
Master in High Performance
Computing

OGSTM - BFM I/O
IMPROVEMENTS

Supervisors :
Giorgio Bolzon,
Ivan Girotto,
Alberto Sartori,

Candidate:
Gianluca Coidessa

6th edition
2019–2020

Acknowledgements

The research reported in this work was supported by OGS and CINECA under

HPC-TRES program award number 2020 - 07.

2

CONTENTS

1 INTRODUCTION ... 5

1.1Copernicus framework ... 5

1.2 Model Overview ... 6

1.3 HPC configuration and setup .. 7

1.4 Workflow .. 8

1.5 Model outputs ... 9

2. OLD VERSION .. 11

2.1 Code analysis .. 11

2.2 Profiling .. 13

2.3 Issues ... 14

3. NEW I/O PARADIGM ... 15

3.1 Initial optimisation .. 15

3.2 New I/O, how? .. 16

3.2.1 PRE I/O modules ... 16

3.2.2 I/O routines .. 21

3.2.3 Writing multiprocessors per node .. 24

4. RESULTS AND IMPROVEMENTS ... 26

4.1 TEST 4 .. 26

4.2 TEST 16 .. 27

4.3 TEST 24 .. 27

4.4 General Improvements .. 29

4.5 Real test case ... 30

4.6 New paradigm issues and optimisation ... 31

5. DATA ASSIMILATION OPTIMISATION (3DVAR) .. 32

5.1 Overview ... 32

5.2 Code analysis .. 32

5.3 Profiling .. 33

5.4 New routine ... 33

5.5 Improvements ... 35

5.6 Issues ... 36

6. FUTURE WORK .. 37

7.REFERENCES .. 38

3

List of Abbreviations

OGSTM = OGS Transport Model

BFM = Biogeochemical Flux Model

OGCM = Ocean Global Circulation Model

NEMO = Nucleus (for) European Modeling (of) (the) Ocean

 CMEMS Copernicus Marine Environment Monitoring Services

4

OVERVIEW

This thesis project is part of a restyling work on the OGSTM - BFM model that is used to

study the biogeochemical properties of Mediterranean Sea waters. OGS is one of the research

centres that are involved in the Copernicus (European Union's Earth observation programme)

project, being part of the 6th MSC (Monitoring and Forecasting Centres) which aim is to

provide regular and systematic information about the physical state of the ocean and marine

ecosystems for the Mediterranean Sea. OGS runs the OGSTM - BFM model (ocean

numerical model) assimilating TAC (Thematic Data Assembly Centres) data to generate

reanalyse (20 years in the past), analyse (today) and 10-days forecasts of the Mediterranean

Sea. This thesis is aimed at the improvements of the outputs to enhance the dumping

capability without affecting the total run time.

Before this thesis, the output of the model was serialised on a single processor. This way of

handling I/O was time consuming as the new Copernicus project requests asked to save daily

the model output (before was saved in part weekly and in part monthly).

The first aim of the thesis was to generate a distributed parallel I/O in which there are more

writing processes that in parallel dump different output variables, in a way to scale down

writing time. After the implementation of this paradigm the focus was directed to apply the

same paradigm to the assimilation part (3DVAR) of model, as the daily assimilation had to be

introduced (before was weekly).

5

1 INTRODUCTION

1.1Copernicus framework

The biogeochemical analysis and forecasts for the Mediterranean Sea at 1/24 degree are

produced by means of the MedBFM model system (i.e. the physical-biogeochemical

OGSTM-BFM model coupled with the 3DVarBio assimilation scheme). MedBFM model is

run by OGS and uses as physical forcing the outputs of the NEMO-OceanVar model system

(managed by CMCC). Seven days of analysis are produced weekly on Tuesday, with

assimilation of surface chlorophyll concentration from satellite observations (provided by the

CMEMS-OCTAC) and of vertical profiles of chlorophyll and nitrate from BGC-Argo floats

(provided by CORIOLIS and LOV data centres). One day of hindcast and ten days of forecast

are produced daily. The analysis and forecast products are released after completion of the

Med-PHY workflow (Fig 1). On Tuesday, the workflow consists of 7 days of analysis (-8 to -

2), one day of hindcast (-1) and 10 days of forecast (0 to 9). From Wednesday to Monday, the

workflow consists of one day of hindcast and 10 days of forecast. The data assimilation cycle

(Tuesday run) uses the satellite chlorophyll (i.e., a composite average in the range of ±3 days)

at 12:00 UTC of the Monday of the previous week (day -8) and the in situ vertical profiles of

chlorophyll and nitrate at 12:00 UTC from day -8 to day -2. On day -8, satellite and float

assimilation is performed disjointedly.

Figure1: Analysis, hindcast and forecast scheme.

6

1.2 Model Overview

MedBFM v3.1 consists of the coupled physical-biogeochemical OGSTM-BFM model and

the 3DVarBio assimilation scheme (Salon et al., 2019; Lazzari et al., 2010, 2012, 2016;

Cossarini et al., 2015; Teruzzi et al., 2014, 2018, 2019; Cossarini et al., 2019).

Figure2: OGSTM – BFM scheme.

The OGSTM-BFM (Figure 2) is designed with a transport model based on the OPA system

and a biogeochemical reactor featuring the Biogeochemical Flux Model (BFM), while

3DVarBio is the data assimilation scheme for the correction of phytoplankton functional type

and nutrient (i.e., nitrate and phosphate) variables using surface chlorophyll from satellite

observations and vertical profiles of chlorophyll and nitrate from BGC-Argo floats.

The OGSTM 4.0 transport model is a modified version of the OPA 8.1 transport model

(Foujols et al., 2000), which resolves the advection, the vertical diffusion and the sinking

terms of the tracers (biogeochemical variables). The meshgrid is based on 1/24° longitudinal

scale factor and on 1/24°cos(φ) latitudinal scale factor. The vertical meshgrid accounts for

141 vertical z-levels (125 active in the Mediterranean domain): 35 in the first 200 m depth,

60 between 200 and 2000 m, 30 below 2000 m. The temporal scheme of OGSTM is an

explicit forward time scheme for the advection and horizontal diffusion terms, whereas an

implicit time step is adopted for the vertical diffusion.

7

Figure 3: BFM scheme.

BFMv5 model (i.e., the official version released by www.bfm-community.eu) describes the

biogeochemical cycles of 4 chemical compounds: carbon, nitrogen, phosphorus and silicon

through the dissolved inorganic, living organic and non-living organic compartments (Figure

3).

The data assimilation of the surface chlorophyll concentration and of the vertical insitu

profiles of chlorophyll and nitrate is performed through a variational scheme (3DVarBio)

during the 7 days of analysis of the Tuesday run of Fig. 1 (see details on 3DVarBio in

Teruzzi et al., 2014, 2018, 2019 and Cossarini et al., 2019). The operational workflow of the

analysis run (the Tuesday row in Fig. 1) consists of a sequence of seven days of assimilation:

the satellite surface chlorophyll map (i.e., a composite average in the range of ±3 days) is

assimilated at 12:00 UTC of the previous Monday (i.e., day - 8) and the insitu vertical

profiles of chlorophyll and nitrate are assimilated at 12:00 UTC from day -8 to day -2. A pre-

processing quality control is applied prior of the assimilation

1.3 HPC configuration and setup

The model is written in Fortran (90 standard) and it is parallelized in distributed memory

using MPI. With reference to the CMEMS analysis and forecasting product, in its standard

configuration the model runs on 10 computing nodes of Galileo (CINECA), using a total of

360 cores (36 cores/node). Domain decomposition minimizes the land/water ratio for the MPI

processes domain cells, in order to optimize the load balancing. An example of domain

decomposition, for a smaller number of processes, is provided in fig. 4:

8

Figure 4: Example of domain decomposition for 102 processes.

All the tests have been done on Galileo supercomputer (CINECA). Galileo is an IBM

NeXtScale cluster (architecture: Linux Infiniband cluster and Network: Intel OmniPath

(100Gb/s) high-performance network). The nodes used are reserved nodes for OGS test and

analysis. The nodes are of the type 1022 (Intel Broadwell), characterised by 2 x 18-cores Intel

Xeon E5-2697 v4 at 2.30 GHz and 128 GB/node.

1.4 Workflow

To run OGSTM – BFM model we have different configurations that have different mesh

grids. From here when is written ¼ mesh we are referring to a mesh grid based on 1/4°

longitudinal scale factor and on 1/4°cos(φ) latitudinal scale factor (TEST 1/4), while 1/16 is

referred to a mesh grid of 1/16° longitudinal scale factor and on 1/16°cos(φ) latitudinal scale

factor (TEST 1/16) and 1/24 is referred to a mesh grid of 1/24° longitudinal scale factor and

on 1/24°cos(φ) latitudinal scale factor (TEST 1/24). A more refined mesh grid leads to a

longer computational time and to bigger output files. That is why we use the TEST 4 as

implementing test case, with the more debugging work. After that we went to the TEST 16

and finally to the TEST24. The general workflow is depicted in figure 5.

Figure 5: Project workflow scheme.

9

In the everyday work, TEST 4 is used for debugging while the other two are for production.

As we had to measure the performances of the code relates to the different test cases, TEST 4

was run with 1, 3 and 5 nodes, TEST 16 and TEST 24 with 5, 10 and 20 nodes each.

 1 NODE 3 NODES 5 NODES 10 NODES 20 NODES

TEST 4 X X X

TEST 16 X X X

TEST 24 X X X

PRODUCTION

CASE

 X

Table 1: Scheme of number of Nodes used to run tests.

To validate the output results we use the md5sum function. Before all the tests we have run

the old code (code before the thesis) and we have stored the results. As the md5sum function

gives a unique alphanumeric string to each single file, similar to a digital fingerprint, if the

new output files have the same md5sum string as the old code files, they are identical:

through the new code we are obtaining the same results as the previous code.

1.5 Model outputs

OGSTM – BFM is a complex numerical model characterised by different output and different

types of files that has to be dumped.

The output core is defined by the output variables of the model, i.e. the results of each run.

Inside the model there are two main groups of variables:

- Passive tracer: 51 biogeochemical variables that the model needs to know to evolve; they

are the basis of the model and are defined as state variables.

- Diagnostic variables: 122 biogeochemical variables that the model calculates during the run

(101 3d-variables + 11 2d-variables).

To run the simulations, the end user needs to pass as input all the 51 passive tracers and can

define which output variables wants to obtain (obviously state variables are mandatory).

Output is categorised in different group:

- RESTARTS: state variable mandatory for the functionality of the model plus some

diagnostics; when restarts are written, 51 double precision state variable plus 51 double

precision backups average values of state variables plus 13 double precision diagnostic

variables are saved.

10

- AVE FREQ 1 variables: 17 single precision state variables plus 13 single precision

diagnostic variables are saved in high frequency: it means that their saving happens more

frequently during the run (that was implemented to save time in the output parts: to monitor

the model we don’t need to dump all state variables, but we can choose which ones).

- AVE FREQ 2 variables: 51 single precision state variables plus 13 single precision

diagnostic variables. We are saving all state variables plus diagnostic variables we want as

output.

- DA variables: data assimilation variables that the process of data assimilation needs to

work.

In the table below, output savings for one-year production reanalysis run at 1/24 are defined.

n°

times/year

saving

N° D

precision

state vars

N°D

precision

BKP vars

N° D

precision

diag. vars

N° S

precision

state vars

N° S

precision

diag. vars

N° S

precision

Da vars

RESTARTS 36 51 51 13

AVE 1 365 21 13

AVE 2 53 51 13

DA 53 19

Table 2: Output saving scheme for one-year production reanalysis run at 1/24 (S =single precision,

D = double precision, vars = variables, diag. = diagnostic) .

The dumping of each group of output variables is handled by a specific routine:

- trcdit.f90: dumps AVE 1 and AVE 2 state variables in single precision while AVE 2

backups state variables are dumped in double precision.

- diadump.f90: dumps diagnostic AVE 1 and AVE 2 variables in single precision plus backup

diagnostic variables in double precision.

- trcwri.f90: dumps RESTARTS variables in double precision.

- trcwri_DA.f90: dumps variables for data assimilation in single precision.

- trcdia.f90: is the routine that controls the activation of the routines described before.

All the routines described before were redefined by this thesis.

11

2. OLD VERSION

2.1 Code analysis

Before analysing the code, it is important to define how variables were stored during

computing time. Each processor stored its part of data variables in the node local memory. To

dump variables, all processor parts had to be put together to create the final variable matrix

that had to be dumped. So, inside each processor local memory is stored a matrix which

dimension is Nvariables * local_i * local_j *z, where i is the latitude index, j is the longitude

index and z is the depth index. As dimension are not the same for each processor, the local

matrix is defined with dimension Nvariables * local_i_max * local_j_max * z to be sure that

all data fit inside the matrix. Only the processor that will dump variables has defined in its

local memory the I/O matrix of dimension Nvariables * i * j * z that can contain all data

variables for the whole simulation grid.

The paradigm used to dump outputs was very simple: variables were dumped serially by the

processor 0 that collect all data variables by variables from all other processors. All dumping

routines were structured in the same way:

1) In the first part processor 0 implemented its local indexes and copy its own local matrix in

the I/O matrix.

2) In the second part through a loop of dimension 1 to number of processes, processor 0

receives (MPI_recv) by each single process the local indexes of the process and its part of the

matrix to copy inside the I/O matrix. Processor 0 unpacks data and copies them inside the I/O

matrix.

3) In the third part is defined the procedure of the other processors: the packing of the data to

send and the sending of the data (local indexes and local matrix) through MPI_send.

4) After all the collecting, the processor 0 dump the variable.

 Code example (from trcdit.f90):

“ …

 DO jn=1,jptra ! # Master loop where jptra is the number of variables

*************** START COLLECTING DATA *****************************

**PART 1

 if(myrank == 0) then

******* myrank 0 sets indexes of tot matrix where to place its own part*************

 iPd = nldi

 iPe = nlei

 Pd = nldj

12

…..
***** START ASSEMBLING *** myrank 0 puts its tracer part in the tot matrix******

tottrnIO(:,totjstart:totjend,totistart:totiend)=

traIO_HIGH(:,reljstart:reljend,relistart:reliend,jn_high)

….
do idrank = 1,mpi_glcomm_size-1

**PART 2

! ************** myrank 0 is receiving from the others their buffer ****

 call MPI_RECV(jpi_rec,1,mpi_integer,idrank, 1,mpi_comm_world, status, ierr) !* first info

to know where idrank is working

 call MPI_RECV(jpj_rec,1,mpi_integer, idrank, 2,mpi_comm_world, status, ierr)

…..
******* myrank 0 sets indexes of tot matrix where to place buffers of idrank

 irange = iPe - iPd + 1

 jrange = jPe - jPd + 1

**** ASSEMBLING *** myrank 0 puts in tot matrix buffer received by idrank

 do ji =totistart,totiend

 i_contribution = jpk*jpj_rec*(ji-1-totistart+ relistart)

 do jj =totjstart,totjend

 j_contribution = jpk*(jj-1-totjstart+ reljstart)

 do jk =1, jpk

 ind = jk + j_contribution + i_contribution

 tottrnIO(jk,jj,ji)= bufftrn(ind)

….
**PART 3

else ! IF LABEL 1, if(myrank == 0)

! **** work of the other ranks

! ****** 1. load inf buffer their IO matrices

 if (FREQ_GROUP.eq.2) then

 do ji =1 , jpi

 i_contribution= jpk*jpj * (ji - 1)

 do jj =1 , jpj

 j_contribution=jpk*(jj-1)

 do jk =1 , jpk

 ind = jk + j_contribution + i_contribution

 bufftrn (ind)= traIO(jk,jj,ji,jn)

….
! ****** 2.send buffer to myrank 0

 call MPI_SEND(jpi , 1,mpi_integer, 0, 1, mpi_comm_world,ierr)

 call MPI_SEND(jpj , 1,mpi_integer, 0, 2, mpi_comm_world,ierr)

……

************* END COLLECTING DATA *****************

**PART 4

! *********** START WRITING **************************

 if(myrank == 0) then ! IF LABEL 4

 if (IsBackup) then

 CALL WRITE_AVE_BKP(bkpname,var,datefrom, dateTo,tottrnIO,ave_counter, deflate_ave,

deflate_level_ave)

 else

…“

13

2.2 Profiling

Hereafter are reported the time for each routine single call (time is given by the sum of

writing time, communication time and calculation time). Routine time is correlated to the

number of variables to dump and to their precision as reported in the table.

 N° Double precision (sec) Single precision (sec)

trcdit.f90 21 11 .3

 51 42.1 26 .2

diadump.f90 13 11.1 6.5

trcwri,f90 51 42,7

trcwri_DA.f90 19 15.90 9.7

Table 3: I/O routines timing.

Hereafter is reported the pie plot that shows the total I/O time of the model for one year

reanalysis 1/24 simulation.

Figure 6: Total I/O time of the model for one-year reanalysis 1/24 simulation.

14

2.3 Issues

It is possible to see from the code how in each routine there are some parts that are repeated

many times. Position indexes are proper of each process and are defined in the starting part of

the model. Then we have a lot of Mpi_send and Mpi_receive that are not optimised.

Despite these issues I/O time seems not to be so critical at the moment as I/O is about 15% of

total simulation timing. But future project needs will take to a dramatic situation: we will

need to save variables every two hours at least for AVE FREQ 1 and daily for what concerns

AVE FREQ 2 leading to the situation exposed in the graph below.

Figure 7: Reanalysis 1/24 simulation timing, now and future.

It is possible to see how I/O time will be greater than computational time.

15

3. NEW I/O PARADIGM

3.1 Initial optimisation

First of all, we started from trying to optimise the code. We wrote a new routine,

mpi_gatherv_info.f90, that initially trace all the position indexes of each processors and

through different Mpi_gather send all of them to rank 0, I.e. is the writing rank. This

operation has the effect to clean the code from repeated parts and take some advantages in

communication time.Inside each I/O routine we have a series of MPI_send (from all

processors) and MPI_receive (in the rank 0) used to send the variables local matrix to the

rank 0 for the dumping of variables. We substituted this amount of MPI_send/receive with a

single MPI_gather that is better optimised. At this stage we didn’t touch the routine

structures.

Figure 7: First optimisation results compared to old code.

As it is possible to see in figure 7, this first optimisation led to a good result for what

concerns simulations at the lowest level of mesh grid accuracy, while for real simulation

16

case as TEST 24 didn’t take any advantage. Timing was measured for trcdit.f90 that is the

more demanding routine as it dumps 51 variables. We didn’t take any advantages as the

amount of data to exchange was heavy ans as the MPI_gather exchange a fix amount of data:

we are exchanging more data then we needed.

3.2 New I/O, how?

All these considerations and results led to the definition of a new I/O paradigm.

The new paradigm relies on the possibility that the file system support parallel writing from

different nodes. So the idea was to distribute variables to dump to each node. But how?

Figure 8: Pre I/O-routines workflow.

3.2.1 Pre I/O modules

The new system has to be machine independent and plastic: it has to adapt to I/O needs of

different end users. So first of all we implemented a new module called nodes_module.f90

that defines how many nodes are used for the ongoing simulation, which are the nodes and

how many processors per node are used. All processors run a node_name_module.f90

module that defines the name of the node they are part of. After that in the first part of the

nodes_module.f90 through an MPI_gather all processors send to processor 0 their local array

containing the name of the node. As MPI processes are in order of rank, processor 0 will have

all the situation mapped. Processor 0 working on the total array of names defines how many

nodes are used for the simulation and how processors are distributed between nodes. After

that, processor 0 defines an array of integers that collect the first processor of each node: that

will be the writing process of each node. So as it is ordered through MPI processes, the first

slot of the array contains the writing processor of nodes 1, the second slot contains the

writing procs of the second node and so on. After that mapping processor 0 sends the two

arrays (arrays of nodes and array of writing procs) to all processors. From this point all

processors know how many nodes are involved in the model run and which is the writing

processor of each node.

From dtype_procs_string_module.f90:

“module dtype_procs_string_module

 TYPE processor_string

 CHARACTER (LEN = 20) :: var_name

 END TYPE processor_string

end module dtype_procs_string_module”

node_name_module.f90 nodes.module.f90 matrix_vars_module.f90

dtype_procs_string_module.f90

mpi_gather_info.f90 I/O ROUTINES

17

From node_name_module.f90:

“...

 INTEGER :: lengt

 CHARACTER*(MPI_MAX_PROCESSOR_NAME) local_array

 CONTAINS

!--

 SUBROUTINE NODE_NAME_FILL()

 INTEGER :: IERROR

 CALL MPI_GET_PROCESSOR_NAME(local_array, lengt, IERROR)

 END SUBROUTINE NODE_NAME_FILL

…”

From nodes_module.f90:

“…

CALL MPI_GATHER(local_array, lengt,MPI_CHAR, total_array,lengt,MPI_CHAR, 0, MPI_COMM_WORLD,

IERROR)

***rank 0 define how many nodes are used

 IF (myrank == 0) THEN

 nodes = 1

 p=1

 k=2

 DO i=2, mpi_glcomm_size

 IF (i==1) THEN

 ! write(*,*)

 END IF

 DO j=1, i

 IF (total_array(i) == total_array(j)) THEN

 EXIT

 END IF

 END DO

 IF (i==j) THEN

 nodes = nodes + 1

 END IF

 END DO

…

DO i=1, mpi_glcomm_size - 1

 CALL MPI_Send(nodes,1,MPI_INT,i,4,MPI_COMM_WORLD,IERROR)

END DO

…

***rank 0 define the number and who are writing procs

 writing_procs(1) = 0

 DO i=2, mpi_glcomm_size

 IF (nodes==1) THEN

!if the number of node is one break, no sense to calculate, avoid problems

 EXIT

 ELSE IF (total_array(p) /= total_array(i)) THEN

 writing_procs(k)= i-1

 p=i

 k=k+1

18

ELSE

CYCLE

END IF

END DO

!rank 0 send to all ranks writing_procs

DO i=1, mpi_glcomm_size - 1

CALL MPI_Send(writing_procs,nodes,MPI_INT,i,3,MPI_COMM_WORLD,IERROR)

 END DO

…

 IF (myrank >0) THEN

 CALL MPI_Recv(nodes,1,MPI_INT,0,4,MPI_COMM_WORLD,MPI_STATUS_IGNORE, IERROR)

 ALLOCATE(writing_procs(nodes))

 CALL MPI_Recv(writing_procs,nodes,MPI_INT,0,3,MPI_COMM_WORLD,MPI_STATUS_IGNORE, IERROR)

 DO k=1, nodes

write (*,*) 'writing procs position is ', k, writing_procs(k)

 END DO

 END IF

…”

Now we have to define which are the variables that will be dumped. We defined a

matrix_vars_module.f90 module inside which through different routines are defined the

matrices of variables to dump according to a precise scheme. First of all, different string

matrix are defined, as we have different type of variables in different processes, and each

matrix will contain the name of variables to be dumped (we will have a matrix for variables

in high freq, one for variables in low freq, one for diagnostic variables and so on). We have

defined through a dtype_procs_string_module.f90 module a dtype of fix dimension that will

contain the name of variables. So, matrices will be filled with string of character dtypes. The

common scheme to define the matrix is the same: first are calculated the matrix dimension.

Rows are defined through the division of the total number of variables to dump and the

number of nodes: if the division module is different from 0, we add a row to the total n umber

of rows. Column numbers is related to the number of nodes: there will be as column as the

number of nodes and therefore the number of writing processors (figure 9). The idea is

simple, each number of column is related to the number of writing processor: column number

one is referred to the first slot of the writing array (contains all ranks of writing processors),

so first column referred to processor 0 of the first node, second column referred to processor

0 of second node and so on. It is a simple way of defining which processor will dump the

variable, but it is effective and easy to control.

After that, we populate matrix with a string of type "novars_input" that will be useful in the

future double check when variables will be dumped. After this last operation we populate

matrices with the name of variables to dump. To know the name of each variable associated

we have to pass through a frequency table that map the number of variables and its name

related to an input file of the model (namelist.passivetrc) in which the end user defines how

many variables will be used in the model run, which of them will be state variables and

diagnostic variables and which will be high and low frequency. So at the ending of the

matrix_vars_module all processors have stored the number of nodes, writing processors and

all the matrices of variables to dump.

19

Figure 9: Matrix variables and array writing processor example (3 Nodes, with one wr procs. Per

node, 10 variables to dump).

From matrix_vars_module.f90:

“…

IF (MOD(jptra,nodes)==0)THEN

 matrix_state_2_row = (jptra/nodes)

 ELSE

 matrix_state_2_row = (jptra/nodes) + 1

 END IF

…

DO i=1,matrix_state_2_row

 DO j=1,matrix_col

 matrix_state_2(i,j)%var_name = novars

 END DO

 END DO

…

DO i=1,matrix_state_2_row

 DO j=1,matrix_col

 IF (counter==jptra)THEN

 EXIT

 ELSE

 matrix_state_2(i,j)%var_name = ctrcnm(counter+1)

 counter=counter + 1

 END IF

 END DO

 END DO

20

…

SUBROUTINE DIA_MATRIX_VARS()

 INTEGER :: i

 !high freq dia 3d

 jptra_dia_high_wri = 0

 DO i =1, jptra_dia

 IF (diahf(i).eq.1 .and. diaWR(i) == 1) then

 jptra_dia_high_wri = jptra_dia_high_wri + 1

 END IF

 ENDDO

 ALLOCATE (highfreq_table_dia_wri(jptra_dia_high_wri))

 jptra_dia_high_wri = 0

 DO i =1, jptra_dia

 IF (diahf(i).eq.1 .and. diaWR(i) == 1) then

 jptra_dia_high_wri = jptra_dia_high_wri + 1

 highfreq_table_dia_wri(jptra_dia_high_wri) = i

 END IF

 END DO

…”

At this level assignment processes are completed. The model now runs the

mpi_gather_info.f90 module an all its routines. Inside this module are implemented all the

routines that are fundamental for the new I/O implementation: first the allocation part of all

the array and buffers that will be used for the parallel part. Then the definition of a boolean

WRITING_RANK_WR for all processes that is initialised to false. After a quick loop, every

rank compared his number with the integers stored in the writing processor array: if the the

rank is included in the ones of the array the boolean is set to true. This simple loop permits to

activate which processes are the writing ones. At this point through a series of MPI_gather,

all processes send to writing ones all the informations they need to dump variables: local

indexes, proper of each rank, are stored inside each writing processor. Now all writing

processors can define how many data will be transferred from each processor calculating the

sendount and jpdispl_count of each processor data transfer, and then storing them in

dedicated total arrays.

From mpi_gather_info.f90:

“…

LOGICAL :: WRITING_RANK_WR

SUBROUTINE INIT_MPI_GATHER_INFO()

 WRITING_RANK_WR = .FALSE.

 CALL ALLOCATE_MPI_GATHER_INFO()

 !gather(send+recv from each rank, stored in array of each indices)

 call mppsync()

 DO wr_procs=1, nodes

21

 CALL MPI_GATHER(jpi, 1, MPI_INTEGER, jpi_rec_a,1,MPI_INTEGER,

writing_procs(wr_procs), MPI_COMM_WORLD, IERROR)

 CALL MPI_GATHER(jpj, 1, MPI_INTEGER, jpj_rec_a, 1,MPI_INTEGER,

writing_procs(wr_procs), MPI_COMM_WORLD, IERROR)

 CALL MPI_GATHER(nimpp, 1, MPI_INTEGER, istart_a, 1,MPI_INTEGER,

writing_procs(wr_procs), MPI_COMM_WORLD, IERROR)

…

sendcount = jpi * jpj * jpk

 sendcount_2d = jpi * jpj

 if(WRITING_RANK_WR)then

 cont = 0

 DO loop_ind = 1, mpi_glcomm_size

 jprcv_count(loop_ind) = jpi_rec_a(loop_ind) * jpj_rec_a(loop_ind) *

jpk

 jpdispl_count(loop_ind) = cont

 cont = cont + jprcv_count(loop_ind)

 end DO

…”

Making a recap, at this point of the run, all writing processors have stored all the information

they need for the I/O parallel routine, while all processes has stored the information of

variables and writing processors.

3.2.2 I/O routines

I/O routines have been modified with the same structure. They have been implemented in two

main parts. The first part is the one that is run by all processors while the second one is

related to writing processors only. I/O routines have a main loop that is related to the number

of cycling dump. Each row of a variables matrix is an I/O cycle dump. So the main

architecture has an outer loop that goes from one to the number of rows (n° of dumping

cycles) and an inner loop that goes from one to the number of variables to dump (number of

columns = number of nodes = number of writing processor).

The first part is divided in two parts too: the first part is the loop through which all processors

pack their data from local matrix to a buffer that will be send by an MPI_gatherv (second

part) to the respective writing processor. The packing is different if a a variable belongs to

high or low frequency group. The Mpi_gatherv is the same for all 3d variables, while it has

different data for 2d diagnostic variables: all these data comes from the before

mpi_gather_info module. All buffers are collected in a bigger one in the referred writing rank.

After the collecting part (part 1) there is the code block proper of writing processors. Before

dumping the variable, they have to unpack the buffer that contains all local buffers of all

processors into a 3d matrix that reflect the initial domain decomposition. Then the writing

procedure will be call. All matrix variables are written in netcdf 4, and while backups and

restarts are written in double precision, all other outputs are casted to single precision to save

time and space.

Now it is possible to understand why we call it a parallel I/O paradigm, as we don’t have the

classical parallel writing, in which a defined number of processors dump down its own part of

22

the same file, but we have a parallel dumping of complete variables by each writing

processor. E.g.: if we have 20 nodes, with 1 writing processor per node, we have for each

dumping loop 20 processor that dump down 20 variables (one each) contemporary: that

permits to scale the writing time as will be shown in the next pages.

Below, the used code is reported from the trcdit.f90.

“…

**FIRST PART

!!ALL PROCESSORS

DUMPING_LOOP: DO jv = 1, n_dumping_cycles

 DO ivar = 1 , nodes !number of variables for each round corresponds to the number of

nodes

 writing_rank = writing_procs(ivar)

!!PACKING PART

 IF (COUNTER_VAR > JPTRA)then

 EXIT

 else if (COUNTER_VAR_HIGH > JPTRA_HIGH)then

 EXIT

 ELSE

 if (FREQ_GROUP.eq.2) then

 do ji =1 , jpi

 i_contribution= jpk*jpj * (ji - 1)

 do jj =1 , jpj

 j_contribution=jpk*(jj-1)

 do jk =1 , jpk

 ind = jk + j_contribution + i_contribution

 bufftrn (ind)= traIO(jk,jj,ji,counter_var)

 enddo

 enddo

 enddo

 else ! FREQ_GROUP.eq.1

...

 counter_var = counter_var + 1

 if (FREQ_GROUP.eq.1) counter_var_high = counter_var_high + 1

 !GATHERV TO THE WRITING RANK

 CALL MPI_GATHERV(bufftrn, sendcount, MPI_DOUBLE_PRECISION, bufftrn_TOT, jprcv_count,

jpdispl_count, MPI_DOUBLE_PRECISION, writing_rank, MPI_COMM_WORLD, IERR)

 END IF

 END DO

**PART 2

! *************** COLLECTING DATA *****************************

 IF (WRITING_RANK_WR)then

 writing_rank_init_time = MPI_Wtime()

 ind_col = (myrank / n_ranks_per_node)+1

 if (FREQ_GROUP.eq.2) then

 var_to_store = matrix_state_2(jv,ind_col)%var_name

 else

 var_to_store = matrix_state_1(jv,ind_col)%var_name

 end if

23

 IF (var_to_store == "novars_input")then

 EXIT

 ELSE

 DO idrank = 0,mpi_glcomm_size-1

 ! ******* WRITING RANK sets indexes of tot matrix where to place buffers of idrank

 irange = iPe_a(idrank+1) - iPd_a(idrank+1) + 1

 jrange = jPe_a(idrank+1) - jPd_a(idrank+1) + 1

 totistart = istart_a(idrank+1) + iPd_a(idrank+1) - 1

 totiend = totistart + irange - 1

 totjstart = jstart_a(idrank+1) + jPd_a(idrank+1) - 1

 totjend = totjstart + jrange - 1

 relistart = 1 + iPd_a(idrank+1) - 1

 reliend = relistart + irange - 1

 reljstart = 1 + jPd_a(idrank+1) - 1

 reljend = reljstart + jrange - 1

 ! **** ASSEMBLING *** WRITING RANK puts in tot matrix buffer received by idrank

 do ji =totistart,totiend

 i_contribution = jpk*jpj_rec_a(idrank+1)*(ji-1-totistart+ relistart)

 j_contribution = jpk*(jj-1-totjstart+ reljstart)

 do jk =1, jpk

 ind = jk + j_contribution + i_contribution

 tottrnIO(jk,jj,ji)= bufftrn_TOT(ind+jpdispl_count(idrank+1))

 enddo

 enddo

 enddo

 END DO

 output_file_nc = DIR//'ave.'//datemean//'.'//trim(var_to_store)//'.nc'

 bkpname = DIR//'ave.'//datemean//'.'//trim(var_to_store)//'.nc.bkp'

 if (IsBackup) then

 CALL WRITE_AVE_BKP(bkpname,var_to_store,datefrom, dateTo,tottrnIO,elapsed_time,

deflate_ave, deflate_level_ave)

 else

 CALL WRITE_AVE(output_file_nc,var_to_store,datefrom, dateTo, tottrnIO, deflate_ave,

deflate_level_ave)

 endif

 END IF

 END IF

END DO DUMPING_LOOP

...”

As it is possible to see in the code, there are two points of control in the code to avoid the

possibility to go outnumber of variables to dump and to write void files. The first control is

made by counting all the inner loops, to be sure that variables that will be sent are in the

correct number (IF (COUNTER_VAR > JPTRA) EXIT). The second control is made at writing

processors level. The control is made by checking that the variable name is not equal to the

string “no_vars_to store” (IF (var_to_store == "novars_input")then EXIT) that was initialised

in the previous routine: it avoids the possibility of writing void files.

All I/O routines are structured as the one shown before.

24

3.2.3 Writing multiprocessors per node.

As we have declared in the previous section, the new I/O structure relies on the fact that the

file system can handle parallel writing by all nodes contemporary. Till this moment we have

spoken for a single writing processor per node. As we wanted to test all possibilities we have

upgraded the code to manage multiprocessors writing per node. The main differences are in

the nodes_module .f90 and in the matrix_vars_module.f90. To avoid lots of changes in the

code, we have maintained the writing_procs array as the final array that has stored the rank of

all writing nodes. We have changed the previous writing_procs array in a

writing_procs_base array and we have add a loop to define the new writing_procs array with

multiprocessors per node, simply declaring a bigger array (array dimension = nodes * n* of

procs per node) and adding the new ranks after the first one of each node. To make tests we

have decided to have all the processors in the same socket inside each node. After that we

have corrected all the code parts in which we have loop regarding nodes number, from nodes

to nodes*n°of procs per node. To better handle the number of processor per node, the

declaration is not hard coded but defined into an input file (namelist.init).

From nodes_module.f90:

“…

 writing_procs_base(1) = 0

 DO i=2, mpi_glcomm_size

 IF (nodes==1) THEN

 !if the number of node is one break, no sense to calculate,

avoid problems

 EXIT

 ELSE IF (total_array(p) /= total_array(i)) THEN

 writing_procs_base(k)= i-1

 p=i

 k=k+1

 ELSE

 CYCLE

 END IF

 END DO

…

if (num_of_wr_procs_perNODE == 1) then

 ALLOCATE(writing_procs(nodes))

 do i=1, nodes

 writing_procs(i) = writing_procs_base(i)

 end do

 else

 ALLOCATE (writing_procs(nodes*num_of_wr_procs_perNODE))

 cycle_cont = 1

 DO i=1,nodes

 IF (nodes==1) THEN

 !if the number of node is one break, no sense to

 !calculate, avoid problems

 EXIT

25

 ELSE

 tot_cycle_cont = i - 1

 do j=1, num_of_wr_procs_perNODE

 if(j<(num_of_wr_procs_perNODE/2) + 1)then

 writing_procs(cycle_cont) =

writing_procs_base(i) + j - 1

 cycle_cont = cycle_cont + 1

 else

 writing_procs(cycle_cont) =

writing_procs_base(i) + j - (num_of_wr_procs_perNODE/2) + 19

 cycle_cont = cycle_cont + 1

 end if

 !tot_cycle_cont = tot_cycle_cont + 1

 end do

 END IF

 END DO

 end if

…”

From matrix_vars_module.f90:

“…

IF (MOD(jptra,nodes*num_of_wr_procs_perNODE)==0)THEN

 matrix_state_2_row = (jptra/(nodes*num_of_wr_procs_perNODE))

 ELSE

 matrix_state_2_row = (jptra/(nodes*num_of_wr_procs_perNODE)) + 1

 END IF

...”

From trcdit.f90:

“…

DUMPING_LOOP: DO jv = 1, n_dumping_cycles

 DO ivar = 1 , nodes*num_of_wr_procs_perNODE!

…

do i=1, nodes*num_of_wr_procs_perNODE

 if(myrank == writing_procs(i))then

 ind_col=i

 !write(*,*) 'myrankis', myrank,'indcol

is',ind_col,'writing_proc is', writing_procs(i),'iis', i, 'jvis', jv

 exit

 end if

 end do

...”

26

4. RESULTS AND IMPROVEMENTS

To show the obtained results we have decided to report trcdit.f90 graphics both for single

and double precision, referred to AVE_2 variables, as it is the more demanding routine,

dumping 51 variables. To show general improvements we will show the graphics related to

real production case at 1/24 mesh grid, that is the case in which before the thesis we would

like to obtain the best results. Multiprocessor tests have been done for the TEST 24 only, with

2 and 4 writing ranks per node.

4.1 TEST 4

Figure 10: TEST 4 results.

It is possible to see how writing time decreases with the incrementing of the number of

nodes. Writing in double precision is more costly in timing than writing in single precision.

Communication time is similar in all the tests and decreases slightly with increasing number

of nodes.

27

4.2 TEST 16

Figure 11: TEST 16 results.

In the TEST 16 the pattern is similar to TEST 4. Increasing the number of nodes leads to a

decrease in the writing time but an increase of communication time. Output files are heavier,

and this is reflected both in the writing and communication time. Obviously, double precision

is more demanding than single precision.

4.3 TEST 24

TEST 24 is the most important from a production point of view. In the figures are reported

both the cases for single and multiprocessors writing ranks per node.

For the single writing rank per node cases, it is possible to see the same pattern as the tests

before. Increasing the number of nodes takes to an important decrease in writing time: time

passes from 7.2 to 2.2 seconds for double precision and from 5.12 to 1.45 seconds for single

precision. Communication time increases with the increasing of the number of nodes. In the

heavier configuration, with 20 nodes, communication time is equivalent (double precision

case) or greater (single precision time) then writing time, becoming a new issue to solve.

28

Figure 12: TEST 24 1 writing processor per node results.

For the multiprocessors cases the pattern is the same but communication time increases much

more: it becomes 2 or 3 times bigger then writing time in the 20 nodes tests. This behaviour

that was expected shows how it is not worthy to have more then one writing processors per

node in the above cases. Time gained in dumping variables is lost with the increase of

communication time. But, if we observe the numbers about the 10 nodes multiprocessor test

cases compared to the similar 20 nodes case (20 nodes case with 1 writing processor per node

is equivalent to the 10 nodes case with 2 writing processors per node), we can see that we

gain in writing time with equivalent communication time.

Figure 13: TEST 24, 2 - 4 writing processors per node results.

29

4.4 General Improvements

To have a better description of general improvements, we have calculated writing time speed

ups and total speed ups. To obtain speed ups we have divided the old code timings by the

new timings. For what concerns multiprocessor we have used the total number of nodes as

reference.

Here after are reported the graphs for writing speed ups and total speed ups.

Figure 14: Single processor speedups trcdit.f90, 51 variables.

Figure 15: Single processor speedups trcdit.f90, 51 variables

Is it possible to see how the best total speed up was obtained by TEST 24 with 10 nodes and

4 processor per node. Similar values are obtained also for TEST 24 with 20 nodes and 2

processor per node and TEST 16 with 10 and 20 nodes. These results are obtained by the

balance between a decreasing writing time and an increasing communication time. If we

watch the tests from a data exchange point of view, we have done some test of weak scaling

taking into account only the 5 nodes case. It is possible to see how increasing the output file

dimension, the time scale from TEST 4 to TEST 16 but decrease with TEST 24.

WRITING SPEED UPS

WRITING SPEED UPS

N° Nodes N° Nodes

TOTAL SPEED UPS

TOTAL SPEED UPS

30

4.5 Real test case

As all the new code went in production in the last months of the thesis, we would like to

report some data. We decided to use the 20 nodes configuration with one writing processor

per node, because it was the most solid from a new code point of view and because we need

the greatest number of nodes for computational reasons. We are now reporting data for a

reanalysis case ran with 20 nodes, for a simulation of one year. Timing is reported in seconds

and is referred to the total time for all variables involved:

Double

precision

Double

precision

Double

precision

Single

precision

Single

precision

Single

precision

 Type Saving time Annually
State

variable

Average

bkp vars

Diagnostic

bkp

State

variable

Diagnostic

variable
3D var ass

N° Restarts 3/month 51 51 13 0 0 0

Writing 36 1.68 2.2 0.43 0 0 0

Communication 36 1.83 3.83 0.39

Pak/unpack 36 0.122 0.125 0.2

N° Ave freq 1 daily 0 0 0 21 13 0

Writing 365 0.92 0.44

Communication 365 1.56 0.49

Pak/unpack 365 0.17 0.25

N° Ave freq 2 Weekly 0 0 0 51 13 0

Writing 53 1.45 0.42

Communication 53 3.8 0.39

Pak/unpack 53 0.4 0.2

N° DA restarts Weekly 0 0 0 0 0 19

Writing 53 0.54

Communication 53 1.41

Pak/unpack 53 0.14

Table 4: 20 nodes 1/24 reanalysis simulation run partial timings.

RESTARTS Type Timing

 Writing 155.16

 Communication 217.8

 Pak/unpack 16.092

AVE FREQ 1

 Writing 496.4

 Communication 748.25

 Pak/unpack 153.3

AVE FREQ 2

 Writing 99.11

 Communication 222.07

 Pak/unpack 31.8

DA RST

 Writing 28.62

 Communication 74.73

 Pak/unpack 7.42

Table 5: 20 nodes 1/24 reanalysis simulation run total timings.

31

We compared total timing of new code and old code respect to the reanalysis set-up and for

the future requests. In the table all data are summarised.

In the case of the current reanalysis production, it is possible to see how I/O times decrease

from 185.07 minutes to 37.51 minutes, taking the total amount time of simulation from 25

hours to 22.5. Considering that we were running with 20 nodes and 36 cores per node, we

saved 1170 hours of computational time [(185.07 – 37.51)/60 * 720] for one simulation year.

 NEW CODE OLD CODE

Writing 779.29 9174.86

Communication 1262.85 1725.9

Pak/unpack 208.612 203.6

Total Time in sec 2250.752 11104.36

Total Time in minutes 37.51 185.07

Speed up 4.93

TIME Future requisites 20410.702 87811.04

Time in hours 5.66 24.39

Table 6: Comparing old code and new code total timings.

Taking account of the future requisites from the Copernicus project, we have passed,

theoretically, from 24.39 I/O hours to 5.66 saving 13.485 computational hours.

4.6 New paradigm issues and optimisation

After optimising the writing procedure, the new issue was the communication time. We know

that our implementation has a weak point in the MPI_gatherv inside each I/O procedure. As a

matter of fact MPI_gatherv are of blocking type: to make the next call each mpi call has to

wait for the previous one. That was not a problem with lower number of nodes, but becomes

an issue increasing the number of nodes. We didn’t focus on rewriting this part because after

the implementation of the new code, a new bottleneck had to be solved: 3dvar optimisation.

We will speak about this part in the next part of the present thesis.

Initially we were thinking to bufferize I/O and trying to do it asynchronously from

computation time. We were thinking to I/O nodes, but bandwidth problems would rise. One

possibility was the RAMFS, saving data into Ram and then creating a second routine that at

run time will transfer data to the storage area of the cluster. We will see if these ideas will be

possible and practicable.

32

5 DATA ASSIMILATION OPTIMISATION (3DVAR)

5.1 Overview

As explained in the thesis introduction part, assimilation (3dvar) is an important part of the

model: it permits the model correction with real data taken from satellites and floaters. 3Dvar

optimisation was the goal of MHPC 2015 – 2016 Pierluigi di Cerbo thesis, sponsored by

OGS. 3Dvar is ran as a library inside the OGSTM - BFM model, as it was developed and

tested as an independent part.

After the 2016 implementation Assimilation scheme was computed on 1 node. Optimisation

studies showed that the best option was to run 3dvar with 22 processors because of memory

bound problems. That set up was enough till this year. As a matter of fact in 2020 we started

to use new floaters data. The main difference relies on the fact that new floaters have bigger

depth levels leading to bigger files: we have memory bound problems again. We were forced

to run 3dvar with 9 processors maximum to avoid problem of memory bound. Another issue

was the fact that we have to run assimilation daily instead of weekly, leading to bigger

computational time.

To solve the problem faster, we have thought to implement the same paradigm used for the

I/O parallel distribution to the 3dvar scheme. In this moment we don’t have time to

implement a new 3dvar scheme, as it will take months. We applied the distribution scheme

to 3dvar, not for output parts, as 3dvar an output part handled with PETSc libraries to write

netcdf 4 files in parallel. We adjusted routines that handle the I/O parallel distribution for

3dvar.

5.2 Code analysis

We focused in the 3var routines that constructed the communicator that defined which rank

were involved in the assimilation part.

Here after the code from ogstm_mpi.f90:

“...
SUBROUTINE mynode

 INTEGER :: ierr

#ifdef ExecDA

 PetscErrorCode :: stat

#endif

#ifdef key_mpp_mpi

 CALL mpi_comm_rank(mpi_comm_world,myrank,ierr)

33

 CALL mpi_comm_size(mpi_comm_world,mpi_glcomm_size,ierr)

 call parlec ! in order to read DA_Nprocs

#ifdef ExecDA

 if(myrank .lt. DA_Nprocs) then

 call MPI_Comm_split(MPI_COMM_WORLD, DA_Nprocs, myrank, Var3DCommunicator, ierr)

 PETSC_COMM_WORLD = Var3DCommunicator

 call PetscInitialize(PETSC_NULL_CHARACTER,stat)

 CHKERRQ(stat)

 else

 call MPI_Comm_split(MPI_COMM_WORLD, MPI_UNDEFINED, myrank, Var3DCommunicator, ierr)

 endif

#endif !ExecDA

#else

 mpi_glcomm_size = 1

 myrank = 0

#endif

END SUBROUTINE

…”

It is possible to see how, through the parlec call, number of processors for data assimilation

was imported inside the routine my node (from namelist.init input file). At this point of the

code, all processors whose rank was minor then the number of processors declared, are

collected inside the Var3DCommunicator that handle the assimilation scheme inside the

OGSTM – BFM.

5.3 Profiling

3dvar ia code that works to convergence with a cost function that is the core part of the

system. As every run could be different from the other, we blocked the simulation using the

same time simulation window and the same satellite file. Running the code before the change

we have done with this thesis, the old code for a single assimilation finished in 420 seconds

(7 minutes). In a real case, the single assimilation procedure was done weekly: for 1 year of

simulation, DA accounted for 7*4(weeks)*12(months) /60 = 5.6 hours (to be added to the 22

ours of model computation time). With the new requirements we would have

7*7(daily)*4(weeks)*12(months)/60 = 39.2 hours for data assimilation only. That would be a

great amount of time dramatically increasing the computational hours.

5.4 New routine

We have written a new routine 3d_var_MP.f90 that handle the distribution of the cores

between nodes. We started from the writing_procs array of the I/O part, in which are declared

the first rank of each node, and after that we implemented a new array of dimension

Nodes*n° of DA procs per node in which one we store the ranks of processor that we want to

use for the data assimilation. The distribution is made symmetric for each socket of a node.

The end user through the namelist.init input file can control the total number of DA procs and

the number of processors per node. We have implemented three possibilities: the first one is

when the end user decides to use only one node, all the DA processors will be on the same

node and in number of 9. The second possibility is when DA_procs* nodes < Da_total procs:

we defined that will be 5 processors per node scaling from the total number. The third

possibility is when DA_procs > nodes*DA_procs_per_node: from the input id defined how

many processors per node and how many nodes. We have declared a boolean

34

V3D_VAR_PARALLEL for all processors: processors that are selected for data assimilation

change the boolean value from false to true, so they have been activated for data assimilation

procedures: that will be the control point for DA routines.

From 3d_var_MP.f90:

“…
if(nodes == 1) then

 case_selection = 1

 else if (nodes*TREd_procs_per_node < DA_Nprocs) then

 case_selection = 2

 else

 case_selection = 3

 end if

 counter_3d_procs = 1

 SELECT CASE (CASE_SELECTION)

 CASE(1)

 ALLOCATE(TREd_procs_per_node_array(max_procs_per_one_node))

 do k=1, max_procs_per_one_node

 TREd_procs_per_node_array(k) = k - 1

 end do

 DO i=1, 9

 write(*,*) '3d_var_proc is',TREd_procs_per_node_array(i)

 END DO

 do i=1,max_procs_per_one_node

 IF(MYRANK == TREd_procs_per_node_array(i)) then

 V3D_VAR_PARALLEL = .true.

 END IF

 end do

 CASE(2)

 ALLOCATE(TREd_procs_per_node_array(nodes*TREd_procs_per_node))

 do i=1, nodes

 if(counter_3d_procs > nodes*TREd_procs_per_node) then

 exit

 else

TREd_procs_per_node_array(counter_3d_procs)=writing_procs(i)

 counter_3d_procs = counter_3d_procs + 1

 do j=1, TREd_procs_per_node -1

 if(counter_3d_procs >

nodes*TREd_procs_per_node)then

 exit

 else

TREd_procs_per_node_array(counter_3d_procs)=writing_procs(i)+ j

 counter_3d_procs = counter_3d_procs

+ 1

 end if

 end do

 end if

 end do

 DO i=1, counter_3d_procs - 1

 write(*,*) '3d_var_procis',TREd_procs_per_node_array(i)

 END DO

 do i=1,nodes*TREd_procs_per_node

 IF(MYRANK == TREd_procs_per_node_array(i)) then

 V3D_VAR_PARALLEL = .true.

 END IF

35

 end do

 CASE(3)

 ALLOCATE (TREd_procs_per_node_array(DA_Nprocs))

 DO i=1, NODES

 if(counter_3d_procs > DA_Nprocs)then

 exit

 else

TREd_procs_per_node_array(counter_3d_procs)=writing_procs(i)

 counter_3d_procs = counter_3d_procs + 1

 do j=1, TREd_procs_per_node -1

 if(counter_3d_procs > DA_Nprocs) then

 exit

 else

TREd_procs_per_node_array(counter_3d_procs)=writing_procs(i)+ j

 counter_3d_procs = counter_3d_procs

+ 1

 end if

 end do

 end if

 end do

 DO i=1, counter_3d_procs - 1

 write(*,*)'3d_var_procis',TREd_procs_per_node_array(i)

 END DO

 do i=1,DA_Nprocs

 IF(MYRANK == TREd_procs_per_node_array(i)) then

 V3D_VAR_PARALLEL = .true.

 END IF

 end do

 END SELECT

!PG parts from ogstm_mpi

 if(V3D_VAR_PARALLEL) then

 SELECT CASE (CASE_SELECTION)

 CASE(1)

 call MPI_Comm_split(MPI_COMM_WORLD,

max_procs_per_one_node,myrank,Var3DCommunicator, ierror)

 CASE(2)

 call

MPI_Comm_split(MPI_COMM_WORLD,nodes*TREd_procs_per_node,myrank,Var3DCommunicator, ierror)

 CASE(3)

 call

MPI_Comm_split(MPI_COMM_WORLD,DA_nprocs,myrank,Var3DCommunicator,ierror)

 END SELECT

 PETSC_COMM_WORLD = Var3DCommunicator

 call PetscInitialize(PETSC_NULL_CHARACTER,stat)

 CHKERRQ(stat)

 else

 call MPI_Comm_split(MPI_COMM_WORLD, MPI_UNDEFINED,myrank,Var3DCommunicator,

ierror)

 endif

…”

5.5 Improvements

We have done a lot of tests to identify the best solution between nodes and number of

processors per node. The weak part of the code is the communication between processors:

there are 32 MPI_all_to_all that are called at every step of the convergence run. Increasing

36

the number of nodes and of processors increase dramatically the communication time intra –

nodes and inter – nodes. We have obtained the best results with a setup of 4 processor per

node and 13 nodes, running data assimilation procedures in 155 seconds (2.5 minutes). The

speedup was: 420/155 = 2.7 times. In the real case, the single assimilation procedure is done

weekly: for 1 year of simulation, DA accounted for 2.5*4(weeks)*12(months) /60 = 2 hours

(to be added to the 22 ours of model computation time). With the new requirements we

would have 2.5*7(daily)*4(weeks)*12(months)/60 = 14 hours for data assimilation. Speedup

is not so big, but is enough to save a lot of computational hours: 5.6 – 2 = 4.6 * 720 procs =

3312 computational hours for a year simulation at present requirements (39.2 -14 = 25.2 *

720 procs = 18144 computation hours for one year simulation with future requirements).

5.6 Issues

As we have presented, communication time is the weak part with the cost function too.

Future intentions are to change the data assimilation procedure to cut the computational time,

but we need a lot of time to do the work. Maybe a new MHPC thesis?

37

6. FUTURE WORK

We have found new objectives to make the OGSTM – BFM model more efficient and less

costly from the computational hours point of view.

We would like to implement a parallel reading of input files.

We would like to optimise better the data assimilation part.

We would like to optimise better I/O.

All these ideas have to be studied and defined.

38

7. REFERENCES

Cossarini, G., Lazzari, P., Solidoro, C., 2015. Spatiotemporal variability of alkalinity in the

Mediterranean Sea. Biogeosciences, 12(6), 1647-1658.

Lazzari, P., Teruzzi, A., Salon, S., Campagna, S., Calonaci, C., Colella, S., Tonani, M., Crise,

A. 2010. Pre-operational short-term forecasts for the Mediterranean Sea

biogeochemistry. Ocean Science, 6, 25-39.

Lazzari, P., Solidoro, C., Ibello, V., Salon, S., Teruzzi, A., Béranger, K., Colella, S., and

Crise, A., 2012. Seasonal and inter-annual variability of plankton chlorophyll and

primary production in the Mediterranean Sea: a modelling approach. Biogeosciences, 9,

217-233.

Lazzari, P., Solidoro, C., Salon, S., Bolzon, G., 2016. Spatial variability of phosphate and

nitrate in the Mediterranean Sea: a modelling approach. Deep Sea Research I, 108, 39-

52.

Salon, S.; Cossarini, G.; Bolzon, G.; Feudale, L.; Lazzari, P.; Teruzzi, A.; Solidoro, C., and

Crise, A. (2019) Novel metrics based on Biogeochemical Argo data to improve the

model uncertainty evaluation of the CMEMS Mediterranean marine ecosystem

forecasts. Ocean Science, 15, pp.997–1022. DOI: https://doi.org/10.5194/os-15-997-

2019.

Teruzzi, A., Dobricic, S., Solidoro, C., Cossarini, G. 2014. A 3D variational assimilation

scheme in coupled transport biogeochemical models: Forecast of Mediterranean

biogeochemical properties, Journal of Geophysical Research,

doi:10.1002/2013JC009277.

Teruzzi, A., Bolzon, G., Salon, S., Lazzari, P., Solidoro, C., Cossarini, G., 2018. Assimilation

of coastal and open sea biogeochemical data to improve phytoplankton simulation in

the Mediterranean Sea. Ocean Modelling, 132, 46-60.

Teruzzi, A., Di Cerbo, P., Cossarini, G., Pascolo, E., Salon, S., 2019. Parallel implementation

of a data assimilation scheme for operational oceanography: the case of the MedBFM

model system, submitted to Computers & GeosciencesTeruzzi, A., Bolzon, G., Salon,

S., Lazzari, P., Solidoro, C., and Cossarini, G. (2018). Assimilation of coastal and open

sea biogeochemical data to improve phytoplankton simulation in the Mediterranean sea.

Ocean Modelling, 132:46–60.

https://doi.org/10.5194/os-15-997-2019
https://doi.org/10.5194/os-15-997-2019

	coidessa_frontespice
	Coidessa_mhpc_thesis
	1 INTRODUCTION
	1.1Copernicus framework
	1.2 Model Overview
	1.3 HPC configuration and setup
	1.4 Workflow
	1.5 Model outputs

	2. OLD VERSION
	2.1 Code analysis
	2.2 Profiling
	2.3 Issues

	3. NEW I/O PARADIGM
	3.1 Initial optimisation
	3.2 New I/O, how?
	3.2.1 Pre I/O modules
	3.2.2 I/O routines
	3.2.3 Writing multiprocessors per node.

	4. RESULTS AND IMPROVEMENTS
	4.1 TEST 4
	4.2 TEST 16
	4.3 TEST 24
	4.4 General Improvements
	4.5 Real test case
	4.6 New paradigm issues and optimisation

	5 DATA ASSIMILATION OPTIMISATION (3DVAR)
	5.1 Overview
	5.2 Code analysis
	5.3 Profiling
	5.4 New routine
	5.5 Improvements
	5.6 Issues

	6. FUTURE WORK
	7. REFERENCES

