In galaxy clusters the thermal Sunyaev-Zel'dovich (SZ) effect from the hot intracluster medium (ICM) provides a direct, self-contained measure of the pressure integrated over crossing lines of sight, that is intrinsically independent of redshift and well suited for evolutionary studies. We show in detail how the size of the effect and its pattern on the sky plane are directly related to the entropy levels in the ICM, and how they characterize the cluster cores and outskirts independently. We find that at redshifts z ≲ 0.3 the signals to be expected in the cores considerably exceed those detected at 10' resolution with the Planck satellite. We propose that at 1' resolutions as implemented on recent ground instrumentation for mapping features in individual clusters, the average patterns of the SZ signals can provide a direct and effective way to find and count cool, low-entropy cores and hot, high-entropy outskirts out to z ~ 2. Such counts will tell the timing and the mode of the processes that drive the evolution of the ICM from the distant to the local cluster population.

Probing the evolution of galaxy clusters with the SZ effect / Cavaliere, A.; Lapi, Andrea. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 571:Nov(2014), pp. 1-6. [10.1051/0004-6361/201424296]

Probing the evolution of galaxy clusters with the SZ effect

Lapi, Andrea
2014-01-01

Abstract

In galaxy clusters the thermal Sunyaev-Zel'dovich (SZ) effect from the hot intracluster medium (ICM) provides a direct, self-contained measure of the pressure integrated over crossing lines of sight, that is intrinsically independent of redshift and well suited for evolutionary studies. We show in detail how the size of the effect and its pattern on the sky plane are directly related to the entropy levels in the ICM, and how they characterize the cluster cores and outskirts independently. We find that at redshifts z ≲ 0.3 the signals to be expected in the cores considerably exceed those detected at 10' resolution with the Planck satellite. We propose that at 1' resolutions as implemented on recent ground instrumentation for mapping features in individual clusters, the average patterns of the SZ signals can provide a direct and effective way to find and count cool, low-entropy cores and hot, high-entropy outskirts out to z ~ 2. Such counts will tell the timing and the mode of the processes that drive the evolution of the ICM from the distant to the local cluster population.
2014
571
Nov
1
6
A84
10.1051/0004-6361/201424296
https://arxiv.org/abs/1410.5574
http://cdsads.u-strasbg.fr/abs/2014A%26A...571A..84C
Cavaliere, A.; Lapi, Andrea
File in questo prodotto:
File Dimensione Formato  
Cavaliere14.pdf

accesso aperto

Descrizione: Open Access Journal
Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 566.71 kB
Formato Adobe PDF
566.71 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12199
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact