We study the work statistics of a periodically-driven integrable closed quantum system, addressing in particular the role played by the presence of a quantum critical point. Taking the example of a one-dimensional transverse Ising model in the presence of a spatially homogeneous but periodically time-varying transverse field of frequency ω0, we arrive at the characteristic cumulant generating function G(u), which is then used to calculate the work distribution function P(W). By applying the Floquet theory we show that, in the infinite time limit, P(W) converges, starting from the initial ground state, towards an asymptotic steady state value whose small-W behaviour depends only on the properties of the small-wave-vector modes and on a few important ingredients: the time-averaged value of the transverse field, h0, the initial transverse field, hi, and the equilibrium quantum critical point hc, which we find to generate a sequence of non-equilibrium critical points h∗l=hc+lω0/2, with l integer. When hi≠hc, we find a "universal" edge singularity in P(W) at a threshold value of Wth=2|hi−hc| which is entirely determined by hi. The form of that singularity --- Dirac delta derivative or square root --- depends on h0 being or not at a non-equilibrium critical point h∗l. On the contrary, when hi=hc, G(u) decays as a power-law for large u, leading to different types of edge singularity at Wth=0. Generalizing our calculations to the case in which we initialize the system in a finite temperature density matrix, the irreversible entropy generated by the periodic driving is also shown to reach a steady state value in the infinite time limit.

Asymptotic work statistics of periodically driven Ising chains

Russomanno, Angelo;Santoro, Giuseppe Ernesto
2015-01-01

Abstract

We study the work statistics of a periodically-driven integrable closed quantum system, addressing in particular the role played by the presence of a quantum critical point. Taking the example of a one-dimensional transverse Ising model in the presence of a spatially homogeneous but periodically time-varying transverse field of frequency ω0, we arrive at the characteristic cumulant generating function G(u), which is then used to calculate the work distribution function P(W). By applying the Floquet theory we show that, in the infinite time limit, P(W) converges, starting from the initial ground state, towards an asymptotic steady state value whose small-W behaviour depends only on the properties of the small-wave-vector modes and on a few important ingredients: the time-averaged value of the transverse field, h0, the initial transverse field, hi, and the equilibrium quantum critical point hc, which we find to generate a sequence of non-equilibrium critical points h∗l=hc+lω0/2, with l integer. When hi≠hc, we find a "universal" edge singularity in P(W) at a threshold value of Wth=2|hi−hc| which is entirely determined by hi. The form of that singularity --- Dirac delta derivative or square root --- depends on h0 being or not at a non-equilibrium critical point h∗l. On the contrary, when hi=hc, G(u) decays as a power-law for large u, leading to different types of edge singularity at Wth=0. Generalizing our calculations to the case in which we initialize the system in a finite temperature density matrix, the irreversible entropy generated by the periodic driving is also shown to reach a steady state value in the infinite time limit.
2015
2015
8
1
26
P08030
https://arxiv.org/abs/1505.02924v3
Russomanno, Angelo; Sharma, S.; Dutta, A.; Santoro, Giuseppe Ernesto
File in questo prodotto:
File Dimensione Formato  
Russomanno_JSTAT15.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/17250
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 32
social impact