-INs (dashed yellow stars). Spatial decoding was also performed for the 27 grid cells
in the mEC data (solid orange triangles). The low positional decoding efficiency at some time points
can be traced to the posterior distribution, p(x|s), of the rat’s position given the neural responses which
exhibited multiple peaks as shown in the inset surface plot. For this particular example, the true position
was found close to the maximal point of the surface plot as indicated by the arrows although such was
not always the case. Panel b depicts the cumulative distribution of the decoding errors of the 30 RNs
(violet squares) and 30 HD INs (yellow stars) in the ADn of Mouse 12 in Session 120806. The mean and
standard errors of the cumulative distribution of decoding errors of 30 randomly selected ADn neuron
(n = 1000 realizations) are shown in grey. On the other hand, panel c depicts the cumulative decoding
error distribution of the 30 RNs (violet squares) and 30 HD INs (yellow stars) in the ADn (crosses)
and PoS (circles) of Mouse 28 in Session 140313. The mean and standard errors of the cumulative
distribution of decoding errors of 30 randomly selected ADn or PoS neuron (n = 1000 realizations)
are shown in grey. As the random selection included neurons from the ADn, which contain a pure head
directional information and can decode the positions better than the neurons in the PoS, the decoding
errors from the 30 randomly selected neurons were, on average, comparable to that of the relevant or
head directionally informative PoS neurons. In all the decoding procedures, time points where all the
neurons in the ensemble was silent were discarded in the decoding process.

be observed that the top RNs decode the positions better than the ensemble composed

solely of grid cells.

Because of the sizable overlap between the top RNs and the top spatial INs, one
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might argue that much of the spatial information needed for positional decoding is

concentrated on the neurons in the overlap (ONs). To address this, we randomly se-

lected 6 neurons among the mEC neurons outside the overlap and, together with the 14

ONs, decoded for the position as done above. If the positional decoding information is

contained in the ONs, then we should observe the same decoding efficiency as either

the top RNs or top spatial INs. However, we found that the decoding efficiency of the

ONs decreased (see Fig. D.7d). We also found that for the decoded positions within 5

cm from the true position, the decoding efficiency of the top RNs were up to 4σ from

the mean decoding efficiency of the ONs, as measured by the z-score compared to that

of the top spatial INs which was at around 2σ. This indicates that the 6 RNs outside

the overlap provide better decodable spatial representation than those of the 6 spatial

INs.

Because local variations of the neurons in the mEC correlated with spatial infor-

mation, we sought to find whether neurons with high local variations (LVNs) also

contained decodable spatial representation. We took the top 20 LVNs in the mEC and

decoded for the position as done above. We found that the decoding efficiency of top

LVNs are much lower compared to top RNs (see Fig. D.3c). This indicates that the

repertoire of responses coming from local variations in the interspike intervals of mEC

neurons alone can not represent space in freely-behaving rats.

To substantiate the decoding results obtained for neurons in the mEC, we also

took the ADn RNs and the HD INs in the of Mouse 12 (Session 120806) in Fig. 5.5 to

decode for HD. Mouse 12 was chosen as this animal had the most HD cells recorded

among the mice that only had recordings in the ADn [117]. In particular, we looked

at the HD decoding at longer time scales (in this case, ∆t = 100 ms), where we could

model the neural activity using a Poisson distribution, p(nj|θj) similar to that in Eq.

(D.11). Bayesian decoding adopts an equation

θ̂j = arg max
θj

p(θj|nj) = arg max
θj

p(nj|θj)p(θj) (5.4)

similar to Eq. (5.3) to estimate the decoded HD, θ̂j , where p(θj) is the HD occupation
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as estimated from the data. We compared the decoding efficiency of the 30 RNs with

the 30 HD INs which had 22 neurons that are relevant (see Fig. D.3b). We also

compared the decoding efficiencies of the ADn RNs or HD INs with 30 randomly

selected ADn neurons (n = 1000 realizations). As seen in Fig. 5.8b, the RNs decoded

just as well as the neural population composed of HD INs. Furthermore, the decoding

efficiency of the RNs were observed to be far better than the decoding efficiency of a

random selection of neurons in the ensemble.

We also compared the decoding efficiency of the ADn and PoS neurons from

Mouse 28 (Session 140313) which had the most HD cells recorded among the mice

that had recordings in both ADn and PoS [117] as in Fig. 5.6. As seen in Fig. 5.8c,

neurons in the ADn decoded the HD more efficiently than the neurons in the PoS.

These results are consistent with the notion that the ADn contains pure HD modula-

tion which allow for neurons in the ADn to better predict the mouses HD compared to

the neurons in the PoS which contain, instead, true spatial information [80, 116]. For

the neurons in Mouse 28 (Session 140313), it had to be noted that the 30 ADn RNs

also happened to be the 30 ADn HD INs (see Fig. D.7c). On the other hand, among

the 30 PoS RNs, 23 were HD INs (also see Fig. D.7c). We observed that the PoS RNs

decode just as efficient as the PoS HD INs consistent with the findings for Mouse 12

(Session 120806).

Taken altogether, despite being blind to the rat’s position and of the mouse’s HD,

the MSR is able to capture neurons that can decode the position and HD just as well

as the spatial INs and as the HD INs.

5.4 Discussion

In the present work, we introduced a novel, parameter-free and fully featureless method

– which we called multiscale relevance (MSR) – to characterize the temporal structure

of the activities of neurons within a heterogeneous population. We have shown that

the neurons showing persistently broad spike frequency distributions across a wide
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range of time scales, as measured by the MSR, usually carry information about the

external correlates related to the behavior of the observed animal. By analyzing the

neurons in the mEC and nearby brain regions and the neurons in the ADn and PoS

– areas in the brain that are pertinent to spatial navigation – we showed that the RNs

in these regions have firing behaviors that are selective for spatial location and HD.

Here, we found that in many cases, the neurons that display broad spike distributions

tend to have conjugated representations in that they exhibit high mutual information

with multiple behavioral features. These findings are consistent with those observed

experimentally in Ref. [91] and statistically in Ref. [82].

The fact that the MSR can be used to select informative neurons as well as neurons

that show high decoding performance is consistent with the assumption that the infor-

mation carried by the activity of a given neuron is encapsulated in the long-ranged

statistical patterns of the spike activity. In order to quantify this information, we used

the ideas in Refs. [31, 30] to hypothesize that neurons having such non-trivial tempo-

ral structures, as manifested by broad distributions of the neural firing behavior, are

important to the representations that the brain region encodes. At a given resolution,

as defined in Eq. (5.1), we estimate the complexity of the temporal code by the rele-

vance defined in Eq. (5.2). The latter captures the broadness of the spike frequency

distribution at that resolution. Since natural and dynamic stimuli and behaviors often

operate on multiple time scales, the MSR integrates over different resolution scales,

thus allowing us to spot neurons exhibiting persistent non-trivial spike codes across a

broad range of time scales.

Broad distributions of spike frequencies, characterized by a high MSR, exhibit

a stochastic variablility that requires richer parametric models [31]. In a decoding

perspective, these non-trivial distributions afford a higher degree of distinguishability

of neural responses to a given stimuli or behavior. Indeed, by decoding for either

spatial position or for HD using statistical approaches, we found that the responses of

the RNs allow upstream processing units to efficiently decode the external correlates

just as well as the neurons whose resulting tuning maps contain information about



5.4. DISCUSSION 89

those external correlates.

Finally, we observed that the population of relevant neurons, as identified by the

MSR, is not homogeneous, e.g., the relevant neurons in the mEC data are not com-

posed solely by grid cells and the relevant neurons in the ADn and PoS are not neces-

sarily composed solely of HD cells. Noteworthy, the decoding efficiency of the rele-

vant neurons was observed to be better compared to the ensemble comprising solely

the grid cells. When taken altogether, these observations support the idea that popula-

tion heterogeneity may play a role towards efficient encoding of stimuli [118, 119].

The insistence on broad distributions, on which the MSR relies on, tails with the

fact that biological systems such as the one under study, hardly ever generates well-

sampled datasets of their complex behavior. The dynamical range which the experi-

menter can probe is limited by the size of the dataset and its often far from saturating

biological dynamical ranges. The MSR takes advantage of this feature and identifies

those variables that exhibit a richer variability. This intuition, discussed theoretically

in Refs. [31, 30], has also been used to identify biologically and evolutionary rele-

vant amino acid sites in protein sequences [46]. Indeed, in spite of all advances in

sequencing techniques, the genomes from which we can learn are only those left to us

by evolution. Hence, Ref. [46] show that subsequences that exhibit a wider response

in frequency – as measured by Eq. (5.2) – to evolutionary dynamics contain a wealth

of biologically relevant information. This same strategy can also be used to identify

relevant and hidden (latent) variables in statistical learning (see e.g. Refs. [120, 48]).

In principle, the MSR can be extended to measure the information carried by the

spike time series with respect to known external correlates or features, such as spatial

location and HD. This requires discretizing the feature space (e.g. space) in bins and

computing the number of time with which a neuron fires in each bin. From the dis-

tribution of these counts, one can derive a measure of resolution and relevance, as in

Eqs. (5.1,5.2), and draw a curve as in Fig. 5.2 upon changing the bin size. Like the

MSR discussed here, this MSR would be designed to spot neurons having spike fre-

quencies with non-trivial distributions when projected onto the feature space. In par-
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ticular, grid cells have been shown to exhibit field-to-field variability [109, 121] which

is far from being an artefact of non-uniform spatial sampling. These variabilities offer

grid cells an additional channel for transmission of local spatial information [122] and

thus, has multiple implications including the capacity of grid cells to contain contex-

tual information contrary to the findings in Refs. [123, 124, 125] as well as the remap-

ping of place cells without the need for changing grid cell phases [121]. Although the

application of MSR adapted to space to characterize spatial inhomogeneity of firing

behavior is an interesting avenue of further research, here we limited our analysis to

temporal binning precisely because it is defined in terms of the sole spike activity –

the only information available to upstream neurons – to decode a representation of the

feature space.

The fact that the MSR captures functional information from the temporal code is

a remarkable feat of this measure. This method can then be used as a pre-processing

tool to impose a less stringent criteria compared to those widely used in many studies

(e.g., mean vector length, spatial sparsity and grid scores) thereby directing further

investigation to interesting neurons. The MSR is expected to be particularly useful in

detecting relevant neurons in high-throughput studies where the activity of thousands

of neurons are measured and where the function of these neural ensemble are not

necessarily known a priori.

Whether this measure can also be used to identify functionally relevant neuronal

units recorded through calcium imaging or through fMRI is also an exciting direction

for future studies. Furthermore, while the current application focuses on multiple-

electrode experiments, we also expect MSR to be useful even in single-electrode neu-

ral recordings where, under a given task, an experiment is done multiple times. Since

the variations as captured by the MSR are a possible signature of a neuron under a

particular task or behavior, the MSR can be used to assess whether the electrode was

struck on the right brain region or not. Finally, these same principles used to construct

MSR can also be used to study neural assemblies [126] and to probe on the importance

of correlated firing of neurons in representing external stimuli or behaviors.



6
Conclusions

We live in an age where technological advancements have allowed us to probe the

components of many biological systems simultaneously. From the sequencing of an

organism’s genome to single neuron recordings in different brain regions, these exper-

iments have allowed us to appreciate the complexity of how the natural world around

us operates. However, these advancements have also made us realize how tiny a frac-

tion of Nature we can observe. Alongside these technical progress, an explosion of

machine learning algorithms have allowed for the reconstruction of the underlying

structure in these empirical data. However, the more we have expanded the scope of

what we can observe, the more we have realized that the complexity of natural sys-

tems grow very fast. Because the size of samples that we can collect is much, much

smaller than the dimensionality in which Nature operates, it is crucial to perform ap-

propriate reduction schemes in order to transform the high-dimensional and noisy data

into a low-dimensional representation where the statistics are sufficient to make robust

conclusions. Guiding principles are then needed to reduce the dimensionality of the

problem in ways that minimize the loss of information (in the sense of the data pro-

cessing inequality).

In this thesis, we work around the principle that the information content of a sam-
91
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ple can be quantified by the coding cost, i.e. the number of bits that are needed to code

each datum. Some of these bits convey useful information on the generative process,

some are just noise. Here, we have shown that an upper bound to the number of useful

bits is given by the entropy of the frequency with which different outcomes occur in

the sample, that we call relevance. This allows us to define maximally informative

samples as those that maximize the trade-off between how detailed we wanted to see

our data (i.e., the resolution or coding cost) and how informative the samples are given

this detail (i.e., the relevance). As such, maximizing this information content amounts

to finding representations that are efficient, i.e., the sample is expressed in terms of the

relevant variables.

In order to verify our claims, we then sought to study the properties of samples

that are efficiently represented. To this, we resorted to the minimum description length

principle to find a distribution which compresses a sample efficiently even in the worst-

case scenario when the sample we observe leads to a costly encoding. We show that

the codes that achieve optimal compression in MDL are critical in a very precise sense.

First, when they are taken as generative models of samples, they generate samples with

broad empirical distributions and with an high value of the relevance, defined as the

entropy of the empirical frequencies. Second, MDL codes sit precisely at a second

order phase transition point where the symmetry between the sampled outcomes is

spontaneously broken. The order parameter controlling the phase transition is the

coding cost of the samples. The phase transition is a manifestation of the optimality of

MDL codes, and it arises because codes that achieve a higher compression do not exist.

These results suggest a clear interpretation of the widespread occurrence: statistical

criticality is a consequence of an efficient representation.

Besides the academic interest of such an interpretation of statistical criticality, the

implication of our work on machine learning and data analysis are far reaching because

the proposed measure of relevance can then be used as a guiding principle towards the

search of optimal dimensional reduction schemes or the identification of relevant vari-

ables. Here, we have shown that we can use these principles to characterize how the
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information on the neural response patterns are represented across multiple temporal

resolutions. We found that neurons having low MSR tend to have low mutual infor-

mation and low firing sparsity across the correlates that are believed to be encoded

by the region of the brain where the recordings were made. In addition, neurons with

high MSR contain significant information on spatial navigation and allow to decode

spatial position or head direction as efficiently as those neurons whose firing activity

has high mutual information with the covariate to be decoded.

In all of these discussions, we have assumed that the only information we have is

the empirical distribution of the frequencies with which the information content Ĥ[k]

is measured. In practice, however, one may have other prior information about the

structure of the data. It is then a particularly interesting direction for future research

how the theory discussed in Chapter 3.2 will be modified to incorporate such addi-

tional information on the true distribution p(s). Furthermore, the discussions we have

presented assume independence between observations which never always holds. In-

deed, it would also be of interest how non-stationarity between the data generating

process will modify our current understanding of relevance.

Another particularly interesting direction for future investigation is that of finding

the maximal trade-off between the resolution Ĥ[s] and the relevance Ĥ[k] as a guiding

principle towards dimensionality reduction for inference. Such a method will be a

drastic improvement from the method in Ref. [46] wherein they fix Ĥ[s] by fixing the

size of the subset of variables which maximizes Ĥ[k]. We believe that this approach

will enable us to capture the most relevant variables in a given dataset without the

need for specifying the subsample size. The relevant variables can then be studied

further to understand the underlying mechanisms that drive the dynamics of the system

or explain the variations in the data. However, as it is now, some technical aspects

need to be addressed in order to optimize the algorithm for variable selection through

relevance maximization and make it more accessible for public use. This provides

an exciting avenue for future collaborations in the computer science as well as in the

machine learning community.
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A
Basic Notions

In this chapter, we shall introduce several basic concepts of information theory, coding

theory and large deviations theory that was needed in the preceding chapters. From

the sampling process defined in Chapter 2.1, we shall define entropy – a cope concept

throughout the dissertation. This definition will allow us to build other information

theoretic quantities like the Kullback-Leibler divergence, mutual information and the

data processing inequality.

From the sampling process defined in the previous section, we shall define entropy

– a core concept throughout the dissertation. This definition will allow us to build other

information theoretic quantities like Kullback-Leibler divergence, mutual information

and data processing inequality. We shall also discuss the concept of sufficiency for

parametric models. This will allow us to finally close the section with the maximum

entropy principle.
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A.1 Information theory

A.1.1 Entropy

Consider now the generative process described above which results in drawing the

sample ŝ = (s(1), . . . , s(N)) of N independent observations. In terms of the frequency,

we have {k1, . . . , kS} such that
S∑
s=1

ks = N. (A.1)

Given {k1, . . . , kS}, we want to know how “uncertain” we are about the sample ŝ.

Note that because the sampling procedure is independent, one can have SN possible

outcomes. Hence, one can ask, out of the SN possible outcomes, in how many ways

can we realize the sample ŝ compatible with {k1, . . . , kS}. The answer to this is the

multinomial coeffficient

W =
N !∏
s∈χ ks!

. (A.2)

Notice that when W is large, there are many outcomes of the sampling procedure that

realizes the set of frequencies {k1, . . . , kS}. And thus, intuitively, such samples are

more “uncertain”. Notice also that taking a monotonically increasing function of W

will not affect our intuition of “uncertainty”. Thus, we take logW so that as N →∞,

we immediately have Stirling’s approximation, logN ! ' N logN−N 1, and one finds

that

logW ' −
∑
s∈χ

ks
N

log
ks
N

= Ĥ[s]. (A.3)

In the limit when N →∞ such that ks/N → p(s), then this “uncertainty” is given by

H[s] = −
∑
s∈χ

p(s) log p(s) (A.4)

and H[s] is what we shall call the entropy.

1As it turns out, the choice of the logarithm is intuitive as it corresponds to the minimum number
of true or false questions one can ask to reduce the uncertainty of the sample ŝ. Indeed, we shall see
in Appendix A.2 that the entropy H[s] provides a lower bound to the expected length of the codeword
which efficiently compresses the sample hats.
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As it turns out, the result in Eq. (A.4) is the only function that is consistent with

Shannon’s suggestion towards measuring the “amount of uncertainty” represented by

a discrete probability distribution. In particular, Eq. (A.4) satisfies the following con-

ditions that reflect our intuition about what a reasonable measure of uncertainty would

be:

1. H[s] is a continuous function of the p(s), i.e., we do not want any infinitesimal

changes in p(s) to produce drastic changes in the amount of uncertainty in the

distribution2.

2. If all possible limiting distributions p(s) are equal, i.e., p(s) = 1/N , ∀s ∈ χ,

then H[s] is at a maximum. Furthermore, in this case, H[s] is a monotonically

increasing function of N , i.e., if we increase the number of observations, it is

intuitively acceptable that our uncertainty also increases. And finally,

3. The amount of uncertainty must be independent of the steps by which certainty

may be achieved. That is, instead of giving the limiting distributions directly

to each of the outcomes s ∈ χ, we can group together the outcomes x1 ∈

ξ1 = {1, . . . , n} and x2 ∈ ξ2 = {n + 1, . . . , S} with limiting distributions

p(x1) =
∑n

s=1 p(s) and p(x2) =
∑S

s=n+1 p(s). Given this composition, we

require that the uncertainty in s should be a weighted sum of the uncertainty in

x i.e., H[s] = H[x] + p(x1)H[s|x = 1] + p(x2)H[s|x2] where H[s|xi] is the

conditional entropy given by

H[s|xi] = −
∑
s∈ξi

p(s|xi) log p(s|xi) (A.5)

with p(s|xi) = p(s)/p(xi) being the conditional distribution.

2The continuity condition also implies that when p(s′) = 0 then p(s′) log p(s′) = 0.
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A.1.2 Kullback-Leibler divergence

When one instead approximates the limiting distributions p(s) by another distribution,

say q(s), one can then ask how “far” is p(s) from q(s). This is answered by computing

for the Kullback-Leibler divergence, DKL(p(s)‖q(s)) given by

DKL(p(s)‖q(s)) =
∑
s∈χ

p(s) log
p(s)

q(s)
. (A.6)

Note that the Kullback-Leibler divergence is not a proper distance metric since it is

not symmetric, i.e., DKL(p(s)‖q(s)) 6= DKL(q(s)‖p(s)) and it does not satisfy the

triangle inequality, i.e., DKL(p(s)‖q(s)) � DKL(p(s)‖r(s)) + DKL(r(s)‖q(s)) for

some distribution r(s) defined over s ∈ χ. The only properties that it shares with

distance is that DKL(p(s)|q(s)) ≥ 0 and DKL(p(s)|q(s)) = 0 if p(s) = q(s), ∀s ∈ χ.

Furthermore, the Kullback-Leibler divergence can be applied to any distributions p(s)

and q(s) provided that these distributions are defined over the same finite space.

A.1.3 Mutual information

Suppose now that one draws an observation s ∈ χ from p(s) and another observation

v ∈ V from p(v) with which the limiting joint distribution p(s, v) can be constructed3.

One can then ask whether observing v sheds light into s and vice versa, i.e., if v con-

tains some information about s. This is answered by the mutual information, I(s, v)

between v and s given by

I(s, v) = −
∑

s∈χ,v∈V
p(s, v) log

p(s, v)

p(s)p(v)
. (A.7)

Note that the mutual information I(s, v) is symmetric, i.e., I(s, v) = I(v, s) indicating

that I(s, v) quantifies how certain we are about v if we know s and vice versa. Notice

as well that when v does not contain any information about s, then p(s, v) = p(s)p(v)

3Note that, from probability theory, the joint distribution p(s, v) can be expressed in terms of condi-
tional distributions, i.e., p(s, v) = p(s|v)p(v) = p(v|s)p(s). From here, one can define Bayes’ theorem
p(s|v) = p(v|s)p(s)/p(v).
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indicating that the two observations are independent. Furthermore, notice that the

mutual information I(s, v) takes the form of the Kullback-Leibler divergence in Eq.

(A.6). Hence, the mutual information I(s, v) quantifies how far from independence

are the observations s and v.

A.1.4 Data processing inequality

Let us consider three draws of observations: first, draw x ∈ X from p(x), second,

using x, draw y ∈ Y drawn from p(y|x) and finally, using y, draw z ∈ Z from p(z|y).

This process forms a Markov chain

x→ y → z (A.8)

such that their joint probability distribution can be written as

p(x, y, z) = p(x)p(y|x)p(z|y). (A.9)

This implies the following consequences: (i) x, y, and z form a Markov chain x →

y → z if and only if x and z are conditionally independent given y. Indeed, Marko-

vianity implies the conditional independence since

p(x, z|y) =
p(x, y, z)

p(y)
=
p(x, y)p(z|y)

p(y)
= p(x|y)p(z|y). (A.10)

(ii) This said, x → y → z implies as well that z → y → x. Hence, in some

formulations (e.g., the information bottleneck [51]), the Markov chain is written down

as x ↔ y ↔ z. And finally, (iii) if z = g(y) for any function g, then x → y → z

holds.

Now, given the observations x, y and z, then one can express the mutual informa-

tion (as in Section A.7) in two different ways:

I(x, y, z) = I(x, z) + I(x, y|z) = I(x, y) + I(x, z|y). (A.11)
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However, because x and z are conditionally independent on y, then I(x, z|y) = 0.

Hence, the data processing inequality follows which states that if x→ y → z, then

I(x, y) ≥ I(x, z) (A.12)

where I(x, y) and I(x, z) are the mutual information between x and y, and x and z as

in Eq. (A.7) respectively. This statement still stands if z = g(y), i.e., a function of the

data y cannot increase the information about x. Consequently, the data processing in-

equality states that no clever manipulation of data can normally improve any inference

that can be performed on data.

A.2 Coding theory

A.2.1 Prefix-free codes

In this section, we shall discuss a particular type of code – prefix-free codes – which

allow for efficient compression of messages. Here, we treat the message ŝ as a se-

quence of characters s(i) where, under a given coding strategy, a character s ∈ χ is

mapped onto a codeword C(s) with an alphabel of size D and a length Es in bits.

When comparing two codewords, C1 and C2, we shall index the codeword lengths,

E
(C1)
s and E(C2)

s , to denote the coding cost of s under C1 and C2 respectively. We

shall show that for the prefix-free codes to be uniquely decodable, it needs to satisfy a

property called the Kraft inequality. We shall then use this property to show that the

coding cost, Es, is related to the probability distribution p(s) as

Es = − log p(s) (A.13)

and thus, with E =
∑

s∈ŝEs, gives the coding cost of the sample ŝ in Eq. (4.1).

Prefix-free codes are a set of codewords for which there is no codeword that is the

prefix of another codeword4. In the context of MDL, prefix-free codes are good can-

4In the literature, prefix-free codes are instead called prefix codes. However, we find that “prefix
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didate codes for two reasons: (i) prefix-free codes are non-singular, i.e. the mapping

between a character s and its codeword C(s) is one-to-one, and (ii) prefix-free codes

are uniquely decodable, i.e., the code C(ŝ) = C(s(1))C(s(2))C(s(3)) . . . C(s(N)) is

non-singular. These properties allow prefix-free codes for lossless decoding.
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FIGURE A.1. An illustration of the construction of prefix-free codes from a 2-ary tree. Each
codeword is assigned to a node in the binary tree in such a way that no one of the codewords is the
ancestor of another.

For example, if we take a code C1 (with an alphabel {0, 1} so that D = 2) defined

by C1(a) = 0, C1(b) = 10 and C1(c) = 01, then sending the message ŝ1 = acbaab

corresponds to sending the codeword 001100010 which has E(C1) = 9 bits. However,

the receiver only sees one bit at a time following the sequence. Hence, upon seeing

the 2nd bit, the receiver decodes the message as aa. However, upon seeing the 3rd

and 4th bit, he finds that he has no codeword for 11 and thus, he realizes that he

made a mistake somewhere. This is an example of a lossy decoding and is brought

by the fact that C1(c) is prefixed by C1(a). Instead, if we take a code C2 defined

by C2(a) = 0, C2(b) = 10 and C2(c) = 11, then the same message will have the

codeword ŝ2 = 011100010 which also has E(C2) = 9 bits. However, in this case, the

receiver is able to losslessly decode the message because the code is a prefix code.

code” is a bit misleading as such codes are supposed not to have prefixes in the code.
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A.2.2 Kraft’s inequality

Prefix-free codes can be constructed efficiently which entails that a fundamental con-

straint on the codeword lengths exists. In particular, the Kraft inequality states that the

lengths Es of prefix-free codes must satisfy the inequality

S∑
s=1

D−Es ≤ 1 (A.14)

where D is the alphabel of the code C. Conversely, given a set of codeword lengths

Es which satisfy this inequality, there exists a prefix-free code with these codeword

lengths.

To show this, we consider the codewords {C(1), C(2), . . . , C(S)} with lengths

{E1, E2, . . . , ES} of a prefix-free code which are ordered such that

E1 ≤ E2 ≤ . . . ≤ ES. (A.15)

Now, we can try to construct a prefix-free code in an increasing order as in Eq. (A.15)

and in Fig. A.1. There exists a prefix-free code if and only if at each step s, there is

at least one codeword C(s) to choose that does not contain any of the previous s − 1

codewords as a prefix, i.e., the codeword C(s) must not contain any of the previous

codewords {C(1), C(2), . . . , C(s− 1)} as a prefix. For the codeword s, there are DEs

combinations of codewords possible if there was no prefix constraints. However, the

prefix constraints tell us that DEs−Es−1 codewords are forbidden. Therefore, the total

number of forbidden codewords at s is

s−1∑
i=1

DEs−Ei . (A.16)

There exists a prefix code if and only if we have a codeword to choose at every s ∈

{1, . . . , S}, i.e.,

DEs >
s−1∑
i=1

DEs−Ei , ∀s = 2, 3, . . . , S. (A.17)
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Since every term in the sum above is an integer, then it is equivalent to

DEs ≥
s−1∑
i=1

DEs−Ei + 1 =
s∑
i=1

DEs−Ei ,∀s = 1, 2, . . . , S. (A.18)

And thus, dividing both sides by DEs , we find

S∑
s=1

D−Es ≤ 1.

Notice that every argument in the proof goes both ways. And thus, this proves that the

Kraft inequality is a necessary and sufficient condition for the existence of a prefix-

free code. Interestingly, it turns out that the Kraft inequality must also hold for all

uniquely decodable codes (McMillian inequality).

A.2.3 Correspondence between the coding cost and the probabil-

ity distribution

With Kraft inequality, we now have a fundamental constraint that must be fulfilled to

construct a prefix-free code with an average codeword length given by

〈Es〉 =
S∑
s=1

Esp(s). (A.19)

With this, we are now in a position to to find the optimal codeword length which

involves solving the optimization problem given by

minimizeEs
S∑
s=1

Esp(s) (A.20)

subject to
S∑
s=1

2−Es ≤ 1 (A.21)

Using the method of Lagrange multipliers, the solution reads as

E∗s ≥ − log p(s) (A.22)
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And thus, the expected codelength is lower bounded by the entropy

〈E∗s 〉 =
S∑
s=1

E∗sp(s) ≥ −
S∑
s=1

p(s) log p(s) = H[s] (A.23)

where H[s] is the entropy as defined in Eq. (A.4). Notice that when the optimal codes

are used to compress the data, we saturate the inequality in Eq. (A.22) and we find the

correspondence between coding cost and the probability distribution.

A.3 Large deviations

In this section, we consider the typical properties of the samples that correspond to

large deviations in the fluctuations of the empirical average

Ĝ[s] =
1

N

N∑
i=1

g(s(i)) (A.24)

where g(s(i)) is a function of the observation s(i) such that a typical value is obtained

when the size of the sample is large enough. This means that the law of large numbers

[127] given by

lim
N→∞

P

{∣∣∣∣∣ 1

N

N∑
i=1

g(s(i))− 〈g〉P
∣∣∣∣∣ > ε

}
= 0 (A.25)

where 〈g〉P =
∑

s∈χ sp(s). Here, we shall be interested in typical properties of sam-

ples that correspond to large deviations in Ĝ[s], i.e., when Ĝ[s] = E different from

the typical value. In particular, we want to compute the probability P{Ĝ[s] = E} of

this event. Because the observations s(i) in the sample ŝ take value in a finite set χ,

we can invoke Sanov’s theorem [56] which states that the probability P{Ĥ[s] = E}

is asymptotically given by

P{Ĝ[s] = E} ' e−NDKL(Pβ(ŝ)‖P (ŝ)) (A.26)

where DKL(Q(ŝ)‖P (ŝ)) =
∑

s∈χQ(ŝ) log [Q(ŝ)/P (ŝ)] is the Kullback-Leibler di-

vergence from the sample distribution P (ŝ) to some distribution Q(ŝ) and Pβ(ŝ) is the
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distribution that minimizes DKL(Q(ŝ)‖P (ŝ)) on all Q(ŝ) that satisfy Ĝ[s] = E. This

constrained optimization has the solution given by a “tilted” distribution

Pβ(ŝ) =
P (ŝ)eβNĜ[s]

Z(β)
(A.27)

where

Z(β) =
∑
ŝ

P (ŝ)eβNĜ[s] (A.28)

is a normalization constant and the parameter β = β(E) is adjusted such that E =∑
s∈χ Pβ(ŝ)Ĝ[s]. Notice that when β = 0, then Pβ(ŝ) = P (ŝ) is the “untilted” sam-

ple distribution. Hence, adjusting β allows one to “explore” rare events with large

fluctuations of Ĝ[s].

In limit of infinitesimal δE, one can invoke Gärtner-Ellis theorem [74] with which

the probability P{Ĝ[s] = E} can be expressed in terms of the distribution of E as

P{Ĝ[s] = E} ≈ e−NI(E)δE, where the rate function I(E) (also called the Cramér’s

function) is given by

I(E) = − lim
N→∞

1

N
logP{Ĝ[s] = E} = DKL(Pβ(ŝ)‖P (ŝ)). (A.29)

Hence, with Eq. (A.27), the probability P{Ĝ[s] = E} can be computed as

lim
N→∞

1

N
logP{Ĝ[s] = E} = −βE + φ(β) (A.30)

where φ(β) has the form of the free energy with

∂

∂β
φ(β) = 〈Ĝ[s]〉β = E. (A.31)
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B
Efficient representations exhibit

statistical criticality

B.1 Derivation of Equation (3.24)

In this section, we shall show the calculation of the Kullback-Leibler divergence be-

tween the posterior distribution p(θ|ŝ) and the prior distribution p0(θ) as in Eq. (3.27)

of Chapter 3.4.

Consider the Kullback-Leibler divergence

DKL(p(θ|ŝ)‖p0(θ)) =

∫
dθp(θ|ŝ) log

p(θ|ŝ)
p0(θ)

. (B.1)

Because of Bayes’ theorem, this integral can be cast as

DKL(p(θ|ŝ)‖p0(θ)) =

∫
dθp(θ|ŝ) log

p(ŝ|θ)∫
dθ′p(ŝ|θ′)p0(θ′)

(B.2)

=

∫
dθp(θ|ŝ) log p(ŝ|θ)−

∫
dθp(θ|ŝ) log

[∫
dθ′p(ŝ|θ′)p0(θ′)

]
.

(B.3)
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Notice that the argument inside the logarithm in the second term in Eq. (B.3) does not

depend on the parameter θ. Hence, we start by considering the integral
∫
dθp(ŝ|θ)p0(θ).

For N � 1, the integral is dominated by the point θ = θ̂(ŝ) that maximizes the log-

likelihood log p(ŝ|θ) and it can be computed by a Laplace approximation (or saddle

point method). Performing a Taylor expansion around the maximum likelihood pa-

rameters, θ̂(ŝ), one finds (up to leading orders in N )

log p(ŝ|θ) ' log p(ŝ|θ̂(ŝ))− 1

2

∑
i,j

NLi,j(θ̂)(θi − θ̂i)(θj − θ̂j) + O((θ − θ̂)3).

(B.4)

where, for exponential families, the Hessian of the log-likelihood

Li,j(θ) = −
∑
s∈χ

ks
N

∂2 log p(ŝ|θ)
∂θi∂θj

(B.5)

= −
∑
s∈χ

p(s|θ)∂
2 log p(ŝ|θ)
∂θi∂θj

(B.6)

is independent of the data and it coincides with the Fisher Information matrix [70].

The integral can then be computed by Gaussian integration, as

∫
dθp(ŝ|θ)p0(θ) ' p(ŝ|θ̂(ŝ))p0(θ̂(ŝ))

∫
dθe−

N
2

∑
i,j L̂ij(θi−θ̂i)(θj−θ̂j) (B.7)

= p(ŝ|θ̂(ŝ))p0(θ̂(ŝ))

(
2π

N

) k
2 1√

detL(θ̂)

. (B.8)

where k is the number of parameters.

Notice that the likelihood p(ŝ|θ) is normally distributed with a mean centered at

the maximum likelihood estimator θ̂(ŝ) and variance L(θ̂)−1/N . Also, the likelihood

distribution scales with the sample size while the prior distribution does not. Thus,

when we have a reasonable amount of data, i.e., N � 1, the likelihood distribution

becomes more and more significant and consequently, will outweigh the prior dis-

tribution. Hence, the posterior distribution p(ŝ|θ) will be normally distributed as the

likelihood distribution. Using a well-known result about the exponent of a multivariate
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normal distribution that (see also page 127 of Ref. [128])

∫
dθ

[
−1

2

∑
i,j

NLi,j(θ̂)(θi − θ̂i)(θj − θ̂j)
]
p(θ|ŝ) = −k

2
, (B.9)

we find that the first term in Eq. (B.3) can be evaluated as

∫
dθp(θ|ŝ) log p(ŝ|θ) ' log p(ŝ|θ̂(ŝ))− k

2
. (B.10)

Thus, putting everything together, we find that

DKL (p(θ|ŝ)‖p0(θ)) ' k

2
log

N

2π
− log p0(θ̂) +

1

2
log det L̂(θ̂) + O(1/N)

as shown in Eq. (3.27) of Chapter 3.4. If we take the prior distribution p0(θ) to

be the Jeffreys prior, i.e., p0(θ) = N
√

detL(θ) where N is a normalization con-

stant, then it can easily be seen that, for N � 1, the Kullback-Leibler divergence

DKL (p(θ|ŝ)‖p0(θ)) attains a maximum value.
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C
Distribution that minimize description

lengths are critical

C.1 Derivation for the parametric complexity

In order to compute the parametric complexity, given in Eq. (4.4), let us consider

the integral
∫
dθf(ŝ|θ)g(θ) for a generic function g(θ). For N � 1, the integral is

dominated by the point θ = θ̂(ŝ) that maximizes log f(ŝ|θ), and it can be computed

by the saddle point method. Performing a Taylor expansion around the maximum

likelihood parameters, θ̂(ŝ), one finds (up to leading orders in N )

log f(ŝ|θ) = log f(ŝ|θ̂(ŝ))− 1

2

∑
i,j

N(θi − θ̂i)Li,j(θ̂)(θj − θ̂j) + O((θ − θ̂)3).

(C.1)

where
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Li,j(θ̂) = − 1

N

∂2 log f(ŝ|θ)
∂θi∂θj

(C.2)

= −
∑
s∈χ

ks
N

∂2 log f(s|θ)
∂θi∂θj

. (C.3)

Note that for exponential families, the Hessian of the log-likelihood is independent of

the data, and hence it coincides with the Fisher Information matrix [70]

Li,j(θ) = −
∑
s∈χ

f(s|θ)∂
2 log f(s|θ)
∂θi∂θj

. (C.4)

The integral can then be computed by Gaussian integration, as

∫
dθf(ŝ|θ)g(θ) ' f(ŝ|θ̂(ŝ))g(θ̂(ŝ))

∫
dθe−

N
2

∑
i,j(θi−θ̂i)Lij(θ̂)(θj−θ̂j) (C.5)

= f(ŝ|θ̂(ŝ))g(θ̂(ŝ))

(
2π

N

) k
2 1√

detL(θ̂)

. (C.6)

where k is the number of free parameters. If we choose g(θ) to be

g(θ) =

(
N

2π

) k
2 √

detL(θ) (C.7)

and take a sum over all samples ŝ on both sides of Eq. (C.5), Eq. (C.6) becomes

∑
ŝ

f(ŝ|θ̂(ŝ)) '
∑
ŝ

(
N

2π

) k
2
∫
dθf(ŝ|θ)

√
detL(θ) (C.8)

=

(
N

2π

) k
2
∫ √

detL(θ)dθ. (C.9)

Hence, the parametric complexity, R̄ = log
∑

ŝ f(ŝ|θ̂(ŝ)), is asymptotically given by

Eq. (4.5) when N � 1.

Notice also that P̄ (ŝ) induces a distribution over the space of parameters θ. With
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the choice

g(θ) =

(
N

2π

) k
2 √

detL(θ)δ(θ − θ0), (C.10)

the same procedure as above shows that

∑
ŝ

P̄ (ŝ)δ
(
θ̂(ŝ)− θ0

)
= e−R̄

∑
ŝ

f(ŝ|θ̂(ŝ))δ
(
θ̂(ŝ)− θ0

)
(C.11)

= e−R̄
(
N

2π

) k
2 √

det I(θ0) (C.12)

=

√
detL(θ0)∫

dθ
√

detL(θ)
(C.13)

which is the Jeffreys prior.

The choice of the Jeffreys prior can be motivated in the following manner. We

have noted earlier that the maximum likelihood distribution, f(ŝ|θ̂(ŝ)), depends on

the sample, ŝ. Hence, each sample represents a point in the space of probability dis-

tributions parametrized by θ. When the number of observations, N , is finite, one

cannot rule out the possibility that two distributions, f(ŝ|θ̂(ŝ)) and f(ŝ|θ̂′(ŝ)), can be

distinguished from one another. By distinguishability, we mean that the Kullback-

Leibler divergence, DKL(θ||θ′) = 〈log f(ŝ|θ)
f(ŝ|θ′)〉θ is less than a given threshold i.e.,

DKL(θ||θ′) ≤ − log ε
N

. This condition implies that one can count the number of distri-

butions that are indistinguishable from f(ŝ|θ) given a finite number of observations,

N , and was found to be [70]

Vε,N(θ) =

(
−2π log ε

N

) k
2 1

Γ
(
k
2

+ 1
)√

detL(θ)
(C.14)

where, as before, k is the dimensionality of the model, f(ŝ|θ), and I(θ) is the Fisher

information matrix. In effect, the space of probability distributions parametrized by

θ can be partitioned into n regions wherein the Fisher information, L(θ) remains a

constant. Thus, the prior distribution over the ith partition with a volume Ui will be
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ρi =

Ui
V (θi)∑n
j=1

Uj
V (θj)

=
Ui
√

detL(θi)∑n
i=1 Uj

√
detL(θj)

. (C.15)

Hence, in the continuum limit where N → infty such that n→∞, then we have

ρ(θ) =
dθ
√

detL(θ)∫
dθ
√

detL(θ)
(C.16)

which is the Jeffreys prior.

C.2 Calculating the parametric complexity

In this section, we calculate the parametric complexity for the Dirichlet model for

ρ� 1 and the paramagnetic Ising model.

C.2.1 Dirichlet model

In the regime where ρ� 1 and k large such that we can employ Stirling’s approxima-

tion, k! =
√

2πkkke−k, the normalization can be calculated as

∞∑
k=0

kke−ke−z
∗(ρ)k

k!
≈

∞∑
k=0

e−z
∗(ρ)k

√
2πk

(C.17)

=

∫ ∞
0

e−z
∗(ρ)kdk√
2πk

(C.18)

=
1√
2π

√
π

z∗(ρ)
(C.19)

=
1√

2z∗(ρ)
. (C.20)

Similarly, we can also calculate
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∞∑
k=0

kk+1e−ke−z
∗(ρ)k

k!
≈

∞∑
k=0

ke−z
∗(ρ)k

√
2πk

(C.21)

=

∫ ∞
0

√
k

2π
e−z

∗(ρ)kdk (C.22)

=
1√
2π

√
π

2(z∗(ρ))
3
2

(C.23)

=
1

(2z∗(ρ))
3
2

(C.24)

and thus, the saddle point value z∗ can now be evaluated as

z∗(ρ) ' 1

2ρ
. (C.25)

Also, the variance 〈k2〉z∗ − 〈k〉2z∗ can be calculated along the similar lines where

∞∑
k=0

kk+2e−ke−z
∗(ρ)k

k!
≈

∞∑
k=0

k2e−z
∗(ρ)k

√
2πk

(C.26)

=

∫ ∞
0

√
k3

2π
e−z

∗(ρ)kdk (C.27)

=
3√
2π

√
π

2(z∗(ρ))
5
2

(C.28)

=
3

(2z∗(ρ))
5
2

(C.29)

and thus, one finds that

〈k2〉z∗ − 〈k〉2z∗ = 2ρ2. (C.30)

In the same regime, given the determinant det I(θ) of the Fisher information matrix

for the Dirichlet model,

detL(θ) =
∏
s∈χ

1

θs
, (C.31)

the parametric complexity can be approximated as
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eR̄ '
(
N

2π

)(S−1)/2 ∫
dθ
√

detL(θ) (C.32)

=

(
N

2π

)(S−1)/2 Γ(1
2
)S

Γ(S
2
)

(C.33)

' e
S
2

(1+log ρ)

√
2ρ

(C.34)

which, together with Eq. (4.16) and Eq. (C.30), implies that Φ(z∗(ρ)) = 1
2
(1 + log ρ).

C.2.2 Paramagnet model

The parametric complexity for the paramagnetic Ising model, given P̄ (m) in Eq.

(4.30), is given by

eR̄ =
N∑

M=−N

(
N

N−M
2

)
e[M tanh−1(M/N)−N log(2 cosh(tanh−1(M/N)))]. (C.35)

where M = −N,−N + 2, . . . , N − 2, N runs on N + 1 values. When N � 1, the

magnetization, m = M/N , can be treated as a continuous variable and consequently,

the sum can be approximated as an integral:
∑

M . . . ' N
2

∫ 1

−1
dm . . .. Hence, by

using the identities tanh−1(m) = 1
2

log 1+m
1−m , cosh

(
tanh−1(m)

)
= 1√

1−m2 and K! '

KKe−K
√

2πK, one finds that

eR̄ ' N

2

∫ 1

−1

1√
2πN(1−m2)

(C.36)

=

√
πN

2
. (C.37)

C.3 Simulation details

C.3.1 Sampling universal codes through Markov chain Monte Carlo

Unlike the Dirichlet model and the independent spin model, analytic calculations for

the Sherrington-Kirkpatrick (SK) model and the restricted Boltzmann machine (RBM)
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are generally not possible, because the partition function Z, and consequently, the UC

partition function eR̄ , is computationally intractable. In order to sample the NML for

these graphical models, we turn to a Markov chain Monte Carlo (MCMC) approach in

which the transition probability, P (ŝ→ ŝ′), can be built using the following heuristics:

1. Starting from the sample, ŝ, we calculate the maximum likelihood estimates,

θ̂(ŝ), of the parameters of the model, p(ŝ|θ) by either solving Eq. (4.37) for

the SK model or by Contrastive Divergence (CDκ) [72, 73] for the RBM (see

Appendix C.3.2).

2. We generate a new sample, ŝ′ from ŝ by flipping a spin in randomly selected

r points s(i) of the sample. The number of selected spins, r, must be chosen

carefully such that r must be large enough to ensure faster mixing but small

enough so the new inferred model, p(ŝ′|θ), is not too far from the starting model,

p(ŝ|θ).

3. The maximum likelihood estimators, θ̂(ŝ′) for the new sample are calculated as

in Step 1.

4. Compute

∆E = log p(ŝ′|θ̂(ŝ′))− log p(ŝ|θ̂(ŝ)) (C.38)

and accept the move ŝ→ ŝ′ with probability min
(
eN∆E, 1

)
.

C.3.2 Estimating RBM parameters through Contrastive Divergence

Given a sample, v̂ = (v(1), . . . ,v(N)), of N observations, the log-likelihood for the

restricted Boltzmann machine (RBM) is given by

logL(θ) =
N∑
k=1

log
∑
h

P (v(k),h|θ). (C.39)
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The inference of the parameters, θ, proceeds by updating θ such that the log-likelihood,

logL(θ), is maximized. This updating formulation for the parameters is given by

∆θ =
ε

N

∂ logL(θ)

∂θ
(C.40)

where ε is the learning rate parameter. The corresponding gradients for the parameters,

w, a and b can then be written down respectively as

∂ logL(θ)

∂wij
=

N∑
k=1

[∑
h

v
(k)
i hjP (v(k),h|θ)−

∑
v

∑
h

vihjP (v,h|θ)

]
(C.41)

∂ logL(θ)

∂ai
=

N∑
k=1

[∑
h

v
(k)
i P (v(k),h|θ)−

∑
v

∑
h

viP (v,h|θ)

]
(C.42)

∂ logL(θ)

∂bj
=

N∑
k=1

[∑
h

hjP (v(k),h|θ)−
∑
v

∑
h

hjP (v,h|θ)

]
(C.43)

where the first terms denote averages over the data distribution while the second terms

denote averages over the model distribution.

Here, we use the contrastive divergence (CD) approach which is a variation of

the steepest gradient descent of L(θ). Instead of performing the integration over the

model distribution, CD approximates the partition function by averaging over distri-

bution obtained after taking κ Gibbs sampling steps away from the data distribution.

To do this, we exploit the factorizability of the conditional distributions of the

RBM. In particular, the conditional probability for the forward propagation (i.e., sam-

pling the hidden variables given the visible variables) from v to hj reads as

P (hj = 1|v,θ) =
1

1 + exp (−bj −
∑

i viwij)
. (C.44)

Similarly, the conditional probability for the backward propagation (i.e., sampling the

visible variables from the hidden variables) from h to vi reads as

P (vi = 1|h,θ) =
1

1 + exp
(
−ai −

∑
j hjwij

) . (C.45)



C.3. SIMULATION DETAILS 129

The Gibbs sampling is done by propagating a sample, v(k) = v(k)(0), forward and

backward κ times: v(k)(0)→ h(k)(0)→ v(k)(1)→ . . .→ h(k)(κ− 1)→ v(k)(κ)→

h(k)(κ). And thus, the Gibbs sampling approximates the gradient in Eq. (C.41) as

∂ logL(θ)

∂wij
=

N∑
k=1

[
v

(k)
i (0)h

(k)
j (0)− v(k)

i (κ)h
(k)
j (κ)

]
. (C.46)

In the CD approach, each parameter update for a batch is called an epoch. While

larger κ approximates well the partition function, it also induces an additional com-

putational cost. To find the global minimum more efficiently, we randomly divided

the samples into groups of mini-batches. This approach introduces stochasticity and

consequently reduce the likelihood of the learning algorithm to be confined in a local

minima. However, a mini-batch approach can result to data-biased sampling. To cir-

cumvent this issue, we adopted the Persistent CD (PCD) algorithm where the Gibbs

sampling extends to several epochs, each using different mini-batches. In the PCD

approach, the initial visible variable configuration, v(k)(0), was set to random for the

first mini-batch, but the final configurations, (v(k)(κ),h(k)(κ)), of the current batches

become the initial configuration for the next mini-batches. In this paper, we performed

Gibbs sampling at κ = 10 steps where we update the parameters, θ, are updated at

2500 epochs at a rate ε = 0.01 with 200 mini-batches per epochs. For other details

regarding inference of parameters of the RBM, we refer the reader to Refs. [72, 73].

C.3.3 Source codes

All the calculations in this manuscript were done using personalized scripts written in

Python 3. The source codes are accessible online1.

1https://github.com/rcubero/UniversalCodes
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D
Finding relevant neurons in the brain

using MultiScale Relevance (MSR)

D.1 Materials and methods

D.1.1 Data Collection

The data used in this study are recordings from rodents with multisite tetrode implants.

These neurons are of particular interest because they are involved in spatial navigation.

Data from medial entorhinal cortex (mEC)

The spike times of 65 neurons recorded across the mEC area of a male Long Evans

rat (Rat 14147) were taken in Ref. [79]. The rat was allowed to freely explore a

box of dimension 150 × 150 cm2 for a duration of around 20 mins. The positions

were tracked using a platform attached to the head with red and green diodes fixed at

both ends. Additional details about the data acquisition can be found in the paper in

Ref. [79].
131
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Data from the anterodorsal thalamic nucleus (ADn) and post-subiculum (PoS)

The spike times of 746 neurons recorded from multiple areas in the ADn and PoS

across multiple sessions in six free moving mice (Mouse 12, Mouse 17, Mouse 20,

Mouse 24, Mouse 25 and Mouse 28) while they freely foraged for food across an

open environment with dimensions 53 × 46 cm2 and in their home cages during sleep

were taken from [117]. Mouse 12, Mouse 17 and Mouse 20 only had recordings in

the ADn while Mouse 24, Mouse 25 and Mouse 28 had simultaneous recordings from

ADn and PoS. The positions were tracked using a platform attached to the heads of the

mice with red and blue diodes fixed at both ends. Only the recorded spike times during

awake sessions and the neural units with at least 100 observed spikes were considered

in this study. Additional information regarding the data acquisition can be found in

the paper in Ref. [80] and the CRCNS1 database entry in [117].

D.1.2 Position and speed filtering

The position time series for the mEC data were smoothed to reduce jitter using a low-

pass Hann window FIR filter with cutoff frequency of 2.0 Hz and kernel support of 13

taps (approximately 0.5 s) and were then renormalized to fill missing bins within the

kernel duration as done in Ref. [109]. The rat’s position was taken to be the average

of the recorded and filtered positions of the two tracked diodes. The head direction

was calculated as the angle of the perpendicular bisector of the line connecting the

two diodes using the filtered positions. The speed at each time point was computed

by dividing the trajectory length with the elapsed time within a 13-time point window.

When calculating for spatial firing rate maps and spatial information (see below), only

time points where the rat was running faster than 5 cm/s were considered. No speed

filters were imposed when calculating for head directional tuning curves and head di-

rectional information. On the other hand, no position smoothing nor speed filtering

were performed when calculating for the spatial firing rate maps and spatial informa-

tion for the ADn and PoS data.
1https://crcns.org
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D.1.3 Rate maps

The spike location, ξ(i)
j , of neuron i at a spike time t(i)j was calculated by linearly

interpolating the filtered position time series at the spike time. As done in Ref. [109],

the spatial firing rate map at position x = (x, y) was calculated as the ratio of the

kernel density estimates of the spatial spike frequency and the spatial occupancy, both

binned using 3 cm square bins, as

f(x) =

∑M
j=1 K(x|ξj)∑M

j=1 ∆tjK(x|xj)
(D.1)

where a triweight kernel

K(x|ξ) =
4

9πσ2
K

[
1− ‖x− ξ‖

2

9σ2
K

]3

, ‖x− ξ‖ < 3σK (D.2)

with bandwidth σK = 4.2 cm was used. In place of a triweight kernel, a Gaussian

smoothing kernel with σG = 4.0 truncated at 4σG was also used to estimate the rate

maps which gave qualitatively similar results. For better visualization, a Gaussian

smoothing kernel with σG = 8.0 was used to filter the spatial firing rate map.

On the other hand, for head direction tuning curves, the angles were binned using

9◦ bins. The tuning curve was then calculated as the ratio of the head direction spike

frequency and the head direction occupancy without any smoothing kernels as the

head direction bins are sampled well-enough. For better visualization, a Gaussian

kernel with smoothing window of 20◦ was used to filter the tuning curves.

D.1.4 Information, Sparsity and other Scores

Given a feature, φ (e.g., spatial position, x, head direction, θ or speed, v), the infor-

mation between the neural spiking s and the feature can be calculated á la Skaggs-

McNaughton [110]. In particular, under the assumption of a non-homogeneous Pois-

son process with feature dependent rates, λ(φ), under small time intervals ∆t, the

amount of information, in bits per second, that can be decoded from the rate maps is
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given by

I(s, φ) =
∑
φ

p(φ)
λ(φ)

λ̄
log

λ(φ)

λ̄
(D.3)

where λ(φ) is the firing rate at φ, p(φ) is the probability of occupying φ and

λ̄ ≡
∑
φ

λ(φ)p(φ) (D.4)

is the average firing rate. To account for the bias due to finite samples, the informa-

tion of a randomized spike frequency was calculated using a bootstrapping procedure.

To this end, the spikes were randomly shuffled 1000 times and the information for

each shuffled spikes was calculated. The average randomized information was then

subtracted from the non-randomized information.

Apart from the information, one of the measures that are used to quantify selectiv-

ity of neural firing to a given feature is the firing sparsity [112] which can be calculated

using

spφ = 1−

(∑
φ λ(φ)p(φ)

)2∑
φ λ(φ)2p(φ)

. (D.5)

Apart from the measures of information and sparsity, we also calculated the grid

scores, g, for the neurons in the mEC data. The grid score is designed to quantify

the hexagonality of the spatial firing rate maps through the spatial autocorrelation

maps (or autocorrelograms) and was first used in Ref. [91] to identify putative grid

cells. In brief, the grid score is computed from the spatial autocorrelogram where each

element ρij is the Pearson’s correlation of overlapping regions between the spatial

firing rate map shifted i bins in the horizontal axis and j bins in the vertical axis

and the unshifted rate map. The angular Pearson autocorrelation, acorr(u), of the

spatial autocorrelogram was then calculated using spatial bins within a radius u from

the center at lags (or rotations) of 30◦, 60◦, 90◦, 120◦ and 150◦, as well as the ±3◦

and ±6◦ offsets from these angles to account for sheared grid fields [93]. As done in
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Ref. [109], the grid score, g(u), for a fixed radius of u, is computed as

g(u) =
1

2
[max{acorr(u) at 60◦ ± (0◦, 3◦, 6◦)+

max{acorr(u) at 120◦ ± (0◦, 3◦, 6◦)]

− 1

3
[min{acorr(u) at 30◦ ± (0◦, 3◦, 6◦)+

min{acorr(u) at 90◦ ± (0◦, 3◦, 6◦)+

min{acorr(u) at 150◦ ± (0◦, 3◦, 6◦)] . (D.6)

The final grid score, g, is then taken as the maximal grid score, g(u), within the interval

u ∈ [12 cm, 75 cm] in intervals of 3 cm.

Another quantity that was calculated in this paper is the Rayleigh mean vector

length, R. Given the angles {θ1, . . . , θM} where a neuronal spike was recorded, the

mean vector length can be calculated as

R =

√√√√( 1

M

M∑
i=1

cos θi

)2

+

(
1

M

M∑
i=1

sin θi

)2

. (D.7)

Note that for head direction cells where the neuron fires at a specific head direction, the

angles will be mostly concentrated along the preferred head direction, θc, and hence,

R ≈ 1 whereas for neurons with no preferred direction, R ≈ 0.

D.1.5 Resampling the firing rate map

The calculated rate maps and the real animal trajectory were used to resample the

neural activity assuming non-homogeneous Poisson spiking statistics with rates taken

from the rate maps. To this end, the real trajectory of the rat was divided into ∆t = 1

ms bins. The position and head direction were linearly interpolated from the filtered

positions described above. The target firing rate, fj in bin j was then calculated by

evaluating the tuning profile at the interpolated position or head direction. When-

ever the target firing rate was modulated by both the position and head direction, we

assumed that the contribution due to each feature was multiplicative and thus, fj is
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calculated as the product of the tuning profiles at the interpolated position and the

interpolated head direction. A Bernoulli trial was then performed in each bin with a

success probability given by fj∆t.

D.1.6 Statistical decoding

For positional decoding, we divided the space in a grid of 20 × 20 cells of 7.5 cm

× 7.5 cm spatial resolution, which was comparable to the rat’s body length. Time was

also discretized into 20 ms bins which ensured that for most of the time (i.e. in 92% of

the cases), the rat was located within a single spatial cell. Under these time scales, the

responses of a neuron can be regarded as being drawn from a binomial distribution,

i.e., either the neuron i is active (s(i)
j = 1) or not (s(i)

j = 0) between (j − 1)∆t and

j∆t. The likelihood of the neural responses, sj = (s
(1)
j , . . . , s

(N)
j ) of N independent

neurons at a given time conditioned on the position, xj is then given by

p(sj|xj) =
N∏
i=1

(λ(i)(xj)∆t)
s
(i)
j (1− λ(i)(xj)∆t)

1−s(i)j (D.8)

where λ(i)(xj) is the firing rate of neuron i at xj . Given the prior distribution on

the position, p(xj), which is estimated from the data, the posterior distribution of the

position, xj , given the neural responses, sj at time t is given by

p(xj|sj) =
p(sj|xj)p(xj)

p(sj)
. (D.9)

The decoded position, as in the Bayesian 1-step decoding in Ref. [129], was calculated

as

x̂j = arg max
xj

p(sj|xj)p(xj). (D.10)

For head directional decoding, on the other hand, we divided the angles, θ ∈

[0, 2π) in 9◦ bins. For this case, time was instead discretized into 100 ms bins. Under

these time scales, the neurons could not be regarded simply as either active or not.

Hence, it was natural to switch towards the analysis of population vectors, nj , a vector
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which represents the number of spikes, n(i)
j , recorded from each neuron within the j th

time bin, to decode for the head direction. In this case, the number of spikes, n(i)
j , that

neuron i discharges between (j−1)∆t and j∆t can be modeled as a non-homogeneous

Poisson distribution

p(n
(i)
j |θj) =

λ(i)(θj)
n
(i)
j

n
(i)
j !

exp(−λ(i)(θj)) (D.11)

and thus, under the independent neuron assumption, p(nj|θj) =
∏N

i=1 p(n
(i)
j |θj). The

decoded head direction can then be calculated as

θ̂j = arg max
θj

p(nj|θj)p(θj). (D.12)

where p(θj) is the head directional prior distribution which is estimated from the data.

Note that in all of the decoding procedures, we only decoded for time points with

which at least one neuron was active.

D.1.7 Source codes

All the calculations in this manuscript were done using personalized scripts written in

Python 3. The source codes for calculating multiscale relevance (which is also com-

patible with Python 2) and for reproducing the figures in the main text are accessible

online2.

D.2 Relation between MSR and other measures of tem-

poral structure

Characterizing the neural spiking can be done by studying the distribution of the time

intervals between two succeeding spikes, known in literature as the interspike interval

(ISI) distribution which allows us to see whether a neuron fires in bursts [101, 99].

2https://github.com/rcubero/MSR
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Note that given the time stamps of neural activity {t1, . . . , tM}, the interspike interval

is given by {τ1, . . . , τM−1} where τi = ti+1 − ti. Because the multiscale relevance

(MSR) is built to separate relevant neurons from the irrelevant ones through their tem-

poral structures in the neural spiking, we wanted to assess how the proposed measure

scales with the characteristics that give structure to temporal events. In the context

of the temporal activity of a neuron, a feature of the relevance measure, H[K] is that

highly regular, equally-spaced ISI are attributed with a low measure. On the other

hand, ISI that follow broad, non-trivial distributions are attributed with a high rele-

vance measure. Hence, we expected that the relevance measure, and therefore the

MSR, captures non-trivial bursty patterns of neurons.

To study how MSR behaves with respect to the characteristics of ISI, we consid-

ered a stretched exponential distribution

P u
SE(τ) =

u

τ0

[
τ

τ0

]u−1

exp

[
−
(
τ

τ0

)u]
(D.13)

with which the parameter u allows us to define the broadness of underlying distribution

and τ0 is the characteristic time constant of the random event. For Poisson processes,

the ISI follow an exponential distribution corresponding to u = 1 in Eq. (D.13). For

u < 1, the ISI distribution becomes broad and tends to a power law distribution with

an exponent of −1 in the limit when u → 0. On the other hand, for u > 1, the

distribution becomes narrower and tends to a Dirac delta function in the limit when

u→∞.

Upon fixing the parameters u and τ0 which fixes the stretched exponential distri-

bution in Eq. (D.13), random ISI, τi, could then be sampled independently from Eq.

(D.13) so as to generate a time series of 100,000 time units. The MSRs of each time

series could then be calculated using the methods described in the main text (Section

2).

To characterize the temporal structures of both the simulated data and neural data,

we adapted the measures of bursty-ness and memory of Goh and Barabasi [104].
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While the bursty-ness coefficient, b defined as

b =
στ − µτ
στ + µτ

, (D.14)

measures the broadness of the underlying ISI distribution with µτ and στ as the mean

and standard deviations of the ISI respectively, the memory coefficient, m defined as

m =
1

M − 2

M−2∑
j=1

(τj − µτ )(τj+1 − µτ )
σ2
τ

, (D.15)

measures the short-time correlation between events.

For the stretched exponential distribution in Eq. (D.13), the mean and standard

deviations could be computed as

µτ = τ0Γ

(
u+ 1

u

)
(D.16)

and

στ = τ0

√
Γ

(
u+ 2

u

)
− Γ

(
u+ 1

u

)2

(D.17)

where Γ(x) ≡ (x − 1)! is the gamma function. With these closed-form relationships,

we could now study the limiting properties of the burstiness and memory coefficients.

For Poisson processes, the mean, µτ , and standard deviation, στ , coincide, i.e. µτ =

στ = τ0, and thus with Eq. (D.14), give b = 0. For broad distributions, u < 1 in Eq.

(D.13), στ > µτ which gives b > 0 and tends to approach b → 1 in the limit u → 0.

On the other hand, for narrow distributions, u > 1 in Eq. (D.13), στ < µτ resulting to

b < 0 and tends to b → −1 in the limit u → ∞. Hence, the bursty-ness parameter, b,

is a bounded parameter, i.e., b ∈ [−1, 1].

For the synthetic datasets, note that fixing the parameter u automatically fixes the

bursty-ness coefficient, b. However, because the synthetic ISI are sampled indepen-

dently, the memory coefficient, m, is approximately zero. Short-term memory can

then be introduced by first sorting the ISI in decreasing (or increasing) order which

results to m ≈ 1. Randomly shuffling a subset of the ordered ISI (100 events at a time
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in this case) results to a monotonic decrease of m. In the limit of infinite data, the

memory coefficient is bounded by [−1, 1]. These bounds may no longer hold in the

case of limited data. Despite this, a positive memory coefficient indicates that a short

(long) ISI between events tends to be followed by another short (long) interval and a

negative memory coefficient indicates that a short (long) ISI between events tends to

be followed by a long (short) interval.
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FIGURE D.1. Synthetically-generated neural data reveals relationship of the MSR and of the
coefficient of local variation, LV , with the bursty-ness and memory coefficients. Interevent times
were drawn from a stretched exponential distribution to simulate random events up to 100,000 time
units where short-term memory effects were introduced through a shuffling procedure and the number
of random events, M , were varied by modifying the characteristic time constant, τ0. Scatter plots show
how the multiscale relevance (MSR) scales with the bursty-ness coefficient, b (panel a), the memory
coefficient, m (panel b), and logM (panel c). In panel b, random events were drawn from a stretched
exponential distribution with u = 1.0 while in panel c, the parameter u was set to 0.3. Panels d, e and
f, on the other hand, show the relationship between LV and bursty-ness coefficient, memory coefficient
and logM respectively. The results for 100 realizations of such random events are shown. Notice, in c
and f, that both the MSR and the LV are sensitive to the number of spiking events.

With this, we found that the MSR increased with bursty-ness and memory for the

synthetically generated dataset as seen in Fig. D.1a and b. We also sought to char-

acterize the relationship between the number of events, M , with the MSR which can

be addressed by changing the characteristic time constant, τ0, in Eq. (D.13) wherein

decreasing τ0 leads to more events and thus, increased logM . We found that MSR

decreased with logM as seen in Fig. D.1c. This result is indicative that MSR of

randomly generated events can be explained by logM .
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Since the MSR is constructed as a measure of dynamical variablity, we compared

our results on synthetically generated datasets with the coefficient of local variation,

LV , [84, 85, 98] defined as

LV =
1

M − 1

M−1∑
j=1

3 (τj − τj+1)2

(τj + τj+1)2 (D.18)

where the factor 3 in the summand was taken such that, for a Poisson process, LV = 1.

With this, we found that the LV increases with increasing bursty-ness coefficient, b,

indicating that power law ISI distributions lead to highly locally variating spiking

events. Also, we found that the LV decreases with increasing short-term memory, m.

Finally, like the MSR, we also found a dependence of the LV with the logM .

Following the results on synthetic data, we also analyzed temporal characteristics

in real neural dataset. In the case of neurons in the mEC data, we also found that MSR

decreased with the logarithm of the number of observed spikes, logM , as shown in

Fig. D.1b. To determine how much of the calculated MSRs can be explained by

the number of observed spikes, M , we linearly regressed MSR with logM shown as

the dashed line in Fig. D.2b. Residuals were then calculated as the deviation of the

calculated MSR from the regression line and thus, captures the amount of MSR that

cannot be explained by logM alone. We showed in Fig. D.2c and d that the MSR

for real dataset still contained information going beyond logM as the residual MSRs

(with respect to logM ) still retained the dependence with spatial and HD information

as already observed in the main text (Fig. 2). We also observed a positive correlation

between MSR and LV . However, through residual analysis, we found that the residual

MSRs (with respect to LV ) still contained spatial and HD information as seen in Fig.

D.2f and g.
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FIGURE D.2. The MSR is a robust measure and contains information beyond what the number of
spikes and local variations can explain. For each neuron, the MSR was calculated using only the first
half and only the second half of the data (panel a). The scatter plot reports the two results. The linearity
of the relationship between the two sets of partial data is quantified by the Pearson correlation ρp along
with its P -value. The black dashed line indicates the linear fit. For the neurons in the mEC dataset, the
MSR was linearly regressed with logM (panel b). The residual MSR, defined as the deviation of the
MSR from the black regression line, were then correlated against spatial (panel c) and HD (panel d)
information. The MSR was also linearly regressed with the coefficient of local variation, LV (panel e).
The residual MSRs were then correlated against spatial (panel f) and HD (panel g) information.
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FIGURE D.3. Local variations in the interspike intervals can capture spatial and HD information
but not decodable spatial information. A scatter plot of the coefficient of local variation LV vs. the
spatial (HD) information is shown in a (b). The shapes of the scatter points indicate the identity of
the neuron according to Ref. [79]. The linearity and monotonicity of the multiscale relevance and the
information measures were assessed by the Pearson’s correlation, ρp, and the Spearman’s correlation,
ρs, respectively. The 20 top and bottom locally variating neurons (LVNs) were then used to decode
position (See Main Text Section 5.6). Panel c shows the cumulative distribution of the decoding error,
‖X̂−Xtrue‖, for the RNs (solid violet squares) and LVNs (solid green circles) neurons as well as for the
non-RNs (dashed violet squares) and non-LVNs (dashed green circles). In all the decoding procedures,
time points where all the neurons in the ensemble was silent were discarded in the decoding process.
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spx = 0.773
g = 0.123
max: 5.2 Hz
min: 0.0 Hz

Neuron 47
spx = 0.599
g = -0.002
max: 11.4 Hz
min: 0.0 Hz

Neuron 3
spx = 0.747
g = 0.004
max: 6.6 Hz
min: 0.0 Hz

Neuron 35
spx = 0.646
g = -0.015
max: 11.5 Hz
min: 0.0 Hz

Neuron 6
spx = 0.710
g = 0.169
max: 5.2 Hz
min: 0.0 Hz

Neuron 48

spx = 0.736
g = 0.262
max: 12.8 Hz
min: 0.0 Hz

Neuron 31
spx = 0.698
g = 0.435
max: 18.1 Hz
min: 0.0 Hz

Neuron 26
spx = 0.664
g = 0.756
max: 22.4 Hz
min: 0.0 Hz

Grid Cell 33
spx = 0.507
g = 0.164
max: 7.9 Hz
min: 0.0 Hz

Neuron 21
spx = 0.645
g = 0.990
max: 6.5 Hz
min: 0.0 Hz

Grid Cell 63

spx = 0.813
g = 0.965
max: 13.9 Hz
min: 0.0 Hz

Grid Cell 62
spx = 0.653
g = 0.177
max: 21.6 Hz
min: 0.0 Hz

Grid Cell 20
spx = 0.689
g = 0.800
max: 12.5 Hz
min: 0.0 Hz

Grid Cell 28
spx = 0.745
g = 0.973
max: 15.8 Hz
min: 0.0 Hz

Grid Cell 24
spx = 0.751
g = 0.939
max: 16.6 Hz
min: 0.0 Hz

Grid Cell 7

spx = 0.820
g = 0.995
max: 19.4 Hz
min: 0.0 Hz

Grid Cell 40
spx = 0.873
g = 0.159
max: 16.5 Hz
min: 0.0 Hz

Neuron 59
spx = 0.601
g = 0.116
max: 8.5 Hz
min: 0.0 Hz

Grid Cell 15
spx = 0.756
g = 0.950
max: 7.0 Hz
min: 0.0 Hz

Grid Cell 9
spx = 0.576
g = -0.007
max: 5.8 Hz
min: 0.0 Hz

Neuron 14

spx = 0.685
g = 0.861
max: 31.8 Hz
min: 0.0 Hz

Grid Cell 19
spx = 0.745
g = 0.417
max: 7.4 Hz
min: 0.0 Hz

Neuron 29
spx = 0.761
g = 0.527
max: 11.9 Hz
min: 0.0 Hz

Grid Cell 64
spx = 0.337
g = -0.009
max: 16.4 Hz
min: 0.4 Hz

Neuron 34
spx = 0.745
g = 0.441
max: 37.5 Hz
min: 0.0 Hz

Grid Cell 13

spx = 0.657
g = 0.996
max: 18.7 Hz
min: 0.0 Hz

Grid Cell 25
spx = 0.425
g = 0.001
max: 20.8 Hz
min: 0.0 Hz

Neuron 4
spx = 0.636
g = 1.070
max: 15.5 Hz
min: 0.0 Hz

Grid Cell 60
spx = 0.637
g = 0.103
max: 5.4 Hz
min: 0.0 Hz

Neuron 45
spx = 0.446
g = -0.014
max: 6.9 Hz
min: 0.0 Hz

Neuron 30

spx = 0.738
g = 0.532
max: 14.7 Hz
min: 0.0 Hz

Grid Cell 37
spx = 0.437
g = -0.004
max: 16.7 Hz
min: 0.0 Hz

Neuron 2
spx = 0.574
g = 0.019
max: 11.6 Hz
min: 0.0 Hz

Neuron 56
spx = 0.626
g = -0.005
max: 9.5 Hz
min: 0.0 Hz

Neuron 51
spx = 0.492
g = 1.030
max: 9.9 Hz
min: 0.0 Hz

Grid Cell 39

spx = 0.622
g = -0.004
max: 8.0 Hz
min: 0.0 Hz

Neuron 55
spx = 0.571
g = 0.034
max: 8.3 Hz
min: 0.0 Hz

Neuron 32
spx = 0.645
g = 0.307
max: 7.9 Hz
min: 0.0 Hz

Neuron 49
spx = 0.423
g = -0.005
max: 10.5 Hz
min: 0.1 Hz

Neuron 57
spx = 0.384
g = -0.017
max: 16.3 Hz
min: 0.0 Hz

Neuron 1

spx = 0.227
g = 0.131
max: 26.2 Hz
min: 0.1 Hz

Neuron 38
spx = 0.283
g = -0.003
max: 11.2 Hz
min: 0.0 Hz

Neuron 58
spx = 0.204
g = 0.030
max: 28.7 Hz
min: 0.5 Hz

Neuron 53
spx = 0.283
g = 0.000
max: 10.0 Hz
min: 0.0 Hz

Neuron 18
spx = 0.435
g = 0.808
max: 9.9 Hz
min: 0.0 Hz

Grid Cell 36

spx = 0.395
g = -0.090
max: 24.5 Hz
min: 0.3 Hz

Border Cell 44
spx = 0.233
g = 0.022
max: 6.3 Hz
min: 0.2 Hz

Neuron 5
spx = 0.244
g = 0.405
max: 9.9 Hz
min: 0.1 Hz

Interneuron 22
spx = 0.313
g = 1.107
max: 14.8 Hz
min: 0.3 Hz

Grid Cell 52
spx = 0.489
g = 0.608
max: 5.9 Hz
min: 0.0 Hz

Grid Cell 11

spx = 0.157
g = 0.053
max: 26.9 Hz
min: 0.1 Hz

Neuron 43
spx = 0.451
g = 0.295
max: 4.8 Hz
min: 0.0 Hz

Grid Cell 65
spx = 0.156
g = 0.027
max: 35.2 Hz
min: 1.2 Hz

Grid Cell 23
spx = 0.138
g = 0.136
max: 18.6 Hz
min: 0.6 Hz

Grid Cell 27
spx = 0.251
g = 0.373
max: 12.1 Hz
min: 0.1 Hz

Grid Cell 17

spx = 0.275
g = 0.062
max: 15.8 Hz
min: 0.1 Hz

Neuron 46
spx = 0.206
g = 0.755
max: 20.1 Hz
min: 1.1 Hz

Grid Cell 41
spx = 0.163
g = 0.214
max: 54.4 Hz
min: 2.1 Hz

Interneuron 50
spx = 0.330
g = 0.670
max: 7.9 Hz
min: 0.1 Hz

Grid Cell 61
spx = 0.184
g = 0.149
max: 15.6 Hz
min: 0.0 Hz

Neuron 10

spx = 0.210
g = 0.803
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g = 0.195
max: 20.7 Hz
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Interneuron 8

FIGURE D.4. RNs in the mEC exhibit spatially selective firing compared to non-RNs. The spatial
firing rate maps of the 65 neurons in the mEC data, sorted according to their MSR scores, are shown
together with the calculated spatial sparsity, spx, the grid score, g, and the maximum and minimum
firing.
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FIGURE D.5. RNs in the mEC exhibit HD selective firing compared to non-RNs. The HD tuning
curves of the 65 neurons in the mEC data, sorted according to their MSR scores, are shown together with
the calculated HD sparsity, spθ, the Rayleigh mean vector length, R, and the maximum and minimum
firing.
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FIGURE D.6. MSR of neurons from the anterodorsal thalamic nucleus (ADn) and post-subicular
(PoS) regions of 6 freely-behaving mice pooled from multiple recording sessions. For each mice, the
MSR of the recorded neurons which had more than 100 recorded spikes in a session were calculated.
The corresponding the HD information and sparsity (in bits per spike, see Main Text Section 5.4:
Information, Sparsity and other Scores) were also calculated. ADn neurons are depicted in red circles
while PoS neurons in blue squares. The size of each point reflect the mean vector lengths of the neurons
wherein larger points indicate a unimodal distribution in the calculated HD tuning curves.
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FIGURE D.7. The mEC neurons that were both RNs and INs do not contain the bulk of the
decodable spatial information. The overlap between the set of RNs and INs as a function of the size,
n, of each set for the mEC (a), for the ADn of Mouse 12 (Session 120806) (b) and for the ADn and
PoS of Mouse 28 (Session 140313) (c). To show how much decodable spatial information there is in
the overlap between the RNs and spatial INs in the mEC at n = 20, we took the 14 overlapping neurons
(ONs) and randomly chose 6 neurons outside of this overlap and performed a Bayesian positional
decoding (see Main Text Section 5.6). The mean and standard errors of the cumulative distribution of
decoding errors, ‖X̂−Xtrue‖, of the 14 ONs + 6 random neurons (n = 100 realizations) are shown in
grey (D) together with the cumulative distribution of decoding errors of the RNs (violet squares) and
spatial INs (yellow stars). For a given position error, x, a z-score can be calculated by measuring how
many standard errors from the mean of the decoding errors for ONs is the decoding error of the RNs or
of the spatial INs. These z-scores are shown in the inset of panel d.
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