In the past year it has been shown that one can construct an approximate (d + 2) dimensional solution of the vacuum Einstein equations dual to a (d + 1) dimensional fluid satisfying the Navier-Stokes equations. The construction proceeds by perturbing the flat Rindler metric, subject to the boundary conditions of a non-singular causal horizon in the interior and a fixed induced metric on a given timelike surface r = r(c) in the bulk. We review this fluid-Rindler correspondence and show that the shear viscosity to entropy density ratio of the fluid on r = r(c) takes the universal value 1/4 pi both in Einstein gravity and in a wide class of higher curvature generalizations. Since the precise holographic duality for this spacetime is unknown, we propose a microscopic explanation for this viscosity based on the peculiar properties of quantum entanglement. Using a novel holographic Kubo formula in terms of a two-point function of the stress tensor of matter fields in the bulk, we calculate a shear viscosity and find that the ratio with respect to the entanglement entropy density is exactly 1/4 pi in four dimensions.

Hydrodynamics and viscosity in the Rindler spacetime / Eling, C; Chirco, G; Liberati, Stefano. - 1458:(2012), pp. 69-83. (Intervento presentato al convegno Proceedings of the Spanish Relativity Meeting 2011: Proceedings of the Spanish Relativity Meeting 2011. tenutosi a Madrid nel 2011) [10.1063/1.4734405].

Hydrodynamics and viscosity in the Rindler spacetime.

Liberati, Stefano
2012-01-01

Abstract

In the past year it has been shown that one can construct an approximate (d + 2) dimensional solution of the vacuum Einstein equations dual to a (d + 1) dimensional fluid satisfying the Navier-Stokes equations. The construction proceeds by perturbing the flat Rindler metric, subject to the boundary conditions of a non-singular causal horizon in the interior and a fixed induced metric on a given timelike surface r = r(c) in the bulk. We review this fluid-Rindler correspondence and show that the shear viscosity to entropy density ratio of the fluid on r = r(c) takes the universal value 1/4 pi both in Einstein gravity and in a wide class of higher curvature generalizations. Since the precise holographic duality for this spacetime is unknown, we propose a microscopic explanation for this viscosity based on the peculiar properties of quantum entanglement. Using a novel holographic Kubo formula in terms of a two-point function of the stress tensor of matter fields in the bulk, we calculate a shear viscosity and find that the ratio with respect to the entanglement entropy density is exactly 1/4 pi in four dimensions.
2012
Towards New Paradigms: Proceedings of the Spanish Relativity Meeting 2011
1458
69
83
9780735410602
American Institute of Physics
Eling, C; Chirco, G; Liberati, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/15538
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact