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OVERVIEW 

 

 

 

This thesis project is part of a restyling work on the OGSTM - BFM model that is used to 

study the biogeochemical properties of Mediterranean Sea waters. OGS is one of the research 

centres that are involved in the Copernicus (European Union's Earth observation programme) 

project, being part of the 6th MSC (Monitoring and Forecasting Centres) which aim is to 

provide regular and systematic information about the physical state of the ocean and marine 

ecosystems for the Mediterranean Sea. OGS runs the OGSTM - BFM model (ocean 

numerical model) assimilating TAC (Thematic Data Assembly Centres) data to generate 

reanalyse (20 years in the past), analyse (today) and 10-days forecasts of the Mediterranean 

Sea. This thesis is aimed at the improvements of the outputs to enhance the dumping 

capability without affecting the total run time. 

Before this thesis, the output of the model was serialised on a single processor. This way of 

handling I/O was time consuming as the new Copernicus project requests asked to save daily 

the model output (before was saved in part weekly and in part monthly). 

The first aim of the thesis was to generate a distributed parallel I/O in which there are more 

writing processes that in parallel dump different output variables, in a way to scale down 

writing time. After the implementation of this paradigm the focus was directed to apply the 

same paradigm to the assimilation part (3DVAR) of model, as the daily assimilation had to be 

introduced (before was weekly).  
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1 INTRODUCTION 
 

 

 

 

 

1.1Copernicus framework 
 

The biogeochemical analysis and forecasts for the Mediterranean Sea at 1/24 degree are 

produced by means of the MedBFM model system (i.e. the physical-biogeochemical 

OGSTM-BFM model coupled with the 3DVarBio assimilation scheme). MedBFM model is 

run by OGS and uses as physical forcing the outputs of the NEMO-OceanVar model system 

(managed by CMCC). Seven days of analysis are produced weekly on Tuesday, with 

assimilation of surface chlorophyll concentration from satellite observations (provided by the 

CMEMS-OCTAC) and of vertical profiles of chlorophyll and nitrate from BGC-Argo floats 

(provided by CORIOLIS and LOV data centres). One day of hindcast and ten days of forecast 

are produced daily. The analysis and forecast products are released after completion of the 

Med-PHY workflow (Fig 1). On Tuesday, the workflow consists of 7 days of analysis (-8 to -

2), one day of hindcast (-1) and 10 days of forecast (0 to 9). From Wednesday to Monday, the 

workflow consists of one day of hindcast and 10 days of forecast. The data assimilation cycle 

(Tuesday run) uses the satellite chlorophyll (i.e., a composite average in the range of ±3 days) 

at 12:00 UTC of the Monday of the previous week (day -8) and the in situ vertical profiles of 

chlorophyll and nitrate at 12:00 UTC from day -8 to day -2. On day -8, satellite and float 

assimilation is performed disjointedly.  

 

 

Figure1: Analysis, hindcast and forecast scheme. 
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1.2 Model Overview 
 

MedBFM v3.1 consists of the coupled physical-biogeochemical OGSTM-BFM model and 

the 3DVarBio assimilation scheme (Salon et al., 2019; Lazzari et al., 2010, 2012, 2016; 

Cossarini et al., 2015; Teruzzi et al., 2014, 2018, 2019; Cossarini et al., 2019).  

 

 

Figure2: OGSTM – BFM scheme. 

 

The OGSTM-BFM (Figure 2) is designed with a transport model based on the OPA system 

and a biogeochemical reactor featuring the Biogeochemical Flux Model (BFM), while 

3DVarBio is the data assimilation scheme for the correction of phytoplankton functional type 

and nutrient (i.e., nitrate and phosphate) variables using surface chlorophyll from satellite 

observations and vertical profiles of chlorophyll and nitrate from BGC-Argo floats. 

The OGSTM 4.0 transport model is a modified version of the OPA 8.1 transport model 

(Foujols et al., 2000), which resolves the advection, the vertical diffusion and the sinking 

terms of the tracers (biogeochemical variables). The meshgrid is based on 1/24° longitudinal 

scale factor and on 1/24°cos(φ) latitudinal scale factor. The vertical meshgrid accounts for 

141 vertical z-levels (125 active in the Mediterranean domain): 35 in the first 200 m depth, 

60 between 200 and 2000 m, 30 below 2000 m. The temporal scheme of OGSTM is an 

explicit forward time scheme for the advection and horizontal diffusion terms, whereas an 

implicit time step is adopted for the vertical diffusion.  
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Figure 3: BFM scheme. 

 

BFMv5 model (i.e., the official version released by www.bfm-community.eu) describes the 

biogeochemical cycles of 4 chemical compounds: carbon, nitrogen, phosphorus and silicon 

through the dissolved inorganic, living organic and non-living organic compartments (Figure 

3). 

The data assimilation of the surface chlorophyll concentration and of the vertical insitu 

profiles of chlorophyll and nitrate is performed through a variational scheme (3DVarBio) 

during the 7 days of analysis of the Tuesday run of Fig. 1 (see details on 3DVarBio in 

Teruzzi et al., 2014, 2018, 2019 and Cossarini et al., 2019). The operational workflow of the 

analysis run (the Tuesday row in Fig. 1) consists of a sequence of seven days of assimilation: 

the satellite surface chlorophyll map (i.e., a composite average in the range of ±3 days) is 

assimilated at 12:00 UTC of the previous Monday (i.e., day - 8) and the insitu vertical 

profiles of chlorophyll and nitrate are assimilated at 12:00 UTC from day -8 to day -2. A pre-

processing quality control is applied prior of the assimilation 

 

1.3 HPC configuration and setup 
 

The model is written in Fortran (90 standard) and it is parallelized in distributed memory 

using MPI. With reference to the CMEMS analysis and forecasting product, in its standard 

configuration the model runs on 10 computing nodes of Galileo (CINECA), using a total of 

360 cores (36 cores/node). Domain decomposition minimizes the land/water ratio for the MPI 

processes domain cells, in order to optimize the load balancing. An example of domain 

decomposition, for a smaller number of processes, is provided in fig. 4: 
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Figure 4: Example of domain decomposition for 102 processes. 

 

All the tests have been done on Galileo supercomputer (CINECA). Galileo is an IBM 

NeXtScale cluster (architecture: Linux Infiniband cluster and Network: Intel OmniPath 

(100Gb/s) high-performance network). The nodes used are reserved nodes for OGS test and 

analysis. The nodes are of the type 1022 (Intel Broadwell), characterised by 2 x 18-cores Intel 

Xeon E5-2697 v4 at 2.30 GHz and 128 GB/node. 

 

1.4 Workflow 
 

To run OGSTM – BFM model we have different configurations that have different mesh 

grids. From here when is written ¼ mesh we are referring to a mesh grid based on 1/4° 

longitudinal scale factor and on 1/4°cos(φ) latitudinal scale factor (TEST 1/4), while 1/16 is 

referred to a mesh grid of 1/16° longitudinal scale factor and on 1/16°cos(φ) latitudinal scale 

factor (TEST 1/16) and 1/24 is referred to a mesh grid of 1/24° longitudinal scale factor and 

on 1/24°cos(φ) latitudinal scale factor (TEST 1/24). A more refined mesh grid leads to a 

longer computational time and to bigger output files. That is why we use the TEST 4 as 

implementing test case, with the more debugging work. After that we went to the TEST 16 

and finally to the TEST24. The general workflow is depicted in figure 5. 

 

 

 

 

 

 

 

 

Figure 5: Project workflow scheme. 
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In the everyday work, TEST 4 is used for debugging while the other two are for production. 

As we had to measure the performances of the code relates to the different test cases, TEST 4 

was run with 1, 3 and 5 nodes, TEST 16 and TEST 24 with 5, 10 and 20 nodes each.  

 

 1 NODE 3 NODES 5 NODES 10 NODES 20 NODES 

TEST 4 X X X   

TEST 16   X X X 

TEST 24   X X X 

PRODUCTION 

CASE 

    X 

Table 1: Scheme of number of Nodes used to run tests. 

 

To validate the output results we use the md5sum function. Before all the tests we have run 

the old code (code before the thesis) and we have stored the results. As the md5sum function 

gives a unique alphanumeric string to each single file, similar to a digital fingerprint, if the 

new output files have the same md5sum string as the old code files, they are identical: 

through the new code we are obtaining the same results as the previous code. 

 

1.5 Model outputs 

 

OGSTM – BFM is a complex numerical model characterised by different output and different 

types of files that has to be dumped. 

The output core is defined by the output variables of the model, i.e. the results of each run. 

Inside the model there are two main groups of variables: 

- Passive tracer: 51 biogeochemical variables that the model needs to know to evolve; they 

are the basis of the model and are defined as state variables. 

- Diagnostic variables: 122 biogeochemical variables that the model calculates during the run 

(101 3d-variables + 11 2d-variables). 

To run the simulations, the end user needs to pass as input all the 51 passive tracers and can 

define which output variables wants to obtain (obviously state variables are mandatory).  

Output is categorised in different group: 

- RESTARTS: state variable mandatory for the functionality of the model plus some 

diagnostics; when restarts are written, 51 double precision state variable plus 51 double 

precision backups average values of state variables plus 13 double precision diagnostic 

variables are saved. 
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- AVE FREQ 1 variables: 17 single precision state variables plus 13 single precision 

diagnostic variables are saved in high frequency: it means that their saving happens more 

frequently during the run (that was implemented to save time in the output parts: to monitor 

the model we don’t need to dump all state variables, but we can choose which ones). 

- AVE FREQ 2 variables: 51 single precision state variables plus 13 single precision 

diagnostic variables. We are saving all state variables plus diagnostic variables we want as 

output. 

- DA variables: data assimilation variables that the process of data assimilation needs to 

work. 

In the table below, output savings for one-year production reanalysis run at 1/24 are defined. 

 

 

n° 

times/year 

saving 

N° D 

precision 

state vars 

N°D 

precision 

BKP vars 

N° D 

precision 

diag. vars 

N° S 

precision 

state vars 

N° S 

precision 

diag. vars 

N° S 

precision 

Da vars 

RESTARTS 36 51 51 13    

AVE 1 365    21 13  

AVE 2 53    51 13  

DA 53      19 

Table 2: Output saving scheme for one-year production reanalysis run at 1/24 (S =single precision,  

D = double precision, vars = variables, diag. = diagnostic) . 

 

The dumping of each group of output variables is handled by a specific routine: 

- trcdit.f90: dumps AVE 1 and AVE 2 state variables in single precision while AVE 2  

backups state variables are dumped in double precision. 

- diadump.f90: dumps diagnostic AVE 1 and AVE 2 variables in single precision plus backup 

diagnostic variables in double precision. 

- trcwri.f90: dumps RESTARTS variables in double precision. 

- trcwri_DA.f90: dumps variables for data assimilation in single precision. 

- trcdia.f90: is the routine that controls the activation of the routines described before. 

All the routines described before were redefined by this thesis. 
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2. OLD VERSION 
 

 

 

 

 

2.1 Code analysis 

 

Before analysing the code, it is important to define how variables were stored during 

computing time. Each processor stored its part of data variables in the node local memory. To 

dump variables, all processor parts had to be put together to create the final variable matrix 

that had to be dumped. So, inside each processor local memory is stored a matrix which 

dimension is Nvariables * local_i * local_j *z, where i is the latitude index, j is the longitude 

index and z is the depth index. As dimension are not the same for each processor, the local 

matrix is defined with dimension Nvariables * local_i_max * local_j_max * z to be sure that 

all data fit inside the matrix. Only the processor that will dump variables has defined in its 

local memory the I/O matrix of dimension Nvariables * i * j * z that can contain all data 

variables for the whole simulation grid. 

The paradigm used to dump outputs was very simple: variables were dumped serially by the 

processor 0 that collect all data variables by variables from all other processors. All dumping 

routines were structured in the same way: 

1) In the first part processor 0 implemented its local indexes and copy its own local matrix in 

the I/O matrix.  

2) In the second part through a loop of dimension 1 to number of processes, processor 0 

receives (MPI_recv) by each single process the local indexes of the process and its part of the 

matrix to copy inside the I/O matrix. Processor 0 unpacks data and copies them inside the I/O 

matrix. 

3) In the third part is defined the procedure of the other processors: the packing of the data to 

send and the sending of the data (local indexes and local matrix) through MPI_send. 

4) After all the collecting, the processor 0 dump the variable. 

 Code example (from trcdit.f90):  

“ … 

 DO jn=1,jptra !  # Master loop where jptra is the number of variables 

*************** START COLLECTING DATA ***************************** 

**PART 1 

 if(myrank == 0) then                     

******* myrank 0 sets indexes of tot matrix where to place its own part************* 

 iPd    = nldi 

 iPe    = nlei 

 Pd    = nldj 
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….. 
***** START ASSEMBLING ***  myrank 0 puts its tracer part in the tot matrix****** 

tottrnIO(:,totjstart:totjend,totistart:totiend)=  

traIO_HIGH(:,reljstart:reljend,relistart:reliend,jn_high) 

…. 
do idrank = 1,mpi_glcomm_size-1 

**PART 2 

! **************  myrank 0 is receiving from the others their buffer  **** 

           call MPI_RECV(jpi_rec,1,mpi_integer,idrank, 1,mpi_comm_world, status, ierr) !* first info 

to know where idrank is working 

           call MPI_RECV(jpj_rec,1,mpi_integer, idrank, 2,mpi_comm_world, status, ierr) 

….. 
******* myrank 0 sets indexes of tot matrix where to place buffers of idrank 

 irange    = iPe - iPd + 1 

  jrange    = jPe - jPd + 1 

**** ASSEMBLING *** myrank 0 puts in tot matrix buffer received by idrank 

 do ji =totistart,totiend 

 i_contribution   = jpk*jpj_rec*(ji-1-totistart+ relistart) 

 do jj =totjstart,totjend 

 j_contribution = jpk*(jj-1-totjstart+ reljstart) 

 do jk =1, jpk 

 ind = jk + j_contribution + i_contribution 

 tottrnIO(jk,jj,ji)= bufftrn(ind) 

…. 
**PART 3 

else  ! IF LABEL 1,  if(myrank == 0) 

! **** work of the other ranks 

! ****** 1. load  inf buffer their IO matrices 

 if (FREQ_GROUP.eq.2) then 

 do ji =1 , jpi 

 i_contribution= jpk*jpj * (ji - 1 ) 

 do jj =1 , jpj 

 j_contribution=jpk*(jj-1) 

 do jk =1 , jpk 

  ind =  jk + j_contribution + i_contribution 

 bufftrn   (ind)= traIO( jk,jj,ji,jn) 

…. 
! ******  2.send buffer to myrank 0 

 call MPI_SEND(jpi  , 1,mpi_integer, 0, 1, mpi_comm_world,ierr) 

 call MPI_SEND(jpj  , 1,mpi_integer, 0, 2, mpi_comm_world,ierr) 

…… 

************* END COLLECTING DATA  ***************** 

**PART 4 

! *********** START WRITING ************************** 

 if(myrank == 0) then ! IF LABEL 4 

 if (IsBackup) then 

 CALL WRITE_AVE_BKP(bkpname,var,datefrom, dateTo,tottrnIO,ave_counter, deflate_ave, 

deflate_level_ave) 

 else 

…“ 
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2.2 Profiling 
 

Hereafter are reported the time for each routine single call (time is given by the sum of 

writing time, communication time and calculation time). Routine time is correlated to the 

number of variables to dump and to their precision as reported in the table. 

 

 N° Double precision (sec) Single precision (sec) 

trcdit.f90 21  11 .3 

 51 42.1 26 .2 

diadump.f90 13 11.1 6.5 

trcwri,f90 51 42,7  

trcwri_DA.f90 19 15.90 9.7 

Table 3: I/O routines timing. 

 

Hereafter is reported the pie plot that shows the total I/O time of the model for one year 

reanalysis 1/24 simulation. 

 

Figure 6: Total I/O time of the model for one-year reanalysis 1/24 simulation. 

 

 



   

14 
 

2.3 Issues 
 

It is possible to see from the code how in each routine there are some parts that are repeated 

many times. Position indexes are proper of each process and are defined in the starting part of 

the model. Then we have a lot of Mpi_send and Mpi_receive that are not optimised. 

Despite these issues I/O time seems not to be so critical at the moment as I/O is about 15% of 

total simulation timing. But future project needs will take to a dramatic situation: we will 

need to save variables every two hours at least for AVE FREQ 1 and daily for what concerns 

AVE FREQ 2 leading to the situation exposed in the graph below. 

Figure 7: Reanalysis 1/24 simulation timing, now and future. 

 

It is possible to see how I/O time will be greater than computational time. 

 

 

 

 

 



   

15 
 

3. NEW I/O PARADIGM 
 

 

 

 

 

3.1 Initial optimisation 
 

First of all, we started from trying to optimise the code. We wrote a new routine, 

mpi_gatherv_info.f90, that initially trace all the position indexes of each processors and 

through different Mpi_gather send all of them to rank 0, I.e. is the writing rank. This 

operation has the effect to clean the code from repeated parts and take some advantages in 

communication time.Inside each I/O routine we have a series of MPI_send (from all 

processors) and MPI_receive (in the rank 0) used to send the variables local matrix to the 

rank 0 for the dumping of variables. We substituted this amount of MPI_send/receive with a 

single MPI_gather that is better optimised. At this stage we didn’t touch the routine 

structures.  

Figure 7: First optimisation results compared to old code. 

 

As it is possible to see in figure 7, this first optimisation led to a good result for what 

concerns simulations at the lowest level of mesh grid accuracy, while for real simulation  
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case as TEST 24 didn’t take any advantage. Timing was measured for trcdit.f90 that is the 

more demanding routine as it  dumps 51 variables. We didn’t take any advantages as the 

amount of data to exchange was heavy ans as the MPI_gather exchange a fix amount of data: 

we are exchanging more data then we needed.  

 

3.2 New I/O, how? 
 

All these considerations and results led to the definition of a new I/O paradigm. 

The new paradigm relies on the possibility that the file system support parallel writing from 

different nodes. So the idea was to distribute variables to dump to each node. But how? 

Figure 8: Pre I/O-routines workflow. 

 

3.2.1 Pre I/O modules 

 

The new system has to be machine independent and plastic: it has to adapt to I/O needs of 

different end users. So first of all we implemented a new module called nodes_module.f90  

that defines how many nodes are used for the ongoing simulation, which are the nodes and 

how many processors per node are used. All processors run a node_name_module.f90  

module that defines the name of the node they are part of. After that in the first part of the  

nodes_module.f90 through an MPI_gather all processors send to processor 0 their local array 

containing the name of the node. As MPI processes are in order of rank, processor 0 will have  

all the situation mapped. Processor 0 working on the total array of names defines how many 

nodes are used for the simulation and how processors are distributed between nodes. After 

that, processor 0 defines an array of integers that collect the first processor of each node: that 

will be the writing process of each node. So as it is ordered through MPI processes, the first 

slot of the array contains the writing processor of nodes 1, the second slot contains the 

writing procs of the second node and so on. After that mapping processor 0 sends the two 

arrays (arrays of nodes and array of writing procs) to all processors. From this point all 

processors know how many nodes are involved in the model run and which is the writing 

processor of each node. 

From dtype_procs_string_module.f90: 

“module dtype_procs_string_module 

  TYPE processor_string 

     CHARACTER (LEN = 20) :: var_name 

  END TYPE processor_string 

end module dtype_procs_string_module” 

 

node_name_module.f90 nodes.module.f90 matrix_vars_module.f90

dtype_procs_string_module.f90

mpi_gather_info.f90 I/O ROUTINES
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From node_name_module.f90: 

“... 

 INTEGER :: lengt 

        CHARACTER*(MPI_MAX_PROCESSOR_NAME) local_array 

        CONTAINS 

!------------------------------------------------------------------------------ 

        SUBROUTINE NODE_NAME_FILL() 

        INTEGER :: IERROR 

        CALL MPI_GET_PROCESSOR_NAME(local_array, lengt, IERROR) 

        END SUBROUTINE NODE_NAME_FILL         

…” 

From nodes_module.f90: 

“… 

CALL MPI_GATHER(local_array, lengt,MPI_CHAR, total_array,lengt,MPI_CHAR, 0, MPI_COMM_WORLD, 

IERROR) 

***rank 0 define how many nodes are used 

        IF (myrank == 0) THEN 

                nodes = 1 

                p=1 

                k=2 

                DO i=2, mpi_glcomm_size 

                        IF (i==1) THEN 

                               ! write(*,*) 

                        END IF 

                        DO j=1, i 

                                IF (total_array(i) == total_array(j)) THEN 

                                        EXIT 

                                END IF 

                        END DO 

                        IF (i==j) THEN 

                                nodes = nodes + 1  

                        END IF 

                END DO 

… 

DO i=1, mpi_glcomm_size - 1 

   CALL MPI_Send(nodes,1,MPI_INT,i,4,MPI_COMM_WORLD,IERROR) 

END DO 

… 

***rank 0 define the number and who are writing procs 

 writing_procs(1) = 0 

 DO i=2, mpi_glcomm_size 

 IF (nodes==1) THEN 

!if the number of node is one break, no sense to calculate, avoid problems 

  EXIT 

 ELSE IF (total_array(p) /= total_array(i)) THEN 

 writing_procs(k)= i-1 

 p=i 

 k=k+1 
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ELSE 

CYCLE 

END IF 

END DO                 

!rank 0 send to all ranks writing_procs 

DO i=1, mpi_glcomm_size - 1 

CALL MPI_Send(writing_procs,nodes,MPI_INT,i,3,MPI_COMM_WORLD,IERROR) 

                END DO 

… 

 IF (myrank >0) THEN 

  CALL MPI_Recv(nodes,1,MPI_INT,0,4,MPI_COMM_WORLD,MPI_STATUS_IGNORE, IERROR) 

  ALLOCATE(writing_procs(nodes)) 

 CALL MPI_Recv(writing_procs,nodes,MPI_INT,0,3,MPI_COMM_WORLD,MPI_STATUS_IGNORE, IERROR) 

 DO k=1, nodes 

write (*,*) 'writing procs position is ', k, writing_procs(k) 

 END DO 

 END IF 

…” 

Now we have to define which are the variables that will be dumped. We defined a 

matrix_vars_module.f90 module inside which through different routines are defined the 

matrices of variables to dump according to a precise scheme. First of all, different string 

matrix are defined, as we have different type of variables in different processes, and each 

matrix will contain the name of variables to be dumped (we will have a matrix for variables 

in high freq, one for variables in low freq, one for diagnostic variables and so on). We have 

defined through a dtype_procs_string_module.f90 module a dtype of fix dimension that will 

contain the name of variables. So, matrices will be filled with string of character dtypes. The 

common scheme to define the matrix is the same: first are calculated the matrix dimension. 

Rows are defined through the division of the total number of variables to dump and the 

number of nodes: if the division module is different from 0, we add a row to the total n umber 

of rows. Column numbers is related to the number of nodes: there will be as column as the 

number of nodes and therefore the number of writing processors (figure 9). The idea is 

simple, each number of column is related to the number of writing processor: column number 

one is referred to the first slot of the writing array (contains all ranks of writing processors), 

so first column referred to processor 0 of the first node, second column referred to processor 

0 of second node and so on. It is a simple way of defining which processor will dump the 

variable, but it is effective and easy to control. 

After that, we populate matrix with a string of type "novars_input" that will be useful in the 

future double check when variables will be dumped. After this last operation we populate 

matrices with the name of variables to dump. To know the name of each variable associated 

we have to pass through a frequency table that map the number of variables and its name 

related to an input file of the model (namelist.passivetrc) in which the end user defines how 

many variables will be used in the model run, which of them will be state variables and 

diagnostic variables and which will be high and low frequency. So at the ending of the 

matrix_vars_module all processors have stored the number of nodes, writing processors and 

all the matrices of variables to dump. 
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Figure 9: Matrix variables and array writing processor example (3 Nodes, with one wr procs. Per 

node, 10 variables to dump). 

 

From matrix_vars_module.f90: 

“… 

IF (MOD(jptra,nodes)==0)THEN 

                matrix_state_2_row = (jptra/nodes) 

        ELSE 

                matrix_state_2_row = (jptra/nodes) + 1 

        END IF 

… 

DO i=1,matrix_state_2_row 

                DO j=1,matrix_col 

                        matrix_state_2(i,j)%var_name = novars 

                END DO 

        END DO 

… 

DO i=1,matrix_state_2_row 

                DO j=1,matrix_col 

                        IF (counter==jptra)THEN 

                                EXIT 

                        ELSE 

                                matrix_state_2(i,j)%var_name = ctrcnm(counter+1) 

                                counter=counter + 1 

                        END IF 

                END DO 

        END DO 
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… 

SUBROUTINE DIA_MATRIX_VARS() 

 

        INTEGER :: i 

 

        !high freq dia 3d 

        jptra_dia_high_wri = 0 

        DO i =1, jptra_dia 

                IF (diahf(i).eq.1 .and. diaWR(i) == 1) then 

                        jptra_dia_high_wri = jptra_dia_high_wri + 1 

                END IF 

        ENDDO 

 

        ALLOCATE (highfreq_table_dia_wri(jptra_dia_high_wri)) 

 

        jptra_dia_high_wri = 0 

        DO i =1, jptra_dia 

                IF (diahf(i).eq.1 .and. diaWR(i) == 1) then 

                        jptra_dia_high_wri = jptra_dia_high_wri + 1 

                        highfreq_table_dia_wri(jptra_dia_high_wri) = i 

                END IF 

        END DO 

…” 

 

At this level assignment processes are completed. The model now runs the 

mpi_gather_info.f90 module an all its routines. Inside this module are implemented all the 

routines that are fundamental for the new I/O implementation: first the allocation part of all 

the array and buffers that will be used for the parallel part. Then the definition of a boolean 

WRITING_RANK_WR for all processes that is initialised to false. After a quick loop, every 

rank compared his number with the integers stored in the writing processor array: if the the 

rank is included in the ones of the array the boolean is set to true. This simple loop permits to 

activate which processes are the writing ones. At this point through a series of MPI_gather, 

all processes send to writing ones all the informations they need to dump variables: local 

indexes, proper of each rank, are stored inside each writing processor. Now all writing 

processors can define how many data will be transferred from each processor calculating the 

sendount and jpdispl_count of each processor data transfer, and then storing them in 

dedicated total arrays. 

From mpi_gather_info.f90: 

“… 

LOGICAL :: WRITING_RANK_WR 

SUBROUTINE INIT_MPI_GATHER_INFO() 

        WRITING_RANK_WR = .FALSE. 

        CALL ALLOCATE_MPI_GATHER_INFO() 

        !gather(send+recv from each rank, stored in array of each indices) 

        call mppsync() 

        DO wr_procs=1, nodes 
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                CALL MPI_GATHER( jpi, 1, MPI_INTEGER, jpi_rec_a,1,MPI_INTEGER, 

writing_procs(wr_procs), MPI_COMM_WORLD, IERROR) 

                CALL MPI_GATHER( jpj, 1, MPI_INTEGER, jpj_rec_a, 1,MPI_INTEGER, 

writing_procs(wr_procs), MPI_COMM_WORLD, IERROR) 

                CALL MPI_GATHER( nimpp, 1, MPI_INTEGER, istart_a, 1,MPI_INTEGER, 

writing_procs(wr_procs), MPI_COMM_WORLD, IERROR) 

… 

sendcount = jpi * jpj * jpk 

        sendcount_2d = jpi * jpj 

        if(WRITING_RANK_WR)then 

                cont = 0 

                DO loop_ind = 1, mpi_glcomm_size 

                        jprcv_count(loop_ind) = jpi_rec_a(loop_ind) * jpj_rec_a(loop_ind) * 

jpk 

                        jpdispl_count(loop_ind) = cont 

                        cont = cont + jprcv_count(loop_ind)         

                end DO         

…” 

Making a recap, at this point of the run, all writing processors have stored all the information 

they need for the I/O parallel routine, while all processes has stored the information of 

variables and writing processors. 

 

3.2.2 I/O routines 

 

I/O routines have been modified with the same structure. They have been implemented in two 

main parts. The first part is the one that is run by all processors while the second one is 

related to writing processors only. I/O routines have a main loop that is related to the number 

of cycling dump. Each row of a variables matrix is an I/O cycle dump. So the main 

architecture has an outer loop that goes from one to the number of rows (n° of dumping 

cycles) and an inner loop that goes from one to the number of variables to dump (number of 

columns = number of nodes = number of writing processor). 

The first part is divided in two parts too: the first part is the loop through which all processors 

pack their data from local matrix to a buffer that will be send by an MPI_gatherv (second 

part) to the respective writing processor. The packing is different if a a variable belongs to 

high or low frequency group. The Mpi_gatherv is the same for all 3d variables, while it has 

different data for 2d diagnostic variables: all these data comes from the before 

mpi_gather_info module. All buffers are collected in a bigger one in the referred writing rank.  

After the collecting part (part 1) there is the code block proper of writing processors. Before 

dumping the variable, they have to unpack the buffer that contains all local buffers of all 

processors into a 3d matrix that reflect the initial domain decomposition. Then the writing 

procedure will be call. All matrix variables are written in netcdf 4, and while backups and 

restarts are written in double precision, all other outputs are casted to single precision to save 

time and space. 

Now it is possible to understand why we call it a parallel I/O paradigm, as we don’t have the 

classical parallel writing, in which a defined number of processors dump down its own part of 
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the same file, but we have a parallel dumping of complete variables by each writing 

processor. E.g.: if we have 20 nodes, with 1 writing processor per node, we have for each 

dumping loop 20 processor that dump down 20 variables (one each) contemporary: that 

permits to scale the writing time as will be shown in the next pages.  

Below, the used code is reported from the trcdit.f90. 

“… 

**FIRST PART 

!!ALL PROCESSORS 

DUMPING_LOOP: DO jv = 1, n_dumping_cycles 

 DO ivar = 1 , nodes  !number of variables for each round corresponds to the number of 

nodes 

 writing_rank = writing_procs(ivar) 

!!PACKING PART 

 IF (COUNTER_VAR > JPTRA)then 

  EXIT 

 else if (COUNTER_VAR_HIGH > JPTRA_HIGH)then 

  EXIT 

 ELSE 

  if (FREQ_GROUP.eq.2) then 

  do ji =1 , jpi 

   i_contribution= jpk*jpj * (ji - 1 ) 

    do jj =1 , jpj 

     j_contribution=jpk*(jj-1) 

     do jk =1 , jpk 

      ind =  jk + j_contribution + i_contribution 

       bufftrn (ind)= traIO( jk,jj,ji,counter_var) 

     enddo 

    enddo 

  enddo 

 else ! FREQ_GROUP.eq.1 

... 

 counter_var = counter_var + 1 

  if (FREQ_GROUP.eq.1) counter_var_high = counter_var_high + 1 

 !GATHERV TO THE WRITING RANK 

  CALL MPI_GATHERV(bufftrn, sendcount, MPI_DOUBLE_PRECISION, bufftrn_TOT, jprcv_count, 

jpdispl_count, MPI_DOUBLE_PRECISION, writing_rank, MPI_COMM_WORLD, IERR) 

  END IF 

 END DO 

**PART 2 

! *************** COLLECTING DATA ***************************** 

 IF (WRITING_RANK_WR)then 

  writing_rank_init_time = MPI_Wtime() 

  ind_col = (myrank / n_ranks_per_node)+1 

  if (FREQ_GROUP.eq.2) then 

   var_to_store = matrix_state_2(jv,ind_col)%var_name 

  else 

   var_to_store = matrix_state_1(jv,ind_col)%var_name 

  end if 
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  IF (var_to_store == "novars_input")then 

   EXIT 

  ELSE 

 DO idrank = 0,mpi_glcomm_size-1 

  ! ******* WRITING RANK sets indexes of tot matrix where to place buffers of idrank 

  irange    = iPe_a(idrank+1) - iPd_a(idrank+1) + 1 

  jrange    = jPe_a(idrank+1) - jPd_a(idrank+1) + 1 

  totistart = istart_a(idrank+1) + iPd_a(idrank+1) - 1 

  totiend   = totistart + irange - 1 

  totjstart = jstart_a(idrank+1) + jPd_a(idrank+1) - 1 

  totjend   = totjstart + jrange - 1 

  relistart = 1 + iPd_a(idrank+1) - 1 

  reliend   = relistart + irange - 1 

  reljstart = 1 + jPd_a(idrank+1) - 1 

  reljend   = reljstart + jrange - 1 

  ! **** ASSEMBLING *** WRITING RANK  puts in tot matrix buffer received by idrank 

  do ji =totistart,totiend 

   i_contribution   = jpk*jpj_rec_a(idrank+1)*(ji-1-totistart+ relistart) 

   j_contribution = jpk*(jj-1-totjstart+ reljstart) 

   do jk =1, jpk 

    ind = jk + j_contribution + i_contribution 

    tottrnIO(jk,jj,ji)= bufftrn_TOT(ind+jpdispl_count(idrank+1)) 

    enddo 

   enddo 

  enddo 

 END DO 

 output_file_nc = DIR//'ave.'//datemean//'.'//trim(var_to_store)//'.nc' 

 bkpname = DIR//'ave.'//datemean//'.'//trim(var_to_store)//'.nc.bkp' 

  if (IsBackup) then 

  CALL WRITE_AVE_BKP(bkpname,var_to_store,datefrom, dateTo,tottrnIO,elapsed_time, 

deflate_ave, deflate_level_ave) 

   else 

 CALL WRITE_AVE(output_file_nc,var_to_store,datefrom, dateTo, tottrnIO, deflate_ave, 

deflate_level_ave) 

  endif 

 END IF                      

 END IF 

END DO DUMPING_LOOP 

...” 

As it is possible to see in the code, there are two points of control in the code to avoid the 

possibility to go outnumber of variables to dump and to write void files. The first control is 

made by counting all the inner loops, to be sure that variables that will be sent are in the 

correct number (IF (COUNTER_VAR > JPTRA) EXIT). The second control is made at writing 

processors level. The control is made by checking that the variable name is not equal to the 

string “no_vars_to store” (IF (var_to_store == "novars_input")then EXIT) that was initialised 

in the previous routine: it avoids the possibility of writing void files. 

All I/O routines are structured as the one shown before. 
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3.2.3 Writing multiprocessors per node. 

 

As we have declared in the previous section, the new I/O structure relies on the fact that the 

file system can handle parallel writing by all nodes contemporary. Till this moment we have 

spoken for a single writing processor per node. As we wanted to test all possibilities we have 

upgraded the code to manage multiprocessors writing per node. The main differences are in 

the nodes_module .f90 and in the matrix_vars_module.f90. To avoid lots of changes in the 

code, we have maintained the writing_procs array as the final array that has stored the rank of 

all writing nodes. We have changed the previous writing_procs array in a  

writing_procs_base array and we have add a loop to define the new  writing_procs array with 

multiprocessors per node, simply declaring a bigger array (array dimension = nodes * n* of 

procs per node) and adding the new ranks after the first one of each node. To make tests we 

have decided to have all the processors in the same socket inside each node. After that we 

have corrected all the code parts in which we have loop regarding nodes number, from nodes 

to nodes*n°of procs per node. To better handle the number of processor per node, the 

declaration is not hard coded but defined into an input file (namelist.init). 

From nodes_module.f90: 

“… 

 writing_procs_base(1) = 0 

                DO i=2, mpi_glcomm_size 

                        IF (nodes==1) THEN 

                                !if the number of node is one break, no sense to calculate, 

avoid problems 

                                EXIT 

                         

                        ELSE IF (total_array(p) /= total_array(i)) THEN 

                                writing_procs_base(k)= i-1 

                                p=i 

                                k=k+1 

                        ELSE 

                                CYCLE 

                        END IF 

                END DO     

… 

if (num_of_wr_procs_perNODE == 1) then 

                        ALLOCATE(writing_procs(nodes)) 

                        do i=1, nodes 

                                writing_procs(i) = writing_procs_base(i) 

                        end do 

                else  

                        ALLOCATE (writing_procs(nodes*num_of_wr_procs_perNODE))                                

                        cycle_cont = 1 

                        DO i=1,nodes 

                                IF (nodes==1) THEN 

                                        !if the number of node is one break, no sense to 

                                        !calculate, avoid problems 

                                        EXIT 
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                                ELSE 

                                        tot_cycle_cont = i - 1 

                                        do j=1, num_of_wr_procs_perNODE 

                                                if(j<(num_of_wr_procs_perNODE/2) + 1)then 

                                                        writing_procs(cycle_cont) = 

writing_procs_base(i) + j - 1 

                                                        cycle_cont = cycle_cont + 1 

                                                else 

                                                        writing_procs(cycle_cont) = 

writing_procs_base(i) + j - (num_of_wr_procs_perNODE/2) + 19 

                                                        cycle_cont = cycle_cont + 1  

                                                end if 

                                                !tot_cycle_cont = tot_cycle_cont + 1 

                                        end do 

                                END IF 

                        END DO 

                end if 

…” 

From matrix_vars_module.f90: 

“… 

IF (MOD(jptra,nodes*num_of_wr_procs_perNODE)==0)THEN 

                matrix_state_2_row = (jptra/(nodes*num_of_wr_procs_perNODE)) 

        ELSE 

                matrix_state_2_row = (jptra/(nodes*num_of_wr_procs_perNODE)) + 1 

        END IF 

...” 

From trcdit.f90: 

“… 

DUMPING_LOOP: DO jv = 1, n_dumping_cycles 

                DO ivar = 1 , nodes*num_of_wr_procs_perNODE! 

… 

do i=1, nodes*num_of_wr_procs_perNODE 

                                if(myrank == writing_procs(i))then 

                                        ind_col=i 

                                        !write(*,*) 'myrankis', myrank,'indcol 

is',ind_col,'writing_proc is', writing_procs(i),'iis', i, 'jvis', jv 

                                        exit 

                                end if 

                        end do 

...” 
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4. RESULTS AND IMPROVEMENTS 
 

 

 

 

 

To show the obtained results we have decided to report trcdit.f90 graphics  both for single 

and double precision, referred to AVE_2 variables, as it is the more demanding routine, 

dumping 51 variables. To show general improvements we will show the graphics related to 

real production case at 1/24 mesh grid, that is the case in which before the thesis we would 

like to obtain the best results. Multiprocessor tests have been done for the TEST 24 only, with 

2 and 4 writing ranks per node. 

 

4.1 TEST 4 

Figure 10: TEST 4 results. 

 

It is possible to see how writing time decreases with the incrementing of the number of 

nodes. Writing in double precision is more costly in timing than writing in single precision. 

Communication time is similar in all the tests and decreases slightly with increasing number 

of nodes.  
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4.2 TEST 16 

Figure 11: TEST 16 results. 

 

In the TEST 16 the pattern is similar to TEST 4. Increasing the number of nodes leads to a 

decrease in the writing time but an increase of communication time. Output files are heavier, 

and this is reflected both in the writing and communication time. Obviously, double precision 

is more demanding than single precision. 

 

4.3 TEST 24 

 

TEST 24 is the most important from a production point of view. In the figures are reported 

both the cases for single and multiprocessors writing ranks per node.  

For the single writing rank per node cases, it is possible to see the same pattern as the tests 

before. Increasing the number of nodes takes to an important decrease in writing time: time 

passes from 7.2 to 2.2 seconds for double precision and from 5.12 to 1.45 seconds for single 

precision. Communication time increases with the increasing of the number of nodes. In the 

heavier configuration, with 20 nodes, communication time is equivalent (double precision 

case) or greater (single precision time) then writing time, becoming a new issue to solve. 
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Figure 12: TEST 24 1 writing processor per node results. 

 

For the multiprocessors cases the pattern is the same but communication time increases much 

more: it becomes 2 or 3 times bigger then writing time in the 20 nodes tests. This behaviour 

that was expected shows how it is not worthy to have more then one writing processors per 

node in the above cases. Time gained in dumping variables is lost with the increase of 

communication time. But, if we observe the numbers about the 10 nodes multiprocessor test 

cases compared to the similar 20 nodes case (20 nodes case with 1 writing processor per node 

is equivalent to the 10 nodes case with 2 writing processors per node), we can see that we 

gain in writing time with equivalent communication time.  

Figure 13: TEST 24, 2 - 4 writing processors per node results. 
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4.4 General Improvements 
 

To have a better description of general improvements, we have calculated writing time speed 

ups and total speed ups. To obtain speed ups we have divided the old code timings by the 

new timings. For what concerns multiprocessor we have used the total number of nodes as 

reference. 

Here after are reported the graphs for writing speed ups and total speed ups. 

 

Figure 14: Single processor speedups trcdit.f90, 51 variables. 

Figure 15: Single processor speedups trcdit.f90, 51 variables  

   

Is it possible to see how the best total speed up was obtained by TEST 24 with 10 nodes and 

4 processor per node. Similar values are obtained also for TEST 24 with 20 nodes and 2 

processor per node and TEST 16 with 10 and 20 nodes. These results are obtained by the 

balance between a decreasing writing time and an increasing communication time. If we 

watch the tests from a data exchange point of view, we have done some test of weak scaling 

taking into account only the 5 nodes case. It is possible to see how increasing the output file 

dimension, the time scale from TEST 4 to TEST 16 but decrease with TEST 24. 

WRITING SPEED UPS 

WRITING SPEED UPS 

N° Nodes N° Nodes 

TOTAL SPEED UPS 

TOTAL SPEED UPS 
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4.5 Real test case 
 

As all the new code went in production in the last months of the thesis, we would like to 

report some data. We decided to use the 20 nodes configuration with one writing processor 

per node, because it was the most solid from a new code point of view and because we need 

the greatest number of nodes for computational reasons. We are now reporting data for a 

reanalysis case ran with 20 nodes, for a simulation of one year. Timing is reported in seconds 

and is referred to the total time for all variables involved: 

    
Double 

precision 

Double 

precision 

Double 

precision 

Single 

precision 

Single 

precision 

Single 

precision 

 Type Saving time Annually 
State 

variable 

Average 

bkp vars 

Diagnostic 

bkp 

State 

variable 

Diagnostic 

variable 
3D var ass 

N° Restarts 3/month  51 51 13 0 0 0 

Writing   36 1.68 2.2 0.43 0 0 0 

Communication   36 1.83 3.83 0.39    

Pak/unpack   36 0.122 0.125 0.2    

N° Ave freq 1 daily  0 0 0 21 13 0 

Writing   365    0.92 0.44  

Communication   365    1.56 0.49  

Pak/unpack   365    0.17 0.25  

N° Ave freq 2 Weekly  0 0 0 51 13 0 

Writing   53    1.45 0.42  

Communication   53    3.8 0.39  

Pak/unpack   53    0.4 0.2  

N° DA restarts Weekly  0 0 0 0 0 19 

Writing   53      0.54 

Communication   53      1.41 

Pak/unpack   53      0.14 

Table 4: 20 nodes 1/24 reanalysis simulation run partial timings. 

RESTARTS Type Timing 

 Writing 155.16 

 Communication 217.8 

 Pak/unpack 16.092 

AVE FREQ 1   

 Writing 496.4 

 Communication 748.25 

 Pak/unpack 153.3 

AVE FREQ 2   

 Writing 99.11 

 Communication 222.07 

 Pak/unpack 31.8 

DA RST   

 Writing 28.62 

 Communication 74.73  

 Pak/unpack 7.42 

Table 5: 20 nodes 1/24 reanalysis simulation run total timings. 
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We compared total timing of new code and old code respect to the reanalysis set-up and for 

the future requests. In the table all data are summarised. 

In the case of the current reanalysis production, it is possible to see how I/O times decrease 

from 185.07 minutes to 37.51 minutes, taking the total amount time of simulation from 25 

hours to 22.5. Considering that we were running with 20 nodes and 36 cores per node, we 

saved 1170 hours of computational time [ (185.07 – 37.51)/60 * 720] for one simulation year. 

 

 NEW CODE OLD CODE 

Writing 779.29 9174.86 

Communication 1262.85 1725.9 

Pak/unpack 208.612 203.6 

   

Total Time in sec 2250.752 11104.36 

Total Time in minutes 37.51 185.07 

Speed up 4.93  

   

TIME Future requisites 20410.702 87811.04 

Time in hours 5.66 24.39 

Table 6: Comparing old code and new code total timings. 

 

Taking account of the future requisites from the Copernicus project, we have passed, 

theoretically, from 24.39 I/O hours to 5.66 saving 13.485 computational hours.  

 

4.6 New paradigm issues and optimisation 
 

After optimising the writing procedure, the new issue was the communication time. We know 

that our implementation has a weak point in the MPI_gatherv inside each I/O procedure. As a 

matter of fact MPI_gatherv are of blocking type: to make the next call each mpi call has to 

wait for the previous one. That was not a problem with lower number of nodes, but becomes 

an issue increasing the number of nodes. We didn’t focus on rewriting this part because after 

the implementation of the new code, a new bottleneck had to be solved: 3dvar optimisation. 

We will speak about this part in the next part of the present thesis.  

Initially we were thinking to bufferize I/O and trying to do it asynchronously from 

computation time. We were thinking to I/O nodes, but bandwidth problems would rise. One 

possibility was the RAMFS, saving data into Ram and then creating a second routine that at 

run time will transfer data to the storage area of the cluster. We will see if these ideas will be 

possible and practicable. 
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5 DATA ASSIMILATION OPTIMISATION (3DVAR) 

 

 

 

 

 

5.1 Overview 
 

As explained in the thesis introduction part, assimilation (3dvar) is an important part of the 

model: it permits the model correction with real data taken from satellites and floaters. 3Dvar   

optimisation was the goal of MHPC 2015 – 2016 Pierluigi di Cerbo thesis, sponsored by 

OGS. 3Dvar is ran as a library inside the OGSTM - BFM model, as it was developed and 

tested as an independent part. 

After the 2016 implementation Assimilation scheme was computed on 1 node. Optimisation 

studies showed that the best option was to run 3dvar with 22 processors because of memory 

bound problems. That set up was enough till this year. As a matter of fact in 2020 we started 

to use new floaters data. The main difference relies on the fact that new floaters have bigger 

depth levels leading to bigger files: we have memory bound problems again. We were forced 

to run 3dvar with 9 processors maximum to avoid problem of memory bound. Another issue 

was the fact that we have to run assimilation daily instead of weekly, leading to bigger 

computational time.  

To solve the problem faster, we have thought to implement the same paradigm used for the 

I/O parallel distribution to the 3dvar scheme. In this moment we don’t have time to 

implement a new 3dvar scheme, as it will take months. We applied the distribution scheme  

to 3dvar, not for output parts, as 3dvar an output part handled with PETSc libraries to write 

netcdf 4 files in parallel. We adjusted routines that handle the I/O parallel distribution for 

3dvar. 

 

5.2 Code analysis 
 

We focused in the 3var routines that constructed the communicator that defined which rank 

were involved in the assimilation part.  

Here after the code from ogstm_mpi.f90: 

“... 
SUBROUTINE mynode 

      INTEGER :: ierr 

#ifdef ExecDA 

      PetscErrorCode :: stat 

#endif 

#ifdef key_mpp_mpi 

      CALL mpi_comm_rank(mpi_comm_world,myrank,ierr) 
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      CALL mpi_comm_size(mpi_comm_world,mpi_glcomm_size,ierr) 

      call parlec ! in order to read DA_Nprocs 

#ifdef ExecDA 

      if(myrank .lt. DA_Nprocs) then 

        call MPI_Comm_split(MPI_COMM_WORLD, DA_Nprocs, myrank, Var3DCommunicator, ierr) 

        PETSC_COMM_WORLD = Var3DCommunicator 

        call PetscInitialize(PETSC_NULL_CHARACTER,stat) 

        CHKERRQ(stat) 

      else 

        call MPI_Comm_split(MPI_COMM_WORLD, MPI_UNDEFINED, myrank, Var3DCommunicator, ierr) 

      endif 

#endif !ExecDA 

#else 

      mpi_glcomm_size = 1 

      myrank = 0 

#endif 

END SUBROUTINE 

…” 

It is possible to see how, through the parlec call, number of processors for data assimilation 

was imported inside the routine my node (from namelist.init input file). At this point of the 

code, all processors whose rank was minor then the number of processors declared, are 

collected inside the Var3DCommunicator that handle the assimilation scheme inside the 

OGSTM – BFM.  

 

5.3 Profiling 

 

3dvar ia code that works to convergence with a cost function that is the core part of the 

system. As every run could be different from the other, we blocked the simulation using the 

same time simulation window and the same satellite file. Running the code before the change 

we have done with this thesis, the old code for a single assimilation finished in 420 seconds 

(7 minutes). In a real case, the single assimilation procedure was done weekly: for 1 year of 

simulation, DA accounted for 7*4(weeks)*12(months) /60 = 5.6 hours (to be added to the 22 

ours of model computation time). With the new requirements we would have 

7*7(daily)*4(weeks)*12(months)/60 = 39.2 hours for data assimilation only. That would be a 

great amount of time dramatically increasing the computational hours.  

 

5.4 New routine 

 

We have written a new routine 3d_var_MP.f90 that handle the distribution of the cores 

between nodes. We started from the writing_procs array of the I/O part, in which are declared 

the first rank of each node, and after that we implemented a new array of dimension 

Nodes*n° of DA procs per node in which one we store the ranks of processor that we want to 

use for the data assimilation. The distribution is made symmetric for each socket of a node. 

The end user through the namelist.init input file can control the total number of DA procs and 

the number of processors per node. We have implemented three possibilities: the first one is 

when the end user decides to use only one node, all the DA processors will be on the same 

node and in number of 9. The second possibility is when DA_procs* nodes < Da_total procs: 

we defined that will be 5 processors per node scaling from the total number. The third 

possibility is when DA_procs > nodes*DA_procs_per_node: from the input id defined how 

many processors per node and how many nodes. We have declared a boolean 
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V3D_VAR_PARALLEL for all processors: processors that are selected for data assimilation 

change the boolean value from false to true, so they have been activated for data assimilation 

procedures: that will be the control point for DA routines. 

 

From 3d_var_MP.f90: 

“… 
if(nodes == 1) then 

                case_selection = 1 

        else if (nodes*TREd_procs_per_node < DA_Nprocs) then 

                case_selection = 2 

        else 

                case_selection = 3 

        end if 

 

        counter_3d_procs = 1 

        SELECT CASE (CASE_SELECTION) 

                CASE(1) 

                        ALLOCATE(TREd_procs_per_node_array(max_procs_per_one_node)) 

                        do k=1, max_procs_per_one_node 

                                TREd_procs_per_node_array(k) = k - 1 

                        end do 

                        DO i=1, 9 

                                write(*,*) '3d_var_proc is',TREd_procs_per_node_array(i) 

 

                        END DO   

                        do i=1,max_procs_per_one_node 

                                IF(MYRANK == TREd_procs_per_node_array(i)) then 

                                        V3D_VAR_PARALLEL = .true. 

                                END IF 

                        end do 

                CASE(2) 

                        ALLOCATE(TREd_procs_per_node_array(nodes*TREd_procs_per_node))  

                        do i=1, nodes 

                                if(counter_3d_procs > nodes*TREd_procs_per_node) then 

                                        exit 

                                else 

                                        

TREd_procs_per_node_array(counter_3d_procs)=writing_procs(i) 

                                        counter_3d_procs = counter_3d_procs + 1 

                                        do j=1, TREd_procs_per_node -1 

                                                if(counter_3d_procs > 

nodes*TREd_procs_per_node)then 

                                                        exit 

                                                else 

                                                        

TREd_procs_per_node_array(counter_3d_procs)=writing_procs(i)+ j 

                                                        counter_3d_procs = counter_3d_procs 

+ 1 

                                                end if 

                                        end do 

                                end if 

                        end do 

                        DO i=1, counter_3d_procs - 1 

                                write(*,*) '3d_var_procis',TREd_procs_per_node_array(i) 

                        END DO 

                        do i=1,nodes*TREd_procs_per_node 

                                IF(MYRANK == TREd_procs_per_node_array(i)) then 

                                        V3D_VAR_PARALLEL = .true. 

                                END IF 
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                        end do 

                CASE(3) 

                        ALLOCATE (TREd_procs_per_node_array(DA_Nprocs)) 

                        DO i=1, NODES 

                                if(counter_3d_procs > DA_Nprocs)then 

                                        exit 

                                else 

                                        

TREd_procs_per_node_array(counter_3d_procs)=writing_procs(i) 

                                        counter_3d_procs = counter_3d_procs + 1 

                                        do j=1, TREd_procs_per_node -1 

                                                if(counter_3d_procs > DA_Nprocs) then 

                                                        exit 

                                                else 

                                                        

TREd_procs_per_node_array(counter_3d_procs)=writing_procs(i)+ j 

                                                        counter_3d_procs = counter_3d_procs 

+ 1 

                                                end if 

                                        end do 

                                end if 

                        end do 

                        DO i=1, counter_3d_procs - 1 

                                write(*,*)'3d_var_procis',TREd_procs_per_node_array(i) 

                        END DO 

                        do i=1,DA_Nprocs 

                                IF(MYRANK == TREd_procs_per_node_array(i)) then 

                                        V3D_VAR_PARALLEL = .true. 

                                END IF 

                        end do 

                END SELECT 

!PG parts from ogstm_mpi 

        if(V3D_VAR_PARALLEL) then 

                SELECT CASE (CASE_SELECTION) 

                        CASE(1) 

                                call MPI_Comm_split(MPI_COMM_WORLD, 

max_procs_per_one_node,myrank,Var3DCommunicator, ierror) 

                        CASE(2) 

                                call 

MPI_Comm_split(MPI_COMM_WORLD,nodes*TREd_procs_per_node,myrank,Var3DCommunicator, ierror) 

                        CASE(3) 

                                call 

MPI_Comm_split(MPI_COMM_WORLD,DA_nprocs,myrank,Var3DCommunicator,ierror) 

                END SELECT 

 

                PETSC_COMM_WORLD = Var3DCommunicator 

                call PetscInitialize(PETSC_NULL_CHARACTER,stat) 

                CHKERRQ(stat) 

        else 

                call MPI_Comm_split(MPI_COMM_WORLD, MPI_UNDEFINED,myrank,Var3DCommunicator, 

ierror) 

        endif 

…” 

 

5.5 Improvements 

 

We have done a lot of tests to identify the best solution between nodes and number of 

processors per node. The weak part of the code is the communication between processors: 

there are 32 MPI_all_to_all that are called at every step of the convergence run. Increasing 
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the number of nodes and of processors increase dramatically the communication time intra – 

nodes and inter – nodes. We have obtained the best results with a setup of 4 processor per 

node and 13 nodes, running data assimilation procedures in 155 seconds (2.5 minutes). The 

speedup was: 420/155 = 2.7 times. In the real case, the single assimilation procedure is done 

weekly: for 1 year of simulation, DA accounted for 2.5*4(weeks)*12(months) /60 = 2 hours 

(to be added to the 22 ours of model computation time). With the new requirements we 

would have 2.5*7(daily)*4(weeks)*12(months)/60 = 14 hours for data assimilation. Speedup 

is not so big, but is enough to save a lot of computational hours: 5.6 – 2 = 4.6 * 720 procs = 

3312 computational hours for a year simulation at present requirements (39.2 -14 = 25.2 * 

720 procs = 18144 computation hours for one year simulation with future requirements). 

 

5.6 Issues 

 

As we have presented, communication time is the weak part with the cost function too. 

Future intentions are to change the data assimilation procedure to cut the computational time, 

but we need a lot of time to do the work. Maybe a new MHPC thesis? 
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6. FUTURE WORK 
 

 

 

 

 

We have found new objectives to make the OGSTM – BFM model more efficient and less 

costly from the computational hours point of view.  

We would like to implement a parallel reading of input files.  

We would like to optimise better the data assimilation part. 

We would like to optimise better I/O. 

All these ideas have to be studied and defined. 
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