We have expressed in Escherichia coli five isoforms of saporin, a single-chain ribosome-inactivating protein (RIP). Translation inhibition activities of the purified recombinant polypeptides in vitro were compared with those of recombinant dianthin 30, a less potent and closely related RIP, and of ricin A chain. Dianthin 30, and a saporin isoform encoded by a cDNA from leaf tissue (SAP-C), both had about one order of magnitude lower activity in translation inhibition assays than all other isoforms of saporin tested. We recently demonstrated that saporin extracted from seeds of Saponaria officinalis binds to alpha2-macroglobulin receptor (alpha2MR; also termed low density lipoprotein-receptor-related-protein), indicating a general mechanism of interaction of plant RIPs with the alpha2MR system [Cavallaro, Nykjaer, Nielsen and Soria (1995) Eur. J. Biochem. 232, 165-171]. Here we report that SAP-C bound to alpha2MR equally well as native saporin. However, the same isoform had about ten times lower cytotoxicity than the other saporin isoforms towards different cell lines. This indicates that the lower cell-killing ability of the SAP-C isoform is presumably due to its altered interaction with the protein synthesis machinery of target cells. Since saporin binding to the alpha2MR is competed by heparin, we also tested in cell-killing experiments Chinese hamster ovary cell lines defective for expression of either heparan sulphates or proteoglycans. No differences were observed in cytotoxicity using native saporin or the recombinant isoforms. Therefore saporin binding to the cell surface should not be mediated by interaction with proteoglycans, as is the case for other alpha2MR ligands.

Characterization of a saporin isoform with lower ribosome-inhibiting activity / Fabbrini, Ms; Rappocciolo, E; Carpani, D; Solinas, M; Valsasina, B; Breme, U; Cavallaro, U; Nykjaer, A; Rovida, E; Legname, Giuseppe; Soria, Mr. - In: BIOCHEMICAL JOURNAL. - ISSN 0264-6021. - 322:3(1997), pp. 719-727. [10.1042/bj3220719]

Characterization of a saporin isoform with lower ribosome-inhibiting activity

Legname, Giuseppe;
1997-01-01

Abstract

We have expressed in Escherichia coli five isoforms of saporin, a single-chain ribosome-inactivating protein (RIP). Translation inhibition activities of the purified recombinant polypeptides in vitro were compared with those of recombinant dianthin 30, a less potent and closely related RIP, and of ricin A chain. Dianthin 30, and a saporin isoform encoded by a cDNA from leaf tissue (SAP-C), both had about one order of magnitude lower activity in translation inhibition assays than all other isoforms of saporin tested. We recently demonstrated that saporin extracted from seeds of Saponaria officinalis binds to alpha2-macroglobulin receptor (alpha2MR; also termed low density lipoprotein-receptor-related-protein), indicating a general mechanism of interaction of plant RIPs with the alpha2MR system [Cavallaro, Nykjaer, Nielsen and Soria (1995) Eur. J. Biochem. 232, 165-171]. Here we report that SAP-C bound to alpha2MR equally well as native saporin. However, the same isoform had about ten times lower cytotoxicity than the other saporin isoforms towards different cell lines. This indicates that the lower cell-killing ability of the SAP-C isoform is presumably due to its altered interaction with the protein synthesis machinery of target cells. Since saporin binding to the alpha2MR is competed by heparin, we also tested in cell-killing experiments Chinese hamster ovary cell lines defective for expression of either heparan sulphates or proteoglycans. No differences were observed in cytotoxicity using native saporin or the recombinant isoforms. Therefore saporin binding to the cell surface should not be mediated by interaction with proteoglycans, as is the case for other alpha2MR ligands.
1997
322
3
719
727
Fabbrini, Ms; Rappocciolo, E; Carpani, D; Solinas, M; Valsasina, B; Breme, U; Cavallaro, U; Nykjaer, A; Rovida, E; Legname, Giuseppe; Soria, Mr
File in questo prodotto:
File Dimensione Formato  
Fabbrini_Biochem J_1997.pdf

non disponibili

Licenza: Non specificato
Dimensione 498.31 kB
Formato Adobe PDF
498.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/17183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 41
social impact