Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cisregulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'. © The Author(s) 2013. Published by Oxford University Press.

Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development / Sanges, Remo; Hadzhiev, Yavor; Gueroult-Bellone, Marion; Roure, Agnes; Ferg, Marco; Meola, Nicola; Amore, Gabriele; Basu, Swaraj; Brown, Euan R.; De Simone, Marco; Petrera, Francesca; Licastro, Danilo; Strähle, Uwe; Banfi, Sandro; Lemaire, Patrick; Birney, Ewan; Müller, Ferenc; Stupka, Elia. - In: NUCLEIC ACIDS RESEARCH. - ISSN 0305-1048. - 41:6(2013), pp. 3600-3618. [10.1093/nar/gkt030]

Highly conserved elements discovered in vertebrates are present in non-syntenic loci of tunicates, act as enhancers and can be transcribed during development

Sanges, Remo
Project Administration
;
2013-01-01

Abstract

Co-option of cis-regulatory modules has been suggested as a mechanism for the evolution of expression sites during development. However, the extent and mechanisms involved in mobilization of cisregulatory modules remains elusive. To trace the history of non-coding elements, which may represent candidate ancestral cis-regulatory modules affirmed during chordate evolution, we have searched for conserved elements in tunicate and vertebrate (Olfactores) genomes. We identified, for the first time, 183 non-coding sequences that are highly conserved between the two groups. Our results show that all but one element are conserved in non-syntenic regions between vertebrate and tunicate genomes, while being syntenic among vertebrates. Nevertheless, in all the groups, they are significantly associated with transcription factors showing specific functions fundamental to animal development, such as multicellular organism development and sequence-specific DNA binding. The majority of these regions map onto ultraconserved elements and we demonstrate that they can act as functional enhancers within the organism of origin, as well as in cross-transgenesis experiments, and that they are transcribed in extant species of Olfactores. We refer to the elements as 'Olfactores conserved non-coding elements'. © The Author(s) 2013. Published by Oxford University Press.
2013
41
6
3600
3618
Sanges, Remo; Hadzhiev, Yavor; Gueroult-Bellone, Marion; Roure, Agnes; Ferg, Marco; Meola, Nicola; Amore, Gabriele; Basu, Swaraj; Brown, Euan R.; De Simone, Marco; Petrera, Francesca; Licastro, Danilo; Strähle, Uwe; Banfi, Sandro; Lemaire, Patrick; Birney, Ewan; Müller, Ferenc; Stupka, Elia
File in questo prodotto:
File Dimensione Formato  
Sanges et al. - 2013 - Highly conserved elements discovered in vertebrate.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 8.8 MB
Formato Adobe PDF
8.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/68514
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact