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The Out-of-Equilibrium Time-Dependent
Gutzwiller Approximation

Michele Fabrizio

Abstract We review the recently proposed extension of the Gutzwéfgsroxima-
tion, M. Schird and M. Fabrizio, Phys. Rev. Lett05 076401 (2010), designed
to describe the out-of-equilibrium time-evolution of a @uiller-type variational
wave function for correlated electrons. The method, whilstrictly variational
in the limit of infinite lattice-coordination, is quite gera and flexible, and it is
applicable to generic non-equilibrium conditions, evenbayond the linear re-
sponse regime. As an application, we discuss the quenchdgsaf a single-band
Hubbard model at half-filling, where the method predicts aaigical phase tran-
sition above a critical quench that resembles the sharjsaves observed by time-
dependent dynamical mean field theory. We next show that anactually define
in some cases a multi-configurational wave function contimnaf a whole set of
mutually orthogonal Gutzwiller wave functions. The Hamiltan projected in that
subspace can be exactly evaluated and is equivalent to al wiodexiliary spins
coupled to non-interacting electrons, closely relatech dlave-spin theories for
correlated electron models. The Gutzwiller approximatioms out to be nothing
but the mean-field approximation applied to that spin-femminodel, which dis-
plays, for any number of bands and integer fillings, a sp@tdasZ, symmetry
breaking that can be identified as the Mott insulator-toatteansition.

1 Introduction

Time-resolved spectroscopies are advancing incredibhytéavards accessing ultra-
short time  femtoseconds) dynamidsl.[1/2[ 3[4, 5] On such timescalescbmes
possible to monitor how the electronic degrees of freed@utit® a sudden external

Michele Fabrizio
International School for Advanced Studies, SISSA, via Boaa 265, 1-34136, Trieste, Italy, and
The Abdus Salam Center for Theoretical Physics, ICTP, Pd2.986, 34100, Trieste, Italy. e-mail:

fabriziolsissa.it


http://arxiv.org/abs/1204.2175v1
fabrizio@sissa.it

2 Michele Fabrizio

stimulus before electrons have time to equilibrate withlgiiéce, which commonly
starts after few picoseconds. In this initial transientimegy one can therefore ne-
glect the coupling to the lattice and study just the way hoWlisions among the
electrons brought about by interaction redistribute theeex energy injected into
the system. This situation in which the electrons providértown dissipative bath
has recently attracted interest especially in connectiibim @old atoms trapped in
optical lattices[[B] which realize systems where the phesi are, to a large extent,
ideally isolated from the environment. There are by now sehv@aims that, when
correlation is strong enough and the injected energy exceadlreshold, the elec-
trons alone are unable to efficiently exchange energy bysawils, hence remain
trapped for long time into non-thermal configurations. Thestnconvincing evi-
dences come from dynamical mean field theory (DMFT) simoitetiof quantum
qguenches in the half-filled single-band Hubbard model[S@ch a technique is
however computationally heavy and does not allow acces&nglong times. Al-
ternatively, qualitatively similar results have been ogpurced by a much simpler
tool, the time-dependent Gutzwiller approximation (t-G@8)[20] which allows to
follow much longer the time evolution, although it lacks agb dissipative chan-
nels to describe the system flowing towards a steady st@teNévertheless, the
time averages of the observables as obtained through t-G% agtisfactorily with
the DMFT steady state values, which justifies using t-GA aalal\alternative to
more sophisticated approaches, like DMFT, for its simpfiand flexibility.

Here, we shall present in detail how t-GA can be implementédently in a
generic multi-band lattice model of electrons mutually gled by a short-range in-
teraction. We will show that the method is able to accessuheit-of-equilibrium
dynamics also far beyond the linear response regime disdusdRef. [11]. In par-
ticular, a nice feature of t-GA is its ability of treating ogueal footing the dynamics
both of the low-energy coherent quasiparticles as well ghehigh-energy inco-
herent excitations, which are commonly refereed to as th¥bHrd side-bands close
to the Mott transition. Within t-GA these two distinct exatibns, quasiparticles and
Hubbard bands, possess their own dynamics, and influenteather only in a
mean-field like fashion. This is clearly an approximatiortted actual time evolu-
tion, and the reason why the method lacks enough dissipatithhough the ensuing
dynamics is much richer than the conventional time-depetidartree-Fock.

Finally, we discuss some instructive connections betwe@A and the recently
developed slave-spin representations of the Hubbard njd2€ll3,[14 15] Es-
sentially, we will show that in the limit of infinite latticeeordination, where the
Gutzwiller approximation becomes an exact variationakaaph, and under partic-
ular circumstances, e.g. integer filling in a multi-band mlpdne can actually define
a multi-configurational basis of Gutzwiller wave-funct®and explicitly evaluate
the Hamiltonian matrix elements. It turns out that the Héwnilan projected onto
that basis coincides with its slave-spin representatiah thie major advantage that
the constraint required in the slave-spin theory to prdjeetnlarged Hilbert space
onto the physical one can be here enforced exactly.
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2 The model and the Gutzwiller wavefunction and
approximation

We shall consider the following tight-binding model on &ita with coordination
numberz

N
#=5 ; (tia}bc;cjb+H.c.)+zﬂz/i, )
I,J ab=1 i
wherecL creates an electron at siten orbitala=1,...,N, the indexa includ-
ing also the spin, andj is a local term that accounts also for the interaction. The
hopping parametetf}b is assumed to scale like’4/2 wherer is the lattice distance

between sitesandj, so that the average hopping energy per site remains fisibe al
in the limit z— .[16] The Gutzwiller wavefunctiof[17, 18] is defined thrdug

(W)= 2| w) =[] 7 | ). ()

where| Yp) is a Slater determindhand 27 a local operator that we will denote,
although improperly, as th&utzwiller projector whose role is to the change the
weights of the local electronic configurations with resgedhe Slater determinant.
Both | 45) and .27 have to be determined variationally to minimize the totarey

SAEERY

=Ty

®3)

The Guzwiller approximation begins by imposing, for reastirat will become
clear soon, the following two constraints &4:[19]

(W | 27 | W) =1, (@)
(Y| 2] 7 cly | Yh) = (Y| cly [ %), vab. 5)
These constraints mean that, if we select from the opeﬁfa@i any two fermionic
operators and average over the Slater determinant whatngntlaen such an aver-

age vanishes identically. This property is very convenifethie lattice coordination
ztends to infinity. In fact, we note that, fog£ |,

(Yo | 2T, 2 2] | W) = (W | T2, | W) (W] 2] 2 | W)
+uh| 22, «92;321 | %6)connected
=1+ <%| f@in@i gzj’fgj | %)connected (6)

where the last term on the right hand side includes all Wickistractions connect-
ing the two sites, and the constant 1 comes fridm (4). Becditbe aonstraint(5),

L In reality, for the method to work it is enough that Wick's tiiem applies, hende#) could even
be a BCS wavefunction. Here, for sake of simplicity, we shely consider Slater determinants.
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the terms that connect the two sites by only two fermioniedimanish, leaving only
terms with 21 > 2 connecting lines. In the limit of infinite lattice-coordition, these
latter terms vanish like "Ri| whereR;; is the minimum length of the path connect-
ing i to j. For a giveni, if we consider all siteg at fixedR;j = R and sum over
them Eq.[(6), each connected term above will contribute "R, n > 1, but there
are only~ % such terms so that, in the limit— oo, their sum will vanish. This
property simplifies considerably all calculations in thériite lattice-coordination
limit, which we shall assume hereafter. In particular, ipifas tha{[19, 20]

W) =% #A'Z W) =1,

namely the wavefunctioll2) is normalized, and moreover;, tiigen any local op-
eratordi,
W6 | W)= (| 207, | W), (7)

which can be easily evaluated by Wick’s theorem. In addjtibalso follows that

S P (W che | W) =3 6 (| Al Ze,2; | W), (8)
1] 1]

where one has to keep only Wick’s contractions that conrigetisand j by just
a single fermionic line, since the terms with three or mamedivanish in the limit
z— o, A simple way to proceed is by defining the matrix elemdtg through

(b | kP G | 4b) = 5 Riap (4| CliGic | Yb), 9)

that automatically include all Wick’s contractions aftetracting from the operator
%Tc;‘ag”i a single fermionic line. Through}(9) we can formally write.H8) as

(W] CiTaCjb |¥) = g’ RiTcaijd (% | CiTchd | 46). (10)

In conclusion, provided {4) and](5) are satisfied, and updimidg through
Eg. (9) the renormalized hopping amplitude

i = g’ RractCd b (11)

and the non-interacting Hamiltonian

;(*Ij ia jb+HC) (12)

then the average energy in the limit of infinite lattice caoadion is

E= (Y| 7| %)+ (Y| 2%, | ), (13)
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which can be evaluated by Wick’s theorem. Minimization [oB)(With respect to
all variational parameters provides an estimate of the mpfatate energy. The ex-
pression[(11B), with the definitio](9), is strictly valid gnih the limit of infinite
lattice-coordination. However, it is common to keep usihg same expressions
also for finite-coordination lattices, hence the na@dzwiller approximation

Like any other variational approach, also the one we judiread can only pro-
vide information on static properties, assumed to repitesef those of the actual
ground state. Here we shall propose an extension that altoescess also dynam-

ical propertiesl[9, 10]

3 Time-dependent Gutzwiller approximation

From now on we shall assume that both the Slater determirmmtedl as the
Gutzwiller projectors are time-dependent, hence

[W(1) =2) | %) =[] 21(1) | %b(t)). (14)

If the Eqgs. [#) and[{5) are satisfied at anyhen, at any instant of time and in the
limit of infinite coordination number, the average valuersd HamiltoniarE (t) will
have the same expression as in [Eq] (13), i.e.

E(t) = (46(t) | (1) | $b(1) + 5 (Y1) | i) % 2i(t) | %b(t).  (15)

In particular,Z (t) becomes time dependent sinRgy(t) depends on time. We
shall adopt the variational principle that¥(t)) is as close as possible to the
solution of the Schreedinger equation. Specifically,[9] vedirte the functional
Z(t) = [5dT.2(1), that plays the role of a classical action, with Lagrangian

2(t) = (W) | W)~ E0) = I(%(t) | 21) 2 (1) | 9b(1))
H(4h(t) | 2(0) 2(1) | (1) E(t), (16)

and determine $4(t)) and Zi(t) by the saddle point of the action under the two
constraints Eqs[{4) andl(5).
Since| $4(t)) is a Slater determinant at any instant of time, then
[ (1) =7 (1) | $().
with

YO=5 A0+ (0,
T iZ]

a single-particle operator that contains local terffs) as well as hopping terms
#i(t). We note that, because of EdS. (4) dnld (5), it follows that
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(Ub(t) | 22 (1) 7i(t) | () = (H(t) | AT Zi) H(t) | %b(H)
= ($o(t) | 7i(t) [ Yb(1)). 17

Seemingly,

(W(t) | 2O 2 (1) 7ij(1) | (1)
= (W) | A0 Zi1) 21 (1) Hj(t) | () = (H(t) | #(t) | Yb(1))
+ (W) | A0 i) 250 Pi() Hi(t) | ¥(t))connected

The connectederm on the right hand side means that we have to extract out
of 2(t)'Z(t) a number of fermionic operators, which are to be multiple of
two, one of which has to be contracted witkj(t), and the remaining ones with
2;(t)2(t) . By construction, the terms where we extract only two opmgsand
average ovef Yp(t)) what remains, will vanish because of EQl (5), while all the

others, with four or more operators that are extracted,sbeini the limit of infinite
coordination number. In conclusion, only the disconnethtsurvives, hence

(Ub(t) | 2T 2(t) #(t) | (1) = (Y(t) | % (1) | %b(b)), (18)
which, together with Eqs[(17), imply that
H{4b(t) | 2(1) 2 (1) | $b(1)) = (Yb(t) | 2(O)2(t) (1) | (1))
= (%) | 7(t) [ Yb(1)) =1(%6(t) | %6(t)). (19)
Finally, Egs.[[#4) and{5) also lead to

i(Yb(t) | 2O 2() |4b(1)) = 3 i(¥h(t) | Zi(O) Zi(t) | Yb(t)).- (20)

As a result, Eq[{1I6) can be written as

Z(t) = i((t) | Yb() +13 (4(t) | Z2) () | Yb(1)) —E(t).  (21)

3.1 A more convenient representation

In order to make it easier the search for the saddle poins, éinvenient to fol-
low the method outlined in Ref. [21], closely connected t@ tthtationally invariant
slave-boson formalism of Ref_[22]. We assume there existstaf creation and
annihilation operators, the natural basis operaﬂﬁ;anddia, respectively, related
to the original operators‘g andc,,, by a unitary transformation and such that

(b(t) | diyd g | Yb) = Bup Ny (t). (22)
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We introduce the Fock states in the natural basis
. Na
i) =] (d) " 10), (23)
a
such that the matri®°(t) with elements

PPy my () = (Wb(0) |15 {m}) (is {n} || b)
= By my [ (0% ()™ (1% (1) "™ = Sy my Py (1), (29)

is diagonal. We write a generic Gutzwiller projector as

Pirny (1)
Pi(t) = — 7
" "%1} \/ Pi(;){n}(t)

with variational parameter®;.r 1, (t) that define a matrixbi (t), and where i; ")

are basis states in the original representation in termbe)bperators;ra. In fact,
a nice feature of such a mixed original and natural basisesgmtation of the
Gutzwiller projectors is that one can carry out all caldalas without specifying
what the actual natural basis is;[21] 22] 23] it is just sigficthat this basis exists.
In this representation, the constraints Eg$. (4) &hd (5)beasimply rewritten

as[21]

[0 {n} |, (25)

Tr(&.(t)*é.(t)*) —1, (26)
TR dhdg ) = () |dhdg | %) =% (®),  va, @7)
Tr(dm B dd,) = (“b) [dhd, W) =0,  Va#B. (28)

where, from now on, given any operaigr, we shall denote a; its representation
in a basis of states . It turns out that only the constrhift {@quires some care to be
implemented, while the other two can be implemented oncelfat the beginning
of the calculatiof]

2 |n fact, we can parametrize
@i(t) =Ui(t) /R (),

whereUj (t) is a unitary matrix with elements; - ,, while R(t) a positive definite matrix with
elementsh (n)(m (t), which can be represented as the density matrix of a locataled state

[ i) = Cimy®) |15 {n}),
{% {n)

with (i (t) | ¢i(t)) = 1, which automatically fulfills Eq.[{26). In order to impodeetconstraint
(27) it is then sufficient that, forr £ 3

(W) dldg | wi(v) =0.
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In this representation, Eq.](7) becomes
W) | 6| W) =Tr(@0'6 b)), (29)

hence the average of any local operator can be expresseyg goterms of the
matrices®; without any reference to the Slater determinant. In term®,afne can

show that .
odi(t)

o) | 20" 2,0 [) =Tr( G125 ). (30

Also the effective Hamiltonian: (t) can be expressed simply in terms of the
matrices®; (t). We define a matri®;(t) whose elements are [22,]121]

1
V% () (118, (1))

which, by Eq. [2¥), can be regarded as functionatfofalone. In terms of those
parameters,

Riaa(t) = (B0 6B (0dh ). (31)

N N
fﬁ[d’(t)Fz ;: > (dLF«aa(t)*tﬁijbg(t)dm+H.c.), (32)

I,) ab=1a,pB=1

and we must make sure that this non-interacting Hamiltod@as produces a local
density matrix diagonal in thej, operators. In conclusion, having introduced the
matrices®;, we can rewrite the Lagrangidn {21) as

2=y iTr(dB.(t) ?) —Tr(tﬁl(t)TUi qS.(t))

H(U(L) | $h(1) — (W(t) | A [BO)] | Yb(1)). (33)

We still need to impose the constraint Hq.](27) in a conveniganner. In fact,
what we are going to show now is that we do not need to imposecangtraint
at timet > 0 if that constraint is fulfilled at timé = 0. Since the matrix®, is
variational, we can always write

& — DV

with Cﬁi’ and\A/iJr on the right hand side being independent variables. We asuah
Vj is a unitary matrix that corresponds to a unitary operaf@uch that

(34)

%Tdia% = %Viaﬁ diB’

This can be done by regardinigpi (t)) as the eigenstate of a local many-body Hamiltonian that
does not contain any term of the fonh, [i;{n})(i; {n}| Cp for any| {n}) including the vacuum.
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Vi'd Vi = 3 Vias d- (35)

It is straightforward to show that

R [®] =R [@] V], (36)

so that . .
S @) — v A D] T, (37)

where”?” = [1; 7. Therefore the Lagrangian transforms into

0= iTr<@i’(t)T$) +iTr<é>((t)Té>((t) avé(ttﬂ\“/i(t)>
~Tr( &6 d(0)
H{W(1) | H(1) — (W(t) | 7 2 [@' (] 77| (D). (38)
Since also the Slater determinant is a variational paranvegecan redefine
| $6(t) = 7| % (1)),

where| Y(t)) is still a Slater determinant, because of our definitior¥gfand is
independent of it. It follows that

Zt) =3 iTr<@i’(t)T$) +iTr<é>((t)Té>((t) avé(ttﬂ\“/i(t)>
~Tr(# 6 d(0)
+Hi(¥(t) | ‘i’é(t)} i) [ 7O () | ()
—(¥(0) | A [@'(0)] | H5(1)). (39)

where the only piece of the Lagrangian that depends expliit ¥ is, being?’
unitary,

e —iTr(civi’(t)*civ((t)\?i(t)*%) FI |7 O 1) | ).
(40)
Now, let us assume that
H(t) = exp[— iy qqo!(t)ditxdia} (41)

It follows that [40) becomes
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5210, = 3 dal®)| - Tr( HO'EO T, ) + 450 didq | %(0)]

(42)
Since this is the only term that depends@y) the Euler-Lagrange equation

0.4 dog
0ga dt aga
implies that
0= & :—Tf(@i’ﬁféi’(t)d?aia) +(5(0) | dlpdg | waa»]
= % —Tr(@i’(tféi’(t)\?i*(t)d?“atia\/i(t)) (W) | 7 ()Tl dg 7 (1) | ¥B (L)
- s~ T(@0 B, )+ 90 | dhda | 950 @

In other words, provided Eq_(P7) is satisfiedtat 0, and Eqs.[(26) and (P8) are
enforced by construction, then the constrdind (27) is aatarally satisfied by the
saddle point solution at any tinte> 0 .

In conclusion, under the above assumptions, the only reoquént is finding the
saddle point of the action whose Lagrangian is given in E§).(Specifically, the
Slater determinant must satisfy the equation

|1 9b(1)) = 2 D(0)] | Y1), (44)

which is just a Schreedinger equation with a time-dependantitonian that de-
pends parametrically on the matric@gt). These latter in turns must satisfy

oA, [tﬁ(t)}
o (1)

0Bi(1)
ot

=Uidi(t)+ (%(1) | | 4b(1) = Hi [ (1), ()| Bi(1), (45)

which is a non-linear Schreedinger equation whose Haméatokk depends not
only on the Slater determinaht(t)) but also on the samé(t) at sitei and on

the 05,- (t)'s at the neighboring sites. We note that the time-evoluéisrset by the
Egs. [4%) and{45) is unitary, hence conserves the enerbg iHHamiltonian is not
explicitly time dependent. In other words, one can readilyvs that

dE(t)  d d
a9 aW(t) | | P(1) = o

(1) | 2 D(1)] | w(0) =0,  (46)

if | Y (t)) satisfies Eq(44), whilé (t) and® (t)T satisfy Eq.[@b) and its hermitean
conjugate, respectively. #(t) is explicitly time-dependent then, under the same
conditions as before,
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0, [t, cﬁ(t)}
ot

where the time derivative in the r.h.s. only refers to theliekgime dependence.
The stationary limit of[(44) and(45), i.e.

dE(t) _ d

& =g YO 2O [PE) = (%) |

[Y(t),  (47)

E[®] | 45) = || | w), (48)
Afw] = (0 ‘fﬁ )h-Awala @

for the lowest eigenvaluds and A corresponds to solving the conventional equi-
librium problem discussed in secti@h 2, as showed in Rei]. [4particular, the
Eq. (49) is a self-consistent eigenvalue equation simiadartree-Fock, in which
the Hamiltonian depends parametrically on the same eigtnt$tat is looked for.

In conclusion, the Eqd_(#8) ar[d {49) for the stationary @dat equilibrium,
and the Eqgs[{44) anf(U5) for the out-of-equilibrium eviolnt provide a very sim-
ple tool for studying the correlations effect in a stronglteracting electron model.
The method is very flexible; it can deal with many orbitals atsb with inhomoge-
neous situations where the Hamiltonian and/or the initétksare not translationally
invariant, hence the matrice(t) become site dependent. We stress once more that
the approach igariationabnly in the limit of infinite lattice-coordination, otherae
it is just a mere approximation without any control paramedgactly like DMFT
when it is used in finite and not just in infinite dimensions.

One aspect worth to be mentioned is that within the Gutzwédlgroximation
two different types of dynamical degrees of freedom seenmterge. One is pro-
vided by the Slater determinant with its evolutibnl(44)slcommonly believed that
this set just describes the quasiparticle degrees of fraettoaddition, the matri-
ces @ introduce other local degrees of freedom with their own dyica set by
Eq. (4B). Itis tempting to associate them with the incoheeznitations that coexist
with the coherent quasiparticles in the presence of interacand which become
the Hubbard bands near a Mott transitibnl[16] Within thezuiiter approximation,
coherent and incoherent excitations are coupled to eadr otla mean field like
fashion, which provides a very intuitive picture althougmisses important dissi-
pative mechanisms. In what follows, we shall provide addi evidences thab,
are indeed related to the Hubbard bands.

3.2 A simple case study

Before concluding this section, we think it is worth showhnm the equation sim-
plify in the frequent and relevant cases in which the poimis\etry of the Hamil-
tonian already determines the local orbitals in which regngation the local single-
particle density matrix is diagonal, i.e.
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(W) [ chep | W) = dapia(t). (50)
In this case, where natural and original basis coincidec@eaiso
(h(t) | iy | (1)) = Bapnia(D), (51)

the expressior (31) further simplifies into

1

(2 o)

Because of the constraint EQ.[27), we can equivalentlyrcega

Riab(t) = dap

Tr((ﬁ (t)'el, Al(t)éia) =Ra)%b.  (52)

n(t) = Tr( &) Bi(t) fa ). (53)

as functional of® (t), rather than of the Slater determinant, hence it follows tha

MRal®) _ ! e b6
20T i (1-mi)
2nd —1 .
ot 'a @, (1) fia, 54
+R ()an’a(l—n,oa(t)) (t)n (54)
Rall) _ ! g hit)e
20T i (1-min)
nd —1 -
alt 'a @i (1) Aja. 55
" ()Zn?a(l—nf’a(t)) e )
If we consider the Hamiltonian
%:%;tﬁb(cLCJDJrH.c.)JrIZ%, (56)
then
FALEDY ;tﬁb(R@a(t)* Rib(t) CC;p + H.c.), (57)
J]

so that, througH(33), the Slater determinant satisfiesblatcedinger equatiEn

| Ub(t)) = H() | Yb(1)). (58)

3 Once again, we must make sure that the effective Hamiltos#aft), Eq. [51), is such that the
local density matrix remains indeed diagonal in the opesan;b.
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If we define

Ala %tlj RJb | CIaCjb | %( )> (59)

then @, satisfies the matricial Schreedinger equation

.5&%('{) 1 & Aia(t) N
i— :Ui‘I’l(tH-Z \/no (t)(l_no (t)) LB (16,
-y — e,
" o)
2nd —1

+3 (R ( t) Dialt +cc) @ (t) Aia. (60)

2nioa (1 - nioa(t))

The equation foﬁ){r can be obtained simply by the hermitean conjugate df (60). We
can readily demonstrate, throughl(52), that

L (&0 @ ()R, = Biat) Tr( & (1) 'eL (1) [6a
e r( nb) Z\/n?a(t)(l_nioa(t)) f( G [ b])
. 82" 1r(d(t)'cadt)[ch )
Z nloa(t)(l_n?a(t)) r( ¢ ¢ nb)
Lm0 n(aerdbus
B0 (1-m0) s
_ Aip(t) Tr Cﬁ(t)TCibd)'(t)Tb)

Rib(t)* Aip(t) — Rip(t) Aip(t)"
= 3 2 (Ro(t) Rialt)(4(t) | cheja | (1) —cc.)

= i— (%(1) | nip | ¥(1)), (61)

which explicitly proves that the constraint is indeed caowed by the above dynam-
ical evolution.
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4 Quantum quenches in the half-filled Hubbard model

Armed with all previous results, we can start investigathmgsimplest possible out-
of-equilibrium evolution in the single-band Hubbard modehalf-filling. For sake
of simplicity we shall ignore magnetism, hence assumeSpif2) invariant| 44(t))
andtﬁl. In this case, natural and original bases coincide, henaaweise the results
of sectior:3.R. We choose as a local basis that of an empty 8jteloubly-occupied
site,| 2), and singly occupied site with spin up), or down,||). We take for®, with
elementsp; - with I," = 0,2,1,] the U (2) and particle-hole invariant form

®opo 0 0 O
6_ 1|0 ®x o0 0
V2| 0 0 @y 0 [

0 0 0 @

(62)

with @90 = ®izo = g andd 4 = & | = B;1. All constraints Eqs[(26)-(28), with
nP(t) = ) (t) = 1/2 ¥, are satisfied provided

| @0 |?+| D=1 (63)
With the above parametrization the Hqg.](52) becomes
Rit(t)" =R ()" =R(t)" = Pio(t)" Pia(t) + Pa(t)" Pro(t) e Re.  (64)

Given the original Hamiltonian
A=Yty (coejg+H.c) +%Z (n —1)2, (65)
|

then
A1) =3 1 (ROR O cheje+Hec), (66)

and the Slater determinant is the solution of the Schreediemeation[(5B). In this
case in whicha =71,] and spin symmetry is preserved, the parameter defined in

Eq. (59)

At

1
A (1) = A (t ZTZEZ tij Rj(t) CloCio | ¥(1)) €Re,  (67)

is real. Therefore the equation of motignl(60) becomes

iBlo(t) = = Polt) +244(t) Pa(t), (68)
i (t) = 24(t) Do(t). (69)

We note that if we imagine the spin-1/2 wave-function
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| ®i(1) = Pu(t) [1) + Pio(t) [4) (70)

solution of the Schraedinger equation of the spin Hamiltonia

Hising = Z % (1— aiz) +245(t) o, (71)

that describes independent spins in a uniform magnetic field4 alongz and a
site and time dependent field\2t) alongx, we would get exactly the equations

(©8) and[(6B), with
R(t)= (& | 0| &), (72)

implying that the field 2;(t) is self-consistently determined by the same spins. This
observation is not a coincidence, as we shall discuss later.

Before analyzing a simple case of out-of-equilibrium etioln, let us consider
the stationary limit, which, as we discussed, defines thdiegum conditions. In
this case it is likely that the lowest energy state is homeges, namely invariant
under translations, hené® = R, Vi. The stationary solution of EJ._(b8) is just the
ground state of the hopping Hamiltonian with renormalizegping parameters
tij = thij and energy per sitB%gy < 0. Therefored; = A = Reg, for all i, hence
the Egs.[(6B) and(69) in the stationary limit become simplg @rop the site index
as all sites are equivalent)

N Dy = UE (D0+2£0R(D1, (73)
A D, = 2gRP,. (74)

We write @y = sinf/2 and®; = cosf/2, so that the wavefunction is normalized,
henceR = sinf. The eigenvalue problem is solved if

U
cosf = —, 75
8 (75)

for U < U = 8¢, in which case
U U
/\ —Z+280— Z—2|80|,

otherwise, forld > U, the solution is@ = 0 with energyA = 0. IndeedU. can
be identified as the critical repulsion for the Mott trarmitiwithin the Gutzwiller
approximation, because, for > U, R=sin8 = 0, hence the hopping energy van-
ishes. We observe that the highest energy eigenvalue at@®distency is

u
/\/ == Z +2|80|,

for U <Ug, andA’ = U /2 above, resembling much what we would expect for the
location of the Hubbard bands.
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Let us come back to the out-of-equilibrium evolution, angsase we start at=
0 from the ground state of the non-interacting Hamiltoniahich is just the ground
state average of the hopping with energy per gjte 0 introduced above, and total
energyEy < 0. This corresponds to assuming tl#ag(0) = @1(0) = 1/v/2, hence
Ri(0) = 1,Vi, and| %4(0)) being the uniform non-interacting Fermi sea. Since trans-
lational symmetry remains unbroken during the time evolutR (t) = R(t), Vi and
vt > 0. It follows that’Z (t) remains the same tight-binding Hamiltonian as-ato,
just renormalized by the overall factB(t)?. As a result, the Slater determinant evo-
lution is trivial,

| 4b(t)) = & ol RO* | yp(0)), (76)
henceA(t) = R(t) &. Therefore the equations (68) ahdl(69) become for any site
equal to

g U
iPo(t) = = Polt) +2&R(t) Pu(t), (77)
i®y(t) = 2&oR(t) Poft), (78)

with R(t) = ®1(t)*®p(t) +c.c.. If we set

(d(t) | 0*| @(t)) = sinB(t) cos@, (79)
(®(t) | 0¥ | @(t)) = sinB(t) sin@, (80)
(@(t) | 07| ®(t)) = cosO(t), (81)

then, through Eqs[{T7) arld(78), we find the following equratif motion forg(t):

9(t) = =,/U? - 1662 sirP (t), (82)

which is just the equation of a pendulum. In particulat) iK 4|, @(t) oscillates
betweent@vax, where
;U

4|
On the contrary, wheld > 4|g|, @(t) increases indefinitely. In other words, the
guench dynamics displays a dynamical critical pointat= 4|&|.[9] We observe
thatU, is just one half of the criticdl. that we found previously at the Mott transi-
tion within the Gutzwiller approximation. Remarkably, asrapt change of dynam-
ical behavior nead/2 has been observed also in REf. [7] within a time-dependent
DMFT simulation of the same quantum quench as above. Giverdty crude ap-
proximation in using a Gutzwiller wavefunction with respée the exactness of
DMFT in infinite coordination lattices, such an agreemenhdeed quite remark-
able.

MMax = SIN™
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5 A multi-configurational Gutzwiller approach

In sectiori B we already noticed that the variational degoéfreedom introduced by
the projectors?; are promoted to the rank of true dynamical degrees of freddom
the time dependent extension of the Gutzwiller approxiomatvoreover, in section
[ we found that in the simple case of a single-band Hubbardehetchalf-filling,
these new dynamical objects resemble spins in a self-densimagnetic field, see
Eq. (73). In what follows we will put such an analogy on a manébasis, although
the demonstration applies rigorously only to few simpleesag he outcome will
be a theory that looks similar to the so-called slave-sppragentation recently
introduced[1P, 13, 14, 15] as an alternative approach tedt@son theory.

5.1 SJ(N) Hubbard model at half-filling

We note that, at giveht), the Gutzwiller wave-functioh®) in Eq. [2) actually
defines a whole set of wave-functions, each identified by tbgptors<?; that act
on each sité. Let us assume there exist a whole set of projectdig that satisfy

(b | 2120 | W) = S, (83)
<% | '@ingzi nCiTaO'Cibo" | %> = 6”“ <% | CiTaGCibo | %>1 Va,b andvo_v 0/7 (84)

where we distinguish between orbital indicash = 1....,N, and spin indicesg
ando’. Itis straightforward realizing that these condition®wailto evaluate, along
the same lines previously outlined, also matrix elementaéen different wave-
functions. In this way, one can get the matrix representaifdche Hamiltonian on
such a subspace of wave-functions, whose diagonalizatawiges not only a better
estimate of the ground state energy but also gives accegsitecestates.

The Hamiltonian we shall consider is given bY (1) with diaglmearest neighbor
hopping—dxt/+/zand

U — % (ni - N)Z, (85)

wheren; = 5 54 ciTao_ciaa, and the density correspondsibelectrons per site, i.e.
half-filing. The model therefore is invariant not only umdgpin U (2) but also

orbital U(N), in fact it is invariant under the lardd (2N) symmetry group. We
shall therefore assume that the wave functipl#s and| Y4) are invariant under
such a large symmetry. We defig@, the projection operator at siteonto states
with n electrons. If we choose as local basis the Fock statds}) identified by

the occupation numbers,; = 0,1 in each orbital and spin, i.e.

lis{n}) = ﬁl [ (cho)™ 10
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then
Din = O n—=" niag ) [;{n})(i;{n}|.
3 o(n-gn)

From the invariance properties of the Slater determin&gt it follows that

<% | C|aa ibg | %> 6ab6(7{Ba
as well as that

1 /2N
o1 20 90 = 5 (3) =R =P, (36)

where Prﬁo) is the distribution probability of the local occupation nibien on the
uncorrelated wavefunction. The most general Gutzwillejgutor satisfying (4) and
(®) can be written as

Pin-N

Din, (87)

where
z | (DIS |2: 17
s=—N

and| &5 |=| ®_s|. In fact, we can regar@ s as the wavefunction components of
fictitious spins of magnitud8= N, one at each at siie

S
- z ¢IS|S>i7
s==s

which we shall intentionally denote atave spinss they are closely related to the
slave-spin representations of Hubbard-like models[[BZ1Z [ 15]

The renormalization factor defined by Ef] (9) is in this casgaohal,R 4 =
R &4, and simply given by

z q"|&kl¢’|s S S(S"‘ 1) (S+ 1)

:§<<v.|s+|d>.>. (88)

More generally, the matrix element of the fermionic craameratoc,ao between
two wave-functions, ¥) and| %’), with local projectors?; and.#?/ at sitei, hence
slave spin wave functions®;) and| @/), respectively, has the very transparent
expression

ol (DS F)

Ciag S [l

(89)

Seemingly, the matrix element of the local repulsion reads
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Sl (n-N) W) =3 (@] (S @), (90)

whereS is thez-component of the slave spin operafitn conclusion, we find that

y t / /
ww%wwz—gﬁd;mcquQM%Hﬂwm%w&%A%wﬂc)
L2y (@ (2] @), (o)

indeed a very suggestive result. Notice, however, thatltve spin wave-functions
are not completely free, because they must correspond ton@letr projectors sat-

isfying (83) and[(8K).
5.2 Slave-spin basis

Therefore, to make Eq_(P1) suitable for calculations, vilé reted to identify a
proper set of Gutzwiller projectors satisfying Edqs.](88¥) A possible choice is

1
Pio = WQiNa (92)
PN
1
Zim=0 = -0 (‘QiN+m+=@iN7m)a (93)
2PN+m

with m < N. In principle we could have also chosen the combinafioh @8) the
minus sign instead of the plus, but not both as they are nbbgadnal in the sense
of Eq. (83). In other words, not the whole slave-spin Hilsréace is allowed, but
only a subspacg(m)), withm=20,...,S

1(0) =10), (94)
[ (m>0)) = —=(|m)+|-m), (95)

N

which we shall denote as thhysical subspacstill to keep contact with the jargon
of slave-boson theories.

We note that the action of the raising opera®r projected onto the physical
subspace, i.e.

st )~ X ), (96)

s (1)) = XY SSU2 1), @

1 (0)) +
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S"|(m>1)) ~ \/S(S+ Y ;m(m Y [ (m+1))

oy SEEDMMD) _gy, (98)

is just the same as the action®fwithout any restriction. Indeed

SX|<0>>:SX|0>:—VS(§+”(|1>+|—1>) D (.

SN (vaS+1 -212)+v/S(S+1) |0)
+vVS(S+1) |0)+/S(S+1) -2 —2>)

o+ 22D =2 g,

S(S+ 1)

and also[(9B) follows trivially. Actually, thehysicakubspace is invariant under the
action of S, therefore, using the latter instead®f, we are allowed to release the
constraint and work in the full Hilbert space of thlavespins, since we expect the
ground state to contaijrd), hence to occur within thehysicakubspace of Eq4.(D4)

and [9%).

In conclusion, we can rewrite (P1) as
t
WIH W) = =g 5 (DS 0[S 9} (4] copCiagtH.c. | %)
<i,[>0a

22 o | (S)?| @), (99)

without any condition to be imposed on the slave spin wavetions. We finally
note that Eq.[(99) is just a matrix element of the Hamiltonian

t u
Sz—\/i <i,JZ>aaSXSX( iacCjac + H.C.) + > IZ (SZ)Z, (200)

which describes electrons coupled to slave spins of mad@m8u= N. In this repre-
sentation the slave spins are not subject to any constraint.

We note that the Hamiltoniab (100) resembles much the siateg-representa-
tion for the multi-orbital Hubbard model of Ref. [25], witlotvever a major differ-
ence. In fact the Hamiltoniaf (ID0) possesses only a dsZgegauge symmetry,
unlike the slave-rotor Hamiltonian that has a lardél) gauge symmetry. This dif-
ference has some important consequences that we discoss bel

A= -
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5.3 The Mott transition

The great advantage of the representafion](100) is to mak®dit transition ac-
cessible already within the mean field approximation. Thepsest mean-field ap-
proach amounts to assume a factorized variational wavetim ) =| electron$x |
slave-spins The minimum energy is obtained by choosiri) the Fermi sea of a
simple tight-biding Hamiltonian. If we define

t T
= ' ¢ _+H.c
V\/E <i,Jz>o'a<% | C|aoCJao+ C | %>a

the hopping energy per site of the stat), then the slave-spin wavefunction must
be the ground state of the Hamiltonian

J 2 U
Hising = 23 Z SXSX > Z (101)

e

This spin Hamiltonian has a discrefe symmetryS — —S, Vi, which is spon-
taneously broken at small /J, i.e. () is non-zero and corresponds to the order
parameter, and restored only above a quantum critical pbimi$ Ising-like transi-
tion corresponds to the Mott transition in the original nateting model. In fact, the
physical electron translates in the modé&l{7100) into the composite ope@tqg
hence, within mean -field, the long distance density matrix

lim (c'c )= lim (S & = lim (§'S)) (

B io jO’ 0> JG h |0 jO’
[i—j[—eo li— JHW e JH‘”

The average over the electron wave function, which is thempestate of the hop-
ping, is long ranged. Therefore the long distance behavithephysical electron
density matrix depends critically on the slave-spin catieh function. In the sym-

metry broken phase,
lim (§'S) — Y240,
\HHW

hence the physical electron density matrix is long rangeteexpect in a metallic
phase. On the contrary, when the symmetry is restored, @Qﬁ) vanishes ex-
ponentially for|i — j| — oo, transferring such an exponential decay to the physical
electron density matrix, which therefore does not desaifgnore a metal phase
but rather a Mott insulating one. It is important to noticatthin the actual slave-
spin model[(Z0D), a finite order paramet&f) corresponds to a phase with broken
Z, gauge symmetry, which is possible in spite of the Elitzursdren[25] because
we are working in the limit of infinite lattice coordinatidg@7,[28] We also observe
that in the symmetry broken phase there are not Goldstonesrmetause the sym-
metry is discrete, unlike what predicted by the slave-rotean field theory,[25]
where these gapless modes are expected and associateldeaxdtrd-sound.

The location of the Ising critical point of the slave-spinrhitionian [I00) can be
determined approximately by assuming that it occurs fgdamoughJ’s so that it
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is safe to keep only states wigi = 0,+1. We denote

1) =10),
1
=5 (1+2+1-1),

as the two states of an Ising variable, and introduce Padutices in this subspace.
We find that the operatd®* in this subspace acts like* \/S(S+ 1)/2, while (F)?
like (1— 0% /2, so that[(ZO1) can be rewritten as

S+1) 2 U
Hising ~= —J 5(2;2 ) - Z OiXUjX—i— 2 Z (1-07), (202)
|

<>

namely like a simple Ising model in a transverse field. We rbée for the case
S= 1, the Hamiltonian[{102) coincides with the slave-spin espntation of the
single-band Hubbard modé&lL]12,114] 5] 10]

The model[I0R) has indeed a quantum phase transition thatates a ferro-
magnetic phas€g) # 0, for smallU /J, from a paramagnetic onég;) = 0, for
largeU /J. This transition is actually the Mott transition in the staspin language
and, within mean-field, it would occur at a critical

S(S+1)
2%

We note that in the single-band ca&er 1, U; coincides with the value obtained
previously.

Apart from making the Mott transition accessible by meafdfithe effective
slave-spin model also uncover new dynamical excitatioasiths natural to asso-
ciate with the Hubbard bands. Indeed, the models](101) arslritplified version
(102) display a spin-wave branch that becomes soft onlyeatrtmsition. For very
largeU, the excitation energy becomesU /2, just the location of the Hubbard
bands. Needless to say, the mean field dynamics of these@pisponds to the
dynamics of the matrice®; that we introduced previously.

Uc~8J

(103)

5.4 Away from half-filling

We can repeat all the above calculations even away fronfifiaify. In this case, the
slave-spin wave-functiorjsby ) in the physical subspace must satisfy the conditions

<(Da | (DB> = 5a[37<q’a | SZ| q"ﬁ) = 650!8’ (104)

whered = n— N is the doping away from half-filling. The expression of theiaa
tional energy is modified into
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t

<(1U|% | (.IJ/> = _(82—62)\/2<”Z>o—a
Y@ e,

As before we need to identify the physical subspace for teesspins.

The simplest case is when the average occupaiginteger, hencé is integer,
too, which requires more than a single band, Ne> 1. Let us further assumlg
large, so that we can just focus on the tpfoysicaktates

) =10),
1
b= J5(16+0+16-1).

which corresponds to the assumption that a kind of partiole-symmetry is recov-
ered close to the Mott transition.The raising operatorguigd onto this subspace
has the action

51y = [SEHD_20D 1y gy,

st 1ty =/ SEED=0C=D - gy

henceS" ~ acg* —iBaoY, with a >| B |. It follows that the Ising variables are de-
scribed by the effective Hamiltonian

1 2 U
Hising™~ —J 55 > (azaixaj?%ﬁzaiyaf’) +7 Iz (1-0a?), (106)

<>

with J being the average hopping per site of the Fermi sea with geevacupation
n. This model still has a phase transition between a ferroetégphase wito*) #
0 and a paramagnetic one. Within mean field, the criticalauigon strength is now

(107)

and is shifted to lower values of the interactiondaacreases. Once again, the spin-
wave spectrum of the Ising mod@l(106) can be interpreteti@spectrum of the
Hubbard bands.

If the filling is not an integer or the enlarg& (2N) symmetry is lowered, the
above construction does not work anymore because we caefioedn general
more than a single Gutzwiller projector satisfying b6th)(@&3d [84). In other words,
while for integer fillings and3J (2N) symmetry we can associate the dynamical
variables® with auxiliary spin operators, which allows for instancertprove the
Gutzwiller approximation by including systematically euiam fluctuations, away

(10115 1 @0)(@y 15" @))(8h  chtiag | 41)+Hc. )

(105)
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from such a high-symmetry points we are unable to make sugh@esidentifica-
tion, hence we must limit our analysis to the mean field dycaraf @.

6 Conclusions

In this paper we have shown in detail how one can access byesimgans the out-
of-equilibrium time evolution of a Gutzwiller-type variahal wave function. The
approach is rigorously variational in the limit of large cdimation numbers, other-
wise can be regarded as the dynamical counterpart of théyadepted Gutzwiller
approximation. The method is really simple to implement aad; flexible. It is
apt to cope with weak non-equilibrium compatible with lineasponse, but also
with strong out-of-equilibrium conditions like sudden gtiam quenches. It can de-
scribe single- and multi-band systems, as well as homogessul inhomogeneous
models.

The key feature that distinguishes the present method ferodnventional time-
dependent Hartree-Fock is the emergence of two distinestyyh excitations that
control the time-evolution of the wave function. One cop@sds to the particle-
hole excitations of the guiding Slater determinant, just lin the time-dependent
Hartree-Fock, and is supposed to describe coherent quidigs In addition, new
local dynamical degrees of freedom emerge, which can beiassd with the Hub-
bard bands and that are promoted to the rank of genuine Ban#awith their own
dynamics. Within the Gutzwiller approach the Hubbard baais the quasiparti-
cles are mutually coupled in a mean-field like fashion, iaeheof them generates
a time-dependent field that acts on the other. In spite of suchpproximation,
the dynamical behavior that follows is quite richer than iartfee-Fock. We have
shown just an example of such a richness, namely the dynaitraaaition that oc-
curs in the single-band Hubbard model at half-filling afteuaden increase of the
repulsion[[9]

Finally, we have shown that it is possible to extend the viamal approach
to a multi-configurational wave function that comprisesreedéir combination of
orthogonal Gutzwiller-type of wave functions. Such a mutihfigurational vari-
ational method can be worked out analytically only in speaifises, specifically
for integer fillings. Nevertheless it is quite instructiviece it demonstrates that
the above discussed time-dependent Gutzwiller approacbtisng but the mean-
field approximation applied to the actual Hamiltonian dymawithin that sub-
space of orthogonal Gutzwiller wave functions. Remarkatly Hamiltonian pro-
jected in that subspace resembles the slave-spin repagisastof correlated elec-
tron models[[1Z2, 13, 14,15] thus providing a very intuitpieture of these theories.
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