We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo mass conversion using realistic mock catalogues based on the Millennium Simulation. Applying a multi-frequency matched filter to the Planck data for each LBG, and averaging the results in bins of stellar mass, we measure the mean SZ signal down to M∗ ~ 2 × 1011 M⊙, with a clear indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass range extending from rich clusters down to M500 ~ 2 × 1013 M⊙, and there is a clear indication of signal down to M500 ~ 4 × 1012 M⊙. Planck's SZdetections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with the magnitude of Malmquist bias effects that were previously estimated for the X-ray sample. © 2013 ESO.

Planck intermediate results. XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies / Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio Barandela, F.; Aumont, J.; Baccigalupi, Carlo; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Bernard, J. P.; Bersanelli, M.; Bikmaev, I.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana, C.; Butler, R. C.; Cabella, P.; Chamballu, A.; Chary, R. R.; Chiang, L. Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davis, R. J.; De Bernardis, P.; De Gasperis, G.; De Rosa, A.; De Zotti, Gianfranco; Delabrouille, J.; Démoclès, J.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Flores Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova Santos, R. T.; Giard, M.; Giraud Héraud, Y.; Gonzalez Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hernndez Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki Suonio, H.; Lähteenmäki, A.; Lamarre, J. M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden Vørnle, M.; López Caniego, M.; Lubin, P. M.; Luzzi, G.; Macías Pérez, J. F.; Mactavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J. B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville Deschênes, M. A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Pajot, F.; Paoletti, D.; Perotto, L.; Perrotta, Francesca; Piacentini, F.; Piat, M.; Pierpaoli, Elena Maria; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J. L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño Martín, J. A.; Rusholme, B.; Sandri, Matteo; Savini, G.; Scott, D.; Spencer, L.; Starck, J. L.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur Uski, A. S.; Sygnet, J. F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wang, W.; Welikala, N.; Weller, J.; White, S. D. M.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.. - In: ASTRONOMY & ASTROPHYSICS. - ISSN 0004-6361. - 557:(2013), pp. A52.1-A52.17. [10.1051/0004-6361/201220941]

Planck intermediate results. XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies

Baccigalupi, Carlo;De Zotti, Gianfranco;Perrotta, Francesca;Sandri, Matteo;
2013-01-01

Abstract

We present the scaling relation between Sunyaev-Zeldovich (SZ) signal and stellar mass for almost 260,000 locally brightest galaxies (LBGs) selected from the Sloan Digital Sky Survey (SDSS). These are predominantly the central galaxies of their dark matter halos. We calibrate the stellar-to-halo mass conversion using realistic mock catalogues based on the Millennium Simulation. Applying a multi-frequency matched filter to the Planck data for each LBG, and averaging the results in bins of stellar mass, we measure the mean SZ signal down to M∗ ~ 2 × 1011 M⊙, with a clear indication of signal at even lower stellar mass. We derive the scaling relation between SZ signal and halo mass by assigning halo properties from our mock catalogues to the real LBGs and simulating the Planck observation process. This relation shows no evidence for deviation from a power law over a halo mass range extending from rich clusters down to M500 ~ 2 × 1013 M⊙, and there is a clear indication of signal down to M500 ~ 4 × 1012 M⊙. Planck's SZdetections in such low-mass halos imply that about a quarter of all baryons have now been seen in the form of hot halo gas, and that this gas must be less concentrated than the dark matter in such halos in order to remain consistent with X-ray observations. At the high-mass end, the measured SZ signal is 20% lower than found from observations of X-ray clusters, a difference consistent with the magnitude of Malmquist bias effects that were previously estimated for the X-ray sample. © 2013 ESO.
2013
557
1
17
A52
https://doi.org/10.1051/0004-6361/201220941
https://arxiv.org/abs/1212.4131
Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio Barandela, F.; Aumont, J.; Baccigalupi, Carlo; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Bernard, J. P.; Bersanelli, M.; Bikmaev, I.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Burenin, R.; Burigana, C.; Butler, R. C.; Cabella, P.; Chamballu, A.; Chary, R. R.; Chiang, L. Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davis, R. J.; De Bernardis, P.; De Gasperis, G.; De Rosa, A.; De Zotti, Gianfranco; Delabrouille, J.; Démoclès, J.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Flores Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Frommert, M.; Galeotta, S.; Ganga, K.; Génova Santos, R. T.; Giard, M.; Giraud Héraud, Y.; Gonzalez Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hernndez Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki Suonio, H.; Lähteenmäki, A.; Lamarre, J. M.; Lasenby, A.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lilje, P. B.; Linden Vørnle, M.; López Caniego, M.; Lubin, P. M.; Luzzi, G.; Macías Pérez, J. F.; Mactavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martínez Gonzalez, E.; Masi, S.; Massardi, M.; Matarrese, S.; Mazzotta, P.; Mei, S.; Melchiorri, A.; Melin, J. B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville Deschênes, M. A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Pajot, F.; Paoletti, D.; Perotto, L.; Perrotta, Francesca; Piacentini, F.; Piat, M.; Pierpaoli, Elena Maria; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prunet, S.; Puget, J. L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Rubiño Martín, J. A.; Rusholme, B.; Sandri, Matteo; Savini, G.; Scott, D.; Spencer, L.; Starck, J. L.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur Uski, A. S.; Sygnet, J. F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wang, W.; Welikala, N.; Weller, J.; White, S. D. M.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.
File in questo prodotto:
File Dimensione Formato  
aa20941-12.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/12469
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 130
social impact