We evaluate the expected level of foreground contamination to the cosmic microwave background (CMB) polarised radiation, focusing on the diffuse emission from our own Galaxy. In particular, we perform a first attempt to simulate an all sky template of polarised emission from thermal dust. This study indicates that the foreground contamination to CMB B-modes is likely to be relevant on all frequencies, and even at high Galactic latitudes. We review the recent developments in the design of data analysis techniques dedicated to the separation of CMB and foreground emissions in multi-frequency observations, exploiting their statistical independence. We argue that the high quality and detail of the present CMB observations represent an almost ideal statistical dataset where these algorithms can operate with excellent performance. We explicitly show that the recovery of CMB B-modes is possible even if they are well below the foreground level, working at the arcminute resolution at an almost null computational cost. This capability well represents the great potentiality of these new data analysis techniques, which should be seriously taken into account for implementation in present and future CMB observations.

Cosmic microwave background polarisation: foreground contrast and component separation / Baccigalupi, Carlo. - In: NEW ASTRONOMY REVIEWS. - ISSN 1387-6473. - 47:11-12(2003), pp. 1127-1134. [10.1016/j.newar.2003.09.038]

Cosmic microwave background polarisation: foreground contrast and component separation

Baccigalupi, Carlo
2003-01-01

Abstract

We evaluate the expected level of foreground contamination to the cosmic microwave background (CMB) polarised radiation, focusing on the diffuse emission from our own Galaxy. In particular, we perform a first attempt to simulate an all sky template of polarised emission from thermal dust. This study indicates that the foreground contamination to CMB B-modes is likely to be relevant on all frequencies, and even at high Galactic latitudes. We review the recent developments in the design of data analysis techniques dedicated to the separation of CMB and foreground emissions in multi-frequency observations, exploiting their statistical independence. We argue that the high quality and detail of the present CMB observations represent an almost ideal statistical dataset where these algorithms can operate with excellent performance. We explicitly show that the recovery of CMB B-modes is possible even if they are well below the foreground level, working at the arcminute resolution at an almost null computational cost. This capability well represents the great potentiality of these new data analysis techniques, which should be seriously taken into account for implementation in present and future CMB observations.
2003
47
11-12
1127
1134
https://arxiv.org/abs/astro-ph/0306181
Baccigalupi, Carlo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/13383
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact