The dynamical charge-density response of bulk bismuth has been studied within time-dependent density functional perturbation theory, explicitly accounting for spin-orbit coupling. The use of the Liouville-Lanczos approach allows us to calculate electron energy loss spectra for excitation energies as large as 100 eV. Effects of 5d semicore electronic states, spin-orbit coupling, exchange and correlation, local fields, and anisotropy are thoroughly investigated. The account of the 5d states in the calculation turns out to be crucial to correctly describe the loss spectra above 10 eV and, in particular, the position and shape of the bulk-plasmon peak at 14.0 eV at vanishing transferred momentum. Our calculations reveal the presence of interband transitions at 16.3 eV, which had never been discussed before. The origin of the peak at 5.8 eV is revisited as due to mixed interband and collective excitations. Finally, our study supplements the lack of experiments at finite transferred momenta.

Ab initio study of electron energy loss spectra of bulk bismuth up to 100 eV / Timrov, Iurii; Markov, Maxime; Gorni, Tommaso; Raynaud, Michèle; Motornyi, Oleksandr; Gebauer, Ralph; Baroni, Stefano; Vast, Nathalie. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 95:9(2017), pp. 1-10. [10.1103/PhysRevB.95.094301]

Ab initio study of electron energy loss spectra of bulk bismuth up to 100 eV

Timrov, Iurii;Gorni, Tommaso;Baroni, Stefano;
2017-01-01

Abstract

The dynamical charge-density response of bulk bismuth has been studied within time-dependent density functional perturbation theory, explicitly accounting for spin-orbit coupling. The use of the Liouville-Lanczos approach allows us to calculate electron energy loss spectra for excitation energies as large as 100 eV. Effects of 5d semicore electronic states, spin-orbit coupling, exchange and correlation, local fields, and anisotropy are thoroughly investigated. The account of the 5d states in the calculation turns out to be crucial to correctly describe the loss spectra above 10 eV and, in particular, the position and shape of the bulk-plasmon peak at 14.0 eV at vanishing transferred momentum. Our calculations reveal the presence of interband transitions at 16.3 eV, which had never been discussed before. The origin of the peak at 5.8 eV is revisited as due to mixed interband and collective excitations. Finally, our study supplements the lack of experiments at finite transferred momenta.
2017
95
9
1
10
094301
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.95.094301
Timrov, Iurii; Markov, Maxime; Gorni, Tommaso; Raynaud, Michèle; Motornyi, Oleksandr; Gebauer, Ralph; Baroni, Stefano; Vast, Nathalie
File in questo prodotto:
File Dimensione Formato  
PhysRevB.95.094301.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Baroni 2017 H2020.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Non specificato
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11767/70089
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact