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Abstract

In the reduced order modeling (ROM) framework, the solution of a
parametric partial differential equation is approximated by combining
the high-fidelity solutions of the problem at hand for several prop-
erly chosen configurations. Examples of the ROM application, in the
naval field, can be found in [31, 24]. Mandatory ingredient for the
ROM methods is the relation between the high-fidelity solutions and
the parameters. Dealing with geometrical parameters, especially in
the industrial context, this relation may be unknown and not trivial
(simulations over hand morphed geometries) or very complex (high
number of parameters or many nested morphing techniques). To over-
come these scenarios, we propose in this contribution an efficient and
complete data-driven framework involving ROM techniques for shape
design and optimization, extending the pipeline presented in [7]. By
applying the singular value decomposition (SVD) to the points coordi-
nates defining the hull geometry — assuming the topology is inaltered
by the deformation —, we are able to compute the optimal space which
the deformed geometries belong to, hence using the modal coefficients
as the new parameters we can reconstruct the parametric formulation
of the domain. Finally the output of interest is approximated using
the proper orthogonal decomposition with interpolation technique. To
conclude, we apply this framework to a naval shape design problem
where the bulbous bow is morphed to reduce the total resistance of
the ship advancing in calm water.
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1 Introduction

The reduced basis method (RBM) [13, 21] is a well-spread technique for
reduced order modeling, both in academia and in industry [24, 23, 31, 20],
and consists in two phases: an offline phase that can be carried out on high
performance computing facilities, and an online one that exploits the re-
duced dimensionality of the system to perform the parametric computation
on portable devices. In the offline stage the reduced order space is created
from full order complex simulations computed for certain values of the pa-
rameters. The selection of the reduced basis functions that span this new
reduced space can be carried out by different techniques. In this work we
employ the proper orthogonal decomposition (POD) [19, 3], which is based
on the singular value decomposition (SVD), on the set of high-fidelity snap-
shots. After the creation of such space, in the online phase a new parametric
solution is calculated as a linear combination of the precomputed reduced
basis functions. The creation of a reduced order model is crucial in the
shape optimisation context where the optimiser needs to compute several
high-fidelity simulations.

Novelty of this work is the creation of a reduced order space containing
the manifold of admissible shapes by applying POD over the sampled ge-
ometries, in order to reduce the parameter space dimension and to enhance
the order reduction of the output fields. To generate the original design
space we employ the free form deformation (FFD) method, a well-known
shape parametrisation technique. Another approach for reduced order mod-
eling enhanced by parameter space reduction technique can be found in [30]
where they propose a coupling between POD-Galerkin methods and active
subspaces. After the creation of the reduced space for the admissible shapes,
we can exploit this new parametric formulation for the construction of the
reduced space for the output fields, using the non-intrusive technique called
POD with interpolation (PODI) [5, 6, 10] for the online computation of
the coefficients of the linear combination. We would like to cite [16] where
they present the concept of a shape manifold representing all the admissible
shapes, independently of the original design parameters, and thus exploiting
the intrinsic dimensionality of the problem.

This work is organised as follows: after the presentation of the general
setting of the problem, there is a brief overview of the FFD method, then we
illustrate how the parameter space reduction is performed, and we present
PODI for the reduction of the high-fidelity snapshots. Finally the numerical
results are presented with the conclusions and some perspective.
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2 The problem

Let Ω ⊂ R3 be the reference hull domain. We define a parametric shape
morphing function M as follows

M(x;µ) : R3 → R3, (1)

which maps Ω into the deformed domain Ω(µ) as Ω(µ) =M(Ω;µ), where
µ ∈ D ⊂ R5 represents the vector of the geometrical parameters. D will be
properly defined in Section 4. Such map M can represent many different
morphing techniques (not necessarily affine) such as free form deformation
(FFD) [26], radial basis functions (RBF) interpolation [4, 17, 15], and the
inverse distance weighting (IDW) interpolation [27, 33, 11, 2], for instance.
In this work we use the FFD, presented in Section 3, to morph a bulbous
bow of a benchmark hull. We chose the DTMB 5415 hull thanks to the vast
amount of experimental data available in the literature, see for example [18].
In Figure 1 the domain Ω and a particular of the bulbous bow we are going
to parametrize and deform.

Figure 1: Complete hull domain representing the DTMB 5415 and, on the
right, a zoom on the bulbous bow.

The pipeline is the following: using geometrical FFD parameters we gen-
erate several deformed hulls; then we apply the POD on the coordinates of
the points describing the deformed geometries, and the new parameters will
be the POD coefficients of the selected modes; after checking for possible
linear dependencies between these coefficients, we sample the reduced pa-
rameter space producing new deformed hulls upon which we are going to
actually perform CFD simulations. Regarding the full order model, we use
the Reynolds-averaged Navier-Stokes equations to describe the incompress-
ible and turbulent flow around the ship. The Froude number has been set
to 0.2 and we chose the k–ω SST model for the turbulence since it is one
of the most popular benchmark for hydrodynamic analysis for industrial
naval problems. In this way we reduce the parameter space, staying on the
manifold of the admissible shapes, and reducing the burden of the output
reduced space construction through PODI.
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3 Free form deformation of the bulbous bow

Here we are going to properly define the deformation mapM introduced in
Eq. (1), which we employed for this work, and that corresponds to the free
form deformation (FFD) technique. The original formulation of the FFD
can be found in [26], for more recent works in the context of reduced basis
methods for shape optimization we cite [14, 22, 28]. It has also been applied
to naval engineering problems in [7, 8, 32], while for an automotive case
see [25].

The FFD map is the composition of three maps described in the follow-
ing, while for a visual representation we refer to Figure 2:

• the function ψ maps the physical domain to the reference one where
we construct the reference lattice of points, denoted with P around
the object to be morphed;

• the function T performs the actual deformation since it applies the
displacements defined by µFFD to the lattice P . It uses the B-splines
or Bernstein polynomials tensor product to morph all the points inside
the lattice of control points;

• finally we need to map back the deformed domain to the physical
configuration through the map ψ−1.

Figure 2: Sketch of the FFD map M composition. The domain is mapped
to a reference configuration, then the lattice of FFD control points induce
the body deformation, and finally the morphed object is mapped back to
the physical space.

Se we can define the FFD mapM through the composition of the three
maps presented above as

M(x,µFFD) := (ψ−1 ◦ T ◦ψ)(x,µFFD) ∀x ∈ Ω. (2)
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In Figure 3 it is possible to see the actual lattice of points we used, in
green, for a particular choice of the FFD parameters. For an actual imple-
mentation of this method in Python, along with other possibile deformation
methods, we refer to the open source package called PyGeM - Python Geo-
metrical Morphing [1].

Figure 3: Example of FFD parametrisation and morphing of the
DTMB 5415 hull. In green the lattice of control points that define the
actual deformation.

4 Reduction of the parameter space through POD
of the mesh coordinates

In order to reduce the parameter space dimension we apply the POD on a
set of snapshots that depends on the FFD parameters. Each snapshot is
the collection of all the coordinates of the points defining the stl file geom-
etry. Since the generation of these snapshots does not depend on complex
simulations but only on the particular FFD deformation, we are able to
create a dataset with as many entries as we want. So we create a database
of Ntrain = 1500 geometrical parameters µFFD ∈ D := [−0.3, 0.3]5 sam-
pled with a uniform distribution. Moreover we create the corresponding
database of mesh coordinates u corresponding to these parameters, that is
Θ = [u(µFFD, 1)| . . . |u(µFFD, Ntrain)]. Then we perform the singular value
decomposition (SVD) on Θ in order to extract the matrix of POD modes:

Θ = ΨΣΦT , (3)

where with Ψ and Φ we denote the left and right singular vectors matrices
of Θ respectively, and with Σ the diagonal matrix containing the singular
values in decreasing order. The columns of Ψ, denoted with ψi, are the
so-called POD modes. We can thus express the approximated reduced mesh

5



with the first N modes as

uN =
N∑
i=1

αiψi, (4)

where αi are the so called POD coefficients. To compute them in matrix
form we just use the database we created as follows

α = ΨTΘ, (5)

and then we truncate to the first N modes and coefficients.
After the selection of the number of POD modes required to have an ac-

curate approximation of each geometry, we end up with the first reduction
of the parameter space, that is with 3 POD coefficients µPOD := α ∈ R3,
we are able to represent all the possible deformations for µFFD ∈ D. So we
can express every geometry with 3 modes, but the coefficients can still be
linearly dependent. We can investigate this dependance by plotting every

component µ
(i)
POD against each other. As we can see from the plot on the left

in Figure 4, we can approximate µ
(2)
POD with a linear regression given µ

(1)
POD.

For what concerns µ
(3)
POD, we can constraint it to be inside the quadrilateral

in Figure 4, on the right. So we are able to express every possible geometry
described with the original 5 FFD parameters with only 2 new indepen-
dent parameters. We can thus sample the full parameter space using a new
reduced space, preserving the geometrical variability, and reducing the con-
struction cost of the reduced output field space. This, as we are going to
present, results in a faster optimization procedure.

Figure 4: POD coefficients dependance. On the left we have µ
(2)
POD with

respect to µ
(1)
POD in blue, and in red the linear regression to approximate

one as a function of the other. On the right µ
(3)
POD against µ

(2)
POD in blue,

and in red the boundaries defining the quadrilateral in which the sampling
is performed.
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5 Non-intrusive reduced order modeling by means
of PODI

Proper orthogonal decomposition with interpolation is a non-intrusive data-
driven method for reduced order modeling allowing an efficient approxima-
tion of the solution of parametric partial differential equations. As well
as for the geometries, we collect in a database the high-fidelity solutions
of several CFD simulations corresponding to different configurations, then
we apply the POD algorithm to the solutions matrix — the matrix whose
columns are the solutions — in order to extract the POD modes that span
the optimal space which the solutions belong to. Thus the solutions can be
projected onto the reduced space: we represent the high-fidelity solutions
as linear combination of the POD modes. Similarly to Eq. (4), the modal
coefficients of the i-th solution xPODI

i — also called the reduced solution —
are obtained as:

xPODI
i = UTxi ∀i ∈ {1, . . . ,M} (6)

where U refers to the POD modes and M is the number of high-fidelity
solutions. We call N the number of POD modes and N the dimension of
high-fidelity solutions then xPODI

i ∈ V N and xi ∈ V N . Since in complex
problems we have an high number of degrees of freedom, typically we have
N � N . The low-rank representation of the solutions allows to easily
interpolate them, exploting the relation between the reduced solutions and
the input parameters: in this way, we can compute the modal coefficients
for any new parametric point and project the reduced solution onto the
high dimensional space for a real-time approximation of the truth solution.
This technique is defined non-intrusive, since it relies only on the solutions,
without requiring information about the physical system and the equations
describing it. For this reason it is particularly suited for industrial problem,
thanks to its capability to be coupled also with commercial solvers. The
downside is the error introduced by the interpolation, depending by the
method itself, and the requirement of solutions with the same dimensionality,
that can be a problem if the computational grid is built from scratch for any
new configuration. Possible solutions are the projection of the solution on a
reference mesh [7], or to deform the grid using the laplacian diffusion [29].
Moreover, we cite [12, 25] for other examples of PODI applications. For this
work, we employed the open source Python package EZyRB [9] as software
to perform the data-driven model order reduction.

6 Numerical results

In this section we present the results for the application of the complete
pipeline to the problem presented in Section 2.
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First, we sample the full parameter space D extracting NPOD = 100
parameters to construct the reduce order model without any further reduc-
tion, and we identify this approach with the subscript “POD”. Then, as
explained in Section 4, we compute the shape manifold with 1500 differ-
ent deformations, and we extract the new coefficients describing the new
reduced parameter space. We sample this 2-dimensional space uniformly
and we collect NPOD+reduction = 80 solution snapshots. We can compare the
decay of the singular values of the snapshots matrix for the two approaches.
In Figure 5 we can note how the proposed computational pipeline results
in a faster decay and thus in a better approximation for a given number of
POD modes.

Figure 5: POD singular values decay as a function of the number of modes.
The blue line corresponds to the original sampling in the full parameter
space, while the red dotted line, which identifies the POD+reduction ap-
proach, corresponds to the sampling in the new reduced parameter space.

We underline that, despite the gain is not so big, the results do not
involve further high-fidelity simulations. We only collected several different
deformations at a negligible computational cost with respect to a single full
order CFD simulation. Moreover the construction of the interpolator takes
a huge advantage of the reduced parameter space since it counters the curse
of dimensionality.

We can conclude that the proposed preprocessing step has sever benefits
in terms of accuracy of the reduced order model at a small cost from a
computational point of view.
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7 Conclusions and perspectives

In this work we presented a complete data-driven numerical pipeline for
shape optimization in naval engineering problems. The object was to find
the optimal bulbous bow to minimize the total drag resistance of a hull ad-
vancing in calm water. First we parametrized and morphed the bulbous bow
through the free form deformation method. Then we reduced the parameter
space dimension approximating the shape manifold with the use of proper
orthogonal decomposition and the investigation on linear dependance of the
POD coefficients. We create the reduced order model sampling only the
reduced two dimensional parameter space and with POD with interpolation
we can compute in real time the outputs of interest for untried new parame-
ters. Thus the optimizer can query the surrogate model and find the optimal
shape.
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