Determining the correct state of a protein or a protein complex is of paramount importance for current medical and pharmaceutical research. The stable conformation of such systems depend on two processes called protein folding and protein-protein interaction. In the course of the last 50 years, both processes have been fruitfully studied. Yet, a complete understanding is still not reached, and the accuracy and the efficiency of the approaches for studying these problems is not yet optimal. This thesis is devoted to devising physical and statistical methods for recognizing the native state of a protein or a protein complex. The studies will be mostly based on BACH, a knowledge-based potential originally designed for the discrimination of native structures in protein folding problems. BACH method will be analyzed and extended: first, a new method to account for protein-solvent interaction will be presented. Then, we will describe an extension of BACH aimed at assessing the quality of protein complexes in protein-protein interaction problems. Finally, we will present a procedure aimed at predicting the structure of a complex based on a hierarchy of approaches ranging from rigid docking up to molecular dynamics in explicit solvent. The reliability of the approaches we propose will be always benchmarked against a selection of other state-of-the-art scoring functions which obtained good results in CASP and CAPRI competitions.

Assessing the structure of proteins and protein complexes through physical and statistical approaches / Sarti, Edoardo. - (2015 Oct 12).

Assessing the structure of proteins and protein complexes through physical and statistical approaches

Sarti, Edoardo
2015-10-12

Abstract

Determining the correct state of a protein or a protein complex is of paramount importance for current medical and pharmaceutical research. The stable conformation of such systems depend on two processes called protein folding and protein-protein interaction. In the course of the last 50 years, both processes have been fruitfully studied. Yet, a complete understanding is still not reached, and the accuracy and the efficiency of the approaches for studying these problems is not yet optimal. This thesis is devoted to devising physical and statistical methods for recognizing the native state of a protein or a protein complex. The studies will be mostly based on BACH, a knowledge-based potential originally designed for the discrimination of native structures in protein folding problems. BACH method will be analyzed and extended: first, a new method to account for protein-solvent interaction will be presented. Then, we will describe an extension of BACH aimed at assessing the quality of protein complexes in protein-protein interaction problems. Finally, we will present a procedure aimed at predicting the structure of a complex based on a hierarchy of approaches ranging from rigid docking up to molecular dynamics in explicit solvent. The reliability of the approaches we propose will be always benchmarked against a selection of other state-of-the-art scoring functions which obtained good results in CASP and CAPRI competitions.
12-ott-2015
Laio, Alessandro
Sarti, Edoardo
File in questo prodotto:
File Dimensione Formato  
1963_34626_main_no_ack.pdf

accesso aperto

Tipologia: Tesi
Licenza: Non specificato
Dimensione 11.25 MB
Formato Adobe PDF
11.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/4863
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact