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“Not only is the Universe stranger than we think, it is stranger than we can think.”

Werner Heisenberg
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Ultraviolet aspects of Peccei–Quinn Inflation

by Davide DAL CIN

The possibility of observing a value of the tensor-to-scalar ratio r of the
order r ∼ 10−3 would project us into a new era for the cosmology of the
early Universe. Such an observation would lead to confirmation of infla-
tion and a measurement of the energy scale at which this phase occurred,
revolutionizing the idea of the early stages of the evolution of the Universe.
This scale would be beyond the reach of any possible terrestrial experiment,
exploring a region of energies of the order of 1012 − 1013GeV. Since a the-
ory of quantum gravity is missing, this relegates inflation models to effective
models that are reliable only within a certain range of energies. Hence, the
question of whether the predictions of these models are reliable is crucial. In
other words, is it always possible to ignore the tower of higher-dimensional
operators present? This thesis aims to answer this question by focusing on
the model called Peccei-Quinn inflation. This model offers the possibility of
explaining inflation, dark matter and providing a solution to the strong CP
problem. It also predicts a value of r ∼ 10−3 and makes this model falsifi-
able in the future. In addition, this thesis addresses a crucial aspect related
to the production of dark matter through axions. It involves modeling the
evolution after inflation, which is a crucial point. The findings significantly
alter what was previously known about the Peccei-Quinn model. In the
thesis we prove that Peccei–Quinn inflation is extremely sensitive to higher-
dimensional operators, undermining its validity as an effective field theory.
Further combined with the discussion on the axion quality required for solv-
ing the strong CP problem, we examine the validity of this scenario. We also
show that after Peccei–Quinn inflation, resonant amplifications of the field
fluctuations are inevitably triggered, casting serious doubts on the typical
assumption of a homogeneous evolution. In conclusion, this thesis asks and
tries to answer some profound questions regarding theoretical models that
are in the sights of future groundbreaking observations in cosmology that
will potentially provide a deeper understanding of the fundamental proper-
ties of our Universe.
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Chapter 1

Introduction

The modern study of the universe is based on the ΛCDM model which pro-
vides a strong foundation to understand the large-scale structure and the
expansion of the universe. This model is built on the principles of general
relativity and proposes the existence of two mysterious elements: dark mat-
ter (DM) and dark energy (DE). DM constitutes around 26.8 % of the total
mass-energy density of the universe and is believed to be responsible for the
gravitational effects observed in very large structures such as the flat rotation
curves of galaxies, the gravitational lensing of light by galaxy clusters, and
the enhanced clustering of galaxies, see [65] for a review. The remaining 4.8%
is made up of all the ordinary matter that we can observe, including planets,
stars, and galaxies. What has been left out of the calculation is a 70 % that is
constituted by dark energy and is responsible for today’s acceleration [150,
140].

The standard model passed a plethora of observational tests, ranging
from the cosmic microwave background (CMB) to supernovae observations
and measurements from LSS [9, 4, 85, 149]. There are still open questions
that the model is not able to address like the nature of DM and DE and ten-
sions persist on the values of cosmological parameters measured by different
observations [148, 179, 64].

During these decades many candidates for DM have been proposed such
as weakly interacting massive particles (WIMPs)[108, 74, 151], axions, sterile
neutrinos (see [36] for a review), primordial black holes [83, 81, 43], asymmet-
ric dark matter (see [183, 141] for reviews), light dark matter (see [63] for a
review), fuzzy dark matter (see [88] for a review), self-interacting dark matter
(see [168] for a review), Q-balls [50], WIMPzillas [107] and Planck-scale DM
[19, 69, 94]. In particular, axions exist automatically as a solution to strong
CP problem [138, 177, 174] and they have received increasing attention by
the community given the stronger and stronger bounds on standard WIMP
dark matter and the many non-collider experimental opportunities for their
detection. The behavior during and after inflation of this particle determines
its relic abundance, which is still debated in the literature [72, 180, 42].

The ΛCDM model can be extended by adding cosmological inflation,
which may explain the observed flatness and homogeneity of the Universe,
as well as the origin of the primordial curvature perturbation [164, 162, 156,
75, 134, 114]. However, the actual mechanism of inflation is still unknown. In
40 years many models have appeared, an incomplete list includes R2 [164],
chaotic [118], extended [110, 106], power-law [2, 120], hybrid [119], natural
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[65], supernatural [145], extra-natural [11], eternal [172, 76], D-term [30], F-
term [130, 44], brane [59], . . . , etc . . . . Some of these models are now ruled
out, nevertheless, this varied list shows that to date a final model does not
exist.

From an observational point of view, these inflationary models must ful-
fill the bound on the tensor power spectrum, commonly parametrized by the
tensor-to-scalar ratio r, from Planck [9]. Future experiments, like [10], aim to
reach r ∼ 10−3 and promise to advance the understanding of the Universe.
Given this prospect, it is reasonable to explore or to understand in a deeper
way models that predict r in this future ballpark. An example is Higgs in-
flation [29], see Section 4.11 for details, where the Higgs field with a non-
minimal gravitational coupling drives inflation. Higgs inflation requires a
very large gravitational coupling to be consistent with both the measurement
of the Higgs self-coupling and the curvature perturbation amplitude inferred
from analyses of the CMB. It has been pointed out that the large gravitational
coupling lowers the cutoff scale of the effective field theory (EFT), making the
predictions of the model unreliable [20, 39, 84, 40] (though a counterargu-
ment has been presented in [28]). Orthogonal to the prediction of r ∼ 10−3,
Higgs inflation is extremely interesting because it is an economic and unify-
ing model as it allows to explain the inflationary phase without introducing
any additional particles to the standard model. The Higgs field, which is
present due to infrared physics (unitarity of scattering amplitudes), serves as
the inflaton, establishing a unique connection between high and low energy
physics.

Peccei-Quinn (PQ) inflation, proposed by [61], is a well-motivated model
worthy of study. The model requires the presence of a complex scalar field
Φ (PQ field) in addition to the standard model. The PQ field was originally
introduced to solve the strong CP problem[138], which is unrelated to the
physics of the early universe. By positing that the radial component of the PQ
field drives inflation, this model provides a comprehensive explanation for
the strong CP problem, dark matter, and inflation, all within a single frame-
work. Higgs inflation and PQ inflation share the qualities of being economi-
cal and unifying, making them both highly appealing. The crucial ingredient
of the PQ inflation scenario is a coupling between the PQ field and the Ricci
scalar. This dimension-four interaction, which is expected to exist from the
point of view of an effective field theory in curved space [137], flattens the
potential to realize a slow-roll [152, 90, 135, 113]. In the case of PQ inflation,
its self-coupling is not constrained by experiments and thus is effectively a
free parameter of the model. It can be chosen to allow for a small gravita-
tional coupling, such that the cutoff scale is larger than the relevant energy
scales during and after inflation. This has been considered as another virtue
of PQ inflation.1 Here we note that a small gravitational coupling, on the
other hand, requires a large field excursion for the PQ field. This is eas-
ily understood by noting that, with a power-law potential V ∝ ϕn and in
the absence of a non-minimal coupling to gravity, slow-roll inflation requires

1It was pointed out in [77] that the gravitational coupling also helps evade the axion
quality problem.
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super-Planckian field ranges. The necessity of large field excursions renders
the model sensitive to higher-dimensional operators, which in turn depends
on the details of the ultraviolet (UV) completion of the theory, bringing us
back to the situation similar to Higgs inflation.2

The goal of this thesis is to sharpen this message by evaluating, for the
first time, the effects of higher-dimensional operators on PQ inflation. In or-
der to constrain Planck-suppressed operators, we analyze their impact on
curvature perturbations and inflation duration. (See also [89] which per-
formed a similar study for a Higgs-like real inflaton.) The ultraviolet sen-
sitivity of PQ inflation is reminiscent of the so-called axion quality prob-
lem [93, 87, 91], which is based on the observation that U(1)PQ-breaking
higher-dimensional operators can spoil the axion as a solution to the strong
CP problem by displacing the axion field from the CP-conserving vacuum.
This shows how the axion dynamics in the IR are influenced by unknown
physics in the UV, parameterized by these operators. The figure in this thesis
(Fig. 7.2) demonstrates how physics at the Planck scale can affect inflaton
physics.

The UV conundrum of PQ inflation is just one face of a cube of questions.
We know that the Universe has to pass from a cold empty state during infla-
tion to the primordial thermal bath. It is crucial to understand this transition
and, in light of all the above good properties of the model, how the axion
(phase of the PQ field) behaves at the end of inflation. In a model similar
to PQ [17], it is shown that a resonant amplification of the field fluctuation
is generated when the inflaton oscillates about its origin, this amplification
leads to a restoration of the PQ symmetry. Instead, in [61], it is assumed
that the axion is homogeneous after inflation and the production of DM hap-
pens via the misalignment mechanism, see Section 6.4.2. One may wonder
if the presence of higher-dimensional operators prevents the inflaton from
oscillating around its minimum, leading to a homogeneous axion field. The
objective of the thesis is to conduct a thorough investigation of the evolu-
tion of axion after inflation while considering the angular momentum of the
PQ field for the first time. We demonstrate the inevitable occurrence of in-
homogeneities generated from parametric resonances, which is discussed in
Section 7.5.

The results presented in Section 7.5 prompt us to investigate whether we
can produce sufficient initial angular momentum using higher-dimensional
operators. This will help us have in-spiral trajectories in the field space and
prevent parametric resonances. However, as we will see in Section 7.5, if the
radial field is the inflaton, it is not possible to achieve this. But if we do not as-
sign the radial part of Φ as the inflaton, then it becomes necessary to explore
if it is possible to avoid PRs. This is because in many scenarios such as, string
theory [31, 41, 59], supersymmetry [62, 58, 144, 38, 126], extra-dimensions
[147, 146, 129] more than one scalar field is present during inflation and the

2The precise statement is that the PQ field excursion in the Jordan frame increases with
a decreasing non-minimal coupling. The excursion of the canonically normalized field in
the Einstein frame is larger than 1018 GeV, independently of the value of the non-minimal
coupling.
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Φ field would play the role of spectator field. Having no more constraints
on g, it is possible to search for the minimum value necessary to avoid para-
metric resonances; guaranteeing, unless thermal restoration of the U(1)PQ, a
homogeneous evolution for the field Φ. In Chapter 8, we demonstrate the ex-
istence of a region in the l − log10|g| space where we can prevent parametric
resonances. In this region, the abundance of dark matter is given by the ki-
netic misalignment mechanism discussed in Section 6.4.3. For the first time,
this analysis provides bounds on the size of these operators, as shown in Fig.
8.1.

The discussion in the thesis is split into two parts. The first part aims to
establish the theoretical framework of the thesis in a way that is accessible
to non-experts and students. Chapter 2 presents the standard cosmological
model, covering the key features of the expanding universe, Einstein’s GR
principles, and known matter energy components. Chapter 3 discusses the
problems of the standard Big Bang cosmology and how inflation can over-
come them.

In Chapter 4, we explore perturbations in the universe, starting with the
perturbed metric, moving on to Einstein’s field equations, and addressing the
issue of gauge invariance in GR. We present the observational bounds based
on the 2018 Planck results. We also review the Higgs inflation model and its
issues as EFT. Finally, we derive the Lyth bound and review the δN formal-
ism. Chapter 5 discusses reheating, including its fundamental properties and
the preheating process that applies quantum field theory in a time-dependent
classical background.

Chapter 6 introduces the strong CP problem and the axion as a possible
solution, with a focus on the production mechanism of a relic abundance
of this particle. We also examine the axion quality problem, which restricts
higher-dimensional operators that break U(1)PQ and requires the axion to
solve the strong CP problem.

In the second part, we present the original work that forms the core of this
thesis, based on [54]. In Chapter 7, we provide a detailed review of the Peccei-
Quinn inflation model and demonstrate its UV sensitivity by showing that
its predictions are highly sensitive to Planck-suppressed higher-dimensional
operators. We combine our new constraints with the axion quality, and cut a
large parameter space of higher-dimensional operators, as shown in Fig. 7.8.
We also analyze the subsequent evolution of the axion, demonstrating that
the production mechanism of the DM abundance cannot be the misalignment
mechanism due to parametric resonances.

In Chapter 8, we introduce a project that provides a practical applica-
tion of the concepts covered in Chapter 7. This chapter aims to investigate
whether a relic abundance of dark matter can be obtained through the "ki-
netic misalignment" mechanism by exploring a region in the parameter space
where parametric resonances can be avoided. This is achieved by abandon-
ing the assumption that the radial field is the inflaton.

We summarize the main findings of this thesis and define the roadmap
for future developments in Chapter 9.
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In this thesis, we use the following convention for the metric signature
(+,−,−,−). We will work with natural units in which h̄ = kB = c = 1 and
the reduced Planck mass is MPl =

√
1/8πG. Moreover, xµ represents the

coordinate of spacetime and Greek indices go from 0 to 3 and Latin indices
from 1 to 3. We use a dot for the cosmic time derivative ˙ = d/dt and a prime
for conformal derivative ′ = d/dτ unless otherwise specified.
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Chapter 2

Modern Cosmology

In this chapter, we will introduce the fundamental concepts for the rest of the
research. We begin by reviewing the key components of the standard cosmo-
logical model in Sections 2.1 and 2.2. Then, we will derive the Hubble flow
and the redshift effect resulting from an expanding Universe in Sections 2.3
and 2.4. In Section 2.5, we will analyze the possible constituents of the Uni-
verse, followed by the evolution equations in Section 2.6. Other references
on these topics include [25, 52, 175, 26, 27].

2.1 The Cosmological Principle

When we have a lack of data this pushes physicists to use some guidelines,
that are based on symmetries which reduce the degree of freedom (DOF) in
the theory. Early cosmologists with the help of these assumptions tried to
construct models that aimed to describe the Universe in a broad-brush sense.
These models were based on an idea the "Cosmological Principle" which
states: that on sufficiently large scales the Universe is both homogeneous and
isotropic. By homogeneous we mean that the Universe looks identical every-
where in space and isotropic the same in every direction. The assumption
of isotropy is sustained by the observation of the isotropy of the CMB ra-
diation. Instead, homogeneity is sustained by the Sloan-Digital-Sky-Survey
(SDSS) which provides pieces of evidence that the distribution of galaxies, on
a scale larger than 300 light years, is homogeneous. The Cosmological princi-
ple, which we accept because it is in agreement with observations, embedded
in GR points towards the so-called Friedmann-Lemaître-Robertson-Walker
(FLRW) metric.

2.2 The FLRW metric

In GR, the geometry of the three-space ( Σt ) is encoded in a metric γij(x⃗),
or equivalently a line element dl2 = γijdxidxj, where we adopt the Einstein
convention for the repeated indices. The cosmological principle strongly con-
strains the form of the Universe, which can be described as a foliation of three
spaces ( Σt ); each of which is forced to be homogeneous and isotropic.

There are three examples of this type of geometry. The simplest one is
the Euclidean space with line element, in Cartesian coordinates, dl2 = dx⃗2,
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whose symmetries are translations and 3-D rotations. A spherical surface in
4-D Euclidean space with radius a is another possibility, which is described
by dl2 = dx⃗2 + dz2 and respecting z2 + x⃗2 = a2. The isometry of the metric
is the 4-D rotations. The last possibility is a hyper-spherical surface in 4-D
pseudo-Euclidean space, with line element dl2 = dx⃗2 − dz2 and respecting
z2 − x⃗2 = a2, where, as an abuse of notation, we used the same a for these
two cases. The isometry of the metric is 4-D pseudo-rotations (like Lorentz
transformations).

Focusing on the last two cases, it is useful to pass to rescaled adimen-
sional coordinates x → ax, z → az such that the line elements are collectively
described by

dl2 = a2
(

dx⃗2 ± dz2
)

, x⃗2 ± z2 = ±1. (2.1)

The embedded metric can be derived by differentiating the conditions (2.1)
leading to

x⃗ · dx⃗ = zdz. (2.2)

Inserting the previous expression in (2.1) we obtain

dl2 = a2

[
dx⃗2 ± (x⃗ · dx⃗)2

1 ∓ x⃗2

]
. (2.3)

In compact form we have

dl2 = a2γ̃ijdxidxj = a2

[
dx⃗2 + K

(x⃗ · dx⃗)2

1 − Kx⃗2

]
. (2.4)

where we introduced the induced metric γ̃ defined as

γ̃ij = δij + K
xixj

1 − Kx⃗2 , (2.5)

and the 3-D curvature K defined as

K =


0 Euclidean
1 Spherical
−1 Hyper-spherical.

(2.6)

The positivity of dl2 requires a2 > 0.
Passing from Cartesian to polar coordinates (r, θ, ϕ) the line element (2.4)

becomes

dl2 = a2
[

dr2

1 − Kr2 + r2dθ2 + r2 sin θ2dϕ2
]

. (2.7)

We can simplify the previous expression via the introduction of a new radial
coordinate defined as dq = dr/

√
1 − Kr2. With the new variable the line
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element (2.7) becomes

dl2 = a2
[
dq2 + S2

K (q)
(

dθ2 + sin θ2dϕ2
)]

, (2.8)

where we introduced

SK(q) =


q K = 0
sin q K = 1
sinh q K = −1.

(2.9)

To pass to an expanding Universe we include (2.4) into a 4-D geometry
and promote a to be a function of time, more concretely we have

ds2 = gµνdxµdxν = dt2 − a2(t)γ̃ijdxidxj. (2.10)

The gµν metric describes the FLRW Universe and a is the scale factor. Study-
ing the photon evolution is useful to introduce the conformal time dτ =
dt/a(t) and (2.8), such that (2.10) becomes

ds2 = a(t)2
[
dτ2 − dq2 − S2

K (q)
(

dθ2 + sin θ2dϕ2
)]

, (2.11)

that describes a metric that is conformal to the Minkowski spacetime. Pho-
tons travel along null geodesics (ds2 = 0) and the light rays propagation in
(2.11) is the same as in Minkowski spacetime. Along the path of the photon,
from ds2 = 0, we get

∆τ = ∆q, (2.12)

that are the photon trajectories in the metric (2.11).

2.3 The Hubble flow

Let us consider two points P and P0 (origin of the polar coordinates). The
proper distance dP between P and P0 can be inferred from the FLRW metric
in polar coordinates and putting dt = 0. From (2.7) we obtain

dP = a
∫ r

0

dr√
1 − Kr2

= a f (r), (2.13)

where

f (r) =


r K = 0
sin−1 q K = 1
sinh−1 q K = −1.

(2.14)

This definition of distance is not useful operationally since required to mea-
sure instantaneously the distance between P and P0. The coordinates (r, θ, ϕ)
are attached to each point and follow the expanding Universe and one can
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define a comoving coordinate

dC = f (r)a0, (2.15)

such that the relation between dC and dP is

dP =
a(t)
a0

dC. (2.16)

Since a(t) is changing in time then the proper distance dP changes and the
source P has a radial velocity with respect to P0 given by

vr = ȧ f (r) =
ȧ
a

dP. (2.17)

Equation (2.17) is the Hubble law and ȧ/a = H is the Hubble constant. In the
case in which the point P has a velocity measured by a comoving observer
(i.e. comoving with the Hubble flow), then P has a peculiar velocity (vpec)
and equation (2.17) becomes

vtot = vpec + HdP. (2.18)

Finally the value of H today is H0 = 67.32 ± 0.42kms−1Mpc−1 [9].

2.4 The Redshift effect

Observations are made through the motion of light that is coming to us from
distant galaxies. As we saw previously, galaxies are moving away or towards
us due to the Hubble flow and we expect differences between the observed
wavelength, λ0, and the emitted wavelength, λe. We define the redshift of a
source by the quantity

z =
λ0 − λe

λ0
, (2.19)

where the observer is located at the origin of the polar coordinates system.
Instead the source is located at r and emits light at te with wavelength λe.
Since light moves on ds2 = 0, from (2.7), we get∫ t0

te

dt
a(t)

=
∫ r

0

dr√
1 − Kr2

= f (r). (2.20)

The observer and source move with Hubble flow and from this, we can con-
clude that the distance f (r) is the same at different times. We can write

∫ t′0

t′e

dt
a(t)

= f (r) =
∫ t0

te

dt
a(t)

, (2.21)
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where t′e and t′0 are different emission and observation times respectively. If
we choose t′e and t′0 as t′e = te + δte and t′0 = t0 + δt0, from (2.21) we get

δte

a(te)
=

δt0

a0
, (2.22)

that holds for small δte, δt0. If the two previous intervals correspond to the
emission and absorption times we obtain

a(te)

λe
=

a0

λ0
. (2.23)

From the definition of redshift (2.19) we obtain

1 + z =
a0

a(te)
. (2.24)

If te is close to t0 we can expand

a(te) = a(t0) (1 + H0 (te − t0) + . . . ) , (2.25)

Plugging the last equation in (2.24) we obtain

z ≃ H0 (t0 − te) . (2.26)

For close-by objects, we can approximate t0 − te ≃ d, where d is the physical
distance between the two sources. Finally, we get

z ≃ H0d, (2.27)

that show how z increases linearly with d and the slope is given by H0 .

2.5 The Dynamics of the Universe

Up to now what we discuss does not rely on the particular behavior of the
cosmological expansion. We saw that the FLRW metric contains an unknown
function, the scale factor a(t), whose dynamic is governed by Einstein’s field
equations. We need to provide information about the matter content of the
Universe that is encoded in stress-energy tensor Tµν. Due to homogeneity
and isotropy the form of the stress-energy tensor is constrained to be

T00 = ρ(t), Ti0 = 0, Tij = −P(t)gij, (2.28)

where ρ and P are generic unknown time-dependent functions and they rep-
resent the energy and pressure densities respectively. This Tνµ is the one of a
perfect fluid as seen by a coming observer, and in a covariant form reads

Tν
µ = (ρ + P)UµUν − Pδ

µ
ν , (2.29)
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where Uµ = dxµ/ds is the relative four-velocity between the fluid and the
observer, while ρ and P are the energy and pressure densities in the rest-
frame of the fluid. For a comoving observer with the fluid, Uµ = (1, 0, 0, 0),
we recover (2.28).

The evolution of ρ and P are governed by the continuity equation that in
GR is

∇µTµν = 0, (2.30)

where ∇µ is the covariant derivative. The ν = 0 component gives the evolu-
tion of ρ that is

ρ̇ + 3H (ρ + P) = 0. (2.31)

2.5.1 The budget of the Universe

The content of the Universe is varied and we can classify it as :

1. Non-relativistic matter: Describes the "matter" that have negligible pres-
sure P ≪ ρ. From (2.31) we get the following scaling for ρ, ρ ≃ a−3 .
This behavior represents the dilution given by the volume expansion.

2. Relativistic: We define "radiation" as a form of matter such that P =
ρ/3. Photons or in general relativistic particles fall into this category.
From (2.31) we get ρ ≃ a−4. The extra dilution for relativistic particles
with respect to ordinary matter came from the redshift of the energy.

3. Dark energy: Recently the Universe has been observed to be acceler-
ated. Our Universe seems to be dominated by the strange form of "mat-
ter" with negative pressure P = −ρ. From (2.31) we get ρ ≃ a0, and the
energy density remains constant.

It is customary to introduce a relation between P and ρ as

P = wρ, (2.32)

where w is the equation of the state of "matter" under consideration. If we
insert (2.32) in (2.31) we get

ρ ∼ a−3(1+w), (2.33)

that is the general scaling of ρ with the scale factor a. From w = 0 or w = 1/3,
we obtain the scaling for non-relativistic and relativistic matter respectively,
as expected.

2.6 Friedmann Equations

The Einstein equations are

Gµν = Rµν −
gµνR

2
=

1
M2

Pl
Tµν, (2.34)
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where Rµν and R are the Ricci tensor and scalar. If we insert the ansatz (2.10)
for the metric and the stress-energy tensor (2.28) in (2.34) we obtain

M2
Pl

(
ȧ
a

)2

=
ρ

3
−

M2
PlK
a2 , (2.35)

M2
Pl

ä
a
= −1

6
(ρ + 3P) . (2.36)

From (2.35) with K = 0 we define the critical density ρcrit as follow

ρcrit,0 = 3M2
PlH

2
0 = 1.05 × 10−5h2GeVcm−3, (2.37)

where h is introduced from the Hubble parameter today as follows

H0 = 100hkms−1Mpc−1, (2.38)

and its value is h ≃ 0.7 from Planck [9]. It is common to introduce the fol-
lowing parameter Ω as follow

ΩI,0 =
ρI,0

ρcrit,0
. (2.39)

With the last definition, we can rewrite (2.35) as follows

H2 = H2
0

[
Ωr,0

( a0

a

)4
+ Ωm,0

( a0

a

)3
+ ΩK,0

( a0

a

)2
+ ΩΛ,0

]
, (2.40)

where ΩK,0 = −K/a2
0H2

0 and r, m, Λ stand for radiation, matter and cosmo-
logical constant. From type IA supernova, CMB, and LSS we know that the
Universe is filled by [9, 4, 85, 149]

ΩK,0 ≤ 0.01, Ωr,0 = 9.4 × 10−5, Ωm,0 = 0.32, ΩΛ,0 = 0.68. (2.41)
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Chapter 3

The Inflationary scenario

We will introduce the standard notion of particle horizon and Hubble sphere
in Section 3.1, which are tightly linked to the discussion of puzzles of the
standard Big Bang cosmology, Section 3.2. They represent a serious problem
since they point towards a "high" degree of fine-tuning of the initial condi-
tions of the Universe for explaining what we observe. In Sections 3.3 and
3.4, we analyzed inflation as a possible solution to these puzzles. Other ref-
erences on these topics include [26, 27, 133, 112, 127, 29, 20].

3.1 Horizons and Hubble radius

Signals, in a casual theory, can at most travel at the speed of light. It is there-
fore necessary to study the dynamics of photons to understand the casual
structure of the Universe. Using the suitable coordinate (2.11), we can define
the comoving particle horizon q(τ) as

q(τ) = τ − τi =
∫ t

ti

dt
a(t)

, (3.1)

where the hypersurface τi is the Big Bang singularity. Equation (3.1) repre-
sents the largest comoving distance from which an observer at time t will be
able to receive signals. The particle horizon takes into account all the history
of the observer and any possible causal influence has to come within this
region. It is (3.1) that plays an important role in the horizon problem.

From (3.1) we can introduce another crucial ingredient, the comoving
Hubble radius. Indeed, the relation (3.1) can be rewritten as

q(a) =
∫ ln a

ln ai

(aH)−1 d ln a, (3.2)

and the casual structure of the Universe is controlled by (aH)−1, the so called
comoving Hubble radius. In a Universe dominated by a single fluid with an
equation of state (2.32), we get

q(a) =
2H−1

0
1 + 3w

[
a

1+3w
2 − a

1+3w
2

i

]
≃ 2

1 + 3w
(aH)−1 , (3.3)
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where we neglect the contribution from ai. The last quantity is finite if 1 +

3w > 0 (strong energy condition (SEC)), indeed τi = 2a
1+3w

2
i /(1 + 3w)H0

goes to zero when ai goes to zero if 1 + 3w > 0. From (3.3) we note that
numerically the comoving particle horizon and Hubble radius roughly agree.
Here, we want to stress that the two quantities are very different:

1. Comparing a comoving separation λ, of the two particles, with the
Hubble radius determines if the two particles can communicate at a
given time (within the next Hubble time).

2. Comparing λ with q determines if two particles could or could not have
communicated.

For the solution of the horizon problem, as we will soon see, will be crucial
to obtain q ≫ (aH)−1.

3.2 The Horizon and flatness problems

An observer can potentially observe all events that belong to the particle hori-
zon. At the time of CMB formation, which occurred 380,000 years after the
Big Bang, the CMB consisted of 104 disconnected patches. These patches cor-
responded to two points in the sky that were separated by one degree. The
particle horizons of these two points did not overlap, indicating that there
was not enough time for them to interact. The CMB shows isotropy on scales
larger than one degree, which poses the horizon problem: how could two
points that were casually disconnected have the same temperature?

Instead, the flatness problem is an issue of "fine-tuning". From (2.35) we
know that Ω obeys

Ω − 1 =
K

a2H2 . (3.4)

During radiation H scales as H ≃ ρ ≃ a−4 and (3.4) tells us that Ω − 1 scales
as Ω − 1 ≃ a2. We can evolve back in time the Ω − 1 factor and obtain its
value at BBN

|Ω − 1|T=TBBN

|Ω − 1|T=T0

≈
(

T0

TBBN

)2

≈ 10−16, (3.5)

where we used T ∼ 1/a and the numerical values for the temperatures today
(T0 ∼ 10−13GeV) and at Big Bang nucleosynthesis (BBN) (TBBN ∼ 10−3GeV).
Observation is pointing towards a value for |Ω − 1|T=T0 to be |Ω − 1|T=T0 ≲
0.01, and to get this value we need to fine-tune |Ω− 1|T=TBBN close to one with
a precision of 1016. The flatness problem is the request for this extremely high
tuning.

3.3 A possible solution of the previous puzzles

As one may imagine a solution to the previous problem is provided by infla-
tion. Our description of q, relation (3.1), already gives us an intuition of the
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way to go. We need to obtain a large q, and we achieve this with a sufficiently
long period where the Hubble radius decreases

d
dt

1
aH

< 0. (3.6)

The last relation, as we will see, requires a violation of the SEC condition,
namely 1+ 3w < 0. Moreover, relation (3.6) will be our definition of inflation.
With a violation of the SEC condition now the integral in (3.2) is dominated
by the initial contribution

τi =
2H−1

0
1 + 3w

a
1+3w

2
i , (3.7)

that is diverging to −∞ when ai goes to zero if w < −1/3. This divergence
gives us more time before decoupling and possibly the particles may have
a chance to interact. The space-like singularity τ = −∞ is pushed to past
infinity and inflation replaces τ = 0 with its end. Within this scenario, at
τ = 0 the standard Big Bang cosmology starts.

Our main goal is to obtain Nk = ln aend/a(k) which represents the num-
ber of e-folds before the end of inflation at which a generic comoving scale k
equals the Hubble scale aH. Then we will specialize on Nhor, which evalu-
ates Nk at the present Hubble scale khor = a0H0. Hence, Nhor represents the
number of e-folds needed to solve the aforementioned problem.

Our quantity of interest is k/a0H0, which represents a generic scale k mea-
sured in units of the present Hubble scale. We model the history of the Uni-
verse after inflation considering a possible phase of reheating governed by
an equation of state wreh, the radiation phase, and matter1. The transition
between each phase is assumed to be instantaneous. We can rewrite k/a0H0
as follows

k
a0H0

=
akHk
a0H0

= e−Nk
aend

areh

areh

aeq

Hk
H0

aeq

a0
, (3.8)

where in going from left to right we used k = akHk, Nk = ln aend/a(k), and
we inserted the phases of the expansion of the Universe.

The history assumed, relations (2.33) and (2.24) tell us that aend/areh =

(ρreh/ρend)
1/3(1+wreh), areh/aeq =

(
ρeq/ρreh

)1/4, and a0/aeq = 1 + zeq. With
these relations, expression (3.8) becomes

Nk = − ln
k

a0H0
+

1
3(1 + wreh)

ln
ρreh

ρend
+

1
4

ln
ρeq

ρreh
+ ln

Hk
H0

− ln 1 + zeq, (3.9)

where Hk is the Hubble scale during inflation, H0 is the Hubble scale today,
ρreh is the energy density at reheating, ρend is the energy density at the end
of inflation, ρeq is the energy density at the moment of equivalence between
matter and radiation and zeq the redshift of this moment.

If we set k to the horizon scale today khor = a0H0, we assume instanta-
neous reheating ρreh = ρend, and a constant H during inflation Hk ≃ HI ,

1We neglect the last phase of dark energy domination
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relation (3.9) becomes

Nhor ≃
1
4

ln
ρeq

ρreh
+ ln

HI

H0
− 8, (3.10)

where we used 1 + zeq ≃ 3000. From (2.35) the ratio ρeq/ρreh becomes
ρeq/ρreh = H2

eq/H2
I and (3.10) becomes

Nhor ≃ 68 +
1
2

ln
HI

MPl
, (3.11)

where we used Heq = 5.25 × 106h3Ω2
m,0H0, H0 = 1.75 × 10−61hMPl, Ωm,0 =

0.32 from (2.41) and h ≃ 0.7 from (2.38) [111] . This relation tells us that the
number of e-folds needed to solve the horizon problem crucially depends on
the scale of inflation. Hence, the precise value of Nhor is a model-dependent
statement. For what concern this thesis HI will be set to HI ∼ 10−6MPl, such
that Nhor becomes Nhor ∼ 61 .

The value Nhor ∼ 61 just derived is based on assumptions that in general
are not expected to hold, and the correct Nhor,c will be different. If we allow
for a non-instantaneous reheating (with for simplicity wreh = 0) and a possi-
ble drop in the energy density at the end of inflation ρend ̸= 3M2

PlH
2
I relation

(3.11) becomes [111, 132]

Nhor,c = Nhor +
1
4

ln
3M2

PlH
2
I

ρend
+

1
12

ln
ρreh

ρend
. (3.12)

The last two terms are the missing effects discussed above. In the scenario
concerned by this thesis, the reduction in the energy density at the end of
inflation is one or two orders of magnitude. Hence, the second term in (3.12)
is unlike to increase Nhor,c by much more than a factor of order unity.

The last term in (3.12) belongs to the main uncertainty. The duration of
the reheating phase is not known and the reduction in energy density can
span many orders of magnitude. In the extreme case in which reheating
continues until BBN and with HI ∼ 10−6MPl, the last factor in (3.12) gives
1/12 ln ρreh/ρend ∼ −15. Hence, it is plausible to assume, for what concerns
the thesis, that the correct value for Nhor,c is between 50 ≤ Nhor,c ≤ 60. This
is consistent with what usually is assumed in the literature. However, under
simple assumptions regarding the model, the expected number of e-folds can
evade the previous range, see [111] for more details.

Inflation also solves the flatness problem. Indeed 1 − Ω is controlled by
(aH)−2 and in inflation the Hubble radius is decreasing, pushing 1 − Ω to
zero. In other words, Ω = 1 is an attractor during inflation. It is highly
believed that inflation predicts Ω0 to be close to one, Ω0 = 1.
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3.4 Inflation

So far we use as a definition of inflation the shirking Hubble sphere since it
is in direct connection with the horizon problem. In the literature, there are
equivalent definitions of inflation

d
dt

1
aH

< 0 ⇐⇒ ä > 0 ⇐⇒ ϵ = − Ḣ
H2 < 1 ⇐⇒ P < −ρ

3
, (3.13)

and are all equivalent. We saw that we needed at least N ∼ 60 to solve
the previous puzzles. This means that ϵ should be smaller than one for a
sufficiently long time. Hence, ϵ has to vary slowly in one Hubble time, to
quantify this change we introduce

η =
d ln ϵ

dN
=

ϵ̇

Hϵ
. (3.14)

If |η| < 1, inflation can persist. Let us see which field theory can sustain an
inflationary period in the following sub-section.

3.4.1 Scalar field

As a simple possible realization of inflation, we will study a scalar field as a
source for the evolution of the FLRW metric (2.10). Moreover, in the rest of
the thesis, we restrict to the case where the spatial curvature K, in (2.10), is set
to zero. This assumption is consistent with the experiment and we assume
the validity of GR and a single scalar field ϕ. The action of a real scalar field
coupled minimally to gravity is given by

Sϕ =
∫

d4x
√
−gL =

∫
d4x
√
−g
(

1
2

∂µϕ∂µϕ − V(ϕ)

)
, (3.15)

From Sϕ we can derive the stress-energy tensor that is

Tµν = ∂µϕ∂νϕ − gµνL. (3.16)

From the Lagrangian in (3.15) we can read the component of the Tµν that are

T00 = ρϕb = ϕ̇2
b/2 + V(ϕb), (3.17)

Pϕb = Ti
i /3 = ϕ̇2

b/2 − V(ϕb), (3.18)

where we used a fluid interpretation for ϕ and we restrict to homogeneous
configuration, namely ϕ is a function only on time ϕb(t). From the Lagrangian
in (3.15) we can derive the Klein-Gordon equation

ϕ̈b + 3Hϕ̇b = −V,ϕb , (3.19)
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where V,ϕb = ∂V/∂ϕb and the 3Hϕ̇b plays the role of a friction term. If we
insert (3.17) and (3.18) in (2.35) and (2.36) we obtain

M2
PlH

2 =
1
3

[
ϕ̇2

b/2 + V(ϕb)
]

, (3.20)

ä
a
= − 1

3M2
Pl

(
ϕ̇2

b − V(ϕb)
)

. (3.21)

For an accelerated expansion the pressure satisfies Pϕb < −ρϕb/3. Putting
(3.17) and (3.18) in wϕb = Pϕb/ρϕb we obtain

wϕb =
ϕ̇2

b/2 − V(ϕb)

ϕ̇2
b/2 + V(ϕb)

. (3.22)

If ϕ̇2
b ≪ V, then relation (3.22) becomes wϕb ≈ −1 and we have an equation

of state similar to vacuum energy that can sustain inflation.
We can obtain the same result starting from the definition of the ϵ param-

eter. If we take a time derivative of (2.35) and using (3.19) we get

Ḣ = −
ϕ̇2

b

2M2
Pl

. (3.23)

If we use (3.23) and (2.35) in (3.13) we obtain

ϵ =
3ϕ̇2

b

2
(
ϕ̇2

b/2 + V(ϕ2
b)
) . (3.24)

In order to have ϵ ≪ 1 we need ϕ̇2
b ≪ V(ϕ2

b), as we expected.
To maintain for a long time ϵ < 1, we can introduce the dimensionless

acceleration for Hubble time

δ̃ = − ϕ̈b

Hϕ̇b
, (3.25)

and δ̃ and η are related, in fact taking the derivative of (3.23) we obtain η =
2(ϵ − δ̃) . If {ϵ, |δ̃|, |η|} ≪ 1 then H, ϵ and ϕb change slowly in one Hubble
time.

Let us now analyze a regime in which these parameters are small, such
that inflation persists. The assumption that {ϵ, |δ̃|, |η|} are small is called
slow-roll approximation, and these parameters are called slow-roll parame-
ters. From ϵ ≪ 1 we need ϕ̇2

b ≪ V and relation (2.35) becomes

3M2
PlH

2 ≃ V(ϕb). (3.26)

From the slow-roll of ϕb, namely δ̃ ≪ 1, we obtain

3Hϕ̇b ≃ −V,ϕb , (3.27)
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that is the slow-roll version of the Klein-Gordon equation. If we insert (3.27)
and (3.26) in the definition of ϵ we obtain

ϵ ≃
M2

Pl
2

(
V,ϕb

V

)2

= ϵV, (3.28)

where the right-hand side is the definition of potential slow-roll parameter
ϵV. Using (3.13) and (3.25) we can introduce the second potential slow-roll
parameter ηV as

δ̃ + ϵ = − ϕ̈b

Hϕ̇b
− Ḣ

H2 ≈ M2
Pl

V,ϕbϕb

V
= ηV, (3.29)

where in going from left to right we estimate ϕ̈b using (3.27) and the most
right-hand side is the definition of ηV. Notice that ηV is related to η as ηV ≈
2ϵ − η/2. Of course, inflation requires that both ϵV and ηV are small and the
form of the potential is constrained to be sufficiently flat.

The amount of e-folds between two times ti and tf is defined as

Nt =
∫ tf

ti

Hdt. (3.30)

If ti and tf satisfy ϵ(ti) = ϵ(tf) = 1 then Nt represents the total duration of
inflation. It is important to stress that Nt and Nhor,c (see Section 3.3) are two
different quantities and the exact value of Nt is not known but it is expected
to be much larger than Nhor,c, Nt ≫ Nhor,c. If we use relation (3.27) and (3.28)
in (3.30) we obtain

Nt ≃ −
∫ ϕf

ϕi

1√
2ϵV

dϕ

MPl
, (3.31)

that is an integral over-the-field excursion during inflation.
Let us conclude this section by noting that based on the dynamics of the

inflaton field, we can roughly have large-field or small-field models. In the
first class, the inflaton field starts from a large field value and rolls down to
the minimum of the potential. An example of this class is chaotic inflation
[118]. In the second case, the inflaton initial value is small and the field rolls
down to the potential minimum. New inflation [117] enters in this class.
In both scenarios, the end of inflation is set when the kinetic energy of the
inflaton field becomes comparable to the potential, namely ϵ(tf) = 1. Hybrid
inflation is an example of a model that can be both large-field or small-field,
but with a different condition that sets the end of inflation, as stated in [119].
In this model, the end of inflation is established by a phase transition that is
generated from an instability from a second field. Inflation may consist of
different accelerated phases, each represented by a single-field model. For
example, double inflation models involve two dynamical fields that provide
two periods of inflation. An example is given by [142]. The presence of
potential is a common feature among these models, but there are cases where
inflation occurs without it [12].
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Chapter 4

The perturbed Universe

So far our analysis has focused on the homogeneous Universe. We know that
is not of course true at all scales and inhomogeneities are present and we in-
troduced it in Section 4.1. We need to account for possible perturbations
in the inflaton field that will become the seeds for the CMB perturbations,
galaxies, and so on; this natural production mechanism of inhomogeneities
is a strong motivation for the validity of the inflationary paradigm. Due to
Einstein field equations these perturbations in ϕ source inevitably fluctua-
tions in the metric. The gauge issue in GR reinforces the tight link between
perturbations in the metric and the inflaton field that is discussed in Section
4.2. We will introduce gauge invariant quantities that mix perturbations in
ϕ and gµν showing explicitly that they are ultimately linked. We will derive
the linear equations of motion in Section 4.6 and from them we show the con-
servation of R (4.94) in Section 4.7. In Sections 4.9 and 4.10 we derived the
power spectrum for R and the tensor modes. To practice with the tools just
exposed we will analyze in Section 4.11 the model called Higgs Inflation. In
Section 4.12, we derived the Lyth bound. In Section 4.13 we present the δN
formalism. Other references on these topics include [26, 22, 127].

4.1 Perturbed metric tensor

Let us consider a small perturbation around a flat FLRW metric ḡµν as

gµν = ḡµν + δgµν. (4.1)

The general perturb line element is

ds2 = a2
[
(1 + 2A) dτ2 − 2Bidxidτ −

(
δij + hij

)
dxidxj

]
, (4.2)

where A, B, h are functions of (τ, xi) and we will work with the conformal
time τ. It is useful to introduce the so-called scalar-vector-tensor (SVT) de-
composition. Within this decomposition and in linear theory, it has been
proven that scalar, vector, and tensor perturbations evolve independently
and they can be studied separately [102]. For vectors the SVT decomposition
is simple, it consists of

Bi = ∂iB + B̂i, (4.3)
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where B̂i satisfies ∂iB̂i = 0. B is the scalar part of Bi and B̂i is the vector part
and it is solenoidal. For the rank-two tensor we have

hij = 2Cδij + 2∂(i∂j)E + 2∂(iÊj) + 2Êij, (4.4)

where

∂(i∂j)E =

(
∂i∂j −

δij

3
∇2
)

E, (4.5)

∂(iÊj) =
1
2
(
∂iÊj + ∂jÊi

)
. (4.6)

A before ∂iÊi = 0 and Êij represents gravitational waves in cosmology and
satisfies Êi

i = 0 and ∂iÊij = 0. In this thesis, we are mainly interested in
scalar and tensor perturbations. Vector perturbations are not produced dur-
ing scalar-induced inflation and, even if they are present initially, they will
decay quickly with the expansion of the Universe.

As we briefly mentioned the metric and matter perturbations are not only
linked through the Einstein equations but also due to a redundancy of the de-
scription of the line element (4.2). In other words, not all perturbations are
physical and a change of coordinate can change the values of the perturba-
tions. We can introduce fictitious perturbations starting from an unperturbed
FLRW metric. Let us take

ds2 = a2
[
dτ2 − δijdxidxj

]
, (4.7)

and we perform the infinitesimal change xi to x̃i = xi + di(τ, x⃗) such that
dxi = dx̃i − di,′dτ − di

,jdxj, where di,′ = ∂τdi and di
,j = ∂jdi. The line element

(4.7) becomes

ds2 = a2
[
dτ2 − 2di,′dτdx̃i −

(
δij + 2∂(idj)

)
dx̃idx̃j

]
, (4.8)

where we neglect the second order term in d. We introduced two metric per-
turbations with the change of coordinates. Not only are metric perturbations
affected by a change of coordinates but also matter quantities. Performing
a time redefinition from τ to τ + d̃(τ, x⃗), the homogeneous energy density
ρ̄(τ) transforms in ρ̄(τ) + ρ̄(τ)′d̃. This tells us that even if we start from a
uniform Universe we can introduce gauge modes that mimic perturbations.
We can also revert the logic and remove real perturbations with an appro-
priate change of coordinates (hypersurface of constant energy for example).
These very naive examples suggest we must introduce more fundamental
quantities that are gauge (coordinate ) invariant.

4.2 Gauge Transformations

We consider the following change of coordinates from xµ to x̃µ = xµ +
dµ(τ, x⃗) and we define d0 = T and di = ∂iL + L̂i . Using the invariance
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of the line element we get the standard formula for the metric tensor in the
two coordinates system

gµν(x) =
∂x̃α

∂xµ

∂x̃β

∂xν
g̃αβ(x̃). (4.9)

For example for µ = ν = 0 we get

g00(x) =
∂x̃α

∂τ

∂x̃β

∂τ
g̃αβ(x̃). (4.10)

Using the parametrization (4.2), ∂τ̃/∂τ = 1 + T′ and ∂x̃i/∂τ = ∂iL′ + L̂i,′ we
can deduce the change of A, at linear order, under the previous coordinates
transformation, namely

Ã = A − T′ −HT, H = aH. (4.11)

With the same logic we can derive the change of Bi and hij that are

B̃i = Bi + ∂iT − L̂i,′ − ∂iL′, (4.12)

h̃ij = hij − 2∂(iLj) − 2HTδij. (4.13)

(4.14)

In terms of the variables used in the SVT decomposition we have

B̃ = B + T − L′, (4.15)
˜̂Bi = B̂i − L̂i,′ , (4.16)

Ẽ = E − L, (4.17)

C̃ = C −HT − ∇2

3
L, (4.18)

˜̂Ei = Êi − L̂i, (4.19)
˜̂Eij = Êij. (4.20)

We notice that within the SVT decomposition, the tensor perturbations Êij at
linear order are gauge invariant.

We can introduce scalar, vector, and tensor perturbations Ψ, Φ, and Φ̂
that are gauge invariant at linear order and they are called Bardeen variables.
They are defined as [21, 102]

Ψ = A +H
(

B − E′)+ (B − E′)′ , (4.21)

Φ = −C −H
(

B − E′)+ 1
3
∇2E, (4.22)

Φ̂i = Êi − B̂i, (4.23)

Êij. (4.24)

These variables can not be removed via a gauge transformation.
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As we said, contrary to working with gauge invariant quantities, we can
fix the gauge and do the computations there. An example of a useful gauge
is the Newtonian gauge which is defined when B = E = 0. In this gauge,
A = ΨN and C = −ΦN can be seen directly from (4.21) and (4.22). Where
ΨN and ΦN are the Bardeen variables in the Newtonian gauge. Another
useful gauge that we will use in this thesis is the spatially flat gauge where
C = E = 0.

4.3 Perturbed stress-energy tensor

The unperturbed stress-energy tensor T̄µ
ν = (ρ̄ + P̄)ūµūν − P̄δ

µ
ν where ūµ =

aδ0
µ, ūµ = a−1δ

µ
0 is now modified by a δTµ

ν defined as

δTµ
ν = (δρ + δP) ūµūν + (ρ̄ + P̄) (δuµūν + ūµδuν)− δPδ

µ
ν − Πµ

ν , (4.25)

where δρ, δP, and δuµ represent perturbations in the energy density, pressure
and velocity. For the moment we keep track of Π, the anisotropic part of the
stress-energy tensor, even if in this thesis we will neglect it.

Let us carry out the component of the δT. The perturb velocity has to
respect the normalization condition gµνuµuν = −1 and using the normal-
ization condition for the unperturbed velocity and metric ḡµνūµūν = −1 we
obtain

δgµνūµūν + 2ūµδuµ = 0. (4.26)

If we use ūµ = 1/aδ
µ
0 and (4.2) in (4.26) we get δu0 = −A/a. For the total

velocity, we have

uµ = ūµ + δuµ =
(

1 − A, vi
)

/a, vi =
dxi

dτ
, (4.27)

and the velocity with the lower index is

uµ = a [1 + A,− (vi + Bi)] . (4.28)

From (4.25) we can evaluate all δT terms that are

δT0
0 = δρ, (4.29)

δT0
i = − (ρ̄ + P̄) (vi + Bi) , (4.30)

δTi
0 = (ρ̄ + P̄) vi = qi, (4.31)

δTi
j = −δPδi

j − Πi
j, (4.32)

where we used Π0
0 = Π0

i = 0 and we defined the momentum density qi as
qi = (ρ̄ + P̄) vi. If there are present several contributions to the stress-energy
tensor TI

µν, for the total stress-energy tensor we have Tµν = ∑I TI
µν. For the
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components of Tµν we obtain

δρ = ∑
I

δρI, (4.33)

δP = ∑
I

δPI, (4.34)

qi = ∑
I

qi
I, (4.35)

Πij = ∑
I

Πij
I . (4.36)

We can decompose the components of δT using the SVT decomposition, for
the vector qi we have

qi = ∂iq + q̂i, (4.37)

and for the anisotropic part, we have

Πij = ∂(i∂j)Π + ∂(iΠ̂j) + Π̂ij. (4.38)

Under the change of coordinates from xµ to x̃µ = xµ + dµ(τ, x⃗) where as
before we define d0 = T and di = ∂iL + L̂i. Under the change of coordinates
for the stress-energy tensor Tµν we obtain

Tµ
ν (x) =

∂xµ

∂x̃α

∂x̃β

∂xν
T̃α

β (x̃). (4.39)

For the component µ = ν = 0 we have

T0
0 (x) = ρ̄ + δρ =

∂τ

∂τ̃

∂τ̃

∂τ
T̃0

0 = ρ̄ + ρ̄′T + δρ̃, (4.40)

where going from left to right we used the definition of T0
0 , ∂τ/∂τ̃ = 1 − T′

and we worked at linear order. From (4.40) we obtain

δρ̃ = δρ − ρ̄′T, (4.41)

that represents the change of δρ under the change of coordinates. For the
other components of Tµν we have

δP̃ = δP − P̄′T, (4.42)

ṽi = vi + L
′
i , (4.43)

q̃i = qi + (ρ̄ + P̄) L
′
i , (4.44)

Π̃ij = Πij. (4.45)

From the last relations, we see that we need to introduce some gauge
invariant variable that is composition of matter and metric perturbations.
We define the comoving gauge density perturbation as

ρ̄∆ = δρ + ρ̄′ (v + B) , (4.46)
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where v is the scalar part of vi, namely vi = ∂iv + v̂i . Relation (4.46) is gauge
invariant at linear order, indeed

ρ̄∆̃ = δρ̃ + ρ̄′
(
ṽ + B̃

)
= δρ − ρ̄′T + ρ̄′

(
v + L′ + B + T − L′) = ρ̄∆, (4.47)

where in going from left to right we used the transformation rules for δρ, v,
and B.

As before, instead of working with gauge invariant quantities, we can fix
the gauge in the matter section. Famous gauge choices are

1. Uniform density gauge : δρ = 0 .

2. Comoving gauge: We put the scalar part of the momentum density to
zero, q = 0.

Within these gauge choices, we have at our disposal the freedom to set other
perturbations, A, B, or other to zero. Another property that characterizes
matter perturbations is the type of these fluctuations. In this thesis, we will
see two types: adiabatic and isocurvature perturbations.

4.4 Adiabatic perturbations

If the Universe is composed of multiple fluids, adiabatic perturbations corre-
spond to perturbations induced by a common, local shift in time of all back-
ground quantities; we define adiabatic perturbations as

δρI (τ, x⃗) = ρ̄I (τ + δτ(x⃗))− ρ̄I(τ) = ρ̄′Iδτ(x⃗), (4.48)

where I indicates the particular species and δτ is the same for all. In a certain
sense, we can view the presence of adiabatic perturbations as some parts of
the Universe being "ahead" and the others "behind " in the evolution. Adia-
batic perturbations imply

δτ =
δρI

ρ̄
′
I
=

δρJ

ρ̄
′
J

, (4.49)

for all I, J. If there is no energy transfer between different species I, J, we can
use ρ̄′I = −3H(1 + wI)ρ̄I and rewrite (4.49) as

δI

1 + wI
=

δJ

1 + wJ
, (4.50)

where δI = δρI/ρ̄I.
From the last expression, we can deduce that, for adiabatic perturbations,

all matter components have the same fractional perturbation; instead, all ra-
diation components obey δr = 4δm/3. For adiabatic perturbations, it follows
that the total energy density can be written as

δρTOT = ρ̄TOTδTOT = ∑
I

ρ̄IδI. (4.51)
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This quantity is dominated by the species that is dominant in the background
since all δI are comparable.

4.5 Isocurvature Fluctuations

Isocurvature fluctuations can be defined as the complement of adiabatic fluc-
tuations. Isocurvature perturbations do not perturb the total energy density
but are responsible for fluctuations between different components (I, J). We
can use as a definition of isocurvature fluctuations the following expression

SIJ =
δI

1 + wI
−

δJ

1 + wJ
. (4.52)

Observations are consistent with a primordial spectrum of perturbations that
are of adiabatic type.

4.6 Linearized Einstein Equations

We are going to derive the perturb continuity and Einstein equations at linear
order in perturbation theory. We are going to use the spatially flat gauge
(C = E = 0) from now on since it will be useful for later calculations of the
evolution of δϕ.

The metric tensor in this gauge is

gµν = a2
(

1 + 2A −∂iB
−∂iB −δij

)
, (4.53)

where we neglect vector modes and gravitational waves (Êij) will be treated
separately. In the rest of the thesis, we will neglect anisotropic stress in the
stress-energy tensor, Πij = 0, and the vector modes inside Tµν. In other
words, in the rest of the thesis, unless otherwise specified, we deal only with
scalar perturbations both in the metric and matter sectors. The inverse metric
is

gµν =
1
a2

(
1 − 2A −∂iB
−∂iB −δij

)
. (4.54)

With (4.53) and (4.54) we can evaluate the connection coefficients that are
defined as

Γµ
νρ =

1
2

gµλ
(
∂νgλρ + ∂ρgλν − ∂λgνρ

)
, (4.55)
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whose components are

Γ0
00 =

1
2

g00∂τg00 =
1 − 2A

2a2

[
a2 (1 + 2A)

]′
= H+ A′, (4.56)

Γ0
0i =

1
2

g00∂ig00 = ∂i A +H∂iB, (4.57)

Γi
00 = H∂iB + ∂iB′ + ∂i A, (4.58)

Γ0
ij = Hδij − 2AHδij − ∂i∂jB, (4.59)

Γi
j0 = Hδi

j, (4.60)

Γi
jk = −δjk∂iBH. (4.61)

The conservation of the Tµν, ∇µTµ
ν = 0, gives the continuity and Euler

equations. The ν = 0 component is

∂µTµ
ν + Γµ

µαTα
0 − Γα

µ0Tµ
α = 0, (4.62)

and at the background and first order we have

ρ̄′ + 3H (ρ̄ + P̄) = 0, (4.63)

δρ + 3H (δρ + δP) + (ρ̄ + P̄)∇2v = 0. (4.64)

The Euler equation is the ν = i part and we get

(v + B)′ − P̄′

ρ̄′
3H (v + B) +

δP
ρ̄ + P̄

+ A +HB +Hv = 0. (4.65)

Notice that this equation does not contain the ν = i index due to the SVT
decomposition and having ignored vector modes. In (4.65), both v and B
appear with a collective gradient that can be integrated by providing a scalar
equation.

4.6.1 Perturbed Einstein Equations

The Ricci tensor is

Rµν = ∂ρΓρ
µν − ∂νΓρ

ρµ + Γα
αρΓρ

µν − Γα
νρΓρ

αµ, (4.66)

whose components are

R00 = H∇2B +∇2B′ +∇2A − 3H′ + 3HA, (4.67)

R0i = H′∂iB + 2H (∂i A +H∂iB) , (4.68)

Rij = δij

(
H′ + 2H2

)
− δij

(
A′H+ 2AH′ +H∇2B + 4AH

)
−

∂i∂j
(

B′ + A
)
− 2H∂i∂jB. (4.69)

The Ricci scalar is
R = gµνRµν = g00R00 + gijRij, (4.70)
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and using the previous results for Rµν we have

a2R =− 6H′ − 6H2 + 6HA′ + 12AH′+

+ 6H∇2B + 12AH2 + 2∇2 (B′ + A
)

. (4.71)

The Einstein tensor is defined as

Gµν = Rµν −
gµν

2
R, (4.72)

whose components are

G00 = 3H2 − 2H∇2B, (4.73)

G0i = −2H′∂iB −H2∂iB + 2H∂i A, (4.74)

Gij = −δij

(
H2 + 2H′

)
− ∂i∂j

(
B′ + A

)
− 2H∂i∂jB+

+δij

(
∇2B′ +∇2A + 2AH2 + 2H∇2B + 4H′A + 2A′H

)
(4.75)

We are ready now to derive the Einstein equations that are

M2
PlGµν = Tµν. (4.76)

For the µ = ν = 0 component, in linear regime, we have

M2
PlG00 = g00T0

0 . (4.77)

Using (4.73) and (4.29) in (4.77) we obtain

M2
Pl

(
3H2 − 2H∇2B

)
= a2ρ̄ (1 + δ + 2A) , (4.78)

and at the background and perturb level we have

M2
Pl3H2 = a2ρ̄, (4.79)

−2M2
PlH∇2B = a2ρ̄ (2A + δ) . (4.80)

Using (4.74) and (4.30), for the µ = i, ν = 0 components, we obtain

2M2
PlH∂i A = −a2 (ρ̄ + P̄) ∂i (v + B) . (4.81)

Using (4.75) and (4.32), for the diagonal part of the µ = i, ν = j compo-
nents, we get

M2
Pl

(
H2 + 2H′

)
= −a2P̄, (4.82)

∇2B′ +∇2A + 2AH2 + 2H∇2B + 4H′A + 2A′H =
a2δP
M2

Pl
. (4.83)
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Instead from the off diagonal part of the µ = i, ν = j components we obtain

B′ + 2HB = −A. (4.84)

Relation (4.81) can be integrated, with the assumption that the perturba-
tions decay at infinity, and we get

2M2
PlHA = −a2 (ρ̄ + P̄) (v + B) . (4.85)

Using (4.85) in (4.80) we obtain

−2M2
PlH∇2B = a2 [ρ̄δ − 3H (ρ̄ + P̄) (v + B)] = a2ρ̄∆, (4.86)

where in going from left to right we used the definition of comoving-gauge
density perturbation ∆. Using (4.84) in (4.83) we obtain

A′H+ A
(
H2 + 2H′

)
=

a2δP
2M2

Pl
. (4.87)

Relations (4.87), (4.86), (4.85), (4.64) and (4.65) form a consistent but redun-
dant system.

4.7 Conserved curvature perturbation

To link the values of the primordial perturbations during and after infla-
tion, it is crucial to introduce the so-called comoving curvature perturbation;
which is conserved on super-Hubble (k ≪ H) scales for adiabatic fluctua-
tions.

We start from the intrinsic curvature of surfaces at a constant time. We
work in an arbitrary gauge for this section. The induced metric γ on the
constant time surface is

γi J = a2 [(1 + 2C) δij + 2Eij
]

, (4.88)

The associated induced connection is

(3)Γi
jk =

γil

2
(
∂jγkl + ∂kγjl − ∂lγjk

)
. (4.89)

Since there are only spatial derivatives, the round bracket is already first or-
der and we need γij at zero order level γij = δij/a2. The associated Γ now
is

(3)Γi
jk = ∂jCδi

k + ∂jEi
k + ∂kCδi

j + ∂kEi
j − ∂iCδjk − ∂iEjk. (4.90)

The curvature of these leaves is

(3)R = γik∂l
(3)Γl

ik − γik∂k
(3)Γl

il + . . . , (4.91)
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where dots represent terms that are second order in perturbation theory. The
final expression for (3)R reads as follow

a2(3)R = −4∇2C + 2∂i∂lEil. (4.92)

For Eij we have the following expression Eij =
(
∂i∂j − δij∇2/3

)
E, where

we used the SVT decomposition and we focused on scalar perturbations. In-
serting the last relation in (4.92) we obtain

a2(3)R = −4∇2
(

C − ∇2

3
E
)

. (4.93)

We call the curvature perturbation R the following combination R = C −
∇2/3E. We can give a gauge invariant definition of the comoving curvature
perturbation that is

R = C − ∇2E
3

+H (B + v) . (4.94)

We will proceed now to show the conservation of R. In the spatially flat
gauge C = E = 0, R becomes

R = H (B + v) (4.95)

Using (4.85) we can rewrite (4.95) as follow

Ra2 (ρ̄ + P̄) = −2H2M2
PlA, (4.96)

We derive (4.96) with respect to conformal time τ and we obtain

R′a2 (ρ̄ + P̄) +Ra2P̄′ −Ra2H (ρ̄ + P̄) = −2M2
PlH

(
HA′ + 2H′A

)
, (4.97)

where we used the continuity equation at the background level.
Using (4.87), (4.85) and (4.95) in the last relation we get

R′a2 (ρ̄ + P̄) +Ra2P̄′ = −a2HδP. (4.98)

Using (4.95), (4.85), (4.86) and the background continuity equation we can
rewrite (4.98) as follow

R′a2 (ρ̄ + P̄) = − a2H
M2

Pl

(
δP − P̄′

ρ̄′
δρ

)
+ 2

P̄′

ρ̄′
H2∇2B, (4.99)

where δP − P̄′/ρ̄′δρ can be checked to be gauge invariant and it can be used
as a definition of a gauge invariant pressure density perturbation.

For barotropic fluid, where P(ρ), the combination δP − P̄′/ρ̄′δρ = 0 and
we have

R′a2 (ρ̄ + P̄) ≃ 2
P̄′

ρ̄′
H2∇2B. (4.100)
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Using (4.84) and (4.96) we can estimate B as follow

B ∼ a2 (ρ̄ + P̄)
2H2M2

Pl

R
H . (4.101)

Inserting (4.101) in (4.100) and going in Fourier space, we obtain (neglecting
time coefficients )

d lnR
d ln a

∼ k2

H2 ∼ 0, (4.102)

where in the last step we use the super-horizon limit. This derivation shows
that R, for adiabatic perturbations and on super-horizon scales, is conserved
and provides a crucial ingredient for the study of the inflationary fluctuations
[128].

4.8 Perturbed stress-energy tensor for a scalar field

Let us perturb the stress-energy tensor in (3.16), we obtain

δTµν = ∂µδϕ∂νϕ̄+ ∂µϕ̄∂νδϕ− δgµν

(
ϕ̄′2

2a2 − V
)
− ḡµν

(
−A

ϕ̄2

a2 +
ϕ̄δϕ′

a2 − V,ϕδϕ

)
,

(4.103)
where we expand ϕ = ϕ̄ + δϕ and we assumed the spatially flat gauge. The
components of δT are

δT00 = ϕ̄′δϕ′ + 2a2AV + a2V,ϕδϕ (4.104)

δT0i = ϕ̄′∂iδϕ +
ϕ̄′2

2
∂iB − a2V(ϕ̄)∂iB, (4.105)

δTij = δij

(
−Aϕ̄′2 + ϕ̄′δϕ′ − V,ϕa2δϕ

)
. (4.106)

With the previous expression, we can obtain the Einstein equations with
the perturb scalar stress-energy tensor and we obtain

−2M2
PlH∇2B = ϕ̄′δϕ′ + 2a2AV + a2V,ϕδϕ, (4.107)

M2
Pl

(
2H∂i A −H2∂iB − 2H′∂iB

)
= ϕ̄′∂iδϕ + ∂iB

(
ϕ̄′2

2
− a2V

)
, (4.108)

∇2B′ +∇2A + 2AH2 + 2H∇2B + 4H′A + 2A′H =

=
ϕ̄′δϕ′ − Aϕ̄′2 − V,ϕδϕa2

M2
Pl

, (4.109)

B′ + 2HB = −A. (4.110)
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Using (4.110) and the background Einstein equations we can rewrite (4.108)
and (4.109) as follow

2M2
PlHA = ϕ̄′δϕ, (4.111)

2M2
PlA

′H+ 2a2AV = ϕ̄′δϕ′ − a2V,ϕδϕ. (4.112)

These steps will be useful for the derivation of the perturbed equation of
motion for ϕ.

4.9 Perturbed Klein-Gordon Equation

We are now ready to derive the perturbed Klein-Gordon equation that we
have to solve coupled with the Einstein equations. The Klein-Gordon equa-
tion is

∂µ

(√
−ggµν∂νϕ

)
= −∂V

∂ϕ

√
−g. (4.113)

At the perturbed level, we have

∂µ

(
δ
√
−gḡµν∂νϕ̄ +

√
−ḡδgµν∂νϕ̄ +

√
−ḡḡµν∂νδϕ

)
=

−
√
−ḡV,ϕϕδϕ − V,ϕδ

√
−ḡ, (4.114)

and working in the spatially flat gauge and using ϕ̄′′ + 2Hϕ̄′ = −V,ϕa2 we
obtain

δϕ′′ + 2Hδϕ′ −∇2δϕ − A′ϕ̄′ − ϕ̄′∇2B − 2a2AV,ϕ = −a2V,ϕϕδϕ − 4a2AV,ϕ.
(4.115)

From now on we will use the slow-roll approximations, namely 3Hϕ̄′ ≃
−a2V,ϕ and 3M2

PlH2 ≃ a2V(ϕ̄). Using (4.107), (4.111) and (4.112) we can
rewrite (4.115) as

δϕ′′ + 2Hδϕ′ −∇2δϕ − a2

HM2
Pl

V,ϕϕ̄′δϕ = −a2V,ϕϕδϕ − 4a2AV,ϕ. (4.116)

In slow-roll we have

−a2V,ϕϕδϕ = −3ηVH2δϕ, (4.117)

−4a2AV,ϕ = 12H2ϵVδϕ, (4.118)

− a2

HM2
Pl

V,ϕϕ̄′δϕ = 6ϵVH2δϕ, (4.119)

and (4.116) becomes

δϕ′′ + 2Hδϕ′ −∇2δϕ = −3ηVH2δϕ + 6H2ϵVδϕ. (4.120)
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We are going to solve (4.120) in Fourier space. We expand δϕ as

δϕ =
∫ d3k

(2π)3/2 e−ı⃗k·⃗xµ⃗k(τ), (4.121)

and µ satisfies

µ′′
k⃗
+ 2Hµ′

k⃗
+ k2µ⃗k +

(
3ηVH2 − 6ϵVH2

)
µ⃗k = 0. (4.122)

With an appropriate field redefinition µ⃗k = µ̂⃗k/a, we can recast the last ex-
pression as

µ̂′′
k⃗
+

(
k2 − a′′

a
+ 3ηVH2 − 6ϵVH2

)
µ̂K⃗ = 0, (4.123)

that is an equation for a harmonic oscillator with time-dependent frequency.
We quantize the operator δϕ by expanding µ̂ as

µ̂⃗k = v⃗k a⃗k + v∗
k⃗
a†

k⃗
, (4.124)

where a, a† are the annihilation and creation operators that satisfy the follow-
ing commutation relations[

a⃗k, a†
k⃗′

]
= δ

(⃗
k − k⃗′

)
,
[
a⃗k, a⃗k′

]
=
[

a†
k⃗
, a†

k⃗′

]
= 0. (4.125)

The mode functions v are normalized as follows

W
[
v⃗k, v∗

k⃗

]
= v′

k⃗
v∗

k⃗
− v⃗kv∗

′

k⃗
= −ı. (4.126)

The vacuum state is destroyed by the operator a such that a⃗k|0⟩ = 0.
In slow-roll, we have a(τ) = −1/τH (1 − ϵV) and working at first order

in the slow-roll parameters we can evaluate a′′/a as

a′′

a
= a2H2 (2 − ϵV) ≃

2 + 3ϵV

τ2 . (4.127)

Using (4.124) and (4.127) in (4.123) we obtain

v′′k +

(
k2 − ν2 − 1/4

τ2

)
vk = 0, ν2 = 9/4 + 9ϵV − 3ηV. (4.128)

Relation (4.128) can be solved exactly to give

vk(τ) =
√
−τ
[
αH(1)

ν (−kτ) + βH(2)
ν (−kτ)

]
, (4.129)

where H(1,2)
ν are the Hankel functions of the first and second kind. Usually,

as initial conditions, in the sub-horizon regime k/aH ∼ kτ ≫ 1, are imposed



4.9. Perturbed Klein-Gordon Equation 37

the Bunch-Davis vacuum conditions that are

lim
kτ→−∞

vk(τ) =
e−ıkτ

√
2k

. (4.130)

The physical motivation of these conditions resides in focusing on modes
that are sub-horizon and, due to the equivalence principle, they do not feel
the expansion of the Universe. Hence, the solutions of (4.128) follow the
Minkowski solutions that are plane waves.

The limits of the Hankel functions are

lim
kτ→−∞

H(1)
ν (−kτ) ≈

√
2
π

1√
−kτ

e−ıkτ, lim
kτ→−∞

H(2)
ν (−kτ) ≈

√
2
π

1√
−kτ

eıkτ,

(4.131)
where we dropped irrelevant phases. Using (4.131) in (4.129) we obtain

lim
kτ→−∞

vk(τ) ∼ α

√
2

πk
e−ıkτ + β

√
2

πk
eıkτ, (4.132)

and from (4.130) we have β = 0 and α =
√

π/2 . The Bunch-Davis modes
function to first order in slow-roll are

vk(τ) =

√
π

2
√
−τH(1)

ν (−kτ). (4.133)

From the evolution of v, we can calculate the zero-point fluctuations of
the operator δϕ. Indeed, for δϕ we have

δϕ(τ, x⃗) =
∫ d3k

(2π)2/3
e−ı⃗k·⃗x

a

[
vk(τ)ak + v∗k(τ)a†

k

]
, (4.134)

and the variance of the inflaton field is

⟨|δϕ|2⟩ = ⟨0|δϕ†(τ, 0)δϕ(τ, 0)|0⟩ =

=
∫ d3k

(2π)3
d3k′

a2

〈
0
∣∣∣[v∗k′a†

k′ + vk′ak′
] [

vkak′ + v∗k a†
k

]∣∣∣ 0
〉

, (4.135)

where we used (4.134). Using ⟨0|aka†
k′ |0⟩ = δ(⃗k − k⃗′) in (4.135) we obtain

⟨|δϕ|2⟩ =
∫

d ln k
k3

2π2
|vk(τ)|2

a2 . (4.136)

We define the dimensionless power spectrum of the inflaton field as

∆2
δϕ(k, τ) =

k3

2π2
|vk(τ)|2

a2 . (4.137)
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Let us evaluate (4.137) on super-horizon scales −kτ ≪ 1. The asymptotic
expression for the Hankel function is

H(1)
ν (x ≪ 1) ≈

√
2
π

e−ıπ/22ν−3/2 Γ(ν)
Γ(3/2)

x−ν, (4.138)

and using the last formula in (4.137) we get

∆2
δϕ (−kτ ≪ 1) ≈ H2

4π2 22ν−3 |Γ(ν)|2
Γ(3/2)2

(
k

aH

)3−2ν

. (4.139)

At the lowest order in slow-roll parameters we have ν ≃ 3/2+ 3ϵV − ηV and
(4.139) becomes

∆2
δϕ (−kτ ≪ 1) ≈ H2

4π2

(
k

aH

)2ηV−6ϵV

. (4.140)

Having obtained (4.140), we are ready to compute the power spectrum of
R on super-horizon scales. It is important to compute R since it is directly
linked to observables. The curvature perturbation in spatially flat gauge is

R = H (B + v) , (4.141)

where B + v is the δT0
i part of the stress-energy tensor as visible in (4.30).

Relation (4.30) for a scalar field is

δT0
i = − ϕ̄′2

a2 ∂i (B + v) , (4.142)

and from the comparison of the last expression with the δT0
i component of

the stress-energy tensor of the scalar field, δT0
i = ϕ̄′∂iδϕ/a2, we obtain

B + v = −δϕ

ϕ̄′ . (4.143)

Using (4.143) in (4.141) we get

R = −Hδϕ

ϕ̄′ , (4.144)

and the power spectrum of R on super-horizon scales is

∆2
R (−kτ ≪ 1) ≈ H2

ϕ̄′2 ∆2
δϕ (−kτ ≪ 1) ≈ H2

8π2M2
PlϵV

(
k

aH

)2ηV−6ϵV

, (4.145)

where in going from left to right we used (4.144), (4.140) and (3.28). Since R
is constant upon horizon exits, we can evaluate it at horizon crossing k = aH
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and (4.145) becomes

∆2
R (k = aH) =

H2

8π2M2
PlϵV

∣∣∣∣∣
k=aH

. (4.146)

The spectral index is defined as

ns − 1 =
d ln ∆2

R
d ln k

≃ 2ηV − 6ϵV, (4.147)

where we used (4.145).
Let us introduce a new gauge invariant quantity ξ that will be useful later.

We define ξ as

ξ = C − 1
3
∇2E +Hδρ(1)

ρ̄′
, (4.148)

and represents the curvature variable on the uniform energy density slices.
It can be shown that R and ξ are related as follow

−ξ = R+
2ρ̄

9 (ρ̄ + P̄)

(
k

aH

)2

A. (4.149)

Relation (4.149) shows that on large scales k ≪ aH we get R ≈ −ξ; such that
the power spectrums of R and ξ are the same on super-horizon scales and
are both conserved.

4.10 Gravitational waves from Inflation

A clear prediction of the inflationary paradigm is the formation of a back-
ground of gravitational waves. Gravitational waves are tensor modifications
of the metric and the line element reads

ds2 = a2
[
dτ2 −

(
δij + 2Êij

)
dxidxj

]
. (4.150)

If we insert (4.150) in the Einstein-Hilbert action, at second order, we have

S2
Ê =

M2
Pl

8

∫
dτd3xa2

[(
Êij
)2 −

(
∇Êij

)2
]

. (4.151)

It is convenient to pass in Fourier space writing Ê as follow

Êij (τ, x⃗) =
∫ d3k

(2π)3/2 ∑
γ=+,×

ϵ
γ
ij (⃗k)E⃗k,γ(τ)e

−ı⃗k·⃗x, (4.152)
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where ϵ
i,γ
i = kiϵ

γ
ij = 0 and ϵ

γ
ijϵ

ij,γ′
= 2δγγ′ . Using (4.152) in (4.151) we obtain

S2
Ê = ∑

γ

∫
dτd3k

M2
Pla

2

4

[(
E′

k⃗,γ

)2
− k2

(
E⃗k,γ

)2
]

. (4.153)

In order to canonically normalize E we introduce E⃗k,γ =
√

2u⃗k,γ(τ)/MPla
and we obtain

S2
Ê = ∑

γ

∫
dτd3k

1
2

[(
u⃗k,γ(τ)

′
)2

−
(

k2 +
a′′

a

)
u⃗k,γ(τ)

2
]

, (4.154)

where a′′/a comes from an integration by part when passing from E to u.
The canonical field u satisfies the following equation of motion

u′′
k⃗,γ

+

(
k2 − a′′

a

)
u⃗k,γ = 0. (4.155)

The canonical field u, for both γ, obeys an equation that resembles the one of
δϕ. In slow-roll, relation (4.155) becomes

u′′
k⃗,γ

+

(
k2 −

ν2
T − 1/4

τ2

)
u⃗k,γ = 0, (4.156)

where ν2
T = 9/4 + 3ϵV .

We quantize the operator Ê by expanding u as

u⃗k,γ = v⃗k,γ a⃗k,γ + v∗
k⃗,γ

a†
k⃗,γ

, (4.157)

and the mode functions v have solutions that are consistent with the Bunch-
Davis vacuum conditions and respect the Wronskian (4.126) normalization;
whose expression is

vk,γ =

√
2

π

√
−τH(1)

νT (−kτ) . (4.158)

The operator Ê has the following expansion

Êij(τ, x⃗) =
∫ d3k

(2π)3/2 ∑
γ=+,×

ϵ
γ
ij

√
2

aMPl
e−ı⃗k·⃗x

(
v⃗k,γ a⃗k,γ + v∗

k⃗,γ
a†

k⃗,γ

)
, (4.159)

and the variance of Ê is

⟨0|Ê†
ij(τ, 0)Êij(τ, 0)|0⟩ =∫ d3kd3k′

(2π)3 ∑
γ,γ′

ϵ
γ
ij (⃗k)ϵ

γ′,ij (⃗k′)
2

a2M2
Pl

v⃗k′,γ′v∗
k⃗,γ

⟨0|a⃗k′,γ′a†
k⃗,γ

|0⟩; (4.160)
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where we used (4.159) and a⃗k,γ|0⟩ = 0. Inserting ⟨0|a⃗k′,γ′a†
k⃗,γ

|0⟩ = δ
(⃗

k − k⃗′
)

δγ,γ′

in (4.160) we obtain

⟨0|Ê†
ij(τ, 0)Êij(τ, 0)|0⟩ =

∫
d ln k

k3

2π2

8|v|2k,γ

a2M2
Pl

. (4.161)

The dimensionless power spectrum for the tensor modes is

∆2
Ê(k, τ) =

k3

2π2
8

a2M2
Pl
|v|2k,γ. (4.162)

On super-horizon scales and at the lowest order in the slow-roll parame-
ters, relation (4.162) becomes

∆2
Ê(−kτ ≪ 1) ≈ 2H2

M2
Plπ

2

(
k

aH

)3−2νT

, (4.163)

and at horizon crossing we have

∆2
Ê =

2H2

M2
Plπ

2

∣∣∣∣∣
k=aH

. (4.164)

The tensor tilt can be calculated as follows

nT =
d ln ∆2

Ê
d ln k

≃ −2ϵV, (4.165)

where we used (4.163).
From an observational point of view, a crucial quantity is the tensor-to-

scalar ratio defined as
r =

AT

AS
, (4.166)

where AT,S are the amplitudes of the dimensionless power spectrum ∆2
Ê

and
∆2
R respectively. From (4.145) and (4.163) we obtain

AS =
H2

8π2M2
PlϵV

, AT =
2H2

M2
Plπ

2
. (4.167)

Using (4.167) in (4.166) we obtain

r = 16ϵV, (4.168)

that is a clear prediction for all single-field models of inflation.
In 2018, the Planck mission released data on the measurement of the CMB

anisotropies, which updated the constraints on cosmic inflation. The Planck
collaboration presented updated bounds on the spectral index, scalar power
spectrum amplitude, and an updated upper limit on the tensor-to-scalar ra-
tio. It is important to note that the scope of this thesis does not involve
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Parameter TT+low E EE+low E TE+low E TT,TE,EE+low E TT,TE,EE+low E+lensing
ln 1010AS 3.040 ± 0.016 3.052 ± 0.022 3.0180.002

−0.0018 3.045 ± 0.016 3.044 ± 0.014
ns 0.9626 ± 0.0057 0.980 ±0.015 0.967 ±0.011 0.9649 ± 0.0044 0.9649 ± 0.0042

TABLE 4.1: 68 % confidence limits for AS and ns from Planck
data[9]. The different columns present temperature (TT),
polarization (EE), and temperature-polarization (TE) cross-
correlation both separately and combined. Furthermore, it
shows the combined constraint with EE measurement at low
multipoles (low E) and the Planck lensing. AS and ns are eval-

uated at the pivot scale k∗ = 0.05Mpc−1.

discussing the details of the analysis conducted by the Planck collaboration.
However, we report the updated bounds that were used and will be exten-
sively used in the rest of the manuscript.

In Table 4.1 we reported the 68 % confidence limit (C.L.) for AS and ns
based on different data that are taken both separately and combined in the
analysis. From a practical point of view, our interest belongs to the last col-
umn where the data from temperature (TT), polarization (EE), temperature-
polarization (TE) cross-correlation together with the EE measurement at low
multiples and the Planck lensing are combined. In the thesis, we used these
values for AS and ns when we confronted the theoretical prediction of a
model with observations.

The bounds concern two parameters that play fundamental roles in the
primordial universe. Depending on the inflation model chosen this will pro-
duce different values of AS and ns. One can then test the predictions of these
models with observations, and in general this is done in the r − ns plane.
In Fig. 4.1, we present the constraint from Planck data in combination with
BICEP/Keck 2015 (BK15) [6] and BK15 plus Baryonic acoustic oscillations
(BAO)[139]. The Planck collaboration has tested several inflationary models
shown in the panel against observational data. The R2 model agrees with
Planck data, see Fig. 4.1, confirming what was previously found in 2013 and
2015. In Section 4.11, we will discuss Higgs inflation and its agreement with
Planck. The predictions are shown in (4.185). Monomial potentials predict
a value too large for r, disfavored by data with respect to R2. In Chapter 7,
we will discover a vital ingredient that can lower the value of r, ultimately
making the monomial models compatible with Planck data once again. This
crucial ingredient involves the use of non-minimal coupling to gravity, which
is similar to what we will do with Higgs inflation. As far as the thesis is con-
cerned, another model of interest would be natural inflation (see Section 6.7).
However, this model is heavily disfavoured by the Plank plus BK15 data.

For our purposes, we do not discuss the other models in the panel, for
more details see [9]. In Chapter 7, it is important to note that we will be
utilizing an observational upper limit on r of r < 0.036 at k = 0.05Mpc−1

(95% C.L., BICEP/Keck [7]). This is an updated bound and the numerical
simulations’ initial conditions are fixed at that scale.
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FIGURE 4.1: Joint 68 % and 95 % C.L. regions for ns and r from
Planck and in combination with BICEP/Keck 2015 (BK15) and
BK15 plus Baryonic acoustic oscillations (BAO) data. Overlaid
the theoretical predictions of selected inflationary models. r
and ns are evaluated at the pivot scale k∗ = 0.002Mpc−1. Figure

taken from [9].

4.11 The Higgs boson as the inflaton

Generically the models of inflation present in the literature introduce addi-
tional DOF to the standard model of particle physics. It seems that a possible
explanation of inflation requires models beyond the standard model, indeed
in Gran Unified Theory, supersymmetry, string theory, extra-dimension, etc
this new particle may appear naturally. Without invoking some UV complete
model we can take a more phenomenological approach and the simplest re-
alization of a model of inflation is what we studied in Section 3.4, given by a
single scalar field. In [29] it has been shown that no extra new particles are
necessary to explain inflation and the role of the inflaton field is played by
the Higgs boson. A necessary ingredient for this model as we will see is a
non-minimal coupling of the Higgs field with the Ricci scalar R. Hence, the
model is slightly different from what we studied in Section 3.4, but with an
appropriate conformal transformation, we will go back to a setup similar to
(3.15).

To present the main features of this model, let us start with the following
Lagrangian density

Ltot = LSM − M2

2
R − ξH†HR, (4.169)

where LSM is the SM Lagrangian, M is some mass parameter, R is the Ricci
scalar, H is the Higgs field, and ξ is an arbitrary constant. As we discussed
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in the introductory part, the last term in (4.169) is expected to exist from the
point of view of an effective field theory in curved space [137]. The mini-
mal coupling to gravity of the scalar field is restored when ξ = 0 and M
can be identified with the Planck mass MPl. Since the self-coupling of the
Higgs is large the model is not able to sustain inflation even if it has a "good"
particle physics phenomenology. In the case in which M is set to zero, the
electroweak scale generates the Planck mass if

√
ξ ∼ MPl/MW ∼ 1017,

where MW is the W boson mass. This scenario, called the "induced" grav-
ity model [181, 161, 152], can sustain inflation but it fails to reproduce the
particle physics experiments.

Hence, the intermediate regime, in which 1 ≤
√

ξ ≪ 1017, possesses the
SM as a low energy theory with the usual Higgs boson, and being ξ ≥ 1
the behavior during inflation changes with respect to ξ = 0 and inflation
may become possible. In this range, the scale M, with very good accuracy, is
approximated by M ≃ MPl. We focus only on the Higgs field in the unitary
gauge in which the Higgs doublet is H = h/

√
2 and the Lagrangian (4.169)

becomes

SJ =
∫

d4x
√
−g
[
−M2 + ξh2

2
R +

1
2

∂µh∂µh − λ

4!

(
h2 − v2

)2
]

, (4.170)

where v is the Higgs vacuum expectation value. Non-minimally coupled
scalar field theory was originally studied in [152, 90]. We can pass from the
Jordan to the Einstein frame with a conformal transformation as follows

ĝµν = Ω2gµν, Ω2 = 1 +
ξh2

M2
Pl

. (4.171)

The action in the Einstein frame is

SE =
∫

d4x
√
−ĝ

[
−

M2
Pl

2
R̂ +

1
2

∂µχ∂µχ − U(χ)

]
, (4.172)

where R̂ is calculated with ĝ metric, χ is the canonical Higgs field that is
linked to the previous h as follows

dχ

dh
=

√
Ω2 + 6ξ2h2/M2

Pl
Ω4 , (4.173)

U(χ) is the potential in the Einstein frame and it reads

U(χ) =
1

Ω4
λ

4!

(
h(χ)2 − v2

)2
, (4.174)
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where the Ω4 factor comes from the conformal transformation. In the large
field limit ξh2 ≫ M2

Pl ≫ v2, the potential U becomes

U ≃
λM4

Pl
4!ξ2 , (4.175)

The potential at large-field values becomes constant due to the conformal
transformation, and it is this flattening of the potential that can sustain infla-
tion.

The next question is to check if the model is consistent with the Planck
data. The slow-roll analysis of Section 3.4 can be applied in the Einstein
frame. Hence, the slow-roll parameters (3.28), (3.29) are constructed with
the U potential

ϵU =
M2

Pl
2

(
U,χ

U

)2

, ηU = M2
Pl

U,χχ

U
. (4.176)

With the potential (4.174) and in the large-field regimes the slow-roll param-
eters become

ϵU ≃
4M4

Pl
3ξ2h4 , (4.177)

ηU ≃ −
4M2

Pl
3ξh2 , (4.178)

where, as assumed in the first part of the section, we restrict our analysis
to regime 1 ≪

√
ξ ≪ 1017. The slow-roll parameters obey a hierarchical

condition that is |ηU| ≫ ϵU. The end of inflation is given by ϵU ≃ 1, and for
hend we obtain

hend ≃
(

4
3

)1/4 MPl√
ξ

. (4.179)

The scalar power spectrum amplitude, scalar spectral index, and the tensor-
to-scalar ratio at some wave number of interest k∗ are written, from (4.146),
(4.147) and (4.168), as

As ≃
U∗

24π2M4
PlϵU,∗

, ns − 1 ≃ 2ηU,∗ − 6ϵU,∗, r ≃ 16ϵU,∗. (4.180)

The subscript ∗ denotes that the quantities are evaluated when the mode k∗
exits the Hubble horizon. Relation (4.180) with the potential (4.174), (4.177)
and (4.178) becomes

As ≃
λh4

∗
768π2M4

Pl
, h2

∗ ≃
8M2

Pl
3ξ(1 − ns)

, r ≃
64M4

Pl
3ξ2h4

∗
. (4.181)

Relation (3.31) evaluated between h∗ and hend gives us

N∗ =
∫ h∗

hend

1
MPl

1√
2ϵU

dχ

dh
dh ≃ 3ξ

4
h2
∗ − h2

end

M2
Pl

, (4.182)
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where we used (4.177), (4.173). From (4.181) and (4.179) we see that h∗ ≫ hend
and (4.182) becomes

h2
∗

M2
Pl

≃ 4N∗
3ξ

. (4.183)

We can use (4.183) to rewrite (4.181) as

As ≃
λN2

∗
432π2ξ2

∗
, N∗ ≃

2
(1 − ns)

, r ≃ 12
N2
∗

. (4.184)

If we specialize on the specific scale k∗ = 0.05Mpc−1, where the CMB
observables are fixed, we can adjust the scalar power spectrum amplitude to
take the best-fit value As = 2.1 × 10−9. From the solution of the horizon and
flatness problems, we know that 50 ≤ N∗ ≤ 60 and (4.184) becomes

ξ ≃ 5815, ns = 0.964, r ≃ 0.005, (4.185)

where we used N∗ = 55, As = 2.1 × 10−9 and λ ≃ 0.1 for the self-coupling
of the Higgs field. The predicted values for ns and r are within one sigma
of the current Planck measurements [9], see Table 4.1 and Fig. 4.1. En route,
we note that ϵU, ηU, and N∗ do not depend on v such that the inflationary
dynamics and observables are insensitive to the exact value of v until

√
ξ ≪

1017. Inflation can be a natural consequence of the standard model of particle
physics. The predictions of this model are different from a λϕ4 or m2ϕ2 model
and can be distinguished in future experiments.

4.11.1 EFT aspects of Higgs Inflation

The large value of ξ required to fix the amplitude of the scalar power spec-
trum poses a problem for the validity of Higgs inflation as an effective field
theory [20]. The plateau in the potential for h ≫ MPl/

√
ξ with energy den-

sity given by (4.175) suggests that the energy scale controlling inflation is
given by ΛI = MPl/

√
ξ. Instead, the actual cut-off of the theory is lower

than this scale.
The cut-off of the theory, in the Jordan frame, can be derived from the

operator h2R, which gives a term like

ξh2

MPl
ηµν∂2γµν + . . . , (4.186)

where in the weak-field limit we expand gµν = ηµν + γµν/MPl, η is the
Minkowski metric and dots stand for other terms present in R. From (4.186)
we identify the cut-off scale to be Λ = MPl/ξ1 and the same result can be
derived in the Einstein frame. Working at small field values relation (4.173)

1In the expansion there are operators that are suppressed by MPl/
√

ξ, which is a higher
energy sale respect to Λ for ξ ≫ 1.
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gives us

h = χ

[
1 −

(
ξχ

MPl

)2
]
+ . . . , (4.187)

where dots represent higher terms in the expansion of the field redefinition
(4.173). Plugging (4.187) into the Higgs potential term h4 we obtain the fol-
lowing dimension-six operator

χ6 ξ2

M2
Pl

, (4.188)

showing the same cut-off scale as derived in the Jordan frame.
An effective field theory can make reliable predictions only up to a certain

cut-off scale. In Higgs Inflation, the Hubble parameter sets the inflationary
energy scale, which is in the same order as the cut-off scale for ξ ≫ 1, as
shown in equation (4.175). This implies that the theory’s predictability is
compromised because of the large value of λ. The literature suggests various
ways to solve this problem, as proposed in [71, 17]. It is worth noting that
by using equation (4.184), we can conclude that if λ is considered a free pa-
rameter, then we can achieve ξ ∼ 1 by selecting a very small value for λ i.e.,
λ ≪ 1. This possibility occurs in PQ inflation, and we will explore it further
in Chapter 7.

4.12 Lyth bound

Having obtained the tensor-to-scalar ratio we can derive the so-called Lyth
bound that is

∆ϕ

MPl
≃ O(1)

√
r

0.01
, (4.189)

where r is the tensor-to-scalar ratio at the CMB scale k∗ = 0.05Mpc−1 and
∆ϕ is the excursion of the field during inflation. Relation (4.189) linked large
values of r (r > 0.01) to excursions of the field that are super Plankian (∆ϕ >
MPl ). In other words, large values of r require large-field inflation models.

It is easy to derive relation (4.189), indeed from (4.168) we have

r = 16ϵV =
8

M2
Pl

(
dϕ

dN

)2

, (4.190)

where we used (3.28) and we passed from conformal time τ to number of
e-folds N. We can integrate (4.190) from NCMB, horizon exit of k∗, to the end
of inflation Nend ∫ ϕCMB

ϕend

dϕ

MPl
=
∫ NCMB

Nrmend

dN
√

r
8

. (4.191)
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If we assume that, during inflation, r does not evolve we obtain

ϕCMB − ϕend

MPl
=

∆ϕ

Mpl
=

√
r
8
(NCMB − Nend) . (4.192)

Relation (4.192) is the Lyth bound and the order unity factor comes from√
0.01/8 (NCMB − Nend) ∼

√
0.01/8× 60 ∼ O(1) where we assumed NCMB −

Nend = 60.

4.13 δ N formalism

In this section we will derive the δN formalism which is a popular and pow-
erful technique for computing the nonlinear evolution of cosmological per-
turbations on large scales, following mainly [155]. In particular, it enables us
to compute the curvature perturbation, R, on large scales without actually
solving perturbed field equations.

Let us take {U (τ)} as a foliation of the spacetime with hypersurfaces U
and qµ be the unit vector normal to U . The volume expansion of these hy-
persurfaces along the integral curve γ(s) of qµ is define as

⊆ = ∇µqµ, (4.193)

From (4.193), we can introduce for each integral curve the number of e-folds
as

N =
∫

γ(s)

⊆
3

ds, (4.194)

where s is the proper time along the curve. From [102], at linear order in
perturbation theory, it is shown

⊆
3

=
H
a

(
1 − A +

R′

H +
1

3Ha
∇2Sg

)
, (4.195)

where Sg is a combination of the E and B perturbations. In the absence of
anisotropic perturbations in the stress-energy tensor, the off-diagonal part of
the Einstein equations gives Sg ∼ A/H ∼ R/H. Given this scaling, the last
term in (4.195) is negligible compared to the other terms on super-horizon
scales k2 ≪ H2. From now on let us work on super-horizon scales and (4.194)
becomes

N =
∫

γ(s)
dτH (1 + A)

(
1 − A +

R′

H

)
=
∫

γ(s)
dτ
(
H+R′) , (4.196)

where ds = a (1 + A) dτ and we worked at linear order. If we define the
unperturbed number of e-folds, N, as

N =
∫

γ(s)
dτH, (4.197)
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we can introduce the following quantity

δN = N − N = δR, (4.198)

where we used (4.196) and δR is the difference between the values of the
curvature perturbation R on the final and initial hypersurfaces U .

If we choose the initial (τ1) hypersurface as flat and the final (τ2) comov-
ing, we obtain

δN
(
U f (τ1),Uc(τ2); γ(s)

)
= Rc(τ2), (4.199)

for a given curve γ(s).
We assume τ1 to be some time during inflation when the relevant scale

that we are interested in has passed outside the horizon and τ2 to be some
time when Rc has become constant. From assumption U f (τ1) is flat and all
fluctuations are inside the fields present at τ1. Then one can see N as a func-
tion of the field configuration ϕa(τ1, x⃗) and the time τ2 as

N = N (ϕa(τ1, x⃗), τ2) . (4.200)

In principle, N is a function also of ϕ′a but we used the slow-roll approxima-
tions at τ1 to eliminate ϕ′a. We write ϕa as

ϕa(τ1, x⃗) = ϕ̄a(τ1) + δϕa(τ1, x⃗), (4.201)

and for N we have
N = N(ϕ̄a(τ1), τ2). (4.202)

Using (4.200), (4.201) and (4.202) in (4.199) we have

Rc (τ2, x⃗2) =
∂N
∂ϕ̄a δϕa

f (τ1, x⃗1) , (4.203)

where x⃗1 and x⃗2 are the spatial coordinates of γ on U f (τ1) and Uc(τ2), respec-
tively. The index a represents the multiple fields present in the theory. In the
case in which B = 0 then the two spatial coordinates x⃗1 and x⃗2 coincide. It
turns out that the perturbations in both ⊆ and the density are negligible on
comoving hypersurfaces on super-horizon scales, Uc(τ2) may be regarded as
a hypersurface of constant Hubble parameter or constant energy density.

The δN formalism enables us to compute the curvature perturbations in
terms of the derivative of the unperturbed number of e-folds, viewed as a
function of the initial background fields configurations, and the fluctuations
of the field on the initial flat hypersurface U f (τ1).
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Chapter 5

The Reheating phase

So far, we have examined the inflationary phase and the behavior of the axion
during and after inflation. However, we have not yet explored how we can
pass from inflation to the standard radiation-dominated Universe, which is
known as reheating. This process is explained in Sections 5.1 and 5.2. In Sec-
tion 5.3, we will discuss the complexity of preheating, which can be viewed
as a quantum field theory in a classical time-dependent background. Other
references on these topics include [104, 23]

5.1 Set up for Reheating

As we know the end of inflation is set by the time when ϵ, relation (3.13),
reaches one. At this moment the kinetic energy of the inflaton is not any-
more negligible and the field rolls rapidly to the minimum of the potential V.
Inflation is a powerful tool to homogenize the Universe, leaving it empty and
cold. To avoid this cataclysm the inflaton energy has to be converted into the
matter that will provide the primordial bath. To understand this complicated
phase that the Universe went through let us take a simple model described
by

L =
1
2
(
∂µϕ

)2 − V (ϕ)− g2ϕ2χ2. (5.1)

Here, ϕ plays the role of the inflaton and we introduce an additional boson
χ; that is a proxy for SM fields or any hidden sector. We assume that the
potential V has a minimum located at ϕ = σ. We restrict the analysis near
the minimum such that the potential can be expanded as

V (ϕ) =
m2

2
(ϕ − σ)2 + . . . , (5.2)

where m is the inflaton mass. If we absorbed σ into ϕ the interaction term in
(5.1) becomes

2g2σϕχ2 + g2ϕ2χ2. (5.3)

Thanks to the field redefinition we have generated two types of interactions
that can contribute to the decay of the inflaton.

In the next section, we will study the effects of these interactions, which
are characterized by the decay rate Γ, on the inflaton field dynamics. These
interactions drain energy from ϕ to the field χ and we can model this transfer



52 Chapter 5. The Reheating phase

of energy by an additional friction term Γ as follows

ϕ̈ + 3Hϕ̇ + Γϕ̇ + m2ϕ = 0. (5.4)

The reheating completes when Γ = H.
This treatment ignores crucial effects. The interaction term in (5.1) of the

classical inflaton field ϕ and quantum field χ leads to χ-particles production
due to the oscillating effective mass of χ. As we will see the mode function
of χ satisfies

χ̈k + 3Hχ̇k +

(
k2

a2 + g2ϕ2(t)
)

χk = 0, (5.5)

and the oscillating ϕ2 term can lead to resonance phenomena, called preheat-
ing, that can enormously enhance the reheating efficiency. The resonance of
an interaction can be narrow or broad, depending on its strength. When it is
narrow, only a small range of momenta is excited. However, when it is broad,
a wider range of momenta is excited. According to current theories, reheat-
ing after inflation starts in a broad resonance regime but never completes in
a stage of parametric resonance. This is because the initial amplitude of the
inflaton field is of the order of Planck. Eventually, the phenomenological and
perturbative treatment can be applied. This simple treatment does not have
to be applied to the original coherently oscillating inflaton field, but to its
decay products and to the residual part of the inflationary energy left by the
preheating processes.

5.2 Reheating as a perturbative processes

As we already said, after inflation, the inflaton field oscillates around the
minimum of the potential. The field ϕ follows

ϕ̈ + 3Hϕ̇ + m2ϕ = 0, H2 =
1

3M2
Pl

(
ϕ̇2

2
+

m2ϕ2

2

)
, (5.6)

where we ignored for the moment the field χ. An approximate solution for
(5.6) is given by

ϕ(t) ≈ Φ(t) sin mt, Φ(t) ∼ MPl

3mt
. (5.7)

Having ϕ we can take an average of the Hubble parameter over many oscil-
lations of the inflaton field and we obtain

ρϕ ∼ a−3, a ∼ t2/3, (5.8)

showing the well-known matter behavior of a scalar field that is oscillating
in a quadratic potential.

Equation (5.6) is modified by the interaction term with χ. We consider the
coupling 2g2σϕχ2 that represents the decay of the inflaton field. The decay
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rate can be computed and its form is

Γϕ→χχ =
g4σ2

8πm
. (5.9)

Note that the scattering process ϕϕ → χχ can not lead to an efficient reheat-
ing since its decay rate Γ scales as Γ ∼ 1/t2 and the decay rate never catches
up with the expansion of the Universe. We can model the evolution of the
number density of ϕ and χ as follows

1
a3

d
(
a3nϕ

)
dt

= −Γϕ→χχnϕ,
1
a3

d
(
a3nχ

)
dt

= +2Γϕ→χχnχ, (5.10)

where the right-handed sides of (5.10) represent the decay effects.
As we said the decay processes start to become important when H ≃ Γ

and assuming that thermodynamic equilibrium is reached quickly after this
moment we have

π2

30
g (TR) T4

R = 3Γ2
ϕ→χχM2

Pl, (5.11)

where TR is the reheating temperature. Having obtained TR we have com-
pleted the analysis of reheating since from now on the standard radiation-
dominated Universe begins. Note that TR does not depend on the initial posi-
tion of the field ϕ; it is completely determined by the parameter Γϕ→χχ, which
contains information regarding the underlying elementary particle theory.

5.3 Preheating

The previous treatment assumes that a superposition of free asymptotic sin-
gle states can describe the inflaton. Instead at the onset of the oscillation,
thanks to the large occupation number, the inflaton ϕ is a coherently oscil-
lating homogeneous field. The presence of this time-dependent background
provides a way to produce χ-particles.

Let us consider the quantum field χ in the classical background ϕ(t),

χ̂ (t, x⃗) =
∫ d3k

(2π)3/2

(
â⃗kχk(t)eı⃗k·⃗x + â†

k⃗
χk(t)∗e−ı⃗k·⃗x

)
, (5.12)

where â and â† are the creation and annihilation operators respectively, and
the modes function χk(t) satisfy (5.5). Ignoring, for the moment, the expan-
sion of the Universe, relation (5.5) becomes

χ̈k +
(

k2 + g2Φ2 sin (mt)2
)

χk = 0. (5.13)

Using z = mt, relation (5.13) becomes

d2

dz2 χk + (Ak − 2q cos 2z) χk = 0, (5.14)
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where

Ak =
k2

m2 + 2q, q =
g2Φ2

4m2 . (5.15)

Relation (5.14) is called the Mathieu equation and the main characteristic
of the solutions is exponential instability within certain resonance bands ∆k,

χk ≈ eµkz, (5.16)

where µk are called Floquet exponents. This implies an exponential enhance-
ment of the number density

nk = |χk|2 ≈ e2µkz. (5.17)

Relation (5.16) has two important regimes:

1. q ≪ 1 narrow resonance

2. q > 1 broad resonance

5.3.1 Adiabaticity parameters

Before going into the analysis of these two different regimes, let us discuss
some other important ingredients for the study of particle creation, the so-
called adiabaticity conditions. In the Fock space of a quantum field theory,
the vacuum state |0⟩ is annihilated by the number operator N, which is de-
fined as N = a†a. An observer does not detect any particles in this state.
This property continues to hold also for all observers linked together by a Pi-
oncarè transformation. This property ceases to hold in a curved space since
the vacuum state is not invariant under general coordinate transformations.
This inequivalence between vacua is the basis of the production of particles
by a time-dependent potential or a curved spacetime.

This inequivalence can be formulated by studying the evolution of the
mode functions of the theory we are considering. Let us consider a free scalar
field theory in Minkowski spacetime whose Hamiltonian H in the basis given
by equation (5.12) reads

H =
1
2

∫
d3k

[
âk â−kF∗

k + â†
k â†

−kFk +
(

2â†
k âk + δ(0)

)
Ek

]
, (5.18)

where

Ek = |χ̇k|2 + k2|χk|2, (5.19)

Fk = χ̇2
k + k2χ2

k. (5.20)

A unique definition of the vacuum state of a quantum field theory can
be given through the Hamiltonian of the system H. We can evaluate the
Hamiltonian (5.18) on the vacuum of the theory and we obtain

⟨0|H|0⟩ = δ(0)
2

∫
d3kEk. (5.21)
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The last expression represents the energy of the theory and the minimization
of (5.21) fixes the form of χk(t). The result is

χk =
1√
2k

e−ıkt, (5.22)

that is the preferred modes function (that satisfies the Wronskian condition)
in which H is diagonal in the basis of the operator N (Fk = 0, Ek = k).

This prescription can not be generalized directly to a time-dependent
background. In general, the equation for the modes χk involves time-dependent
frequencies ωk, and the minimum energy state depends on the specific mo-
ment t0. In line with the previous discussion, we can find the modes function
that minimize H instantaneously and we can define the vacuum state (|0⟩t0)
at the moment t0. The required χk satisfies

χk(t0) =
1√

2ωk(t0)
e−ıωk(t0)t0 , χ̇k(t0) = −ıωk(t0)χk(t0). (5.23)

As time progresses, the value of ωk changes, meaning that at time t1, there
will be a different mode function that satisfies the conditions (5.23). This dif-
ference implies that the vacuum at time t1 is not equivalent to the vacuum
at time t0. The rate at which ωk changes determines the difference between
these vacuums. If ωk changes slowly, then we do not expect any rapid par-
ticle production since the vacuum remains mostly the same and the mode
function remains in the vacuum state. However, if ωk changes suddenly, the
opposite occurs. Adiabatic parameters can be used to quantify the speed at
which ωk changes.

In general χk obeys the following equation

χ̈k + ω2
k χk(t) = 0, (5.24)

which represents the equation for a harmonic oscillator with time-dependent
frequency ωk. An approximate solution of the previous equation is given by

χk =
1√

2ωk(t)
e−ı

∫
dtωk(t) + h.c , (5.25)

the so-called Wentzel-Kramers-Brillouin (WKB) approximation [109, 176]. In-
serting the last expression into equation (5.24) shows that (5.25) provides an
approximation to (5.24) if:

R =
ω̇k(t)
ω2

k(t)
≪ 1, (5.26)

R1 =
ω̈k

ω3
k
≪ 1, (5.27)

are much smaller than unity. These factors are called adiabaticity parameters.
For details on the error between the true and the WKB approximate solutions
see [178].
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Let us conclude this section by making an important observation. The
narrow and broad regimes correspond to situations where R and R1 are much
smaller than 1 and much larger than 1, respectively. When R and R1 are small,
particle production is not violent and the increment of χk is determined by a
Bose effect. On the other hand, when R and R1 are much larger than 1, we
can expect violent particle production to occur instantly.

5.3.2 Narrow resonance

The theory of the instability/stability bands of the Mathieu equation shows
that, for q ≪ 1, resonances occur when Ak ≈ n2, where n ∈ Z. The widths of
the bands are ∆k ∼ mqn. For q < 1, the most relevant band is the first one for
which the range of exited k is

k = m
(

1 ± q
2

)
. (5.28)

In the first band, the instability parameter is

µk =

√(q
2

)2
−
(

k
m

− 1
)

. (5.29)

The maximum of (5.29) is obtained in k = m and we have

µmax = µk=m =
q
2
=

g2Φ2

8m2 . (5.30)

Parametric resonances occur when perturbative decays are inefficient, re-
sulting in qm > Γ, where tPR ∼ 1/qm represents the time of the resonances.
It is important to check if tPR is shorter than the Hubble expansion because if
it is, then the parametric resonances will be inefficient. Another factor to con-
sider is the redshift of momenta k away from the resonance band, which can
prevent parametric resonances. The time ∆t during which a given mode goes
outside this band can be estimated by q/H. During this interval, the number
of particles changes by a factor of exp

(
q2m/H

)
, and the decays are efficient

if q2m > H. In the narrow resonance regime, this condition is stronger than
the condition resulting from the Hubble expansion, qm > H. The parametric
resonances dominate over the perturbative decays and are efficient if:

1. qm > Γ ,

2. q2m > H .

By referring to Equation (5.15), we can easily understand that parametric res-
onances (PR) can be effective when the value of Φ is high enough. However,
it’s important to note that the preheating stage doesn’t lead to the end of
reheating since the amplitude of oscillations eventually decreases, and PR
comes to a halt. The primary goal of the preheating stage is to establish a
different setup for the final stage of reheating.
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It’s crucial to mention the rescattering and backreaction effects, which can
push modes out of the resonance band. Backreaction refers to the impact of
the produced χ-particle on the classical inflaton field, following the Hartree
approximation. This means that the effect of χ is represented in the variance
⟨χ2⟩, and the classical inflaton field obtains a mass of approximately m2

ϕ,eff ∼
g2⟨χ2⟩. We’re computing the primary correction on the dynamics of ϕ arising
from the energy depleted by χ. When the mass g2⟨χ2⟩ reaches the inflaton’s
bare mass m2, PR terminates, since the parameter q is decreasing as a result
of the increase in mϕ,eff. Based on (5.17), we can determine the time when PR
stops as tend ∼ 1/µm ln m/g.

The Hartree approximation is an incomplete method of considering pre-
heating because it assumes that the inflaton field is homogeneous. However,
if we take into account the inflaton fluctuations, then interactions such as ϕ2χ
or ϕχ2 in Fourier space can result in mode coupling. In the Hartree approx-
imation, ϕ is considered a function of t, which in Fourier space is equiva-
lent to a delta function that collapses the convolution and eliminates mode
coupling. The mode-mode coupling between different momentum modes is
known as rescattering, which becomes increasingly important during the fi-
nal nonlinear stages of preheating. This indicates that parametric resonance
is a complex process that requires detailed numerical simulations, including
all relevant effects, in order to determine its occurrence.

5.3.3 Broad Resonance

It’s important to note that if the value of Φ is large, not only will the para-
metric resonance (PR) be efficient, but the value of q will also satisfy q ≫ 1,
which leads to a broad regime rather than a narrow one. This phenomenon
can be observed in many models of inflation where Φ remains large at the
end of inflation.

In the toy model that we’re working with, the Planck normalization sug-
gests that m ∼ 10−6MPl and Φ ∼ MPl. These two results indicate a value for
q ∼ g21012 according to equation (5.15). With the exception of an extremely
small g, we can achieve large values for q.

From equation (5.15), we can see that the ranges of k excited are larger in
the broad case than in the narrow case. Moreover, the instability coefficients
µk will be large, and reheating will be very efficient.

In the regime where q is much greater than 1, the field χk undergoes many
oscillations for every oscillation of the field ϕ. Numerical simulations in a
Minkowski background reveal that the production of χ particles occurs at
points where ϕ(t) equals 0, while production is suppressed away from these
points. This behavior leads to a sudden change in the evolution of nk at ϕ = 0,
while it remains constant elsewhere.

From this lesson, we now understand that the frequency of χ changes adi-
abatically away from ϕ = 0, and there nk remains constant. Instead, particle
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production happens when the adiabatic condition (5.26) is violated, namely

R =
| ˙̂wk|
ŵ2

k
≥ 1, (5.31)

where ŵk =
√

k2 + g2ϕ2 comes from (5.5). For small values of k, relation
(5.31) becomes

R ≃ ϕ̇

gϕ2 . (5.32)

From the last relation, we can understand that R diverges whenever ϕ ap-
proaches zero. In the moment where ϕ ≈ 0 we expect χ-particles production.
For finite values of k, relation (5.31) becomes

R =
g2ϕϕ̇

(k2 + g2ϕ2)
3/2 ∼ g2ϕmΦ

(k2 + g2ϕ2)
3/2 , (5.33)

where in the second equality we used ϕ̇ ∼ Φm cos mt ∼ Φm, that holds
near the origin ϕ = 0 where we can use (5.7). From (5.33), the adiabaticity
condition is broken for those wavevector that satisfy

k2 ≲
(

g2ϕmΦ
)2/3

− g2ϕ2. (5.34)

From relation (5.34), we can understand that, in the broad regime, there is a
wide range of k that are excited; they form a sphere in the k space rather than
shells as in the narrow case. In the regime of small k, relation (5.34) start to be
satisfied for ϕ smaller than ϕmax =

√
mΦ/g. To find the maximum range of

k that are excited we take a ϕ derivative of the right-hand side of (5.34) and
search for the zeros of this equation. The maximum ϕ∗ turns out to be given
by the following estimate ϕ∗ ∼ ϕmax/2 . Inserting ϕ∗ in (5.34) we obtain

k2 ≲ k2
∗ = gmΦ, (5.35)

where the second step is the definition of k∗. Including the expansion of the
Universe, relation (5.35) becomes

k2

a2(t)
≲ k2

∗ (t) = gmΦ (t) . (5.36)

Due to the scaling of a as a ∼ t2/3 and Φ as Φ ∼ 1/t we see that the expansion
makes broad resonance more effective since more k-modes are pushed into
the instability band.

Including the expansion of the Universe modifies the modes equation
(5.13) with the inclusion of an addition term

χ̈k + ω2
k χk = 0, (5.37)
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where

ω2
k =

k2

a2 + g2Φ2 sin2 mt + ∆, ∆ = −3
4

(
3H2 + 2Ḣ

)
. (5.38)

It has been shown in [104] that the system, in broad regime, can be analyzed
as a successive sequence of Schrodinger scattering of the wavefunction χ
against an inverted quadratic potential. Indeed, the χ-particles production
happen near ϕ = 0 and there the modes function χk deviate from and adia-
batic evolution e±ı

∫
ωkdt. This bring us to study (5.38) near ϕ(t0) = 0 where

we can expand g2Φ2 sin2 mt ∼ g2Φ2m2 (t − t0)
2 at leading order. From this

approximation, the quadratic potential pops out. In broad regime q ≫ 1, the
phase θ, θ =

∫
dtωk, is rapidly changing with time due to ωk and its value

is practically stochastic. In [104], it is shown that in the 75% of all scattering
events the amplitude of χk grows after passing through ϕ = 0. Over a long
period, the occupation number of χ-particles therefore grows. Of course, this
treatment is only an approximation of the full analysis and considering back-
reaction and rescattering, point toward an analysis that requires numerical
simulations.





61

Chapter 6

The landscape of Axions

In this chapter, we review the main properties of axion in Section 6.1 and
how it behaves during inflation in Sections 6.2 and 6.3. We pass to study the
possible type of production mechanisms in Section 6.4. We discuss both the
natural inflation and axion quality issues in Sections 6.7 and 6.6, respectively.
Other references on these topics include [131, 159].

6.1 Motivations for the Axions

The motivation of the axion comes from the presence of the strong CP prob-
lem in the strong sector of the standard model. In this part of the Lagrangian
is present a topological term that is

LQCD ⊂ g2
s θ

32π2 GµνG̃µν, (6.1)

where G̃ is G̃µν = ϵµνργGργ and ϵ is the totally anti-symmetric tensor. More-
over, gs is the strong coupling constant and θ is a constant term. Due to the
ϵ tensor the last term breaks CP-invariance. Moreover, we have to be pre-
cise by adding the fact that the quark mass term is CP-violating for non-zero
phases. The quark fields can always be redefined by a chiral transformation.
This redefinition not only affects the mass matrix but due to a change in the
path integral measure changes the value of θ [67]. It can be shown that the
following quantity

θ̄ = θ − arg det YuYd, (6.2)

where Yu, Yd are the Yukawa mass matrices for the quarks, and it is the correct
physical combination to account for a possible CP violation.

Notably, it gives rise to a neutron electric dipole moment

dN =
(

5.2 × 10−16e · cm
)

θ̄. (6.3)

Current experimental upper bounds on the dipole moment give an upper
bound of dN < 10−16e · cm [15, 5], which requires θ̄ < 10−10. The strong CP
problem is why θ̄ is so small.

The Peccei–Quinn (PQ) mechanism, [138], based on a global U(1)PQ sym-
metry, provides a solution to the strong CP problem by promoting the QCD
θ̄ angle to a dynamical axion field [174, 177]. The axion can be interpreted as
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the phase of a complex scalar—the PQ field Φ = φeıa/ f . When the tempera-
ture T is of order the decay constant of the axion f , the radial field φ acquires
a vacuum expectation value, of order f , and the global U(1)PQ symmetry
is broken. The axion is the Goldstone boson of the U(1)PQ and is massless
at all orders in perturbation theory. The axion potential is induced by non-
perturbative effects, as instantons, at temperature TNP. The axion is an an-
gular DOF and it has to satisfy a residual discrete symmetry, that is a going
in a + 2πn f , where n is an integer number. The last symmetry restricts the
potential of the axion to be periodic. A prototypical example for the potential
ṼNP of the axion is

ṼNP(a) = f 2m2
QCD(T) (1 − cos a/ f ) , (6.4)

where the mass mQCD is temperature dependent and it is set by the topolog-
ical susceptibility χ as follows

mQCD(T) =
√

χ

f
, χ(T) = χ0

(
TQCD

T

)n
, TQCD = 200MeV. (6.5)

Where in the relation (6.5), χ0 = (75.5MeV)4 comes from a QCD calculation,
and if we assume the dilute instanton gas approximation we have n = 8, [33,
34]. Relation (6.4) is not unique and the exact form of the potential requires
detailed knowledge of the non-perturbative physics.

One interesting property of the axion a is that the self-interaction and in-
teraction with matter are suppressed by f , due to the shift symmetry. The
weak interactions of the axion a promote it to be a light and long-lived parti-
cle. All these axion properties promote it to provide a candidate for inflation,
dark matter, and dark energy. In this thesis, we explore the axion as a dark
matter candidate. A crucial aspect of the axion is when the U(1)PQ is broken
or not. It is important to study the role of the axion during inflation and there
are two different cases 1

1. The PQ symmetry is unbroken during inflation if f < H/2π

2. The PQ symmetry is broken during inflation if f > H/2π

6.2 PQ symmetry unbroken during inflation

The De Sitter spacetime can be viewed as having a temperature TH = H/2π
and the axion a acquires thermal fluctuations of order δa ∼ H/2π. These
temperature fluctuations are large enough that the U(1)PQ symmetry is un-
broken and φ has zero vacuum expectation value. After inflation, the tem-
perature drops below the scale f , breaking the symmetry. The temperature,
at which the breaking happens, is larger than the temperature at which non-
perturbative effects switch on. Hence, the axion has no potential and there

1To be precise, the condition would be max(TR, H/2π), where TR is the reheating tem-
perature. The symmetry can be thermally restored, but we avoid this possibility for the
moment, which would require a complete reheating model.
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are no preferred values that the axion can acquire. In each casually discon-
nected patch, the axion picks a value from a random uniform distribution on
[−π, π]. Each causally disconnected patch is of order the horizon size 1/H
and the axion has different values. This means that the axion varies on hori-
zon scales and has O(1) fluctuations when non-perturbative effects switch
on 1/H ∼ 10pc (QCD scale). These fluctuations are non-adiabatic, but are
not scale invariant and give rise to additional power on scales that are sub-
horizon at the PQ symmetry breaking; these perturbations may give rise to
axion mini-cluster[37].

A breaking of global symmetry generates topological defects, in the case
of a global U(1)PQ we may have to deal with cosmic strings, and if NDW ̸= 1,
the domain wall number, also domain walls. These latter defects, if they are
not removed, tend to dominate the energy budget of the Universe since their
energy density scales as 1/a2. Instead if NDW = 1, the domain wall problem
can be avoided. Anyway, both cosmic strings and domain walls provide a
rich phenomenology.

Since ain, the initial axion value, varies from patch to patch we can calcu-
late ⟨a2

in⟩ as follows

⟨θ2
in⟩ =

1
2π

∫ π

−π
θ2 =

π2

3
, (6.6)

where
θin =

ain

f
, (6.7)

and we assumed a uniform density distribution for θ. The last relation will
be useful later for the calculation of the relic abundance of dark matter. As
we will see, in the next scenario, θin is not predicted and is an environmental
parameter.

6.3 PQ symmetry broken during inflation

In this case, the PQ symmetry is broken before or during inflation and all
topological defects are red-shifted away by the expansion. In particular the
value of the initial angle θin is stretched on super-horizon scales and each sin-
gle patch, our Universe, has a single value for θin. The axion in this scenario
is a homogeneous field and its initial value is arbitrary, there is no reason to
choose 0 or π, except for personal taste or anthropic reasons.

In this scenario, the axion exits during inflation as a massless field. Mass-
less fields acquire fluctuations of order Hubble. The axion has no potential
and its perturbations do not alter the energy density ρ, in other words, its
fluctuations are of isocurvature type. If axion provides a dark matter can-
didate these isocurvature perturbations are then imprinted in the spectrum
of dark matter. The Planck experiment severely constrains the isocurvature
perturbations in the dark matter component. Indeed, the Planck collabora-
tion [9] puts, at the CMB scale k∗ = 0.05Mpc−1, for uncorrelated axion-type
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isocurvature perturbations the following constraint

Piso

AS
≤ 0.038, (6.8)

where Piso = δΩDM/ΩDM is the isocurvature dark matter power spectrum
and AS ∼ 10−9 from observation. To compute the last formula we need an
explicit expression for the relic abundance of axion that will be our next task.

6.4 Axion’s production mechanisms

In this Chapter, we will discuss the abundance of axion relics, denoted as Ωa,
which can be produced through several ways such as the decay of topolog-
ical defects, vacuum realignment, kinetic misalignment, thermal population
and decay of parent particles. In particular, we will focus on the first three
methods and provide a brief overview of each.

6.4.1 The axion as decay product of topological defects

As introduced before we are referring to the case of the PQ symmetry un-
broken during inflation. Let us stress immediately that the evolution of the
string networks/ domain walls is hardly complicated, see [108, 159] and an-
alytically calculations lack. In the rest of the thesis, we will not touch the
dark matter production mechanism since as we will see in the future chap-
ter, Chapter 7, the evolution of the symmetry after Peccei-Quinn inflation
requires numerical simulations.

Nevertheless, within this scenario, the production mechanism of the strings
network is the so-called Kibble mechanism [97]. In this scenario, there is at
least one string per horizon. This string is created when the random value of
the axion field wraps from zero to 2π f along a closed path in physical space.
If this closed path has a size larger than the horizon the string perforates the
surface subtend by the closed path. Moreover, this string network consists of
string loops that emit axions while tightening, oscillating, reconnecting, and
collapsing during the Universe’s expansion.

The final amount of axions from string decay is a long-standing contro-
versy and the relic abundance can be written as

Ωah2 = Ωmish2 (1 + αdec) , (6.9)

where Ωmish2 is the misalignment result and the value of αdec oscillates from
0.16 to 186, [78, 55, 24, 86]. The degree of ignorance, parameterized as αdec,
lies in the form of the spectrum of the axions emitted from strings. A slice of
this ignorance resides in how the string system is simulated. This is a very
important area of research because the uncertainties present are directly re-
lated to possible observations of axion since a large contribution from strings
points toward small values of f .
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6.4.2 Vacuum realignment

This process is present in the cases of PQ symmetry which is broken after
or before inflation. In the broken scenario, the vacuum realignment consists
of zero and higher modes contributions since the axion is inhomogeneous,
besides the aforementioned defects. When the axion is homogeneous only
the zero mode contributes and topological defects are not present.

In the standard vacuum misalignment scenario, the axion starts at some
random initial place ain = f θin with ȧin = 0. Recently, the study of the
scenario in which axion has a non-zero initial velocity has received much
attention in the literature. If this initial velocity is sizeable it can affect the
evolution of the axion, postponing its oscillation time and therefore chang-
ing its relic abundance. This is the core of the so-called kinetic misalignment
model[46]. We have to mention also the so-called "axion kination" that is
based on the same logic where a spinning axion dominates the energy bud-
get of the Universe providing an equation of state w equal to w = 1. The
interest of this mechanism lies, to name one, in the boost that the gravita-
tional wave spectrum, originating from inflation, receives if this phase with
w = 1 is present. From the observation or not of this signal, one can put con-
straints on the UV models that generate this phase that are principally based
on supersymmetry [49, 73].

But let us go back to the case in which ȧin = 0. If the axion is homoge-
neous over the entire Hubble patch its evolution is governed by (3.19). The
axion is stuck to ain by Hubble friction until the oscillation temperature T∗
that is the moment when

3H (T∗) ≈ mQCD (T∗) . (6.10)

In the rest of the chapter, we will assume that the onset of oscillation starts in
radiation domination and the subsequent evolution is adiabatic; moreover,
we assume for simplicity NDW = 1. After oscillation (neglecting anharmonic
effects ) the axion behaves as non-relativistic matter and the production of
dark matter axion is non-thermal2.

The calculation of the relic abundance proceeds as follows, we start from

Ωah2 =
ρ(T0)ah2

ρcrit,0
, (6.11)

where we used (2.39). Since the axion is non-relativistic from oscillation until
now, we know that

ρ(T0)a = mQCD (T0) na (T∗)

(
a∗
a0

)3

. (6.12)

2The field is described by a classical condensate of particles at rest k⃗ = 0 that oscillate
coherently with the same phases
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The ratio of scale factors can be evaluated using the conservation of entropy
and we obtain (

a∗
a0

)3

=
g (T0)

g (T∗)

T3
0

T3
∗

. (6.13)

Using (6.13) and (6.12) in (6.11) we get

Ωah2 ≈
mQCD (T0) h2 f 2⟨θ2

in⟩
2ρcrit,0

3g (T0) T3
0

MPlg (T∗) T∗

√
π2g (T∗)

90
, (6.14)

where we used (6.7), na (T∗) ≈
mQCD(T∗) f 2⟨θ2

in⟩
2 since the axion is stuck until T∗,

(6.10) and radiation domination 3M2
PlH

2 (T∗) =
π2g(T∗)T4

∗
30 .

For the temperature T∗ we can use (6.10), (6.5), radiation domination and
we obtain √

π2g (T∗)

90
T2
∗

MPl
=

√
χ0

3 f

(
TQCD

T∗

)n/2

. (6.15)

The last steps are to substitute (6.15) in (6.14) and we obtain

Ωa ∼ 0.1⟨θ2
in⟩
(

f
1012GeV

)7/6

, (6.16)

where we also used (6.5), and

ρcrit,0 ≃ 10−5h2GeVcm−3, nfl ≃ 410cm−3, g (T0) ≃ 4, n = 8, g (T∗) ≃ 62,
(6.17)

the most right expression represents the relativistic standard model degree
of freedom just above the QCD scale.

Relation (6.16) implicitly assumed that the axion oscillations start when
T∗ ≳ TQCD. From (6.15) and (6.17) we have

T∗ ∼ TQCD

(
1016GeV

f

)1/6

. (6.18)

Relation (6.18) is telling us that (6.16) holds for f ≲ 1015GeV. Instead for
f ≳ 1017GeV the oscillations begin when T ≲ TQCD and the relic abundance
changes. In this case, the axion starts to oscillate with the zero temperature
mass, hence we can take in (6.15) the n = 0 case and we obtain

Ωah2 ∼ 0.1⟨θ2
in⟩
(

f
1013GeV

)3/2

. (6.19)

In the range 1015GeV ≲ f ≲ 1017GeV, oscillations begin during the QCD
epoch, and the dilute instanton gas approximation breaks down; in this regime
the estimation of the relic abundance is complicated.

Both in (6.16) and (6.18) we approximate the potential to be quadratic but
when θin ∼ 1 anharmonic effects start to be important. In this regime, there
is an increment of the relic abundance of dark matter. The first analytical
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estimate of these effects is presented in [122], and they can be included by
the replacement of θin with

θ2
in

[
ln

1
1 − θin/π

]1.175

. (6.20)

The author’s choice for the dependence of mass on temperature (n ̸= 8) re-
sults in the numerical value 1.175. This is only a glimpse to show that the
actual calculation is complicated and many approximations are used; such
that one has not to rely on these computations for a more realistic result.
The interested reader can find in [169], a full numerical computation of the
relic abundance valid for all f , with g temperature dependents and all anhar-
monic effects accounted.

Let us consider θin as a free parameter and analyze the consequence of
(6.16), we further specialize to the case f ≲ 1015GeV. In particular, high
and low scale f point towards a tuning of the initial angle θin in the θin ≪
1 and θin ∼ π regions respectively. There is a "sweet" spot where θin ∼
1 and the total dark matter abundance is reproduced, from (6.16), for f ∼
1012GeV. In the unbroken scenario, thanks to (6.6) and (6.16) we can put
a bound on f ≲ 1011GeV in order not to overproduce dark matter. In the
unbroken scenario all values of f ≲ 1011GeV are possible. This freedom
reflects the uncertainty in the production mechanism, in other words, the
ignorance of the exact amount of axions from topological defects.

6.4.3 Kinetic Misalignment Mechanism

As we anticipated in Section 6.4.2 there can be the possibility of changing
the evolution of the axion field through a non-vanishing velocity θ̇, leading
to axion dark matter for larger values of mQCD respect to the standard mis-
alignment scenario. The so-called "kinetic misalignment" (KM) mechanism
is at play when the kinetic energy of the axion is larger than the potential
energy at the usual oscillation temperature T∗ (6.18). The non-zero velocity
for the axion can be induced, for example, with a higher-dimensional oper-
ator, that breaks the U(1)PQ symmetry and provides an angular kick for the
axion, similar to the Affleck-Dine mechanism [8]. Let us review this scenario
as proposed in [46].

The U(1)PQ symmetry is associated with a conservation of a Noether
charge due to the shift symmetry of the axion θ → θ + α. The charge can
be read from the action and we get

φ2θ̇a3 = L, (6.21)

where L is a constant and represents the angular momentum. For the estima-
tion of the relic abundance is useful to work with red-shift invariant quanti-
ties. In order to do that we call nθ = φ2θ̇ and we introduce a yield Yθ defined
as

Yθ =
nθ

s
, (6.22)
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where s is the entropy density and scales as a−3. Hence, Yθ is constant and its
value is model-dependent.

Let us assume to be in radiation domination and the radial field is stuck
to the minimum φ = f . If the kinetic energy of the axion f 2θ̇2/2 at the usual
oscillation temperature T∗ (6.18) is greater than the potential energy given by
relation (6.4), then the axion will overcome the potential barrier and θ will
continue to change. This evolution ceases when the kinetic energy reaches
the height of the potential barrier

|θ̇(T′)| = 2mQCD(T′), (6.23)

where T′ is the temperature of this moment. After this moment the axion is
trapped in the minimum and the onset of oscillations is delayed if T′ < T∗.

We assume that the mass of the axion changes adiabatically and that the
energy density of the axion redshifts as matter after the onset of the oscil-
lation. Today’s energy density of axion normalized to the entropy density
reads

ρa

s
= mQCD(T0)

na(T′)

s(T′)
, (6.24)

where mQCD is the vacuum axion mass. For na(T′)/s(T′) we have

na(T′)

s(T′)
≃ f 2θ̇(T′)

s(T′)
= Yθ, (6.25)

where we used na = VNP/mQCD, (6.22) and (6.23). However, this computa-
tion is not entirely correct since we assumed that ρa ∼ a−3 immediately after
the onset of the oscillations. Since the axion oscillates near the maximum,
anharmonic effects become important, causing a delay in the oscillation and
boosting the relic abundance. This non-linearities correct relation (6.24) by a
factor of two, leading to[46]

ρa

s
= 2mQCD(0)Yθ. (6.26)

The condition for kinetic misalignment to be relevant, namely |θ̇(T∗)| >
mQCD(T∗), can be rewritten as

Yθ > Ycrit, Ycrit =
na(T∗)

s(T∗)
∼ f 2

MPlT∗
, (6.27)

where we used na(T∗) ∼ mQCD(T∗) f 2, mQCD(T∗) ∼ H(T∗), H(T∗) ∼ T2
∗/MPl

and s(T∗) ∼ T3
∗ and dropped numerical factors.

Using (6.18) in (6.27) we obtain

Ycrit = 0.11
(

f
109GeV

)13/6

. (6.28)
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Assuming Yθ ≫ Ycrit, the axion abundance is given by the kinetic misalign-
ment mechanism and we get

Ωah2 ≃ ΩDMh2
(

f
109GeV

)(
Yθ

40

)
, (6.29)

which is independent of the axion mass evolution. Comparing (6.29) and
(6.28) we get Yθ < Ycrit for f ≳ 1.5 × 1011GeV . Hence, kinetic misalign-
ment can provide all the dark matter for smaller values of f compared to
the standard misalignment. In equation (6.29), all model dependence is con-
tained within Yθ. In Chapter 8, we will investigate whether potential (7.23)
can maintain kinetic misalignment.

6.5 Isocurvature perturbations in the vanilla Ax-
ion scenario

In the unbroken scenario, the axion does not exist during inflation and it
does not acquire isocurvature perturbations on large scales where we have
strong constraints from Planck. As we said in Section 6.2, non-adiabatic per-
turbations may be present at small scales, and spectral distortions and mini-
clusters may impose interesting additional constraints [45, 37].

We turn our attention to the broken scenario where the axion acquires
fluctuations during inflation. Inflation can be tested by combining the isocur-
vature constraint and the properties of the axion to be a DM candidate. Within
the broken scenario, the relic abundance is given by the vacuum realign-
ment, relation (6.16). If the axion provides the totality of the dark matter
then ΩDM = Ωa and we can estimate Piso as

Piso ∼
(

2δθin

θin

)2

∼
(

H
π f θin

)2

, (6.30)

where in going from left to right we used δθ ∼ H/2π f . From ΩDM = Ωa
and (6.16) we get

θ2
in ∼

(
f

1012GeV

)−7/6

. (6.31)

With the help of (4.167), (4.168) and (6.31) we can rewrite (6.8) as follows

r ≲ 5 × 10−11
(

f
1016GeV

)5/6

. (6.32)

With future r ∼ 10−3 and futuristic sensitivity, from 21cm lensing, r ∼
10−9 [32, 158] we can probe in detail both the axion and the inflationary
paradigms. Assuming the totality of the dark matter is given by the axion,
the last relation highlights that any scale f , that is smaller than Planck, is
excluded with an observation of r within the previous range. Relaxing the
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assumption that the axion provides the totality of the DM, we can simulta-
neously reach r ∼ 10−4 and satisfy the bound from isocurvature but at the
precise of tuning θin ∼ 10−7, where Ωah2 < 10−6. There is no possible tuning
with f < MPl that can bring us to a value of r ∼ 10−3. Hence, observation
of large tensor modes forces the axion to live in the unbroken scenario where
f ≲ 1011GeV.

If some of the assumptions are relaxed the previous conclusions are not
expected to hold. In the previous treatment, we implicitly assumed that the
radial part of the PQ field was stuck in the minimum f . As we will see in
Appendix C by promoting the radial field to be the inflaton we can simulta-
neously obtain an r ∼ 10−3, providing all the DM and satisfying the isocur-
vature bound. Note how, in this case, the symmetry always breaks, and the
axion always acquires isocurvature perturbations. The parameter that affects
the evolution of PQ symmetry is only the reheating temperature.

We conclude this section by reporting the observational bounds on axion
which are mainly driven by astrophysics. For f close to f ∼ MPl meaning
mQCD of order mQCD ∼ 10−11eV the strongest bound is given by the modi-
fication of the gravitational wave emission of rapidly rotating astrophysical
black holes through the Penrose superradiance process. The non-observation
of this effect for the rapidly rotating black hole in the X-ray binary LMC X-1
puts an upper bound for the QCD axion on f , which is f ≤ 2× 1017GeV [13].
On the other side, for small f meaning large mQCD the axion starts to be cou-
pled more strongly to the SM particles and can affect the cooling behavior of
stars or supernovae. The non-observation of anomalous cooling puts a lower
bound on f , which is f ≥ 109GeV. The axion can reproduce the observed
DM abundance for a wide range of f , 109GeV ≤ f ≤ 1017GeV.

6.6 Axion quality problem

As we have seen the main motivation for the axion is that it provides a nat-
ural solution to the strong CP problem, see Section 6.1. The Wafa-Witten
theorem [171] guarantees the axion to relax to the minimum of its potential
in which CP is preserved, θ̄ = 0. This theorem does not ensure the perse-
verance of the solution in the case in which there are UV violations of the
U(1)PQ symmetry in addition to those given by the non-perturbative effects.
The latter effects appear at scales of the order of T ∼ Gev which is much
smaller than the usual values of f . This makes the solution to the strong CP
problem an IR effect. In the (KSVZ) and (DFSZ) models [98, 157, 57, 182] the
dynamics in the UV is reflected in the IR only through the coupling that the
axion has with the SM, but the dynamics of the axion is unchanged. Is the
naturalness of the solution preserved even if in the UV we have operators
that break the U(1)PQ symmetry? How sensitive is the solution to the strong
CP problem which is an IR effect to the presence of these operators?

In [93, 87, 91] we find answers to these questions. The purpose of this sec-
tion is to review these works since Chapter 7, the original part of the thesis,
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shares many similarities with these papers. These U(1)PQ-breaking opera-
tors are induced at the Planck scale due to quantum gravity, which is sup-
posed to violate all global symmetries. Wormholes and black holes [82, 70,
51, 68] show that Planck-scale physics can lead to violation of global symme-
tries. At energy scales smaller than the Planck one these effects are described
by higher-dimensional symmetry-breaking operators suppressed by an ap-
propriate power of the Planck mass. These operators will favor values of
the minimum of the potential of the axion which leads to an invalidation of
the solution of the strong CP problem, ( θ̄ ̸= 0). This is often referred to as
the axion quality problem. Let us derive the necessary suppression of these
higher-dimensional operators, induced by quantum gravity, to not spoil the
solution of the strong CP provided by the axion.

We add to the standard wine bottle potential VPQ ∼ λPQ
(
|Φ|2 − f 2) the

following term

g
|Φ|2mΦn

M2m+n−4
Pl

+ h.c., (6.33)

with g = |g|eiδ being a dimensionless and complex constant. We used MPl as
the suppression scale of the operator, by considering that some new physics
must intervene at or below MPL. One may thus expect |g| ≳ 1, however,
we will later show that the solution of the strong CP problem generically
requires a much smaller |g|. After the radial field has stabilized to the mini-
mum of the Mexican hat potential |Φ| = f , the higher-dimensional operator
induced a mass for the axion

m2
θ = n2|g|M2

Pl

(
f /

√
2MPl

)l−2
, (6.34)

where l = 2m + n.
As seen in Section 6.1, the axion obtains a potential at temperatures below

the QCD scale of the form,

V(θ) =
m2

QCD f 2

N2
DW

[1 − cos(NDWθ)]−
m2

θ f 2

n2 cos (nθ + δ), (6.35)

where we inserted NDW to keep the treatment general and we used a = f θ.
Here we have taken the CP-conserving vacuum as θ = 0 modulo 2π/NDW
without loss of generality, and mQCD is the mass arising from QCD non-
perturbative effects given by [53, 34],

mQCD ≃ 5.7µeV
(

1012GeV
f/NDW

)
. (6.36)

The second term in (6.35) is induced by the higher-dimensional operator after
QCD confinement and mθ is given by (6.34).

The axion at the minimum of the potential (6.35) needs to satisfy |NDWθmin| ≲
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FIGURE 6.1: Axion quality constraint on the coupling constant
|g| and dimension l of higher-dimensional operators for the PQ
field to solve the strong CP problem. The colored lines show
the axion quality constraint on U(1)PQ-breaking operators, for
f = 109 GeV (blue), f = 1011 GeV (green), f = 1013 GeV (yel-
low), f = 1015 GeV (orange). The colored regions show where
the constraint is satisfied; for f = 109GeV this happens in the
blue and the rest of the colored regions, for f = 1011GeV the re-
gions move to green, yellow, and orange, for f = 1013geV they
further move to yellow and orange, and for f = 1015GeV only

the orange region is allowed.

10−10 (modulo 2π) as implied by experimental bounds on the neutron elec-
tric dipole moment [15, 5]. This requirement imposes

NDW

n
m2

θ

m2
QCD

|sin (nθmin + δ)| ≲ 10−10. (6.37)

Supposing | sin(nθmin + δ)| ∼ 1, then this translates into a bound on |g| as

|g| ≲ 10−88 NDW

n

(√
2MPl

f

)l

. (6.38)

In Fig. 6.1 the axion quality constraint (6.38) is shown in the |g| - l plane as
the colored lines, for the parameter choice of NDW = n with for f = 109 GeV
(blue), f = 1011 GeV (green), f = 1013 GeV (yellow), f = 1015 GeV (orange).
The allowed regions, where we solve the strong CP problem, are given: for
f = 109GeV this happens in the blue and the rest of the colored regions,
for f = 1011GeV the regions move to green, yellow, and orange, for f =
1013geV they further move to yellow and orange, and for f = 1015GeV only
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the orange region is allowed.
As we have seen at the end of Section 6.5 the minimum allowed value for

f is f ∼ 109GeV. With this scale, from Fig. 6.1 a possible higher-dimensional
operator, that is already Planck suppressed, needs to be further suppressed
by a coupling |g| of order |g| ∼ 10−30 . Hence, we substitute the mystery
of the smallness of θ̄ with an even more big conundrum, the smallness of
|g|. From Fig. 6.1 we appreciate how the strong CP problem, which is an
IR process, is influenced by the unknown UV physics (parameterized by the
higher-dimensional operators). Relation (6.38) shows how the naturalness
of the strong CP problem solution given by the axion is challenged. In fact,
from IR physics we can put very strong bounds on operators living at the
UV scales. In Chapter 7 we will see that our analysis of the inflationary dy-
namics shares close analogies with the above discussion. We are going to see
how these operators, given by relation (6.33), affect the inflaton dynamics
and make the inflationary predictions sensitive to the unknown UV physics.
In this sense, the two works share many similarities even if they probe, as we
will see, two different energy scales, and the solution of the strong CP prob-
lem is substituted by the flatness of the potential; which is being accused by
these operators (6.33).

6.7 Natural Inflation

Our main goal in this section is to examine the possibility of driving inflation
with the axion field. The axion is the Goldstone boson of the U(1)PQ sym-
metry and the shift symmetry a → a + const implies that the axion potential
vanishes. For driving inflation the axion must have a sufficiently flat poten-
tial. The shift symmetry of the axion is broken at the non-perturbative level
generating the potential (6.4). The non-perturbative nature of the rupture
portends that the potential can remain sufficiently flat to sustain inflation.

In this section, we focus on the original version of natural inflation (NI)[66]
where there is a single rolling field with potential

VNI = Λ4 (1 + cos a/ f ) , (6.39)

where Λ is a constant with the dimension of an energy scale. The slow-roll
parameters, relations (3.28) and (3.29), with the choice of the previous poten-
tial read

ϵV =
M2

Pl sin2 a/ f

2 f 2 (1 + cos a/ f )2 , ηV = −
M2

Pl cos a/ f
f 2 (1 + cos a/ f )

, (6.40)

When these two parameters satisfy ϵV, |ηV| ≪ 1, the dynamic of the axion is
governed by the slow-roll equations of motion

3Hȧ ≃ −∂VNI

∂a
, 3M2

PlH
2 ≃ VNI, (6.41)
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where a dot represents a cosmic time (t) derivative. The end of inflation is
roughly sets by the condition ϵV(aend) = 1, which for aend gives

aend = 2 f arctan

(√
2 f

MPl

)
. (6.42)

Relation (3.31) evaluated between a generic scale a∗, corresponding to time
when the mode k∗ exits the Hubble horizon, and the end of inflation aend
gives us the following number of e-folds

N∗ = −
∫ aend

a∗

VNI

V′
NI

da
M2

Pl
=
∫ aend

a∗

f
M2

Pl

(1 + cos a/ f )
sin a/ f

da, (6.43)

where in going from left to right we used (6.39) and V′
NI = −Λ4/ f sin a/ f .

The previous integral can be computed, yielding

N∗ =
2 f 2

M2
Pl

ln
(

sin aend/2 f
sin a∗/2 f

)
, (6.44)

notice that aend ≥ a∗ since we restrict our analysis to 0 ≤ a/ f ≤ π. Relation
(6.44) can be solved for the initial position a∗

sin a∗/2 f = sin

(
arctan

√
2 f

MPl

)
exp

(
−

N∗M2
Pl

2 f 2

)
, (6.45)

where we used (6.42).
The scalar power spectrum amplitude, scalar spectral index, and the tensor-

to-scalar ratio at the wave number of interest k∗ are written, from (4.146),
(4.147) and (4.168), as

AS ≃ VNI,∗
24π2M4

PlϵV,∗
, ns − 1 ≃ 2ηV,∗ − 6ϵV,∗, r ≃ 16ϵV,∗. (6.46)
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The subscript ∗ denotes that the quantities are evaluated when the mode k∗
exits the Hubble horizon. Using (6.39), (6.40) and (6.45) in (6.46) we get

AS =

f 2Λ4
[

1 − sin2
(

arctan
√

2 f
MPl

)
exp

(
−N∗M2

Pl
f 2

)]2

6π2M6
Pl sin2

(
arctan

√
2 f

MPl

)
exp

(
−N∗M2

Pl
f 2

) (6.47)

ns − 1 =
M2

Pl
f 2 −

2M2
Pl

f 2
1[

1 − sin2
(

arctan
√

2 f
MPl

)
exp

(
−N∗M2

Pl
f 2

)] (6.48)

r =
8M2

Pl
f 2

sin2
(

arctan
√

2 f
MPl

)
exp

(
−N∗M2

Pl
f 2

)
[

1 − sin2
(

arctan
√

2 f
MPl

)
exp

(
−N∗M2

Pl
f 2

)] (6.49)

If set k∗ = 0.05Mpc−1 from the last column of Table 4.1 we know that the
best fit values for ns and AS are ns = 0.965 and AS = 2.1 × 10−9. Further-
more, if we set N∗ = 60 we can fix f from (6.48) and we obtain

f60 = 8.5MPl, (6.50)

where the sub-script 60 represents the value of f which generates N∗ = 60
and ns = 0.965 at the pivot scale k∗. From (6.47) we fix Λ as follows

Λ = MPl

(
6π2M2

PlAS

f 2
60

)1/4

√
sin
(

arctan
√

2 f60
MPl

)
exp

(
−N∗M2

Pl
4 f 2

60

)
√

1 − sin2
(

arctan
√

2 f
MPl

)
exp

(
−N∗M2

Pl
f 2

) ∼ 1016GeV,

(6.51)
where in going from left to right we used the values of f60, AS and N∗ = 60.
This analysis reveals that natural inflation can reproduce the CMB observ-
ables but at the price of working with super-Planckian values for f and Λ is
forced to be at the GUT scale. Since Λ sets the amplitude of the potential we
expect a large value for the tensor-to-scalar ratio. Indeed, from (6.49) we get

r60 =
8M2

Pl
f 2
60

sin2
(

arctan
√

2 f60
MPl

)
exp

(
−N∗M2

Pl
f 2
60

)
[

1 − sin2
(

arctan
√

2 f60
MPl

)
exp

(
−N∗M2

Pl
f 2
60

)] ∼ 0.08, (6.52)

in going from left to right we used the value of f60 and N∗ = 60. This value
exceeds the upper bound from Planck and makes the model strongly dis-
favoured against observational data. The model remains ruled out even if
we change N∗ or ns although the values of f , Λ, and r may change.
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Chapter 7

UV sensitivity of PQ inflation

The original motivation of the Peccei–Quinn (PQ) mechanism [138], based on
a global U(1)PQ symmetry, is to provide a possible solution to the strong CP
problem by promoting the QCD θ angle to a dynamical axion field [174, 177].
The axion can be interpreted as the phase of a complex scalar—the PQ field.
When the PQ field settles down to the minimum of a Mexican hat potential,
the U(1)PQ symmetry is spontaneously broken and the axion plays the role of
a pseudo Nambu–Goldstone boson. Axions also provide a viable candidate
for the dark matter of our Universe [143, 1, 56].

In itself, the PQ field has nothing to do with the physics of the primordial
universe but was introduced to solve a problem related to the nature of the
strong interaction. Taking inspiration from the case of Higgs inflation we
can promote the radial field of the PQ field to be the inflation. This makes
the PQ model capable of explaining inflation, dark matter, and the strong CP
problem. The simplicity and cost-effectiveness of the model are some of the
reasons that pushed us to analyze it in detail.

Another is linked, as we will see, to the fact that the model can be falsified.
It predicts a value of r ∼ 10−3 which will be tested with future experiments.
PQ inflation shares many similarities with Higgs inflation but theoretically
has better virtues. As we saw in Section 4.11.1, Higgs inflation has a validity
problem as an EFT linked to the value of ξ being too large. In PQ inflation
this problem does not arise because the self-coupling of the PQ field is a free
parameter and can be chosen to accommodate ξ ∼ 1 values. On the other
hand, values of ξ ∼ O(1) pose a problem with the possible impact of higher-
dimensional operators on the background dynamics. The nature of these
operators depends on the details of the ultraviolet completion of the theory,
bringing us back to a situation similar to Higgs inflation.

Considering the reasons cited above, it becomes important to try to un-
derstand whether the model’s predictions are preserved or whether a UV
sensitivity is present instead. In this chapter, we tackle this issue by evalu-
ating the effects of higher-dimensional operators on PQ inflation. By calcu-
lating their impact on curvature perturbations and the duration of inflation,
we derive constraints on Planck-suppressed operators. (See also [89] which
performed a similar study for a Higgs-like real inflaton.)

We will see that the size of these operators is highly constrained by the
flatness of the potential. The ultraviolet sensitivity of PQ inflation is rem-
iniscent of the so-called axion quality problem [93, 87, 91], which is based
on the observation that U(1)PQ-breaking higher-dimensional operators can



78 Chapter 7. UV sensitivity of PQ inflation

spoil the axion as a solution to the strong CP problem by displacing the ax-
ion field from the CP-conserving vacuum. While this vacuum displacement
is an effect sourced by higher-dimensional operators at low energies where
the PQ field is localized at the potential minimum, the effects on PQ inflation
are at the inflationary scale where the PQ field is largely displaced from its
minimum. Hence the two effects induced by higher-dimensional operators
have different natures, and we find that the resulting constraints are comple-
mentary to each other, excluding a wide range of operators when combined.
This result exacerbates the impact of unknown physics at the Planck scale on
experimentally testable IR physics.

It has been claimed in [61, 35] that after PQ inflation ends, axion dark
matter is produced due to the misalignment of the nearly homogeneous ax-
ion field from the vacuum, and also that the isocurvature fluctuation of the
axions is suppressed by the large PQ field displacement during inflation [116,
115]. On the other hand in the specific PQ(-like) inflation model of [17], the
oscillation of the inflaton about its origin induces a resonant amplification of
the field fluctuation, which leads to a restoration of the PQ symmetry. (See
[167, 96, 95, 166, 79, 100, 48, 16] for related works). The subsequent sym-
metry breaking thus yields a highly inhomogeneous axion field as well as
axionic strings, whose decay contributes to the axion production. Here, one
may expect that U(1)PQ-breaking higher-dimensional operators should sup-
press resonant effects since they can source an angular momentum to the PQ
field and prevent the field from oscillating violently along its radial direc-
tion. However, we show that with higher-dimensional operators allowed for
a consistent PQ inflation, a resonant amplification of the PQ field fluctua-
tion is inevitably triggered. Our finding thus implies that axion production
after PQ inflation does not proceed as in the vanilla vacuum misalignment
scenario.

The plan of this chapter is as follows. In Section 7.1 we review the basic
properties of the PQ inflation model. In Section 7.2 we derive constraints on
higher-dimensional operators by numerically solving the PQ field dynamics
during inflation. We then analytically derive an approximate expression for
the constraints in Section 7.3. In our calculations we treat PQ inflation as
an effectively single-field model; we justify this treatment in Section 7.4. In
Section 7.5 we study the PQ field dynamics after inflation and show that a
resonant amplification of field fluctuations is unavoidable. In Section 7.6 we
compare the constraint on higher-dimensional operators from PQ inflation
with that from axion quality arguments.

7.1 Peccei–Quinn inflation

We consider a PQ field Φ that is coupled to the Ricci scalar,

S =
∫

d4x
√
−g
[
−
(

M2

2
+ ξΦΦ∗

)
R + gµν∂µΦ∂νΦ∗ − V(Φ)

]
, (7.1)
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with V being a Mexican hat potential,

V(Φ) =
λ

6

(
|Φ|2 − f 2

2

)2

, (7.2)

and f is the axion decay constant. The self-coupling constant λ and gravita-
tional coupling ξ are assumed to be non-negative. At the symmetry-breaking
vacuum, i.e. |Φ| = f /

√
2, the mass scale M is related to the reduced Planck

mass, MPl ≈ 2.4 × 1018 GeV, by

M2
Pl = M2 + ξ f 2. (7.3)

We assume
ξ f 2 ≪ M2

Pl, (7.4)

so that MPl ≃ M. Rewriting Φ in terms of its radial and phase (axion) direc-
tions as

Φ =
φ√
2

eiθ, (7.5)

where φ ≥ 0, then the above action becomes

S =
∫

d4x
√
−g
[
−M2 + ξφ2

2
R +

1
2

gµν∂µ φ∂ν φ +
1
2

φ2gµν∂µθ∂νθ − V
]

, (7.6)

with
V =

λ

4!

(
φ2 − f 2

)2
. (7.7)

Performing a conformal transformation g̃µν = Ω2gµν with conformal factor

Ω2 = 1 + ξ
φ2

M2
Pl

, (7.8)

one goes to the Einstein frame where the action takes the form

S =
∫

d4x
√
−g̃

[
−

M2
Pl

2
R̃ +

1
2

g̃µν∂µχ∂νχ +
1
2

φ2

Ω2 g̃µν∂µθ∂νθ − U

]
. (7.9)

Here U = V/Ω4, and χ is an almost canonically normalized field defined as

dχ = I dφ, I =

√
1 + ξ(1 + 6ξ) φ2

M2
Pl

1 + ξ
φ2

M2
Pl

. (7.10)

Hereafter we carry out the analyses in the Einstein frame, and consider a
flat Friedmann–Robertson–Walker background, g̃µνdxνdxµ = dt2 − a(t)2dx2.
The U(1)PQ symmetry allows the axion to stay fixed to its initial position.
As a result, inflation takes place along the radial direction, which makes the
model similar to Higgs inflation (refer to Section 4.11). The key differences
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between the two are that λ is a free parameter in PQ and there is no assump-
tion that ξ is very large. The results of PQ inflation are more general, and
by taking the limit ξ ≫ 1, we obtain Higgs inflation. Thanks to the U(1)PQ
symmetry we treat the model as effectively single-field and introduce the
slow-roll parameters, relations (3.28) and (3.29), in terms of the canonical ra-
dial field as

ϵ =
M2

Pl
2

(
1
U

∂U
∂χ

)2

, η =
M2

Pl
U

∂2U
∂χ2 . (7.11)

When these are both smaller than unity, the radial field drives slow-roll in-
flation with its dynamics described by

3Hχ̇ ≃ −∂U
∂χ

, 3M2
PlH

2 ≃ U. (7.12)

Here an overdot denotes a derivative in terms of the physical time t, and H =
ȧ/a is the Hubble rate. The scalar power spectrum amplitude, scalar spectral
index, and the tensor-to-scalar ratio at some wave number of interest k∗ are
written, from (4.146), (4.147) and (4.168), as

As ≃
U∗

24π2M4
Plϵ∗

, ns − 1 ≃ 2η∗ − 6ϵ∗, r ≃ 16ϵ∗. (7.13)

The subscript ∗ denotes that the quantities are evaluated when the mode k∗
exits the Hubble horizon.

Ignoring the decay constant f in the potential (7.7) and using V = λφ4/4!,
the slow-roll parameters are obtained as

ϵ =
8 M2

Pl
φ2

1 + ξ(1 + 6ξ) φ2

M2
Pl

, η =
12 M2

Pl
φ2 + 4ξ(1 + 12ξ)− 8ξ2(1 + 6ξ) φ2

M2
Pl{

1 + ξ(1 + 6ξ) φ2

M2
Pl

}2 . (7.14)

The amplitudes of the two parameters become unity for similar field values.
We thus roughly estimate the field value when inflation ends by solving ϵ =
1, giving,

(
φend

MPl

)2

∼ 16
1 +

√
(1 + 8ξ)(1 + 24ξ)

≃


8 for ξ ≪ 10−1,

2√
3ξ

for ξ ≫ 10−1.
(7.15)

Hence as long as the decay constant satisfies both f 2 ≪ M2
Pl and (7.4), it

follows that f 2 ≪ φ2
end. This justifies our neglecting of f during inflation.

In particular, if the radial field value is large enough such that

ξ
φ2

M2
Pl

≫ 1, (7.16)
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then the slow-roll parameters become

ϵ ≃
8M4

Pl
ξ(1 + 6ξ)φ4 , η ≃ −

8M2
Pl

(1 + 6ξ)φ2 . (7.17)

As expected if ξ ≫ 1 we get back relations (4.177) and (4.178). These satisfy
a hierarchical relation of ϵ ≪ |η| ≪ 1, and using (7.13) we obtain

As ≃
λ(1 + 6ξ)φ4

∗
4608π2ξM4

Pl
, ns − 1 ≃ −

16M2
Pl

(1 + 6ξ)φ2
∗

, r ≃
128M4

Pl
ξ(1 + 6ξ)φ4

∗
. (7.18)

The slow-roll approximations (7.12) in the large-field regime (7.16) take the
forms,

3H φ̇ ≃ − λ

6ξ2(1 + 6ξ)

M4
Pl

φ
, (7.19)

H2 ≃
λM2

Pl
72ξ2 . (7.20)

Relation (3.30) can be used to obtain the number of e-folds between the exit
of the k∗ mode and the end of inflation as

N∗ =
∫ tend

t∗
dt H ≃ 1 + 6ξ

8M2
Pl

(
φ2
∗ − φ2

end

)
, (7.21)

where we assumed the field condition (7.16) to (at least marginally) hold until
the end of inflation. Supposing φ2

∗ ≫ φ2
end, then (7.18) is rewritten in terms

of N∗ as,

As ≃
λN2

∗
72π2ξ(1 + 6ξ)

, ns − 1 ≃ − 2
N∗

, r ≃ 2(1 + 6ξ)

ξN2
∗

. (7.22)

We have also numerically computed the inflationary predictions and model
parameters of PQ inflation, which are shown in Fig. 7.1 as functions of ξ.
Here λ and φ∗ are fixed using the expressions (7.13), such that the scalar
power spectrum amplitude takes the best-fit value As = 2.1 × 10−9, and the
spectral index lies within the 68% confidence region ns = 0.9649 ± 0.0042
from the Planck constraints at the pivot scale k∗ = 0.05 Mpc−1 [9]. The initial
field velocity φ̇∗ is fixed from the slow-roll expression (7.19). The equation of
motion of φ and the Friedmann equation are then numerically solved until
the end of inflation, namely when −Ḣ/H2 = 1. The axion field θ is fixed
to a constant in this computation. We show in the plots the values1 of the
self-coupling λ, the radial field values at horizon exit φ∗ and at the end of
inflation φend, e-folding number N∗ from when the pivot scale exits the hori-
zon until the end of inflation, and tensor-to-scalar ratio r at the pivot scale.

1The values of λ and ξ should be considered as those at the inflation scale. Throughout
this paper, we ignore the renormalization group running of the couplings during inflation,
by considering the logarithmic corrections to be small.
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FIGURE 7.1: Inflationary predictions and model parameters of
PQ inflation, as functions of the non-minimal gravitational cou-
pling. Between the dashed lines, the scalar spectral index takes
values within the Planck 68% C.L. region ns = 0.9649 ± 0.0042,
with the solid line corresponding to the central value. In
Fig. 7.1(d) the orange line shows the BICEP/Keck upper limit

for r.

The blue solid and dashed lines indicate values derived from, respectively,
the best-fit and 1σ uncertainty for ns. (These are barely distinguishable in the
log plots for φ∗ and λ.) The red line in Fig. 7.1(b) shows the field at the end
of inflation φend, which also barely depends on the detailed value of ns. In
Fig. 7.1(d) we also show the observational upper limit r < 0.036 (95% C.L.,
BICEP/Keck [7]) by the orange line.

For ξ ≲ 10−4, the model reduces to a simple φ4 inflation which is strongly
disfavoured by the Planck data [9]. The exclusion is explicitly seen in the
plots as r exceeding its upper limit, as well as N∗ far exceeding 60. At ξ ≳ 1,
the values of N∗ and r approach those of Higgs inflation which invokes λ ∼
10−1 and ξ ∼ 104, see Section 4.11. The results of Higgs inflation, relations
(4.182) and (4.184), are reproduced in (7.21) and (7.22) by taking the large
ξ limit. In Figure 7.1, the region of Higgs inflation is reproduced in the far
right portions of the graphs. Here the central value of the number of e-folds
becomes N∗ ≈ 56.5. Moreover, the tensor-to-scalar ratio approaches r ≈
0.004, which can be tested in upcoming experiments such as [10]. The upper
limit on r requires ξ ≳ 10−2.

With the scale of inflation for this model, and assuming that inflation is
followed by a phase of inflaton oscillation, and then by radiation domination,
the number of inflationary e-folds from the horizon exit of the pivot scale
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k∗ = 0.05 Mpc−1 should satisfy N∗ ≲ 56; here the upper limit corresponds to
the case of instantaneous reheating. One sees in Fig. 7.1(c) that if ns takes a
value that is +1σ away from the best fit, the upper limit on N∗ is violated for
any value of ξ.

One can hope to avoid a breakdown of the effective field theory by choos-
ing a set of sufficiently small couplings λ and ξ, as shown in Fig. 7.1(a). How-
ever Fig. 7.1(b) indicates that for ξ ≲ 102, the field value φ∗ exceeds MPl. It
should also be noted that, independently of ξ, the excursion of the canonical
field (7.10) obeys2 ∆χ > MPl. The large field excursions would make the in-
flationary predictions sensitive to operators suppressed by MPl. We look into
this in detail in the next section.

7.2 Impact of higher-dimensional operators

We now study how the naive picture of PQ inflation described above is af-
fected by higher-dimensional operators, and show that such operators need
to be strongly suppressed during inflation. As we are going to see this part
has close analogies with Section 6.6.

7.2.1 Higher-dimensional operators

We include an operator of dimension 2m + n in the Jordan frame such that
the potential (7.2) is modified to

V(Φ) =
λ

6

(
|Φ|2 − f 2

2

)2

+ Λ −
(

g
|Φ|2mΦn

M2m+n−4
Pl

+ h.c.

)
, (7.23)

with g being a dimensionless and complex constant. We used MPl as the sup-
pression scale of the operator, by considering that some new physics must
intervene at or below MPl. One may thus expect |g| ≳ 1, however we will
later show that PQ inflation generically requires a much smaller |g|. Opera-
tors that are suppressed instead by the effective Planck scale (M2

Pl + ξφ2)1/2

are studied in Appendix A. See also [20, 39, 84, 28, 40] for discussions on the
suppression scales of higher-dimensional operators in the context of Higgs
inflation.

The parameter Λ has mass dimension four and its value is chosen such
that the vacuum energy at the potential minima vanishes. At leading order
in g, its amplitude is of

|Λ| ∼ 2|g|M4
Pl

(
f√

2MPl

)2m+n
. (7.24)

2This can also be understood from the Lyth bound [124] for a canonical inflaton,
|dχ/dN| ≃

√
r/8 MPl, combined with the values of r shown in Fig. 7.1(d).
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We also write the dimension of the operator as

l = 2m + n, (7.25)

and the coupling as g = |g|eiδ with a real phase δ. Rewriting the complex
scalar as (7.5), the above potential becomes

V =
λ

4!

(
φ2 − f 2

)2
+ Λ − 2|g|M4

Pl

(
φ√

2MPl

)l
cos(nθ + δ). (7.26)

If n = 0 the axion remains massless. On the other hand if n ̸= 0, the U(1)PQ
symmetry is broken and the axion acquires a mass; the presence of such oper-
ators is also suggested by the breaking of global symmetries due to quantum
gravity [3, 18, 80]. In the following we will consider both PQ-breaking and
preserving operators.

The homogeneous equations of motion and the Friedmann equation in
the presence of the higher-dimensional operator are

0 = χ̈+ 3Hχ̇+
1

Ω4
√

Ω2 + 6ξ2 φ2

M2
Pl

[(
1 + ξ

f 2

M2
Pl

)
λ

6
(φ2 − f 2)φ− 4ξφΛ

M2
Pl

−Ω2φθ̇2

−
{

lΩ2 − 4ξ
φ2

M2
Pl

}
Ω2φm2

θ

n2 cos(nθ + δ)

]
, (7.27)

0 = θ̈ + 3Hθ̇ +
2θ̇ φ̇

Ω2φ
+

m2
θ

n
sin(nθ + δ), (7.28)

3M2
PlH

2 =
χ̇2

2
+

φ2θ̇2

2Ω2 +
1

Ω4

{
λ

4!
(φ2 − f 2)2 + Λ −

Ω2φ2m2
θ

n2 cos(nθ + δ)

}
.

(7.29)
Here mθ represents the mass of the angular direction around its potential
minima, which is defined as

m2
θ =

1
φ2Ω2

∂2V
∂θ2

∣∣∣∣
nθ+δ=0

=
n2|g|M2

Pl
Ω2

(
φ√

2MPl

)l−2

. (7.30)

The mass induced by higher-dimensional operators depends on the inflaton
field value. In particular when the inflaton reaches its potential minimum,

the axion mass becomes m2
θ ≃ n2|g|M2

Pl

(
f /

√
2MPl

)l−2
.

7.2.2 Constraints from number of e-folds

Higher-dimensional operators change the tilt of the inflaton potential, which
in turn affects the number of inflationary e-folds N. We compute N by nu-
merically solving the set of equations (7.27), (7.28), and (7.29), from the time
when the pivot scale k∗ exits the horizon until the end of inflation at −Ḣ/H2 =
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1. The scalar power spectrum amplitude and spectral index are fixed to the
central values As = 2.1 × 10−9 and ns = 0.965; we impose this condition
by evaluating the observables using the slow-roll expressions (7.13) with V
given by (7.26), and choosing the values of λ and φ∗ accordingly.3

We also use the slow-roll approximations to fix the field velocities at the
horizon exit of the pivot scale, namely, (7.12) for the radial field and

3Hθ̇ ≃ −
m2

θ

n
sin(nθ + δ) (7.31)

for the axion. The solution (7.31) assumes m2
θ ≪ H2. In particular for n = 0,

the right-hand side vanishes and thus the axion is fixed to a constant value
during inflation. On the other hand if m2

θ ≳ H2, the axion does not follow
(7.31), but quickly becomes stabilized at one of its potential minima. Hence
instead of treating θ∗ as a free parameter, we write it as

nθ∗ + δ = (nθi + δ) exp

(
−

m2
θ∗

H2
∗

)
, (7.32)

in terms of an ‘initial’ angle θi, which represents the axion field value a few
e-foldings before the pivot scale exits the horizon. If m2

θ∗ ≪ H2
∗ then θ∗ ≃ θi,

while if m2
θ∗ ≫ H2

∗ then nθ∗ + δ is effectively zero independently of the value
of θi. We also note that for m2

θ∗ ≫ H2
∗, the parametrization (7.32) combined

with (7.31) yields θ̇∗ ≃ 0, corresponding to an axion at rest in a minimum.
Hence (7.31) and (7.32) allow us to systematically analyze the range of possi-
bilities arising from higher-dimensional operators.

Since the inflationary dynamics is insensitive to the precise values of f
and Λ, we are thus left with five free parameters: |g|, l, n, nθi + δ, and ξ.
In Fig. 7.2 we show constraints on higher-dimensional operators in the |g|
- l plane. (We performed computations also for fractional l.) As a rough
guide, we require the number of e-folds from when the pivot scale k∗ exits
the horizon until the end of inflation, to lie within the range4 50 ≤ N∗ ≤
60. The regions on the right sides of the lines are excluded since there the
number of e-folds N∗ is either larger than 60 or smaller than 50, and/or As
and ns cannot simultaneously take the observed values. In each line the non-
minimal coupling is taken as ξ = 10−1 (blue), 1 (green), 10 (yellow), 102

(orange), 103 (red). Each of these are further classified by whether the U(1)PQ
is broken or conserved, and whether cos(nθi + δ) is positive (if n ̸= 0 this
corresponds to starting close to a minimum of the axion potential) or negative
(close to a hilltop); we took the combinations of n = 1 and θi + δ = π − 0.5
(solid), n = 0 and δ = π − 0.5 (dotted), n = 1 and θi + δ = 0.5 (dashed), n = 0
and δ = 0.5 (dashed). The last two cases are both shown by the same dashed

3We will show that higher-dimensional operators significantly affect N for fixed values of
As and ns. This is equivalent to saying that for a fixed N, the values of As and ns are highly
sensitive to the operators.

4Note that N∗ ≤ 60 yields a conservative constraint, as the actual upper limit is smaller;
see discussions at the end of Section 7.1.
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FIGURE 7.2: Constraints on the coupling constant |g| and di-
mension l of higher-dimensional operators in PQ inflation,
from the requirement that the scalar power spectrum amplitude
and spectral index match with observations, and the Planck
pivot scale exits the horizon 50 to 60 e-folds before inflation
ends. The allowed regions are on the left of the curves. The
colors denote different values for the non-minimal coupling ξ.
The other parameters are taken as n = 1 and θi + δ = π − 0.5
(solid), n = 0 and δ = π − 0.5 (dotted), n = 1 and θi + δ = 0.5
(dashed), n = 0 and δ = 0.5 (dashed); the last two cases overlap
and thus are shown by the same dashed lines. The dotted lines
overlap with the solid in most part of the plot. The requirement
of very small values for |g| manifests the extreme sensitivity of
PQ inflation to Planck-suppressed higher-dimensional opera-

tors.

lines since they overlap in the plot. Moreover, the dotted lines overlap with
the solid in most part of the plot.

As one increases |g|, the number of e-folds basically increases (decreases)
from the base value N∗ ≈ 56.5 for positive (negative) values of cos(nθi + δ),
which can be understood from the potential (7.26) being flattened (steep-
ened) by the higher-dimensional operator. In the plot, the dashed lines for
cases with nθi + δ = 0.5 show where N∗ = 60; on the left of these lines are the
regions where 56.5 ≤ N∗ < 60. The dotted lines for n = 0 and δ = π − 0.5
show where N∗ = 50, with the regions on the left giving 50 < N∗ ≤ 56.5.
On the other hand, the solid lines for n = 1 and θi + δ = π − 0.5 consist of
multiple constraints; we look into this case in detail in the following subsec-
tion. (However the reader interested primarily in the general behavior of the
constraints may go straight to Section 7.3 upon first reading.)

In our computations we only included one higher-dimensional operator
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as shown in (7.23). In the presence of a tower of operators, a consistent PQ
inflation can be achieved if all operators satisfy the constraints of Fig. 7.2;
here it should be noted that even if operators with different dimensions can-
cel each other at some particular value of φ, as the field rolls the operators
will become non-negligible. The constraints thus indicate that even opera-
tors with very high dimensions need to be strongly suppressed. We remark
that there is the possibility that multiple higher-dimensional operators con-
spire to realize a completely different but flat potential at large field values.
However we do not pursue such directions since in this paper we are inter-
ested in providing discussions that do not rely on the details of the ultraviolet
completion.

7.2.3 Constraints around the hilltop

If the higher-dimensional operator breaks U(1)PQ and gives a sufficiently
large axion mass, then even if the axion is initially placed near a potential
hilltop (i.e. cos(nθi + δ) < 0), it would roll down to the vicinity of a minimum
by the time the pivot scale exits the horizon (i.e. cos(nθ∗ + δ) > 0). This is
the reason why in Fig. 7.2 some of the solid lines (n = 1 and θi + δ = π − 0.5)
connect the dotted lines (n = 0 and δ = π − 0.5, thus cos δ < 0) to the dashed
lines (nθi + δ = 0.5, thus cos(nθ∗ + δ) > 0).

On the solid lines with ξ ≲ 1 (blue and green) the axion mass is suffi-
ciently small such that the axion barely rolls,5 hence the lines overlap with
the dotted and show where N∗ = 50. On the solid lines with ξ ≳ 10 (yel-
low, orange, and red), the axion can roll away from the hilltop region, and
as a consequence the lines exhibit kinks. (The red line has a kink at l ≈ 22,
which is not seen in the displayed area.) For these lines, the segments above
the kinks are set by N∗ = 50, while the segments right below the kinks arise
from not being able to produce the observed values for As and ns, and further
below the kinks are set by N∗ = 60.

In Fig. 7.3 we zoom into the regions where the various constraints meet,
for cases with n = 1. The combined constraints are shown with the same
color scheme and line patterns as in Fig. 7.2: ξ = 10 (yellow), 102 (orange),
with θi + δ = 0.5 (dashed), π − 0.5 (solid). Here we further show the contour
lines for the values of N∗ (black dashed) and m2

θ∗/H2
∗ (brown dotted). On the

right of the black solid lines are the regions where there is no combination
of (λ, φ∗) that simultaneously yield As = 2.1 × 10−9 and ns = 0.965. (The
black solid lines are not smooth because of the limited numerical resolution.)
In Figs. 7.3(a) and 7.3(c) where θi + δ = 0.5, as |g| increases the e-folding
number simply increases from its base value N∗ = 56.5. On the other hand in
Figs. 7.3(b) and 7.3(d) where θi + δ = π − 0.5, the e-folding number decreases
when m2

θ∗/H2
∗ ≲ 0.1, while it instead increases when m2

θ∗/H2
∗ ≳ 0.1 due to

the axion rolling down to the vicinity of a minimum. Moreover, the contour
lines of N∗ hit the region where the higher-dimensional operator prevents As
and ns from simultaneously taking the observed values. One sees that the

5We later explicitly show in (7.46) that the maximum allowed value of m2
θ/H2 increases

with ξ.
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(c) ξ = 102, θi + δ = 0.5
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(d) ξ = 102, θi + δ = π − 0.5

FIGURE 7.3: Detailed view of Fig. 7.2, zooming in on regions
where different constraints meet. The black dashed contours
show values of N∗, and the brown dotted show m2

θ∗/H2
∗. All

the results are for n = 1, while ξ and θi + δ are varied in each
panel. The combined constraints are shown with the same color
scheme (yellow/orange) and line patterns (solid/dashed) as in
Fig. 7.2. On the right of the black solid lines, As and ns cannot

simultaneously take the observed values.

kink in the combined constraint corresponds to where the N∗ = 50 contour
hits this no-go region. The constraint for ξ = 103 has a similar structure,
except for that the kink appears beyond the parameter range displayed in
Fig. 7.2.

In order to see the emergence of the no-go regions, in Fig. 7.4 we show the
combinations of φ∗ and λ that are solutions to As = U∗/24π2M4

Plϵ∗ (shown
as dashed lines) and ns − 1 = 2η∗ − 6ϵ∗ (solid lines). The observed values
of As and ns are simultaneously realized at the intersection of the dashed
and solid lines, whose position is indicated by a dot. Lines and dots with
different colors correspond to different values of |g|. Moreover, n and nθi + δ
are varied in the four panels, while the rest of the parameters are fixed to
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FIGURE 7.4: Combinations of φ∗ and λ that satisfy As =
U∗/24π2M4

Plϵ∗ (dashed lines) and ns − 1 = 2η∗ − 6ϵ∗ (solid
lines). The observed values As = 2.1 × 10−9 and ns = 0.965
are simultaneously realized at the intersections of the dashed
and solid lines, which are indicated by the dots. Different col-
ors correspond to different values of |g|. Values of n and nθi + δ
are varied in the four panels. The other parameters are fixed to

l = 8 and ξ = 102.

l = 8 and ξ = 102. Looking at Fig. 7.4(d) in which n = 1 and θi + δ = π − 0.5,
as |g| increases the intersection eventually disappears at around |g| = 2.5 ×
10−8 and one enters the no-go region; this is also seen directly in Fig. 7.3(d).
The disappearance of the intersection is also seen in Fig. 7.4(c) in which n = 1
and θi + δ = 0.5, however this happens for values of |g| that give N∗ > 60;
hence the no-go region appears in Fig. 7.3(c) on the right side of the orange
line.6

One sees in Fig. 7.4(d) that as |g| increases from zero, the value of φ∗
at the intersection point first decreases (as is the case in Fig. 7.4(b) for δ =
π − 0.5), and then turns to increase (as in Figs. 7.4(a) and 7.4(c) for nθi + δ =
0.5). This non-monotonic behavior is due to m2

θ∗/H2
∗ approaching unity and

6Values of φ∗ and λ are derived in (7.41) and (7.42) up to linear order in g, however we
note that the no-go region emerges where the g-expansion breaks down.
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forcing the axion to roll down to the vicinity of a minimum, as was shown in
Fig. 7.3(d). Finally, we should comment on the second branch of intersections
seen in Figs. 7.4(a), 7.4(c), and 7.4(d). As |g| increases the solutions in the two
branches approach each other, and merge right before one enters the no-go
region. We have ignored this second branch, since it appears at values of φ∗
larger than those in the first branch, and hence tends to yield N∗ that is too
large.

7.3 Analytic arguments

We now analytically derive an approximate expression for the constraints in
Fig. 7.2, by evaluating the modulation of the number of e-folds by higher-
dimensional operators. For this purpose we can ignore the time evolution
of the axion and fix it to a constant value at θ = θ∗, as we will later verify.
For the equation of motion of the radial field (7.27) and the Friedmann equa-
tion (7.29), we assume them to be approximated respectively by the slow-roll
expressions (7.19) and (7.20). The necessary conditions for this can be ob-
tained by comparing the approximations and their derivatives with the full
equations, which gives

M2
Pl

ξφ2 ,
m2

θ φ2

n2H2M2
Pl

,
ξ f 2

M2
Pl

,
ξ|Λ|

λφ2M2
Pl

≪ 1. (7.33)

Upon deriving these conditions, we assumed l to be larger than four but at
most of order ten, and cosine factors to be of order unity. The smallness of the
first term corresponds to the large-field condition (7.16), and the third term
is equivalent to the condition (7.4). Given that Λ is chosen as (7.24), then the
forth term being small follows from the smallness of the other quantities. The
smallness of the second term is imposed by the requirement that the second
line of (7.27) is negligible; let us name this parameter as,

κ =
m2

θ φ2

n2H2M2
Pl

≃ 72|g|ξ
λ

(
φ√

2MPl

)l−2

. (7.34)

Here upon moving to the far right-hand side, we used (7.20) and the defini-
tion of the axion mass (7.30).

In order to evaluate the effect of the higher-dimensional operator on the
number of e-folds, let us go beyond the leading-order approximations (7.19)
and (7.20) by including terms that explicitly depend on g. Under the slow-roll
conditions (7.33), one can check that the most relevant g-dependent term in
the full equations (7.27) and (7.29) is the second line of (7.27). Hence instead
of (7.19), let us use

3H φ̇ ≃ − λ

6ξ2(1 + 6ξ)

M4
Pl

φ

{
1 − 6(l − 4)ξ|g|

λ

(
φ√

2MPl

)l−2

cos(nθ∗ + δ)

}
,

(7.35)
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which combined with (7.20) gives

dN =
H
φ̇

dφ ≃ −1 + 6ξ

4M2
Pl

φ dφ

{
1 +

6(l − 4)ξ|g|
λ

(
φ√

2MPl

)l−2

cos(nθ∗ + δ)

}
.

(7.36)
Here we note that the time evolution of θ affects (7.27) and (7.29) through
terms proportional to either θ̇2 or m2

θ θ̇ sin(nθ + δ). Given that the axion ve-
locity is sourced by the higher-dimensional operator, we expect θ̇ ∝ m2

θ ∝ g.
Hence the evolution of θ affects the e-folding number at quadratic order in g,
and this justifies setting θ to a constant.

Supposing the condition (7.33) to hold throughout inflation and integrat-
ing (7.36) gives

N∗ ≃ (1 + 6ξ)

{
φ2
∗

8M2
Pl
+

3(l − 4)
l

ξ|g|
λ

(
φ∗√
2MPl

)l
cos (nθ∗ + δ)

}
, (7.37)

where we have neglected terms that depend on the field value at the end of
inflation. The first term in curly brackets is the leading contribution which
was derived in (7.21). The second term represents the correction from the
higher-dimensional operator; this can either increase or decrease N∗ depend-
ing on the sign of cos(nθ∗ + δ), as discussed in Section 7.2.2.

We further fix φ∗ and λ in terms of the scalar power spectrum amplitude
and spectral index, as was done in the numerical study in the previous sec-
tion. Expanding the slow-roll results for the observables (7.13) up to linear
order in g gives

As ≃
λ (1 + 6ξ) φ4

∗
4608π2ξM4

Pl
+

(l − 4) (1 + 6ξ) |g|
96π2

(
φ∗√
2MPl

)l+2

cos (nθ∗ + δ) ,

(7.38)

ns − 1 ≃ −
16M2

Pl
(1 + 6ξ)φ2

∗
− 24 (l − 4)2 ξ|g|

(1 + 6ξ)λ

(
φ∗√
2MPl

)l−4

cos (nθ∗ + δ) . (7.39)

Here we obtained each term in the right-hand sides at leading order in M2
Pl/ξφ2

∗,
and neglected terms containing f and Λ. These equations can be solved for
φ∗ and λ. Let us expand the quantities in powers of g,

φ∗ = φ∗0 + φ∗1 + · · · , λ = λ0 + λ1 + · · · , (7.40)

where the numbers in the subscript represent orders of g. Then at the zeroth
order we get

φ∗0 ≃ 4MPl√
(1 − ns)(1 + 6ξ)

, λ0 ≃ 18π2As(1 − ns)
2ξ(1 + 6ξ), (7.41)
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as also shown in Fig. 7.1 for ξ ≳ 10−2. At linear order,

φ∗1 ≃ (l − 4)2

48
φ∗0κ∗0 cos (nθ∗ + δ), λ1 ≃ − (l − 2)(l − 4)

12
λ0κ∗0 cos (nθ∗ + δ),

(7.42)
where κ∗0 is as shown in the far right-hand side of (7.34), but with the re-
placements φ → φ∗0 and λ → λ0.

Substituting (7.41) and (7.42) into (7.37), we obtain up to linear order in g,

N∗ ≃
2

1 − ns

{
1 +

(l − 2)2(l − 4)
24l

κ∗0 cos (nθ∗ + δ)

}
. (7.43)

In the absence of higher-dimensional operators, the e-folding number is given
by7 N∗ ≃ 2/(1 − ns) ≈ 57 for ns = 0.965. The leading correction by the
higher-dimensional operator is controlled by the parameter κ; this arises
from both the first term of (7.37) through the correction to φ∗, as well as the
second term. For the e-folding number to lie within the range 50 < N∗ < 60,
the higher-dimensional correction should be at most ∼ 10%. This imposes

(l − 2)2(l − 4)
24l

κ∗0 ≲ 10−1, (7.44)

where we assumed the cosine factor to be of order unity. Rewriting κ∗0 in
terms of observables using (7.41), one obtains an upper bound on |g| as

|g| ≲ 10−1 48π2lAs(1 − ns)

(l − 2)2(l − 4)

{
(1 + 6ξ)(1 − ns)

8

}l/2

,

∼ 10−9 l
(l − 2)2(l − 4)

(
1 + 6ξ

230

)l/2

.

(7.45)

Here, upon moving to the second line we used As = 2.1 × 10−9 and ns =
0.965.

In Fig. 7.5, the analytic upper bound (7.45) is shown as black solid lines
for different values of ξ, overlaid with the numerical bounds from Fig. 7.2.
The analytic estimate is seen to reproduce well the numerical results. The
tilt of the bound in the l - log |g| plane is predominantly set by the sign of
log[(1 + 6ξ)/230]; this factor derives from the ratio φ∗/

√
2MPl in (7.34). For

ξ ≲ 40, the bound on |g| becomes stronger with increasing l. This reflects
the fact that such values of ξ require field excursions of φ∗ > MPl (see also
Fig. 7.1), rendering the system particularly sensitive to higher-dimensional
operators.

Using the analytic bound on |g|, we can also derive an upper bound for
the axion mass during inflation. Rewriting its ratio to the Hubble rate as

7The actual e-folding number is shifted to N∗ ≈ 56.5 as reported in Section 7.1, mainly
due to deviations from slow-roll towards the end of inflation.
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FIGURE 7.5: Analytic bound (7.45) on higher-dimensional oper-
ators shown in black solid lines, compared with the numerical

bounds from Fig. 7.2.

m2
θ∗/H2

∗ = n2κ∗M2
Pl/φ2

∗, approximating φ∗ and κ∗ by their zeroth order val-
ues, and using (7.41), (7.44), and ns = 0.965, one obtains

m2
θ∗

H2
∗
≲ 10−2 n2l(1 + 6ξ)

(l − 2)2(l − 4)
. (7.46)

This expression explicitly shows that the maximum mass-Hubble ratio al-
lowed within a consistent PQ inflation increases with ξ, as was seen in Fig. 7.3.

7.4 Validity of single-field approximation

In the previous sections we have treated PQ inflation as effectively a single-
field model and computed the scalar perturbation, which was then compared
to observational results to fix the model parameters. We now verify the va-
lidity of the single-field approximation by estimating the contribution of the
axion field to the perturbation.

Let us evaluate scalar perturbations, relation (4.148), in the spatially flat
gauge [22],

ζ =
H
ρ̇

δρ ≃ H
ρ̇

(
Uφδφ + Uθδθ

)
, (7.47)

where ρ is the background energy density and δρ is the density perturbation.
In the far right-hand side we ignored terms containing spacetime derivatives
of the fields and expanded the potential energy at linear order in the field
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fluctuations, with Uφ = ∂U/∂φ and Uθ = ∂U/∂θ. We can then go to Fourier
space and write the scalar power spectrum as

Pζ(k) ≃
(

H
ρ̇

)2 (
U2

φPδφ(k) + U2
θ Pδθ(k)

)
, (7.48)

where Pδφ and Pδθ are the power spectra of the field fluctuations, and we
ignored cross-correlations between δφ and δθ.8

The time derivative of the background density is evaluated using the con-
tinuity equation as,

ρ̇

H
= −3

(
I2 φ̇2 +

φ2

Ω2 θ̇2
)
≃ − 1

3H2

(
U2

φ

I2 +
Ω2U2

θ

φ2

)
. (7.49)

The factors I2 and φ2/Ω2 are respectively the coefficients of the kinetic terms
of φ and θ in the Einstein frame action (7.9). Upon moving to the far right-
hand side we assumed both fields to slow-roll, namely, to follow 3H φ̇ ≃
−Uφ/I2 and 3Hθ̇ ≃ −Uθ(Ω2/φ2). We also evaluate the power spectra of the
field fluctuations at the wave mode k∗, when the mode exits the horizon, as

Pδφ∗(k∗) ≃
1
I2

(
H
2π

)2
∣∣∣∣∣
∗

, Pδθ∗(k∗) ≃
Ω2

φ2

(
H
2π

)2
∣∣∣∣∣
∗

. (7.50)

Combining (7.48), (7.49), and (7.50) with the slow-roll approximation for
the Friedmann equation 3M2

PlH
2 ≃ U, we obtain the scalar power spectrum

at the horizon exit of the wave mode k∗ as

Pζ∗(k∗) ≃
I2U3

12π2M6
PlU

2
φ

(
1 +

I2Ω2

φ2
U2

θ

U2
φ

)−1
∣∣∣∣∣∣
∗

. (7.51)

The expression in front of the parentheses is equivalent to the single-field
result of (7.13). The contribution from the axion kinetic term θ̇2 through ρ̇
(cf. (7.49)), and the axion fluctuation Pδθ (cf. (7.50)), both yield corrections to
the scalar power spectrum of order:

α =
I2Ω2

φ2
U2

θ

U2
φ

∣∣∣∣∣
∗

. (7.52)

Focusing on the large-field regime ξφ2
∗ ≫ M2

Pl, and ignoring g corrections
in Uφ, the quantity α is approximated by

α ≃ n2(1 + 6ξ)

144
κ2
∗ sin2(nθ∗ + δ), (7.53)

8The interaction between θ and the almost canonical χ through the axion’s kinetic term is
suppressed at ξφ2 ≫ M2

Pl (cf. (7.9)), while that through the higher-dimensional operator is
suppressed by the coupling g.
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where κ∗ is as shown in the far right-hand side of (7.34) but with the replace-
ment φ → φ∗. This shows that for instance with n = 1, κ∗ ≲ 0.1, and ξ ≲ 0.1,
the contribution by the axion to the scalar power is of α ≲ 10−4. One may ex-
pect from (7.53) that the axion contribution increases with ξ, however a large
ξ also enhances m2

θ∗/H2
∗ and reduces the system to an effective single-field,

as we see below.
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(d) ξ = 102, θi + δ = π − 0.5

FIGURE 7.6: (Un)importance of multi-field effects in PQ infla-
tion. The pink shaded regions show where the axion field af-
fects the scalar power spectrum by more than 1%. The ma-
genta solid contours show the axion’s contribution to the scalar
power, and the brown dotted show values of m2

θ∗/H2
∗. All the

results are for n = 1, while ξ and θi + δ are varied in each
panel. Overlaid are constraints on higher-dimensional opera-
tors as shown in Fig. 7.2. On the right of the black solid lines,

As and ns cannot simultaneously take the observed values.

In Fig. 7.6 we show the values of α as defined in (7.52) by magenta con-
tours in the |g| - l plane. All the results are for n = 1, while the values of
ξ and θi + δ are varied in each panel. (Note that in the U(1)PQ-symmetric
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case, i.e. n = 0, the axion field fluctuations do not source curvature perturba-
tions.) Upon plotting α, we replaced θ∗ in the definition (7.52) with θi, which
amounts to ignoring the axion rolling before the horizon exit of the pivot
scale. This is because if m2

θ∗ ≪ H2
∗, as assumed in the above discussions,

then it follows from (7.32) that θ∗ ≃ θi. On the other hand if m2
θ∗ ≳ H2

∗, the
analyses above break down; however in such cases the axion does not obtain
super-horizon field fluctuations, and thus it cannot source cosmological per-
turbations in the first place. To also examine such cases, we show in the plots
the values of m2

θ∗/H2
∗ as brown dotted contours. Both α and m2

θ∗/H2
∗ increase

with |g|. We assess the contribution from the axion to the scalar power spec-
trum to exceed ∼ 1% when both α ≳ 0.01 and m2

θ∗/H2
∗ < 0.5 are satisfied;

these regions are shown in pink.
Overlaid in the plots are the bounds on higher-dimensional operators

from Fig. 7.2, for ξ = 10 (yellow), 102 (orange), with dashed lines for θi + δ =
0.5 and solid lines for θi + δ = π − 0.5. The black solid line denotes the
left edge of the no-go region where the observed values of As and ns can-
not be simultaneously realized (cf. Section 7.2.3). Some parts of the bounds
on higher-dimensional operators, which we have derived using the single-
field approximation, are seen to run through the pink regions. Here the ex-
act position of the bounds are subject to corrections from multi-field effects.
However we remark that these correspond to very small parts in the dis-
played area of Fig. 7.2, and in particular that the ranges of |g| over which
the bounds pass through the pink regions are less than about one order of
magnitude. Other parts of the bounds for ξ = 10 and 102 in Fig. 7.2 do not
cross the pink regions. For ξ = 103, the range of |g| over which the bounds
cross the pink regions are even smaller than the cases shown in Fig. 7.6. The
bounds for ξ = 10−1 and 1 do not enter the pink regions at all, as one ex-
pects from (7.53). Hence we conclude that PQ inflation is well approximated
as single-field in most of the parameter space, and moreover, that multi-field
effects alter our bounds on higher-dimensional operators by no more than an
order of magnitude.

We should remark that in the above discussions we evaluated the curva-
ture perturbation at the time when the mode k∗ exits the horizon. However
the curvature perturbation can evolve outside the horizon in the presence of
isocurvature modes. This effect is analyzed in Appendix B using the δN for-
malism, where it is shown that the final contribution from the axion to the
curvature spectrum is comparable to or smaller than α given in (7.52). Hence
the regions in parameter space where the axion’s contribution exceeds 1% is
actually even smaller than shown in Fig. 7.6.

Let us also comment that, when we consider the axion to slowly roll, we
are implicitly assuming the quantum fluctuation (7.50) to be smaller than the
classical rolling over a Hubble time, i.e. P1/2

δθ∗ ≪ |θ̇∗|slow−roll/H∗. We have
checked that this condition actually holds within the displayed regions of
Fig. 7.6. On the other hand, the quantum fluctuation can dominate as one
moves to even smaller |g|, larger l, or n = 0. However by combining (7.50)



7.5. Parametric resonance 97

with (7.16), (7.20), and (7.41), the quantum fluctuation is estimated to be of

P1/2
δθ∗ ∼ 10−7

√
1 + 6ξ, (7.54)

which is much smaller than unity, unless ξ is extremely large. Hence we
expect that our main conclusion that the axion sources negligible curvature
perturbation remains valid even when the axion dynamics is governed by the
quantum fluctuation. Likewise, we expect the main conclusions of the other
sections that invoke axion slow-roll not to be altered by the domination of
the quantum fluctuation.

7.5 Parametric resonance

After inflation, the PQ field begins to oscillate around the vacuum. The oscil-
latory background can give rise to resonant amplifications of the field fluctu-
ation, which would impact the post-inflation cosmology including reheating
and axion dark matter production. One may expect that U(1)PQ-breaking
higher-dimensional operators can source an angular momentum to the PQ
field and suppress resonant effects. However we now show that a resonant
amplification is actually inevitably triggered after PQ inflation.

Let us focus on the first oscillation of the radial field after the end of in-
flation. With the oscillation time scale being comparable to or shorter than
the Hubble time, and the radial field bounded by φ ≤ φend, we ignore the
expansion of the Universe as well as higher dimensional operators.9 Hence
the U(1)PQ symmetry is unbroken and the PQ field’s angular momentum is
conserved, which we write as L = φ2θ̇. The equation of motion of the radial
direction can be written as

φ̈ = −V′
eff(φ), (7.55)

where the effective potential is

Veff(φ) = V(φ) +
L2

2φ2 , (7.56)

with V given in (7.7). This system has another conserved quantity, which is
the energy density: ρ = φ̇2/2 + Veff(φ). It is convenient to introduce dimen-
sionless parameters as

u =
φ2

f 2 , Q =

√
6
λ

|L|
f 3 , E =

4! ρ

λ f 4 . (7.57)

9It was claimed in [60] that a non-minimal gravitational coupling enhances a non-
perturbative decay of the inflaton. Here we show that resonant effects are triggered even
without the non-minimal coupling.
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Then the field value that minimizes the effective potential is obtained by solv-
ing V′

eff ∝ u3 − u2 − Q2 = 0 as

umin =
1
3

{
1 + F(Q)1/3 + F(Q)−1/3

}
, F(Q) =

2 + 27Q2 + 3Q
√

12 + 81Q2

2
.

(7.58)
When the effective mass of the radial field, m2

φ = V′′(φ) = (λ/6)(3φ2 −
f 2), varies with a time scale shorter than 1/mφ, then adiabaticity is vio-
lated and the PQ field fluctuations are amplified (on wave modes typically of
∼ mφ) [104, 103, 167, 105]. In fact, the frequency wφ of the φ field is roughly
given by w2

φ ∼ k2 + m2
φ and on the k we are interested in the adiabaticity

condition (5.31) becomes ṁφ/m2
φ. From Chapter 5 we know that when (5.31)

is violated we have particle creations. According to this, as a measure of adi-
abaticity, let us evaluate the quantity ṁφ/m2

φ, the square of which is written
as (

ṁφ

m2
φ

)2

=
Eu − u(u − 1)2 − 2Q2

6(u − 1
3)

3
. (7.59)

From (5.31), the PQ mode functions evolve adiabatically if (7.59) is smaller
than unity at the minimum (7.58) of the effective potential. If Q ≪ 1, the
adiabaticity parameter at u = umin can be expanded in Q as(

ṁφ

m2
φ

)2

min

=

{
9
16

+O(Q2)

}
E − 9

8
Q2 +O(Q4). (7.60)

This is smaller than unity for E ≲ 16/9. On the other hand if Q ≫ 1, then
expanding in 1/Q yields(

ṁφ

m2
φ

)2

min

=

{
1
6

Q−4/3 +O(Q−2)

}
E − 1

2
+O(Q−2/3), (7.61)

which is smaller than unity for

Q ≳
(

E
9

)3/4

. (7.62)

The special case of Q = (E/3)3/4 leads to (ṁφ/m2
φ)

2
min = O(Q−2/3) ≪ 1;

here the PQ field rotates in the complex plane with an almost circular orbit at
φ ≃ φmin.

The potential and kinetic energies at the end of inflation are related by

V(φend) = (φ̇2 + φ2θ̇2)end. (7.63)

This yields ρ = (3/2)V(φend), and by also using φ2
end ≫ f 2 we find

E ≃ 3
2

(
φend

f

)4

≫ 1. (7.64)
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Hence from the discussions around (7.61), the adiabaticity condition |ṁφ/m2
φ|min <

1 is satisfied only if Q is as large as (7.62). From (7.63) it also follows that the
ratio between the kinetic energy of the angular direction and the potential
energy at the end of inflation is bounded as

R =
φ2θ̇2

2V(φ)

∣∣∣∣
end

≤ 0.5. (7.65)

From (7.64), one finds that this energy ratio R is related to the dimensionless
angular momentum as

Q ≃
(

2
27

)1/4

E3/4R1/2 (7.66)

The condition (7.62) thus requires R to lie within the range:

0.1 ≲ R ≤ 0.5. (7.67)

We stress that this is a necessary but not a sufficient condition for adiabaticity
during the oscillations.

Let us now estimate the size of R by supposing that the angular field slow-
rolls during inflation along the potential sourced by higher-dimensional op-
erators as (7.31). Then the angular velocity at the end of inflation is estimated,
using also Ω2

end ∼ 1, as

3Hendθ̇end ∼ −n|g|M2
Pl

(
φend√
2MPl

)l−2

sin(nθend + δ), (7.68)

with the Hubble rate obtained using (7.63) as

Hend ≃
√

λ

48
φ2

end
MPl

. (7.69)

Further plugging (7.15) and (7.41) respectively into φend and λ, as well as
using the upper bound (7.45) on |g| and | sin(nθend + δ)| ≤ 1, one arrives at

R ≲


10−3

ξ2
n2l2

(l − 2)4(l − 4)2

(
1 − ns

2

)l−2

≲ 10−9 n2

ξ2 for ¸ ≪ 10−1,

10−1ξ
n2l2

(l − 2)4(l − 4)2

(√
3(1 − ns)

4

)l−2

≲ 10−7n2ξ for ¸ ≫ 10−1.

(7.70)
Upon going to the far right-hand sides, we used ns = 0.965, and also that
the expressions are maximized at l = 5. The upper limit in the first line
increases with decreasing ξ, however ξ ≳ 10−2 is required for the model
not to reduce to a φ4 inflation (cf. Fig. 7.1); this constrains R to be much
smaller than 10−1. From the second line one may except R to increase with ξ,
however this upper limit cannot always be saturated for large ξ, as we will
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(d) ξ = 102, θi + δ = π − 0.5

FIGURE 7.7: Ratio R between the angular kinetic energy and
potential energy at the end of PQ inflation. The magenta con-
tours show values of log10 R, and the brown dotted contours
show m2

θ∗/H2
∗. All the results are for n = 1, while ξ and θi + δ

are varied in each panel. Overlaid are constraints on higher-
dimensional operators as shown in Fig. 7.2. On the right of the
black solid lines, As and ns cannot simultaneously take the ob-

served values.

soon see.
We also numerically computed R as defined in (7.65), whose values are

shown in the |g| - l plane in Fig. 7.7. All the results are for n = 1, while ξ and
θi + δ are varied in each panel. The magenta contours show values of log10 R.
Also shown are brown dashed contours for the values of m2

θ∗/H2
∗, constraints

on higher-dimensional operators from Fig. 7.2, and black lines denoting the
left edge of the no-go region where As and ns cannot simultaneously take the
observed values. For ξ = 10, the maximum value of R is of 10−8 in Fig. 7.7(a)
and 10−6 in Fig. 7.7(b), realized close to the lower right corner where the yel-
low line hits the lower edge of l = 5. These maximum values roughly match
with that given in the second line of (7.70). On the other hand for ξ = 102,
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FIGURE 7.8: Combined constraints on the coupling constant
|g| and dimension l of higher-dimensional operators for the
PQ field to drive inflation and solve the strong CP problem.
The black lines show the axion quality constraint on U(1)PQ-
breaking operators, for f = 1012 GeV (solid) and f = 1010 GeV
(dashed). The other lines show constraints on generic operators
from the consistency of PQ inflation, with the colors denoting
different values of the non-minimal coupling ξ. The colored re-
gions show where both constraints are satisfied; for ξ = 10−1

this happens only in the blue region, for ξ = 1 the region ex-
pands to include green, for ξ = 10 it further expands to yel-
low, etc. The light-colored regions indicate the shift of the axion

quality constraint as f decreases from 1012 GeV to 1010 GeV.

the maximum R is of 10−9 in Fig. 7.7(c) and 10−7 in Fig. 7.7(d), which are sig-
nificantly smaller than the upper limit of (7.70). This is because in the lower
right corners of these plots, m2

θ∗/H2
∗ becomes of order unity and thus the ax-

ion rolls down to its potential minimum, suppressing the axion velocity |θ̇|
compared to the value m2

θ/3nH which was used for deriving (7.70).
We have thus seen that that, independently of ξ, the energy ratio R is

generally much smaller than the minimum value of 10−1 required in (7.67)
for adiabaticity. We therefore conclude that a non-adiabatic evolution of the
field fluctuation is inevitably triggered after PQ inflation.

7.6 Comparison with the Axion quality problem

In line with what we discussed in Section 6.6, it is natural to compare the nec-
essary suppression of higher-dimensional operators from the axion quality,
with the constraints derived in the previous sections.
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In Fig. 7.8 the axion quality constraint (6.38) is shown in the |g| - l plane
as the black lines, for the parameter choice of NDW = n with f = 1012 GeV
(solid) and f = 1010 GeV (dashed). The constraint (7.45) from the consistency
of PQ inflation is overlaid, with the same color scheme based on the value of
ξ as in Fig. 7.2. The axion quality constraint becomes weaker for smaller f ,
while the inflationary constraint becomes weaker for larger ξ (although a
larger ξ on the other hand lowers the cutoff of the effective field theory). The
PQ field can drive inflation and solve the strong CP problem in the colored
regions where both constraints are satisfied: With ξ = 10−1 this happens only
in the blue region, for ξ = 1 the region expands to include green, for ξ = 10
it further expands to yellow, etc. The light-colored regions indicate the shift
of the axion quality constraint as f is varied between 1012 GeV and 1010 GeV.

In the plane of log |g| and l, the tilt of the axion quality bound is given by
log(

√
2MPl/ f ), while that of the inflationary bound is predominantly given

by log(
√

2MPl/φ∗) (see discussions below (7.45)). The latter is smaller since
φ∗ ≫ f . As a consequence, the axion quality bound is more sensitive to l,
while the inflationary bound is more sensitive to |g|. The two bounds are
thus complementary to each other, and exclude a large parameter region of
higher-dimension operators when combined. It should also be noted that,
while the axion quality bound only constrains U(1)PQ-breaking operators
(n ̸= 0), the inflationary bound applies to general higher-dimensional op-
erators independently of whether they break the U(1)PQ.
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KM sourced from
higher-dimensional operators

In Section 6.4.3, we mentioned that the kinetic misalignment (KM) mecha-
nism relies on a significant value of θ̇. To obtain this term, we will use the
potential described in equation (7.23). The purpose of this chapter is to ex-
plore whether it is possible to achieve a relic abundance of dark matter using
the KM mechanism. We will do this by investigating a specific area in the pa-
rameter space where parametric resonances can be avoided. To achieve this,
we will need to let go of the assumption that the radial field is the inflaton.

Let us assume radiation domination and instantaneous reheating, for the
Hubble parameter we have

H(t) =
HI

2HIt + 1
, H(N) = HIe−2N, (8.1)

where HI is the unknown Hubble scale during inflation and we assumed
a(0) = 1. We consider a minimally coupled complex scalar field Φ = φ/

√
2eıθ

with potential given by (7.23). The complex scalar field is displaced from the
minimum of the potential and we will use φ0 = φin, θ0 = θin, φ̇0 = θ̇0 = 0
as initial conditions. The complex field is stuck to the initial values until the
Hubble parameter is large. When Hosc reaches mφ,osc, at the time of oscilla-
tion tosc, the radial field starts to oscillate around the minimum. If φin is suffi-
ciently large then the higher-dimensional operators may become important.
They will give rise to angular motion or velocity for θ. Hence, the complex
field describes an inspiral motion with an angular momentum that becomes
conserved after a sufficiently long time when we recover the U(1)PQ.

Let us call Nfin the number of e-folds at which we can neglect the higher-
dimensional operators and we recover the scaling φ2θ̇ ∼ a−3. The condition
2mQCD(T∗)/|θ̇(T∗)| < 1 becomes

2mQCD

|θ̇(T∗)|
=

6H(T∗) f 2a3
∗

|θ̇fin|φ2
fina3

fin
, (8.2)

where we used mQCD(T∗) = 3H∗ and the angular momentum conservation
from Nfin until T∗. Using radiation domination and θ̇ = Hdθ/dN = Hθ′ in
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(8.2) we obtain
6 f 2

|θ′fin|φ2
fin

√
Hfin

H∗
< 1. (8.3)

In order to evaluate the last expression we numerically compute θ̇fin, φfin, Hfin
from the equations of motion for φ and θ with the above initial conditions.
We solved the following system

H2φ′′ + H2φ′ + V,φ = φθ′2, (8.4)

φ2H2θ′′ + H2φ2θ′ + 2H2φ′φθ′ + V,θ = 0, (8.5)

from 0 to a number of e-folds given by Nfin. In the numerical simulation, we
used Nfin ∼ 3 − 4 which is a sufficiently "long" time to recover the scaling
φ2θ̇ ∼ a−3. The initial conditions for the fields φ and θ are fixed to be

φin = 1014GeV, θin ∼ O(1). (8.6)

Moreover, from the numerical simulation, we check that the adiabaticity con-
dition

|ṁφ|/m2
φ < 1, (8.7)

is satisfied near the maximum of φ̇, where

m2
φ =

λ

6

(
3φ2 − f 2

)
− |g|(l − 1)lM2

Pl

(
φ√

2MPl

)l−2

cos (nθ) . (8.8)

Our main goal is to generate a sizeable θ̇. To achieve this, we must ensure that
m2

θ(φosc) ≲ H2
osc. Otherwise, the axion will quickly stabilize in the minimum

along the angular direction before the radial field oscillations, resulting in
zero velocity for θ. This is similar to what we discussed in Section 7.2.2. We
have to impose

m2
θ(φosc)

H2
osc

=
n2|g|M2

Pl
H2

osc

(
φosc√
2MPl

)l−2

< 1, (8.9)

where we evaluate φ at the oscillation time, namely mφ,osc ∼ 3Hosc. Similarly,
we impose that the motion along the radial direction is dominated by the λφ4

term in (7.23). Hence, we require

S =

∣∣∣∣√2|g|lM3
Pl

(
φin√
2MPl

)l−1
cos (nθin)

∣∣∣∣
λφin(φ2

in− f 2)
6

< 1, (8.10)

a condition that if it is initially satisfied, it will remain perpetually. This pa-
rameter measures the ratio between the masses of the angular and radial
fields. We can write mθ as

m2
θ ∼ m2

φ
S

3l cos nθ
, (8.11)
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FIGURE 8.1: It is possible to have simultaneously kinetic mis-
alignment and prevent parametric resonances while having a
"light" axion. The allowed region is shown in green with over-
laid the constraints (8.3) in orange, (8.7) in red, (8.9) in blue,
and (8.10) in black. Here we fixed the following parameters
HI = 1013Gev, f = 106GeV, n = 1 and λ as specified below

each panel.

and relation (8.9) becomes Sosc ≲ l/3. Since φin ∼ φosc, the inequality S <
1 prevents the angular field from relaxing into the minimum before radial
oscillations.

For now, we will ignore the axion quality constraint (6.38), even though
the potential (7.23) breaks the U(1)PQ symmetry and has the potential to spoil
the solution of the strong-CP problem.

In two panels of Figure 8.1, we have shown that it is possible to have an
allowed region that satisfies the combination of the relations (8.3) in orange,
(8.7) in red, (8.9) in blue and (8.10) in black. The allowed regions for (8.3) and
(8.7) are on the right of the corresponding lines, while for (8.9) and (8.10), the
allowed regions are on the left of the blue and black lines. As a result of the
combination of these regions, a small green region arises, which enables the
creation of a permitted region that satisfies all bounds simultaneously.

It is worth noting that in order to avoid parametric resonances, the value
of the S parameter should be close to one. This was also observed in [48].
By looking at panels 8.1(a) and 8.1(b), we can see how the green region shifts
towards smaller values of |g| when we change λ. This is because, according
to formula (8.10), if λ decreases, |g| must also change in a similar way to keep
S around 1 while keeping all other parameters fixed. In Figure 8.1, we can
see that the blue and black lines mostly overlap, as expected based on the
discussion after Equation (8.10).

We also note how the bound (8.3), orange lines in Fig. 8.1, improves going
from panel 8.1(a) to 8.1(b). The reason is because the conserved charge ϕ2θ̇a3

scales like 1/λ1/4. Let’s start with the equation (8.5) which can be rewritten
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as
d
da

(
a3φ2θ̇

)
= − a2

H
∂V
∂θ

, (8.12)

where V is the potential given by (7.23) and we can integrate to obtain

a3φ2θ̇ = 2|g|nM4
Pl

∫ a

ain

da
a2

H

(
φ√

2MPl

)l
sin nθ, (8.13)

where we used a3φ2
inθ̇in = 0 from the assumed initial conditions. In [73], it

is shown that the last expression is maximized at the oscillation time (mφ ∼
3Hosc), after which the generation of nθ for l ≥ 4 and radiation domination is
stopped. We assume, for simplicity, that φosc, θosc ≈ φin, θin such that (8.13)
becomes

φ2
inθ′osc ≈

2
5
|g|nM4

Pl

(
φin√
2MPl

)l sin nθin

H2
osc

, (8.14)

where we neglected the initial contribution on the right of (8.13). Relation
(8.14) can be recast as

φ2
inθ′osc ≈

nλ tan nθin

30l
φ4

inS
H2

osc
, (8.15)

where we used (8.10) and we assumed φin ≫ f . From the last expression we
see that a3

oscφ2
inθ̇osc ∼ λφ4

inS/H5/2
osc ∼ 1/λ1/4, where Hosc ∼

√
λ/2φin.

Using (8.15) in (8.3) we obtain

l f 2H2
osc

λφ4
inS tan θin

√
Hosc

H∗
∼ l f 2λ1/4

φ3/2
in S

√
H∗ tan θin

< 1, (8.16)

where we dropped the numerical factors and we used Hosc ∼
√

λ/2φin. Re-
lation (8.16) is informative because it shows how the bound caused by kinetic
misalignment can be expressed as a bound for the circularity parameter S .
Moreover, we observe that decreasing the value of λ results in a decrease in
the required value of S , as can be seen in panels 8.1(a) and 8.1(b). We can
rewrite (8.16) as

S ≳
l f 2λ1/4

φ3/2
in

√
H∗ tan θin

≳ 0.4lλ1/4. (8.17)

where we substituted the values for f , φin, θin, H∗. Upon analyzing the last
relation, we can conclude that if λ is small enough, avoiding parametric res-
onances becomes the most stringent condition for the model.

In Figure 8.2, we present the numerical estimate given by relation (8.3) in
solid orange and the analytical approximation (8.17) in dashed. We observe
a good agreement between the two expressions at the order of magnitude
level.

Let’s explore why avoiding parametric resonances requires a S value of
around one. Initially, the adiabaticity condition is satisfied without any is-
sues up until the moment when the radial field starts to oscillate. From here,
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FIGURE 8.2: There is good agreement between the numerical
and analytical estimation for the kinetic misalignment mecha-
nism to be the dominant DM production mechanism. The KM
constraints (8.3) in solid orange and (8.17) in dashed orange.
Here we fixed the following parameters HI = 1013Gev, f =

106GeV, n = 1 and λ as specified below each panel.

the radial field moves towards the potential minimum with an initial kick
generated by the oscillation. As the φ field decreases, the contribution from
the higher-dimensional operator can be neglected. This means that the sys-
tem being studied is equivalent to the one in section 7.5, with an angular
momentum given by (8.15).

At the order of magnitude level, the adiabaticity condition (8.7) is equiva-
lent to the relation (7.59). Since φin ≫ f , the energy constant E is much larger
than one, i.e., E ≫ 1. As a result, the adiabaticity condition becomes similar
to (7.62).

Similar to section 7.5, the condition (7.62) can be translated into a condi-
tion for R. To avoid parametric resonances R should satisfy

R =
φ2θ̇2

2V

∣∣∣∣
osc

≳ 0.1, (8.18)

where we evaluate R at the time of oscillation, the upper bound does not
apply since φ is no longer the inflaton and θ̇ is generated.

Approximating φosc ≈ φin and from (8.15) we obtain

φ2
oscθ̇2

osc ≈
n2λφ4

inS2 tan nθin
2

50l2 . (8.19)

Using (7.23) and (8.10) we obtain

V(φosc) ≈
λφ4

in
4!

(
1 − 4S

l

)
. (8.20)
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Putting (8.20) and (8.19) in (8.18) we obtain

R ≈ 6 tan θin
2S2

25l2
(

1 − 4S
l

) ≳ 0.1, (8.21)

where we fixed n = 1. We choose the initial value of θ (θin) such that the tan-
gent of θin is approximately equal to 0. From the last equation, the circularity
parameter S should be approximately equal to l/4, which is of the order of
1, to avoid parametric resonances.
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Chapter 9

Conclusions

The PQ inflation scenario is a very appealing and economical model that
can explain many mysteries of the early Universe. Additionally, it predicts
a value of r that falls within the range of future experiments like LiteBIRD
[10], making the model falsifiable in the future. Apart from its testability,
this thesis explores the UV properties of the PQ model and examines the
robustness of its inflationary dynamics against the corrections induced by
higher-dimensional operators.

As we showed extensively in Chapter 7, the PQ inflation scenario is sensi-
tive to the ultraviolet completion of the theory for a wide range of values for
the non-minimal gravitational coupling ξ, since a large ξ entails a low cutoff
of the effective field theory, while a small ξ requires a large inflaton field ex-
cursion. We studied the latter effect and demonstrated that the predictions
of the scenario are very sensitive to Planck-suppressed higher-dimensional
operators. We showed in particular that for PQ inflation to produce the ap-
propriate number of e-folds and curvature perturbations that match with ob-
servations, the coupling constant of an operator of dimension l suppressed
by MPl in the Jordan frame is bounded as

|g| ≲ 10−9 l
(l − 4)(l − 2)2

(
1 + 6ξ

230

)l/2

. (9.1)

For instance, with ξ = 1, a dimension-five Planck-suppressed operator needs
to be further suppressed by coupling as small as |g| ≲ 10−13, with the con-
straint becoming more severe with increasing dimension. In this sense, this
work intends to underline how the PQ model, which is proposed as a solu-
tion to multiple puzzles, is subject to a fine-tuning problem.

Our constraint based on the consistency of PQ inflation is similar in spirit
to the axion quality argument which constrains U(1)PQ-breaking higher-dimensional
operators by requiring the axion to be able to solve the strong CP prob-
lem. However, the resulting constraints are quite different, since the for-
mer is a high-energy/large-field effect, while the latter is low-energy/small-
field. Moreover, the constraint from PQ inflation applies to generic higher-
dimensional operators, independently of whether they break the U(1)PQ sym-
metry. In other words, even if the U(1)PQ symmetry is protected for some
reason, PQ inflation is vulnerable to higher-dimensional corrections. The in-
flationary and axion quality constraints are complementary to each other,
and when combined exclude a large parameter space of higher-dimensional
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operators, as depicted in Fig. 7.8.
The treatment of the reheating and preheating phase requires complicated

numerical simulations to follow not only the time evolution of perturbations
but also their spatial distribution. (See [167, 96, 95, 166, 79, 100, 48, 16] for
related works).

In light of these facts, we wanted to maintain a more simplified treatment
which in any case does not limit us in stating that the parametric resonances
process plays a crucial role in the PQ model. This statement is not trivial at all
because it implies that the view taken so far on this model, i.e. of a homoge-
neous evolution of the axion after inflation, is not entirely justified. Based on
the constraint on higher-dimensional operators, we showed that the oscilla-
tion of the PQ field after inflation inevitably triggers resonant amplifications
of the field fluctuations, Fig. 7.7. This raises serious doubts about the validity
of the homogeneous evolution after inflation. For a stronger statement, i.e.
the invalidity of this scenario, more in-depth studies on symmetry restora-
tion are necessary which would entail, as explained in Chapter 6, a more
complex production process.

Here we note that to fully understand the cosmology after PQ inflation
including the reheating process, possible formation of axion strings and do-
main walls, as well as the production of axion dark matter, it is crucial to
ascertain the impact of parametric resonance. Our analyses can also be ex-
tended to other axion scenarios that make use of higher-dimensional opera-
tors, such as [46, 49, 73]. Our results are compatible with those present in the
literature [48, 17]; a result not obvious a priori given the different dynamics
present in the second reference.

We should remark that most of the analyses in Chapter 7 neglect inter-
actions between the PQ field and other matter fields, whose inclusion will
be necessary for understanding the reheating process. Matter couplings may
also modify the PQ field dynamics during/after inflation, and alter our re-
sults. Another important direction for further study is to seek for ultraviolet
completions that control higher-dimensional operators. See e.g. [160, 92] for
attempts for realizing high-scale inflation. It would be interesting to study if
such constructions exist also for the PQ inflation scenario.

In Chapter 8, we explored the possibility of preventing parametric reso-
nances and obtaining a relic abundance of DM through the kinetic misalign-
ment mechanism by abandoning the assumption that the radial field is the
inflaton. We found that it is possible to obtain a small green region in Fig.
8.1 which ensures the avoidance of parametric resonances if the circularity
parameter S is of the order of unity, as shown in [48]. We also put bounds
on the size of these operators. In the allowed regions, the relic abundance
of the DM is given by the kinetic misalignment mechanism. Moreover, if we
reduce the coupling λ, we can obtain a greater final angular momentum, as
stated in relation (8.17). Thus, avoiding parametric resonances becomes the
most stringent condition for the model if λ is small enough.

However, the treatment performed in Chapter 8 is preliminary, and we
cannot exclude the possibility of permitted regions for different parameter



Chapter 9. Conclusions 111

values. Therefore, a more thorough analysis is needed to explore a wider re-
gion of the parameters l and log10|g| with different choices for HI, f , λ. This
study is fundamental not only for the PQ model but also for all those mod-
els such as "kination" and "kinetic misalignment" [46, 73, 47] in which the
homogeneous evolution of the axion is assumed but not verified.

This thesis encompassed a comprehensive analysis spanning a wide range
of topics in cosmology. Noteworthy novel aspects of this thesis are the proven
UV sensitivity of the PQ model and the unavoidable presence of parametric
resonances within this scenario. We conclude by underlining how the field
of axion studies presents itself as a cornerstone for a greater comprehension
of the various puzzles that are present in the Universe. The work presented
in this thesis is suitable for further extensions as we discussed above.
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Appendix A

Effective-Planck-suppressed
operators

In the main text we focus on higher-dimensional operators that are sup-
pressed by the present-day Planck scale, however, in Appendix A we study
operators suppressed by the effective Planck scale during inflation.

In this appendix we suppose that quantum gravity corrections give rise
to higher-dimensional operators suppressed by the effective Planck scale in
the Jordan frame, namely, operators of the form (7.23) but with MPl replaced
by (M2

Pl + ξφ2)1/2. This scale at large fields becomes linear in the field as
≃

√
ξφ, and thus the operators reduce to the form

− |g|
2(2ξ)

l
2−2

φ4 cos(nθ + δ). (A.1)

This merely has the effect of shifting the PQ self-coupling by

∆λ = − 12|g|
(2ξ)

l
2−2

cos(nθ + δ). (A.2)

PQ inflation would hence match with observations in the presence of such
operators, given that the effective coupling λeff = λ + ∆λ takes an appropri-
ate value.

On the other hand, if one wishes to make reliable predictions of PQ in-
flation without detailed knowledge of quantum gravity, then ∆λ needs to be
small enough such that it has little effect on the cosmological observables.
When fixing the other parameters, the self-coupling is related to the spectral
index as λ ∝ (ns − 1)2, cf. (7.41). Hence a shift in λ affects ns by

∆ns

ns − 1
≃ ∆λ

2λ
. (A.3)

Combining with (A.2), approximating the cosine to unity, and substituting
(7.41) into λ, we obtain

|g| ∼ 3π2

2
As(1 − ns)|∆ns|(1 + 6ξ)(2ξ)

l
2−1

≲ 10−12(1 + 6ξ)(2ξ)
l
2−1.

(A.4)
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Upon moving to the second line we substituted As = 2.1× 10−9, ns = 0.9649,
and also required the shift in ns to be smaller than the Planck 1σ uncer-
tainty [9], i.e., |∆ns| < 0.0042. For ξ ≲ 0.1, this bound indicates that effective-
Planck-suppressed operators should be further suppressed by couplings as
small as |g| ≲ 10−12. On the other hand at ξ ≳ 104, the second line is of order
unity or larger for l ≥ 5 and hence the suppression by the effective Planck
scale alone renders the operators negligible.



115

Appendix B

Detailed computation of
multi-field effects

We compute the contribution from the axion field to the curvature pertur-
bation by using the δN formalism [163, 154, 173, 125] to take into account
the evolution of the perturbation outside the horizon. The analysis in this
appendix is close to that presented in [99].

Given relation (4.203), the power spectrum of the curvature perturbation
can be written in terms of field derivatives of the e-folding number as

Pζ(k∗) ≃
(

∂N∗
∂φ∗

)2

Pδφ∗(k∗) +
(

∂N∗
∂θ∗

)2

Pδθ∗(k∗), (B.1)

where we expanded the perturbation in terms of field fluctuations up to lin-
ear order, and ignored cross-correlations between the radial and angular fluc-
tuations. Pδφ∗ and Pδθ∗ denote the power spectra of the field fluctuations on
the initial flat slice when the wave mode k∗ exits the horizon.

Let us focus on PQ inflation in the large-field regime. In particular, we
assume the conditions laid out in (7.33), plus m2

θ ≪ H2 to hold through-
out inflation. Then the equations of motion (7.27), (7.28), and the Friedmann
equation (7.29) are approximated by the slow-roll expressions (7.19), (7.31),
and (7.20), respectively. Moreover, the power of the field fluctuations at hori-
zon exit are (cf. (7.50)),

Pδφ∗(k∗) ≃
ξ

1 + 6ξ

(
φ∗

MPl

)2 (H∗
2π

)2

, Pδθ∗(k∗) ≃
ξ

M2
Pl

(
H∗
2π

)2

. (B.2)

The infinitesimal variation of the e-folding number is written using (7.19) and
(7.20) as

dN ≃ −1 + 6ξ

4
φ dφ

M2
Pl

, (B.3)

hence the radial contribution to the curvature power spectrum is obtained as(
∂N∗
∂φ∗

)2

Pδφ∗ ≃
ξ(1 + 6ξ)

16
φ4
∗

M6
Pl

(
H∗
2π

)2

. (B.4)

Rewriting H∗ using (7.20), this reproduces the expression for As in (7.18).
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Considering inflation to end when the radial field approaches some field
value φend which is independent of θ∗, then it is convenient to express the
evolution of the angular field in terms of the radial field. Combining (7.19)
and (7.31) gives

dθ

dφ
≃ 6ξ2(1 + 6ξ)

nλ

φ m2
θ

M4
Pl

sin(nθ + δ), (B.5)

which can be integrated to yield,

tan
(

nθ + δ

2

)
≃ tan

(
nθ∗ + δ

2

)
exp

[
G
2
(xl−2 − xl−2

∗ )

]
. (B.6)

Here we have introduced

x =
φ√

2MPl
, G =

12n2

l − 2
ξ(1 + 6ξ)|g|

λ
. (B.7)

Following similar prescriptions as in Section 7.3, one finds that under the
conditions (7.33) and m2

θ ≪ H2, the leading correction to the expression (B.3)
for dN from terms that explicitly1 depend on θ yields (7.36), but with the
replacement θ∗ → θ. (Unlike in Section 7.3, here we are not limiting ourselves
to corrections linear in g, and hence the axion is allowed to roll.) Then N∗ can
be obtained by integrating this expression over φ∗ ≥ φ ≥ φend, noting that θ
is a function of φ as given in (B.6). In particular, its θ∗-derivative is written as

∂N∗
∂θ∗

≃ (l − 2)(l − 4)
2n

G
∫ xend

x∗
dx xl−1

tan
(

nθ∗+δ
2

) {
1 + tan2

(
nθ∗+δ

2

)}
eG(xl−2−xl−2

∗ ){
1 + tan2

(
nθ∗+δ

2

)
eG(xl−2−xl−2

∗ )
}2 .

(B.8)
In terms of this quantity, the ratio of the contributions to the curvature power
spectrum from the angular and radial fields is written as

β =
(∂N∗/∂θ∗)2Pδθ∗
(∂N∗/∂φ∗)2Pδφ∗

≃ 16
1 + 6ξ

(
MPl

φ∗

)4 (∂N∗
∂θ∗

)2

. (B.9)

Here, upon moving to the far right-hand side we used (B.2) and (B.4).
In order to analytically compute the integral in (B.8), let us for the moment

focus on the case of
|nθ∗ + δ| ≪ 1. (B.10)

Then by expanding the integrand up to linear order in (nθ∗ + δ), one can
perform the integral and obtain

∂N∗
∂θ∗

≃ l − 4
4n

Ge−Gxl−2
∗

[
xlE− 2

l−2
(−Gxl−2)

]x∗

xend

(nθ∗ + δ), (B.11)

1In principle the axion can also affect N through terms that only depend on φ by modu-
lating the radial field dynamics; however we consider such effects to be negligible.



Appendix B. Detailed computation of multi-field effects 117

where

Ep(z) = zp−1
∫ ∞

z

e−y

yp dy (B.12)

is the generalized exponential integral. The argument Gxl−2 in (B.11) is, un-
der the conditions (7.33), approximated by

Gxl−2 ≃ 1 + 6ξ

6(l − 2)
m2

θ

H2
φ2

M2
Pl

=
n2(1 + 6ξ)

6(l − 2)
κ, (B.13)

where κ is defined in (7.34). Let us further assume this to be sufficiently
small such that Gxl−2 ≪ 1, and expand the generalized exponential integral
using [136]

Ep(z) = zp−1Γ(1 − p)−
∞

∑
s=0

(−z)s

s!(1 − p + s)
, (B.14)

which is valid for |ph z| ≤ ß. Keeping terms up to s = 0 order, and further
using e−Gxl−2

∗ ≃ 1 and xl
∗ ≫ xl

end, we arrive at

∂N∗
∂θ∗

≃ − (l − 2)(l − 4)
4nl

Gxl
∗(nθ∗ + δ). (B.15)

This approximate expression starts at linear order in g, and ignores the axion
rolling; the same result can also be obtained by taking a θ∗-derivative of the
e-folding number derived in (7.37). We thus obtain

β ≃ n2(l − 4)2(1 + 6ξ)

144 l2 κ2
∗(nθ∗ + δ)2 ≃ (l − 4)2

l2 α. (B.16)

Here α is the relative contribution to the curvature perturbation from the
angular field which was derived in (7.53) by ignoring the evolution of the
perturbations outside the horizon.

We show in Fig. B.1 the values of β as given in (B.9), by numerically com-
puting the integral (B.8) to evaluate ∂N∗/∂θ∗. However, here we have re-
placed θ∗ with θi, for the same reason as described below (7.53). The con-
tours for β are shown in green. The other lines are the same as in Fig. 7.6:
contours of α in magenta, contours of m2

θ∗/H2
∗ in brown dotted, the edge of

the no-go region in black, and the constraints on higher-dimensional oper-
ators with the same color scheme in Fig. 7.2. All the results are for n = 1,
while ξ and θi + δ are varied in each panel. One sees that β < α generi-
cally holds in regions where m2

θ∗/H2
∗ ≪ 1. In particular, as expected from

the relation (B.16), β is smaller than α by about two orders of magnitude at
l = 5, while their difference shrinks towards larger l. On the other hand in
regions where m2

θ∗/H2
∗ ∼ 1, the angular field’s super-horizon fluctuations

get suppressed and their actual contribution to the curvature perturbation
becomes smaller than α or β. Hence we conclude that the regions in pa-
rameter space where the angular contribution exceeds 1%, namely, where
both β ≥ 10−2 and m2

θ∗/H2
∗ ≪ 1 are satisfied, are actually even smaller than

shown in Fig. 7.6.
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(c) ξ = 102, θi + δ = 0.5
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(d) ξ = 102, θi + δ = π − 0.5

FIGURE B.1: Contribution of the axion to the curvature per-
turbation amplitude evaluated from β (green contours) which
takes into account the evolution of the perturbation outside
the horizon, and α (magenta contours) which ignores the evo-
lution. The brown dotted contours show values of m2

θ∗/H2
∗.

Constraints on higher-dimensional operators are taken from
Fig. 7.2. On the right of the black solid lines, As and ns can-
not simultaneously take the observed values. All the results are

for n = 1.

Before ending this appendix, we remark that upon using the δN formal-
ism, one should consider the e-folding number up to a final uniform-density
slice when the curvature perturbation has approached a constant. In the
above discussions we have simply computed the e-folding until the end of
inflation, and also assumed the radial field value φend when inflation ends
to be independent of the initial conditions φ∗ and θ∗. If the end of inflation
and/or the post-inflation expansion history are also affected by φ∗ and θ∗,
then the curvature perturbation would continue to evolve after inflation [123,
153].
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Appendix C

Axion isocurvature in a non-vanilla
scenario

We showed in Section 7.5 that a resonant amplification of the PQ field fluctua-
tion is triggered after inflation, which is likely to render the axion field highly
inhomogeneous. However, in this appendix, we assume that somehow the
amplification is suppressed, and moreover that the PQ symmetry is not re-
stored after inflation, such that axion dark matter is produced through the
conventional vacuum misalignment scenario. We compute the axion isocur-
vature perturbation in this hypothetical situation and derive constraints on
the model parameters. The calculation we will perform in this section dif-
fers from that in Section 6.5 because the radial field is not stabilized in the
minimum of the potential φ = f .

The relic abundance of axions produced via vacuum misalignment is given
by (6.16) (see also [170])

Ωθh2 ≈ 0.1(NDWθ∗)
2
(

f /NDW

1012GeV

)7/6

, (C.1)

where the CP-conserving vacuum is taken as θ = 0, and we inserted again
NDW that is the domain wall number. We have assumed m2

θ ≪ H2 to hold
throughout inflation, and also that the initial misalignment angle satisfies
|NDWθ∗| < 1 such that the QCD potential in (6.35) is approximated by a
quadratic.1 We suppose that the axions make up the entire dark matter, i.e.
Ωθh2 ≈ 0.1. This sets a direct relation between θ∗ and f through the above
equation.

Since the angle θ∗ acquires super-horizon fluctuations during inflation,
axions obtain isocurvature perturbations as δΩθ/Ωθ ≃ 2δθ∗/θ∗, up to linear
order in the angular fluctuations. The isocurvature power spectrum is thus
written, using (7.50), as

Piso(k∗) ≃
1
θ2
∗

Ω2
∗

φ2
∗

H2
∗

π2 . (C.2)

Here Ω2
∗ is the conformal factor at φ = φ∗ and should not be confused with

the axion relic abundance Ωθ. Notice that the inflaton φ is displaced from
the minimum, causing the isocurvature power spectrum to differ from the

1It is also assumed that the axion begins to oscillate during radiation domination, at tem-
peratures above the QCD scale. This amounts to requiring f /NDW ≲ 1015 GeV, see (6.18).
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relation (6.30). Using (C.1) to rewrite θ∗ in terms of f , one obtains

Piso(k∗) ≈ N2
DW

(
f /NDW

1012GeV

)7/6 Ω2
∗

φ2
∗

H2
∗

π2 . (C.3)

The last factor is determined by the inflationary observables. In particular
for large fields, ξφ2

∗ ≫ M2
Pl, one can plug (7.20) and (7.41) respectively into

H∗ and λ to obtain

Ω2
∗

φ2
∗

H2
∗

π2 ≃
Pζ(k∗)(1 − ns)2(1 + 6ξ)

4
. (C.4)

Considering the k∗ dependence of (C.2) to be small and also ignoring
cross-correlations between δθ and δφ, the axion isocurvature is almost scale-
invariant and uncorrelated with curvature perturbations. Parametrizing the
power spectrum as Piso(k)/Pζ(k) = βiso(k)/{1 − βiso(k)}, this kind of cold
dark matter isocurvature is constrained by Planck [9] as βiso(k∗) < 0.038
(95% C.L.) at k∗ = 0.05 Mpc−1. Imposing this constraint on (C.3), and substi-
tuting (C.4) and ns = 0.965, we obtain an upper bound on the axion decay
constant,

f ≲
1014 GeV

N5/7
DW(1 + 6ξ)6/7

. (C.5)

We derived this result assuming ξφ2
∗ ≫ M2

Pl; however can check that the
small ξ limit of this expression matches with the bound in the minimal φ4-
inflation regime at small ξ, at the order-of-magnitude level. The upper bound
originates from the fact that a larger f requires a smaller θ∗ for a fixed relic
abundance, which in turn leads to a larger isocurvature. If the PQ field is not
the inflaton and its radial component is fixed to f , the axion isocurvature is
given by (6.30). The isocurvature then comes with a negative power of f , and
the isocurvature constraint yields a lower limit on f in terms of an undeter-
mined inflation scale, see relation (6.32). We also remark that for arbitrary ξ,
the bound (C.5) is stronger than the condition (7.4) we have been assuming
throughout this paper. In Fig. C.1 we show the upper bound on f as a func-
tion of ξ by the red line. Here the factor Ω2

∗H2
∗/φ2

∗ is numerically computed
as was done for Fig. 7.1. In addition to using the aforementioned values for
the observables, in the plot we further set NDW = 1.

It should be noted that the above discussions break down at f /NDW <
1012 GeV, for which |NDWθ∗| > 1 is required for the axions to make up the
entire dark matter. In this regime the full axion potential needs to be taken
into account, and its departure from a quadratic increases the relic abun-
dance compared to (C.1) [170, 14], and moreover significantly enhances the
axion isocurvature compared to (C.2) [121, 165, 101]. Each of these effects
makes the upper bound on f more stringent than (C.5). The isocurvature
hence becomes large at both large f in a quadratic axion potential, as well as
at small f in an anharmonic potential.2 Since the anharmonic enhancement

2The work [61] also evaluated axion isocurvature assuming vacuum misalignment after
PQ inflation. However the conformal factor Ω2

∗ in (C.2) was overlooked, and moreover the
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FIGURE C.1: Constraints on the decay constant and gravita-
tional coupling for the hypothetical scenario where axions are
produced by vacuum misalignment after PQ inflation. The re-
gion where axions can make up dark matter is shown in red.
Axion isocurvature exceeds the observational limit in regions
above the red line (in a quadratic axion potential), as well as be-
low the green line (anharmonic potential). The tensor-to-scalar
ratio exceeds the observational limit on the left of the orange

line. Here we have set NDW = 1.

of the isocurvature becomes particularly strong at f /NDW ≲ 1010 GeV [101],
in Fig. C.1 we show f = 1010 GeV by the green line as a rough lower bound
below which anharmonic effects produce isocurvature beyond the observa-
tional limit. Note that the upper bound (C.5) with NDW = 1 becomes of
1010 GeV at ξ ∼ 103; this sets an absolute upper limit for ξ.

In the plot we also show in orange the lower limit ξ ≳ 10−2, which derives
from the observational limit on the tensor-to-scalar ratio, cf. Fig. 7.1(d). This,
together with the upper and lower limits for f , leave us with the red region as
the allowed parameter space for the scenario where PQ inflation is followed
by a vacuum misalignment.

isocurvature power was underestimated by 8π. It also did not take into account anharmonic
effects, and consequently obtained a much larger parameter window than in this appendix.
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