We provide an holistic view of galaxy evolution at high redshift z>4, that incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic SFR density from UV/IR surveys and long GRB rates, the cosmic reionization history after the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. (2016) on the basis of an educated extrapolation of the latest UV/far-IR data from HST/Herschel, and already tested against a number of independent observables. Our SFR functions integrated down to an UV magnitude limit M_UV<-13 (or SFR limit around 10^-2 M_sun/yr) produces a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z<Z_sun/2, with the estimates from long GRB rates. They also yield a cosmic reionization history consistent with that implied by the recent measurements of the Planck mission on the electron scattering optical depth tau_es~0.058; remarkably, this result is obtained under a conceivable assumption regarding the average value f_esc~0.1 of the escape fraction for ionizing photons. We demonstrate via the abundance matching technique that the above constraints concurrently imply galaxy formation to become inefficient within dark matter halos of mass below a few 10^8 M_sun; pleasingly, such a limit is also required not to run into the missing satellite issue. Finally, we predict a downturn of the galaxy luminosity function faintward of M_UV<-12, and stress that its detailed shape, as plausibly probed in the next future by the JWST, will be extremely informative on the astrophysics of galaxy formation in small halos, or even on the microscopic nature of the dark matter.

Galaxy Evolution at High Redshift: Obscured Star Formation, GRB Rates, Cosmic Reionization, and Missing Satellites / Lapi, Andrea; Mancuso, Claudia; Celotti, Anna Lisa; Danese, Luigi. - In: THE ASTROPHYSICAL JOURNAL. - ISSN 0004-637X. - 835:1(2017), pp. 1-8. [10.3847/1538-4357/835/1/37]

Galaxy Evolution at High Redshift: Obscured Star Formation, GRB Rates, Cosmic Reionization, and Missing Satellites

Lapi, Andrea;Mancuso, Claudia;Celotti, Anna Lisa;Danese, Luigi
2017-01-01

Abstract

We provide an holistic view of galaxy evolution at high redshift z>4, that incorporates the constraints from various astrophysical/cosmological probes, including the estimate of the cosmic SFR density from UV/IR surveys and long GRB rates, the cosmic reionization history after the latest Planck measurements, and the missing satellites issue. We achieve this goal in a model-independent way by exploiting the SFR functions derived by Mancuso et al. (2016) on the basis of an educated extrapolation of the latest UV/far-IR data from HST/Herschel, and already tested against a number of independent observables. Our SFR functions integrated down to an UV magnitude limit M_UV<-13 (or SFR limit around 10^-2 M_sun/yr) produces a cosmic SFR density in excellent agreement with recent determinations from IR surveys and, taking into account a metallicity ceiling Z
2017
835
1
1
8
37
http://dx.doi.org/10.3847/1538-4357/835/1/37
Lapi, Andrea; Mancuso, Claudia; Celotti, Anna Lisa; Danese, Luigi
File in questo prodotto:
File Dimensione Formato  
Lapietal.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 415.03 kB
Formato Adobe PDF
415.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/16040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact