Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.

The power of relativistic jets is larger than the luminosity of their accretion disks / Ghisellini, Gabriele; Tavecchio, Fabrizio; Maraschi, L.; Celotti, Anna Lisa; Sbarrato, T.. - In: NATURE. - ISSN 0028-0836. - 515:7527(2014), pp. 376-378. [10.1038/nature13856]

The power of relativistic jets is larger than the luminosity of their accretion disks

Ghisellini, Gabriele;Tavecchio, Fabrizio;Celotti, Anna Lisa;
2014-01-01

Abstract

Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.
2014
515
7527
376
378
https://arxiv.org/abs/1411.5368
http://inspirehep.net/record/1328927
Ghisellini, Gabriele; Tavecchio, Fabrizio; Maraschi, L.; Celotti, Anna Lisa; Sbarrato, T.
File in questo prodotto:
File Dimensione Formato  
nature13856.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 471.7 kB
Formato Adobe PDF
471.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14638
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 317
  • ???jsp.display-item.citation.isi??? 306
social impact