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Speed Inversion in a Potts Glass Model of Cortical Dynamics
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To better understand the conditions prevailing when acquiring complex, compositional memories, we intro-
duce, in a previously studied Potts model of long-range cortical interactions, a differentiation between a frontal
and a posterior subnetwork. “Frontal” units, representing patches of anterior cortex, are endowed with a higher
number S of local attractor states, in keeping with the larger number of local synaptic contacts of neurons there,
than in some posterior, e.g., occipital, cortices. A thermodynamic analysis and computer simulations confirm
that disorder leads to glassy properties and slow dynamics but, surprisingly, the frontal network, which would
be slower if isolated, becomes faster than the posterior network when interacting with it. From an abstract,
drastically simplified model we take some steps towards approaching a neurally plausible one, and find that
the speed inversion effect is basically preserved. We argue that this effect may facilitate learning, through the
acquisition of new dynamical attractors.
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I. DO LOCAL ATTRACTORS OBSTRUCT
CORTICAL DYNAMICS?

For the brain to store new memories, neural dynamics
should accurately reflect the novel information to be encoded;
whereas to utilize previously stored memories, the informa-
tion they contain should be reliably recovered, irrespective
of what is currently occurring outside. In a massively recur-
rent neural system, reliable retrieval has been associated with
previously established attractors of the dynamics: as neural
activity rapidly approaches its attractors, the role of afferent
inputs is minimized, essentially reduced to setting the initial
conditions, which select among the attractors [1]. When ac-
quiring new memories, instead, the corresponding attractors
do not exist yet. How can the existing, unrelated attractors
be prevented from taking over also when they should not,
and swamp the fresh information conveyed by the inputs? In
physics terms, unrelated attractors amount to quenched noise,
and input information has to navigate the dire straits between
quenched and fast noise—rapid variability. In the mammalian
hippocampus, it appears that evolution has addressed this
version of the stability-plasticity dilemma [2] by introducing,
before the massively recurrent CA3 network (the core compo-
nent of hippocampal circuitry), a dedicated preprocessor, the
dentate gyrus (another component), to counter any takeover by
CA3 attractors [3]. In the cortex, however, there is no dentate
gyrus, but also the dilemma plays out differently because of
the multilevel structure. Locally, in a small portion of cortex,
attractor dynamics is expected to dominate most of the time,
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also when acquiring new memories, insofar as these are new
combinations of elements, which individually have already
been assigned a stable neural representation. Thus, most view-
ers of the 2022 FIFA World Cup final would have had already
established neural representations of a soccer ball, of the scene
of a penalty kick, probably of French player Mbappé as well,
but would still have to form memories of the (multiple) novel
combinations of these elements which occurred then. Imagine
a viewer’s brain as Mbappé is about to kick the ball. Can
cortical activity follow the incoming inputs, and flow freely
around preexisting combinations of these elements, like a
stream unimpeded by the pebbles and cobbles on its bed?

It can, to the extent that global cortical dynamics are fluid
rather than glassy, a critical issue which in this context has
received limited or no attention. Glassy behavior might in fact
be made even more rigid by local attractors, widely hypoth-
esized to serve as the ubiquitous mechanism for expressing
memory functionality at the level of a small portion of cortex
[1,4]. Local attractors amount to nonlinearities, which can be
expected to obstruct the continuous flow of neural activation,
and slow it down, adding to the quenched noise, including that
due to preexisting combinations of elements. Higher levels
of rapid variability—fast noise—would counter these effects,
but further decrease the fidelity to the afferent inputs, i.e., the
accuracy of the neural code.

Global oscillations in cortical state, as well as elec-
troencephalographic and magnetoencephalographic response
patterns, have been approached with linear decomposition
analyses, such as spherical harmonics [5–7]. Yet, these
macroscopic descriptions gloss over precisely local attractor
dynamics, the key factor that may impede global dynamics.

The compartment model by Braitenberg [8] offers a con-
ceptual framework to remedy such neglect. It proposes a
separation between local and long-range cortical interactions,
both of which are envisaged to express associative plasticity
and thus to contribute to associative memory. The Potts as-
sociative network [9] can then be construed as an effective
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model of long-range interactions, that subsumes local ones
into the ad hoc dynamics of Potts units, with S states each,
which represent patches of cortex [10]. The S states, pointing
in S different directions, model the local attractors of a patch
of cortex, and they may be dynamical rather than pointlike
attractors [11]. We have analyzed the spontaneous latching
dynamics induced by adaptation and inhibition [12] and dis-
cussed how they could play out in free recall paradigms [13].
Here, we focus instead on input-driven dynamics, and whether
they are fluid or glassy.

II. A DIFFERENTIATED POTTS MODEL

Previous studies had reduced the cortex to a homogeneous
network of Potts units, each of which is characterized by the
same number of states, S, positive feedback w, time constants
τ for excitation, inhibition, and adaptation. This is in contrast
with prominent features of cortical organization, which, for
example, point at much higher numbers of local synaptic
contacts among pyramidal cells in temporal and frontal, com-
pared to occipital, cortex [14], suggestive of a capacity for
more and/or stronger local attractor states in the former, or
conversely at more linear and prompt responses to afferent
inputs in posterior visual cortices [15,16], suggestive of re-
duced positive feedback relative to more anterior areas. Other
features show gradients that roughly align with these, and
all together have been proposed by Changeux and colleagues
[17] to define, in particular in the human brain, a natural
cortical axis. If one attempts to incorporate these features into
a nonhomogeneous Potts network, what are the implications
for cortical dynamics? The indications that the dynamics in
frontal cortex may be more affected by local attractors need
not necessarily imply, it should be noted, that individual neu-
rons are routinely “stuck” in steady states, in which they keep
firing at steady rates for a few hundred milliseconds. This
would be in apparent contrast with extensive evidence for
more dynamical forms of coding in frontal cortex, e.g., for
changing task contingencies rather than stable visual features
[18]; or, moving up to entire populations of neurons and to
the human brain, for the encoding of verbs rather than nouns
[19,20] (but see Ref. [21]) or of syntax rather than the lexicon
[22]. As noted above, stable local attractors may be expressed
by rapidly changing firing rate distributions [11] and also
quasistable attractor “ruins” may in fact accelerate dynamics
when particularly strong [23].

Local attractor states may thus be composed, only tran-
siently or more persistently, into global attractor states.
Studying the dynamics of reactivating such global attractors
requires assumptions about the nature and the statistics of the
compositionality, and we have analyzed two distinct models
in this respect, both for a homogeneous Potts network [24,25].
Here, however, we want to focus on the dynamics unfolding
away from previously acquired global attractors, as new at-
tractors are being established, or learned. In a learning regime,
we expect the lack of a priori relations between what has been
already acquired and the new compositional representation to
be established to turn the cortex, from the point of view of
the latter, into basically a disordered system. Do long-range
cortical interactions then result in “glassy” dynamics, with
critical slowing down and persistent traces of initial condi-

FIG. 1. The hybrid Potts model combines the representation of
local attractor dynamics in terms of units with S active states, in-
spired by Braitenberg’s idea of an approximate

√
N scaling [8], with

a differentiation between frontal and posterior cortices, along the
natural axis posited by Changeux and others [17] and expressed by a
larger S value for frontal units. Note the assumption that the critical
quantity that varies along the axis is S, the simplification of replacing
a gradient with just two S values, and the ill-fitting temporal cortex
areas, in which pyramidal cells have abundant recurrent collaterals
[14] but are otherwise included among posterior regions.

tions? During learning, that would likely imply an inability to
track new inputs. If so, how does the glassy character express
itself over the short timescales relevant to cognition? Is it
affected by gross inhomogeneities, like the posterior-anterior
gradients in cortical parameters mentioned above?

We are aware of the large distance between our abstract
models and the real cortex, but we choose to consider here
the most basic and mathematically well-defined aspects of
these issues, by analyzing a hybrid model that integrates in the
Potts formulation a crude binary version of the gradient along
the “natural” axis (Fig. 1), and leave for later reports more
realistic models of cortical dynamics and applications to other
domains. As we will see, even the analysis of what seems like
a simple extension of a standard model for an infinite-range
spin glass reveals some surprising properties.

III. MEAN-FIELD ANALYSIS
OF THE LONG-TIME BEHAVIOR

As discussed in previous reports [26,27], the analysis of
the attractor states of associative Potts networks, in which
each unit represents a patch of cortex, relies on the same as-
sumption of symmetric interactions, proposed for the standard
model [28] in which each unit represents a single neuron.
We aim to sketch in this section the thermodynamics of the
simplest version of the model, and then of the variant divided
into two subnetworks, which differ in the number S of states
per unit.

If we consider, as we do here, a local cortical network to
behave effectively as a discrete Potts unit, σi ∈ {0, 1, . . . , S},
which can take one of S active states (labeled by k =
1, 2, . . . , S) as well as stay in the quiescent state (labeled by
0), it is convenient to define the model in terms of the Potts
spin operator,

V k
i ≡ (

δσik − 1/S
)(

1 − δσi0
)
. (1)
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A. The random homogeneous Potts model, with a zero state

First, we consider a network of Potts units all endowed with
the same number of states, S, that interact through random
tensor connections. The Hamiltonian of the system reads

H = −1

2

N∑
i �= j

∑
k,l>0

Jkl
i j V k

i V l
j + U

∑
i

(
1 − δσi0

)
, (2)

where N is the number of Potts units, U is a threshold [12],
and the {Jkl

i j }’s are sampled from Gaussian distributions with
mean J0/N and variance λ4J2/N . We have introduced the
normalization factor λ,

λ2 ≡ S√
S − 1

, (3)

which makes the critical temperature for the transition to a
glassy phase independent of S, in units of J (see below). The
interactions satisfy

Jkl
ji = Jlk

i j , i �= j,

Jkl
ii = 0. (4)

Note that in this model, although S is the same across all
units, the states of one unit do not correspond to those of
another unit, as they would if they represented, e.g., direc-
tions in physical space. This is in contrast to the Potts model
considered by Elderfield and Sherrington (ES) [29], in which
such correspondence holds, and the interactions, albeit still
random, are in the form Jkl

i j ∝ Ji j (δkl − 1/S), with a single
random variable Ji j per unit pair (and, in addition, there is
no quiescent state). In that model, the symmetry among Potts
states is global, whereas in our model it is local, as it must
be in order to represent distinct codes by different patches of
cortex.

Despite the larger number of random variables, the ther-
modynamic analysis proceeds along similar lines to that in
Ref. [29] and it is in some respects simpler. Using the replica
method [30], the free energy of the system is written as re-
ported in Appendix A.

Properties near the critical temperature

The paramagnetic solution (qγ δ = 0, γ �= δ) is the ground
state of the system at high enough temperatures. Lowering
the temperature, a phase transition from the paramagnetic to
the spin glass phase occurs at T = Tc. To determine Tc, one
can (Landau-)expand the free energy close to it, as shown in
Appendix B. Defining suitable coefficients A, B, C, and D
and ψ ≡ 2qγ γ /(S − 1) in terms of the order parameter qγ γ

(assumed not to depend on the replica index γ near Tc), ψ

should satisfy

ψ = exp
[
(βJ )2 S(S−1)

2 ψ − βU
]

1 + S exp
[
(βJ )2 S(S−1)

2 ψ − βU
] (5)

and the quantity Sψ gives the fraction of active units in the
network.

Under the replica symmetric (RS) assumption, qγ δ = q
(γ �= δ), the critical temperature is determined by numerically
solving

(βJ )2S2ψ2 − 1 = 0 (6)

xq

q(x)P(q)

FIG. 2. Schematic description of replica symmetry breaking,
from Eq. (9). Left: The probability density P(q), with blue rectangles
denoting Dirac delta functions. Right: Parisi’s function. Color coding
is used to facilitate a visual comparison.

together with Eq. (5), since ψ contains T . If U → −∞ (which
amounts to considering the case with no quiescent state; all
units are active if the threshold is infinitely low), then Sψ → 1
and we get a simple formula, Tc = J , or Tc = 1 in units of J .
The phase transition is a continuous one if

0 < 4Sψ − (S − 2). (7)

For S < 6, there exists a critical value of U , Uc, above (below)
which the transition is discontinuous (continuous). For S > 6,
the transition is discontinuous for all values of U .

A discontinuous transition is indicative of more pro-
nounced glassy effects for larger S, suggesting that cortical
networks with a larger number of local attractors may be
slower. This RS solution is, however, unstable against replica
symmetry breaking (RSB) in the whole glassy phase. Thus,
the question should be reexamined after breaking replica sym-
metry in the analytical approach.

To probe replica symmetry breaking, following Parisi’s
hierarchical scheme [31] we write the free energy

−β f ≈
∫ 1

0
dx

[
A

2
q2(x) − B

3
q3(x) − D

12
q4(x)

]

+ C

3

∫ 1

0
dx

[
xq3(x) + 3q(x)

∫ x

0
q2(y)dy

]
, (8)

using the coefficients A, B, C, and D defined in Appendix B,
and this free energy is to be maximized with respect to Parisi’s
function q(x) [32]. We note that Eq. (8) has the same form as
in the ES model [29], except for the coefficients. Thus, we
can envisage that the nature of RSB is similar to that in the ES
model (see also Refs. [33,34] for its detailed properties). The
nontrivial solution to the maximization of the free energy in
Eq. (8) is

q(x) =

⎧⎪⎪⎨
⎪⎪⎩

0, x � x0

Cx−B
D , x0 � x � x1

q1 = A
B−C + O

(
q2

1

)
, x1 � x,

(9)

where

x0 = B

C
= 1

2ψ

S − 2

S
, x1 = B

C
+ AD

C(B − C)
. (10)

From Eq. (9), we can see how replica symmetry is broken,
for a given value of U . The scheme in Fig. 2 is similar to
the one for the ES model. Note that x0 is always zero for
S = 2, regardless of U , whereas it remains positive for S > 2.
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(a)
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FIG. 3. The critical temperature (Tc) for the onset of the glassy
phase of a homogeneous Potts network. (a) Tc as a function of the
threshold U for a model with a zero state. With the normalization set
as in Eq. (3), the mean activity a of the network at T = Tc is equal to
Tc itself (that is, to Tc/J). Dashed curves are predicted by RS theory
and solid curves are from RSB theory. All transitions shown here are
continuous. (b) Tc as a function of S for a model without a zero state
(U → −∞): color encodes the normalization used (as indicated in
the legend). Solid curves are obtained analytically from the Landau
expansion of the free energy (a continuous phase transition) and
dashed curves are their mere extensions, to guide the eye. Circles are
obtained by numerically maximizing the one-step RSB free energy
(a discontinuous transition), Eq. (B7). We set J = 1.

This means that P(q) has a Dirac delta at q = 0 for S > 2,
whereas there is no Dirac delta at q = 0 for S = 2, as in the
Sherrington-Kirkpatrick (SK) model. The phase transition to
the glassy phase is continuous if

0 < 2Sψ − (S − 2),

0 < 3S2(3S − 1)ψ2 − 12S(S − 1)ψ + S2 − 3S + 3. (11)

In general, these two conditions are numerically probed
together with Eqs. (5) and (6) for a given value of U . As a
special case, when U → −∞, the second condition is guar-
anteed. However, unlike RS Eq. (7), the first of RSB Eqs. (11)
ceases to hold for S > 4. Thus, the transition can be continu-
ous only for S � 4. We can compute the range of U where
Eqs. (11) hold by solving them together with Eq. (5) and
Eq. (6). The result is shown in Fig. 3(a).

Thus, in practice, replica symmetry breaking has lowered
the value S beyond which the transition to the spin glass
phase must be discontinuous from S = 6 to S = 4, while still
suggesting that, in general, cortical networks with a larger
number of local attractors may be slower.

What happens, if the transition is discontinuous, in the en-
tire range 0 < T < Tc? In general for spin glasses the analysis
via the replica method is complicated and involves heavy nu-
merics; however, for Potts spins specific circumstances enable
an approach, explained in Appendix B, that allows to extract
at least an estimate of Tc itself, as reported in Fig. 3(b).

In conclusion, the level of fast noise below which the Potts
network is glassy, Tc, is with the λ normalization we adopt
[Eq. (3)] roughly independent of the number of states, S, its
units are endowed with; but the way it enters the glassy phase
depends markedly on S, and it appears that with larger S the
entrance is more abrupt, suggestive of more impeded glassy
dynamics.

B. The hybrid Potts model without a zero state

We now consider a network of Potts units that have differ-
ent values for S: a unit i has its own number Si of Potts states.

For the sake of simplicity, we consider Potts units without
the quiet state (equivalent to taking the limit U → −∞). We
group units according to their number of states: there are Nl

units in group l (l = 1, 2, . . . , L) and they have Sl Potts states
each. If the total number of Potts units in the network is N ,

ηl ≡ Nl

N
, 1 =

L∑
l=1

ηl .

We write

H = −1

2

N∑
i �= j

Si∑
k=1

S j∑
m=1

λiJ
km
i j λ j

(
δσik − 1/Si

)(
δσ j m − 1/S j

)
,

(12)

where λ j ≡
√

(S j/
√

S j − 1) normalizes the interactions with

both a pre- and a postsynaptic factor, and the {Jkm
i j }’s are sam-

pled from a Gaussian distribution of mean J0/N and variance
J2/N and satisfy Eqs. (4).

The replica method proceeds as detailed in Appendix B.
The critical temperature for the onset of the glassy phase is

again given by

Tc = J, (13)

where the phase transition is continuous in terms of q when-
ever

L∑
l=1

ηl
Sl − 4√
Sl − 1

< 0. (14)

As an example, consider a hybrid network with two types
of Potts units: half with S1 and half with S2 states. The phase
transition is continuous if

S1 − 4√
S1 − 1

+ S2 − 4√
S2 − 1

� 0. (15)

Several cases are interesting (we set 1 < S1 � S2):
(i) S1 = 2. The transition is continuous for S2 � 10 and

discontinuous otherwise.
(ii) S1 = 3. The transition is continuous for S2 � 5.5 and

discontinuous otherwise.
(iii) S1 � 4. The transition is always discontinuous (ex-

cept for S1 = S2 = 4, but then the network is again homoge-
neous, as in the previous section).

C. The glassy phase of a Potts associative memory

We consider now an attractor neural network comprised of
Potts units. The Hamiltonian is the same as in Eq. (2), with
the connection Jkl

i j now given by the Hebbian learning rule,

Jkl
i j = 1 − δi j

Na(1 − ã)

p∑
μ=1

(
δξ

μ
i k − ã

)(
δξ

μ
j l − ã

)
(1 − δk0)(1 − δl0),

(16)
where {ξμ

i } are p randomly correlated memory patterns, a is
their sparsity, and ã = a/S. The free energy and the saddle-
point equations are obtained by the replica trick, as sketched
in Appendix C. One can solve them by using either RS or RSB
assumptions to compute, inter alia, the storage capacity of
the network. We refer to Refs. [26,27] for a discussion of the
storage capacity (see also Refs. [9,35] for related but different
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models). Here, we are interested in the phases prevailing at
higher temperature, where there are no retrieval solutions: the
paramagnetic phase and the glassy phase.

A phase transition from the paramagnetic to the glassy
phase occurs at

Tc = q̃ã + ψ ã
√

α(S − 1) → (S − 1)a

S2
+ a

S2

√
α(S − 1),

(17)

where α = p/N and the last expression is for the limit of
U → −∞ (i.e., in the absence of a quiet state). It is a continu-
ous transition if S � 6. For S > 6, the transition is continuous
if α < α0 and discontinuous otherwise, with

α0 = 16S2ψ2(S − 1)

(S − 4ψS − 2)2
→ 16(S − 1)

(S − 6)2
,

where the last expression is again for U → −∞.
As in the random Potts model considered above, there is a

value of U above which the phase transition cannot be treated
by the Landau expansion, indicating that, when lowering T ,
the glassy phase is entered discontinuously, with an abrupt
freezing of the Potts units in a disordered configuration. This
result is shown in Appendix C.

The general conclusion of these thermodynamic analyses is
that a continuous transition to a glassy phase characterizes dis-
ordered networks of Potts units with low S, whereas networks
with high S tend to get stuck more abruptly. Before applying
these insights to, respectively, posterior and frontal cortical
networks, however, we should study the actual dynamics of
the Potts model.

IV. DYNAMICS

Although dynamics can be studied within mean-field the-
ory to a certain extent [36,37], here we stick to Monte Carlo
(MC) simulations. Throughout this work, we use the heat
bath algorithm to simulate the dynamics of Potts networks.
Specifically, the local field of each Potts unit is computed as

hk
i =

N∑
j=1( j �=i)

∑
l>0

(
Jkl

i j − 1

S

∑
k′

Jk′l
i j

)
V l

j , k > 0, (18)

where the weights Jkl
i j express the random or the associative

memory model. At each MC step, one Potts unit is randomly
chosen to be updated based on the following equations:

Prob[σi = k] = exp
[
βhk

i

]
∑S

l=1 exp
[
βhl

i

] + exp[βU ]
, k > 0,

Prob[σi = 0] = exp[βU ]∑S
l=1 exp

[
βhl

i

] + exp[βU ]
. (19)

For models without a zero state, the second of Eqs. (19) is not
used.

For most of the simulations presented here, we run two
systems [38] with the same quenched disorder (i.e., the set
of interactions between Potts units) and measure the overlap
between the two configurations γ and δ at time t :

qγ δ (t ) = S

N (S − 1)

N∑
i=1

(
δσ

γ
i σ δ

i
− 1/S

)
. (20)
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FIG. 4. Energy as a function of MC sweeps per unit for sam-
ple MC trajectories. Note the logarithmic scale of the abscissa.
(a) Three example trajectories are shown for a homogeneous Potts
network without a zero state and with S = 2. In the right-hand panels,
t restarts after t0 � 105, to focus on long-time glassy dynamics.
(b) Same as (a) but with S = 7. (c) Example trajectories of a ho-
mogeneous Potts network with a zero state (S = 3). (d) Example
trajectories of the ES model [29]. The three curves are rescaled and
shifted for better visibility [only in panel (d)]. Note that the ES model
reduces to the SK model if S = 2. The number of units is N = 256
for all panels, and each data point is averaged over 10 MC sweeps,
except for the first 100 points.

A. Dynamics close to steady states

Figure 4 shows sample trajectories of networks with ran-
dom interactions at temperatures T � Tc, to illustrate their
glassy nature: after an initial transient the system is trapped in
metastable states for a while before finding a way out, along
which it can further lower its energy. The opportunities to
escape a metastable state, however, become rarer and rarer,
and the time spent near it longer and longer, a process called
thermalization.

To measure how fast the dynamics unfolds on the glassy
free energy landscape, we first “thermalize” a configura-
tion by letting it evolve for t0 = 103 time steps, and then
start from it two simulations with identical interactions, until
at τ their overlap reaches half its initial value. Since the
times τ are quite scattered depending on the realization of
the interaction—their logarithms are approximately normally
distributed—we consider their cumulative distribution, for a
given network, and in particular the thermal half-life scale
ζg(T ), defined as the median μ1/2[log(τ )] when the cumula-
tive distribution, at a temperature T , reaches the value 0.5.

With this procedure, we find that a homogeneous random
Potts network “moves” faster the lower is S, i.e., the number
of states of its Potts units. This is shown in Fig. 5(a), which
indicates that ζg(T ) ≡ μ1/2[log(τ )] increases approximately
with log(S), with the parameters we use. This is in line with
the expectations from the thermodynamic analysis.

If we measure τ (and ζg) separately for the units with a
given S in a hybrid network, we find that the small-S units
get slower and the large-S units get faster, due to the hy-
bridization. Surprisingly, however, the effect is not simply
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(f)(e)

(c) (d)

subnet S=2

} }
subnet S>2

(a) (b)

FIG. 5. Speedup and slowdown in a hybrid Potts model. All
curves are dashed for homogeneous nets, solid for hybrid ones.
(a) Cumulative distribution of τ , computed for homogeneous net-
works of N = 256 units, as a function of S. (b) The inversion of
speed due to hybridization between small units with S1 = 2 and
large units with S2 = 7. Note the faster dynamics, as we have set
here T = 0.8, whereas the default value T = 0.5 was used in the
other panels. (c) A subnetwork of S1 = 2 that interacts with another
subnetwork with S2 > 2, denoted in the legend as 2 ← S2, is more
slowed down the higher is S2. Note that the case with S2 = 2 is the
homogeneous network of panel (a). (d) The speedup and slowdown
of the subnetworks in panel (c) are shown by the arrows, which head
up for units that accelerate. The color of bars stands for S as in panel
(a), while the height measures the difference ζg in the median of the
cumulative distribution of log(τ ), between hybrid and homogeneous
networks. Start and end points of arrows are the median ζg(T ) for
homogeneous and hybrid network. [(e), (f)] Same as (c) and (d),
but without the normalization constants λi in Eq. (12) and T = 0.2,
t0 = 5 × 103.

an interpolation or averaging of the temporal scale between
the two subnetworks, that would come to share a common
speed, because in many cases the large units get markedly
faster than the small units. This is shown in Fig. 5(b) for
T = 0.8 and large units with S2 = 7, that interact in a hybrid
network with small spins, S1 = 2. Figure 5(c) shows that the
slowing down of these spins scales roughly with the logarithm
of S2, the number of states of the units that “bog them down.”
Simultaneously, the large units “speed up” after the hybridiza-
tion [Fig. 5(d)] and, particularly when the interactions are not
renormalized as in Eq. (12), can get to be faster, on average,
than the small spins [Fig. 5(f)].

The speed inversion phenomenon indicates that the same
free-energy landscape is “perceived” as rougher, near the
metastable states, by Potts units with fewer degrees of

freedom. Notably, the effect occurs, albeit reduced in size,
with the normalization of Eq. (12), which according to the
thermodynamic analysis makes the relevant fast noise range
0 < T < Tc independent of S. Does the same effect occur
away from the metastable states, e.g., in the initially rapid
dynamics to the left of the panels in Fig. 4, or when asymmet-
ric connections weaken the very stability of such disordered
states?

B. Factors that accelerate the dynamics

In the Hopfield model, imposing symmetry in the inter-
actions, which established the connection with Hamiltonian
systems, thus enabling the analytical approach [28], entailed
gross disregard for Dale’s law—stating that excitatory and
inhibitory neurotransmitters are released by distinct types of
cortical neurons—and also of plausible statistical models of
connectivity among excitatory neurons alone. Interestingly, it
was argued early on that spin-glass-like metastability would
still characterize networks with asymmetrically “diluted”
connectivity, whereas it was suggested that more profound
changes due to asymmetry might be observed in the dynamics
[39]. In the Potts network, inspired by Braitenberg’s model
[8], Dale’s law is not relevant as long-range connectivity (the
component modeled by the tensor interactions among Potts
units) is only excitatory; there is no urgency to consider di-
luted connectivity either, as the tensor connections themselves
are considered to recapitulate thousands of individual synaptic
connections [27]. Still, it makes sense to consider the effect
of asymmetric nonzero values in the random interactions, by
writing them in the form

Jkl
i j = γ Jasym + (1 − γ )Jsym, (21)

where Jkl
i j,sym = Jlk

ji,sym and Jkl
i j,asym is unrelated to Jlk

ji,asym; thus
the former are symmetric and the latter asymmetric random
components, drawn from the usual distribution with zero
mean and variance J .

Figures 6(b) and 6(c) show that introducing asymmetry
does have a major effect in speeding up the dynamics, across
the board, while maintaining the slowing down of small units
and speeding up of large units due to hybridization. With
γ = 0.3, the root-mean-square symmetric component of the
weights is still more than twice the asymmetric component,
and yet dynamics are extremely fast.

To probe the dynamics away from the vicinity of the
metastable states, without touching the symmetry of the in-
teractions, we use a variant of the simulation paradigm above,
that mimics the arrival of an external input to the Potts net-
work. That is, after a configuration has been thermalized as
in previous simulations, a fraction of the units are randomly
reset in a new state (different from the thermalized one), and
then two independent trajectories evolve with the heat bath
procedure from this common starting configuration, until the
time τ when their overlap has been halved. Figure 6 shows
that the basic inversion effect, and in particular the selective
slowing down of the “small” units, persists over wider regions
of activity space. With respect to the standard thermalization
paradigm in Fig. 6(a), Fig. 6(d) shows that resetting a quar-
ter of the units does indeed accelerate the dynamics of the
S = 3 network, when it is homogeneous, whereas when it is
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FIG. 6. Speeding up the dynamics with asymmetric connections and external inputs. (a) The speedup and slowdown of subnetworks
(relative to their homogeneous counterparts) are shown without asymmetry or perturbation, to serve as the “control” case. (b) The effect
of asymmetry, where γ = 0.2, is to speed up the dynamics across both subnetworks, homogeneous or hybrid. (c) With more asymmetry,
γ = 0.3, the same general speedup is seen as in (b), but more extreme. (d) N/4 units are perturbed or reset, after thermalization, mimicking
an external input; they are selected uniformly across the whole network. γ = 0. (e) Those perturbed by the input are all in the smaller unit
(S = 3) subnetwork. (f) They are all in the larger unit (S = 7) subnetwork. In both (e) and (f) the dotted curves refer to unperturbed halves of
homogeneous networks, and the dashed ones to the halves including the units receiving the input.

hybridized with S = 7 units, these latter get faster, and slightly
faster than the S = 3 ones.

In Fig. 6(d), the external stimulus or perturbation is applied
to a quarter of the units distributed in both subnetworks;
when they are concentrated among the small S = 3 units
[Fig. 6(e), solid curves], the already minimal acceleration
effect is reduced even further. When they are concentrated
among the large S = 7 units, instead, their subnetwork activity
is markedly accelerated, as expected [Fig. 6(f), solid curves],
but only if it is part of a hybrid network with S = 3 units, with
only minimal acceleration if they are part of a homogeneous
network.

The results of the simulated external input procedure are
therefore rather counterintuitive. If affecting one-fourth of the
Potts units, the input effectively distances the network from its
slow-evolving glassy state in two situations: when it is applied
to a homogeneous network of small but not large units, or
in a hybrid network, only when it is applied to the large
units, but then it accelerates essentially their dynamics alone.
These complex effects are observed still within the domain
of networks with symmetric interactions, and they beg the
question of what happens when an external input is combined
with relaxing the symmetry constraint in a more cortically
plausible manner.

C. Approaching a cortical scenario

An interesting model of how cortical dynamics might in-
fluence cortical connectivity might be expressed by setting
γ = 0 only for the interactions among the small units, to
express the hypothesis that during learning they had been
almost clamped by afferent inputs. This leads to a remark-
able inversion effect, illustrated in Fig. 7(a). One can see a

self-consistent pattern potentially at play: the hybridization
makes the large-S subnetwork fast, which upon spike-timing-
dependent synaptic plasticity would tend to result in more
asymmetric tensorial couplings connecting those units.

To combine a putative external sensory input and the same
type of asymmetry of Fig. 7(a), in a cortically plausible sce-
nario, we show in Fig. 7(b) what happens when resetting a
fraction η of the small-S units (thus simulating an input to
posterior cortex) after thermalization. The result is a moderate
general speedup, for both subnetworks, and very fast dynam-
ics in about 30% of the runs, for the posterior network. It
appears that in those runs the input has brought the small-S
units close to the boundary between deep basins of attraction,
so that fast noise leads to the immediate divergence of trajec-
tories with the same starting point. For most of the other runs,
instead, presumably well inside each large basin, the posterior
network remains slower than the frontal one.

Finally, in Fig. 7(c) we take a major step towards cortical
plausibility, by reintroducing the quiet state until now con-
sidered only in the thermodynamic analysis. The quiet state
implies sparse activity (only a fraction a of the Potts units in
one of their active states) and this overall level of sparsity must
be conceived as being regulated by inhibition (in the analysis,
this amounts to considering the activity level rather than the
threshold U as a parameter, whereas for the implementation
in the simulations, see Appendix D). We first consider in
this case purely symmetric random connections, and an input
applied to some of the posterior units. To maintain the sparsity
level, the input is applied after thermalization both to units
already in an active state (which are then flipped to a different
state) and to units in their quiescent state—in this case the
input is clamped to keep them in the new state, simulating the
strong effect of thalamic inputs impinging on an inactive local
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FIG. 7. The speed inversion effect likely applies to the cortex. (a) Distribution of divergence times when the asymmetric component is zero
only within the S = 3 subnetwork and γ = 0.2 otherwise. For homogeneous networks, dotted curves are for the subnetworks that have zero
asymmetric component. (b) Same as in (a), but half the S = 3 subnetwork units are perturbed after thermalization. (c) Potts glass model with a
quiet state and with regulated mean activity. After thermalization, a persistent external input is applied to the S = 3 subnetwork, by flipping to
a different active state a proportion aη of its active units, inactivating a proportion (1 − a)η, and activating (in a random active state) the exact
same number as those that get inactivated (which is close to Na(1 − a)η, but varies somewhat in the course of each thermalization). The newly
activated units are clamped. Broken curves show results when reintroducing asymmetry, γ = 0.2, in the connections involving the S = 7 units.

network. Again, we refer to Appendix D for a full description
of the procedure. The result, in Fig. 7(c), is a strong differenti-
ation between slow dynamics in the posterior network and an
immediate divergence of nearly all trajectories in the frontal
one. While this outcome stems to a large extent from clamping
a few critical units only in the posterior network, it suggests
that the main speed inversion phenomenon is not necessar-
ily reversed back again when moving towards actual cortical
dynamics. Reintroducing the asymmetry in the connections
involving the S = 7 units only makes their network diverge
immediately in all trajectories [the broken curves in Fig. 7(c)].

D. Short-term dynamics for the associative memory model

In this last Results section we consider the associative
memory model, in which the interactions are not random but
rather tend to align the network along one of a number p
of preacquired memory states. Here there is no hypothesis
about the overarching structure of memory representations in
the cortex (we have reported elsewhere on the problems in
applying to the cortex the simplest autoassociative retrieval
scenario [25]) but rather we aim to assess the effects on glassy
dynamics of the presence of the large attractors associated

with the memories. The logic is that we are probing the es-
tablishment of new representations, driven by either external
inputs or internal dynamics, and if the network gets stuck into
a previously acquired memory, no new configuration can be
learned.

First, Fig. 8(a) shows that hybridization, i.e., the differenti-
ation between large- and small-S units, in this case speeds up
both subnetworks. In a homogeneous network, the S = 7 units
are extremely slow, as nearly all trajectories are trapped in one
of the large basins of attraction of the memories encoded in the
connections, reflecting the very extensive storage capacity of
the Potts network, quadratic in S [9,26]. Also the trajectories
of the S = 3 homogeneous network are slower than in the
random network, which does not have the memory attractors,
but faster than the S = 7 ones. The effect of hybridization is
then much stronger on the S = 7 units.

What happens when applying, after thermalization, an ex-
ternal input to some of the S = 3 units? Not much, Fig. 8(b)
shows, if the simulated input is applied to half of them [fol-
lowing the procedure used for Fig. 7(c), with η = 0.5 and
no clamp]. If η = 1.0, instead, i.e., the input is applied to
the entire S = 3 subnetwork, then there is a major effect,
particularly in producing immediate or very early divergence

(b)(a) (c)
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FIG. 8. Speed inversion occurs also in the associative memory model. (a) Cumulative distribution for τ (on a logarithmic scale) without
external input. Dashed curves are for the homogeneous network. (b) The input-driven divergence times, i.e., when half of the S = 3 active units
are perturbed (η = 0.5, solid curves) and all of the S = 3 active units are perturbed (η = 1.0, broken curves). (c) Asymmetric connections
between the two subnetworks, obtained by removing or pruning 30% of them, results in only quantitative changes. The slowdown and also the
speedup are dramatic, instead, when in addition, like in Fig. 7(c), the newly activated units are clamped by persistent external inputs (broken
curves). For all panels, T = 0.05.
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of many of the trajectories, but the speed inversion remains
more or less unaltered (broken lines).

Finally, Fig. 8(c) shows that introducing moderate levels
of asymmetry by diluting or cutting 30% of the connections
between the two subnetworks does not have much of an ef-
fect either—unless one also clamps some of the units in the
posterior network, in the manner already described; then, the
posterior network slows down, almost to a standstill, which
is intuitive, while surprisingly the anterior network speeds up
further, as if unable to find any single satisfactory accommo-
dation to the configuration imposed posteriorly.

V. DISCUSSION

Our study is premised on the hypothesis that some of
the characteristics of cortical dynamics have their roots in
the statistical physics of disordered systems [40]. Prior to
attempting to validate the connection between two levels of
analysis so distant from each other, we wanted to explore
what the statistical properties might be, that might find—or
not—their expression at the neural systems level. We have
considered the reduction of Braitenberg’s model of cortical
connectivity to a Potts network, and reviewed the thermody-
namic analysis that predicts different types of transition from
a paramagnetic to a glassy phase, as a function of the number
S of local states. One should note that in this model the
glassy character stems from the local attractor dynamics—the
S states—whereas those very dynamics have been argued not
to be too glassy, locally, if individual neurons are modeled
realistically [41].

We then combine in a “hybrid” network two halves with
“low” and “high” S units, inspired by the observed anatomical
differences in the number of local synaptic connections—
differences which, it should be remembered, may not lead,
or only partially lead, to differences in the number of local at-
tractor states. Surprisingly, in the “hybrid” network the low-S
units are slowed down by the interaction, and the high-S ones
are sped up, to the point of overtaking the former. This effect
might be related to the different order of the phase transition
to the glassy phase, but remarkably it is a reversal of the differ-
ence presented by homogeneous networks. Although one can
construct seemingly intuitive explanations a posteriori, those
did not enable us to predict it, in the least.

The speed inversion effect appears to survive largely unal-
tered the introduction of additional elements and details and,
importantly, the replacement of the random network with an
associative memory with connections structured by learning.

What are the implications for cortical processing? First,
one should note that such implications should be taken with
more than a grain of salt, if anything because the key con-
cept of a single cortical axis is rather ill defined, at best.
Perusing the many parameters of cortical circuitry that have
been observed to vary across cortical areas, and the many
more likely to be reported in the future, describing their
variation as aligned to an axis, let alone whether it is the
same axis across parameters, is a wishful simplification. The
sensory-motor hierarchies conceptualized, e.g., by Fuster [42]
have their final station in motor cortex after passing through
the more anterior prefrontal cortices, while the termination
layers of intracortical fibers, used to distinguish between feed-

forward and feedback projections, define a cortical hierarchy
with the hippocampus at the top, the limbic cortices next to it
just below, then the association cortices of both temporal and
frontal lobes, going down all the way to primary sensory and
motor cortices [43]. In terms of the number of largely local
inputs to the basal dendrites of pyramidal cells, instead, Elston
[44] gives estimates for areas V1, 7a, TE, and 12, in macaque
monkey, that are roughly in the ratios 1:4:11:16, more or
less along a posterior-to-anterior axis—but then measures in
other areas do not necessarily align, for example, area 10 at
the frontal pole is anterior to 12, but its pyramidal cells are
estimated to have on average 17% fewer spines.

Our hybrid Potts network discards such complexity any-
way to favor simplicity, and the speeding up of the large-S
units that it reveals may have to be factored in, as an under-
lying phenomenon, in any complex scenario that envisages an
imbalance between the effective numerosity of local attractor
states across the cortical mantle. One scenario of this kind is
the debate about the neural bases of consciousness, in which
competing theories wrestle with the characterization of the
differences between posterior and prefrontal cortices [45].

Interestingly, machine learning has pointed out the useful-
ness of combining “processing units” with memory properties
at different timescales (LSTM units), e.g., to tackle syntax
in language production and understanding. In particular, it
has been predicted that long- and short-range units, which
are taken to correspond to patches of cortex of perhaps 106

neurons, similar to our Potts units, should reside in different
cortical regions [46]. Our findings should prove useful to
research in this natural language processing framework, by at
least contributing a warning that the properties of the units in
a homogeneous network, or even in isolation, may differ, to
the point of being the opposite, from those of the same units
in a hybrid one.

A rather different linguistic domain in which the effective
speed or slowness of glassy dynamics may be important is lan-
guage evolution. There, it has long been hypothesized that the
syntactic parameters that determine the internal structure of
language and that evolve or even “mutate,” like units of a ge-
netic code, on a scale of hundreds or thousands of years [47],
may all be binary. Notably, many other features which are
needed to describe natural languages and to implement them
in artificial systems are obviously far from binary and appear
to evolve, largely, on faster timescales. Our study suggests
that in a network of parameters with effectively random in-
teractions, those that emerge in evolution as more resistant to
change, and therefore describe the most stable internal struc-
ture or set of motifs of a natural language, are precisely the
binary ones, whether or not they possess a default value [48].

Yet other seemingly distant domains are those of protein
folding and evolution, which have been approached with sim-
plified Potts models [49,50]. The possible application of our
results to these different fields is left for future work.
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APPENDIX A: THE FREE ENERGY OF THE RANDOM
POTTS GLASS MODEL

The free energy of the homogeneous model of Sec. III A is
written, using the replica method, as

f = lim
n→0

1

n
fn,

βn fn[{qγ δ}] = (βJ )2λ4

2

∑
γ<δ

q2
γ δ + (βJ )2λ4

n∑
γ=1

q2
γ γ − ln

S∑
σ 1=0

S∑
σ 2=0

· · ·
S∑

σ n=0

exp(K ),

K ≡ (βJ )2λ4
∑
γ<δ

qγ δ

S∑
k=1

V k
γ V k

δ + (βJ )2S
n∑

γ=1

qγ γ (1 − δσγ 0) − βU
n∑

γ=1

(1 − δσγ 0), (A1)

where qγ δ is the Edward-Anderson order parameter [30], β = 1/T is the inverse temperature, and replica indices γ and δ run
from 1 to n. The saddle-point equations of Eqs. (A1) are

qγ δ =
∑S

σ 1=0

∑S
σ 2=0 · · ·∑S

σ n=0

[∑S
k=1 V k

γ V k
δ exp(K )

]
∑S

σ 1=0

∑S
σ 2=0 · · ·∑S

σ n=0 exp(K )
, γ �= δ,

qγ γ = S − 1

2S

∑S
σ 1=0

∑S
σ 2=0 · · ·∑S

σ n=0[(1 − δσγ 0) exp(K )]∑S
σ 1=0

∑S
σ 2=0 · · ·∑S

σ n=0 exp(K )
. (A2)

The physical meaning of qγ δ (γ �= δ) is the same as in the
SK model [51] (see also Ref. [52]), while 2qγ γ S/(S − 1) is
the fraction of active units in replica γ of the Potts network.
Note that the free energy in Eq. (A1) does not depend on J0,
the mean of the normal distribution from which the Jkl

i j ’s are
sampled. This is in contrast with the ES model [29], where low
enough values of J0 should be chosen to avoid ferromagnetic
ordering at low temperatures [29,33]. Since the symmetry in
our model is local—a sort of gauge invariance—there is no
meaning to ferromagnetic alignment.

APPENDIX B: THE FREE ENERGY WITH REPLICA
SYMMETRY BREAKING

Following Landau [53], the free energy, Eq. (A1), can be
expanded close to the critical temperature Tc, assuming qγ δ

(γ < δ) to be small, to find

βn fn ≈ A

2

∑
(γ δ)

q2
γ δ − B

3

∑
(γ δ)

q3
γ δ − C

3

∑
(γ δλ)

qγ δqδλqλγ − D

12

∑
(γ δ)

q4
γ δ,

A = (βJ )2

2

S2

S − 1
[1 − (βJ )2S2ψ2],

B = (βJ )6

4

S − 2√
S − 1

S2ψ2,

C = (βJ )6

2

S3ψ3

√
S − 1

,

D = (βJ )8

[
3(3S − 1)

4(S − 1)
S4ψ4 − 3S3ψ3

+S2 − 3S + 3

4(S − 1)
S2ψ2

]
. (B1)

Here (γ δλ) means that replica indices γ , δ, λ are all distinct
in the summation. Following Ref. [32], we have retained only
the quartic term that is relevant for RSB in Eqs. (B1). We have
also assumed that the order parameter qγ γ does not depend
on the replica index γ near Tc and thus have introduced a
symbol ψ ≡ 2qγ γ /(S − 1) to reduce the burden of heavy
notation.

1. Properties at all temperatures

At temperatures well below Tc and when the transition
is discontinuous, one should directly deal with the free en-
ergy, Eqs. (A1), in the full RSB formalism. Even for the
SK model, solving Parisi’s equations requires sophisticated
numerical techniques (see Ref. [54]). However, Potts spins
seem to have a distinguishing property from Ising spins, at
least when we compare the ES model with the SK model:
while any finite-step RSB solution is unstable in the SK model
[31], the first-step RSB (1RSB) solution is locally stable in the
ES model (S > 2) below Tc, down to a certain temperature,
where another phase transition occurs [33,34]. So, one can
study discontinuous transitions for S > 4, where the Landau
expansion does not apply, by using a 1RSB formalism [55].
Here we use this method to study the discontinuous transition
of our random Potts model, Eq. (2).

The Edward-Anderson order parameter is set as, within the
1RSB formalism,

qγ δ =

⎧⎪⎪⎨
⎪⎪⎩

q̃, γ = δ

q1, γ �= δ,
⌊

γ

m

⌋ = ⌊
δ
m

⌋
q0, γ �= δ,

⌊
γ

m

⌋ �= ⌊
δ
m

⌋
,

(B2)
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where �x� gives the smallest integer which is greater than or
equal to x. Then the free energy reads

f [q1, q0, m] = β2J2

4
λ4
[
m
(
q2

1 − q2
0

) − q2
1

] + β2J2λ4q̃

− 1

m

∫ (∏
l>0

Dzl

)
ln
∫ (∏

k>0

Dyk

)
Lm, (B3)

where

L ≡
S∑

σ=0

exp

{[
β2J2S

(
q̃ − q1 − q0

2

)
− βU

]
(1 − δσ0)

+βJλ2
∑
l>0

(
√

q0zl + √
q1 − q0yl )V

l
σ

}
(B4)

and

Dy ≡ dy√
2π

exp
(
−y2

2

)
. (B5)

Solving Eq. (B3) numerically is computationally hard, espe-
cially for large values of S. Thus, we restrict ourselves to a
special case: the threshold U goes to −∞ (the zero state then
drops out of the equations). Inspired from the shape of Eq. (9),
we seek solutions of the form

P(q) = mδ(0) + (1 − m)δ(q). (B6)

Then, the 1RSB free energy becomes

β f ≈ (βJ )2λ4

4
(m − 1)q2 + (βJ )2λ4

2

m + S − 1

S
q

− 1

m
ln
∫

D−→y
[

S∑
l=1

exp(βJλ2√qyl )

]m

, (B7)

where

D−→y ≡
S∏

k=1

[
dyk√

2π
exp

(
−y2

k

2

)]
.

We can numerically maximize Eq. (B7) by using the same
numerical trick as in Ref. [55], up to S = 20. Critical temper-
atures obtained that way are reported in Fig. 3(b), while the
order parameters are shown here in Fig. 9.

2. Extension to a hybrid network

In the case of a hybrid network, one obtains the free energy,

βn fn ≈ (βJ )2

2

∑
γ<δ

q2
γ δ −

L∑
l=1

ηl ln Trl

× exp

[
(βJλl )

2
∑
γ<δ

qγ δ (δσγ σ δ − 1/Sl )

]
, (B8)

where qγ δ is the Edward-Anderson order parameter,

qγ δ = 1

N

N∑
i=1

λ2
i

〈
δσ

γ
i σ δ

i
− 1/Si

〉
, (B9)

and

Trl ≡
Sl∑

σ 1=1

· · ·
Sl∑

σ n=1

. (B10)
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FIG. 9. Order parameters of a homogeneous Potts network with-
out a zero state (U → −∞), predicted by 1RSB theory. (a) Solutions
of the 1RSB free energy as a function of T . Note the discontinuous
jumps in q at T = Tc for S > 4. (b) Probability density, P(q), ob-
tained from Monte Carlo simulations, for S = 7 and T ≈ 6

7 Tc. Red
vertical lines indicate Dirac delta functions, estimated from (a). The
peak at higher q seems to be lower with increasing values of N ,
but this is due to the insufficient relaxation time in our simulations.
Since the relaxation time grows exponentially with N [38], we did
not attempt to obtain the exact ground states.

As before, we expand Eq. (B8) around qγ δ = 0 and apply
the Parisi algebra [56] to probe the nature of the equilibrium
state. The corresponding free energy functional and the Parisi
function that maximizes it have the same form as for the
homogeneous network [see Eqs. (B1), (8), and (9)], after a
redefinition of the coefficients A, B, C, and D, as follows:

A = (βJ )2

2
[1 − (βJ )2],

B = (βJ )6

4

L∑
l=1

ηl
Sl − 2√
Sl − 1

,

C = (βJ )6

2

L∑
l=1

ηl
1√

Sl − 1
,

D = (βJ )8

4

L∑
l=1

ηl
S2

l − 6Sl + 12

Sl − 1
,

(B11)

leading to the conclusions reported in the main text.

APPENDIX C: THERMODYNAMICS FOR THE
ASSOCIATIVE MEMORY NETWORK

The free energy is obtained by the replica trick (see
Ref. [57] for the Hopfield model and Refs. [26,27] for the
Potts model):

n fn[−→m , q, r] = 1

2

∑
γ

(mγ )2 + α

2β
Tr ln[I − βãq]

+
∑
γ δ

rγ δqγ δ +
[
αã

2
+ SU

S − 1

]

×
∑

γ

qγ γ − 1

β

〈
ln Tr{σγ } exp

[
βLξ

σ

]〉
ξ
,

(C1)
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where

Lξ
σ ≡

∑
γ

mγ

∑
k>0

(δξk − ã)V k
γ +

∑
γ δ

rγ δ

∑
k>0

V k
γ V k

δ (C2)

and α ≡ p/N is taken to be α �= 0. The saddle-point equa-
tions read

mγ =
∑
k>0

〈
(δξk − ã)

〈
V k

γ

〉
Lξ

σ

〉
ξ
,

qγ δ =
〈∑

k>0

〈
V k

γ V k
δ

〉
Lξ

σ

〉
ξ

, (C3)

rγ δ = αã

2
[I − βãq]−1

γ δ − δγ δ

[
αã

2
+ SU

S − 1

]
,

where

〈X (σ, ξ )〉Lξ
σ

≡ Trσ

[
X (σ, ξ ) exp

(
βLξ

σ

)]
Trσ exp

(
βLξ

σ

) . (C4)

At high enough values of T and α, in fact, we expect
retrieval solutions not to exist. So, we set mγ = 0 and the
terms including ξ and mγ drop out of the equations. We can
easily see that qγ δ and rγ δ are zero in the high-temperature
limit, if γ �= δ. We expand the free energy with respect to
these two variables around zero,

nβ f ≈ nα

2
ln(1 − βãq̃) + β

∑
(γ δ)

rγ δqγ δ + nβq̃

(
αã

2
+ SU

S − 1
+ r̃

)

− α�2

2

⎛
⎝1

2

∑
(γ δ)

q2
γ δ + �

3

∑
(γ δλ)

qγ δqδλqλγ + �2

4

∑
(γ δλμ)

qγ δqδλqλμqμγ

⎞
⎠

− (S − 1)β2ψ2

{∑
(γ δ)

r2
γ δ + 4βψ

3

∑
(γ δλ)

rγ δrδλrλγ + 2β(S − 2)

3S

∑
(γ δ)

r3
γ δ

+ β2

[
ψ2(3S − 1) − 4ψ

S − 1

S
+ S2 − 3S + 3

4S2

]∑
(γ δ)

r4
γ δ

}
, (C5)

where

� ≡ �(T ) = βã

1 − βãq̃
= ã

T − ãq̃
.

For the sake of simplicity, let us consider a RS ansatz.
Then, the free energy reads, up to the third order in q
and r,

β fRS ≈ α

2
ln(1 − βãq̃) − βrq + βq̃

(
αã

2
+ SU

S − 1
+ r̃

)

+ α�2

4
q2
[
1 − 4

3
�q

]
+ (S − 1)β2ψ2r2

×
[

1 − 8

3
βψr + 2(S − 2)

3S
βr

]
. (C6)

This free energy is maximized with respect to r and q, while
q̃ and r̃ satisfy

q̃ = (S − 1)ψ,

r̃ = αã

2

(
1

1 − βãq̃
− 1

)
− S

S − 1
U,

ψ = exp
(
β r̃ S−1

S

)
1 + S exp

(
β r̃ S−1

S

) . (C7)

In addition to the trivial (paramagnetic) solution of q = 0, we
have

q = 2
α�2ψ2(S − 1) − 1

αψ2�3(S − 1)
(
4 + α�

4Sψ+2−S
S

) . (C8)

Numerically solving the above equations gives the transition
temperature Tc(U, α) for the emergence of a glassy solution
with small q �= 0, as a function of U and α, provided that
α �= 0—what is reported in Fig. 10(b).

The limit of a finite number of patterns

When the tensorial weights encode only a finite num-
ber p of patterns, that is, α = p/N → 0 as N → +∞, we
hypothesize that solutions corresponding to the retrieval of

(a) (b)

FIG. 10. High-temperature phase of associative memory for
S = 3. (a) Maximum value of U (blue) above which the transition
is no longer continuous, and the corresponding critical temperature
(green) are plotted against sparsity of patterns for α → 0. (b) Critical
temperature as a function of α for a = 0.2. Note that the data points
for α = 0 [in the panel (a), and the leftmost of the panel (b)] are
computed separately from those for α �= 0, and that the sample value
U = 0.02 used in the panel (b) is just below Uc ≈ 0.026 given by
solving the equations valid for α = 0, in the panel (a).
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one pattern, the so-called Mattis states, arise when lowering
T at the critical value Tc which is the limit for α → 0 of the
Tc(U, α) considered above. This is in fact the case for the
Hopfield model [57]—but not necessarily for other network
models (see Ref. [58]).

As α → 0, the q terms disappear from the free energy,
Eq. (C1), and one can study Mattis solutions of Eqs. (C3),
which satisfy

m = a

∑
σ>0(δσ1 − 1/S) exp[βm(δσ1 − 1/S) − βU ]

1 + ∑
σ>0 exp[βm(δσ1 − 1/S) − βU ]

. (C9)

The critical temperature Tc(U, 0) where m → 0, for a given
value of U , is determined by solving

Tc = ã(S − 1)
exp(−U/Tc)

1 + S exp(−U/Tc)
. (C10)

The trivial solution of Eqs. (C3), −→m = 0, is stable as long as
the corresponding eigenvalue

λ = 1 − ã(S − 1)

T

exp(−U/T )

1 + S exp(−U/T )
(C11)

remains positive. This is always the case for T > Tc(U, 0).
We can thus compute the maximum value of U , below which
Mattis states arise.

We can see that if U → +∞, Tc → 0 and the trivial solu-
tion −→m = 0 is stable for all temperatures. In Fig. 10(a), we
show values of Uc and the critical temperature at U = Uc.
Figure 10(b) shows that Tc(U, 0) is indeed very close to the
limit of Tc(U, α → 0).

TABLE I. Parameters of the network.

Symbol Meaning Default value

N Number of Potts units 256
S Number of states per unit 7 (3)
T Temperature (noise level) 0.5
γ Degree of asymmetry 0.2
η Fraction of units with external inputs 0.5
p Number of memory patterns 1024
t0 Number of thermalization updates 1000
a Mean activity 0.25

APPENDIX D: DETAILS ON THE
COMPUTER SIMULATIONS

For models with a quiet state, the Edward-Anderson order
parameter is computed as, instead of Eq. (20),

qγ δ = S

S − 1

∑N
i=1

(
δσ

γ
i σ δ

i
− 1/S

)(
1 − δσ

γ
i 0

)(
1 − δσδ

i 0

)
∑N

i=1

(
1 − δσ

γ
i 0

)(
1 − δσδ

i 0

) .

(D1)
The mean activity of the network is controlled by a time-
dependent threshold

U (t ) = U0 + k

[
1

N

∑
i

(
1 − δσi0

) − a

]3

, (D2)

where a is the sparsity of patterns in the associative memory
model and k is set as 1000. For the Potts glass model with a
quiet state, we have used the same activity level a.

The external input to the posterior subnetwork is modeled
by persistent external fields applied (after thermalization) to a
fraction η of its units, which will maintain its states during dy-
namics (clamping in the main text). Specifically, we randomly
select a fraction η of all active units in the S = 3 subnetwork.
Among the selected units, a fraction a of them is flipped into
a different active state, while the remaining fraction 1 − a of
them is set into a quiet state. The same number of units among
quiet units is activated to maintain the same level of activity.

If not specified explicitly, parameters are set as in Table I.
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