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Abstract
D3 brane solutions of type IIB supergravity can be obtained by means of a classi-
cal Ansatz involving a harmonic warp factor, H(y, ȳ) multiplying at power −1/2
the first summand, i.e., the Minkowski metric of the D3 brane world-sheet, and at
power 1/2 the second summand, i.e., the Ricci-flat metric on a six-dimensional trans-
verse space M6, whose complex coordinates y are the arguments of the warp factor.
Of particular interest is the case where M6 = tot[K [(MB)] is the total space of
the canonical bundle over a complex Kähler surface MB . This situation emerges in
many cases while considering the resolution à la Kronheimer of singular manifolds
of type M6 = C

3/�, where � ⊂ SU(3) is a discrete subgroup. When � = Z4, the
surface MB is the second Hirzebruch surface endowed with a Kähler metric having
SU(2) × U(1) isometry. There is an entire class Met(FV) of such cohomogeneity one
Kähler metrics parameterized by a single function FK(v) that are best described in
the Abreu–Martelli–Sparks–Yau (AMSY) symplectic formalism. We study in detail
a two-parameter subclass Met(FV)KE ⊂ Met(FV) of Kähler–Einstein metrics of the
aforementioned class, defined on manifolds that are homeomorphic to S2× S2, but are
singular as complex manifolds. Actually, Met(FV)KE ⊂ Met(FV)ext ⊂ Met(FV) is a
subset of a four parameter subclass Met(FV)ext of cohomogeneity one extremal Käh-
ler metrics originally introduced by Calabi in 1983 and translated by Abreu into the
AMSY action-angle formalism. Met(FV)ext contains also a two-parameter subclass
Met(FV)extF2 disjoint from Met(FV)KE of extremal smooth metrics on the second
Hirzebruch surface that we rederive using constraints on period integrals of the Ricci
2-form. The Kähler–Einstein nature of the metrics in Met(FV)KE allows the construc-
tion of the Ricci-flat metric on their canonical bundle via the Calabi Ansatz, which
we recast in the AMSY formalism deriving some new elegant formulae. The metrics
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in Met(FV)KE are defined on the base manifolds of U (1) fibrations supporting the
family of Sasaki–Einstein metrics SEmet5 introduced by Gauntlett et al. (Adv Theor
Math Phys 8:711–734, 2004), and already appeared in Gibbons and Pope (Commun
Math Phys 66:267–290, 1979). However, as we show in detail using Weyl tensor
polynomial invariants, the six-dimensional Ricci-flat metric on the metric cone of
M5 ∈ Met(SE)5 is different from the Ricci-flat metric on tot[K [(MKE)] constructed
via Calabi Ansatz. This opens new research perspectives. We also show the full inte-
grability of the differential system of geodesics equations on MB thanks to a certain
conserved quantity which is similar to the Carter constant in the case of the Kerr
metric.

Keywords D3-brane supergravity solutions · Ricci-flat metrics · Kähler-Einstein
metrics · quotient singularity resolutions
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1 Introduction

The paper [6] reported, within the context of quiver gauge theories, on some advances
about a special aspect of the gauge/gravity correspondence, i.e., the relevance of the
generalized Kronheimer construction1 [8, 9] to the resolution of C

3/� singularities.
In particular, on the basis of the structure of exact D3-brane supergravity solutions,
the issue of the construction of a Ricci-flat metric on a smooth resolution Y� of C

3/�

was considered. The general framework there and in this paper is the problem of
establishing holographic dual pairs, made of

1. a gauge theory living on a D3-brane world volume;
2. a classical D3-brane solution of type IIB supergravity in D = 10.

Quiver gauge theories have been extensively studied in the literature in this connection,
see, e.g., [7, 23–25, 44]. Indeed, the quiver diagram is a powerful tool which encodes
the data of a Kähler quotient describing the geometry of the six directions transverse
to the brane. The possibility of testing the holographic principle [26–28, 38, 42] and
resorting to the supergravity side of the correspondence in order to perform, classically
and in the bulk, quantum calculations that pertain to the boundary gauge theory, is
tightly connected with the quiver approach whenever the classical brane solution has
a conformal point corresponding to a limiting geometry of the type

MD = AdSp+2 × SED−p−2.

1 By “generalized Kronheimer construction,” we mean taking the Kähler quotient together with the con-
struction of themetric that it naturally carries, thus generalizingKronheimer’s construction of the resolutions
of the ADE singularities together with a hyperkähler metric on them [40]. In the case at hand of course the
metric is not hyperkähler.
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Here AdSp+2 denotes the anti-de Sitter space of dimension p + 2, while SED−p−2 is
a Sasaki–Einstein manifold of dimension D − p − 2 [22].

A special class of quivers is that of McKay quivers, which are associated with
the resolution of C

n/� quotient singularities by means of a Kronheimer-like or
GIT construction [3, 40, 41], where � is a discrete subgroup in SU(n). The case
n = 2 corresponds to ALE manifolds, the discrete group � being given by the ADE
classification.2

The case n = 3was studied from themid 90s [17–19, 35, 36, 39, 45–47]. The three-
dimensional McKay correspondence provides a group theoretical prediction of the
cohomology groups H•(Y�,Q) of a crepant resolution Y� of the quotient singularity
C
3/�. Such complex 3-folds carry a Ricci-flat Kähler metric whose asymptotics at

infinity depends on whether the locus inC
3 having nontrivial isotropy is compact (i.e.,

the origin) or not. In the first case one has anALE asymptotics, while in the second case
the asymptotics depends on the direction: this is the Quasi-ALE case (see, e.g., [37],
Thm. 3.3). As it was stressed in [6], the Ricci-flat metric is not necessarily the metric
determined by the Kähler quotient.

In [6] the relevant conceptual landscape was summarized as follows. The finite
group � ⊂ SU (3) singles out a McKay quiver diagram which determines

1. the gauge group F�;
2. the matter field content �I of the gauge theory;
3. the representation of the gauge group factor on the matter fields �I ;
4. the possible (mass)-deformations of the superpotential W(φ).

The Ricci-flat metric on Y in principle can be inferred, by means of a Monge–Ampère
equation, from the Kähler metric on the exceptional compact divisor in the resolution
of C

3/�, which in turn is determined by the McKay quiver through the Kronheimer
construction. In particular, as discussed in [6] for the case C

3/Z4, although the Kro-
nheimer metric on Y� is not Ricci-flat, yet its restriction to the exceptional divisor
provides the appropriate starting point for an iterative solution of a Monge–Ampère
equation which determines the Ricci-flat metric.

1.1 The reversed view point of this paper

The explicit solution of the Monge–Ampère equation for the case of the smooth Y�

resolution of the orbifold C
3/Z4, namely the summation of the series implied by

the iterative approach, proved to be quite unmanageable. Only the case of a partial
resolution of the singularity, which is the canonical bundle of the (singular) weighted
projective space WP[1, 1, 2], is quite accessible, and was discussed in [6] utilizing
the powerful AMSY (Abreu–Martelli–Sparks–Yau) symplectic formalism of [1, 10,
43], whose simple results, however, cannot always be explicitly transferred back to
the standard complex formalism of Kähler geometry, as such a transcription involves
the inversion of higher transcendental functions.

On the other hand, Calabi’s paper [11] provides, in the standard complex formalism,
a recipe for constructing a Kähler metric gE on the total space of a holomorphic vector

2 For a recent review of these matters see chapter 8 of [30].
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bundle E → M, where M is a compact Kähler manifold, satisfying the following
conditions:

C1: the restriction of gE to the space tangent to the zero section of E coincides with
a given Kähler–Einstein (KE) metric gM on M;

C2: the horizontal spaces given by the Chern connection of the metric gE are the
orthogonal complements of the tangent spaces to the fibers of E with respect to
gE ;

C3: gE restricts on every fiber of E to an Hermitian metric.

In the case of the singular variety C
3/Z4, the resolved variety is the total space of

the canonical bundle of the second Hirzebruch surface F2, and since F2 admits no
KE metric, the Calabi Ansatz cannot be applied. On the other hand, as we recall in
Sect. 1.3.1, the resolution of singularities admits no infinitesimal deformation of the
complex structure, namely no (2, 1)-forms, and this is an obstacle for introducing
fluxes in the supergravity D3-brane solution. In this paper, making use of the AMSY
formalism, we explore the possibility of singling out Kähler metrics, serving as the
starting point for the Calabi ansatz, within a family, here calledMet(FV), of 4DKähler
metrics. This familywas already introduced in paper [6], on the basis of previous results
of Gauntlet, Martelli, Sparks and Waldram [32]. The distinctive features of the family
Met(FV) are the following:
(a) the metrics in the familyMet(FV) are parameterized by a single function of one

variable FK(v);
(b) for any choice of FK(v), the corresponding metric gFK is Kählerian;
(c) for any choice of FK(v), the isometry group of gFK is SU(2) × U(1) and the

underlying 4-manifold MB has cohomogeneity one;
(d) Met(FV) includes both the Kronheimer metric for the smooth surface F2 and

for the weighted projective plane WP[1, 1, 2].
Relying on the AMSY formalism it is straightforward to impose the condition that
gFK is an Einstein metric. This yields a linear differential equation for the function
FK(v) whose general integral contains two parameters (integration constants)

0 ≤ λ1 < λ2 < ∞, (1.1)

so that one arrives at a two-parameter subclass of Kähler Einstein metrics

Met(FV)KE ⊂ Met(FV)

each singled out by a choice of the parameters in Eq. (1.1) and defined on a 4-manifold
that we label with the same parameters M[λ1,λ2]

B (actually all these manifolds are
homeomorphic to S2 × S2, but the metrics and the related complex structures are
singular; more precisely, the metrics display two conical singularities, as we show in
Sect. 6.3). These metrics already appeared in [34] and also [32], see eq. (4.4) there (a
change of coordinates is necessary to compare the two families of metrics).3

3 We thank Dario Martelli who called our attention to the relation of these four-dimensional KE metrics
with the family of five-dimensional Sasaki–Einstein metrics introduced in eq.(4.1) of the same paper [32].
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Actually, the family of metrics Met(FV) is a subclass of a 4-parameter family
Met(FV)ext of extremal Kähler metrics in four real dimensions that was derived by
Calabi in 1982 [12].4

The familyMet(FV)ext was discussed byAbreu in [2] using theAMSYaction-angle
coordinate formalism. In Sect. 4,we explain the precise formof the familyMet(FV)ext,
and using the global constraints on the periods of the Ricci 2-form characterizing the
F2 surface, we show that the 4-parameter family contains two disjoint subfamilies:

Met(FV)ext ⊃ Met(FV)KE
⋃

Met(FV)extF2

where Met(FV)KE is the aforementioned family of KE metrics on the manifolds
M[λ1,λ2]

B with two conical singularities, while Met(FV)extF2 is a 2-parameter family
of extremal Kähler metrics on the smooth F2 Hirzebruch surface. A relevant question
is whether the Kronheimer Kähler metric gF2

Kro on F2 is extremal or not. The answer
is that it belongs to the family Met(FV), as we already know, yet it does not belong
to the subclass Met(FV)ext as we explicitly show in the sequel.

The good news is that the Calabi Ansatz, originally formulated in the standard
complex formalism, has a particularly simple and elegant transcription into the AMSY
formalism, leading to compact general formulas for the Ricci-flat metrics on the 2-
parameter class of KE manifolds M[λ1,λ2]

B . This allows us to write an explicit exact
D3-brane solution of Type IIB supergravity for each given manifold.

It is in conjunction with the construction of this Ricci-flat metric that another
important question arises. One might think that, in view of the relation between the
KE metrics g[λ1,λ2]

4−KE and the Sasaki–Einstein metrics g[λ1,λ2]
5−Sasaki introduced in [32], the

Ricci-flat metric obtained from the Calabi Ansatz (in action-angle coordinates) with
g[λ1,λ2]
4−KE as an input, and the Ricci-flat metric obtained from the metric cone on the

Sasaki–Einstein g[λ1,λ2]
5−Sasaki should be the same metric, modulo change of coordinates.

Actually, this natural guess is false and we demonstrate it explicitly in Sect. 12 with
direct and indirect arguments that utilize invariants constructed with the Weyl tensor.
So one cannot freely assume that the Sasaki–Einstein metrics g[λ1,λ2]

5−Sasaki of [32] can
be utilized to determine the gauge theory dual to D3-brane solution of supergravity
constructed via Calabi Ansatz.

Notwithstanding the relation between g[λ1,λ2]
4−KE and g[λ1,λ2]

5−Sasaki the reversed problem
of the dual pair of theories is still there. We have, by construction, the exact classical
solutionof supergravity basedon theRicci-flatmetric. In order tofind theothermember
of the pair, namely the corresponding four-dimensional gauge theory, we should be
able to derive the spectrum of the theory from a suitable quiver and a holomorphic
superpotential. This part of the problem is open.

4 We thank Miguel Abreu for informing us of this fact. Extremal metrics are by definition those that
extremize Calabi’s functional

∫ Rs [g]2 vol(g), where Rs is the scalar invariant curvature; the notion was
introduced by Calabi in [12]. For a modern introduction, see, e.g., [48].
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1.2 The geometry of the fourfolds

From a geometric point of view, it should be stressed that all 4-manifolds in the
Met(FV) family we find in our analysis that are homeomorphic (not necessarily dif-
feomorphic) to the product S2 × S2. Concerning the complex structure, for some
choices of the FK(v) function we obtain the second Hirzebruch surface F2; for other
choices we have the aforementioned a 2-parameter family of KE manifolds, which
of course must be singular. Our analysis in Sect. 6.3 shows indeed that they have a
conical singularity as we have already stressed.

1.3 Further issues

1.3.1 About (2, 1)-forms

According to the result proved by Ito and Reid [17, 18, 36] and based on the concept of
age the conjugacy classes in the group�,5 the homology cycles of Y� are all algebraic,
so that all notrivial cohomology groups are of type (q, q). There is a correspondence
between the cohomology classes of type (q, q) and the discrete group conjugacy
classes of age q:

dim H1,1(Y�) = # of junior conjugacy classes in �;
dim H2,2(Y�) = # of senior conjugacy classes in �.

Note that H3,3 = 0 as Y� is noncompact.
In [6] it was emphasized that the absence of harmonic forms of type (2, 1), i.e., the

absence of infinitesimal deformations of the complex structure, is a serious obstacle to
the construction of supergravity D3-brane solutions based on Y� that have transverse
3-form fluxes.

It was pointed out in [6] that by means of the Gaussian integration of certain scalar
fields predicted by theMcKay� quiver, and clearly distinguished from the other scalar
fields on a group theoretical basis, one gets a new quiver diagram that is not directly
associated with a discrete group, yet follows from the McKay � quiver in a unique
way. In this way the group theoretical approach allows one to identify deformations
of the superpotential and hence allows for “deformations” of the crepant resolution.
By construction, these deformed varieties will have nontrivial harmonic (2,1) forms.

In this way, one goes beyond the McKay correspondence. Both physically and
mathematically this is quite interesting andprovides a newviewpoint on several results,
some of them well known in the literature. Most of the latter are about cyclic groups
� and rely on the powerful tools of toric geometry. Yet the generalized Kronheimer
construction applies also to non-Abelian groups � ⊂ SU(3) and so do Ito-Reid’s
results. Hence, available mass deformations are encoded also in the McKay quivers of
non-Abelian groups� and onemight explore the geometry of the transverse manifolds
emerging in these cases.

5 For a recent review of these matters within a general framework of applications to brane gauge theories
see [8, 9].
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In Sect.A,we give a negative solution to this problem forwhat concerns the varieties
we consider in this paper, for which the group H2,1 vanishes. As one may expect, we
find that the manifolds do not carry nontrivial self-dual (2, 1)-forms. From the point
of view of supergravity, this means that we can only build classical D3-brane solutions
with a 5-form flux but no 3-form fluxes.

1.3.2 Sasaki–Einstein manifolds

Given the exact explicit solution for the Ricci-flat metric on the total spaces of the
canonical bundles tot(KM[λ1,λ2]

B
), we can investigate their behavior at large distances

from the corresponding base manifold M[λ1,λ2]
B . In principle this procedure should

single out Sasaki–Einstein 5-manifold M̃SE which, at this point, we expect to be dif-
ferent from those considered [32]. The M̃SE might have some singularities, typically
corresponding to the modding out of some discrete group �̃ related to the original �
in the ancestor orbifold C

3/�.

2 D3-solutions of type IIB supergravity

For the reader’s convenience, in this section we concisely collect the main formulas
related to the D3-brane solution of Type IIB supergravity. For more explanations, the
reader is referred to section 2 of [6].

We separate the ten coordinates of space-time into the following subsets6:

xM =
{
xμ, μ = 0, . . . , 3 real coordinates of the 3-brane world volume
yτ , α = 1, 2, 3 complex coordinates of the Y variety

and we make the following Ansatz for the metric:

ds2[10] = H(yyy, ȳyy)−
1
2
(−ημν dx

μ ⊗ dxν
)+ H(yyy, ȳyy)

1
2

(
gRFK
αβ̄

dyα ⊗ d ȳβ̄
)

ds2Y = gRFK
αβ̄

dyα ⊗ d ȳβ̄

ημν = diag(+,−,−,−) (2.1)

where gRFK is the Kähler metric of the manifold Y :

gRFK
αβ̄

= ∂α ∂β̄ KRFK (yyy, ȳyy) , (2.2)

6 Latin indices are always frame indices referring to the vielbein formalism. Furthermore, we distinguish
the 4 directions of the brane volume by using Latin letters from the beginning of the alphabet while the 3
complex transversal directions are denoted by Latin letters from the middle and the end of the alphabet.
For the coordinate indices we utilize Greek letters and we do exactly the reverse: early Greek letters
α, β, γ, δ, . . . refer to the 3 complex transverse directions while Greek letters from the second half of the
alphabet μ, ν, ρ, σ, . . . refer to the D3 brane world volume directions as it is customary in D = 4 field
theories.
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the real function KRFK (yyy, ȳyy) being a suitable Kähler potential. It follows that

det(g[10]) = H(yyy, ȳyy) det(gRFK).

Actually, the formalism which is best suited for our aims is the AMSY symplectic
one, rather than using holomorphic coordinates. In terms of the vielbein, the Ansatz
(2.1) corresponds to

V A =
{
V a = H(yyy, ȳyy)−1/4 dxa a = 0, 1, 2, 3
V � = H(yyy, ȳyy)1/4 e� � = 4, 5, 6, 7, 8, 9

where e� are the vielbein 1-forms of the manifold Y . The structure equations are (the
hats denote quantities computed without the warp factor, i.e., with H = 1)

0 = d ei − ω̂i j ∧ ek η jk

R̂i j = dω̂i j − ω̂ik ∧ ω̂� j ηk� = R̂i j
�m e� ∧ em .

The relevant property of the Y metric that we use in solving Einstein equations is that
it is Ricci-flat:

R̂im
�m = 0.

To derive our solution and discuss its supersymmetry properties, we need the explicit
form of the spin connection for the full ten-dimensional metric (2.1) and the corre-
sponding Ricci tensor. From the torsion equation, one can uniquely determine the
solution:

ωab = 0
ωa� = 1

4 H−3/2 dxaη�k ∂k H
ω�m = ω̂�m + �ω�m ; �ω�m = − 1

2 H−1 e� ηmk ∂k H

Inserting this result into the definition of the curvature 2-form we obtain

Ra
b = − 1

8

[
H−3/2�g H − H−5/2 ∂k H∂k H

]
δab

Ra
� = 0

Rm
� = 1

8H
−3/2�gHδm� − 1

8H
−5/2∂s H∂s Hδm� + 1

4H
−5/2∂�H∂mH

where for any function f (yyy, ȳyy) on Y the equation

�g f (yyy, ȳyy) = 1√
detg

(
∂α

(√
detg gαβ̄ ∂β̄ f

))

defines the Laplace–Beltrami operator with respect to the Ricci-flat metric (2.2); we
have omitted the superscript RFK just for simplicity—on the supergravity side of the
correspondence we shall only use the Ricci-flat metric and there will be no ambiguity.

The equations of motion for the scalar fields ϕ and C[0] and for the 3-form field
strengths FNS[3] and FRR[3] can be better analyzed using the complex notation. Defining,
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as it is explained in [6] above:

H± = ±2 e−ϕ/2FNS[3] + i2 eϕ/2 FRR[3] ⇒ H+ = −H−
P = 1

2 dϕ − i 12 e
ϕ FRR[1]

but also setting in our Ansatz

ϕ = 0 ; C[0] = 0

we reduce the equations for the complex 3-forms to

H+ ∧ �H+ = 0
d�H+ = i FRR[5] ∧ H+

while the equation for the 5-form becomes

d�FRR[5] = i
1

8
H+ ∧ H−

The Ansatz for the complex 3-forms of type IIB supergravity is given below and is
inspired by what was done in [4, 5] in the case where Y = C × ALE�:

H+ = �(2,1)

where �(2,1) lives on Y and satisfies

�g Q
(2,1) = −i Q(2,1)

As shown in [6] this guarantees that

H+ ∧ �10 H+ = 0.

The Ansatz for FRR[5] is

FRR[5] = α (U + �10U )

U = d
(
H−1 Vol

R
(1,3)

)

where α is a constant to be determined later. By construction, FRR[5] is self-dual and its
equation of motion is trivially satisfied. What is not guaranteed is that also the Bianchi
identity is fulfilled. Imposing it results into a differential equation for the function
H (yyy, ȳyy). Indeed, we obtain

d F RR[5] = α �g H(yyy, ȳyy) × VolY

where

VolY = √
det g 1

(3!)2 εαβγ dyα ∧ dyβ ∧ dyγ ∧ εᾱβ̄γ̄ d ȳᾱ ∧ d ȳβ̄ ∧ d ȳγ̄
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is the volume form of the transverse six-dimensional manifold, i.e., the total space of
the canonical bundle K [MB]. With our Ansatz we obtain

1
8 H+ ∧ H− = J (yyy, ȳyy) × VolY

J (yyy, ȳyy) = − 1

72
√
det g

�αβη̄ �̄δ̄θ̄γ εαβγ εη̄δ̄θ̄

and we conclude that

�g H = − 1

α
J (yyy, ȳyy) (2.3)

This is the main differential equation to which the entire construction of the D3-brane
solution can be reduced. In [6] it was shown that the parameter α is determined by
Einstein’s equations and is fixed to α = 1. With this value the field equations for the
complex three forms simplify and reduce to the condition that �2,1 should be closed,
and then, being anti-self-dual also co-closed, namely harmonic:

�̃(2,1) = �g�
(2,1) = − i�(2,1) ; d�g�

(2,1) = 0 ; d�(2,1) = 0

In other words the solution of type IIB supergravity with 3-form fluxes exists if and
only if the transverse space admits closed and imaginary anti-self-dual forms �(2,1),
as we already stated.

Summarizing, in order to construct a D3-brane solution of type IIB supergravity
we need:

(a) to find a Ricci-flat Kähler metric gRFK on the transverse 6D space Y ;
(b) to verify if in the background of the metric gRFK there exists a nonvanishing

linear space of anti-self-dual (2,1)-forms �(2,1). In the case of a positive answer,
the 3-form H+ will be a linear combination of such forms; otherwise it will be
zero.

(c) to solve theLaplacian equation for the harmonic function H which is homogeneous
if there are no 3-form fluxes, otherwise it is inhomogeneous as in Eq. (2.3).

In the next section, we describe the AMSY symplectic formalism that will be prope-
deutic to the derivation of the KE family of 4Dmanifolds and later on to the derivation
of the Ricci-flat metrics on their canonical bundles.

3 The AMSY symplectic formulation

Following the discussions and elaborations of [6] based on [1, 10, 43], given the
Kähler potential of a toric complex n-dimensional Kähler manifold K(|z1|, .., |zn |),
where zi = exi+i�i are the complex coordinates, introducing the moment variables

μi = ∂xiK
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we can obtain the so named symplectic potential by means of the Legendre transform:

G (μi ) =
n∑
i

xi μ
i − K(|z1|, .., |zn|) (3.1)

where one assumes thatK only depends on the modules of the z coordinates to achieve
U(1)n invariance. The main issue involved in the use of Eq. (3.1) is the inversion
transformation that expresses the coordinates xi in terms of the moments μi . Once
this is done one can calculate the metric in moment variables utilizing the Hessian:

Gi j = ∂2

∂μi∂μ j
G (μ) (3.2)

and its matrix inverse. Call the n angles by �i . Complex coordinates better adapted
to the complex structure tensor can be defined a

ui = ezi = exp[xi + i�i ]

The Kähler 2-form has the following universal structure:

K =
n∑

i=1

dμi ∧ d�i

and the metric is expressed as

ds2symp = Gi jdμ
i dμ j + G−1

i j d�
i d� j (3.3)

4 Kähler metrics with SU(2) × U(1) isometry

In this paper, we are interested, to begin with, in Kähler metrics in two complex
dimensions, n = 2, where the complex coordinates u, v enter the Kähler potential
K0(�) only through the real combination

� =
(
1+ | u |2

)2 | v |2, (4.1)

which guarantees invariance under SU(2) × U(1) transformations realized as

if g =
(
a b
c d

)
∈ SU(2) then g (u, v) =

(
a u+b
c u+d , v (c u + d)2

)
;

if g = exp(i θ1) ∈ U(1) then g (u, v) = (u, exp(i θ1) v) .
(4.2)

The above realization of the isometry captures the idea that, at least locally, the mani-
fold is an S2 fibration over S2 (u being a coordinate on the base andv afiber coordinate),
although their global topology might be different and have some kind of singularities.
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Two cases are of particular interest within such a framework, namely

(a) the singular weighted projective plane WP[1, 1, 2];
(b) the second Hirzebruch surface F2.

In the case of the singular variety WP[1, 1, 2] we have a nonKähler–Einstein metric
that emerges from a partial resolution of the C

3/Z4 singularity within the generalized
Kronheimer construction (see [9],[6]) whose explicit Kähler potential is the following
one:

KKr
0 (�) = 9

4

(
3� + √

�(� + 8)

� + √
�(� + 8)

+ log
(
� +√�(� + 8) + 4

)
− 2 − 4 log(2)

)

(4.3)
On the other hand the Kähler potential (4.3) is the particular case α = 0 of a one-
parameter family of Kähler potentials obtained from the Kronheimer construction:

K Kr [�,α] = − 9

16

(
−4(α + 1) log

[√
α2 + 6α� + � 2 + 8� + 3α + � + 4

]

−
4
(
α
(√

α2 + 6α� + �(� + 8) + 2� + 1
)

+√α2 + 6α� + �(� + 8) + α2 + 3�
)

√
α2 + 6α� + �(� + 8) + α + �

+4α log

√√
α2 + 6α� + �(� + 8) + α + �√

�
+ 8 + 16 log 2

⎞
⎠

(4.4)
that for α > 0 generate bona fide Kähler metrics on the second Hirzebruch surface
F2.

4.1 A family of 4D Kähler metrics

Havingmentioned the two explicit examples of Eqs. (4.3),(4.4), now, using the AMSY
approach, we discuss in more general terms a class of real 4D Kähler manifolds, that
we call MB . These are endowed with a metric invariant under the SU(2) × U(1)
isometry group acting as in Eq. (4.2). The class of these manifolds is singled out by
the above assumption that, in the complex formalism, their Kähler potentialK0(�) is
a function only of the invariant � defined in Eq. (4.1). Then the explicit form of the
Kähler potentialK0(�) cannot beworked out analytically in all cases since the inverse
Legendre transform involves the roots of higher order algebraic equations; yet, using
the� -dependence assumption, the Kähler metric can be explicitly worked out in the
symplectic coordinates and has a simple and very elegant form—actually the metric
depends on a single function of one variable FK(v) which encodes all the geometric
properties and substitutesK0(�). Posing all the questions in this symplectic language
allows one to calculate all the geometric properties of the spaces in the class under
consideration and leads also to new results and to a more systematic overview of
the already known cases. We choose to treat the matter in general, by utilizing a local
approachwhere we discuss the differential equations in a given open dense coordinate
patch u, v, andwe address the question of its global topological and algebraic structure
only a posteriori, once the metric as been found in the considered chart, just as one
typically does in General Relativity.
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The symplectic structure of the metric on MB is exhibited in the following way:

ds2MB
= gMB |μν dqμ dqν ; qμ = {u, v, φ, τ } ; gMB =

(
GMB 02×2

02×2 G−1
MB

)

(4.5)
where the Hessian GMB is defined by:

GMB = ∂μi ∂μ j GMB ; μi = {u, v} (4.6)

and

GMB = G0(u, v) + D(v) (4.7)

G0 (u, v) =
(
v − u

2

)
log(2v − u) + 1

2
u log(u) − 1

2
v log(v) (4.8)

The specific structure (4.7), (4.8) is the counterpart within the symplectic formalism,
via Legendre transform, of the assumption that the Kähler potential K0(�) depends
only on the � variable.

After noting this important point, we go back to the discussion ofMB geometry and
stress that with the given isometries its Riemannian structure is completely encoded
in the boundary function D(v). All the other items in the construction are as follows.
For the Kähler form we have

K
MB = 2 ( du ∧ dφ + dv ∧ dτ) = KMB

μν dqμ ∧ dqν; KMB =
(

02×2 12×2

−12×2 02×2

)

and for the complex structure we obtain

JMB = KMB g−1
MB

=
(

02×2 GMB

−G−1
MB

02×2

)

Explicitly, the 2 × 2 Hessian is the following:

GMB =
(− v

u2−2uv
1

u−2v
1

u−2v
−2v(u−2v)D′′(v)+u+2v

2v(2v−u)

)

G−1
MB

=
(

u(−2v(u−2v)D′′(v)+u+2v)
v(2vD′′(v)+1)

2u
2vD′′(v)+1

2u
2vD′′(v)+1

2v
2vD′′(v)+1

)

The family of metrics (4.5) is parameterized by the choice of a unique one-variable
function:

f (v) ≡ D′′(v) (4.9)

and is worth being considered in its own right.
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4.2 The inverse Legendre transform

Before proceeding further with the analysis of this class of metrics, it is convenient
to consider the inverse Legendre transform and see how one reconstructs the Käh-
ler potential on MB . The inverse Legendre transform provides the Kähler potential
through the formula:

K0 = xu u + xv v − GMB (u, v) (4.10)

where GMB (u, v) is the base-manifold symplectic potential defined in Eq. (4.7), and

xu = ∂u GMB (u, v) ; xv = ∂v GMB (u, v)

which explicitly yields:

xu = 1

2
(log (u) − log (2v − u)) ; xv = D′ (v) + log (2v − u) − 1

2
log (v) + 1

2
(4.11)

Using Eq. (4.11) in Eq. (4.10) we immediately obtain the explicit form of the base-
manifold Kähler potential as a function of the moment v:

K0 = K0 (v) = v

(
D′ (v) + 1

2

)
− D (v) (4.12)

The problem is that we need the Kähler potential K0 as a function of the invariant
� . Utilizing Eq. (4.11) it is fairly easy to obtain the expression of � in terms of the
moment v for a generic functionD(v) that codifies the geometry of the base-manifold,
obtaining

� = (1 + exp [2 xu])
2 exp [2 xu] = �(v) = 4v exp [ 2 ∂vD (v) + 1]

If one is able to invert the function �(v), the original Kähler potential of the base-
manifold can be written as:

K0 (�) = K0 ◦ �−1 (�)

The inverse function �−1 (�) can be written explictly in some simple cases, but not
always, and this inversion is the main reason why certain Kähler metrics can be much
more easily found in the AMSY symplectic formalism which deals only with real
variables than in the complex formalism. Since nothing good comes without paying
a price, the metrics found in the symplectic approach require that the ranges of the
variables u and v should be determined, since it is just in those ranges that the topology
and algebraic structure of the underlying manifold is hidden; indeed, the ranges of u
and v define a convex closed polytope in the R

2 plane that encodes very precious
information about the structure of the underlying manifold.
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5 The Ricci tensor and the Ricci form

Calculating the Ricci tensor for the family of metrics (4.5) we obtain the following
structure:

RicMB
μν =

(
PU 02×2

02×2 PD

)

The expressions forPU andPD are quite lengthy andwe omit them.We rather consider
the Ricci 2-form defined by:

RicMB = RicMB
μν dqμ ∧ dqν

where:

RicMB = RicMB JMB =
(
02×2 R
−RT 02×2

)

and

R =
(
r11 r12
r21 r22

)

r11 = 2v
(
vf ′(v)+2vf (v)2+f (v)

)
−1

2v(2vf (v)+1)2

r12 = 0

r21 =
2uv

(
v2(2vf (v) + 1)f ′′(v) − 4v3f ′(v)2 + 4vf ′(v) − 4v2f (v)3 − 2vf (v)2 + 3f (v)

)
+ u

2v2(2vf (v) + 1)3

r22 =
f (v)

(
2v2

(
vf ′′(v) + f ′(v)

)+ 3
)

+ v
(
vf ′′(v) − 4v2f ′(v)2 + 5f ′(v)

)
+ 2vf (v)2

(2vf (v) + 1)3

RT = PDG−1
MB

(5.1)

The last equation is not a definition but rather a consistency constraint (the Ricci tensor
must be skew-symmetric).

5.1 A two-parameter family of KEmetrics forMB

An interesting and legitimate question is whether this family of cohomogeneity one
metrics that we named Met(FV) in the Introduction contains KE ones. The answer is
positive, and they make up a two-parameter subfamily. As we already claimed in the
Introduction and as it will be shown in the next section, such a KE family Met(FV)ext
is a subfamily of a 4-parameter family of extremal metrics Met(FV)ext. Let us first
directly retrieve the KE family from the appropriate differential constraint. A metric
is KE if the Ricci 2-form is proportional to the Kähler 2-form:

RicMB = k

4
K

MB (5.2)

where k is a constant. This amounts to requiring that the 2 × 2 matrix R displayed
in Eq. (5.1) be proportional via k

4 to the identity matrix 12×2. This condition implies

123



D3-brane supergravity solutions from Ricci-flat metrics… Page 17 of 70 64

differential constraints on the function f (v) that are uniquely solved by the following
function:

f (v) = −3β + kv3 + 3v2

−2kv4 + 6v3 + 6βv
(5.3)

the parameter β being the additional integration constant, while k is defined by
Eq. (5.2). To retrieve the original symplectic potential D(v) one has just to perform a
double integration in the variable v. The explicit calculation of the integral requires a
summation over the three roots λ1,2,3 of the following cubic polynomial:

P(x) = x3 − 3x2

k
− 3β

k
(5.4)

whose main feature is the absence of the linear term. Hence, a beautiful way of param-
eterizing the family of KE metrics is achieved by using as parameters two of the
three roots of the polynomial (5.4). Let us call the independent roots λ1 and λ2. The
polynomial (5.4) is reproduced by setting:

k = 3 (λ1 + λ2)

λ21 + λ2λ1 + λ22
, β = − λ21λ

2
2

λ21 + λ2λ1 + λ22
, λ3 = − λ1λ2

λ1 + λ2
(5.5)

Substituting (5.5) in Eq. (5.3) we obtain

f (v) = −λ1v
2(λ2+v)+λ2v

2(λ2+v)+λ21

(
λ22+v2

)
2v(v−λ1)(v−λ2)(λ2v+λ1(λ2+v))

(5.6)

which is completely symmetrical in the exchange of the two independent roots λ1, λ2.
Utilizing the expression (5.6) the double integration is easily performed, andwe obtain
the explicit result, where we omitted irrelevant linear terms:

DKE(v) = −
(
λ21 + λ2λ1 + λ22

)
(v − λ1) log (v − λ1)

λ21 + λ2λ1 − 2λ22

−
(
λ21 + λ2λ1 + λ22

)
(v − λ2) log (v − λ2)

−2λ21 + λ2λ1 + λ22

+
(
λ21 + λ2λ1 + λ22

)
(λ2v + λ1 (λ2 + v)) log (λ2v + λ1 (λ2 + v))

(λ1 + λ2)
(
2λ21 + 5λ2λ1 + 2λ22

) − 1

2
v log(v) (5.7)

Comparing with the original papers on the AMSY formalism [1, 43], we note that the
full symplectic potential for the 4-manifoldMB has precisely the structure of what is
there called natural symplectic potential

Gnatural =
r∑

�=1

c� p� (u, v) × log
[
p� (u, v)

] ; p� (u, v) = linearfunctionsofthemoments

(with r = 4 in our case). The only difference is that in [1] the coefficients c� are all
equal while here they differ one from the other in a precise way that depends on the
parameters λ1, λ2 defining the metric and the argument of the logarithms. As we are
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going to discuss later on, the same thing happens also for the non-KE metric on the
second Hirzebruch surface F2 derived from the Kronheimer construction.

Next, we turn to a general discussion of the properties of the metrics in Met(FV)
and to the organization of the latter into special subfamilies. This will also clarify the
precise location of the KE metrics in the general landscape.

6 Properties of the family of metrics

Let us then perform a complete study of the considered class of four-dimensional
metrics. We do not start from a given manifold but rather from the family of metrics
Met(FV) parameterized by the choice of the function FK(v) of one variable v, given
explicitly in coordinate form. The first tasks we are confronted with are the definition
of the maximal extensions of our coordinates, and the search of possible singularities
in the metric and/or in the Riemannian curvature, which happens to be the cleanest
probing tool. Secondly we can calculate integrals of the Ricci and Kähler 2-forms.
All this information is easily computed since everything reduces to the evaluation of a
few integral-differential functionals of the function FK(v). Thirdly, we can construct
geodesics relatively to the given metric and try to explore their behavior. This is
probably the finest and most accurate tool to visualize the geometry of a manifold. We
can also integrate the complex structure and find explicitly the complex coordinates.

We begin by observing that all the metrics deriving from the symplectic potential
defined by Eqs. (4.7), (4.8)7 admit a general form which we display below:

ds2MB
= dv2

FK(v)
+ FK(v) [dφ(1 − cos θ) + dτ ]2 + v

(
dφ2 sin2 θ + dθ2

)
︸ ︷︷ ︸

S2 metric

(6.1)

where we have defined

FK(v) = 2v

2vD′′(v) + 1
(6.2)

This expression for the metric is obtained performing a convenient change of variable:

u → (1 − cos θ) v ; θ ∈ [0, π ] (6.3)

which automatically takes into account that u ≤ 2 v. Furthermore, this change of
variables clearly reveals that all the three-dimensional sections of MB obtained by
fixing v = const are S1 fibrations on S2 which is consistent with the isometry SU(2)×
U(1). Indeed, all the spaces MB have cohomogeneity equal to one and the moment
variable v is the only one whose dependence is not fixed by isometries.

The next important point is that the metric (6.1) is positive definite only in the
interval of the positive v-axis where FK(v) ≥ 0. Let us name the lower and upper
endpoints of such interval vmin and vmax, respectively. If the interval [vmin, vmax] is

7 In this section which deals only with the base manifold MB and where there is no risk of confusion we
drop the suffix 0 in the moment variables, in order to make formulas simpler.
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Fig. 1 The universal polytope in the v, u2 plane for all the metrics of theMB manifolds considered in this
paper and defined in equation (6.1)

finite, then the spaceMB is compact and the domain of the coordinates u, v is provided
by the trapezoidal polytope displayed in Fig. 1.

Our two main examples, which both correspond to the same universal polytope of
Fig. 1, are provided by the case of the one-parameter family of Kronheimer metrics on
the F2-surface, studied in [6, 9], whose Kähler potential was recalled in Eq. (4.4)) and
by the family Met(FV)ext of extremal Kähler metrics due to Calabi and mentioned in
the Introduction. In addition, within the first class, we have the degenerate case where
the parameter α goes to zero and the trapezoid degenerates into a triangle. That case
corresponds to the singular space MB = WP[1, 1, 2] (a weighted projective plane).

Extremal metrics are defined in the present cohomogeneity one case by the
differential equation (see [2]):

∂2

∂v2
Rs(v) = 0 (6.4)

where Rs(v) is the scalar curvature.
Inserting in Eq. (6.4) the expression of Rs calculated later in Eq. (6.17) we obtain

the following linear differential equation of order four:

v2
(−FK(3)(v)

)+ 2vFK′′(v) − 2FK′(v) + 2

v3
− 1

2
FK(4)(v) = 0

whose general integral contains four integration constants (we name themA,B, C,D)
and can be written as follows:

FKext(v) = −A + 8 Cv3 − 16Dv4 + 4v2 − 2vB
4v

(6.5)
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The explicit expression (6.5) is verymuch inspiring and useful. The functionFKext(v)
is rational and it is the quotient of a quartic polynomial with a fixed coefficient of the
quadratic term divided by the linear polynomial 4 v. A convenient way of parameter-
izing the entire family of metrics is therefore in terms of the four roots λ1, λ2, λ3, λ4,
as we did in Sect. 5.1 for the cubic polynomial of Eq. (5.4) (see Eq. (5.5)). Combining
Eq. (5.3) with Eqs. (4.9) and (6.2) we obtain the expression of the function FKKE

corresponding to the KE metrics:

FKKE(v) = 3β − kv3 + 3v2

3v
(6.6)

Comparing eq. (6.6) with eq. (6.5) we see that the KE metrics belong to the family of
extremal metrics and are singled out by the constraint

A = −4 β ; B = 0 ; C = k

6
; D = 0 (6.7)

The most relevant aspect of eq. (6.7) is the suppression of the quartic and linear terms
(D = B = 0), which fixes the number of free roots to two, as we know, the third
being fixed in terms of λ1, λ2.

We have summarized the relevant choices of the functionFK(v) in Table 1. Inspect-
ing this table we see that the functionsFKF2

Kro(v) andFKKE(v) show strict similarities
but also a differencewhich is expected to account for different topologies. In both cases
the functionFK(v) is the ratio of a cubic polynomial having three real roots, two pos-
itive and one negative, and of a denominator that has no zeros in the [vmin, vmax]
interval. In the KE case there is a simple pole at v = 0 while for F2 (which is not KE)
the denominator has two zeros and therefore FK(v) has two simple poles at

vpoles = 9

32

[
(3α + 4) ± 2

√
2
√
α2 + 3α + 2

]

These poles are out of the interval [vmin, vmax] for any positive α > 0, namely these
poles do not correspond to points of the manifold MB , just as it is the case for the
single pole v = 0 in the KE case. One also notes that the function FKF2

ext(v) cannot
be reduced to the form (6.5) by any choice of the parameters A,B, C,D, so that the
smooth Kähler metric induced on the second Hirzebruch surface by the Kronheimer
construction ([6, 9]) is not an extremal metric. A consistency check comes from the
evaluation on FKF2

ext(v) of the scalar curvature provided by Eq. (6.17). In this case the
scalar curvature is in no way linear in v, being a rational function of degree 6 in the
numerator and of degree 7 in the denominator. The same is true of the limiting case
α → 0. The last case (FK(v) = v) corresponds to a metric cone on the 3-sphere, i.e.,
C
2/Z2 with a flat metric. The case FKKE

0 will be discussed in Sect. 6.3.
Finally in Table 1 we observe the choice of the function

FKF2
ext(v) = (a − v)(b − v)

(
a2(3b − v) + a

(
b2 + 4bv + 3v2

)+ bv(b + v)
)

v
(
a3 + 3a2b − 3ab2 − b3

)
(6.8)
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That above in Eq. (6.8) is a particular case of the general caseFKext(v), corresponding
to the following choice of the parameters:

A = − 4a2b2(3a + b)

a3 + 3a2b − 3ab2 − b3
;B = 8a3b

a3 + 3a2b − 3ab2 − b3

C = − 2a2

a3 + 3a2b − 3ab2 − b3
;D = 3a + b

4
(−a3 − 3a2b + 3ab2 + b3

) (6.9)

where the parameters a, b are real, positive and naturally ordered b > a > 0. Where-
from does the special form (6.9) originate? We claim that the metric defined by the
function (6.8) is a smooth metric on the smooth F2 surface. The algebraic constraints
that reduce the four parameters A,B, C,D to the form (6.9) are derived from the
conditions, already preliminarily discussed in [9] and specifically worked out in sec-
tion 8.2.2 of [6], on the periods of the Ricci two-form localized on the standard toric
homology cycles C1 and C2 ofF2. Utilizing Eqs. (6.19) and (6.20) derived in the next
Sect. 6.1 we have (see eq.(8.14) of [6]):

Ric |C1 = A(v) sin[θ ] dθ ∧ dφ; Ric |C2 = C(v) dθ ∧ dφ

the relevant functions being given in (6.20). The conditions on the periods are as
follows:

1

2π

∫

C1

R = 0; 1

2π
R = 2 (6.10)

that, as shown in section 8.2.2 of are automatically verified in [6]) are automatically
verified by the Kronheimer metric.

The two conditions (6.10) become two statements on the functions A(v),D(v)
defined in eq. (6.20) and completely determined in terms of the function FK(v) and
its derivatives:

A[vmin] = 0;
∫ vmax

vmin

D[v]dv = 2 (6.11)

The result provided in Eq. (6.8) corresponding to the parameter choice (6.9) is
deduced in the following way. First we re-parameterize the function (6.5) in terms
of the four roots of the quartic polynomial appearing in the numerator that we name
μ1, μ2, μ3, μ4 obtaining:

FKext(v) = μ1 (v (μ3 + v) (μ4 + v) + μ2 (μ3 (v − μ4) + v (μ4 + v)))

2v (v − μ1) (v − μ2) (v − μ3) (v − μ4)

+ μ2 (μ3 + v) (μ4 + v) + v (v (μ4 − v) + μ3 (μ4 + v))

2 (v − μ1) (v − μ2) (v − μ3) (v − μ4)
(6.12)

Secondly we rename μ2 = a,μ3 = b deciding that 0 < a < b < ∞ and we calculate
the two conditions (6.11) using the function FKext(v) in Eq. (6.12) as an input. We
get a system of quadratic algebraic equations for the remaining roots μ1, μ4 that has
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the following solutions

μ2 = a; μ3 = b

μ1 =
a2 −

(
b2 ± √

a4 − 44a3b − 10a2b2 + 4ab3 + b4
)

− 4ab

6a + 2b

μ4 =
a2 −

(
b2 ∓ √

a4 − 44a3b − 10a2b2 + 4ab3 + b4
)

− 4ab

6a + 2b
(6.13)

Substitution of Eq. (6.13) into Eq. (6.12) produces the functionFKF2
ext(v) presented in

(6.12) and recalled in Table 1. Furthermore, long as the roots μ1, μ4 as given above
roots are complex conjugate of each other or, being real, do not fall in the interval [a, b],
the Kähler metric generated by the function FKF2

ext(v) is smooth and well defined on
the second Hirzebruch surface F2. The domain where this happens in the plane a, b
can be easily studied looking at the discriminant under the square root in (6.13).

6.1 Vielbein formalism and the curvature 2-form ofMB

The metric (6.1) is in diagonal form so it is easy to write a set of vierbein 1-forms.
Indeed, if we set

ei =
{

dv√FK(v)
,
√
FK(v) [dφ(1 − cos θ) + dτ ] ,

√
v dθ,

√
v dφ sin θ

}
(6.14)

the line element (6.1) reads

ds2B =
4∑

i=1

ei ⊗ ei

Furthermore, we can calculate the matrix vielbein and its inverse quite easily,
obtaining:

ei = Ei
μ dyμ ; yμ = {v, θ, φ, τ }

Ei
μ =

⎛
⎜⎜⎝

1√FK(v)
0 0 0

0 0
√FK(v)(1 − cos θ)

√FK(v)

0
√
v 0 0

0 0
√
v sin θ 0

⎞
⎟⎟⎠

Eν
j =

⎛
⎜⎜⎜⎜⎝

√FK(v) 0 0 0
0 0 1√

v
0

0 0 0 csc(θ)√
v

0 1√FK(v)
0 (cos θ−1) csc θ√

v

⎞
⎟⎟⎟⎟⎠

123



64 Page 24 of 70 U. Bruzzo et al.

By means of the mathematica package Vielbgrav238 we can easily calculate the
Levi-Civita spin connection and the curvature 2-form from the definitions

0 = Ti = dei + ωi j ∧ e j ; Ri j = dωi j + ωik ∧ ωk j = Ri j
k� e

k ∧ e�

obtaining

R12 = −FK′′(v)
2 e1 ∧ e2 − (vFK′(v)−FK(v))

2v2
e3 ∧ e4

R13 = − (vFK′(v)−FK(v))
4v2

e1 ∧ e3 − (vFK′(v)−FK(v))
4v2

e2 ∧ e4

R14 = (vFK′(v)−FK(v))
4v2

e2 ∧ e3 − (vFK′(v)−FK(v))
4v2

e1 ∧ e4

R23 = (vFK′(v)−FK(v))
4v2

e1 ∧ e4 − (vFK′(v)−FK(v))
4v2

e2 ∧ e3

R24 = − (vFK′(v)−FK(v))
4v2

e1 ∧ e3 − (vFK′(v)−FK(v))
4v2

e2 ∧ e4

R34 = (v−FK(v))
v2

e3 ∧ e4 − (vFK′(v)−FK(v))
2v2

e1 ∧ e2

(6.15)

Equation (6.15) shows that the Riemann tensor Ri j
k� is constructed in terms of only

three functions:

CF1(v) = FK′′(v) ; CF2(v) =
(
vFK′(v) − FK(v)

)

v2
; CF3(v) = (v − FK(v))

v2
(6.16)

If these functions are regular in the interval [vmin, vmax] the Riemann tensor is well
defined and finite in the entire polytope of Fig. 1 andMB should be a smooth compact
manifold. From the expression (6.15) theMathematica Code immediately derives
the Riemann and Ricci tensors and the curvature scalar. This latter reads as follows:

Rs = −vFK′′(v) + 2FK′(v) − 2

2v
(6.17)

and its form was used above to define the extremal metrics. Similarly in the
anholonomic vielbein basis, the Ricci tensor takes the following form:

Ri j

=

⎛
⎜⎜⎜⎜⎝

FK(v)−v(vFK′′(v)+FK′(v))
4v2

0 0 0

0
FK(v)−v(vFK′′(v)+FK′(v))

4v2
0 0

0 0 − v(FK′(v)−2)+FK(v)

4v2
0

0 0 0 − v(FK′(v)−2)+FK(v)

4v2

⎞
⎟⎟⎟⎟⎠

All the metrics in the considered family are of cohomogeneity one and have the same
isometry; furthermore, they are all Kähler and share the same Kähler 2-form that can

8 Vielbgrav23 is a MATHEMATICA package for the calculation of the spin connection the curvature
2-form and the intrinsic components of the Riemann tensor in vielbein formalism. Constantly updated, it
was originally written by one us (P.F.), almost thirty years ago. It can be furnished upon request and it will
be at disposal on the De Gruyter site for the readers of the forthcoming book [31].
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be written as follows:

K = du ∧ dφ + dv ∧ dτ = e1 ∧ e2 + e3 ∧ e4 = 1

2
Ji j e

i ∧ e j (6.18)

where:

Jij =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ = δik Jk j

is the complex structure in flat indices. Utilizing Jij the Ricci 2-form is defined by:

Ric = Ri j ei ∧ e j ; Ri j = Ri� J
�
j

and explicitly one obtains:

Ric = A(v) sin[θ ] dθ ∧ dφ + B(v) (1 − cos[θ ]) dv ∧ dφ + C(v) dv ∧ dτ

(6.19)

In Eq. (6.19) the functions of v are the following ones:

A(v) = −v
(FK′(v) − 2

)+ FK(v)

2v

B(v) = −FK(v) − v
(
vFK′′(v) + FK′(v)

)

2v2

C(v) = v2
(−FK′′(v)

)− vFK′(v) + FK(v)

2v2
(6.20)

6.1.1 The F2 Kronheimer case

In the F2 case with the “Kronheimer” metric we have:

CFF2
1 (v) = 331776(α+1)(α+2)

(
729α2(3α+4)+16384v3−3888α2v

)
(
81α2+1024v2−576(3α+4)v

)3
CFF2

2 (v) = − 9
32v2

(
81α2+1024v2−576(3α+4)v

)2 ×
(
6561α4(3α + 4) + 1048576(3α + 4)v4

−1179648α2v3 + 497664α2(3α + 4)v2 − 93312α2(3α + 4)2v
)

CFF2
3 (v) =

v −
(
1024v2 − 81α2

)
(32v − 9(3α + 4))

16
(
81α2 + 1024v2 − 576(3α + 4)v

)

v2

The three functions CFF2
1,2,3(v) are smooth in the interval

( 9α
32 ,

9
32 (3α + 4)

)
and they

are defined at the endpoints: see for instance Fig. 2A.
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Fig. 2 A (left): Plot of the three functions CFF2
1,2,3(v) entering the intrinsic Riemann curvature tensor for

the “Kronheimer” metric on F2 with the choice of the parameter α = 1.B (right): Plot of the three functions

CFWW112
1,2,3 (v) entering the intrinsic Riemann curvature tensor for the Kronheimer metric on WP[1, 1, 2]

with the choice of the parameter α = 0. Comparing this picture with the one on the left, we see the

discontinuity. In all smooth cases, the functions CFF2
2,3 attain the same value in the lower endpoint of the

interval while for the singular case of the weighted projective space, the initial values of CFWP[1,1,2]
2,3 (v)

are different

Indeed, the values of the three functions at the endpoints are

CFF2
1,2,3 (vmin) =

{
− 128(α+1)

9α(α+2) ,
32
9α ,

32
9α

}

CFF2
1,2,3 (vmax) =

{
− 32(3α+4)

9(α2+3α+2)
,− 32

27α+36 ,
32

9(3α+4)

} (6.21)

The singularity which might be developed by the space corresponding to the value
α = 0 is evident from Eq. (6.21). The intrinsic components of the Riemann curvature
seem to have a singularity in the lower endpoint of the interval, for α = 0.

6.1.2 The case of the singular manifoldWP[1, 1, 2]

In the previous section, we utilized the wording seem to have a singularity for the
components of the Riemann curvature in the case of the space WP[1, 1, 2] since such
a singularity in the curvature actually does not exist. The spaceWP[1, 1, 2] has indeed
a singularity at v = 0 but it is verymild since the intrinsic components of the Riemann
curvature are well behaved in v = 0 and have a finite limit. It depends on the way
one does the limit α → 0. If we first compute the value of the curvature 2-form at the
endpoints for generic α and then we do the limit α → 0 we see the singularity that is
evident from Eq. (6.21). On the other hand, if we first reduce the function FK(v) to
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its α = 0 form we obtain:

FKWP[1,1,2](v) = v(8v − 9)

4v − 9

and the corresponding functions appearing in the curvature are:

CFWP[1,1,2]
1,2,3 (v) =

{
648

(4v − 9)3
,− 18

(9 − 4v)2
,

4

9 − 4v

}

which are perfectly regular in the interval [0, 9/8] and have finite value at the endpoints
(see Fig. 2B).

6.1.3 The case of the KEmanifolds

In the case of the KE metrics the function FK(v) is

FKKE(v) = − (v − λ1) (v − λ2) (λ1λ2 + (λ1 + λ2) v)(
λ21 + λ2λ1 + λ22

)
v

and the corresponding functions entering the intrinsic components of the Riemann
curvature are

CFKE
1,2,3 (v) =

⎧⎨
⎩−

2
(
λ21λ

2
2 + (λ1 + λ2) v

3
)

(
λ21 + λ2λ1 + λ22

)
v3

,
2λ21λ

2
2 − (λ1 + λ2) v

3

2
(
λ21 + λ2λ1 + λ22

)
v3

,
λ21λ

2
2 + (λ1 + λ2) v

3
(
λ21 + λ2λ1 + λ22

)
v3

⎫⎬
⎭

and the interval of variability of themoment coordinate v is the following v ∈ [λ1, λ2].
Correspondingly the boundary values are

CFKE
1,2,3 (vmin) =

{
− 2

λ1
, 1
λ1

− 3(λ1+λ2)

2
(
λ21+λ2λ1+λ22

) , 1
λ1

}

CFKE
1,2,3 (vmax) =

{
− 2

λ2
, 1
λ2

− 3(λ1+λ2)

2
(
λ21+λ2λ1+λ22

) , 1
λ2

}

We can use the case λ1 = 1, λ = 2 as a standard example. In this case the behavior of
the three functions is displayed in Fig. 3

6.1.4 The case of the extremal Kähler metric on the second Hizebruch surface F2

Finally we consider the case of the extremal metric on F2 discussed in the previous
pages and defined by the function (6.12). In this case the three functions (6.16) param-
eterizing the curvature 2-form and hence the intrinsic components of the Riemann
tensor are the following ones:

CFF2ext
1 = 2a2b2(3a + b) − 8a2v3 + 6v4(3a + b)

v3(a − b)
(
a2 + 4ab + b2

)
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Fig. 3 Plot of the three functions CFKE
1,2,3(v) entering the intrinsic Riemann curvature tensor for the KE

metric with the choice of the parameter λ1 = 1, λ2 = 2

CFF2ext
2 = a3b(2v − 3b) − a2

(
b3 + 2v3

)+ 3av4 + bv4

v3(a − b)
(
a2 + 4ab + b2

)

CFF2ext
3 = 4a3bv − a2b2(3a + b) + 4a2v3 + v4(−(3a + b))

v3(a − b)
(
a2 + 4ab + b2

)

A plot of the three functions for the extremal F2 metric, to be compared with the
analogous plot relative to the Kronheimer metric (Fig. 2A) on the same manifold is
shown in Fig. 4.

6.2 The complex structure and its integration

We can easily convert the complex structure into curved indices using the vierbein and
its inverse:

Jμν = Eμ
i Jij E

j
ν =

⎛
⎜⎜⎝

0 0 −FK(v) (cos θ + 1) FK(v)
0 0 sin θ 0
0 − csc θ 0 0

− 1
FK(v) tan θ

2 0 0

⎞
⎟⎟⎠
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Fig. 4 Plot of the three functions CFF2ext
1,2,3 (v) entering the intrinsic Riemann curvature tensor for the

extremal Kähler metrics on F2 with two different choices of the parameter a = 1, b = 2 and a = 1/3,
b = 7/2

Since J2 = − 14×4 the eigenvalues of J are ±i and the eigenvectors are the rows of
the following matrix:

aiμ =

⎛
⎜⎜⎝

i
FK(v) −i tan θ

2 0 1
0 i csc θ 1 0

− i
FK(v) i tan θ

2 0 1
0 −i csc θ 1 0

⎞
⎟⎟⎠

We obtain the eigendifferentials by defining:

dai = i aiμ dxμ ; dxμ = {dv, dθ, dφ, dτ }

The essential thing is that the eigendifferentials are all closed and that the first two are
the complex conjugate of the second two:

ddai = 0 (i = 1, . . . , 4) ; da1 = da3 ; da2 = da4

This allows us to define the two complex variables u and v, by setting:

da3 = d log[v]
da4 = d log[u]

In this way one obtains the universal result:

u = eiφ tan
θ

2
; v = 1

2
eiτ (cos θ + 1) H(v)

where:

H(v) = exp

[∫
1

FK(v)
dv

]
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Fig. 5 Plot of three examples of the H
F2
Kro(v) function for three different choices of the parameter α

Hence, the whole difference between the various spaces is encoded in the properties
of the function H(v) which is obviously defined up to a multiplicative constant due
to the additive integration constant in the exponential.

6.2.1 The function H(v) for the Kronheimer metric on the smooth F2 surface

In the case of the Kronheimer metric on F2 we obtain

HF2
Kro(v) = i

√
1024v2 − 81α2

−32v + 9(3α + 4)

The factor i can always be reabsorbed into a shift ofπ/2 of the phase τ and the function
HF2(v) is positive definite in the finite interval

[ 9α
32 , 9

32 (3α + 4)
]
and goes from 0 to

+∞ for all positive values of α > 0. See Fig. 5for some examples.
What is important is the monotonic behavior of the function HF2(v), which guar-

antees that the two coordinates u, v describe a copy of C
2 and hence define a dense

open chart in the compact manifold F2.

6.2.2 The function H(v) for the extremal Calabi metric on the smooth F2 surface

Just for comparison we can consider the H(v) function also for the extremal metrics
on F2 defined by the function in (6.8). We obtain:

HF2
ext(v) =

exp

⎛
⎝−

(a−b)(3a+b) tan−1
(

−a2+4ab+6av+b2+2bv√
−a4+44a3b+10a2b2−4ab3−b4

)

√−a4+44a3b+10a2b2−4ab3−b4

⎞
⎠

√
b−v
a−v

The behavior is absolutely similar as one can see in Fig. 6.
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Fig. 6 Plot of two examples of the H
F2
ext (v) function for two different choices of the parameters a, b

6.2.3 The function H(v) for the KEmetrics

In the case of the KE metrics in an equally easy way we obtain the following result:

HKE(v) = exp

[
−
(
λ21 + λ2λ1 + λ22

)( log (v − λ1)

λ21 + λ2λ1 − 2λ22

+ log (v − λ2)

−2λ21 + λ2λ1 + λ22
− log (λ2v + λ1 (λ2 + v))

2λ21 + 5λ2λ1 + 2λ22

)]

The structure of the function is similar to that of the F2 case, since there is a zero of
the function in the lower limit v → λ1 and a pole in the upper limit v → λ2, yet
this time the exponents of the pole and of the zero are rational numbers depending on
the choice of the roots λ1,2; similarly it happens for the third factor associated with
the third root which is located out of the basic polytope (see Fig. 1). Our canonical
example λ1 = 1, λ2 = 2 helps to illustrate the general case; with this choice we obtain

HKE(v) |λ1=1,λ2=2= (v − 1)7/5(3v + 2)7/20

(v − 2)7/4
= ei

π
4 × (v − 1)7/5(3v + 2)7/20

(2 − v)7/4︸ ︷︷ ︸
HKE(v)

where, once again, the constant phase factor can be reabsorbed by a constant shift of
the angular variable τ and what remains ofHKE(v) is a positive definite function of v
in the interval [1, 2] that has the same feature of its analog in the F2 cases, namely it
maps, smoothly and monotonically, the finite interval (1, 2) into the infinite interval
(0,+∞). The behavior of this function is displayed in Fig. 7.

6.3 The structure ofM3 and the conical singularity

Let us anticipate the main argument which we will develop further on. The two real
manifolds defined by the restriction to the dense chart u, v, φ, τ , of the surface F2 and
of the manifold MKE

B are fully analogous. Cutting the compact four manifold into
v = const slices we always obtain the same result, namely a three manifoldM3 with
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Fig. 7 Plot of the H(v) function in the KE case with the choice λ1 = 1, λ2 = 2

the structure of a circle fibration on S2:

MB ⊃ M3
π−→ S2 ; ∀p ∈ S2 π−1(p) ∼ S1

The metric on M3 is the standard one for fibrations:

ds2M3
= v

(
dφ2 sin2 θ + dθ2

)
+ FK(v) [dφ(1 − cos θ) + dτ ]2 (6.22)

The easiest way to understand M3 is to study its intrinsic curvature by using the
dreibein formalism. Referring to equation (6.22) we introduce the following dreibein
1-forms:

εεε1 = √
v dθ ; εεε2 = √

v sin θdφ ; εεε3 = √FK(v) [dφ(1 − cos θ) + dτ ]

The fixed parameter v plays the role of the squared radius of the sphere S2 while√FK(v) weights the contribution of the circle fiber defined over each point p ∈ S2.
At the endpoints of the intervals FK(vmin) = FK(vmax) = 0 the fiber shrinks to
zero.

Using the standard formulas of differential geometry and once again the mathe-
matica packgage Vielbgrav23 we calculate the spin connection and the curvature
2-form. We obtain:

R =
⎛
⎜⎝

0 (4v−3FK(v))
4v2

εεε1 ∧ εεε2
FK(v)
4v2

εεε1 ∧ εεε3

− (4v−3FK(v))
4v2

εεε1 ∧ εεε2 0 FK(v)
4v2

εεε2 ∧ εεε3

−FK(v)
4v2

εεε1 ∧ εεε3 −FK(v)
4v2

εεε2 ∧ εεε3 0

⎞
⎟⎠ (6.23)
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Fig. 8 A conceptual picture of the MB spaces that include also the second Hirzebruch surface. The finite
blue segment represent the v-variable varying from its minimum to its maximum value. Over each point
of the line we have a three-dimensional space M3 which is homeomorphic to a 3-sphere but is variously
deformed at each different value v. At the initial and final points of the blue segment, the three-dimensional
space degenerates into an S2 sphere. Graphically, we represent the deformed 3-sphere as an ellipsoid and
the 2-sphere as a flat filled circle

The Riemann curvature 2-form in flat indices has constant components and if the
coefficient (4v−3FK(v))

4v2
were equal to the coefficient FK(v)

4v2
the 2-form in Eq. (6.23)

would be the standard Riemann 2-curvature of the homogeneous space SO(4)/SO(3),
namely the 3-sphere S3. What we learn from this easy calculation is that every section
v = constant ofMB is homeomorphic to a 3-sphere endowed with a metric that is not
themaximal symmetric onewith isometry SU(2) × SU(2) but a slightly deformed one
with isometry SU(2) × U(1): in other words we deal with a 3-sphere deformed into
the three-dimensional analog of an ellipsoid. At the endpoints of the v-interval, the
ellipsoid degenerates into a sphere since the third dreibein εεε vanishes. A conceptual
picture of the full space MB is provided in picture Fig. 8.

6.3.1 Global properties ofM3

Expanding on the global properties of M3, we describe it as a magnetic monopole
bundle over S2, and prove that the corresponding monopole strength is n = 2. We
start from the definition of the action of the SU(2) isometry (4.2) and describe the
2-sphere S2 spanned by θ and φ as CP

1 with projective coordinates U 0, U 1:

U 0 = r sin

(
θ

2

)
ei

γ+φ
2 , U 1 = r cos

(
θ

2

)
ei

γ−φ
2 (6.24)

where 0 ≤ θ ≤ π , 0 ≤ φ < 2π , 0 ≤ γ < 4π . In the North patch UN ,U 1 �= 0 and the
sphere is spanned by the stereographic coordinate uN = U 0/U 1, while in the south
patch US ,U 0 �= 0 and the stereographic coordinate uS = U 1/U 0. The transformation
properties (4.2) define a line bundle whose local trivializations about the two poles
are:

φ−1
N (UN ) = (uN , vN ) =

(
U 0

U 1 , ξ (U
1)2
)

,
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φ−1
S (US) = (uS, vS) =

(
U 1

U 0 , ξ (U
0)2
)

,

where ξ is a complex number in the fiber not depending on the patch. As (U 0, U 1)

transform linearly under the an SU(2)-transformation:

(
U 0

U 1

)
→
(
d c
b a

)(
U 0

U 1

)
,

the fiber coordinate v transforms so that (1 + |uN |2)2|vN |2 and (1 + |uS|2)2|vS|2, in
UN and US , respectively, are invariant. The transition function on the fiber reads, at
the equator θ = π/2:

tN S =
(
U 1

U 0

)2

= e−2iφ = e−in φ ,

implying that the U(1)-bundle associated with the phase of v (i.e., the submanifold
of the Kähler–Einstein space at constant |v|), is a monopole bundle with monopole
strength n = 2. This has to be contrasted with the Hopf-fibering description of S3,
for which the local trivializations have fiber componentsU 1/|U 1| andU 0/|U 0| in the
two patches, respectively, and tN S at the equator is U 1/U 0 = e−iφ . In this case, the
monopole strength is n = 1. We can verify that the manifold at constant |v| is a Lens
space S3/Z2 also by direct inspection of the metric. This is done in “Appendix B”.

6.3.2 Conical singularities and regularity of F2

Let us analyze the exact form of the singularities (when they are present). The
restriction of the metric to a fiber spanned by v and τ ∈ (0, 2π) is

ds2 = dv2

FK(v)
+ FK(v) dτ 2 . (6.25)

Let λ denote one of the two roots λ1, λ2 of FK(v). Close to λ, to first order in v, in
the KE case, the metric (6.25) is flat and features a deficit angle signaling a conifold
singularity. This singularity is absent in the F2 cases, as expected. To show this let us
Taylor expand FK(v) about λ:

FK(v) = FK′(λ)(v − λ) + O((v − λ)2).

We can verify that:

KE : FK′
KE(λ1) = (λ2−λ1)(λ1+2λ2)

λ21+λ22+λ1λ2
; FK′

KE(λ2) = (λ1−λ2)(2λ1+λ2)

λ21+λ22+λ1λ2
,

F2Kronheimer : FK′
F2|Kro

( 9α
32

) = 2 ; FK′
F2|Kro

(
9(3α+4)

32

)
= −2

F2Extremal : FK′
F2|ext (a) = 2 ; FK′

F2|ext (b) = −2
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Next we replace the first-order expansion of this function in the fiber metric:

ds2 = dv2

FK′(λ)(v − λ)
+ FK′(λ)(v − λ) dτ 2 ,

and write it as a flat metric in polar coordinates:

ds2 = dr2 + β2 r2 dτ 2 .

One can easily verify that:

r = 2

√
v − λ

FK′(λ)
, β = |FK′(λ)|

2
.

Defining ϕ̃ = β τ , we can write the fiber metric as follows:

ds2 = dr2 + r2 dϕ̃2.

Now the polar angle varies in the range: ϕ̃ ∈ [0, 2π β]. If β < 1 we have a deficit
angle:

�φ = 2π(1 − β).

Let us see what this implies in the various possible cases of Table 1.

1. In the case of the F2 manifold one has |FK′(λ)| = 2 and β = 1, both for the
Kronheimer metric and for the extremal one of the Calabi family, so there is no
conical singularity, as expected.

2. In the case of WP[1, 1, 2] we have

FK(λ) = 32λ2 − 144λ + 81

(4λ − 9)2
.

For the limiting value λ = 0 we obtain β = 1
2 , i.e., a C

2/Z2 singularity, while for
λ = 9

8 we have β = 1, i.e., no singularity, as we expected as WP[1, 1, 2] is an
orbifold P

2/Z2 with one singular point.
3. In the KE manifold case considering λ = λ1, we have:

FK′(λ1) = (λ2 − λ1)(λ1 + 2λ2)

λ21 + λ22 + λ1λ2
= −1+ 3λ22

λ21 + λ22 + λ1λ2
< −1+3λ22

λ22

= 2 ⇒ β < 1 ,

and |FK′(λ2)| < |FK′(λ1)|, so thatβ < 1 also atλ2. Themanifold has two conical
singularities, both in the same fiber of the projection to one of the S2’s. One of
the singularities will be an orbifold singularity of type C

2/Zn if the corresponding
value of β is

β = 1 − 1

n
.
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It is interesting to note that when this happens, the form of the function FK does
not allow the other singularity to be of this type as well, as the corresponding
integer m should satisty

m = 4n

2 + 5n ± √
9n2 + 12n − 12

which is not satisfied by any pair (m, n) where both m, n are integers greater than
1; so the singular fiber can never be a football or a spindle.

4. We discuss the case λ1 = 0. In this case

FK0(v) = v(λ2 − v)

λ2
.

If we focus on the fiber metric:

ds2 = dv2

FK0(v)
+ FK0(v) dτ

2 . (6.26)

We can easily verify that in the coordinates θ̃ ∈ [0, π ] and ϕ̃ ∈ [0, π) defined by

v(θ̃) = R2 sin2
(
θ̃

2

)
≤ R2 = λ2 , ϕ̃ = τ

2
,

where R = √
λ2, the fiber metric (6.26) becomes

ds2 = R2
(
dθ̃2 + sin2(θ̃) dϕ̃2

)
.

Since ϕ̃ = τ/2 ∈ [0, π), the fiber is the splindle S2/Z2. Topologically, the entire
4-manifold is still S2 × S2.

5. For FK(v) = v we get β = 1
2 , in accordance with the fact that the variety in this

case is C
2/Z2.

In the cases 3 and 4 the singular locus is of the form S2 × p±, where p± are the
“poles” of the fibers of the projection S2 × S2 → S. In complex geometric terms, it
is a pair of divisors, both isomorphic to P

1.

7 Complex structures

In this section, we study the complex structures corresponding to the KE case, i.e.,
the cases corresponding to the function FKKE. These are singular KE manifolds of
complex dimension 2, homeomorphic to S2 × S2. To make the analysis completely
quantitative, let us choose a value of the parameter α and two values of λ1, λ2 so that
the basic polytope becomes exactly identical in the two cases.
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We choose the value α = 4
9 so that the endpoints of the interval in the pure F2

Kronheimer case are:

vmin = 1

8
; vmax = 3

2

and using the previously discussed procedure we obtain the complex v coordinate for
the F2 pure case:

v
F2

= exp
[
i
(
τ + π

4

)]
× 1 + cos θ

2
×
√
64v2 − 1

3 − 2 v

In the same way we obtain the complex v variable for the Kähler Einstein case:

vKE = exp

[
i

(
τ + 157

154
π

)]
× 1 + cos θ

2
×
(
v − 1

8

)157/275 ( 3v
2 + 1

8

(
v + 3

2

))157/350
( 3
2 − v

)157/154

Obviously there is no holomorphicway ofwriting vKE in terms of v
F2
or viceversa. This

can be immediately seen in the following way. Taking the ratio of the two coordinates
v we obtain:

(i)
237
154 × v

F2

vKE
= 4 × 21877/3850(3 − 2v)40/77

√
64v2 − 1

(8v − 1)157/275(26v + 3)157/350
(7.1)

Moreover with some manipulations we can write

v = 1

64

(
−�

F2
±
√
� 2

F2
+ 192�

F2
+ 64

)
(7.2)

Inserting Eq. (7.2) into Eq. (7.1) we see that the complex coordinate vKE is not a
holomorphic function of the complex coordinates u

F2
, v

F2
.

This argument can be used for all values ofα.We can always choose the independent
roots λ1,2 so that the interval of the moment variable vmin,vmax coincides in the Kähler
Einstein case and in the F2 Kronheimer or extremal cases. In the dense open chart
that we are using F2 and the manifold that admits a KE metric have different complex
structures. The plot of the two functions H(v) is displayed in Fig. 9.

The remaining problem is therefore the following.When we utilize the Kronheimer
metric for F2 written in real variables in the open chart provided by the coordinates
u, v, φ, τ we know that the closure of such a dense chart is the second Hirzebruch
surface. The same can be said if we utilize the extremal metric. In the same open real
chart we have also a KE metric: the question is, What is the closure of such an open
real chart compatible with the KE metric?. The important point to keep in mind while
trying to answer such a question is that, topologically, the Hirzebruch surface is just
S2 × S2. What makes this real manifold Hirzebruch is the complex structure induced
by the holomorphic embedding in P

1 × P
2 as an algebraic variety. Yet the complex

structure of F2 is different and incompatible with the complex structure compatible
with the KEmetric defined in the same open chart. This must be the guiding principle.
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Fig. 9 Comparison of the plots of HF2 (v) for the pure F2 case with HKE(v) for the KE case, when they

are calibrated to insist on the same interval
[
1
8 ,

3
2

]

7.1 The homeomorphismwith S2 × S2

We want to analyze in detail the homeomorphism with the space S2 × S2 in the KE
case. Prior to that let us stress, once again, that all the manifolds we are considering
are KE by construction, as:

(a) There is a candidate Kähler form written as

K = Ki jei ∧ e j

where the one forms ei are a tetrad representation of the considered metric:

ds2MB
= gμνdx

μ dxν = δi j eie j

(b) The candidate form is closed:
dK = 0

(c) The component tensor of the Kähler form in flat indices Ki j satisfies the condition:

Ki j K jk = − δik

This guarantees that for each metric we can construct the corresponding complex
structure tensor:

Jμν = Ei
μ Ki j δ

jk Eν
k ; J2 = − Id

and by construction the metric is Hermitian with respect to that complex structure.

The Kähler form is the same for all the family of metrics (6.1) and each metric chooses
the complex structure with respect to which it is Hermitian. In principle, these complex
structures are all different, yet some of them might be compatible, as it is the case for
the one-parameter family of metrics on the Hirzebruch surface, that share the same
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complex structure and can be described in terms of the same complex coordinates.
However, in the previous section we have already shown that the complex structure
selected by one of the KEmetrics is certainly incompatible with that of the Hirzebruch
surface and this removes any possible conceptual clash. On the other hand, there is
no obstacle to the fact that the underlying real manifold of the Hirzebruch case and of
the (singular) KE case might be homeomorphic and this is what we want to show.

In the next lines, we argue how to construct explicitly such a homeomorphism. First
of all, by looking at the metric in Eq. (6.1) we see that the first 2-sphere is already
singled out in the standard coordinates θ and φ. As for the second sphere the azimuthal
angle is already identified in the coordinate τ . It remains to be seen that the coordinate
v in the finite closed range [vmin , vmax] is in one-to-one continuous correspondence
with a new right ascension angle χ .

7.2 Behavior of the function
√FK(v)

To this effect the main point is that the function
√FK(v) should be upper limited

by the value 1 in the interval [vmin , vmax], it should grow monotonically from 0 to a
maximum value a0 ≤ 1, attained at v = v0 and then it should decrease monotonically
from a0 to 0 in the second part of the interval [v0 , vmax]. Under such conditions the
inverse function arcsin can be applied unambiguously to

√FK(v) and we can obtain a
one-to-one continuous map between the coordinate v and a new right ascension angle
χ . The homeomorphism is encoded in the following relation where the function h(v)
is continuous and monotonous only under the above carefully specified conditions.

χ = h(v) = π arcsin
(√FK(v)

)

2 arcsin (a0)
+ �(v − v0) π

(
1 − arcsin

(√FK(v)
)

arcsin (a0)

)
(7.3)

In the above formula, the symbol�(x)denotes thewell-knownHeaviside step function
that vanishes for x < 0 and evaluates to 1 for x > 0.

The relevant fact is that both for the case of the Hirzebruch surface metric and for
KE ones the above specified conditions are verified and the homeomorphism (7.3) can
bewritten.We examine in detail one instance of the first and one instance of the second
case, having verified that in each class the chosen examples represent the behavior of
all members of the same class. For the Hirzebruch case we set the parameter α = 1
and we obtain:

FKF2 (v) = (32v − 63)
(
1024v2 − 81

)

16
(
1024v2 − 4032v + 81

) (7.4)

For the KE case we choose, as we already did in previous sections, λ1 = 1, λ2 = 2
and we obtain:

FKKE (v) = − (v − 2)(v − 1)(3v + 2)

7v
(7.5)

The behavior of the function
√FK(v) in the two cases and of the associated

homeomorphism on the right ascension angle is shown in Figs. 10and 11

123



64 Page 40 of 70 U. Bruzzo et al.

Fig. 10 On the left the plot of the function
√
FKF2 (v) corresponding to α = 1 and explicitly displayed in

Eq. (7.4). On the right the corresponding function h(v) providing the homeomorphism to the right ascension
angle

Fig. 11 On the left the plot of the function
√
FKKE(v) corresponding to λ1 = 1, λ2 = 2 and explicitly

displayed in Eq. (7.5). On the right the corresponding function h(v) providing the homeomorphism to the
right ascension angle

On the basis of the above lore in order to explore the behavior of a function, a vector
field or whatever different geometric object in the neighborhood of the North pole of
the second sphere one has at one’s disposal a well-defined transition function from the
coordinates vN , τN to the coordinates vS, τS :

vS = h−1 (h(vN ) − π)

τS = −τN + π

The inversion of the function h is highly nontrivial since it is a combination of tran-
scendental and algebraic functions, yet it can always be done numerically, if needed.
As for the metric itself there is no need since the curvature is nonsingular in the point
vmax and the geodesics are also well behaved in all limits.

The conclusion is that the underlying manifold of the Kähler Einstein metrics is
S2 × S2, as in the case of F2.
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8 Liouville vector field onMB and the contact structure onM3

Next we go back to consider general properties of the metric (6.1) that,utilizing
Eq. (6.3) we also rewrite in terms of the coordinates u, v, φ, τ :

ds2MB
= dv2

FK(v)
+ u(2v − u)

v
dφ2 + (vdu − udv)2

uv(2v − u)
+ FK(v)

v2
(u dφ + v dτ)2

(8.1)
The corresponding Kähler 2-form is provided by equation (6.18) that for reader’s
convenience we copy here below:

K = du ∧ dφ + dv ∧ dτ

The pair (MB,K) constitutes a symplectic manifold, independently from the Rie-
mannian structure provided by the metric (8.1). For symplectic manifolds, there exists
the notion of Liouville vector fields (see for instance [29, 33]) defined as follows. The
vector field L ∈ � [TMB,MB] is a Liouville vector field if

LL K = K (8.2)

where LV denotes the Lie derivative along the specified vector field V. Utilizing
Cartan’s formula for the Lie derivative, we get

LLK = iL dK + d (iL K) = d (iL K) = K

A very simple Liouville field for the symplectic manifold (MB,K) is the following
one:

L = u
∂

∂u
+ v

∂

∂v

as one can immediately verify.
Another result in symplectic geometry, (see [13–15, 20, 21, 29, 33]) states that

a (2n + 1)-submanifold Z ⊂ MB of a (2n + 2)-dimensional symplectic manifold
(MB,K) that is transverse to a Liouville field L is a contact manifold with contact
structure

� = iL K

In view of this theorem, the interpretation of theMv
3 manifolds, extensively discussed

in previous sections, that have the topology of S3 and are all transverse to the Liouville
field since they correspond tofixed values of the coordinatev, becomes clear. They con-
stitute the leaves of a foliation of the symplectic manifold (MB,K) in diffeomorphic
contact manifolds whose contact form is:

� = u dφ + v dτ

On each leave v = const we have:

d� = du ∧ dφ ; d� ∧ � = v du ∧ dφ ∧ dτ = const × Volv3
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8.1 The Reeb field and Beltrami equation

It is now interesting to calculate the normalized Reeb field associated with the contact
form�. This is possible since the symplectic manifold (MB,K) is endowed with the
Riemannian structure provided by the metric (6.22). Expanding the one-form� along
the coordinate differentials:

� = �μ dyμ ; yμ = {θ, φ, τ }

we find:
�μ = {0, v(1 − cos(θ)), v}

Utilizing the inverse of the metric tensor defined by the line element (6.22) namely:

gμν =

⎛
⎜⎜⎝

1
v 0 0

0 csc2(θ)
v

(cos(θ)−1) csc2(θ)
v

0 (cos(θ)−1) csc2(θ)
v

1
FK(v) + tan2

(
θ
2

)

v

⎞
⎟⎟⎠

we can raise the index of �μ and we obtain the components of a normalized Reeb
vector field:

Uμ = gμν�ν =
{
0, 0,

v

FK(v)

}
⇒ U = v

FK(v)
∂τ

such that:
�(U) = 1 ; iU d� = 0

It is a notable fact that the above Reeb vector field automatically satisfies Beltrami
equation. Indeed, it is known that every contact structure in 3 dimensions admits a
contact form and an associated Reeb field that satisfies Beltrami equation (see for
instance [20, 29]) yet it is remarkable that the choice of the Liouville vector field (8.2)
immediately selects a Beltrami Reeb field. The verification of our statement is almost
immediate if we utilize the formulation of Beltrami equation introduced in [16] (see
also [29]), namely:

d�U = λ iU Vol3 (8.3)

where Vol3 denotes the volume 3-form of the considered 3-manifold,�U is the contact
form that admits U as normalized Reeb field and λ ∈ R is the Beltrami eigenvalue. In
our case the volume form is:

Vol3 = εεε1 ∧ εεε2 ∧ εεε3 = v
√
FK(v) sin θ dθ ∧ dφ ∧ dτ

and Eq. (8.3) is satisfied with eigenvalue:

λ = −1

v
.
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9 Geodesics for the family of manifoldsMB

In this section, we study the general problem of calculating the geodesics for the
class of metrics (6.1). Sometimes the differential system determining the geodesics is
completely integrable and this allows one to reduce it to first order and to quadratures,
obtaining in this way the complete set of all geodesics—-leaving apart the practical
problem of inverting transcendental functions, which possibly can be accomplished
with numerical methods. An example is the Kerr metric where there is a hidden first
integral (the Carter constant) which can be revealed by the use of the Hamilton–Jacobi
formulation, and allows for complete integration.

We show in this section that for any choice of the function FK(v) the geodesic
dynamical system associated with the metrics (6.1) is fully integrable and admits a
hidden Carter constant, another first integral in addition to the Hamiltonian, which
allows to write the full system of geodesic lines for all the metrics in the class, in
particular for the F2 surface and for the KE manifolds brought to attention in this
paper.

9.1 The geodesic equation

We take for Lagrangian functional the square of the arc length

L = 1

2
FK(v)

(
φ̇ (1 − cos θ) + τ̇

)2 + v̇2

FK(v)
+ v

(
φ̇2 sin2 θ + θ̇2

)
.

As usual, the Euler–Lagrange equations take the standard form if the Lagrangian
satisfies the constraint

L |ongeodesics= k

4

for some k > 0; in this way parameter along the curves is the arc length s. In a
mechanical analogy, k is the energy.

9.1.1 Cyclic variables and conserved momenta

The angles φ and τ are cyclic variables (due to toric symmetry) which leads to two
first integral of the motion, which we call �, m, and can be represented in a synthetic
way:

(
�

m

)
=
(
pφ
pτ

)
= M

(
φ̇

τ̇

)
, M = 1

2

(
8FK(v) sin4 θ

2 + 2v sin2 θ −2FK(v)(cos θ − 1)
−2FK(v)(cos θ − 1) 2FK(v)

)

9.1.2 The Hamiltonian

We perform the Legendre transform in order to obtain the Hamiltonian H :

H = φ̇ pφ + τ̇ pτ + θ̇ pθ + v̇pv − L

123



64 Page 44 of 70 U. Bruzzo et al.

getting

H(q, p) = 1

2

(
p2τ

FK(v)
+ FK(v)p2v + csc2 θ

[
(cos θ − 1)pτ + pφ

]
2 + p2θ

v

)

where
p = {pφ, pτ , pθ , pv

} ; q = {φ, τ, θ, v}
are the momenta and coordinates.

As it is always the case in the geodesic problem, the Hamiltonian has the structure

H = gi j (q) pi p j

having denoted by gi j (q) the inverse metric tensor.

9.1.3 The reduced Lagrangian and the reduced Hamiltonian

Having singled out two first integrals of the motion �,m, it is convenient to introduce
a reduced Lagrangian for the two residual degrees of freedom v, θ that, geometri-
cally, correspond to the two angles of right ascension of the 2-spheres composing the
underlying differentiable manifold (see Sect. 7.1). The reduction in the Lagrangian is
obtained by replacing the velocities of the cyclic coordinates qc with the corresponding
momenta pc that are constant of the motion, namely �,m:

Lred = FK(v)
(
θ̇2 v2 + csc2 θ (m cos θ − m + �)2

) + m2v + v v̇2

2vFK(v)

Performing the Legendre transform we obtain the reduced Hamiltonian

Hred = pv v̇ + pθ θ̇ − Lred

= 1

2

(
− m2

FK(v)
+ FK(v)p2v − csc2 θ(m cos θ − m + �)2 − p2θ

v

)
(9.1)

where

pv = v̇

FK(v)
, pθ = v θ̇

9.1.4 The Carter constant and the reduction to quadratures

Considering now the reduced system with four Hamiltonian variables we have a nice
surprise: there is an additional function of the q and p that is in involution with the
Hamiltonian and therefore constitutes an additional conserved quantity, yielding in
this way the complete integrability of the system. Since it is the analog of the Carter
constant for the Kerr metric we call it the Carter Hamiltonian and we denote it with
the letter C:

C = csc2 θ (m cos θ − m + �)2 − p2θ (9.2)
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An immediate calculation shows that theCarter function has vanishing Poisson bracket
with the reduced Hamiltonian:

{C , Hred} =
2∑

i=1

(
∂C
∂qi

∂Hred

∂ pi
− ∂C

∂ pi

∂Hred

∂qi

)
= 0

Hence, on any solution of the equations motion (that is along geodesics) both the prin-
cipal Hamiltonian Hred and C must assume constant values that we call, respectively,
E (the energy) and K (the Carter constant):

Hred = E ; C = K (9.3)

Using Eqs. (9.2) and (9.1) we can solve algebraically Eq. (9.3) for the two momenta
pv and pθ and we get the following two first-order differential equations:

dθ
ds =

√
csc2 θ

(
cos 2θ

(
K + m2

)− K + 3m2 + 2�2 + 4m cos θ(� − m) − 4m�
)

√
2v

dv
ds =

√
FK(v)(K + 2vE) + m2v√

v
(9.4)

Eliminating the derivatives with respect to s we finally obtain the differential equation
of the “orbit”

dθ

dv
=
√
csc2(θ)

(
cos(2θ)

(
K + m2

)− K + 3m2 + 2�2 + 4m cos(θ)(� − m) − 4m�
)

√
2
√
v
√
FK(v)(K + 2vE) + m2v

(9.5)

which can be reduced to quadratures:

�(θ) =
∫

dθ√
csc2(θ)

(
cos(2θ)

(
K + m2

)− K + 3m2 + 2�2 + 4m cos(θ)(� − m) − 4m�
)

� (v) =
∫

dv√
2
√
v
√
FK(v)(K + 2vE) + m2v

The solution of the geodesic problem is provided by giving the dependence of the
variable v on the right ascension angle θ of the first sphere:

v = �−1 ◦ �(θ) , θ = �−1 ◦ � (v)

Both functions � and � are transcendental and the inversion problem can be solved
only numerically, except for some special cases as we are going to illustrate in the
next section.

We conclude this section by noting that the existence of the Carter conserved
Hamiltonian is probably an implicit consequence of the larger non-Abelian isome-
try of the original metric. The two first integrals �, m follow from the toric symmetry
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U(1) × U(1). The Carter constant is indirectly linked to the extension to SU(2) of one
of the two U(1)’s. If we had SU(2) × SU(2) isometry, then the metric would be the
direct product of two Fubini Study metrics. With SU(2) × U(1) isometry, we have the
hybrid case where one sphere is the fiber and the other is the base manifold.

9.2 Irrotational geodesics

The function �(θ) can be calculated explicitly in the general case (� ≤ 0, (m) ≤ 0)
and we obtain:

�(θ) = N (θ)
D(θ)

N (θ) =
√
cos(2θ)

(
K + m2

)− K + 3m2 + 2�2 + 4m cos(θ)(� − m) − 4m�

×

⎛
⎜⎜⎝− arctan

⎡
⎢⎢⎣

sec2
(
θ
2

) (
cos(θ)

(
K + m2

)
+ m(� − m)

)

√
K + m2

√
sec4

(
θ
2

)
(m cos(θ) − m + �)2 − 4K tan2

(
θ
2

)

⎤
⎥⎥⎦

⎞
⎟⎟⎠

D(θ) = (cos(θ) + 1)
√
K + m2

√
sec4

(
θ
2

)
(m cos(θ) − m + �)2 − 4K tan2

(
θ
2

)

while the integral defining the function �(v) in the general case does not evaluate
to a combination of known special functions—neither for the F2 metric nor for KE
metrics.

Although it can be done, it is rather cumbersome to write explicit computer codes
for the numerical computation of the function� in the general case and for the needed
inverse of the function�. Hence, at this stage it is difficult to present explicit geodesics
with trivial angular momenta. The alternative is the numerical integration of the pair of
first-order equations (9.4) but also here we meet some difficulties since the differential
system is stiff 9 and without special care and an in-depth study of the phase space, the
standard integration routines run into divergences and fail to provide solutions both
for the KE and the Hirzebruch case. This is not surprising given the analogy with the
Kerr metric. Indeed, the study of Kerr geodesics is a wide field, there is a large variety
of types of geodesics and each requires nontrivial computational efforts to be worked
out.

Yet in our case things enormously simplify if we consider irrotational geodesics
defined as those where � = m = 0 and only the Carter constant C and the energy E
label the curve. Geometrically this corresponds to the fact that the azimuthal angles
φ, τ span a two-dimensional torus T2. Pursuing the analogy with General Relativity,
irrotational geodesics are the analogs of the radial geodesics utilized in cosmology
and in the study of the causal structure of spacetimes where one preserves only time
t and radial distance r . The analogs of t and r are in our case the variables v and θ ,
namely, the two ascension angles of S2 × S2.

9 The term “stiff” comes from numerical analysis and denotes a differential equation or differential system
whose numerical solution is unstable unless the step size is taken to be very small.
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By suppressing angular momenta things simplify drastically. The orbit Eq. (9.5)
reduces to

dθ

dv
=

√−K√
v
√FK(v)(K + 2vE) ,

which implies

θ = FM(v, K , E) =
∫ √−K√

v
√FK(v)(K + 2vE) dv. (9.6)

The good news is that in the KE case (with the choice λ1 = 1, λ2 = 2), the integral
of Eq. (9.6) can be explicitly evaluated obtaining

FMKE(v, K , E) = N (v,K ,E)
D(v,K ,E)

N (v, K , E) = √
7
√−K (v − 2)(v − 1)

√
(3v+2)(K+4E)

K+2vE

× F

(
arcsin

(√
− (3K−4E)(v−2)

K+2Ev
2
√
2

)
| 8(K+2E)
3K−4E

)

D(v, K , E) = √
v
√

− (v−2)(3K−4E)
K+2vE

√
(v−1)(K+4E)

K+2vE

×
√

− (3v3−7v2+4)(K+2vE)
v

where by F(z|h) we have denoted the F elliptic function.
In the case of the Hirzebruch surface metric, the integral in Eq. (9.6) does not eval-

uate to known special functions, yet it can be easily computed numerically, allowing
one to draw the geodesic curves in the u, v-plane: the parametric form is

{(1 − cos [FM(v, K , E)]) v , v}

as follows from Eq. (6.3). Choosing various different values of the energy and of the
Carter constant we obtain the curves shown in Fig. 12.

In both cases the irrotational geodesics are smooth and approach value vmax, that is,
the North pole of the second sphere. The only difference is that in the Hirzebruch case
they reach vmax at various values of the right ascension of the first 2-sphere while in the
KE case they tend to reach the North Pole of the second sphere arriving simultaneously
at the North Pole of the first sphere.

10 The Calabi Ansatz and the AMSY symplectic formalism

Having studied in some detail the KE base manifolds MKE
B , we turn now to main

issue of this paper, namely, the construction of a Ricci-flat metric on their canonical
bundle. We turn to the method introduced by Calabi, which, however, only works for
KE base manifolds.
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Fig. 12 On the left a plot of some irrotational geodesics for the case of the Hirzebruch surface. On the right
plot of the same type of geodesics for the KE metric

As we anticipated in the Introduction, the Calabi ansatz method will produce a
Ricci-flat metric on the canonical bundle tot [K [MKE]] that one might be tempted
to consider diffeomorphic to the Ricci-flat metric on the metric cone over the
Sasaki–Einstein manifolds of [32]; as we anticipated this is not true, notwithstand-
ing the very close relation of the Kähler Einstein manifolds discussed above with the
five-dimensional Sasaki–Einstein manifolds of [32]. We have so far postponed the
comparison of the KEmetrics discussed in the above sections with the base manifolds
of the five-dimensional SEfibrations of [32] since such a comparisonwill be donemore
appropriately just in one stroke together with the comparison of the six-dimensional
Ricci-flat metrics.

10.1 Calabi’s Ansatz

Calabi’s paper [11] introduces the following Ansatz for the local Kähler potential
K(z, z̄, w, w̄) of a Kähler metric gE on the total space of a holomorphic vector bundle
E → M, where M is a compact Kähler manifold satisfying the conditions already
stated in the Introduction:

K(z, z̄, w, w̄) = K0(z, z̄) +U (λ) (10.1)
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whereK0(z, z̄) is aKähler potential for gM, (zi , i = 1, . . . dimCM) being the complex
coordinates of the base manifold) and U is a function of a real variable λ, which we
shall identify with the function

λ = Hμν̄(z, z̄) w
μ wν̄ =‖ w ‖2 (10.2)

(the square norm of a section of the bundle with respect to a fiber metric Hμν̄(z, z̄)).
If θ is the Chern connection on E , canonically determined by the Hermitian structure
H and the holomorphic structure of E , its local connections forms can be written as

θλν =
∑
i

dzi Lλ
i |ν

where

Lλ
i |ν =

∑
μ̄

Hλμ̄ ∂

∂zi
Hνμ̄; [Hλμ̄] = ([Hλμ̄]−1)T

The curvature 2-form � of the connection θ is given by:

�λ
ν =

∑
i,j̄

dzi ∧ dz̄j̄ Sλi j̄ |ν; Sλi j̄ |ν = ∂

∂ z̄j̄
Lλ
i |ν

The Kähler metric gE corresponding to the Kähler potential K can be written as
follows:

∂∂̄K =
∑
i,j̄

[
gi j̄ + λU ′(λ)

∑
λ,ν,μ̄

Hσμ̄S
σ
i j̄ |ρwρw̄μ̄

]
dzidz̄j +

∑
σ,μ̄

[
U ′(λ) + λU ′′(λ)

]
Hσμ̄ �wσ �w̄μ̄.

If E is a line bundle, then the above equation reduces to

∂∂̄K =
∑
i,j̄

[gi j̄ + λU ′(λ) Si j̄ ]dzidz̄j̄ + [U ′(λ) + λU ′′(λ)]H(z, z̄)�w�w̄

where λ = H(z, z̄) ww̄ is the nonnegative real quantity defined in Eq. (10.2) and
�w denotes the covariant derivative of the fiber coordinate with respect to Chern
connection θ :

�w = dw + θ w

10.2 Ricci-flat metrics on canonical bundles

Nowwe assume that E is the canonical bundle KM of aKähler surfaceM (dimC M =
2). The total space of KM has vanishing first Chern class, i.e., it is a noncompact
Calabi–Yau manifold, and we may try to construct explicitly a Ricci-flat metric on
it. Actually, following Calabi, we can reduce the condition that gE is Ricci-flat to a
differential equation for the function U (λ) introduced in Eq. (10.1). Note that under
the present assumptions S is a scalar-valued 2-form on M.

123



64 Page 50 of 70 U. Bruzzo et al.

Since our main target is the construction of a Ricci-flat metric on the space
tot(KMKE

B
), where MKE

B denotes any of the KE manifolds discussed at length in
previous sections, we begin precisely with an analysis of that case which will allow
to derive a general form of U (λ) as a function of the moment w associated with the
U(1) group acting by phase transformations of the fiber coordinate w, and of certain
coefficients A, B, F that are determined in terms of the Kähler potentialK0 of the base
manifoldM. Consistency of the Calabi Ansatz requires that these coefficients should
be constant, which happens in the case of base manifolds equipped with Kähler Ein-
stein metrics. KE metrics do not exist on Hirzebruch surfaces and the Calabi Ansatz is
not applicable in this case. As we discuss in the sequel, there exists a Ricci-flat metric
on the canonical bundle of a singular blow-down ofF2, namely theweighted projective
plane WP[1, 1, 2], which is known in the AMSY symplectic toric formalism of [1]
and [43]. If we were able to do the inverse Legendre transform we might reconstruct
the so far missing Kähler potential and get inspiration on possible generalizations of
the Calabi Ansatz. Hence, we are going to pay a lot of attention to both formulations,
the Kähler one and the symplectic one.

10.3 Calabi Ansatz for 4D Kähler metrics with SU(2) × U(1) isometry

The Calabi Ansatz can be applied with success or not according to the structure of the
Kähler potential K0 for the base manifold M and the algebraic form of the invariant
combination � of the complex coordinates u, v which is the only real variable from
which the Kähler potential K0 = K0(�) is assumed to depend. On the other hand �

encodes the group of isometries which is imposed on the Kähler metric of M.
In the case of the metrics discussed in Sect. 4, having SU(2) × U(1) isometry, the

invariant is chosen to be
� = �

where � was defined in Eq. (4.1). This choice guarantees the isometry of the Kähler
metric gM against the group SU(2) × U(1) with the action described in Eq. (4.2).
Hence, we focus on such manifolds and we consider a Kähler potential forM that for
the time being is a generic function K0(�) of the invariant variable. In this case the
determinant of the Kähler metric gM has an explicit expression in terms of K0(�)

det (gM) = 2�K0
′(�)

(
�K0

′′(�) + K0
′(�)

)

while the determinant of the Ricci tensor takes the form

det (RicM) = NRic
DRic

NRic = 2
(
� 2K0

′′(�)2 + K0
′(�)2 + �K0

′(�)
(
�K0

(3)(�) + 4K0
′′(�)

))×
× (−� 3K0

′′(�)4 + � 2K0
′(�)

(
�K0

(3)(�) − K0
′′(�)

)K0
′′(�)2

+�K0
′(�)2

(−� 2K0
(3)(�)2 − K0

′′(�)2 + �
(
�K0

(4)(�) + 2K0
(3)(�)

)K0
′′(�)

)
+K0

′(�)3
(
3K0

′′(�) + �
(
�K0

(4)(�) + 5K0
(3)(�)

)))
DRic = K0

′(�)3
(
�K0

′′(�) + K0
′(�)

)3
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and the scalar curvature
Rs = Tr

(
RicM g−1

M
)

is

Rs = Ns
Ds

Ns = K0
′(�)3 + � 3K0

′′(�)2
(
2�K0

(3)(�) + 5K0
′′(�)

)

+� 2K0
′(�)

(
−� 2K0

(3)(�)2 + 9K0
′′(�)2 + �

(
�K0

(4)(�) + 4K0
(3)(�)

)
K0

′′(�)
)

+�K0
′(�)2

(
9K0

′′(�) + �
(
�K0

(4)(�) + 6K0
(3)(�)

))

Ds = �K0
′(�)

(
�K0

′′(�) + K0
′(�)

)3

Given these base-manifold data, we introduce a Kähler potential for a metric on the
canonical bundle tot [K (M)] in accordance with the Calabi Ansatz, namely

K (�, λ) = K0(�) + U (λ); λ = exp [P(�)]︸ ︷︷ ︸
fibermetricH(�)

| w |2=‖ w ‖2

where λ is the square norm of a section of the canonical bundle and exp [P(�)] is
some fiber metric. The determinant of the corresponding Kähler metric gE on the total
space of the canonical bundle is

detgE = 2��(λ)eP(�)�′(λ)
(
�K′′

0(�)P′(�) + K′
0(�)

(
�P′′(�) + 2P′(�)

))
+2�eP(�)�′(λ)K′

0(�)
(K′

0(�) + �K′′
0(�)

)
+2��(λ)2eP(�)�′(λ)P′(�)

(
�P′′(�) + P′(�)

)

where we set
�(λ) = λU ′(λ)

If we impose the Ricci-flatness condition, namely, that the determinant of the metric
gE is a constant which we can always assume to be one since any other number can
be reabsorbed into the normalization of the fiber coordinate w, by integration we get

λ = 1

48

(
Aw3 + 2Bw2 + 4 F w

)
(10.3)

where we have set

�(λ) = 2w
A = 4�eP(�)P′(�)

[
�P′′(�) + P′(�)

]
B = 6�eP(�)

[
�K′′

0(�)P′(�) + K′
0(�)

(
�P′′(�) + 2P′(�)

)]
F = 12�eP(�)K′

0(�)
[K′

0(�) + �K′′
0(�)

]
(10.4)

In our complex three-dimensional case, setting

xu = log | u |, xv = log | v |, xw = log | w |,
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the corresponding three moments can be named with the corresponding gothic letters,
and we have

u = ∂xuK (�, λ) , v = ∂xvK (�, λ) , w = ∂xwK (�, λ) .

As the fiber coordinate w appears only in the function U (λ) via the squared norm λ,
we have

w = 2 λU ′(λ) = �(λ)

and this justifies the position (10.4). At this point the function U (λ) can be easily
determined by first observing that, in view of Eq. (10.3) we can also set

U (λ) = U (w)

and we can use the chain rule

∂wU (w) = wλ′(w)

2λ(w)
= 3Aw2 + 4Bw + 4F

2Aw2 + 4Bw + 8F

which by integration yields the universal function

U(w) = −
2
√
4 A F − B2 arctan

(
Aw+B√
4 A F−B2

)
+ B log

(
Aw2 + 2 Bw + 4 F

)
− 3 Aw

2 A
(10.5)

The function U (λ) appearing in the Kähler potential can be obtained by substituting
for the argumentw in (10.5) the unique real root of the cubic equation (10.3), namely:

w =
3
√
8
√(

162A2λ + 9ABF − 2B3
)2 − 4

(
B2 − 3AF

)3 + 1296A2λ + 72ABF − 16B3

3 3√2A

+
4 3√2

(
B2 − 3AF

)

3A
3
√
8
√(

162A2λ + 9ABF − 2B3
)2 − 4

(
B2 − 3AF

)3 + 1296A2λ + 72ABF − 16B3

− 2B

3A

10.3.1 Consistency conditions for the Calabi Ansatz

In order for the Calabi Ansatz to yield a solution of the Ricci-flatness condition it is
necessary that the universal function U(w) in Eq. (10.5) should depend only on w,
which happens if and only if the coefficients A, B, F are constant. In the case under
consideration, where the invariant combination of the complex coordinate u, v is the
one provided by � as defined in Eq. (4.1), imposing such a consistency condition
would require the solution of three ordinary differential equations for two functions
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P(�) and K0(�), namely:

k1 = 4�eP(�)P′(�)
[
�P′′(�) + P′(�)

]
k2 = 6�eP(�)

[
�K′′

0(�)P′(�) + K′
0(�)

(
�P′′(�) + 2P′(�)

)]
k3 = 12�eP(�)K′

0(�)
[K′

0(�) + �K′′
0(�)

] (10.6)

where k1,2,3 are three constants. It is clear from their structure that the crucial differ-
ential equation is the first one. If we could find a solution for it then it would suffice to
identify the original Kähler potential K0(�) with a linear function of P(�) and we
could solve the three of them. So far we were not able to find any analytical solution of
these equations but if we could find one, we still should verify that the Kähler metric
following from such K0 is a good metric on the Hirzebruch surface F2.

On the contrary for the well knownKähler potentials obtained from theKronheimer
construction that define a one-parameter family of bona fideKähler metrics on F2 and
were discussed in [8, 9], namely those presented in Eqs. (4.4) and (10.6) cannot be
satisfied and no Ricci-flat metric on the canonical bundle can be obtained by means
of the Calabi Ansatz.

10.3.2 The general case with the natural fiber metricH = 1
det(gM)

If we consider the general case of a toric two-dimensional compact manifoldM with
a Kähler metric gM derived from a Kähler potential of the form:

K0 = K0

(
|u|2, |v|2

)

choosing as fiber metric the natural one for the canonical bundle, namely setting:

λ = H |w|2 = 1

det (gM)
|w|2

and going through the same steps as in Sect. 10.3 we arrive at an identical result for
the function U(w) as in Eq. (10.5) but with the following coefficients:

A = 2
det (RicM)

det (gM)
, B = 3Tr

(
RicM g−1

M
)
, F = 6

It clearly appears why the Calabi Ansatz works perfectly if the starting metric on the
base manifold is KE. In that case the Ricci tensor is proportional to the metric tensor:

Rici j̄ = κ gi j̄ (10.7)

and we get:

det (RicM) = κ2 det (gM) , Tr
(
RicM g−1

M
)

= 2 κ

which implies:
A = 2 κ2, B = 6 κ, F = 6. (10.8)
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10.4 The AMSY symplectic formulation for the Ricci-flat metric on tot [K (MB)]

According to the discussion of the AMSY symplectic formalism presented in Sect. 3,
given the Kähler potential of a toric complex three manifold K(|u|, |v|, |w|), we can
define the moments

u = ∂xuK, v = ∂xvK, w = ∂xwK
and we can obtain the symplectic potential by means of the Legendre transform:

G (u, v,w) = xu u + xv v + xw w − K(|u|, |v|, |w|) (10.9)

The main issue in the use of Eq. (10.9) is the inversion transformation that expresses
the coordinates xi = {xu, xv, xw} in terms of the threemomentsμi = {u, v,w}. Once
this is done one can calculate the metric in moment variables utilizing the Hessian as
explained in Sect. 3. Relying once again on the results of that section we know that
the Kähler 2-form has the following universal structure:

K = du ∧ dφ + dv ∧ dτ + dw ∧ dχ

and the metric is expressed as displayed in Eq. (3.3))

10.4.1 The symplectic potential in the case with SU(2) × U(1) × U(1) isometries

In the case where the Kähler potential has the special structure which guarantees an
SU(2) × U(1) × U(1) isometry, namely it depends only on the two variables � (see
Eq. (4.1))) and |w|2, also the symplectic potential takes amore restricted form. Indeed,
we find

G (u, v,w) =
(
v − u

2

)
log(2v − u) + 1

2
u log(u) − 1

2
v log(v)

︸ ︷︷ ︸
universalpartG0(u,v)

+ G(v,w)︸ ︷︷ ︸
variablepart

(10.10)
where G(v,w) is a function of two variables that encodes the specific structure of
the metric. Note that when we freeze the fiber moment coordinate w to some fixed
constant value, for instance 0, the function G(v, 0) = D(v) can be identified with the
boundary function that appears in Eqs. (4.7),(4.8), namely in the symplectic potential
for the Kähler metric of the base manifold.

With the specific structure (10.10) of the symplectic potential we obtain the
following form for the Hessian (3.2):

G =
⎛
⎜⎝

− v
u2−2uv

1
u−2v 0

1
u−2v

−2v(u−2v)G(2,0)(v,w)+u+2v
2v(2v−u) G(1,1)(v,w)

0 G(1,1)(v,w) G(0,2)(v,w)

⎞
⎟⎠
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11 The general form of the symplectic potential for the Ricci flat
metric on tot

[
K

(MKE
B

)]

Having seen that KE metrics do indeed exist in the form described in Eqs. (4.5), (4.6),
it is natural to inquire how we can utilize the Calabi Ansatz to write immediately the
symplectic potential for a Ricci-flat metric on the canonical bundle of MKE

B without
going through the process of inverting the Legendre transform. Namely, we would like
tomake the back and forth trip via inverse and direct Legendre transform only once and
in full generality rather than case by case. Our goal is not only a simplification of the
computatinal steps but it also involves a conceptual issue. Indeed, when we introduce
intermediate steps that rely on the variable� whose range is [0,+∞) we necessarily
have to choose a branch of a cubic equation whose coefficients are determined by
the root parameters λ1,2. On the contrary, if we are able to determine directly the
symplectic potential in terms of the symplectic coordinates, then we can explore the
behavior of the metric and of its curvature on the full available range of variability
of these latter and we learn more on the algebraic and topological structure of the
underlying manifold.

So let us anticipate the final result of our general procedure. As we did in the
previous section we assume that the Ricci form of MB is proportional to the Kähler
form via a coefficient

κ = k

4
(11.1)

as in eqs.(5.2),(10.7). The complete symplectic potential for the Ricci-flat metric on
MT = tot [K (MB)] has the following structure:

GMKE
T

(u, v,w) = G0 (u, v) + GKE (v,w)

G0 (u, v) = (v − u
2

)
log[2v − u] + 1

2u log[u] − 1
2v log[v]

GKE (v,w) = ( κw2 + 1
)DKE

(
2v

κw+2

)
− 1

2v log
(
κw
2 + 1

)+ 1
2w log(w)

+ (κw + 3) log(κw(κw + 6) + 12)

2κ
+

√
3 arctan

(
κw+3√

3

)

κ
(11.2)

where the second equation is a repetition for the reader’s convenience of Eq. (4.8) and
DKE (v0) is the boundary function defined in equation (5.7); the relation between the
two independent roots λ1,2 and the parameter κ ia provided by Eqs. (5.5) and (11.1).
The reason while we have used the argument

v0 = 2v

κw + 2
(11.3)

is that the symplectic variable v0 associated with the base-manifold metric and the
symplectic variable v associated with the metric on the canonical bundleMKE

T are not
the same; their relation is precisely that in Eq. (11.3) which is a direct consequence of
the Calabi Ansatz as we explain below.
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11.1 Derivation of the formula forGKE (v,w)

The general formula (11.2) is a direct yield of the direct Legendre transform after the
Calabi Ansatz:

GMKE
T

(u, v,w) = xu u + xv v + xw w − K0(v0) − U (λ) (11.4)

where

λ = w w̄
detgMB

= const × w w̄ exp [κ K0(v0)]

= �(w) = 1
24w

(
κ2w2 + 6κw + 12

)
w

2
= λU ′(λ)

U (λ) = U(w) =
−3 log

(
2
(
κ2w2 + 6κw + 12

))+ 3κw − 2
√
3 arctan

(
κw+3√

3

)

2κK0(v0) = v0D′ (v0) − D (v0) + v0
2

(11.5)
The last two lines in Eq. (11.5) were derived earlier, respectively, in Eqs. (10.5), (4.12).
The explicit form of U(w) follows from Eq. (10.5) using the KE condition, namely
Eq. (10.8). From the above relations, one easily obtains the relations

u0 = 2u

kw + 2
, v0 = 2v

kw + 2
xw = 1

2 {log [�(w)] − κ K0(v0)}
(11.6)

The first two relations can be understood as follows. The momenta u0, v0 are, by
definition

u0 = ∂xuK0 ; v0 = ∂xvuK0

while we have
u = ∂xuK ; v = ∂xvK

By the Calabi Ansatz we get:

u = u0 + ∂xuU (λ) = u0 + ∂xuλ ∂λU (λ) = u0 + κ∂xuK0 λ∂λU (λ) = u0

(
1 + κ

2
w
)

A completely analogous calculation can be done for the case of v. Finally let us note
that the coordinate xu, xv were already resolved in terms of u0, v0 in Eqs. (4.11):

xu = 1

2
(log (u0)−log (2v0 − u0)) ; xv = D′ (v0)+log (2v0−u0) − 1

2
log (v0)+ 1

2
(11.7)

The information provided in Eqs. (11.5)–(11.7) is sufficient to complete the Legendre
transform (11.4) and retrieve the very simple and elegant result encoded in Eq. (11.2).
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To check the correctness of the general formula (11.2)we have explicitly calculated,
by means of the mathematica package metricgrav10, the Ricci tensor for a few
cases of M[λ1,λ2]

T , always finding zero.

11.2 The example of themetric [2, 1]

Here we present the explicit form in symplectic coordinates of the Ricci-flat metric
on the canonical bundle of the KE manifold M[1,2]

B , namely that determined by the
choice: λ1 = 1, λ2 = 2. We get:

ds2
M[1,2]
T

= dφ2
(

− u2(9w+14)2

343v3
− 16464u2

(9w+14)4
+ 2u

)

+
dv2

(
u
(
2058v3 + (9w + 14)3

)
− 686v3(9w + 14)

)

v(2v − u)(7v − 9w − 14)(14v − 9w − 14)(21v + 9w + 14)

+2dτdφ

(
−u(9w + 14)2

343v2
− 16464uv

(9w + 14)4
+ u

)
+ dudv

u − 2v
+ du(udv − vdu)

u(u − 2v)

+
36uw

(
27w2 + 126w + 196

)
dχdφ

(9w + 14)3
+ dτ2

(
− 16464v2

(9w + 14)4
− (9w + 14)2

343v
+ v

)

+ 6174v2dvdw

(7v − 9w − 14)(14v − 9w − 14)(21v + 9w + 14)

+
dw2

(
5647152v3 − 343v2(9w + 14)4 + (9w + 14)6

)

2w(9w + 14)
(
27w2 + 126w + 196

)
(7v − 9w − 14)(14v − 9w − 14)(21v + 9w + 14)

+
36vw

(
27w2 + 126w + 196

)
dτdχ

(9w + 14)3
+

2w
(
27w2 + 126w + 196

)
dχ2

(9w + 14)2

12 The Ricci-flat metric on tot
[
K

(MKE
B

)]
versus themetric cone on

the Sasakian fibrations onMKE
B

This last section is probably the most relevant one since it clarifies an unexpected
distinction that opens new directions of investigations. To develop our argument it is
appropriate to begin by reformulating the geometry of the Ricci-flat metric derived
from the Calabi ansatz in terms of vielbeins. In that language the comparison with the
Sasaki–Einstein metrics of [32] will become much more transparent.

With some straightforward yet cumbersomealgebraic analysiswehave verified that,
after the change of variables (6.3), the Ricci-flat metric in action-angle coordinates
coming from the symplectic potential GMKE

T
, as displayed in (11.2), can be rewritten

10 metricgrav just as vielbgrav23 is a Mathematica package written by one of us (P.F.) almost thirty
years ago and constantly updated. It will be available from the site of the publisher De Gruyter to the readers
of the forthcoming book [31].
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as a sum of squares in terms of a set of six vielbein one-forms V i :

ds2MKE
T

=
6∑

i=1

(
V i
)2 = δi j V

i
μ V j

ν︸ ︷︷ ︸
metricgμν

dyμdyν ; yμ = {θ, v,w, φ, τ, χ}︸ ︷︷ ︸
coordinates

(12.1)

The explicit general structure of the sechsbein V i , whose matrix of components V i
μ

must be invertible and reproduces the metric (12.1) is the following one:

V 1 = √
v dθ

V 2 = √
v dφ sin(θ)

V 3 = dv

A(v,w)

V 4 = B(v,w) [dw + C(v,w) dv]

V 5 = D(v,w) [dτ + (1 − cos(θ)) dφ]

V 6 = E(v,w) [dχ + �(v,w) [ dτ + (1 − cos(θ)) dφ ]] (12.2)

For the metric given by the symplectic potential in (11.2) the six functions A(v,w),
B(v,w), C(v,w), D(v,w), E(v,w), �(v,w) are explicitly given below, where, in
order to make formulae more easily readable, we have renamed λ1 = α, λ2 = β:

A(v,w) = − i
√
64v3(α + β)

(
α2 + αβ + β2

)6 − 4v2
(
α2 + αβ + β2

)3 (2 (α2 + αβ + β2
)+ 3w(α + β)

)4 + α2β2
(
2
(
α2 + αβ + β2

)+ 3w(α + β)
)6

2
√
v
(
α2 + αβ + β2

)3/2 (2 (α2 + αβ + β2
)+ 3w(α + β)

)2

B(v,w) =
√
NB(v,w)√
DB(v,w)

NB(v,w) = 64v3(α + β)
(
α2 + αβ + β2)6 − 4v2

(
α2 + αβ + β2)3 (2 (α2 + αβ + β2)+ 3w(α + β)

)4 + α2β2 (2 (α2 + αβ + β2)+ 3w(α + β)
)6

DB(v,w) = 2w
(
8
(
α2 + αβ + β2)3 + 9w3(α + β)3 + 24w2 (α2 + αβ + β2) (α + β)2 + 24w

(
α2 + αβ + β2)2 (α + β)

)

×
(
8v3(α + β)

(
α2 + αβ + β2)3 − 4v2

(
α2 + αβ + β2)3 (2 (α2 + αβ + β2)+ 3w(α + β)

)

+α2β2 (2 (α2 + αβ + β2)+ 3w(α + β)
)3)

C(v,w) =
24v2w(α + β)

(
α2 + αβ + β2

)3 (
8
(
α2 + αβ + β2

)3 + 9w3(α + β)3 + 24w2
(
α2 + αβ + β2

)
(α + β)2 + 24w

(
α2 + αβ + β2

)2
(α + β)

)

64v3(α + β)
(
α2 + αβ + β2

)6 − 4v2
(
α2 + αβ + β2

)3 (2 (α2 + αβ + β2
)+ 3w(α + β)

)4 + α2β2
(
2
(
α2 + αβ + β2

)+ 3w(α + β)
)6

D(v,w) =
√

−8v3(α + β)
(
α2 + αβ + β2

)3 + 4v2
(
α2 + αβ + β2

)3 (2 (α2 + αβ + β2
)+ 3w(α + β)

)− α2β2
(
2
(
α2 + αβ + β2

)+ 3w(α + β)
)3

2
√
v
(
α2 + αβ + β2

)3 (2 (α2 + αβ + β2
)+ 3w(α + β)

)

E(v,w) = √
2

√√√√√w
(
4
(
α2 + αβ + β2

)2 + 3w2(α + β)2 + 6w
(
α3 + 2α2β + 2αβ2 + β3

))

(
2
(
α2 + αβ + β2

)+ 3w(α + β)
)2

�(v,w) = �(v,w) ≡ 3v(α + β)

2
(
α2 + αβ + β2

)+ 3w(α + β)
(12.3)

12.1 Properties of the sechsbein and comparison with Sasakian 5-manifolds

The general structure of the sechsbein in (12.2) and (12.3) is very interesting since
it highlights the double fibration structure of the underlying manifold MT which is
a line-bundle (the canonical one) on the base manifold MB which, in its turn, is a
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(singular) P
1 fibration over a base P

1:

MT
π1−→ MB

π2−→ P
1

The projection onto the base manifold is produced by considering the limit w → 0.
Very much informative is the development in series of the sechsbein for small values
of the coordinate w. The limit is regular for w = 0; two of the sechsbein (V 4, V 6)

vanish and the remaining four 1-forms V 1, V 2, V 3, V 5 attain the values e3, e4, e1, e2

corresponding to the vierbein of theKähler–Einstein four-dimensionalmetrics as given
in Eq. (6.14) with the function FKKE(v) as given in Table 1. At order

√
w there is no

deformation of the base-manifold vierbein, but the two vielbein corresponding to the
fiber directions do appear. At order w we see the beginning of the deformation of the
base-manifold vierbein. Precisely we find:

V 1 = e3

V 2 = e4

V 3 = e1 +w�e1 + O(w2)

V 4 = 0 +√
w����w + O(w3/2)

V 5 = e2 +w�e2 + O(w2)

V 6 = 0 +√
w����χ + O(w3/2)

where the deformations of the base-manifold vielbein are as follows:

�e1 = −
3(α + β)

√
v

α2+αβ+β2

(
α2β2 − 2v3(α + β)

)

2((v − α)(β − v)(αβ + v(α + β)))3/2
dv

�e2 = 3(α + β)
(
v3(α + β) − 2α2β2

)

4
(
α2 + αβ + β2

)3/2 √
v(v − α)(β − v)(αβ + v(α + β))

[dτ + (1 − cos θ) dφ]

and the initial fiber-vielbein are instead the following ones:

����w = dw√
2w

+ 3v2 (α + β)

(v − α)(v − β)(αβ + v(α + β))
dv

����χ = √
2

(
dχ + 3v(α + β)

2
(
α2 + αβ + β2

) [dτ + (1 − cos θ) dφ]

)
(12.4)

12.2 Comparison with the Sasaki–Einsteinmetrics

It is now the appropriate moment to consider the Sasaki–Einstein metrics introduced
in [32]. In the coordinates utilized by those authors we have:

ds2SE5
= dy2(1 − cy)

2
(
a + 2cy3 − 3y2

) +
(
a + 2cy3 − 3y2

)
(cdφ cos(θ) + dψ)2

18(1 − cy)
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+ 1

6
(1 − cy)

(
dθ2 + dφ2 sin2 θ

)
+ ���2

SE

9
���SE = [dξ + y (dψ + cdφ cos θ + dψ) − dφ cos θ ] (12.5)

If in Eq. (12.5) we apply the following coordinate transformation and renaming of the
parameters:

a → 1

4

(
3βk2 + 4

)
, c → 1, y → 1 − kv

2
, ψ → −τ − φ (12.6)

we find the following interesting result:

ds2SE5
= k

12
d̂s

2
5

d̂s
2
5 = ds2K E4

+ 4

3k
���2

SE (12.7)

ds2K E4
= dv2

FKKE(v)
+ FKKE(v) [dτ + (1 − cos θ) dφ]2 + v

(
dφ2 sin2 θ + dθ2

)

(12.8)

KKE(v) = 3β − kv3 + 3v2

3v

As one sees the line element ds2K E4
in (12.8) exactly coincides with the line element of

the Kähler Einstein metrics discussed in previous sections and presented in eq. (6.1). It
remains to be seen what is the appearance of the 1-form���SE after the transformation
(12.6). If we add also the coordinate transformation:

ξ → p χ + τ + φ; p ∈ R (12.9)

we find:

���SE = p

[
dχ + k

2p
v (dτ + (1 − cos θ) dφ)

]
(12.10)

Comparing Eq. (12.10) with (12.4) we see that we obtain:

���SE � ����χ

if we choose the constant p as we do below:

p = k
α2 + α β + β2

3 (α + β)
= 1 (12.11)

Hence, using Eqs. (12.6), (12.9), (12.11), (5.5) we can conclude that the Sasaki–
Einstein metric of [32] with the choice of the parameters a, c provided in (12.6) is
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proportional through the constant k
12 to the following five-dimensional metric:

d̂s
2
5 = ds2K E4︸ ︷︷ ︸

KEmetriconMB

+ 4

3 k
(dχ + �(v, 0)(v,w) [ dτ + (1 − cos(θ)) dφ ])2︸ ︷︷ ︸

limw→0
V 6√
2w

(12.12)
As we have explicitly checked, the metric is an Einstein metric, since its Ricci tensor
in intrinsic components takes the following form:

Ric[̂g5] = k

6
δi j

and on an Einstein space the standard metric of the metric cone is certainly Ricci-flat.
Hence, writing a new sechsbein:

Econe = {E1 . . . ,E6}

where:

E1 = R e3; E2 = R e4

E3 = R e1; E4 = R e2

E5 = R

√
4

3 k

(
dχ + k

2
v [ dτ + (1 − cos(θ)) dφ ]

)
; E6 = 2

√
3

k
dR

(12.13)

With the Mathematica Code Vielbgrav23, we have calculated the curvature 2-form
Rab

con and the intrinsic components of the Riemann tensor Riecone for the metric
provided by the sechsbein (12.13). As the metric is Ricci-flat, the Riemann tensor
coincides with the Weyl tensor Wcone(R, v). Similarly, we have done for the Ricci-
flat metric constructed with the Calabi ansatz, using the sechsbein defined in (12.2)
with the functions displayed in (12.3). In this way, we have obtained the curvature
2-form Rab

C A and the intrinsic components of the Weyl tensor associated with the
Calabi Ansatz metricWCA(w, v). In order to make the comparison more precise, the
sechsbein (12.2) has been reordered in a similar way to the ordering utilized in the
metric cone case:

ECA = {V 1, V 2, V 3, V 5, V 6, V 4}
The two metrics exactly coincide on the base-manifold MB that is one of the KE
manifolds with two conical singularities discussed at length in the previous sections
of the present paper and are both Ricci-flat in six dimensions, yet from all what we
said in the present section they seem to be intrinsically different, since the Sasakian
Einstein five-dimensional metric as described in (12.12) cannot be obtained by fixing
the fiber coordinate w to some appropriate constant value. Yet one might think that
there exists some clever change of coordinates that can map one metric into the other.
To show that this is not the case, we resorted to the calculation ofWeyl tensor invariants
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for the two metrics to compare them. Furthermore, we calculated polynomial 2-form
curvature invariants, in particular the following 6-forms:

Ch = Rab ∧ Rbc ∧ Rca = Tr (R ∧ R ∧ R)

E = Rab ∧ Rcd ∧ R f g εabcd f g
(12.14)

The considered Weyl invariants are instead the following ones:

Quad1 = W[abi j]W[i jab]
Cub1 = W[abi j]W[i j pq]W[pqab]
Cub2 = W[i j pq]W[rpsq]W[rsi j]
Cub3 = W[i j pq]W[rpsq]W[ris j]

Quart1 = W[abi j]W[i j pq]W[pqmn]W[mnab]
Quart2 = W[i, j, p, q]W[p, r , q, s]W[r ,m, s, n]W[m, n, i, j]

(12.15)

The result of the calculations with one special choice of α, β is displayed in Table 2.
Inspecting this table, one realizes that, as anticipated in the Introduction, the Ricci-

flat metric constructed by means of the Calabi Ansatz translated into action-angle
variables is different from that associated with the Sasaki–Einstein metric recalled
in (12.5). The strongest evidence is given by vanishing of the invariant E in one
case and the nonzero and coordinate dependent structure of the same invariant in the
second case. However, also the other invariants corroborate the same evidence. One
can calculate the value of the coordinate R in terms of v,w by equating the quadratic
invariant Quad1 of the two metrics. Substituting the result in the other invariants the
two expressions do not agree for the other invariants. This being clarified one can try
to understand the reason of the disagreement. In the Sasaki Einstein approach, (12.7)
corresponds to the standard construction of the metric on a U(1) bundle. To the metric
of the base manifold, in the present case MKE

B , one adds the square of a 1-form � of
the type� = dτ + U(1)−connectiononMB . The remaining coordinate is the radial
one R. In the Calabi ansatz approach, instead, one directly constructs the line bundle
on the base manifold. A Sasaki–Einstein manifold could be retrieved a posteriori
through the construction of a sphere bundle R = |w|, where the complex coordinate
w is the canonical bundle fiber coordinate. The two procedures do not commute.
The investigation of the Sasaki–Einstein manifold underlying the constructed Ricci-
flat metric via Calabi ansatz is a new research project that we leave for the future.
Similarly the identification of a gauge four-dimensional gauge theory dual to the here
presented D3–brane solution of Type IIB supergravity is one of the goals we plan to
pursue in the near future.

12.3 Completeness

The metrics in the family Mat(FV)KE are complete [2], so that, applying Theorem 4.3
in Calabi’s paper [11], we would get that the Ricci-flat six-dimensional metric on the
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canonical bundle is complete. However, one should check that Calabi’s theorem also
applies in the singular case.
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A The issue of (2,1)-forms

In this appendix, we consider the issue of the (2,1)-forms, giving a proof that no (anti)-
self-dual (2, 1) forms exist on the KE manifolds previously studied. A (2,1)-form can
be written as

�ijk̄ (z, z̄) dz
i ∧ dzj ∧ dz̄k̄

The dual (2,1)-form is

�g� = �̃�pq̄ (z, z̄) dz
� ∧ dz p ∧ dz̄q̄

where:

�̃�pq̄ (z, z̄) = 1√
detg

g�m̄ gpn̄ gq̄s ε
m̄n̄k̄εi js �ijk̄ (z, z̄)

Hence, the (anti)-self-duality condition is expressed by the equation:

± i �̃�pq̄ (z, z̄) = ��pq̄ (z, z̄)

Given the complex structure tensor J and its eigenvectors, one writes the complex
differentials:

dzi = ωi
�(μ)dμ

� + i d�i ; dz̄i = ωi
�(μ)dμ

� − i d�i

where the real 1-forms ωi ≡ ωi
�(μ)dμ

� depending only on moment variables are
defined by the complex structure tensor and hence by the explicit form of the metric
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in terms of the Hessian. Using this formalism, a (2,1)-form is written as

�(2,1) = �i j |k (μ) (ωi + i d�i ) ∧ (ω j + i d� j ) ∧ (ωk − i d�k)

= QI JK (μ) dy I ∧ dy J ∧ dyK
(A.1)

where y I = {
μi ,� j

}
is the complete set of the 2n real coordinates (moments

and angles). The complex functions QI JK (μ) depend on the real variables μ. The
(anti)self-duality condition is most easily written in the symplectic formalism as the
determinant of the metric tensor in symplectic coordinates is just 1. One gets

QI JK = ±i εI J K PQR QPQR (A.2)

The original components �i j |k (μ) are supposed to be complex-valued functions of
their real arguments which means that we have a total of 9 complex-valued functions,
namely a total of 18 real functions:

r(μ) = { f1(μ), . . . , f9(μ), g1(μ), . . . , g9(μ)} (A.3)

Explicitly we obtain

� = 2
(
( f3 − f5 − f7 + ig3 − ig5 − ig7) dτ ∧ dχ ∧ ω1 − 2 ( f8 + ig8) dτ ∧ dχ ∧ ω2

−2 ( f9 + ig9) dτ ∧ dχ ∧ ω3 + 2 ( f1 + ig1) dτ ∧ dφ ∧ ω1 + 2 ( f2 + ig2) dτ ∧ dφ ∧ ω2

+ ( f3 + f5 − f7 + ig3 + ig5 − ig7) dτ ∧ dφ ∧ ω3 + 2 (g2 − i f2) dτ ∧ ω1 ∧ ω2

+ (−i f3 − i f5 − i f7 + g3 + g5 + g7) dτ ∧ ω1 ∧ ω3 + 2 (g8 − i f8) dτ ∧ ω2 ∧ ω3

+ (−i f3 − i f5 + i f7 + g3 + g5 − g7) dχ ∧ ω1 ∧ ω2 + 2 (g6 − i f6) dχ ∧ ω1 ∧ ω3

+2 (g9 − i f9) dχ ∧ ω2 ∧ ω3 − 2 ( f4 + ig4) dφ ∧ dχ ∧ ω1

− ( f3 + f5 + f7 + ig3 + ig5 + ig7) dφ ∧ dχ ∧ ω2 − 2 ( f6 + ig6) dφ ∧ dχ ∧ ω3

+2 (g1 − i f1) dφ ∧ ω1 ∧ ω2 + 2 (g4 − i f4) dφ ∧ ω1 ∧ ω3

+ (i f3 − i f5 − i f7 − g3 + g5 + g7) dφ ∧ ω2 ∧ ω3

+ (−i f3 + i f5 − i f7 + g3 − g5 + g7) dτ ∧ dφ ∧ dχ

+ω1 ∧ ω2 ∧ ω3 ( f3 − f5 + f7 + ig3 − ig5 + ig7)
)

(A.4)
which is the most general expression for a (2,1)-form expressed in the real symplectic
coordinate basis. Expanding each of the closed one-forms in the differentials dμi of
the moments one obtains the explicit form of the 20 components QI JK (μ)mentioned
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in (A.1). For instance in our standard example λ1 = 1, λ2 = 2 we have:

ω1 = dv−vdu
u(u−2v)

ω2 = N2
D2

N2 = 3087v3dw(u − 2v) − udv
(
2058v3 + (9w + 14)3

)
+vdu

(
2058v3 − 343v2(9w + 14)

+(9w + 14)3
)+ 686v3(9w + 14)dv

D2 = v(u − 2v)
(
2058v3 − 343v2(9w + 14) + (9w + 14)3

)
ω3 = N3

D3

N3 = 6174v2dv + dw
(
5647152v3−343v2(9w+14)4+(9w+14)6

)
w(243w3+1512w2+3528w+2744)

D3 = 2
(
2058v3 − 343v2(9w + 14) + (9w + 14)3

)
(A.5)

and by substitution one straightforwardly obtains the QI JK componentswhose expres-
sion is too lengthy to be displayed. In general, a complex-valued 3-form has the
following structure:

�[3] = (X20 + iY20) dτ ∧ dφ ∧ dχ + (X10 + iY10) du ∧ dτ ∧ dχ + (X8 + iY8) du ∧ dτ ∧ dφ
+ (X3 + iY3) du ∧ dv ∧ dτ + (X1 + iY1) du ∧ dv ∧ dw + (X4 + iY4) du ∧ dv ∧ dχ
+ (X2 + iY2) du ∧ dv ∧ dφ + (X6 + iY6) du ∧ dw ∧ dτ + (X7 + iY7) du ∧ dw ∧ dχ
+ (X5 + iY5) du ∧ dw ∧ dφ + (X9 + iY9) du ∧ dφ ∧ dχ + (X16 + iY16) dv ∧ dτ ∧ dχ
+ (X14 + iY14) dv ∧ dτ ∧ dφ + (X12 + iY12) dv ∧ dw ∧ dτ + (X13 + iY13) dv ∧ dw ∧ dχ
+ (X11 + iY11) dv ∧ dw ∧ dφ + (X15 + iY15) dv ∧ dφ ∧ dχ + (X19 + iY19) dw ∧ dτ ∧ dχ
+ (X17 + iY17) dw ∧ dτ ∧ dφ + (X18 + iY18) dw ∧ dφ ∧ dχ

(A.6)
where the Xi and Yi are real functions of the momenta μ. The self-duality condition
(A.2) reduces to an algebraic relation that expresses all the Yi in terms of the Xi ,
precisely:

Y1 = ± X20
Y2 = ± X19
Y3 = ± −X18
Y4 = ± −X17
Y5 = ± −X16
Y6 = ± X15
Y7 = ± X14
Y8 = ± X13
Y9 = ± X12
Y10 = ± −X11

Y11 = ± X10
Y12 = ± −X9
Y13 = ± −X8
Y14 = ± −X7
Y15 = ± −X6
Y16 = ± X5
Y17 = ± X4
Y18 = ± X3
Y19 = ± −X2
Y20 = ± −X1

The choice of the ± sign corresponding to self/anti-self duality, respectively. Com-
paring Eq. (A.4) with Eq. (A.6) and using Eq. (A.5), one obtains the 20 Xi and the
20 Yi of a generic (2,1)-form as linear combination of the 18 free parameter functions
(A.3) with coefficients that are rational functions of the moment μ. The self-duality
constraint is a set of 20 linear equations on the 18 parameters. Obviously, unless the
rank of the 20 × 18 matrix is less than 18, there are no nontrivial solutions. We have
indeed verified that the 20 equations do not have nontrivial solutions for the standard
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case λ1 = 1, λ2 = 2 and for some other choices of the parameters. Hence, no har-
monic self-dual (2,1) forms exist on this KE background and we have exact D3-brane
solutions without 3-form fluxes. [2]

B Metric on the Lens space L(k; 1) ∼ S3/Zk

Let us consider the embedding of S3 in C
2 described by the two complex coordinates

in (6.24), which satisfy:

|U 0|2 + |U 1|2 = r2.

The metric can be written in the following form:

ds2 = |dU 0|2 + |dU 1|2 = r2

4
(dθ2 + sin2(θ)dφ2) + r2

4
(dγ + cos(θ) dφ)2 .

Recall that 0 ≤ θ ≤ π , 0 ≤ φ < 2π , 0 ≤ γ < 4π . One can indeed verify that, being

√|g| = r3

8
sin(θ),

the above bounds on the angles yield the correct value of the volume of S3:

Vol(S3) =
∫ √|g| dθdφdγ = 2π2 r3.

Consider now the Lens space L(k; 1) ∼ S3/Zk obtained by performing quotient of
S3 by the group Zk acting as

(
U 0

U 1

)
→
(
e
2π i
k 0

0 e
2π i
k

)(
U 0

U 1

)
.

This amounts to identifying

γ ∼ γ + 4π

k
,

and has the effect of dividing by k the interval of values of γ , so that, after the
identification, γ varies in the range

γ ∈
(
0,

4π

k

)
.
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Therefore, the effect is to make the replacement γ = ψ/k in the metric, where 0 ≤
ψ < 4π :

ds2 = r2

4
(dθ2 + sin2(θ)dφ2) + r2

4
(dψ/k + cos(θ) dφ)2

= r2

4
(dθ2 + sin2(θ)dφ2) + r2

4k2
(dψ + k cos(θ) dφ)2 .

One can verify that the curvature is just the same (locally it amounts to a reparameter-
ization), though globally the space becomes S3/Zk . This identifies L(k; 1) ∼ S3/Zk

with the monopole of charge k. Comparing the above metric with the one in (6.1) at
constant |v|, we see that the matching of the fiber metric requires k = 2 and τ = ψ/2.
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