Single molecule force spectroscopy (SMFS) is known to be one of the most powerful tool to investigate the relation between structure and function in molecules and proteins. The possibility to work in aqueous conditions at a single molecular level opens up an extraordinary perspective to investigate rare events at a molecular level of biological systems. Over the past years Atomic Force Microscopy (AFM) based on SMFS has provided us information, that is either difficult or impossible to get from any other method. In spite of its advancements, SMFS has not been applied to many molecules of biological relevance for several reasons, such as problems with the biological samples, data analysis and other technical issues. Indeed, the development and improvement of SMFS is becoming is very important to study biological molecules and proteins in their natural environment.

Single Molecule Force Spectroscopy of CNGA1 / Maity, Sourav. - (2014 Oct 23).

Single Molecule Force Spectroscopy of CNGA1

Maity, Sourav
2014-10-23

Abstract

Single molecule force spectroscopy (SMFS) is known to be one of the most powerful tool to investigate the relation between structure and function in molecules and proteins. The possibility to work in aqueous conditions at a single molecular level opens up an extraordinary perspective to investigate rare events at a molecular level of biological systems. Over the past years Atomic Force Microscopy (AFM) based on SMFS has provided us information, that is either difficult or impossible to get from any other method. In spite of its advancements, SMFS has not been applied to many molecules of biological relevance for several reasons, such as problems with the biological samples, data analysis and other technical issues. Indeed, the development and improvement of SMFS is becoming is very important to study biological molecules and proteins in their natural environment.
23-ott-2014
Torre, Vincent
Maity, Sourav
File in questo prodotto:
File Dimensione Formato  
1963_7464_thesis-Sourav-23-10-2014.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 14.41 MB
Formato Adobe PDF
14.41 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/3873
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact