Riboswitches are RNA sequences located in noncoding portions of mRNA that can sense specific ligands and subsequently control gene expression. The ligand-binding event induces conformational changes in the riboswitch that are then transmitted to the gene expression apparatus. Probing the mechanisms of such a fine regulation at atomic resolution is very difficult experimentally and molecular dynamics (MD) could be used to quantify the ligand-dependent behavior of a riboswitch. However, since the accessible time scale of fully atomistic simulations is limited, this can only be done using enhanced sampling techniques. Here, we discuss the application of steered MD to the characterization of the ligand-dependent stability of the aptamer terminal helix in the add adenine-sensing riboswitch. The employed techniques are discussed in detail and sample input files are provided. We show that with a limited computational effort it is possible to quantify, in terms of free energy, the stacking interaction between the ligand and the terminal helix, obtaining results in agreement with thermodynamic experiments.

Using Reweighted Pulling Simulations to Characterize Conformational Changes in Riboswitches / Di Palma, F.; Colizzi, F.; Bussi, G.. - 553:(2015), pp. 139-162. [10.1016/bs.mie.2014.10.055]

Using Reweighted Pulling Simulations to Characterize Conformational Changes in Riboswitches

Bussi, G.
2015-01-01

Abstract

Riboswitches are RNA sequences located in noncoding portions of mRNA that can sense specific ligands and subsequently control gene expression. The ligand-binding event induces conformational changes in the riboswitch that are then transmitted to the gene expression apparatus. Probing the mechanisms of such a fine regulation at atomic resolution is very difficult experimentally and molecular dynamics (MD) could be used to quantify the ligand-dependent behavior of a riboswitch. However, since the accessible time scale of fully atomistic simulations is limited, this can only be done using enhanced sampling techniques. Here, we discuss the application of steered MD to the characterization of the ligand-dependent stability of the aptamer terminal helix in the add adenine-sensing riboswitch. The employed techniques are discussed in detail and sample input files are provided. We show that with a limited computational effort it is possible to quantify, in terms of free energy, the stacking interaction between the ligand and the terminal helix, obtaining results in agreement with thermodynamic experiments.
2015
553
Computational Methods for Understanding Riboswitches
139
162
Di Palma, F.; Colizzi, F.; Bussi, G.
File in questo prodotto:
File Dimensione Formato  
00006.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.39 MB
Formato Adobe PDF
1.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15196
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact