Motivated by the recent experimental evidence of commensurate surface charge-density waves (CDW) in Pb/Ge(lll) and Sn/Ge(lll) root 3-adlayer structures, as well as by the insulating states found on K/Si(lll):B and SiC(0001), we have investigated the role of electron-electron interactions, and also of electron-phonon coupling, on the narrow surface-state band originating from the outer dangling-bond orbitals of the surface. We model the root 3 dangling-bond lattice by an extended two-dimensional Hubbard model at half filling on a triangular lattice. The hopping integrals are calculated by fitting first-principle results for the surface band. We include an on-site Hubbard repulsion U and a nearest-neighbor Coulomb interaction V, plus a long-ranged Coulomb tail. The electron-phonon interaction is treated in the deformation potential approximation. We have explored the phase diagram of this model including the possibility of commensurate 3 X 3 phases, using mainly the Hartree-Fock approximation. For U larger than the bandwidth we find a noncollinear antiferromagnetic spin-density wave (SDW) insulator, possibly corresponding to the situation on the SiC and K/Si surfaces. For U comparable or smaller, a rich phase diagram arises, with several phases involving combinations of charge and spin-density-waves (SDW), with or without a net magnetization. We find that insulating, or partly metallic 3 X 3 CDW phases can be stabilized by two different physical mechanisms. One is the intersite repulsion V, which together with electron-phonon coupling can lower the energy of a charge modulation. The other is a magnetically-induced Fermi-surface nesting, stabilizing a net cell magnetization of 1/3, plus a collinear SDW, plus an associated weak CDW. Comparison with available experimental evidence, and also with first-principle calculations is made.

Charge-density waves and surface Mott insulators for adlayer structures on semiconductors: Extended Hubbard modeling / Santoro, Giuseppe Ernesto; Sandro, Scandolo; Erio, Tosatti. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 59:(1999), pp. 1891-1901. [10.1103/PhysRevB.59.1891]

Charge-density waves and surface Mott insulators for adlayer structures on semiconductors: Extended Hubbard modeling

Santoro, Giuseppe Ernesto;
1999-01-01

Abstract

Motivated by the recent experimental evidence of commensurate surface charge-density waves (CDW) in Pb/Ge(lll) and Sn/Ge(lll) root 3-adlayer structures, as well as by the insulating states found on K/Si(lll):B and SiC(0001), we have investigated the role of electron-electron interactions, and also of electron-phonon coupling, on the narrow surface-state band originating from the outer dangling-bond orbitals of the surface. We model the root 3 dangling-bond lattice by an extended two-dimensional Hubbard model at half filling on a triangular lattice. The hopping integrals are calculated by fitting first-principle results for the surface band. We include an on-site Hubbard repulsion U and a nearest-neighbor Coulomb interaction V, plus a long-ranged Coulomb tail. The electron-phonon interaction is treated in the deformation potential approximation. We have explored the phase diagram of this model including the possibility of commensurate 3 X 3 phases, using mainly the Hartree-Fock approximation. For U larger than the bandwidth we find a noncollinear antiferromagnetic spin-density wave (SDW) insulator, possibly corresponding to the situation on the SiC and K/Si surfaces. For U comparable or smaller, a rich phase diagram arises, with several phases involving combinations of charge and spin-density-waves (SDW), with or without a net magnetization. We find that insulating, or partly metallic 3 X 3 CDW phases can be stabilized by two different physical mechanisms. One is the intersite repulsion V, which together with electron-phonon coupling can lower the energy of a charge modulation. The other is a magnetically-induced Fermi-surface nesting, stabilizing a net cell magnetization of 1/3, plus a collinear SDW, plus an associated weak CDW. Comparison with available experimental evidence, and also with first-principle calculations is made.
1999
59
1891
1901
https://arxiv.org/pdf/cond-mat/9809016.pdf
Santoro, Giuseppe Ernesto; Sandro, Scandolo; Erio, Tosatti
File in questo prodotto:
File Dimensione Formato  
Santoro_PRB01891_CDW_1999.pdf

non disponibili

Licenza: Non specificato
Dimensione 251.49 kB
Formato Adobe PDF
251.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/14816
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 76
social impact