Huntington's disease (HD) is a fatal, dominantly inherited, neurodegenerative disorder due to a pathological expansion of the CAG repeat in the coding region of the HTT gene. In the quest for understanding the molecular basis of neurodegeneration, we have previously demonstrated that the prolyl isomerase Pin1 plays a crucial role in mediating p53-dependent apoptosis triggered by mutant huntingtin (mHtt) in vitro. To assess the effects of the lack of Pin1 in vivo, we have bred Pin1 knock-out mice with Hdh(Q111) knock-in mice, a genetically precise model of HD. We show that Pin1 genetic ablation modifies a portion of Hdh(Q111) phenotypes in a time-dependent fashion. As an early event, Pin1 activity reduces the DNA damage response (DDR). In midlife mice, by taking advantage of next-generation sequencing technology, we show that Pin1 activity modulates a portion of the alterations triggered by mHtt, extending the role of Pin1 to two additional Hdh(Q111) phenotypes: the unbalance in the "synthesis/concentration of hormones", as well as the alteration of "Wnt/β-catenin signaling". In aging animals, Pin1 significantly increases the number of mHtt-positive nuclear inclusions while it reduces gliosis. In summary, this work provides further support for a role of Pin1 in HD pathogenesis. © 2016 Agostoni, Michelazzi, Maurutto, Carnemolla, Ciani, Vatta, Roncaglia, Zucchelli, Leanza, Mantovani, Gustincich, Santoro, Piazza, Del Sal and Persichetti.

Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice

Gustincich, Stefano;
2016-01-01

Abstract

Huntington's disease (HD) is a fatal, dominantly inherited, neurodegenerative disorder due to a pathological expansion of the CAG repeat in the coding region of the HTT gene. In the quest for understanding the molecular basis of neurodegeneration, we have previously demonstrated that the prolyl isomerase Pin1 plays a crucial role in mediating p53-dependent apoptosis triggered by mutant huntingtin (mHtt) in vitro. To assess the effects of the lack of Pin1 in vivo, we have bred Pin1 knock-out mice with Hdh(Q111) knock-in mice, a genetically precise model of HD. We show that Pin1 genetic ablation modifies a portion of Hdh(Q111) phenotypes in a time-dependent fashion. As an early event, Pin1 activity reduces the DNA damage response (DDR). In midlife mice, by taking advantage of next-generation sequencing technology, we show that Pin1 activity modulates a portion of the alterations triggered by mHtt, extending the role of Pin1 to two additional Hdh(Q111) phenotypes: the unbalance in the "synthesis/concentration of hormones", as well as the alteration of "Wnt/β-catenin signaling". In aging animals, Pin1 significantly increases the number of mHtt-positive nuclear inclusions while it reduces gliosis. In summary, this work provides further support for a role of Pin1 in HD pathogenesis. © 2016 Agostoni, Michelazzi, Maurutto, Carnemolla, Ciani, Vatta, Roncaglia, Zucchelli, Leanza, Mantovani, Gustincich, Santoro, Piazza, Del Sal and Persichetti.
2016
10
May
1
12
110
10.3389/fncel.2016.00110
Agostoni, E.; Michelazzi, S.; Maurutto, M.; Carnemolla, A.; Ciani, Y.; Vatta, P.; Roncaglia, P.; Zucchelli, S.; Leanza, G.; Mantovani, F.; Gustincich, Stefano; Santoro, C.; Piazza, S.; Del Sal, G.; Persichetti, F.
File in questo prodotto:
File Dimensione Formato  
Agostoni 2016 Front Cell Neurosci 10 110.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14800
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact