Weyl semimetals typically appear in systems in which either time-reversal (T) or inversion (P) symmetry is broken. Here we show that in the presence of gauge potentials these topological states of matter can also arise in fermionic lattices preserving both T and P. We analyze in detail the case of a cubic lattice model with π fluxes, discussing the role of gauge symmetries in the formation of Weyl points and the difference between the physical and the canonical T and P symmetries. We examine the robustness of this PT-invariant Weyl semimetal phase against perturbations that remove the chiral sublattice symmetries, and we discuss further generalizations. Finally, motivated by advances in ultracold-atom experiments and by the possibility of using synthetic magnetic fields, we study the effect of random perturbations of the magnetic fluxes, which can be compared to a local disorder in realistic scenarios. © 2016 American Physical Society.

PT invariant Weyl semimetals in gauge symmetric systems / Lepori, L.; Fulga, I. C.; Trombettoni, Andrea; Burrello, M.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 94:8(2016), pp. 085107.1-085107.8. [10.1103/PhysRevB.94.085107]

PT invariant Weyl semimetals in gauge symmetric systems

Trombettoni, Andrea;
2016-01-01

Abstract

Weyl semimetals typically appear in systems in which either time-reversal (T) or inversion (P) symmetry is broken. Here we show that in the presence of gauge potentials these topological states of matter can also arise in fermionic lattices preserving both T and P. We analyze in detail the case of a cubic lattice model with π fluxes, discussing the role of gauge symmetries in the formation of Weyl points and the difference between the physical and the canonical T and P symmetries. We examine the robustness of this PT-invariant Weyl semimetal phase against perturbations that remove the chiral sublattice symmetries, and we discuss further generalizations. Finally, motivated by advances in ultracold-atom experiments and by the possibility of using synthetic magnetic fields, we study the effect of random perturbations of the magnetic fluxes, which can be compared to a local disorder in realistic scenarios. © 2016 American Physical Society.
2016
94
8
1
8
085107
https://arxiv.org/abs/1506.04761
http://cdsads.u-strasbg.fr/abs/2016PhRvB..94h5107L
Lepori, L.; Fulga, I. C.; Trombettoni, Andrea; Burrello, M.
File in questo prodotto:
File Dimensione Formato  
PhysRevB.94.085107.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 697.88 kB
Formato Adobe PDF
697.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/32598
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 17
social impact